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Resumé 
Quand le E-learning a émergé il ya 20 ans, cela consistait simplement en un texte affiché 
sur un écran d'ordinateur, comme un livre. Avec les changements et les progrès dans la 
technologie, le E-learning a parcouru un long chemin, maintenant offrant un matériel 
éducatif personnalisé, interactif et riche en contenu. Aujourd'hui, le E-learning se 
transforme de nouveau. En effet, avec la prolifération des systèmes d'apprentissage 
électronique et des outils d'édition de contenu éducatif, ainsi que les normes établies, 
c’est devenu plus facile de partager et de réutiliser le contenu d'apprentissage. En outre, 
avec le passage à des méthodes d'enseignement centrées sur l'apprenant, en plus de l'effet 
des techniques et technologies Web2.0, les apprenants ne sont plus seulement les 
récipiendaires du contenu d'apprentissage, mais peuvent jouer un rôle plus actif dans 
l'enrichissement de ce contenu. Par ailleurs, avec la quantité d'informations que les 
systèmes E-learning peuvent accumuler sur les apprenants, et l'impact que cela peut avoir 
sur leur vie privée, des préoccupations sont soulevées afin de protéger la vie privée des 
apprenants. Au meilleur de nos connaissances, il n'existe pas de solutions existantes qui 
prennent en charge les différents problèmes soulevés par ces changements. Dans ce 
travail, nous abordons ces questions en présentant Cadmus, SHAREK, et le E-learning 
préservant la vie privée. Plus précisément, Cadmus est une plateforme web, conforme au 
standard IMS QTI, offrant un cadre et des outils adéquats pour permettre à des tuteurs de 
créer et partager des questions de tests et des examens. Plus précisément, Cadmus fournit 
des modules telles que EQRS (Exam Question Recommender System) pour aider les 
tuteurs à localiser des questions appropriées pour leur examens, ICE (Identification of 
Conflits in Exams) pour aider à résoudre les conflits entre les questions contenu dans un 
même examen, et le Topic Tree, conçu pour aider les tuteurs à mieux organiser leurs 
questions d'examen et à assurer facilement la couverture des différent sujets contenus 
dans les examens. D'autre part, SHAREK (Sharing REsources and Knowledge) fournit un 
cadre pour pouvoir profiter du meilleur des deux mondes : la solidité des systèmes E-
learning et la flexibilité de PLE (Personal Learning Environment) tout en permettant aux 
apprenants d'enrichir le contenu d'apprentissage, et les aider à localiser nouvelles 
ressources d'apprentissage. Plus précisément, SHAREK combine un système 
recommandation multicritères, ainsi que des techniques et des technologies Web2.0, tels 
que le RSS et le web social, pour promouvoir de nouvelles ressources d'apprentissage et 
aider les apprenants à localiser du contenu adapté. Finalement, afin de répondre aux 
divers besoins de la vie privée dans le E-learning, nous proposons un cadre avec quatre 
niveaux de vie privée, ainsi que quatre niveaux de traçabilité. De plus, nous présentons 
ACES (Anonymous Credentials for E-learning Systems), un ensemble de protocoles, 
basés sur des techniques cryptographiques bien établies, afin d'aider les apprenants à 
atteindre leur niveau de vie privée désiré. 
 
Mots-clés : E-learning, Web2.0, Vie Privée, Partage des connaissances 
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Abstract 

E-learning emerged over 20 years ago, and was merely book like text displayed on a 
computer screen. With the changes and advances in technology, E-learning has come a 
long way, providing personal and interactive rich content. Today, E-learning is again 
going through major changes. Indeed, with the proliferation of E-learning systems and 
content authoring tools, as well as established standards, it has become easier to share and 
reuse learning content. Moreover, with the shift to learner centered education and the 
effect of Web2.0 techniques and technologies, learners are no longer just recipients of the 
learning content, but can play an active role into enriching such content. Additionally, 
with the amount of information E-learning systems can gather about learners, and the 
impact this has on their privacy, concerns are being raised in order to protect learners’ 
privacy. Nonetheless, to the best of our knowledge, there is no existing work that 
supports the various challenges raised by these changes. In this work, we address these 
issues by presenting Cadmus, SHAREK, and privacy preserving E-learning. Specifically, 
Cadmus is an IMS QTI compliant web based assessment authoring tool, offering the 
proper framework and tools to enable tutors author and share questions and exams. In 
detail, Cadmus provides functionalities such as the EQRS (Exam Questions 
Recommender System) to help tutors locate suitable questions, ICE (Identification of 
Conflicts in Exams) to help resolve conflicts between questions within the same exam, 
and the topic tree, designed to help tutors better organize their exam questions and easily 
ensure the content coverage of their exams. On the other hand, SHAREK (Sharing 
REsources and Knowledge) provides the framework to take advantage of both the rigidity 
of E-learning systems and the flexibility of PLEs (Personal Learning Environment) while 
enabling learners to enrich the learning content, and helping them locate new learning 
resources. Specifically, SHAREK utilizes a multi-criteria content based recommender 
system, and combines Web2.0 technologies and techniques such as RSS and social web 
to promote new learning resources and help learners locate suitable content. Lastly, in 
order to address the various needs for privacy in E-learning, we propose a framework 
with four levels of privacy, and four levels of tracking, and we detail ACES (Anonymous 
Credentials for E-learning Systems), a set of protocols, based on well established 
cryptographic techniques, to help learners achieve their desired level of privacy. 
 
Keywords : E-learning, Web2.0, Privacy, Knowledge sharing 
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Chapter 1 : Introduction 

When looking for the definition of E-Learning, one would come across different 

interpretations (LiNe-Zine, 2000). We summarize the definition of E-learning with the 

following statement: E-learning is the delivery and support of educational and training 

material using computers. 

E-learning is an aspect of distant learning, where teaching materials are accessed through 

electronic media and where teachers and students can communicate electronically (email, 

chat rooms, forums, skype, ...). 

E-learning emerged over 20 years ago, and consisted solely of text, like a book on a 

screen, and was ineffective and unpopular with learners. Today, E-learning has become 

richer with multimedia content and more interactive. With E-learning, education is 

shifting from being Tutor Centered, where the tutor is the center and has access to the 

resources, and becoming more Learner Centered, where the student is the center and has 

access to a multitude of resources (Figure 1). 

 
Figure 1: Learner Centered education 

  

E-learning is very convenient and portable; the student is not bound by physical space 

since study material is accessible remotely. Furthermore, the student is not bound by 

time, since he can study at his own pace, and can have access to assistance through email 

or message boards. E-learning is also very flexible; students can skip material or chapters 

they already know. Students can choose instructor-led or self-study courses and can 

choose from a variety of learning tools that best fit their style. In addition, E-learning 
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involves a great collaboration and interaction between students and tutors or specialist. 

Such collaboration is made easier by the online environment. For example, a student in 

Canada can have access to a specialist in Europe or Asia through email or assist to his 

lecture through a web conference. Despite the advancement in E-learning, many aspects 

still require further development; such aspects include Knowledge Sharing and Learner 

Privacy.  

Knowledge sharing, from the tutors’ perspective, is important since it reduces the cost in 

time and resources of redeveloping learning material that already exists. Moreover, in 

many cases, re-using learning material with well established statistics is imperative, 

specifically in E-testing. E-testing offers several advantages over traditional paper tests, 

such as sound and multimedia content, adaptive testing techniques, quick scoring and 

feedback. Despite these advantages over traditional test, E-testing suffers from the 

various limitations. One such limitation is Question Type support: E-testing systems only 

support a limited set of question types such as True/False and Multiple choice questions, 

while disregarding other question types, such as Image Hot Spot, which are important 

and supported by E-learning standards. Another limitation in E-testing is due to the lack 

of standardization and the fact that various systems store learning material using an 

internal format, and only the author has access to his material. Thus, in order to share 

learning material, authors must resort to import/export facilities that are not always 

available, not to mention the process of locating that material. Finally, Content Coverage 

refers to the verification that questions in tests and exams cover properly the subject 

matter. This issue is accentuated further by the fact that exam questions are usually 

selected at random within the E-testing system. 

Knowledge sharing from the learners’ perspective, or harnessing the learner’s 

knowledge, is another aspect that is starting to get more and more attention in E-learning. 

Specifically, learners regularly access learning content and tools from outside the scope 

of the content defined by the tutor, and the tools provided by the E-learning system. This 

is further accentuated with the fact that learning is becoming more learner centered, 

where the learner has an access to a multitude of resources. This knowledge is very 

important since it can enrich the learning content, hence benefitting both the tutor and 

learners. Indeed, the learner is no longer just a recipient of learning content, but rather he 
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can be an active participant in the creation of such content. Nonetheless, there are no 

existing mechanisms within E-learning systems to efficiently harness and share this 

knowledge. 

Finally, another aspect of E-learning that requires attention is privacy. One of the main 

advantages of E-learning is its adaptability to the learner’s specific needs and 

preferences. But in order to do so, the E-learning systems must collect large amounts of 

information about the learner (Arroyo & Woolf, 2005), information that could be 

misused, and therefore violating his privacy, which is the claim of individuals to 

determine what information about themselves is known to others, as well as when and 

how it is used (Westin, 1967). The security aspects of E-learning systems do offer some 

privacy protection; nonetheless it remains unsatisfactory on several levels. Other than the 

case of Head-in-the-sand privacy (by which the learner wants to keep secret his 

ignorance even from himself), learners might need to keep private different parts of their 

profile for different reasons. For example, a learner who is following a professional 

training course, for competitive reasons, would rather keep his identity hidden; yet, he 

wouldn’t mind leaving a trace of his activities in the E-learning system. On the other 

hand, a secret agent would rather take the training course for a top-secret mission without 

revealing his identity and without even leaving a trace that someone took this training. 

Consequently, we propose Cadmus, to address knowledge sharing from the tutor’s 

perspective, SHAREK (SHAring REsources and Knowledge) to address knowledge 

sharing from the learner’s perspective and finally we present Privacy Preserving E-

learning to provide a learner’s privacy preserving environment for E-learning. Although 

the three approaches are introduced separately in this work, they could be all integrated 

within the same E-learning system. 

The name Cadmus comes from Phoenician and Greek mythologies: Cadmus was a 

Phoenician prince who went looking for his sister Europa, abducted by Zeus. During his 

journey, Cadmus introduced the Phoenician alphabet to the Greeks, who then adapted it 

into the Greek alphabet.  

Cadmus, our system, is an IMS QTI (Question and Test Interoperability) (IMS, 2006) 

compliant E-testing system. Cadmus is presented to address the limitations of knowledge 

sharing from a tutor’s perspective, in the context of an E-testing system. Hence, since 
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IMS-QTI supports most question types, and in order to increase Question Type support, 

Cadmus stores questions and tests following the IMS-QTI format. Moreover, Cadmus 

stores questions and tests in a shared repository, thus allowing authors to implicitly share 

their knowledge and E-testing material. Nonetheless, authors still have the option of 

sharing or keeping private the authored material. For such a question-and-exam 

repository to be beneficial it must contain extensive information on questions and exams. 

The bigger and more useful the repository becomes, the more dreadful is the task to 

search for and retrieve necessary information and material. Although there are tools to 

help teachers locate learning material (Tang & McCalla, 2003; Walker, Recker, Lawless, 

& Wiley, 2004), to our knowledge there aren’t personalized tools to help the teacher 

select exam material from a shared data bank. Consequently, Cadmus incorporates an 

Exam Questions Recommender System (Hage & Aïmeur, 2005) to help teachers find and 

select questions for exams. The recommender uses a hybrid, feature-augmentation 

recommendation approach (Burke, 2002, 2004). Additionally, the recommender system 

gathers implicit and explicit feedback (Cabena, Hadjinian, Stadler, Verhees, & Znasi, 

1997) from the user in order to improve future recommendations. However, selecting 

questions depending merely on the teacher’s preference cannot guarantee a flawless exam 

with no conflicts. Indeed, we define that a conflict exists in an exam if two or more 

questions are redundant in content, and/or if a certain question reveals the answer of 

another question within the same exam. Such conflicts might be frequent typically when 

a teacher is using shared questions (authored by others), and especially in the automation 

of the exam creation process. As such, we introduce ICE (Identification of Conflicts in 

Exams), a module within Cadmus that uses IR (Information Retrieval) techniques to 

identify conflicts within an exam. ICE (Hage & Aïmeur, 2006a) is based on the vector 

space model using the cosine function and TF-IDF weighing technique (Singhal, 2001). 

Furthermore, ICE combines the EQRS techniques in order to recommend replacements 

for conflicting questions. Finally, Cadmus incorporates the Topic Tree (Hage & Aïmeur, 

2007), a hierarchy of different topics, of which the author can select those that are 

covered in the exam, such as the question selection is performed from each to ensure 

content coverage.  
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On the other hand, SHAREK (SHAring REsources and Knowledge) is intended to help 

learners to share their knowledge and resources. Inspired by the Web2.0 (Schauer, 2005) 

approach at harnessing collective intelligence, SHAREK (Hage & Aïmeur, 2008b) allows 

learners to augment the learning material proposed by the tutors by adding or attaching, 

to a course or lecture, learning resources that they have found (or created). As such, 

learners can be active contributors into enhancing and enriching the course’s learning 

resources, while maintaining the integrity of the learning material developed by the tutor. 

In order to achieve this, SHAREK combines Web2.0 technologies and techniques (such 

as tagging, comments, rating and RSS) with recommendation techniques, notably a multi-

criteria collaborative filtering recommender system to help learner manage, share and 

easily discover learning resources. 

Finally, in order to satisfy various privacy needs, we adapt the levels of Privacy and the 

levels of Tracking introduced in (Aïmeur, Brassard, Fernandez, & Mani Onana, 2007a) to 

the context of E-learning. In particular, learners are able to receive anonymous transcripts 

and anonymous degrees such as to prove their achievements to third entities (employers, 

other E-learning systems, etc.) without compromising their private data. Moreover, in 

order for the learner to prove that he is the rightful owner of the anonymous transcript or 

degree, we introduce the concept of Blind Digital Certificates, a digital certificate that 

does not reveal the learner’s identity. Finally, we propose Anonymous Credentials for E-

learning Systems (ACES), a set of protocols that preserves the learners’ privacy(Aïmeur, 

Hage, & Mani Onana, 2008). We are aware that not everybody will embrace our wish for 

privacy. Nevertheless, as many would agree, we consider privacy to be a fundamental 

human right: it is not negotiable! This is why we introduce Privacy-Preserving E-learning 

as an alternative to standard E-learning. Of course, the final choice belongs to each 

learner. 

This document is organized as follows: Chapter 2 offers background information. 

Chapter 3 details the three issues raised with regards current E-learning systems and 

offers an overview of related work. Chapters 4, 5 and 6 respectively introduce our 

proposed solutions to the issues raised in Chapter 3. Specifically, Chapter 4 details 

Cadmus and the various components, Chapter 5 highlights SHAREK, and Chapter 6 

details privacy preserving E-learning. Chapter 7 concludes this work. 



6 

 

 

 

Chapter 2 : Background 

This section offers background information. Specifically, it introduces E-learning by 

detailing the components of an E-learning system, as well as by providing an overview of 

current standards and specification, and a listing of major E-learing systems and their 

components. The Section also introduces Web2.0 and defines its three pilars. Moreover it 

offers an over view of how Web2.0 is affecting E-learning. 

2.1 E-learning 

2.1.1 Components of an E-learning System: LMS and LCMS 

There are four parts in the life cycle of E-learning (Figure 2): Skill Analysis, Material 

Development, Learning Activity and Evaluation.  

 Skill Analysis: analysis and evaluation of the learner’s current skill, and the skill 

level expected after the training. 

 Material Development: develop and decide on the course material needed to attain 

the course objective. 

 Learning Activity: the learner goes through the prepared material. 

 Evaluation: the new acquired skill or knowledge is tested and assessed. 

 
Figure 2: E-learning Lifecycle 

 

Throughout the E-learning lifecycle, there are many components collaborating in order to 

analyze the learner’s skills, develop and deliver proper training material, and evaluate the 

learning process. Figure 3 illustrates a simplified example of an E-learning system.  
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Figure 3: General architecture of an E-learning system 

 

Here is a brief explanation of each component, and then a small example to illustrate the 

interaction between these different components. 

 The Learner is the person who will be going through the learning/training process. 

He can be a student, an employee in a company, or anyone who wants to increase 

their skill and knowledge through distant learning. 

 The Developer or Teacher is the person developing the training material. He can 

be a specialist developing training material, a teacher adding or changing some 

data, or another E-learning system from where training material is imported.  

 Content Authoring Tools are available to help the developer create or edit 

learning material, classify the content, or add a few notes on a subject. 

 The Content Manager is used to structure the content for search and retrieval, to 

add/remove/update content, and for version control. 

 The Content Repository is used to store learning material in self contained 

reusable packages. 

 The Course Manager is for managing and deciding the content to be delivered to 

the learner. 
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 The Delivery Environment is how and where the training content is delivered. 

The Delivery Environment depends on the media type of the training material.  

 The Evaluation or Assessment tool evaluates the learner’s current skill, the skill 

level expected after the training, and evaluates what the learner gained from the 

training. 

 The Learner Profile Manager is used to keep track of the learner’s goals and 

learning history, and to manage his preferences and learning environment. 

 The Learner Profile Repository is where all the information about the learner is 

stored and accessed by the Learner Profile Manager. 

 The Collaborative Environment is a set of tools available for the learner to help 

him in the learning process; tools such as email, internet, forums, library, etc. 

 

The following example illustrates the interaction between the various components of an 

E-learning system. Consider a person (the learner) who wants to learn how to cook an 

omelet. For this matter, assume a cooking E-learning system. To simplify the example, 

assume that: preparing an omelet has only two parts: preparing the ingredients (eggs and 

vegetables), and cooking the omelet.  

The training content is already developed (by a Chef for example) and stored in the 

Content Repository. To start the learning process, the Course Manager will check with 

the Learner Profile Manager and get information about the learner, such as: the preferred 

Delivery Environment (reading, illustration with pictures, or a demonstration), and what 

are the skill level and previous training of the learner related to preparing an omelet (does 

the learner know how to break the eggs, how to prepare the vegetables, …). Now that the 

Course Manager knows what training the learner needs and in which context, it will 

query the content manager to look up the training material. In this example, if the learner 

already knows how to prepare the vegetables, but not the eggs, and prefers to read the 

instructions with illustrations, then the Course Manager will query the Content Manager 

only for training material on how to prepare the eggs, in the format of text and illustration 

(web page, a manual from the library …). At this point, the Course Manager will relay 

the gathered information to the Delivery Environment and the learner will go through the 
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learning process, relying on the Collaborative Environment for more help if needed. After 

the learning process is over, an Evaluation, or an Assessment, of the new acquired skill is 

done (a cooking test and a tasting of the omelet), and the information is reported to the 

Learner Profile Manager that will record the new training done by the learner, and the 

newly acquired skills. 

The components of an E-learning system are usually divided into two distinct systems: an 

LMS (Learning Management System) and an LCMS (Learning Content Management 

System). Although both parts share a similar name and acronym, they have two 

completely different functions. The LMS primary objective is to manage the learner, and 

monitor his performance and progress. On the other hand, the LCMS manages the 

content and the learning material. If we refer back to Figure 3, and we want to order the 

variable components of the E-learning system under the LMS or the LCMS, we get the 

result illustrated in Figure 4. 

 
Figure 4: LMS and LCMS 

It is important to note that functionalities may sometimes overlap between the LMS and 

the LCMS, i.e. an LMS system might include some LCMS functionality or vice versa. 

Table 1 highlights some of the main differences between an LMS and an LCMS. 

  

Learner Profile 
Manager 

Course Manager 

Evaluation/ 
Assessment 

Collaborative 

Environment 

Delivery 
Environment 

Content Manager 

Content Authoring 

LMS LCMS 
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Table 1: LMS vs. LCMS 

  LMS LCMS 

Management of: Learner Learning Content 

Classroom management Yes (not always) No 

Learner profile data Yes No 

Event scheduling Yes No 

Skill analysis Yes Yes (in some cases) 

Content creation No Yes 

Content organization No Yes 

Manage the content development process No Yes 

Delivery of content No Yes 

 

Most existing E-learning systems actually combine both of the LMS and the LCMS 

functionalities. Such a system is usually referred to, in the literature, as an LMS 

(Learning Management System). 

2.1.2 E-learning Standards and Specifications 

Up until recently, creation and implementation of E-learning material was restricted to a 

private internal use only, in organizations such as schools, universities, and training 

departments of companies. In order to deliver the training material, various organizations 

chose different delivery media, different LMS, different platforms/operating systems and 

different authoring tools. If an organization upgraded or changed any of its information 

technologies, the course might not operate, and a change to one component of the course 

would affect the entire course.  Standards and specifications help simplify the 

development, the use and reuse of E-learning material. As stated in the ADL (Advanced 

Distributed Learning Initiative)  goals, standards and specifications ensure that E-learning 

material is: 

Reusable: modified easily and can be used on different development tools. 

Accessible: available as needed by learners or course developers. 

Interoperable: functional across different hardware or software platforms. 

Durable: easy to modify and updated for new software versions. 
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Currently, there are many organizations developing different standards for E-learning, 

each promoting its own standards. Some of the leading organizations with the most 

widely accepted standards are:  

IEEE Learning Technology Standards Committee 

The LTSC (Learning Technology Standards Committee) is a committee of the IEEE 

(Institute of Electrical and Electronic Engineering) to develop standards for learning 

technology. (ltsc.ieee.org/) 

ADL (Advanced Distributed Learning Initiative)  

ADL was started, in 1997, by the U.S. Department of Defense and the White House 

Office of Science and Technology Policy (OSTP). The purpose of the ADL is to 

standardize E-learning while collaborating with the government, industry, and academia. 

(www.adlnet.org) 

IMS (Instructional Management System Project)   

The IMS is an open consortium of industry, government and education members. It was 

started in 1997 by the National Learning Infrastructure Initiative of EDUCAUSE. The 

IMS provides a neutral forum for the development of standards and specifications for 

interoperability and reuse. (www.imsproject.org) 

 

Some of the most widely accepted standards and specification for E-learning are: 

SCORM (Sharable Content Object Reference Model), LOM (Learning Object Metadata), 

QTI (Question and Test Interoperability) and LIP (Learner Information Packaging). 

2.1.2.1 Sharable Content Object Reference Model 

The ADL combined E-learning specifications from international standard groups (IEEE, 

IMS, AICC and ARIADNE) into a single specification, SCORM. To define SCORM, it 

is simply a set of standards for developing, packaging and delivering training materials.  

The SCORM standard has three components: Content Packaging, Runtime 

Communication, and Course Metadata.  

Content Packaging is the packaging of all the material and components necessary for the 

delivery of a course. In order for a course to be properly shared, the architecture and the 

learning resources should be included in the course. SCORM requires each course to 
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include an XML file containing this description. This file is called imsmanifest.xml. The 

imsmanifest file has four sections: 

 The preamble section: contains XML pointers to schemas for validating the file. 

 The metadata section: contains general course information, such as the title. 

 The organization section: contains the sequence and the order of the course 

material. 

 The resources section: contains a list of all the files and resources used in this 

course. 

Many courses require adapting to the learner’s actions during the course. Runtime 

Communication occurs when such a course communicates with the LMS. SCORM 

runtime communication requires two elements: runtime commands to communicate the 

learner’s information to and from the LMS, and the learner’s metadata to store the data 

on individual learners. Presently, in SCORM there are 8 runtime commands, and 49 

student metadata elements. 

The SCORM Course Metadata is information packaged within a course when it is 

archived. The course metadata allows students, teachers or course developers to search 

through the archives, and easily identify the content of the course. Course metadata can 

contain the course title, description, etc. SCROM contains a dictionary of metadata terms 

that can be used for the course description. SCROM uses the IMS Learning Resources 

Metadata specification, which is based on the IEEE Learning Technology Standards 

Committee and ARIADNE (Alliance of Remote Instructional Authoring and 

Distributions Networks for Europe). 

2.1.2.2 Learning Object Metadata 

LOM (Learning Object Metadata) is a standard for defining the attributes of different LO 

(Learning Objects1), it is an index information used to search and reuse LOs. LOM is a 

hierarchy of data elements. Nine categories exist at the top level of the hierarchy: general, 

life cycle, meta-metadata, educational, technical, rights, relation, annotation and 

                                                
1 A Learning Object is defined as an entity, whether digital or not, used for learning or training purpose 
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classification categories. What follows is the exact definition of the categories from the 

LOM specifications (ltsc.ieee.org/): 

a) “The General category groups the general information that describes the learning 

object as a whole.” 

b) “The Lifecycle category groups the features related to the history and current state 

of this learning object and those who have affected this learning object during its 

evolution.” 

c) “The Meta-Metadata category groups information about the metadata instance 

itself (rather than the learning object that the metadata instance describes).” 

d) “The Technical category groups the technical requirements and technical 

characteristics of the learning object.” 

e) “The Educational category groups the educational and pedagogic characteristics 

of the learning object.” 

f) “The Rights category groups the intellectual property rights and conditions of use 

for the learning object.” 

g) “The Relation category groups features that define the relationship between the 

learning object and other related learning objects.” 

h) “The Annotation category provides comments on the educational use of the 

learning object and provides information on when and by whom the comments 

were created.” 

i) “The Classification category describes this learning object in relation to a 

particular classification system.” 

 

The following are examples of the data elements hierarchy, where the dot separates each 

level in the hierarchy: 

General.Title 

LifeCycle.Contribute.Date 

Technical.InstallationRemarks 

 

For each data elements the LOM defines: 

a name, to refer to the data element,  
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an explanation, to define the data element,  

a size, that is the number of values allowed,  

an order, to specify the order of the values,  

an example, an illustrative example,  

a value space, to define the set of allowed values of the data element,  

a datatype that indicates the type of the value of the data element. 

2.1.2.3 Learner Information Packaging 

LIP (Learner Information Packaging) sets a list of specifications used in order to 

exchange learner information, such as name, address and other information. LIP presents 

the learner information in a defined package. LIP allows profile servers to store learner 

information in their own format, and provides means to import and export that data 

between different profile servers. Profile servers use a broad range of information on 

learners. LIP provides an extensive set of elements to cover most of the data used by 

profile servers. Most of the LIP elements are optional, thus implementers can only 

include the specific elements of their actual application. LIP defines eleven segments to 

group the learner’s data: 

 Identification: contains basic information about the learner such as name, address, 

phone number and email 

 Goal: contains information about the learner’s personal goal and aspirations. A 

nested structure provides the ability to identify sub-goals. 

 QCL: specifies the Qualifications, Certifications, and Licenses. Reflects the 

achieved accomplishments and indicates the source of the QCL and the level 

attained. 

 Accessibility: contains the learner preferences such as language, disability or 

accessibility, and technical or physical preferences. 

 Activity: contains educational and training actions. This area goes beyond the 

recording of the activity and result; it provides a space to include a digital 

representation related to the activity, e.g. a digital representation of a work of art. 

 Competency: contains skills the learner has acquired though formal/informal 
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training or work history. These skills can be related to information in the Activity 

and/or QCL sections. 

 Interest: contains information on the learner’s hobbies and recreational activities. 

These items can be related to information in the QCL section, and can also 

contain digital representations. 

 Transcript: contains a summary of academic achievement. This section introduces 

the concept of an exrefrecord which is a structure that allows the referencing of 

external data formats, e.g. a document can be stored in an EDI or in a PDF format. 

 Affiliation: contains information and description of organizations affiliated with 

the learner, such as clubs and professional associations. 

 Security Key: contains the learners’ security information such as passwords, and 

security keys. 

 Relationship: contains descriptions of the relationships between data contained in 

the other segments. 

2.1.2.4 Question and Test Interoperability 

IMS QTI (Question and Test Interoperability) (IMS-QTI, 2006; Sclater & Low, 2002) 

sets a list of specifications used in order to exchange assessment information, such as 

questions, tests, and results. QTI allows assessment systems to store their data in their 

own format, and provides a mean to import and export that data, in the QTI format, 

between various assessment systems. QTI is composed of two parts: the ASI (Assessment 

Section and Item) relates to the test contents, and the Results Reporting relates to the test 

results. To avoid any ambiguity, QTI uses its own terminology. QTI refers to tests as 

assessments. In order to properly deliver a question, there are other things to know, such 

as the score for getting it right, and the layout of the question. Therefore, QTI refers to 

questions and their respective information as items. QTI also refers to a group of items in 

an assessment as a section. A section can contain items and/or sections (Figure 5). 



16 

 

 

 

 
Figure 5: Example of an Assessment 

QTI makes available a number of the most used question types: multiple choice, 

true/false, multiple response, image hot spot, fill in the blank, select text, slide, drag 

object drag target, order objects, match items, and connect points. 

Results in QTI relate to a single learner. However, since a learner can do more than one 

test, results can contain several results for several assessments. The result reporting data 

model is made of four constructs:  

 Summary: contains data on the test, such as the highest score, and the number of 

attempts made. 

 Assessment: as in the ASI model 

 Section: as in the ASI model 

 Item: as in the ASI modem 

As an alternative result reporting mechanism, one can use the IMS LIP (Learner 

Information Packaging). 

Figure 6 represents a simple True and False example. Figure 7 illustrates the 

corresponding XML to represent the question of Figure 6 following the IMS QTI 

standard. The example is taken form the ASI Best Practice & Implementation Guide. For 

purpose of practicality, the response processing was left out, and only the representational 

part of the question illustrated in Figure 7. Due to concerns that the IMS QTI is becoming 

Assessment 

Section 1 

Section 1.1 

Item 1.1.A 

Item 1.1.B 

Item 1.A 
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increasingly complex, IMS developed a cut down version of the QTI specification, QTI 

Lite. QTI Lite deals only with Items, Sections and Assessments are not included. 

Furthermore, the only item implemented is multiple choice single response. There is 

support for text and images, but not for video and audio, and QTI Lite maintains a 

simplified response processing. 

 
Figure 6: IMS QTI Example 
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Figure 7: IMS QTI Example XML 

2.1.3 E-learning Platforms 

E-learning has come a long way from being just a book-like content. As illustrated 

earlier, E-learning systems have become very complex and involve many utilities and 

tools. This section highlights some of the E-learning systems available in the market, and 

<questestinterop> 

  <qticomment> 

    This is a simple True/False multiple-choice example using V1.2. The rendering is a    

    standard radio button style. 

    Response processing is incorporated. 

  </qticomment> 

  <item ident="IMS_V01_I_BasicExample001"> 

    <presentation label="BasicExample001"> 

      <flow> 

        <material> 

          <mattext>Paris is the Capital of France</mattext> 

        </material> 

        <response_lid ident="TF01" rcardinality="Single" rtiming="No"> 

        <render_choice> 

        <flow_label> 

          <response_label ident="T"> 

            <material><mattext>Agree</mattext></material> 

          </response_label> 

          <response_label ident="F"> 

            <material><mattext>Disagree</mattext></material> 

          </response_label> 

        </flow_label> 

        </render_choice> 

        </response_lid> 

      </flow> 

    </presentation> 

  </item> 

</questestinterop> 



19 

 

 

 

offers a comparison of the various utilities available in each system. In addition, it lists 

some of the available virtual universities. 

There exist many E-learning platforms in the market today. The following table 

introduces some of the most known E-learning platform, their manufacturer, and the 

platform’s website. For detailed information on these platforms, please refer to EduTools 

(EduTools, 2006); which offers a complete and independent analysis of the various E-

learning platforms. 

 
Table 2: E-learning Platforms 

 Platform Company 

ANGEL 6 Adv. Research & Technology Institute 

Anlon 4.1 Anlon Systems, Inc. 

Atutor 1.3 University of Toronto (ATRC) 

Bazaar 7 University of Athabaska 

BlackBoard 6 Blackboard 

Bodington University of Leeds 

BSCW 4.0.6 OrbiTeam Software 

Click2learn Aspen 2 Click2learn 

Colloquia 1.3.2 University of Wales 

COSE 2.051 Cambridge Software Publishing 

CourseWork Stanford University 

Educator Ucompass 

Eledge 3.1 Chuck Wright 

Embanet hosting ANGEL Embanet Corporation 

Embanet hosting BlackBoard Embanet Corporation 

FirstClass 7 Centrinity Inc. 

Groove Workspace 2.5 Groove Networks, Inc. 

IntraLearn SME 3.1.2 IntraLearn 

Janison Toolbox 6.2 Janison 

KEWL 1.2 University of Western Cape 

KnowEdge eLearning Suite Inter Netion 

Learnwise Granada Learning 

Manhattan Virtual Classroom 2.1 Western New England College 

Teknical Virtual Campus Teknical Ltd 

The Learning Manager 3.2 The Learning Management Corporation 
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Virtual-U 2.5 Virtual Learning Environments Inc. 

WebCT Campus Edition 4.1 WebCT 

WebCT Vista 2.1 WebCT 

Whiteboard 1.0.2 Todd Templeton 

These different E-learning platforms offer different functionalities, which are divided into 

5 categories: Communication Tools, Productivity Tools, Student Involvement Tools, 

Course Delivery Tools, and Curriculum Design Tools. 

2.1.3.1 Communication Tools 

Communication Tools are available for electronic communication between teacher and 

students, and among students themselves. Communication tools are grouped into: 

 Discussion Forums: online tools to capture and exchange messages over a period 

of time (days, weeks). Threaded discussion forums are forums where the 

messages are divided into categories. 

 File Exchange: tools to allow learners to upload and share files with teachers and 

other students. 

 Internal Email: email tools used from inside the course. 

 Online Journal/Notes: tools to allow learners to keep journal entries or personal 

notes. 

 Real-time Chat: tools to exchange messages in real time. 

 Video Services: tools to allow the teacher to either stream video within the 

system, or enable video conferencing. 

 Whiteboard: offers an electronic dry-erase board that can be used in a virtual 

classroom environment, and other synchronous functionalities such as application 

sharing. 

2.1.3.2 Productivity Tools 

Productivity tools are available to help the learner be more productive. Productivity Tools 

are grouped into: 

 Bookmarks: tools that allow the student to mark important pages, from within or 

outside the course, and then easily come back to them at a later time. 
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 Calendar/Progress Review: tools that allow the students to keep track of course 

progress and assignments plan.  

 Orientation/Help: tools to help the student use the different tools in the course 

management system.  

 Searching Within Course: tools that allows student to search and find course 

material using keywords. 

 Work Offline/Synchronize: tools to allow student to complete their work offline, 

and then synchronize the completed work into the course the next time they login. 

2.1.3.3 Student Involvement Tools 

Student involvement tools are available to help the students to interact with one another. 

Student involvement tools are grouped into: 

 Group work: tools that provide the capacity to split the class into groups, and 

provide groups work space, which enables the teacher to assign specific 

assignments and projects for different groups. 

 Self-assessment: tools to allow student to take and review assessment tests. These 

assessments usually do not count in the final grade. 

 Student Community Building: tools that offer a space to create clubs, study 

groups, or collaborative teams. 

 Student Portfolios: tools that offer a space for student to display their work, along 

with personal information. 

2.1.3.4 Course Delivery Tools 

Course Delivery tools are made available for teachers in order to help them with the 

delivery of the course material. Course Delivery tools are grouped into: 

 Automated Testing and Scoring: tools that allow the teacher to create, distribute, 

and score the tests. 

 Course Management: tools that allow the teacher to control the progress of the 

class through the course material. 

 Instructor Helpdesk: tools to help and guide the teacher how to use the course 
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management. 

 Online Grading Tools: tools to help the teacher grade and provide a feed back to 

the student, and manage a grade book. 

 Student Tracking: tools to allow the teacher track the usage of the course material 

by the students, and to allow the teacher to perform analysis and reporting on a 

class or on an individual level. 

2.1.3.5 Curriculum Design Tools 

Curriculum Design tools are intended to help the teacher create and design the course 

content. Curriculum Design tools are grouped into: 

Accessibility Compliance: is meeting the standards that allow access for people with 

disabilities to learning material. 

Course Templates: tools that help the teacher create the initial structure/template for a 

course. 

Curriculum Management: tools to provide students with customized programs according 

to previous testing or prerequisites. 

Customized Look and Feel: tools to allow the customization of the look and feel of the 

course, including the ability to institutionally brand a course. 

Instructional Design Tools: tools to help the teacher create the learning sequence, for 

example with a wizard or a course template. 

2.1.4 E-testing 

Referring back to E-learning life cycle (Figure 2), E-testing is the evaluation and 

assessment of the learner’s knowledge after the learning activity. As with E-learning, E-

testing relies mainly on computers to assess the learner’s knowledge. E-testing offers 

many advantages, when compared to a traditional paper exam, such as sound and 

multimedia content, adaptive testing techniques, quick scoring and feedback. Moreover, 

learners tend to have better attitudes towards computer based testing. (Butler, 2003) 

performed an experiment with 908 student volunteers from 25 different classes at Ball 

State University. Some students were tested with computer based exams, other with 

traditional paper exams. Students were surveyed on their attitudes towards: grades and 
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learning, anxiety and readiness, sense of control, cheating and discussing the exam. 

Students who took the computer based exams showed better attitude about the grade they 

received, and were more positive towards a higher number of exams. Moreover, they 

were less anxious about exams, although there was no effect on the feeling of readiness. 

In addition, students who took the computer based exams reported higher feelings of 

control, a higher likelihood to cheat, and a higher tendency to discuss the exam’s 

questions.  

The E-testing life cycle is composed of three stages (Figure 8) (Brusilovsky & Miller, 

1999): Preparation, Delivery and Assessment. 

 
Figure 8: E-testing Life Cycle 

The Preparation stage consists of preparing the E-testing material and is composed of 

three steps: 

 Authoring: the actual creation of the questions using either a question markup 

language or GUI (Graphical User Interface) tools. 

 Storage: authored questions may be stored in a static manner, such as an html 

quiz, or in Question Banks where they can be reused in different quizzes.  

 Selection: this step consists of selecting and adding questions to exams. One way 

to do that is selecting the questions manually, or the E-testing system can select 

questions randomly from question pools. 

During the Delivery stage, the learner takes the quiz or the exam prepared in the previous 

step. Depending on the delivery environment, questions can be presented to learners 

using some of the following: HTML, PHP, ASP, Java, and/or Macromedia Flash. 

Moreover, during the delivery of the quiz, the E-testing system could interact with the 

learner by offering personalized hints (Mabrouk, 2006), feedback on answers, and 

adapting the test to the student (such as Item Response Theory (Baker, 2001)). 
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After taking the quiz, the learner’s performance is evaluated in the Assessment stage 

which consists of the following steps: 

Evaluation: determine if the answer is correct, partially correct or false. Most question 

types can be computer scored, and Artificial Intelligence techniques are used to score 

more complex questions such as short essay (Jordan, Makatchev, & Vanlehn, 2003; 

Ventura et al., 2004). 

Grading: the grade is granted depending on whether the answer to the question is correct, 

false, or partially correct and the grade assigned to question 

Feedback: provide the learner feedback about his answer: whether the answer is correct, 

incorrect, or partially correct, why it is incorrect, and where to find more information. 

Feedback can be at two stages (Mathan & Koedinger, 2003): after each question is 

answered and evaluated or after the whole test is evaluated. Moreover, feedback is sent to 

the author, and could be explicit (ask the learner for feedback/evaluation) or implicit (in 

the form of statistics: how many learners answered correctly/incorrectly …). 

2.2 Web 2.0 

Although the term Web2.0 suggests a new version of the World Wide Web, it does not 

refer to an update or any technical specifications, but rather to changes in the ways 

software developers and end-users perceive and use the web. Indeed, the term Web2.0 

refers to a perceived second generation of web-based communities and hosted services 

(such as blogs, Wikis, etc.) which aim to facilitate creativity, and to promote 

collaboration and sharing between users. Table 3 (O'Reilly, 2005) formulates a sense of 

what is Web2.0 by example: 

 
Table 3: Web1.0 vs. Web2.0 (O'Reilly, 2005) 

Web1.0 Web2.0 

Britannica Online Wikipedia 

Personal websites Blogging 
Publishing Participation 

Directories (taxonomy) Tagging ("folksonomy") 
Content Management Systems Wikis 
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Specifically, Britannica (http://www.britannica.com/) is the online version of the 

renowned Encyclopedia Britannica. The content of an encyclopedia is usually authored 

and validated by well established scholars, and the access to that content costs a certain 

amount of money, whether by buying the book collection, or an online membership. On 

the other hand, Wikipedia is a free multilingual encyclopedia, authored by the public at 

large. Wikipedia has more than 15 million articles, in more than 270 languages, written 

collaboratively by volunteers around the world (Wikipedia, 2010). Almost all of its 

articles can be edited by anyone who can access the Wikipedia website. 

Generally, Content Management Systems (CMS) enable one or several authorized users, 

usually the site owners, to easily update the content of websites, whereas Wikis are 

websites that generally allow visitors at large to modify their content. Additionally, the 

access to modify a wiki can be restricted to certain authorize users, providing a simple 

and effective environment for collaborative work. For instance, when relying on email for 

collaboration, each user must review and modify the document, then email the updated 

version to the others, who might have already performed some modification, resulting in 

many versions of the same document. In contrast, in a wiki environment all users access 

the same document in the wiki and apply their modifications there, where changes can be 

tracked to the users directly.  

The purpose of a blog, or a web blog, is very similar to a personal website: the owner 

uses it to publish information on a certain subject, including the owner himself (as an 

online diary). The personal website is usually static: its content is updated, but not on a 

regular basis. Whereas the blog is usually dynamic: the author adds regular entries and 

commentary, descriptions of events and/or other multimedia. The blog entries are 

commonly displayed in reverse-chronological order, and visitors can leave comments on 

the entries. 

Simply defined, taxonomy is the categorization, or classification of an item into a 

properly defined set of classes or categories. For instance: the classification of music into 

genres, where the possible classes (classical, rock, pop, etc.) are predefined by domain 

experts, and rarely change. In contrast, a Tag is freely entered and assigned by users. As 

such, in the case of music classification, users can freely Tag the song genera, and are not 

restricted to a predefined taxonomy, hence the name “folksonomy”. 
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The following point somewhat summarizes the difference between web1.0 and web2.0: 

publishing vs. participation. Specifically, in Web1.0 (publishing) the content is controlled 

by the publisher, and the internet users are just the recipient of the information. Whereas 

in Web2.0 (participation) the users are no longer passive recipients of information, but 

are active participants in the creation of such information (Figure 9), whether by building 

personal blogs, participating in Wikis, tagging, rating, sharing, and/or referring websites. 

A recently published report (Lenhart, Madden, Macgill, & Smith, 2007) indicates that 

64% of online teenagers in the US, ages 12 to 17, engage in at least one type of content 

creation. Moreover, both YouTube and Wikipedia are listed among the top 10 most 

visited sites by Alexa (Alexa, 2008). Both sites rely heavily on user input.  

 
Figure 9: Web1.0 vs. Web2.0 illustrated (Webilus, 2008) 

 
Web2.0 relies on three pillars: the Social Web, Service Oriented Architecture (SOA) and 

Rich Internet Application (RIA). 
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Figure 10: Web2.0 pillars (adapted from (Webilus, 2008)) 

2.2.1 Social Web 

The Social Web refers to the “social interactions” between the users of the web, and the 

resulting virtual “social groups”. It allows users to share their writings, videos, photos, 

and more with their friends, family, colleagues, or the public at large. For instance, the 

Social Web includes simple publishing through a blog or a wiki. As such, in the case of 

the blog the owner of the blog and his faithful readers can become a social circle where 

the readers can comment on the blog posts, or each other’s comments. Similarly, with the 

Wiki, the users who regularly visit add or maintain the Wiki become a virtual social 

community centered on the Wiki. 

Another aspect of the Social Web are the Social Networking Sites (SNS), where users 

can create a public, or semi-private profile in order to stay in contact with other users of 

the site, referred to as Friends. Specifically, SNS such as MySpace.com or Facebook.com 

enable users to create a profile page, add other users to their friends list, share photos, and 

other multimedia content. Other specialized SNS focus on certain aspects of social 

networking, such as LinkedIn.com which provides an environment for professional 

networking, and provides specific functionalities such as to recommend someone for a 

position or a job. Similarly, Academia.edu provides a social networking environment for 

academics, where researchers can connect and offers particular functionalities, such as to 

share research paper or to help locate other users with similar research interests. 
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The main drive behind the Social Web is collaboration and the harnessing of collective 

intelligence. Common features that exist in the Social Web, such as tagging, rating, 

comments and recommendation exploit and share the knowledge and experiences of the 

users. As an example, we will consider social bookmarking sites, such as delicious.com 

or StumbleUpon.com. Such sites enable users to bookmark their favourite web sites. 

Moreover, users can share their favourite web sites with other users, or a community of 

friends. Additionally, users can add tags, comments, even rate these websites (such as 

thumbs up or thumbs down in stumbleupon). Furthermore, users can search for web sites 

using the tags, or even receive recommendations based on their profile – stumbleUpon 

provides a collaborative based recommendation based on the ratings of the users.  

2.2.2 Rich Internet Application 

Rich Internet applications (RIAs) are web applications that provide functionalities and 

interactions similar to desktop applications. Typically, RIAs are delivered through 

browser add-ons or directly through the webpage by using for instance an Ajax 

framework (such as Spry or Jquery) or Macromedia Flash. 

Consider the following two applications to illustrate how RIA is delivered through a 

browser add-on: Cooliris (http://www.cooliris.com/) and Coolpreview 

(http://www.coolpreviews.com). Cooliris provides an interface to help users when 

searching for images. Specifically, Cooliris takes the result of a search engine (such as 

Google image search), and renders it in a animated, flexible interface. For instance, 

consider a user who is searching the web for images of dogs, particularly the German 

Shepherd. The user can go to an image search engine and perform the search. Through 

the search result page, the user is presented with a small preview of the images, and if he 

wants to view the original version, he must click on the thumbnail, which will take him to 

the web page hosting that particular image, where he must locate the image. At this stage, 

if the user is not satisfied, he must return back to the search result page and browse 

through the remaining thumbnails. 

With Cooliris, the user has the option to perform the search within the Cooliris interface, 

or he can switch to Cooliris from the search result page. In the first case, the user must 

specify which image search engine to use, including Google, Yahoo, Flickr and 
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YouTube. All the thumbnails are organized in rows on a wall where the number of rows 

is user specified and ranges between 1 and 7 inclusively. A scroll bar allows the user to 

browse the wall (Figure 11 - a), and when the user clicks on the certain thumbnail, the 

image is automatically enlarged (Figure 11 - b) and the user has the option to go back to 

the wall (just by clicking outside the enlarged image) or he can either add the image to 

his favourites, email it to a friend, or go the original website where the image is hosted. 

Note that in order to add an image to the favourites or send it to a friend, the user must 

register for an account with Cooliris. Moreover, when the user goes to the website 

containing the specific image, Cooliris is minimized and a button is made available for 

the user to revert back to Cooliris. Note that in the case when searching for videos within 

Cooliris, when the user selects a certain thumbnail and it is enlarged, the user has the 

option to play the video directly from within Cooliris. 
 

 
a) Scrolling and browsing the wall 

 
b) Previewing a thumbnail image 

Figure 11 : Cooliris preview 
 
Similarly to Cooliris, Coolpreview is designed to help users while browsing the web. 

While the first is designed for images and videos, Coolpreview is designed for web 

pages. Specifically, Coolpreview offers the user the possibility to preview the page 

attached to with a link, without ever leaving the current page. For instance, consider 

again the case of the user interested in the German Shepherd dog, but now he is searching 

for websites instead of images. After performing the search on Google, usually the user 

has one of three options: first, following each link returned by Google, then using the 

browser’s back button to return to the search result page; second, opening each link in a 
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new browser window, and third opening each link in a new tab. On the other hand, 

Coolpreview offers the user with the possibility to open a virtual window that displays 

the target website (Figure 12 in the middle, highlighted in the red dotted square). 

Additionally, Coolpreview offers many functionalities, including the possibility to 

display the next link on the page (or in this case the next web site), add the page to a 

temporary bookmark stack (Figure 12 on the right hand side, highlighted in blue solid 

square), open the page in a new tab or even email the link. 

 
Figure 12 : Coolpreview 

 
On the other hand, there is a multitude of web pages that illustrate the use of RIA are the 

web-based virtual computers, such as G.ho.st (http://g.ho.st/). Such environments provide 

a virtual computer accessible online, which provides many functionalities and tools, 

including disk space (5 Gbytes in the case of G.oh.st), media player, even an office suite 

to create and store documents, spreadsheets and presentations.  

2.2.3 Service Oriented Architecture 

Service Oriented Architecture (SOA) (Booth et al., 2004) is an architectural style where 

the main goal is to relax the dependencies between various components and to achieve 
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loose coupling. Specifically, a service is a task performed by the service provider to 

achieve a desired end result for a service consumer. Consequently, a service-oriented 

architecture is a collection of services (service providers and consumers), where these 

services communicate with each other. Such communication could be just simple data 

passing or it could involve two or more services coordinating to perform a certain 

activity. Note that the service provider can also be a service consumer. SOA usually 

employs a find-bind-execute paradigm as illustrated in Figure 13. The service provider 

registers in the directory, providing a detailed description of the service provided. The 

service consumer queries the directory to find a suitable service provider. When found, 

the service consumer sends a request to the service provider, who in turn sends the 

response to the service consumer. 

 
Figure 13 : Simple SOA - adapted from (Booth, et al., 2004) 

 
Some of the main advantages of using SOA are: 

Reusability: In an SOA, a requesting application only needs to know the public interface 

of a desired service. Hence, the functions of an application are generally easier to access 

as a service in an SOA than in some other architecture. Consequently, integrating 

applications and systems as well as reusing their different components can be much 

simpler. 

Interoperability: the interaction between loosely-coupled services implies widespread 

interoperability. In other words, within a SOA, the desired objective is for service 

consumers and service providers to communicate and understand each regardless of the 

platform they are on. This objective can be met by having a standard way of 
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communication between services, a way that is consistent across various platforms, 

systems, and languages. 

Scalability: since services in a SOA are loosely coupled, the applications that exploit 

these services tend to scale easily, or at least easier than applications in a more tightly-

coupled environment. This is due in large to the fact that there are few dependencies 

between the requesting application and the services it uses. 

Flexibility: loosely-coupled services are typically more flexible than tightly-coupled 

applications. In a tightly-coupled architecture, the different components are usually 

strongly bound to each other, typically sharing semantics and libraries, and often sharing 

their state. This makes it difficult to evolve the application to keep up with changing 

requirements. The loosely-coupled and asynchronous nature of services in a SOA allows 

applications to be more flexible, and to easily evolve in order to adapt to changing 

requirements. 

The most common approach used to achieve the interactions between various services are 

the web services-based SOAs. A web service is a service that communicates with clients 

using a set of XML-based standard protocols and technologies, such as WSDL (Web 

Services Description Language), SOAP (Simple Object Access Protocol), and UDDI 

(Universal Description, Discovery, and Integration). The universality of the 

aforementioned protocols and technologies has made web services the most predominant 

approach to implementing a SOA. In short, WSDL (Web Services Description 

Language) an XML format used for describing a Web Services interface forms the basis 

of web services.  

SOAP (Simple Object Access Protocol) is an XML-based protocol that enables 

applications to exchange messages and information over the internet. A SOAP message 

(figure ) consists first of an Envelope that identifies the XML document as a SOAP 

message. The SOAP envelope contains an optional Header which provides information 

on authentication, encoding of data, or how the recipient should process the message. 

Moreover, the envelope includes the Body which contains the actual message or 

information. 

UDDI (Universal Description, Discovery, and Integration) is a directory storing 

information about web services. In short, UDDI provides the definition of a set of 
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services and supports the description and discovery of Web Services providers, the Web 

Services they make available, and the technical interfaces used to access those services. 

The idea is to locate organizations and the services they offer, much like using a phone 

book. 

Figure 14 highlights the SOA architecture presented in Figure 13 based on web services. 

Note that all the messages are exchanged using SOAP. 

 
Figure 14 : Web service scenario 

 
The flexibility and interoperability of SOA and web services has lead to a new type of 

web applications called Mashup. Specifically, a mashup describes a Web application that 

combines multiple services and/or data sources into one single application. For instance, 

an example of a mashup is Woozor (www.woozor.com): it combines Google maps with 

information form weather.com in order to provide weather forecast from around the 

world. Another example is Netzwelt (www.netzwelt.de), a German online magazine. It 

combines free and legal promo MP3s on the net with Upcoming.org tour dates, Amazon 

CD reviews, YouTube videos and Akuma MP3 download store.  

2.2.4 E-learning 2.0 

Now that Web2.0 is clearly defined, let us define what E-learning 2.0 is all about. 

Similarly to Web2.0, E-learning2.0 does not refer to a new class of LMS (Learning 

Management Systems) or a new educational technology. Rather it is a natural 

consequence of changes in how tutors and learners perceive learning. Indeed, in recent 
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years, education has been shifting from being tutor-centered, to being learner-centered. 

In tutor-centered education (Figure 15), the tutor is the active participant in the 

educational process and learners are considered as passive receptacles of knowledge. 

Tutor-centered education is a one size fits all approach.  

 
Figure 15: Tutor-centered education (Webilus, 2008) 

 
On the other hand, in learner-centered education (Figure 16), the learners have access to a 

variety of knowledge sources and the tutor places more emphasis on what learners can 

contribute to the educational encounter. It is important to note that E-learning2.0 is not a 

consequence of Web2.0. Indeed, both share the same basic concept where the 

user/learner is not only a spectator and a simple consumer of information, but rather an 

active participant in the creation of such information. As such, one can view Web2.0 

tools and technologies as a natural recourse to achieve learner-centered education. 
 

 
Figure 16: Learner-centered education (Webilus, 2008) 

 

Students act as mirrors, 
reflecting content and 
skills back to the teacher 
and government 
assessors. 

Content and skills 
delivered by the teacher 
and reflected back by the 
students. 

Teacher delivers content 
and skills based on 
government standards. 

Teacher models learning 
and sharing and monitors 
student work channelling 
and crafting learning 
experiences. 

Content and skills are mined 
by students who build from 
the information raw 
materials and then share 
within the class and outside. 

Students act as amplifiers, 
mining, processing, mixing 
and remixing content, and 
sharing. 



35 

 

 

 

What follows are some examples of “Web2.0” tools and websites designed for and/or 

used in learning. For instance, a webcast consists of distributing media content over the 

using streaming media technology. A webcast may be distributed live or on demand. In 

essence, webcasting is “broadcasting” over the internet. A simple example of webcasting 

is a TV station that simultaneously streams over the internet the show being broadcasted 

on TV. On the other hand, a podcast is a series of media content made available via 

syndication, such as RSS. Dedicated software applications, known as podcatchers 

automatically identify and retrieve new available media files. In order to clearly 

understand the difference between a webcast and a podcast, consider the following 

example: you like to watch a TV show called “example show”. If the show is aired once a 

week at a certain time, than you need to be home, in front of your TV at that specific day 

and time to watch the show. The only way to see an episode more than once is on reruns. 

This illustrates a live webcast. On the other hand, if that same show is available on 

demand TV, then you can watch the available episodes at your convenience. Nonetheless, 

you still need to be home in front of your TV. This is similar to an on demand webcast. 

Now, imagine the TV station has a delivery boy called “podcatcher” who will faithfully 

deliver to your house, every time a new episode of your show is ready, a DVD with that 

episode on it. In this case, you can watch any released episode at your convenience, 

whether on your home TV, or on a portable DVD player on the train on your way to 

work. This case illustrates the podcast. 

The utility of webcasts and podcast in E-learning is very clear: tutors can either webcast 

their lectures live to students, or the lectures are made available on demand or through a 

podcast. Note that a lecture can consist of various media, such as audio only, a slide 

presentation with audio, a recording of the tutor, etc. 

Currently, webcasting and podcasting can enhance the learning experience(Lau et al., 

2010), and are being used in several universities worldwide (Shim, Shropshire, Park, 

Harris, & Campbell, 2007). It is important to note that webcasting and podcasting are not 

just used by virtual universities, but also as a complement to lectures in traditional 

classrooms, for instance, Berkely makes publicly available webcasts of several courses 

(available at http://webcast.berkeley.edu/), consisting of either an audio recording of the 
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tutor’s lecture, a video recording of the tutor giving his lecture, or a slide presentation of 

the lecture with the explanations of the tutor.  

Alternatively, wikis are websites that generally allow visitors at large to modify their 

content. Nonetheless, wikis generally can support authentication, such that certain 

members can modify only certain pages. This feature is important since it enable the use 

of wikis in group work assignments. Wikis offer the possibility of central access for all 

the users or limited user groups, which makes it an ideal choice for running projects, 

drafting documentations and other group work. As such, wikis are used to promote team 

work and collaboration between students (Raitman, Augar, & Zhou, 2005a). 

Alternatively, wikis can also be employed by tutors to collaborate on creating learning 

content. For instance, wikiversity (http://wikiversity.org/) offers tutors the chance to 

collaborate and create freely available learning resources, where currently, on the English 

site of wikiversity, there are more than 10,000 pages available, covering various topics. 

Similarly, SuTree2 and eduSLIDE.net3 offer both learners and tutors access to a variety of 

learning resources. Specifically, SuTree.com offers a variety of how-to videos, ranging 

from learning how to whistle, to following a complete course watching MIT lectures. 

eduSLIDE allows tutors to create lessons (presentations) and group them into courses, 

making these courses available for learners.  

Additionally, many existing “web2.0” pages and tools can help learners during the 

learning process. For instance, Footnote.com allows students to access primary source 

documents and photos, and to easily create and post online history reports. Moreover, 

VoiceThread4 can be used by both tutors (to create lessons) and learners (for homework 

purposes) to upload pictures and create an audio narrative to go along with them. 

VisualThesaurus5 offers, as its name indicates, a visual thesaurus. Specifically the lookup 

word is presented in the center of the graph, and edges connect the lookup word with its 

synonyms. A color code is used on the edge connecting the word to its synonyms to 

                                                
22 Available at http://sutree.com/, last accessed on 01/2010 
3 Available at http://www.eduslide.net/, last access on 01/2010 
4 Available at http://voicethread.com/, last accessed on 01/2010 
5 Available at http://www.visualthesaurus.com/, last accessed on 01/2010 
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indicate whether the synonym is a noun, verb, adjective or an adverb. Moreover, the edge 

connecting the lookup word with its antonym is presented differently. Wayfaring.com 

uses Google maps to list podcasts and webcasts from about 68 universities worldwide. 

wePapers6 allows users to share academic papers, ranging from research papers, tutorials, 

lectures, to tests and exams. Moreover, users can comment, and even ask questions to the 

community about these papers. 

Another useful browser add-on is Diigo7, which provides learners with the ability to 

highlight specific parts of webpages, add sticky notes and comments (private or public) to 

the highlighted sections or the whole page, and learners can share the highlights and 

notes with their Diigo social network. 

2.2.5 Personal Learning Environments 

The proliferation of tools and websites such as listed earlier has led to the concept of 

Personal Learning Environment (PLE) (Pusnik, Sumak, & Hericko, 2010). PLE is a 

combination of tools and processes, whether formal or informal, which learners use to 

gather information, reflect on it and work with it.  The appeal of PLE for learners relies in 

the fact that they can choose the tools that best suit their preferences. An interesting 

representation I came once across compares a Learning Management System (LMS) and 

a Personal Learning Environment (PLE) using the following analogy: an LMS is similar 

to a Swiss army knife containing a set of tools, some of which you might never used. On 

the other hand, a PLE is like having a box containing the tools you use, but most 

importantly tools that you chose and prefer. Indeed, although it might be more practical 

to fit a large set of tools into your pocket (Swiss army knife analogy), having only the 

specialized tools that you are comfortable with does have it advantages.  

2.3 Security of E-learning systems 

Security is an important aspect of E-learning. Indeed, most (if not all) of the E-learning 

systems and Intelligent Tutoring Systems store information about the learner, and use an 

                                                
6 Available at http://www.wepapers.com/, last accessed on 01/2010 
7 Available at http://www.diigo.com/, last accessed on 01/2010 
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underlying layer of communication between the client computer (where the learner is 

working) and the server (where the application is actually running). In this section we 

first introduce some notions about security, and then we highlight some underlying 

threats that need to be considered, from a security point of view. 

2.3.1 Pillars of security 

Information security, (in this case the learners’ information) is based on three pillars: 

Confidentiality, Integrity, and Availability. Maintaining the Confidentiality of the 

information involves protecting the information from unwarranted disclosure, and 

making sure that only the users with the proper privileges have access to that information. 

In other words, the user can only access the information he is permitted to. On one hand, 

the confidentiality of the information is considered during the transfer of the data 

between the client and the server. Indeed, with the availability of high bandwidth and the 

speed of the internet connection we tend to forget that in order to reach a certain website, 

the connection goes through several connection points. Indeed, running a simple 

“tracert” to the website we are trying to reach displays the detailed information about the 

route taken by any information exchanged between the user’s PC and the web server 

hosting that certain web page. Figure 17 highlights such a route, where the circles in the 

cloud illustrate possible connection points. 

 

Consequently, imagine a learner sending his login information, or even uploading his 

homework to the E-learning system: the data could be intercepted and used maliciously 

by another learner. Similarly, imagine the learner requesting his grade report for the E-

learning system: that information could be viewed by an unauthorized person while being 

sent from the server to the learner. On the other hand, the confidentiality of the 

Figure 17: Information route from user's PC to web server 

User Web Server
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information is also considered while it is being stored within the system. Indeed, imagine 

that any person with access to the registrar’s office of your academic institution can also 

access and view your academic record. Regardless whether you have a good or bad 

academic record, this is inacceptable. Similarly, the confidentiality of the information 

stored within the E-learning systems should be guarded, and only the persons with the 

proper access privileges might have access to that information. 

The second pillar is Integrity, which enforces the validity and authenticity of the data. In 

other words, ensuring information integrity protects the data from any tampering or 

modifications from unauthorized users. To begin with, the integrity of the information is 

considered during the transfer of the data between the client and the server. Indeed, 

consider taking a learner taking an online quiz. The answers to the quiz’s questions are 

sent through the same route described earlier. Without any integrity verification 

mechanisms, to insure that the data was not modified through the transmission, a 

malicious user can intercept the answers of the learner and modify them before they reach 

the E-learning system, successfully tampering with the learner’s score. Additionally, the 

integrity of the information is also considered while it is being stored within the system. 

Indeed, again in this case, without the proper mechanisms to protect the data integrity, a 

malicious user with access to the E-learning system could tamper with the information 

(increasing or decreasing a test score for instance) unnoticed. 

The third pillar is Availability, which relates to the availability of the E-learning 

system. Indeed, such systems must be available at all time, and provisions must be 

considered to implement and ensure this availability. One might be tempted to think: why 

is this crucial? Well, consider a learner without access to the system the day homework is 

due. Not only will the learner not have access to any necessary learning resources 

available through the E-learning system, but he will not be able to submit his homework. 

Moreover, consider a learner performing an online quiz. Even if the system was not 

available for only a few minutes, it is still precious time lost, not to mention the stress and 

the emotional pressure caused to the learner. 
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2.3.2 Security Threats 

This section highlights some of the existing security threats. Actually, what we list here is 

the tip of the iceberg, and is intended to raise the awareness that when on the internet, we 

are not as safe and secure as we think we are. 

2.3.2.1 SQL Injection 

SQL Injection exploits security vulnerabilities at the database level of the system. Such 

vulnerabilities occur when the user input (data provided by the user) is not properly 

filtered, allowing the user input to contain executable SQL code. For instance, consider 

an authentication system that asks the user to provide a user name and a password, and 

uses the following query to validate the user’s credentials:  

 
If the user enters valid values for the variables provided_user_name and 

provided_password, the query will work just fine and as expected. Nonetheless, if a 

malicious user provides the following user name: “abcd OR 1=1 --”, the WHERE clause 

of the query becomes: “WHERE user_name = abcd OR 1=1 -- AND user_password = 

provided_password”. In this case, regardless of the password provided by the malicious 

user, since the “--” is a comment in SQL, the database system will ignore anything that 

comes after it. Consequently, the query will always return the entire users list from the 

user_table due to the “OR 1=1” in the query. 

Although the example portrayed here is fairly simple, malicious users using the SQL 

Injection attack can formulate far more complex queries and do a large amount of 

damage. Indeed, just to cite a couple of recent events, in August of 2009, the BBC 

published a story about a US citizen allegedly stealing 130 million credit card numbers 

using an SQL injection attack (BBC, 2009b). More recently, in December of 2009, the 

New York Times reported on a hacker who accessed, using an SQL Injection attack, the 

RockYou (rockyou.com) database where he found unencrypted login information for 

more than 32 million user accounts (O'Dell, 2009).  

SELECT * FROM user_table  

WHERE  user_name = provided_user_name  

AND  user_password = provided_password”. 
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2.3.2.2 Cross Site Request Forgery 

Cross-Site Request Forgery (CSRF) is an injection type attack, where a malicious web 

site causes the user’s browser to perform unwanted actions on a trusted site. Specifically, 

the malicious website would try to inject malicious requests to the trusted website. For 

example, consider a user that is logged in to his banking website to pay his bills, while at 

the same time browsing the malicious website. The malicious website could send a 

request to the banking site, asking for a money transfer to a specific account held by the 

attacker. Specifically, the malicious website could post an image that links to the website 

banking site instead, using the following link for example: 

 

“http://mybank.com/transfer?from=account&amount=1000&to=malicious” 

 

It is important to note that such attacks are difficult: the attacker must first gather 

different information about the targeted site, and the targeted user. Moreover, in order for 

this attack to happen, the user must simultaneously have a valid session opened on the 

targeted site, and be connected to the site of origin of the attack. Nonetheless, these 

vulnerabilities are real and could have a devastating effect. In this report (Zeller & Felten, 

2008), a professor from Princeton and his graduate student report on successful CSRF 

attacks against several popular websites, including ING Direct (ingdirect.com), where 

they were able to transfer funds out of users' accounts. 

2.3.2.3 Denial of Service 

A denial-of-service attack (DoS attack) or distributed denial-of-service attack (DDoS 

attack) is an attempt to overload a computer’s resources in order to render it unable to 

process legitimate users’ requests. It is generally conducted against web servers, 

saturating them with fake requests, making them unable to process genuine users’ 

requests. One common method of attack involves overwhelming the target machine by 

saturating it with fake communications requests, such that it cannot respond to legitimate 

request, or responds so slowly as to be rendered effectively unavailable. A distributed 

denial of service attack (DDoS) occurs when multiple systems collaborate to flood the 
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resources of the targeted system. Often, DDoS attacks are conducted using zombie 

machines, computers that were compromised and are now being controlled by the 

attacker. 

In July 2009, South Korea witnessed one of its the largest cyber attacks. DDoS attacks 

were used to crash the websites of dozens of government offices and banks among others 

(Lee, 2009). Additionally, in August of 2009, Twitter and Facebook were the victims of 

similar attacks. While Twitter was taken offline for a while by the attacks, Facebook’s 

service was reduced (BBC, 2009a). Such attacks are quite common and usually used for 

extortion purposes (Messmer, 2010). 
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Chapter 3 : Issues to solve 

Although E-learning has advanced considerably from being book-like to becoming rich 

in content and adaptive, there are still some of its aspects, such as E-testing, that are still 

limited due to the fact that they are underdeveloped or just simply ignored. In this section 

we raise these issues and limitations, then we highlight some of the existing systems, how 

they address these issues and the limitations in their approaches. 

3.1 E-testing 

The first limitation in current E-learning systems is Question type support. Most E-

learning platforms support only the basic question types such as True/False, Multiple 

Choice, Multiple Selection, Fill in the Blanks and Short Answer (EduTools, 2006). Other 

question types, although supported by IMS QTI (IMS-QTI, 2006), are either completely 

ignored or partially supported by some systems, question types such as Image Hot Spot, 

Ordering Objects, Matching and Connect Points. One could argue that question type 

support affects the flexibility of the system, but not its efficiency: for example, Figure 18 

illustrates how an Image Hot Spot question can be modified and presented as a Multiple 

Choice question (IMS-QTI, 2006). 

 
Figure 18: Image Hot Spot into a Multiple Choice 

Nonetheless, this flexibility is important in E-testing to properly adapt the question to the 

learner’s preferences, therefore affecting efficiency. For example, a learner with a visual 

learning style (Flaherty, 1992; Keefe, 1979) would be at disadvantage if the question 

illustrated in Figure 18 was presented to him under the Multiple Choice format instead of 

the Image Hot Spot. According to Howard (Howard, 1998), the learning style is a factor 

that influences a learner’s educational performance. Therefore, it is important to 
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determine the learning style of the student and most importantly, the E-learning system 

must adapt it. 

Another issue is implicit Knowledge Sharing. E-learning and E-testing material is only 

accessible to their developers. Tutors must explicitly make available their material to 

others. This is a major drawback for several reasons: for one, due to the lack of 

standardization and the fact that E-learning platforms store E-learning and E-testing 

material in their own internal format, for two tutors to share their data they must 

explicitly use import/export tools (which are not always available (EduTools, 2006)) to 

perform the exchange. Knowledge sharing is a very important; it helps tutors share their 

experience and knowledge in order to deliver better education. Moreover, in the case of 

E-learning and E-testing, sharing helps reduce the time and cost of redeveloping learning 

material which was already developed. Furthermore, item statistics are important for 

personalization (such as in Item Response Theory ), therefore it is advantageous to reuse 

an item with well established statistics instead of just recreating it. 

One more issue is No Test Personalization. In this case, we consider the issue from a 

tutor and a learner point of view. From the tutor point of view, E-testing systems help the 

tutor create exams, by either recommending items, or creating a complete exam. 

Nonetheless, in both cases the item selection procedure is done pseudo-randomly 

(Blackboard, 2004; EduTools, 2006; WebCT, 2003). The E-testing system recommends 

items (or selects the items for the test) based on tutor specified restrictions with regards to 

the content. Nonetheless, the order in which the items are presented is random. In the 

second case the exam questions are selected randomly. In this context, personalization is 

important since it removes the random factor and increases the tutor’s confidence. 

Indeed, taking into account the tutor’s preferences to recommend test items or to create 

the tests for him increases his confidence in the system. On the other hand, test 

personalization is as important to the learner. Nonetheless, E-testing systems, that offer 

auto-evaluation tests to help the learner prepare for an exam, do not personalize the auto-

evaluation process. Instead, the selection is performed randomly from a collection of 

items predefined by the tutor. 

An additional issue is Content Coverage. In the context of an exam, content coverage 

refers to the sufficient coverage of various subjects included in the exam. This is 
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particularly important since a tutor needs to test all the learners’ knowledge on various 

aspects of a certain subject. This issue becomes important especially considering the fact 

that the questions are selected at random. 

3.2 LMS and PLE 

Many PLE advocates portray an LMS (Learning Management System) (Chapter 2.1.1) as 

being inflexible and used to control the learning and the learner, whereas a PLE is 

portrayed as easy to use, personalized, and liberated. In short, LMS is equivalent to 

controlling how you learn, whereas PLE corresponds to giving you control over how you 

learn. Although controlled and passive learning reduces self reliance and causes loss of 

curiosity and creativity, an uncontrolled education would create a shortage of certified 

labor and would introduce unqualified people into the labor pool. Ideally, a middle point 

between the flexibility of PLEs and the rigidity of LMSs would capitalize on the 

advantages of both worlds, while circumventing their weaknesses. Indeed, the driving 

concept behind learner centered education is to promote freedom and flexibility in 

learning, while maintaining some control. Specifically, this is where E-learning stands 

today (Figure 19). The Tutor delivers the learning content to the learner through the 

LMS. On the other hand, the learner has access to the controlled environment provided 

by the LMS as well as a PLE containing the set of his favorite tools and resources, which 

are external to the LMS. As such, the learner can freely perform the learning activity, 

relying on the content and tools provided through the LMS, and on external uncontrolled 

resources through the PLE. In addition, the learner has access to both his personal social 

network (outside the LMS), and a peer network through the LMS. Note that some peers 

can also be part of the learner’s external social network. In such a scenario, the tutor 

controls the curriculum (which courses and topics the learner must complete), and he can 

validate the learner’s knowledge through assessments. On the other hand, the learner has 

the freedom to choose how to complete the learning activities: whether by solely using 

the content and tools provided through the LMS, by relying completely on his PLE, or a 

combination of both. In the last case, the LMS can be actually viewed simply as another 

component of the PLE.  
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Figure 19: Using LMS and PLE for education 

Although this approach does bring together the advantages of LMS and PLE, it still 

presents some drawbacks, specifically to the learner. First, since there is no formal way to 

know what external resources the learner is accessing, the tutor cannot validate the 

content accessed and used by the learner. Hence, the learner may unwillingly access 

invalid content, which will induce him in error. Consequently the learner will be 

penalized during the assessment of his knowledge, which may cause conflicts with the 

tutor. Second, due to the large variety of resources and tools that could be part of a PLE, 

the discovery of new tools, as well as determining the most suitable tool (depending on 

the current needs) becomes a daunting task. 

3.3 Learner Privacy 

And finally, Privacy. One of the main advantages of E-learning is its adaptability to the 

learner’s specific needs and preferences (Mbendera, 2010). But in order to do so, the E-

learning systems must collect large amounts of information about the learner (Arroyo & 

Woolf, 2005). Once this information is collected, it could be used for commercial profits, 

for purposes other than personalization, and could be shared with other E-learning 

systems or organization, thus violating learner privacy, the claim of individuals to 

determine what information about themselves is known to others, as well as when and 

how it is used (Westin, 1967). Privacy is nearly absent in current E-learning systems. 

Only primitive forms of privacy are offered in some platforms, for instance not allowing 

the tutor access to certain information such as auto-evaluations performed by the learners. 
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Nonetheless, the tutor has access to virtually all the remaining information including, but 

not limited to, who the students are, what parts of the course they referred to, how many 

times and for how long, as well as all the messages in the forums, and all the information 

about the quizzes and tests the learner took in his course. There are many reasons why a 

learner would like to keep his information private. We group these reasons under two 

main categories: Competitive and Personal. In the Competitive context, the learner 

requires his privacy due to competitive considerations. For example, consider a 

prominent politician taking a course to increase his knowledge in a certain domain of 

interest to the electors. Other than for protecting himself from any prejudice from the part 

of the tutor, he has the right and interest in keeping this fact hidden, and his performance 

results private, from public knowledge and scrutiny, especially from his opponents. As 

another example, consider a company that uses E-learning for employee training 

purposes. If competitors have knowledge of the training and the performance of the 

employees, it could seriously affect the competitiveness of the company and its 

reputation, especially if the employees performed poorly. On the other hand, in the 

Personal context, the learner requires his privacy due to personal considerations. For 

example, he may wish to protect himself from a biased tutor. The bias of the tutor might 

stem from prejudice or stereotyping, based on a previous encounter with the learner, or 

even from personal reasons. Another reason a learner would prefer to keep his privacy is 

the increased pressure and stress due to performance anxiety; a learner might feel more 

comfortable and relaxed knowing the tutor will not know how he performed in the test. 

Specifically, learners did reflect, in recent research, a clear preference to privacy in 

learning systems (Aïmeur, Hage, & Mani Onana, 2007b; Anwar & Greer, 2009; Hage & 

Aïmeur, 2009). 

3.4 Related work 

Some of the issues raised in the previous section were already addressed. E-learning 

Systems (Blackboard, 2004; EduTools, 2006; WebCT, 2003) and other independent E-

testing solutions, such as WebQuiz8, Hot Potatoes9 and Test Maker10, counter some of the 

                                                
8 Available at http://www.smartlite.it/en2/products/webquiz/index.asp, last accessed on 03/2008 
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E-testing support limitations. These alternative solutions simplify the exam authoring 

process, and offer, in some cases, better question type support. Moreover, to ensure 

content coverage the concept of question pools (Paskey, 2001; Rudner, 1998) is 

employed. A question pool is a collection of items pertaining to a certain subject such 

that a tutor can now specify a question pool for each subject covered within the exam. 

Therefore, to ensure content coverage, a certain number of questions are selected from 

each pool.  

Still, these solutions do not address many of the limitations mentioned earlier. For one, 

they do not advocate implicit knowledge sharing; questions and exams are only available 

to their respective authors and may be shared explicitly using Import/Export facilities. 

Moreover, Learning Objects repositories (Porter, Curry, Muirhead, & Galan, 2002) are 

created and made available, such as Merlot11 and Lornet12, and research is performed on 

methods to help tutors find relevant material within these repositories (Aktas, Pierce, 

Fox, & Leake, 2004; Jovanovic, Gasevic, & Devedzic, 2006). Nonetheless, the tutor must 

still access these repositories and search for adequate material. 

Moreover, there exist literature on personalizing the learning process in E-learning 

systems (Dolog, Henze, Nejdl, & Sintek., 2004; Gaudiosi & Boticario, 2003) and there 

exist methods to personalize tests to learner preferences (Baker, 2001; Desmarais & Pu, 

2005), nonetheless, these tools apply the same E-learning platforms methodologies as far 

as Personalization, that is, questions remain selected at random (EduTools, 2006). 

On the other hand, in current E-learning and ITS systems, there are provisions for 

collaborative learning (Baghaei & Mitrovic, 2006; Israel & Aiken, 2007; Soller, 

Martínez-Monés, Jermann, & Muehlenbrock, 2005; Takeuchi, Hayashi, Ikeda, & 

Mizoguchi, 2006). Systems such as SPRITS (Aïmeur, ManiOnana, & Saleman, 2006), 

Comtella (Vassileva, 2004) and iHelp (Brooks, Panesar, & Greer, 2007) and Papyres 

(Naak, Hage, & Aïmeur, 2008) promote knowledge and resource sharing. Specifically, 

                                                                                                                                            
9 Available at http://hotpot.uvic.ca/, last accessed on 03/2008 
10 Available at http://www.igneon.com/, last accessed on 03/2008 
11 Available at http://www.merlot.org, last accessed on 03/2010 
12 Available at http://lornet.org/, last accessed on 03/2010 
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system such as iHelp and SPRITS are designed for sharing knowledge, where learners 

can help each other to solve certain problems and locate suitable help. On the other hand 

Comtella and Papyres are used for sharing academic articles. Nonetheless, learners 

access a wider variety of resource types. Moreover, these approaches do not resolve the 

problem raised with regards to learners using their PLE in parallel with the LMS. 

Finally, although privacy has been successfully incorporated in various domains such a 

E-commerce (Aïmeur, et al., 2007a; Canny, 2002a, 2002b) it is barely addressed within 

E-learning systems. Nonetheless, there were concerns raised with regards to security. For 

example, the consequences of a successful SQL Injection attack (Section 2.3.2.1) on an 

E-learning system are numerous: for instance, the attacker could have access to the 

tutor’s resources (upcoming exams or homework, grade books, etc.) or the learner’s 

resources (homework, reports, learning resources, etc.). Alternatively, a CSRF attack 

(Section 2.3.2.2) can be used to manipulate the E-learning system into releasing, 

modifying or even deleting sensitive information. For instance, a learner could 

manipulate the E-learning system into modifying the grade book successfully increase his 

own grades. 

There exists literature, such as (Lin, Korba, Yee, Shih, & Lin, 2004; Raitman, Ngo, 

Augar, & W.Zhou, 2005b), on how to achieve two key security requirements: 

confidentiality and integrity, which provide a certain level of privacy. Integrity 

guarantees that the data is not maliciously or accidentally tampered with or modified. 

Confidentiality assures that the data and information is kept secret and private and is 

disclosed only to the authorized person(s). The confidentiality of the information is 

considered at two different stages: while it is being transmitted to/from the E-learning 

system, and when it is stored within the E-learning system. In the first case, the data can 

be encrypted using Public Key Encryption such that only the appropriate receiver can 

read the data. In the second case, the use of access control mechanisms (Franz, Wahrig, 

Boettcher, & Borcea-Pfitzmann, 2006) can be employed to restrict access to the data. 

Access control cannot totally guarantee the privacy of the learner: first of all, it does not 

protect against a super user with full access privileges. Second, the learner has no control 

on which information about him is being gathered by the E-learning system. Although 
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Privacy Policies have been provided for this purpose (Yee & Korba, 2003), they cannot 

restrict unwanted access to the data. 
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Chapter 4 : Cadmus  

In order to overcome the limitations of current E-testing systems, we offer the framework 

and the necessary tools to reach our goal. Moreover, to illustrate our approach, we 

introduce and implement Cadmus, a platform independent, IMS-QTI compliant E-testing 

environment. Cadmus offers an Authoring Environment where teachers and developers 

can author and maintain their questions. In order to support implicit knowledge sharing, 

the questions are stored in a shared Question Base following the IMS-QTI standard, and 

they may be kept private (accessible only to their author) or made public (accessible to 

the other authors). Moreover, authors can use their own, or shared questions to create 

IMS-QTI compliant exams stored in the exam repository. In addition, authors can track 

the performance of learners, and they can check the questions and exams statistics (how 

many times the question was answered correctly, what is the overall average of an 

exam…). On the other hand, Cadmus offers a Learning Environment where students and 

learners (hereafter called learners) can auto-evaluate their knowledge, take an exam, and 

track their own progress and development. Figure 20 offers a general overview of the 

architecture of Cadmus. 

 
Figure 20: Cadmus Architecture 

From the architecture it is clear that Cadmus has two types of components: data 

components to store the information, and tool components that compose the Author and 
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Learner environments. The System Manager controls all communication and access to 

the various components of Cadmus. We first define the data storage components; then we 

introduce the research axes grouped under the Tutor and Learner Environments. 

 

Question Base 

The Question Base stores all the questions created by the authors. The actual question is 

stored in an external XML file following the IMS-QTI specifications, and the database 

contains the following information about the question: 

Ident: unique question identifier used to uniquely identify the question 

Title: contains the title of the question 

Language: corresponds to the language of the question 

Topic: denotes the topic of the question 

Type: denotes the type of the question, i.e.: multiple choice, true/false 

Difficulty: specifies the difficulty level of the question, according to possible values: 

Very Easy, Easy, Intermediate, Difficult, and Very Difficult 

Keywords: contains keywords relevant to the question’s content 

Objective: corresponds to the pedagogical objective of the question: Concept Definition, 

Concept Application, Concept Generalization, and Concept Mastery 

Occurrence: a counter of the number of exams this question appears in 

Author: the author of the question 

Availability: designates whether the question is available only to the author, to other 

teachers as well, or even to learners 

QTIQuestion: handle to the IMS QTI-compliant XML file where the question and all the 

relevant information are stored 

 

Exam Base 

The Exam Base stores all the exams created by the authors. The actual exam is stored in 

an external XML file following the IMS-QTI specifications, and the database contains 

the following information about the exams: 

Ident: unique exam identifier used to uniquely identify the exam 

Title: contains the title of the exam 
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Language: corresponds to the language of the exam, i.e. English, French 

Topic: denotes the topic of the exam 

Type: denotes the type of the exam, i.e.: pop-quiz, mid-term, final … 

Difficulty: specifies the difficulty level of the exam, according to possible values: Very 

Easy, Easy, Intermediate, Difficult, and Very Difficult 

Keywords: contains keywords relevant to the exam’s content 

Objective: corresponds to the pedagogical objective of the exam, detailed by the author 

in 2-3 lines 

Comments: encloses general comments and remarks about the exam 

Occurrence: a counter of the number of students who took the exam 

Author: the author of the exam 

Availability: designates whether the exam is available only to the author,  to other 

teachers, or even to students 

QTIExam: handle to the IMS QTI-compliant XML file where the exam and all of the 

relevant information are stored 

 

Authors Profile 

The Authors Profile stores information and data about the authors. This information and 

data stored at this stage might not be clear, but is necessary for the tools such as the 

EQRS (Exam Question Recommender System). The user profile contains the following: 

Identity: contains information about the author such as his first name, last name and 

address. 

Question Preferences: determines the author’s preferred questions criteria when 

selecting exam questions 

Exam Preferences: determines the author’s preferred exams criteria 

 

Learner Profile 

Identity: contains information about the learner such as his first name, last name, address 

and student id number  

Demographic Profile: refers to demographic characteristics of the learner, such as age, 

gender, weight, race, ethnic origin, language, etc.  
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Learning Profile: refers to information such as the learner’s qualifications, his learning 

style, interests, goal and aspirations 

Course History: lists the courses the learner has followed in the past, and their 

respective information such as the learner’s activities within the course and his final 

grade 

Current Courses (cc) lists the courses in which the learner is currently registered and 

those he is attending, as well as the courses’ respective information such as learner’s 

activities within the course 

 

At this stage, the learner environment is not of interest, and will not be detailed. The 

learner profile will be detailed further in 0when dealing with learner privacy. 

The authoring environment offers three major functionalities, of which two are straight 

forward: tracking the learner’s performance and viewing the questions and exams 

statistics. In order to track the learner’s performance, the author requires readily available 

information on the learner such as the grades on the quizzes and exams, is there any 

specific topic the learner is failing more than another, etc. Similarly, the questions and 

exams statistics (such as: what is the number of exams this question appears in, how 

many learners answered the question, what is the percentage of correct vs. incorrect 

answers, how many learners took a specific exam, and what is the average) are easily 

obtained. Thus, Cadmus’ main focus is on the questions and exams authoring 

functionalities providing the tutor with tools to help in the question selection process, 

while taking into accounts for the tutor’s preferences, as well as a module to insure that 

the exam is conflict free, and that the content coverage constraint is satisfied.  

4.1 EQRS - Exam Questions Recommender System 

Cadmus aims at offering authors an extensive question base. The more comprehensive 

the question base is, the harder it is to search for and select questions. The first suggestion 

that comes to mind is to filter questions according to their content and the needs of the 

author. A Content-Based filter will help, but might not be enough. For instance, there 

might be between 50 and 100 questions in the library that satisfy the content requirement, 

but not all will be rated the same by different authors with different preferences: an 
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author might prefer “multiple choice” to “true and false”, or might prefer questions with a 

certain level of difficulty, thus the need for an Exam Questions Recommender System 

(EQRS) (Hage & Aïmeur, 2005). In particular, recommender systems offer the user with 

an automated recommendation from a large information space (Miller, Konstan, & Riedl, 

2004). The popularity of recommender systems has increased over the past years. Today, 

recommender systems are used in various fields of application, such as restaurants, 

movies, music, and E-learning. There exist many recommendation techniques 

differentiated upon the basis of their knowledge sources used to make a recommendation. 

In (Burke, 2002) 5 recommendation techniques are identified: 

Collaborative Recommendation: The recommender system accumulates user ratings of 

items, identifies users with common ratings, and offers recommendations based on inter-

user comparison. 

Demographic Recommendation: The recommender system groups users according to 

their demographic information (such as sex, age and nationality) and recommends 

accordingly. 

Content-Based Recommendation: The recommender system uses the features of the 

items, and the user’s interest in these features to make a recommendation. 

Utility-Based Recommendation: The recommender system uses the feature of an item 

and to compute its utility for the user and recommends accordingly. 

Knowledge-Based Recommendation: The recommender system bases the 

recommendation of items on inferences about the user’s preferences and needs. 

Each recommendation technique has its advantages and limitations, thus the use of hybrid 

systems that combines multiple techniques to produce the recommendation. There exist 

several techniques of hybridization: 

Weighted: The recommender system groups the scores of various recommendation 

techniques to produce a single recommendation. 

Switching: The recommender system switches between several techniques, depending on 

the situation, to produce the recommendation. 

Mixed: The recommender system offers the recommendation of the several different 

techniques at the same time. 
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Feature Combination: The recommender system combines features from the data 

sources of different techniques and uses the combined features as an input to one single 

recommendation technique. 

Cascade: The recommender system uses one technique to generate a recommendation, 

and uses a second technique to break any ties. 

Feature Augmentation: The recommender systems uses one technique to generate an 

output, which in turn is used as an input to a second recommendation technique. 

Meta-level: The recommender system uses one technique to generate a model, which in 

turn is used as an input to a second recommendation technique. 

EQRS uses a feature-augmentation, hybrid-recommendation approach, where the first 

level is a Content-Based filter and the second level a Knowledge-Based filter. The 

Content-Based filter will reduce the search to questions with content pertinent to the 

author’s needs, and the Knowledge-Based filter will sort these questions with regards to 

the author’s preferences, such that the higher ranking questions are the most likely to be 

chosen by the teacher. Figure 21 illustrates the architecture of the recommender system. 

We can distinguish two different types of components: Storage components (Question 

Base and User Profile) and Process Components (Content-Based Filter, Knowledge-

Based Filter and Feedback). The Question Base and the Author Profile were detailed 

earlier in this section. 
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Figure 21: EQRS Architecture 

It is important to note that the teacher-specified Type, Occurrence, Difficulty, and Author 

weights are set manually by the author. These weights represent his criteria preference, 

i.e. which of the four independent criteria is more important for him, or, in other words, 

which criteria is more relevant to the search he is performing. The author can select one 

out of five different weight values, where each is assigned a numerical value (Table 4: 

Weights Values) used in the utility function explained further in Section 4.1.2. The 

system-calculated weights infer the author’s preferences of the various values each 

criteria might have. For example, the Type criteria might have one of three different 

values: True/False (TF), Multiple Choice (MC) or Multiple Selection (MS), thus the 

system will calculate three different weights: wTF, wMC and wMS. The system keeps track 

of a counter for each individual weight (i.e. a counter for True/False, a counter for 

Multiple Selection …), and a counter for the total number of questions selected thus far 

by the teacher. Each time the teacher selects a new question, the counter for the total 

number of questions is incremented, and the corresponding individual weight is 

incremented accordingly, i.e. if the question is a True/False, then the True/False counter 

is incremented, and wTF = Counter (True/False) / Total number of questions. The value of 

the individual weights is the percentage of usage, so that if the user selected 100 
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questions out of which 33 were TF, 59 were MC, and 8 were MS, then wTF = 0.33, wMC = 

0.59, wMS = 0.08, and wTF + wMC + wMS = 1. 

 
Table 4: Weights Values 

Weight Lowest Low Normal High Highest 

Value 0.25 0.5 1 2 4 

4.1.1 Content-Based Filter 

When, for the purpose of creating a new exam, the teacher wants to search for questions, 

he must specify the search criteria for the questions (Figure 22). The search criteria are 

used by the Content-Based Filter and consist of the following: Language, Topic, Subject, 

the option of whether or not to include questions that are publicly available to students, 

Objective, Type, Type Weight (used by the teacher to specify how important this criteria 

is to him, compared with other criteria), Difficulty, Difficulty Weight, Occurrence, 

Occurrence Weight, Keywords (only the questions with one or more of the specified 

keywords are retrieved. If left blank, the question’s keywords are ignored in the search), 

Author (only the questions of the specified author(s) are retrieved), and Author Weight. 

The teacher must first select the language and the topic for the question, and has the 

option to restrict the search to a specific subject within the selected topic. Since some 

questions may be available to students, the teacher has the option to include or omit these 

questions from the search. Furthermore, the teacher may restrict the search to a certain 

question objective, question type, question occurrence, and question difficulty. 

Moreover, the teacher can narrow the search to questions from one or more authors, and 

can refine his search further by specifying one or more keywords that are relevant to the 

question’s content. Finally, the teacher can specify the weight, or the importance of 

specific criteria (this weight is used by the Knowledge-Based filter). When the user 

initiates the search, the recommender system will start by collecting the search criteria 

and weights. Then the search criteria are constructed into an SQL query that is passed to 

the database. The result of the query is a collection of candidate questions whose content 

is relevant to the teacher’s search. The candidate questions and the criteria weights are 

then used as the input to the Knowledge-Based filter Figure 23 illustrates the result of the 
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search performed in Figure 22. The search result will display the Title, Subject, Type, 

Author, and the Occurrence of the question. The teacher has the option to select one or 

more questions using the checkbox. Furthermore, the teacher can preview the question by 

clicking on the view button. 

 
Figure 22: Question Search 

4.1.2 Knowledge-Based Filter 

The Knowledge-Based Filter takes as input the candidate questions and the criteria 

weights. The criteria weight is specified by the teacher, and represents the importance of 

this specific criteria to the user compared to other criteria. Table 4 presents the possible 

values of the criteria weight and the respective numerical values. The Knowledge-Based 

filter retrieves the teacher’s profile from the Author Profile repository, and uses the utility 

function to calculate the utility of each candidate questions and the teacher’s needs and 

preferences. 

As such, in order to decide which question the teacher will prefer the most, we need to 

compare several criteria that are unrelated. For instance, how can someone compare the 

Type of a question with the number of times it appears in exams (the Occurrence)? Since 

we cannot correlate the different criteria, we left this decision to the teacher: he must 
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select the criteria weight. This weight must either reinforce or undermine the value of the 

criteria.  

 
Figure 23: Search Result 

The Knowledge-Based recommender uses a heuristic Utility Function, equation (1), to 

calculate the utility of a question to the teacher’s needs and preferences. Consider 

C={Type, Difficulty, Occurrence, Author}. For any i C, we define T(i) as the set of 

values the criteria i can have. For instance, T(Type)={Multiple Choice, True/False, 

Multiple Selection}. 

 

(ܳ)ݏ = 	 ෍ ௝ߚ௜ߙ
௜∈஼

௝∈்(௜)

 
(1) 

 

The utility value s for some item Q is the sum of the products ji , such that i  is the 

weight specified by the teacher for the criteria i and j  is the weight calculated by the 

recommender system. The multiplication by i  will either reinforce or undermine the 

weight of the criteria. Consider the following example to illustrate the utility function: in 

the search performed in Figure 22, the teacher set Type = High, Difficulty = Low, Occurence = 

Lowest and Author = Highest (numerical values illustrated in Table 4). Table 5 illustrates 

the values of two different questions Q1 and Q2, and Table 6 illustrates the individual 
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weights retrieved from the tutor’s profile. Note that Table 6 actually contains only a part 

of the profile, reflecting only the data pertinent to the example. 

 
Table 5: Question Values 

 Type Difficulty Occurrence Author 

Question1 

(Q1) 

True/False Easy High Brazchri 

Question2 

(Q2) 

Multiple 

Choice 

Easy Low Brazchri 

 
Table 6: Teacher's Profile Values 

Criteria Type Difficulty Occurrence Author 

Value True/False Multiple 

Choice 

Easy High Low Brazchri 

Weight 0.33 0.11 0.5 0.06 0.54 0.15 

 

Calculating the utility function for both questions will give: 

 

(1) 

 

(2) 25.1)15.04()54.025.0()5.05.0()11.02()2(
525.1)15.04()06.025.0()5.05.0()33.02()1(
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Although there exists a big difference between the Occurrences’ weights in the favor of 

Q2, Q1 will rank higher because the teacher deemed the Type criteria as more important 

than the Occurrence criteria. 

4.1.3 Feedback 

The Exam Question Recommender System first retrieves candidate questions using the 

Content-Based filter, then ranks the candidate questions using the Knowledge-Based 

filter, and finally displays the questions for the teacher to select from. The author can 

then select and add the desired questions to the exam. At this stage the exam creation and 

)()()()()2(

)()()()()1(

Brazchri

Brazchri/









AuthorLowOccurenceEasyDifficultyoiceMultipleChType

AuthorHighOccurenceEasyDifficultyFalseTrueType

Qs
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its effect on the questions and teacher’s profile is only simulated; no actual exam is 

created. The Exam Question Recommender System gathers the feedback from the teacher 

in two manners: Explicit and Implicit. Explicit feedback is gathered when the author 

manually changes the criteria weights, and his profile is updated with the new selected 

weight. Implicit feedback is gathered when the author selects and adds questions to the 

exam. Information such as the question type, difficulty, occurrence and author is gathered 

to update the system-calculated individual weights in the teacher’s profile (as highlighted 

earlier). 

4.1.4 Testing and Results 

The purpose of the Recommender System for Exam Questions is to simplify the task of 

searching for and selecting questions for exams. The aim of the testing is to determine the 

performance of the recommendation in helping the teacher select questions. To test the 

recommender system, we used a database containing about 200 Data Structures and Java 

questions. The system has a total of 33 different authors/users (Professors and Ph.D. 

students). For each recommendation and selection, the system recorded the following: 

Teacher’s Name, Date, Search Number, Questions Recommended, Questions Selected, 

and Rank. The date and the search number enable us to track the performance and quality 

of the recommendation as the user makes more choices and his profile is developing. The 

rank of the selected questions is an indication of the accuracy of the Knowledge-Based 

Filter, the higher the rank of the selected questions, the more accurate is the 

recommendation of the Knowledge-Based filter. The preliminary results are very 

encouraging and we are still undergoing further testing. There were 33 registered users 

testing the system for a total of 89 recommendations, and 366 questions selected and 

added to exams (some questions were selected more than once). On average 40 questions 

were recommended after each search. Figure 24 illustrates the Ranking Partition of the 

selected questions.  
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Figure 24: Ranking Partition 

Almost 55% of the selected questions were among the top ten recommended questions. 

Figure 25 illustrates the rank partitioning of the questions selected among the top 10. We 

notice that the first ranking question is the most selected, while the top five ranked 

questions constitute about 75% of the selected questions within the top ten ranked by the 

recommender system. On an average of 40 questions proposed with each search, almost 

55% of the selected questions were within the first ten questions recommended by the 

Exam Question Recommender System, and almost 75% were within the first 20 

recommended questions. Thus far, we can conclude that in 75% of the cases, the teacher 

did not need to browse farther than 20 questions, thereby making it easier for the teacher 

to search for the required questions for his exam. 

 
Figure 25: Top Ten ranking 

4.2 ICE - Identification of Conflicts in Exams 

After selecting the exam question, a normal step would be to check for conflicts. Such 

conflicts exist in an exam when two or more questions are redundant in content, and/or 

when a certain question reveals the answer of another question within the same exam. 
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Such conflicts might be frequent typically when a teacher is using shared questions 

authored by others, and especially in the automation of the exam creation process and 

when relying on systems such as the EQRS. As such, we integrate into Cadmus a module 

for Identification of Conflicts in Exam, or ICE (Hage & Aïmeur, 2006b). In order to 

detect these conflicts, ICE uses well established IR (Information Retrieval) techniques.  

“Information retrieval (IR) deals with the representation, storage, organization of, and 

access to information items” (Baeza-Yates & Ribeiro-Neto, 1999). The aim of IR is to 

provide a user with easy access to the information of his interest. IR has branched into 

fields and applications such as retrieval of spoken information, information filtering, 

cross-language retrieval, and question answering.  

Early IR systems used a complex combination of Boolean ANDs, ORs and NOTs to 

allow the user to specify his information needs. Boolean systems have several limitations, 

notably it is hard for a user to create a good search request, and, although Boolean 

systems typically order the matching documents (i.e. by date, author …), relevance 

ranking is usually not essential in Boolean systems. IR systems estimate the usefulness of 

a document to the user and rank them accordingly. IR systems usually assign documents 

a numeric score, used for ranking purposes. There are several models for this process 

(Baeza-Yates & Ribeiro-Neto, 1999), (Salton & McGill, 1983); some of the most 

common models in IR are the vector space model and the probabilistic model (Singhal, 

2001). In the vector space model, a text or a document is represented by a vector of terms 

(Salton, Wong, & Yang, 1975). A term can be a word and/or a phrase. A term that 

belongs to the text is assigned a certain numeric value in the text-vector. Most vector 

based IR systems assign a positive, non-zero value. To assign a numeric score to a 

document for a certain query, the vector based IR system evaluates the similarity between 

the query vector and the document vector. Generally, the angle between the two vectors 

is used as a measure of divergence; the cosine of the angle has the property of being 1.0 

for identical vectors and 0.0 for orthogonal vectors. 

Probabilistic retrieval was first published by Maron and Kuhns in 1960 (Maron & Kuhns, 

1960). Several models have been proposed since. Probabilistic model based IR systems 

are based on the principal that document ranking should be based on the probability of 

their relevance to a user’s query, often referred to as the Probabilistic Ranking Principle 
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(PRP). Probabilistic model based IR systems resort to estimate the probability of 

relevance of documents to a query since true probabilities are not available. This 

estimation is the key part of the probabilistic model, and it is where various probabilistic 

models differ. 

ICE is based on the vector space model, which relies essentially on a similarity function 

to determine how identical the two documents are. 

4.2.1 Similarity Function 

In the vector space model, text or a document is represented by a vector of terms. The 

Cosine of the angle between two term vectors is used to evaluate the similarity between 

the respective texts or documents. If the Cosine = 1 then both documents are similar 

(angle between vectors = 0), and if the Cosine = 0, then the two documents are 

orthogonal (angle between vectors = 90). Equation (2) highlights the similarity function 

used to evaluate the similarity (the cosine) between the query vector q and the document 

vector d. 
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In equation (2) wi,d represents the weight of the term i in the document d and wi,q 

represents the weight of the term i in the query q. In a regular IR system a query 

represents what the user is looking for, and the documents represent the search domain. 

In ICE, the documents are the questions within a specific exam, and the query is one of 

the exam questions to which ICE is trying to determine if any conflicts exist between this 

query question and the rest of the questions within that Exam. When a Teacher or an 

Author is adding a new question to the question base in Cadmus, he is required to specify 

one or more keywords relating to the content of the question. The terms that compose the 

query and document vectors are these keywords relating to the content of each question. 
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Now that the components of the document and query vector are defined, the weight of the 

keywords (wid and wiq) used in the similarity calculation must be determined. 

4.2.2 TF-IDF weighting 

The TF-IDF weighting scheme relies on the TF (Term Frequency) and IDF (Inverted 

Document Frequency) to determine the weight of a keyword in a certain document. The 

weight wi,j of a keyword i in a document j is calculated using Equation (3). 

iijij idftfw 
 

(3) 

 

tfij represents the importance of the term i in the document j, and is calculated using 

Equation (4) where }{ ijij freqMAXmxfreq  and freqi,j is the frequency of term i in 

document j. 
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idfi represents the discriminating power of the term i and is determined using the formula 

in Equation (5), where N is the total number of documents, and ni is the number of 

documents in which the term i appears in at least once. In this case lg refers to logarithm 

in base 2. 
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4.2.3 ICE Process 

Now that the similarity function and keyword weighing scheme is clear, let us put all the 

building blocks together. Figure 26 illustrates the ICE process. There are three stages in 

the ICE process, preparation (retrieving exam data and performing the TF-IDF 

calculation), conflict detection, and conflict reporting. In order to illustrate the ICE 

process, consider two Java questions Q1 and Q2 within the same exam (which has a total 
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of 38 different questions). The respective keywords of the questions are: Q1 {order, class, 

hierarchy, extend, constructor, object, invoke} and Q2 {class, constructor, default}. 

 

 
Figure 26: ICE process 

 

TF-IDF calculation 

The first step of the ICE process is to prepare the TF-IDF values for the keywords. First, 

since exam questions are usually short, most keywords will appear only once in the 

question. Thus ICE assumes the TF for all the keywords to be always 1. Furthermore, 

during the Exam creation process, the Exam Authoring Environment keeps track of a 

counter for each of the various question’s keywords; incrementing or decrementing the 

counter each time a question is added to, or removed from the exam. When the exam 

Step1: preparation 

Retrieve Exam data from the Exam Authoring Environment 

 

N ← Number of Quesitons in Exam 

Set tf  = 1 

Evaluate the idf values for respective keywords using Equation (5) 

Calculate  

 

Step2: conflict detection 

For i = 1, … , N-1 { 

 q ← question number i 

  

For j = i+1, … , to N { 

  d ← question number j 

  S ← sim (q,d) 

  If S > Threshold then Mark conflict 

  } 

 }  

 

Step 3: conflict reporting 

Report marked conflicts 
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creation process is done, ICE iterates over the value of the keyword’s counter and applies 

equation (5) to compute the respective IDF values, where N is the total number of 

questions in the exam (N = 38 in the case of this example), and ni is the number of 

questions in which the keyword i appears in at least once. Finally, ICE applies equation 

(3) to evaluate the weights of the keywords. Table 7 illustrates the keywords of Q1, and 

Q2 their count (number of questions they appear in within the exam), TF and IDF value. 

 
Table 7: Keywords summary 

i Keyword ni TF IDF = lg (N/ ni) 

1 order 3 1 lg(38/3) = 2.5390 

2 class 10 1 lg(38/10) = 1.3350 

3 hierarchy 2 1 lg(38/2) = 2.9444 

4 extend 2 1 lg(38/2) = 2.9444 

5 constructor 5 1 lg(38/5) = 2.0281 

6 object 2 1 lg(38/2) = 2.9444 

7 invoke 2 1 lg(38/2) = 2.9444 

8 default 1 1 lg(38/1) = 3.6376 

 

Conflict Detection 

In order to detect conflicts within an Exam, ICE iterates the query vector (qi) on the 

questions of the Exam, such that i ← 1 , … , N-1 (N is the total number of questions in 

the exam). Then, for each qi, ICE iterates the document vector, dj, on the remaining 

questions, where j ← i+1 , … , N. At each iteration (i,j), ICE calculates S1 = sim(qi,dj). If 

S1 is greater than or equal to the threshold T, then ICE reports Qi and Qj as redundant 

questions. The threshold T is set at 0.45. The value of T was determined through testing, 

such that the two conflicting questions with the smallest similarity are detected. 

Furthermore, at the same iteration (i,j), ICE will automatically extract the keywords of 

the correct answer(s) of Qi, then adds these keywords to qi, resulting in a new query iq . 

ICE then computes S2 = sim( iq ,dj). If S2 is greater than or equal to the threshold T, then 

ICE reports the conflict between Qi and Qj: Qj reveals the answer to Qi. Moreover, at the 
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same iteration (i,j), ICE will also automatically extract the keywords of the correct 

answer(s) of Qj, then adds these keywords to dj, resulting in a new query jd  . ICE then 

computes S3 = sim(qi, jd ). If S3 is greater than or equal to the threshold T, then ICE 

reports the conflict between Qi and Qj: Qi reveals the answer to Qj. For example, applying 

the similarity function equation (2) on Q1, Q2 (Table 7) to calculate S1, results with the 

following: 
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Since S1 < T then there is no conflict between Q1 and Q2. 

 

Conflict Reporting 

When ICE detects a conflict between two questions, that conflict is reported. Both 

questions are specified with the option to view or replace each of the questions. The view 

question option pops up a window with the question and its answers. To replace the 
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question, the user is presented with the search option highlighted in Figure 27. The user 

can search for questions with the same criteria as the question to be replaced. 

Furthermore, the user can change one or more criteria to search for replacement 

questions. In the first case, the search for the replacement questions is done through a 

simple content based filter. All the questions with the same criteria as the question to be 

replaced are retrieved. 

 
Figure 27: ICE – Replace Question 

 

As a first attempt, ICE will try to retrieve all the questions with same criteria as Qr (the 

question to be replaced) and none of its keywords. If no replacement questions were 

found, ICE will attempt a new search for questions with the same criteria and some of 

Qr’s keywords. In order to know which keywords to allow in the replacement questions, 

ICE first retrieves the keywords of Qr, then ICE selects the prohibited keywords with the 

highest weight, such that if a replacement question had all Qr’s remaining keywords, the 

similarity will remain less than the threshold T. ICE will perform the new search for all 

the replacement questions with the same criteria as Qr and none of the prohibited 

keywords. In the second case, when one or more search criteria is specified by the user, 

the search for replacement questions is performed using the EQRS techniques. 
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4.2.4 Testing and Results 

ICE was tested on a questions bank of 200 Data Structures and Java questions. The test 

generates an exam by selecting between 10 and 40 questions randomly. After the creation 

of the random exam, ICE will detect the conflicts. There were a total of 204 randomly 

created exams with conflicts. The random exams had an average of 28 questions. There 

were no undetected conflicts; and a total of 512 reported conflicts. Since the same 

conflict between two questions might appear in several exams, recurring conflicts were 

grouped into conflict case. Grouping the recurring conflicts into cases resulted in a total 

of 93 different conflict cases, out of which 77 (83%) were true conflicts and 16 (17%) 

were not actual conflicts. These results are illustrated in Figure 28. Most of the invalid 

conflicts reported are due to keywords selection and weighing. Different questions with 

very similar keywords, such that the difference in the context of the questions is defined 

by only one of the keywords have a similarity greater than the threshold. Increasing the 

value of the threshold will result in true conflicts being undetected. Nonetheless, testing 

proved that setting T to 0.458 (T was 0.45 originally) increased the accuracy of conflict 

reporting, although now, there are undetected valid conflicts (Figure 29). A further 

increase in the value of T reduced the number of invalid conflicts reported, but did not 

ameliorate the accuracy since more true conflicts were passing undetected. Table 8 

summarizes the results of the tests.  

  
Figure 28: Preliminary Results Figure 29: Results after increasing T 
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Table 8: Results Summary 

  Total No Conflict True Conflict Undetected 

Conflict 

Preliminary Results 512 111 21.68% 401 78.32% 0 0% 

Refined Results 93 16 17.20% 77 82.80% 0 0% 

Results T = 0.458 90 13 14.44% 76 84.44% 1 1.11% 

 

Although ICE was tested only on questions with a limited topic, the accuracy of conflict 

detection will not suffer with other subjects since ICE relies mainly on the keywords 

specified by the author of the question. Initial testing on sample Artificial Intelligence 

and Databases questions have resulted with similar, high accuracy conflict detection. 

Furthermore, testing on the available question base has revealed that whenever a question 

Qi is detected to reveal the answer of a question Qj, then both questions are similar 

enough in content to be detected by ICE as redundant questions. Although it is not a 

complete surprise (since it is logical to assume that for a certain question to reveal the 

answer of another question it should be similar in context), further testing on a bigger 

questions base, and searching for particular cases can help determine the need of testing 

for such conflicts (if Qi reveals the answer of Qj). 

4.3 Topic Tree: increasing the accuracy of ICE 

Knowledge sharing is very important; it helps tutors share their experience and 

knowledge in order to deliver better education. Moreover, sharing helps reduce the time 

and cost of redeveloping learning material which was already developed. Besides, in the 

case of E-testing, item statistics are very important for personalization (for example in 

Item Response Theory), therefore it is advantageous to reuse an item with well 

established statistics instead of just recreating it. An additional issue is content coverage. 

In the context of an exam, content coverage refers to the sufficient coverage of various 

subjects included in the exam. This is particularly important since a tutor needs to test all 

the learners’ knowledge on various aspects of a certain subject. To ensure content 

coverage question pools (Paskey, 2001; Rudner, 1998) are regularly used. A question 

pool is a collection of questions pertaining to a specific subject such that a tutor can now 
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specify a question pool for each subject covered within the exam. Therefore, to ensure 

content coverage, a certain number of questions are selected from each pool. Since 

populating these pools is a demanding task, question pools have a tendency to practically 

remain constant in size and content. 

With the emergence of E-learning standards and specifications, such as IMS QTI (IMS 

Question and Test Interoperability), it has become easier to share E-learning and E-

testing material and LOs (Learning Objects) repositories are created and made available. 

Repositories such as Schoolnet.ca, Ariadne-eu.org and Merlot.org, provide various LOs 

and research is performed on methods to help tutors find relevant material within these 

repositories (Ma, 2005; Tsai, Chiu, Lee, & Wang, 2006). Indeed, although IMS QTI 

offers item metadata, such as to specify the item’s topic, to the best of our knowledge, 

there is no standardization of the values such fields can hold, thus making it harder to 

locate suitable material when sharing knowledge. Indeed, how is a tutor supposed to 

locate suitable material in the context of E-testing if he cannot, at least, accurately specify 

the subject of the items he is searching for? In this work, we introduce the Topic Tree. 

The topic tree offers a hierarchy of topics, or taxonomy, from which to choose the topic 

of an item. This standardization process, by increasing the accuracy of IR (Information 

Retrieval) systems, makes it easier to locate suitable E-testing material, thus simplifying 

the process of sharing knowledge and populating question pools. Moreover, as a proof of 

concept, we integrate and test the impact of the topic tree in Cadmus, an IMS QTI 

compliant assessment platform. 

4.3.1 Related Work and Preliminaries 

When searching existing LOs repository for resources, there is a certain organization of 

the LOs into a hierarchy of topics, for example: “All > Science and Technology > 

Computer Science > Artificial Intelligence” in Merlot. Moreover, the ACM offers the 

CCS, Computing Classification System (ACM, 1998), a classification system for 

computer science which is used to classify articles. The ACM classification has 11 first 

level nodes and is only 3 levels deep. Figure 30 highlights the hierarchy of first level 

node “Data”. 
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Figure 30: ACM CCS – partial 

 

Although such a classification is suitable for articles and papers, it is clear that it is not 

sufficient in the case of LOs and test items, where the modules are more specialized and a 

more accurate classification is required. Nonetheless, this classification is an invaluable 

corner stone, and the topic tree that we propose is partially inspired by the ACM CCS.  

4.3.2 Topic Tree 

In IR (Information Retrieval), hierarchical structures are used to help a user locate 

information of value. Usually, when searching for information in a hierarchy, the user has 

some idea about the topic this information belongs to. In this context, the user’s 

knowledge is used to browse the hierarchy, in a top-down manner, until the level that best 

describes his information need is reached, and the user will check the documents. If none 

of the documents contain the required information, the user may move up in the hierarchy 

to a more general topic. The topic tree is a taxonomy, or a hierarchy of topics that we are 

constructing. Based on the ACM CCS, several data structures books, including (Standish, 

1998) and (Weiss, 1999) , and with the help of professors from the computer science 

department of the University of Montreal, we constructed a topic tree for the data 

structures domain. Due to space limitations, we will use a cropped tree (Figure 31) for 

our illustration.  

Since each test question relates to a certain subject or topic, instead or just relying on 

distinct topics specified by either the E-testing system or the author, this topic would be 
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selected from within the topic tree. For example, a question on Binary Trees will have a 

topic in the form of: Data Structures > Tree: Binary Tree. The advantage of such an 

approach is two fold: first, the item’s standardized topic can be easily specified by the 

tutor such that it is easier to locate suitable E-testing material. Indeed, hierarchical 

structures enable a divide-and-conquer approach to IR, resulting in higher efficiency and 

accuracy (Gelbukh, Sidorov, & Guzman-Arenas, 1999). In particular, existing IR 

research suggests that rather than issuing general search queries, users would rather 

browse hierarchical catalogs and issuing specific queries (Tao & Ogihara, 2005). It is 

important to note though that a proper classification is imperative for a better accuracy. 

For this purpose, the selection of an item’s topic can be selected by the item’s author, and 

afterwards verified, or even specified automatically, using IR techniques such as 

proposed in (Bade, Hullermeier, & Nurnberger, 2006). The second advantage of our 

approach is in that the questions pool creation process could be modified such that a tutor 

would simply link a question pool to one or several levels within the topic tree. For 

instance, a pool on trees in general (as in a comprehensive exam) would be linked to 

Data Structures > Tree. Alternatively, the tutor would be able to link the question pool 

more selectively such as to Splay Tree and AVL Tree solely. It is important to note that 

the appellation topic tree is somewhat misleading: since some topics can be shared by 

several disciplines there will be more than one path from the Root to the appropriate 

node. Thus, the actual structure of the topic tree is more of a DAG (Directed Acyclic 

Graph). Nonetheless, this “tree” representation/appellation makes it easier to represent 

and grasp the concept. 
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Figure 31: Topic Tree Sample 

Generally, tutors need to assess various aspects of the learners’ knowledge on a certain 

concept. For instance, tutors need to ascertain that a learner can clearly define a certain 

concept, or if the learner has mastered the concept in question. With this in mind, other 

than the obvious case where the tutor requires the learner to clearly define a certain 

concept, questions might contain references or comparisons to other concepts. For 

example, consider the following data structures question: “describe how to implement the 

stack ADT using two queues”. Referring back to Figure 2, what would be the topic of the 

previous question? It should be either stack, or queue, but which one should be chosen? 

In order to resolve such cases, we propose combining the pedagogical objective of the 

item along with its topic. What follows is a description of the possible pedagogical 

objective of test items: 

 Concept Definition: a question on properly defining a certain concept 

 Concept Application: a question on applying a concept to resolve a certain 

problem 

 Concept Generalization: a question on adapting or modifying a concept to 

resolve a certain situation 

 Concept Mastery: a question to test the knowledge of several aspects of a 

concept 
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Thus, in the case of the previous question (on stacks and queues), since the solution to the 

question involves adapting the queue ADT to implement/resolve the stack situation, the 

topic is queue, and the pedagogical objective is concept generalization. Another similar 

question would be:  

 

 
 

This question would have as heap as a topic, and again concept generalization as 

objective. On the other hand, a question which involves more than one “related” concept 

within the same sub-tree would use as topic the root (or the closest common ancestor) of 

the sub-tree, and as pedagogical objective concept mastery. For example, the following 

question would have a binary tree for topic, and concept mastery as objective: 

 

 
 

Thus, an item that deals with one concept would have as an objective either concept 

definition or concept application, and an item that includes more than one concept would 

have as an objective either concept generalization or concept mastery. 

In order to implement a queue using a heap you would: 

 

a) Use a heap with a pointer/index to the first and last element inserted into the heap 

b) Use a heap with a counter as the key of the elements 

c) There is no solution to this problem 

d) None of the above 

Which of the following would traverse the nodes of a binary search tree in ascending order? 

 

a) Pre-Order 

b) In-Order 

c) Post-Order 

d) Level-Order 

e) None of the above 
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4.3.3 Testing and Result 

Prior to the inclusion of the topic tree into Cadmus, the topic of the items was based on a 

two level hierarchy in the form of: Programming Languages > Java. After introducing 

the topic tree, we re-evaluated the performance of both the EQRS and ICE.  

ICE was tested on a repository of 200 questions. The test generated an exam by randomly 

selecting questions on the same subject. The number of questions within each exam was 

selected randomly between 10 and 40. After the creation of an exam, ICE detects and 

reports any existing conflicts. Initially, a total of 204 randomly created exams contained 

conflicts. Recurring conflicts (i.e. conflicts between the same two questions appearing in 

different exams) were grouped together, and the threshold T, used to determine if two 

questions were conflicting or not, was selected such that no existing conflicts may slip 

away undetected. There were a total of 93 different conflicts reported, out of which only 

82.8% were true conflicts and 17.2% were not actual conflicts. Figure 32 illustrates the 

results of the initial tests of ICE. 

 

 
Figure 32: ICE Initial Results 

 

Since ICE used keywords assigned to various questions to detect conflicts, most of the 

invalid conflicts reported were due to this assignment of these keywords. For example, 

consider the following two questions where ICE reported a conflict that did not exist:  

 

82,8%

17,2%

True Conflict

No Conflict
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Out of the four keywords specified for both questions, only one, in each case, made the 

difference as far as the question’s content is concerned. Therefore, to increase the 

accuracy of conflict reporting, the topics of both questions, which are now selected from 

the topic tree, were compared. If the two conflicting questions have the same topic, the 

conflict was reported, otherwise it was ignored. Thus, in the case of questions 1 and 2, 

although ICE initially detected a conflict, it was dismissed since the topics of the 

questions are not the same: “Data Structure > Tree > Binary Tree > Tree Traversal > In 

Order” and “Data Structure > Tree > Binary Tree > Tree Traversal > Post Order” 

respectively. Introducing the topic tree lead to an increase of 6.5% in the accuracy of ICE 

(Figure 33), where now 89.3% of the reported conflicts were true conflicts and only 

10.7% of the conflicts reported were actually not conflicts. Prior to the inclusion of the 

topic tree, the comparison of the questions topic was ineffective since both had the same 

topic. 

 

Question1: What is the result of an In-Order traversal of the 

following binary tree? 

Keywords: result, In-Order, traversal, binary tree 

 

Question2: What is the result of a Post-Order traversal of the 

following binary tree? 

Keywords: result, Post-Order, traversal, binary tree 
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Figure 33: ICE Accuracy Comparison 

 

This increase in accuracy is important, it does confirm that using the topic tree will help 

increase the accuracy of IR systems designed to locate E-testing material. ICE was 

accurate at almost 90% in detecting similar questions. Thus, using the same technique to 

locate E-testing resources with respect to a certain query would perform similarly. 

Indeed, since the EQRS relies partially on the content of the question, including its topic, 

to perform the recommendation, similarly, the accuracy of the recommendation 

increased. Unfortunately, at the current time, we did not get the chance to properly re-

evaluate EQRS after the inclusion of the topic tree. In fact, the EQRS relies on the user’s 

profile, as well as the question’s content, to recommend questions, thus, the result of re-

evaluating the performance of EQRS, without undergoing actual testing with users, will 

be imprecise. 
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Chapter 5 : SHAREK 

Learners regularly access and use learning content and tools other than those defined by 

the tutor in the classroom. Looking back at the current state of combining E-learning 

platforms and Personal Learning Environments (Figure 19), we raised two concerns: first 

the tutor cannot control what learners are accessing through their personal PLE, and 

second, locating the components for an effective PLE can easily become a difficult task 

(Hage & Aïmeur, 2010a). Hence, in order to address both drawbacks, we propose an 

approach inspired by social bookmarking, consisting of adding support for a PLE within 

the LMS (Figure 34).  

 
Figure 34: Combining LMS and PLE 

Specifically, learners can add learning resources into the LMS and could attach them to a 

course, or a lecture within the course. As such, learners can access the PLE components 

by linking to them from within the course or lecture. For instance, a learner who relies on 

VisualThesaurus for an English course would add it as a resource to the course. 

Consequently, whenever the learner accesses this course, he can directly link to 

VisualThesaurus without having to search for it through a large set of bookmarks. Such 

an approach has many advantages. First, it enables learners to organize their PLE 

components with respect to the courses they are used in. Second, since these components 

are organized within the LMS, it enables the tutor to supervise, to some extent, the use of 
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these components. Specifically, although the tutor cannot control or supervise the 

activities performed within the PLE, he can still know what components the learners are 

using in their PLEs. Hence, the tutor can take some actions accordingly: for instance, if 

he realizes that some learners are using Wikipedia for instance, he can make sure to 

advise them not to take that information for granted, since the content of wikis might be, 

in some cases, unreliable or biased. In short, the tutor can discourage and/or caution when 

questionable components are used in a PLE, and he can encourage and/or promote valid 

components. Third, this setup provides an ideal setting for the discovery of new 

components, whether for the learners or the tutor. Indeed, one can easily exploit this 

setup to allow learners to share their knowledge of learning resources. To the best of our 

knowledge, there are no existing mechanisms in E-learning systems which offer this 

setup, efficiently harnessing and taking advantage of learners’ knowledge and the 

resources they locate and use. Supported by learner centered education, and the learners’ 

access to a variety of learning resources, and inspired by Web2.0, we propose our system 

SHAREK (SHAring REsources and Knowledge) (Hage & Aïmeur, 2008b). SHAREK’s 

primary goals are to harness the collective intelligence and knowledge of learners 

obtained through accessing various learning resources, and sharing this knowledge and 

resources with other learners (Hage & Aïmeur, 2008a). Specifically, each time a learner 

accesses a course’s learning content (specified by the tutor), he would be able to also 

access additional learning resources located and used by other learners and classmates as 

part of their PLE. Within an E-learning system, SHAREK will be the components 

managing the link between the LMS and the learner’s PLE as highlighted in Figure 34. 

On the other hand, Figure 35 illustrates the positioning of SHAREK within an ITS 

(Intelligent Tutoring System) architecture based on the IEEE LTSA (Learning 

Technology Systems Architecture) (IEEE Learning Technology Standards Committee, 

2003). 
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Figure 35: SHAREK within an ITS 

 

Originally within the LTSA architecture, the Coach reviews a set of information, such as 

performance history and objectives, and searches, via the Query request, the Learning 

Resources for the proper learning content. In this case, the coach would send two Query 

requests, one to the Learning Resources for the learning content, and another to 

SHAREK for the learner added learning resources. SHAREK will process the coach’s 

query and send back the appropriate resources indexes, which in turn are sent, along with 

the locator index to Delivery. Delivery will retrieve both the content and the resources 

and send them as multimedia to the learner. Evaluation will send any behavior feedback 

with regard to the resources (tags, rates, etc.) back to SHAREK which updates the 

Resources Library. Moreover, SHAREK handles the learners’ requests to add new 

resources. 

The following figure highlights the SHAREK’s process. The learners have access to a 

multitude of resources, and can perform different actions within SHAREK. Depending on 

the action, SHAREK will send some feedback (events information through RSS, or the 

result of a search /recommendation) to the learners or the tutor. The following sections 

detail these processes further. 
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Figure 36: SHAREK process 

5.1 Adding Resources 

The first and most important step of the SHAREK process is for learners to be able to 

add, or attach new resources to a course or a lecture. What follows is the data gathered 

about the different resources added by learners. The model presented here is inspired and 

based on the IEEE LOM (Learning Object Metadata) (IEEE Learning Technology 

Standards Committee, 2002) standard. The data collected is divided into six categories 

highlighted in Figure 37. Note that, when adding a resource, only the dashed elements are 

required from the contributor. The solid elements are determined automatically by the 

system with the exception of the rating and flag elements, which are specified afterwards 

by the learners who view and use the resource. 
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Figure 37: Resources data model 

The general category contains information such as the resource identifier, a unique id 

assigned by the system, the title, language and a short description of the resource, which 

are provided by the contributor at the time of adding the resource. Moreover, the general 

category contains the Tags associated to the resource. Tags are keywords or terms 

associated with the resource to describe its content. Tags could be assigned by the 

contributor when adding the resource, or later on by other learners. Such a collaborative 

tagging approach, also known as folksonomy, is criticized due to its lack of 

terminological control: if tags are freely chosen, synonyms (multiple words with the same 

meaning), homonyms (a word with different meanings) and polysemes (a word with 

multiple related meanings) are likely to arise, thus lowering the efficiency of content 

indexing and searching. Yet, folksonomy has its strengths, and perhaps the most 

important is that it directly reflects the vocabulary of users. Indeed, a folksonomy, with 

its uncontrolled nature, can adapt quickly to user vocabulary changes and needs. Learner 

Ratings are also information also stored under the general category. A rating is a score 

(on a scale of 1 to 5) a learner gives to a resource, with regards to its relevance to the 
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lesson, its utility, and its clarity and ease of use. Such scores are used to evaluate the 

relevance, utility, and clarity of a resource, and are further needed in order to recommend 

resources to learners (detailed in section 5.3). Moreover, the flags are stored in the 

general category. Learners can flag the resource as being Inaccessible (resource cannot 

be accessed, broken link, unavailable file, etc.), Unrelated (Resource content is unrelated 

to lesson), Redundant (resource already exist) or Plagiarized (contributor asserts himself 

as the author of a resource created by someone else). When a resource is flagged, the flag 

will reflect within the system to advise learners accessing the resource, and a message is 

automatically sent to the tutor in order to take the appropriate actions. 

The educational category contains information such as the type of the resource, whether 

the resource is an exercise, an experiment, a lecture, etc. Moreover, the educational 

category contains the Related To, and Relation Type information. The first describes 

which part of the course, or which lesson the resource is related to, and the second 

describes the relationship of the resource to the lesson: whether to support the theory in 

the lesson, to contradict it, to illustrate the theory with an example, or to evaluate the 

knowledge in such a topic. 

The technical category contains information related as to what are the technical 

requirements to access the resource (such as plug-in or specific software), the format of 

the resource (a document, a java applet, a web site, etc.), the resource size (if applicable) 

and its location. It is important to note the content of location varies depending on the 

format of the resource. Indeed, if the resource is an uploaded file, then the location 

indicates where this file is stored on the server. On the other hand, if the resource is 

located online (for example a website), the location, in this case, will contain the URL 

address. 

The contributor category contains the information to identify the learner who 

contributed, or added the resource. The contributor’ unique identifier, as well as his full 

name and position are stored here. The position indicates the title of the contributor, 

whether a student, a tutor, or even a teaching assistant.  

The contribution context category holds information about the context in which the 

resource was added, including the course id, the semester, the tutor and the date the 

resource was contributed. Such information is important and relates to context in which 
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the resource was created. Indeed, having many resources added shortly after giving a 

lecture might indicate that the students or learners did not quite grasp the material and 

had to do some research of their own. 

Although the contributor could be the author of the resource, there will be many 

situations when he is not. Thus, the author category contains information about the 

actual author of the resource such as his name and position (student, tutor, etc.) and the 

context of creation of the resource (why the resource was created). 

5.2 Sharing and Accessing Resources 

Within such a context, it is important to have a well designed scheme to help learners 

locate resources. Indeed, with the availability of a multitude of resources attached to a 

single lesson or lecture, how can a learner easily locate the most suitable resource? In 

other words, having access to a multitude of resources in the same space, with no means 

of filtering out the unwanted ones, may become cumbersome for the learners and cause a 

cognitive overload. Thus, it is important to help learners filter out resources that he would 

not like. A simple approach would be to use the best rated resources, but this approach 

alone is inadequate. Indeed, different learners prefer different resources. Moreover, when 

relying just on the ratings, new and suitable resources, which have not yet been rated, 

would be overshadowed by other, probably less adequate, resources that have been rated.  

Moreover, that would also affect the performance of the recommender systems. For 

instance, a CF (Collaborative Filtering) recommender system accumulates user ratings of 

items, identifies users with common ratings, and offers recommendations based on inter-

user comparison (Deshpande & Karypis, 2004). Such an approach suffers from the cold 

start problem, i.e. when dealing with new resources (sparsely rated) and/or with new 

users (with an undeveloped profile). Since we expect that there will always be new users 

and new resources within the system, we propose combining several different approaches 

inspired by Web2.0 to advertise resources and help circumvent the cold start. One such 

approach is the use of an RSS feed to advise the learners of certain events, effectively 

promoting new and existing resources. Specifically, each learner has a list of friends, to 

which he can add or remove other learners. The learner in question is then kept up to date 

on his friends’ resources activity through RSS. Remember that RSS is a family of Web 
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feed formats used to publish frequently updated content. An RSS document, which is 

called a feed, usually contains either a summary of content, from the associated web site 

or the full text. In short, RSS makes it easier to keep up with updates. 

Hence, when a new resource is added, the learners will receive a notification through 

RSS advising them of this new addition, which will incite them to view, use and rate the 

new resource. This would in effect advertise new resources, resulting in the resources 

being used and rated, effectively reducing the effect of cold start. Moreover, when a 

certain learner adds a resource to his favorites, other learners are also advised of this 

event through RSS. The motivation behind this is to promote useful resources. Indeed, we 

believe that if a learner adds a certain resource to his favorite it implies not only that the 

learner appreciated the resource in question, but also his intention to use and reuse the 

specific resource (an implicit, positive feedback). As such, this differentiates the favorited 

resource form other resources used once and then discarded. Another method to promote 

resources is through sharing. In this case, sharing is used in the context of recommending 

a resource used by a user within SHAREK. Indeed, a learner who finds a resource within 

SHAREK can explicitly recommend, or share this resource with his friends or classmates. 

The sharing process is also performed through RSS, as such a learner will be advised 

through the RSS feeds about resources shared with him. It is important to note that in 

order not to overwhelm the learner with RSS feeds and information, each learner has 

control over the granularity of the information in the RSS feed. As such, each learner can 

specify the granularity of the information in the feed, controlling the flow of information. 

For instance, a learner can decide that he wants to be advised of any new addition of 

resources by any learner, yet, restrict the Favorite notification to only his friends. Thus he 

would be able to know whenever a learner adds a new resource within the course, and 

only when one of his friends adds a resource to their favorites.  

On the other hand, SHAREK also provides a manual search tool and a CF recommender 

system. Specifically, learners can search for resources by specifying one or more of the 

following criteria: language, rating, tags, date added, format, by the educational type, 

relation type, or even within resources favorite by friends.  
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Additionally, in the context of the lesson the learner is presented with the Top5 resources 

attached to the specific lesson. The Top5 are determined using the CF approach (detailed 

further in section 5.3), and are presented alongside the learning area (Figure 38).  

 
Figure 38: SHAREK illustration 

The CF process is composed of two steps: first determine the neighborhood of the 

learner, which consists of k learners with the highest ratings’ similarity. The similarity 

between the learner a and his neighbor u is derived using Pearson correlation coefficient. 

Although the approaches detailed earlier help promote new resources to reduce the effect 

of the cold start, if the learner is new to the system (or has just a few ratings), the 

recommender system cannot efficiently determine the neighborhood, nor predict the 

learner’s preference for resources. Thus, in this case, the Top5 will be selected with 

regard to their overall rating. 

5.3 Multi-criteria recommender system 

In this section we detail the recommendation technique used within SHAREK. 

Specifically, SHAREK uses a Multi-criteria recommender system, an approach which we 

Learning Area Top 5 
Resources 



91 

 

 

 

later adapted to recommend scientific articles (Naak, Hage, & Aïmeur, 2009). In detail, 

Learners can rate each resource according to 3 criteria: relevance, clarity and utility. 

Usually, the CF process is composed of two steps: the first step consists of determining 

the neighborhood of the user, which consists of k users with the highest ratings’ 

similarity. The similarity between the user a and his neighbor u is derived using Pearson 

correlation coefficient highlighted in the following equation: 

 
(6) 

 

Where ra,i is the rating given by user a to resource i, ra is the mean rating given by user a, 

and m is the total number of resources. The next step is to use this neighborhood to 

predict the user’s rating to an unrated resource. Such predictions are computed as the 

weighted average of deviations from the neighbor’s mean using the following equation: 

 

 
(7) 

Where pai is the rating prediction of user a for resource i, sima,u is the similarity between 

users a and u obtained using equation (6), and k is the number of users in the 

neighborhood. As recommended in (Melville, Mooney, & Nagarajan, 2002), we use a 

neighborhood of k = 30 users. Figure 39 (Adomavicius & Kwon, 2007) illustrates the CF 

recommendation that is usually used and based on a single rating per item setting. 
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Figure 39: CF in a single rating setting (Adomavicius & Kwon, 2007) 

One of the shortcomings of this approach is that the recommender system does not know 

why the user rated the item with a specific score. For instance, two learners might give 

the same resource the same low score, but for different reasons: one found the resource 

completely irrelevant to the course, and the second found it useless. In this case, by 

comparing how two users rate the various aspects of a resource, the CF recommender can 

determine more accurately how similar the two users are. Figure 40 (Adomavicius & 

Kwon, 2007) illustrates the multi-criteria approach in contrast to the single criterion. In 

this case, the overall rating of an item (the larger numbers) are broken down to four 

ratings on each item. Notice that although the overall ratings (large numbers) of the users 

u2 and u3 are closer to the overall ratings of the target user u1, they have rated the various 

aspects (smaller numbers) of the item in a completely opposite manner to u1, thus u2 and 

u3 actually have opposite preferences to u1. Consequently, u4 and u5 have closer 

preferences when considering the multi-criteria ratings, and are more suited to perform 

the recommendation. 
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Figure 40: CF in a multi-criteria rating setting (Adomavicius & Kwon, 2007) 

 

Within CF, it is imperative to properly determine the neighborhood, since the accuracy of 

the rating’s prediction relies heavily on this neighborhood, and how close the neighbors 

are to the target user. Hence we propose and compare five various approaches at 

determining the neighborhood. 

The first approach, which we refer to as the horizontal (HZ) approach, is primarily 

based on the work presented in (Adomavicius & Kwon, 2007). The similarity between 

the target user a and the potential neighbor i is determined for each of the 10 rating 

criteria, and then the average of these partial similarities is used to determine a global 

similarity. The k users with the highest global similarity are then used in the prediction 

process. Although this approach tends to minimize the overall inaccuracy, it does 

introduce some noise in the data, specifically when a neighbor with a high global 

similarity is very divergent on one or more criteria. For instance user a and his neighbor u 

rated most criteria in a similar manner except in two cases. When predicting the rating of 

a, the divergence of u will introduce some noise/inaccuracy in the process, even though 

the similarity is used as a weighing factor (refer back to equation (7)). 

In the second approach, that we refer to as the vertical (VL) approach, the predictions 

for each of the criterion is performed in the same manner as in the classical single 

criterion rating settings. In other words, for each criteria j, the k users with the highest 

similarity in rating the criterion j are used in the prediction. The rationale behind this 

approach is to use the closest neighbors for each criteria instead the closest neighbors 
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overall. As such, this approach takes advantage of the multi-criteria setting, while 

maximizing neighborhood’s similarity with the target user for each criterion separately. 

Yet this approach suffers greatly when the neighborhood is not very close to the target 

user. 

The size of the neighborhood as well as its similarity to the target user is important. 

When using Pearson correlation coefficient, a similarity value between 0.5 and 1 implies 

a high correlation, and a similarity value between 0.3 and 0.5 implies a medium 

correlation. As such, we set a similarity threshold T to 0.3, such that the neighborhood of 

a target user is close. Nonetheless, applying the threshold alone on the previous 

approaches is not sufficient, since the size of the neighborhood affects the accuracy of the 

prediction. Indeed, setting the threshold for the HZ and VL approaches reduced the 

neighborhood as well as the average performance. As such, in order to complement the 

neighborhood while maintaining a high similarity, we propose the next two approaches. 

In the third approach, that we refer to as the horizontal then vertical (HZ-VL) approach, 

the neighborhood is composed first by the most similar neighbors whose average 

similarity is larger than T. If the number of neighbors is less than k, then the 

neighborhood for each criteria j is complemented by the neighbors with highest similarity 

to a with regards to criteria j and always larger than T. 

In the fourth approach, that we refer to as the vertical then horizontal (VL-HZ) 

approach, the neighborhood is determined in a similar manner as the previous approach, 

but in this case it is determined vertically first, then complemented horizontally. 

The fifth approach, which we refer to as horizontal without noise (HZ-N), is actually an 

enhancement of the first approach, since we expect to have some noise in the first 

approach. Specifically, consider a target user a and one of his k nearest neighbors i. When 

performing the prediction for criteria j, the user i will be considered in the prediction, 

even though his similarity with a for that specific criteria j is not close, hence introducing 

some noise. We consider such cases as noisy data that we simply disregard from the 

computation. We determine noisy data again by comparing the similarity to the threshold 

T = 0.3. 
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5.4 Managing Resources 

The freedom offered to learners within SHAREK should be balanced with an equivalent 

amount of control. Indeed, SHAREK is able to control unintended abuses of learners. 

One such abuse is the uncontrolled and excessive addition of resources, which would 

sooner or later clog the system with unused and unnecessary resources. As such, we 

propose using techniques such as a resource confidence and utility measures, inspired by 

the confidence and support approach in Association Rules (Cios, Pedrycz, Swiniarski, & 

Kurgan, 2007), in order to decide whether to keep or remove a certain resource. 

Specifically, the utility of a resource is how useful it is, or how much the learners did like 

and use the resource. The utility measure is calculated by comparing the number of times 

the resource was accessed to the number of learners who accessed it. In short, the utility 

measures the re-use of a resource, i.e. the number of times learners re-visit and re-use a 

same resource. The utility is calculated using the following equation. 

 

(ݎ)ݕݐ݈݅݅ݐݑ = 	
ߙ + ௥ܣ
ߙ + ௥ܮ

 
(8) 

 

Where Ar is the number of times the resource r was accessed, Lr is the total numbers of 

learners who accessed the resource, and α is a normalizing value such that when the 

values of Ar and Lr are small, the utility value of resources with small  Ar and Lr values 

are be drawn towards the same average. In other words, the addition of the value α 

insures that the number of learners who used the resource is reflected in the utility 

measure. In order to better understand the need for α, consider the following example: r1 

is a resource accessed by 2 learners, and one of these two learners accessed the resource 

on 2 occasions. Thus, Ar = 3 and Lr = 2 and utility(r1) = 3/2 = 1.5. Now, consider a new 

learner just accessed the resource, therefore the new values will be Ar = 4 and Lr = 3 and 

utility(r1) = 4/3 = 1.333, which is a big variation of 17% in the value of utility caused by 

only one vote. On the other hand, recalculating both values while adding α = 20, the 

value of utility in the first case is utility(r1) = (20+3)/(20+2) = 1.045, and in the second 

case utility(r1) = (20+4)/(20+3) = 1.043, thus the variation caused by one vote is less 

accentuated. 
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It is important to note that the access counter to the resource is incremented whenever a 

learner actually opens and uses the resource, thus, it does not account for the cases where 

the learner saves a resource and accesses it from outside of SHAREK. 

On the other hand, the confidence measure denotes the confidence of the resource, or how 

good the resource is. In short, confidence underlines the number of good evaluations of 

the resource. As such, we consider it a good evaluation when the resource receives a 

rating of 4 or 5 stars (scale of 1 to 5), when the resource is added by a learner to his 

favorites, or when a resource is shared by a learner with his friends or colleagues. The 

confidence is calculated using the following equation: 

 

(ݎ)݂݁ܿ݊݁݀݅݊݋ܿ = 	
ߙ + ௥ܩ + ௥ݒܨ + ܵℎ௥

ߙ + ܶܽ௥
 (9) 

 

Where Gr is the number of good ratings resource r received, Fvr is the number of time 

resource r was favorited, Shr is the number of times resource r was shared, Tar is the total 

number of actions performed in resource r, including the total number of ratings, Fvr, Shr, 

and the number of times the resource was flagged, and finally, α is the normalizing value. 

As such, whenever (ݎ)ݕݐ݈݅݅ݐݑ × (ݎ)݂݁ܿ݊݁݀݅݊݋ܿ < ܶ, where T is the experimentally 

determined threshold, a resource is removed from SHAREK and archived. Concerning 

new resources, the normalization variable in equations (8) and (9) will keep the utility 

and confidence within an acceptable average greater than T, such as not to discard the 

new resource. 

Another issue to consider is the uncontrolled nature of tags. Undoubtedly, tagging has its 

strengths, and perhaps the most important is that it directly reflects the vocabulary of 

users. Indeed, tagging, with its uncontrolled nature, can adapt quickly to user vocabulary 

changes and needs. Yet, this strength is the source of a main disadvantage. In particular, 

having too many different tags for a single resource affects the quality of a search based 

on tags. For example, when searching for “bubble sort” on YouTube, the second video in 

the list retrieved is about Barack Obama (a candidate for the 2008 US presidential 

elections), and other returned videos include, among other, a bubble gum advertisement. 

As such, in order to still take advantage of the flexibility of tags, and increase the 



97 

 

 

 

accuracy of retrieval, we propose to make use techniques, such as the tf-idf weighing 

scheme (Baeza-Yates & Ribeiro-Neto, 1999), in order to allow the most relevant tags to 

float above the rest. The tf-idf weighing scheme is a well established approach within the 

IR (Information Retrieval) field. Specifically, the term frequency tfij represents the 

relevance of the term, or tag i to a document j (in our case a resource j), and idfi 

represents the discriminating power of the tag i. As such, the most repeated tags with the 

most discriminating power can be determined for each resource. Currently within 

SHAREK, for each resource, only the five highest ranking tags, are considered while the 

other tags are not discarded, such that they might still float to the top. 

5.5 Implementation and Validation 

In order to validate our approach, we implemented an E-learning prototype platform that 

supports the tools and functionalities described in this chapter. Specifically, the platform 

proposes three Data Structures lessons, one for each of the following sorting algorithms: 

Bubble Sort, Merge Sort and Selection Sort. Moreover, a minimum of 6 resources were 

originally attached to each lesson. The technical environment of the prototype is: PHP, 

JavaScript, AJAX, and MySQL. 

After logging in for the first time, each learner is requested to complete a survey before 

having full access to the system. This initial survey collected background information 

about the learners, such as how often do they refer to learning material outside the regular 

class content, where do they look for these resources (search engines, Wikis, library 

books, etc.), how likely are they to share resources with friends, classmates or tutors, how 

likely are they to use resources referred by friends, and how familiar are they with 

computer based training and Web2.0. After completing the initial survey, the learners can 

then access the lessons and their respective resources, where they can add new resources, 

use and rate existing resources, and test the different functionalities of the system. 

Finally, after having used and tested the system, the learners complete an evaluation 

form, answering questions about how easy and intuitive the system is, would they use 

such a system if it existed, and would such a system encourage them to share resources. 

Moreover, they were asked to evaluate the functionalities of SHAREK, and whether there 
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were any missing functionalities they would like to add, and finally they were asked to 

give an overall evaluation of the system, and to provide any comments. 

5.6 Results and findings 

There were a total of 93 learners who tested the system. The volunteers consisted mainly 

of graduate and undergraduate students at the Computer Science department of our 

university (Université de Montréal). We will first start by relating the findings with 

regard to the survey, then highlight the results of the evaluation. 

The survey results mainly reinforce the hypothesis on which we based this work: learners 

do refer regularly to learning material outside the regular class content, and they are 

willing to share these resources with friends and classmates. Indeed, when asked, in 

question #1 of the survey, to specify on a scale of 1 to 5 (1: never and 5: always) how 

often they refer to learning material other than what is recommended by the tutor, 93% 

responded they do so on a regular basis (Figure 41). Moreover, when asked to rate how 

likely they would use a resource recommended by a classmate or friend, on a scale of 1 to 

5 (1: never and 5: always) none of the respondents answered with less than 3, and 73% 

answered higher than 3, which indicates the willingness of learners to use resources 

recommended by colleagues and friends. Finally, when asked in question #4 of the 

survey, to rate on a scale of 1 to 5 (1: never and 5: always) how probably they would 

share these resources with the Tutor, Friends or Classmates, learners were the least eager 

to share resources with their tutor (actually 10% of the respondents answered Never), and 

most eager to share their resources with their friends. Figure 42 summarizes the averages 

of learners’ responses. Note that female respondents averaged higher than their male 

counterparts. 

With regard to the evaluation of SHAREK and its functionalities, when asked to rate, on 

a scale of 1 to 5 (1: Poor and 5: Excellent), the ease of use of SHAREK, the intuitiveness 

of the interface, and whether they would regularly use such a system, most respondents 

answered favorably, with ratings’ averages around 4. 
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Figure 41: Partition of answers to the survey’s  

question #1 

Figure 42: Average of answers to the 

survey’s question #4 

 

Moreover, when asked in question #2 of the evaluation, if a system such as SHAREK 

would encourage then to share resources, on a rate of 1 to 5 (1: never and 5: definitely), 

most respondents answered with a 3 and higher (see Figure 43 for more details). In 

addition, learners who answered with a low score (1 or 2), where learners who initially, in 

the survey, had also given low scores to their willingness to share resources. In addition, 

when asked to rate the functionalities provided by SHAREK (such as the RSS feed, 

search tool, tagging, rating, etc.), on a scale of 1 to 5 (1: poor and 5: excellent) the 

respondents ratings averaged at 4.1. Moreover, when the learners were asked if there are 

any additional functionalities that they would require within SHAREK, there were 

several interesting suggestions, such as a forum and other student communication tools, 

functionalities which are usually part of E-learning systems (such as Blackboard or 

ATutor), which SHAREK is intended to complement. 

 

 
Figure 43: Partition of answers to the evaluation question #2 
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With regard to the efficiency of the CF resource recommender system, and the tf-idf 

approach to float the most relative tags, preliminary findings are encouraging, 

unfortunately the results were insufficient. In fact, for such analysis to be accurate, we 

require further testing and data. In our case, all the volunteers used the system only once 

to evaluate it. Thus, the learners’ profiles were sparse (learners rated a couple of 

resources only) in order to perform CF recommendations, and the resources were not 

accessed and tagged intensively (as they would within a regular course) in order to 

analyze the tags floating approach. Nonetheless, we later relied on a constructed data set 

to validate our proposed recommendation technique. 

5.6.1 Recommender System testing and results 

In order to test and compare the accuracy of the five proposed techniques (Chapter 5.3), 

we use a leave one out approach. Specifically, we randomly select a user and a resource 

rated by that user. Afterwards we assume that the user hasn’t rated the resource yet, and 

we attempt to predict his ratings. Finally we compare the predicted with the actual 

ratings in order to evaluate the accuracy of the prediction. The MAE (Mean Absolute 

Error) is a metric regularly used in order to evaluate the accuracy of such predictions. The 

MAE is derived using the following equation: 

ࡱ࡭ࡹ =	
1
݊෍

| ௜݂ − |௜ݕ
௡

௜ୀଵ

 (10) 

Where n is the number of predictions, fi is prediction i and yi is the actual value. In short, 

MAE presents the average difference between the prediction and the actual value. 

The dataset on which the tests were performed was built artificially in a pseudo-random 

manner. Specifically, SHAREK does not contain sufficient data in order to perform valid 

tests and draw conclusive results. Similarly, when we adapted the approach in (Naak, et 

al., 2009), the profiles were again sparse and could not be used to properly test the 

approach. Alternatively, we contacted Yahoo! (during November 2008) to obtain their 

movie ratings dataset. Specifically, users can rate movies on the Yahoo! website with 

regards the following four criteria: Story, Acting, Direction and Visual, as well as provide 
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a fifth, overall rating. However, the currently available dataset contains only the overall 

rating per movie. Specifically here is a part of the response we received from Yahoo!: “I 

just chatted with the research scientist and as I was afraid, we don't have the data in the 

configuration that you'd like”. 

The dataset was built in two steps. First, a set of 20 users were created. Then, for each 

user, ratings for 30 different resources were specified randomly. In order to reduce the 

random effect of the ratings and to create a certain correlation between the users, we 

augment the initial dataset of 20 users in a pseudo-random manner. As such, for each of 

the initial users, we create 10 additional users whose ratings are based on the ratings of 

the initial user, varied in a logical, but random manner. For instance, consider that Ra,i is 

the set of ratings of initial user a for resource i. Then the set of ratings of new user j is Rai 

+ Random values from {-1,0,1}. That is the ratings of j are equal to the ratings of a ± 1. 

In summary, based on each of the initial 20 users, 10 more users were created where their 

ratings profile was randomly chosen from the following sets: {-1,0,1}, {-2,-1,0}, {0,1,2}, 

{-3,-2,-1}, {1,2,3}, {-1,0,1,2}, {-2, -1,0,1}, where each set is at least chosen once in each 

case. As such, the dataset was composed of 220 different users (20 initial users + 200 

additional users) where each rated 30 resources. 

5.6.2 Results and findings 

In order to test the approaches, a test set of 100 different user/resource pairs were selected 

randomly. Afterwards, the five approaches were utilized to predict the ratings of the test 

set, and then these predictions were compared to the actual ratings using MAE. The MAE 

of each criterion is recorded, as well as the average MAE over all the criteria. The 

average MAE over the 100 iterations is used to compare the performance of the various 

implemented approaches. Figure 44 highlights the best case, the worst case and the 

average case over the 100 iterations of the five approaches: the minimum MAE (MIN 

MAE), maximum MAE (MAX MAE) and the average MAE (AVG MAE) respectively. 

Overall, the least performing approach is the VL approach. Specifically, this approach 

suffered mainly in cases where the similarity between the user and his neighborhood is 

not close enough. The HZ approach addresses this issue where the global similarity is 

considered. As such, even when the user’s neighborhood is somewhat far for a specific 
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criterion, the overall similarity reduced the overall error in the predictions. On the other 

hand both HZ-VL and VL-HZ maximize the similarity of the neighborhood, and do offer 

an overall better performance over HZ and VL separately. On the other hand, although 

HZ-N has the highest MAX MAE, this approach still offers the best overall performance. 

HZ-N takes advantage of the overall similarity, while reducing the noise induced by 

neighbors with a high overall similarity, but who are not very similar for a certain 

criterion. 

 

Figure 44: MAE comparison 

In order to interpret the values of MAE, it is important to consider the scale on which the 

ratings are performed. Indeed, an MAE of 0.5 indicates that the predictions, on average, 

differed by 0.5 of the actual rating. In order to evaluate the impact of this difference, it is 

important to consider the scale of the predictions. Indeed, a difference on 0.5 on a scale 

of 1 to 5 is more significant than on a scale of 1 to 20. As such we compare the variation, 

or the MAE, to the scale to assess its actual impact; that is a MAE of 0.5 on a scale of 5 

represents 10% whereas on a scale of 20, it only represents 2.5% and consequently a 

lower impact on accuracy. Figure 45 highlights the average MAE of the five approaches 

evaluated on a scale of 5.  
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Figure 45: Average MAE interpretation 

Although the results are encouraging, and the HZ-N does offer further enhancement of 

the accuracy over the other approaches, an MAE of 0.8 (or a variation of 17%) leaves 

some space for improvements. Nonetheless, we presume that the MAE of 0.8 is due 

essentially to the fact that the dataset is made of randomly generated data. Indeed, we 

believe that the value of the MAE will be smaller when testing the approaches on a real 

dataset. Furthermore, we also believe that the HZ-N will perform better than the other 

approaches, since all the testing was executed on the same dataset. 
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Chapter 6 : Privacy preserving E-learning 

One of the main advantages of E-learning is its adaptability to the learner’s specific needs 

and preferences. Nonetheless, to do so, the E-learning systems collect large amounts of 

information about the learner, information that could be misused, and therefore violating 

his privacy, which is the claim of individuals to determine what information about 

themselves is known to others, as well as when and how it is used (Westin, 1967). Other 

than the case of Head-in-the-sand privacy (by which the learner wants to keep secret his 

ignorance even from himself), learners might need to keep private different parts of their 

profile for personal, or competitive reasons. Existing E-learning standards offer some 

provisions for privacy and the security aspects of E-learning systems do offer some 

privacy protection; nonetheless it remains unsatisfactory on several levels (Hage & 

Aïmeur, 2010b). In addition, privacy preserving solutions that are applied in E-commerce 

environments are inadequate and unsuitable to the context of E-learning. Indeed, while in 

most E-commerce applications different transactions between the client and the system 

are fairly independent, in E-learning the interactions between the learner and system are 

intertwined into a developing process that depends heavily on the path the learner is 

following. For instance, in the context of E-commerce, the client’s history is not required 

to initiate a transaction or a request. In contrast, within an E-learning environment, the 

learner must first prove that he has the necessary requirements and history to enroll in a 

certain program. Afterwards, the learner is constantly required to confirm that he has the 

proper prerequisites to register for a certain course, that he is indeed registered in the 

course and has the right to access the learning resources and to pursue the learning 

activities within that course. Finally, depending on the learner’s learning objective, the 

learner is required to provide proof that he finished the required course(s) to an external 

entity, which could be the E-learning system itself (such as in a prerequisite to another 

course or to obtain a degree), his manager (to prove he finished his training) or any 

another entity. In order to go through this process without violating his privacy, the 

learner requires some mechanism to present his credential anonymously. In this chapter, 

we introduce the Anonymous Credentials for E-learning Systems (ACES), a set of 

protocols that preserves the learners’ privacy. In particular, the ACES allows learners to 
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provide anonymous credentials such as to prove that they possess the necessary 

requirements to register for a course, and/or to prove that they are the legitimate owners 

of an Anonymous Transcript or an Anonymous Degree. Although the concept of 

anonymous credentials is not novel, ACES takes into account the specificities of E-

learning. Moreover, in order to prevent the misuse of privacy, ACES prevents the 

possibility of sharing credentials between colluding learners. 

6.1 The Impact of Privacy on Learning 

Existing research demonstrates the effect of emotions on learning (Zins, Bloodworth, 

Weissberg, & Walberg, 2007): positive emotions improve the performance whereas 

negative emotions hinder the thought processes. Additionally, studies are conducted to 

evaluate the impact of various factors on the learner’s emotional state. The motivation 

behind these studies is to avoid situations which create negative emotions, while 

motivating the occurrence of situations which create positive emotions. Consequently, the 

question of emotional intelligence is becoming more important in education, especially in 

online learning (O’ Regan, 2003). Specifically, tutoring systems rely on several 

approaches in order to determine the learner’s emotional state: including asking the 

learner to report his emotional state, or by analyzing the learner’s response to the tutoring 

system’s actions (de Vicente & Pain, 1998, 2002), or even by recording and analyzing 

physical signals (Blanchard, Chalfoun, & Frasson, 2007). Additionally, studies are 

conducted to evaluate the impact of various factors on the learner’s emotional state. The 

motivation behind these studies is to avoid situations which create negative emotions, 

while motivating the occurrence of situations which create positive emotions. For 

instance, in (Beck, 2007), Beck investigates the effect of learner control on learning, 

whereas in (Blanchard & Frasson, 2005), the authors investigate the effects of the 

learner’s “culture” on his emotions and propose a culturally aware ITS (Intelligent 

Tutoring System). Yet, to the best of our knowledge, there were no studies performed to 

evaluate the effect of privacy on the learner’s emotions. 

Consequently, in a recent study (Hage & Aïmeur, 2009), we investigated the impact of 

privacy on the learner’s emotions, and whether privacy had a positive or negative impact 

on learners. Specifically, in this the study, we attempt to determine, in the context of a 
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web-based assessment, whether privacy would have a positive effect (effectively 

reducing stress and helping learners perform better), or a negative effect (learners would 

become reckless and careless about their grades). The following hypotheses were raised: 

 

Hypothesis 1: Learners are self-conscious, which inherently create performance 

related stress. Learners are stressed because they want to perform better so that 

they wouldn’t be judged by their tutor and peers as low performers, not to 

mention cases where the tutor could be biased. Privacy preserving e-Learning will 

help relieve this pressure, helping learners perform better. 

 

Hypothesis 2: In this hypothesis, we consider a negative factor of privacy: since 

the test results will remain private, learners will tend to become more careless 

about their grades, and they will perform just good enough to pass. 

6.1.1 Testing procedure 

The testing procedure is composed of three major sections: Registration and Instructions, 

the Survey, Test#1 performed in an environment with no privacy, and Test#2 performed 

in a privacy preserving environment. 

 

Registration and Instructions: registration was required to collect demographic data, 

including the sex, age group, country of birth, as well as the education field and education 

level. Additionally, during registration the participants are required to choose one of the 

eight available avatars, instead of an identification image regularly required in exams. 

After registration, the participants are provided with instructions describing the whole 

procedure, as well as explaining the test environment and the various emotions they will 

be presented with to report their emotional state. 

 

The Survey: the participants completed a short survey, whose purpose is to determine the 

participants’ opinions and conceptions about Privacy and e-Learning. Specifically, the 

survey inquires about how comfortable the participants are when sharing their test results 
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with the tutor, their friends or classmates, as well as how they would react if the access to 

their grades was in an anonymous manner. 

 

Test#1, no privacy: after the survey, the participants will take two tests, each consisting 

of 15 IQ questions. The time allowed to answer each question is 45 seconds (a timer 

advises the participants of the remaining time), and the passing grade is set to 8/15. The 

first test (illustrated in Figure 46) is performed in a classical manner. That is the 

participant’s actions are recorded and linked to him: his answers, score, rank and time 

spent to answer each question are accessible to the tutor. Moreover, during the test, the 

participants can see their photo (the avatar selected at registration) and their name The 

participants are presented with one question at a time, and after answering the system 

reports whether the answer is correct or not. The progressive score, as well as the average 

time spent to answer the questions are available throughout the duration of the test. 

 
Figure 46: First test (no privacy) environment. 

 

Test#2, with privacy: the second test is performed in a privacy preserving manner. The 

participant’s actions are recorded, and he is still accountable for his results, nonetheless 

the tutor cannot link the recorded information to the specific participant. During the 
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second test, the participant’s image is not visible and his name is replaced with the 

randomly generated id (rid). The rid is used when recording the actions during the test, 

and ideally, it is known only by the participant, hence ensuring his privacy. Nonetheless, 

for the purpose of our study and analysis, the system is able to link the rid to the 

participant. 

 

Design of the tests: since the participants undergo both tests, it is imperative to avoid the 

case where participants becomes familiar with the style of the IQ questions and the logic 

needed to answer them, which will clearly bias the results of the second test. Thus, 

different IQ questions styles were employed in each test. Moreover, to ensure that both 

tests were of comparable difficulty, all the questions where taken from the same IQ test13, 

and we performed prior testing with the help of volunteers. During the testing with the 

volunteers, we were as well able to determine the time constraint of 45 seconds allotted to 

answer each question. 

 

Recording the emotion: before and after each test, the participants are asked to express 

their presently most dominant emotion. To do so, the participants are presented with 16 

different emotions, arranged on four columns by four rows (Figure 47 highlights 

capturing the emotional state of a participant before test#1). The two columns on the left 

contain positive emotions, whereas the two columns on the right contain negative 

emotions. Additionally, the participants have the option to manually specify their 

emotional state. Specifically, when inquiring about their emotional state before the test, 

the participants are asked to report their most dominant emotion while considering that 

the tutor, and possibly their colleagues will be able to view their grades and know their 

performance (or considering that the tutor and their colleagues will not be able to view 

their grades in the privacy preserving test). After each test, the participants are requested 

to report their most dominant emotion with regards to the grade that they just received. 

                                                
13 www.hostedtest.com/iq-tests.html 
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Figure 47: Capturing the Emotional state 

6.1.2 Test results 

Participants were solicited in various universities, most of which are located in Canada. A 

total of 84 participants took part to the experiment. Nonetheless, in our analysis we used 

only 77 records, due to incomplete data. Specifically, 6 participants did not complete the 

experiment and aborted at different stages, and one participant completed the whole 

experiment, but we believe that his/her answer selection was random at best: the average 

time to answer the test questions is around 2 seconds for the first test and 3 seconds for 

the second test whereas the respective scores is 2/15 and 3/15.  

Out of the 77 participants, 26 are females and 51 males. Although the age group selection 

at registration contained 5 groups (<18, 18-21, 22-25, 26-30, >30), no participants fell in 

the younger two groups (Figure 48). The participant’s most dominant fields of study are 

Information Technology and Engineering related (71.5% combined) and the majority are 

graduate students (Figure 49). 



110 

 

 

 

  
Figure 48: Age group partition Figure 49: Education level partition 

 

Survey Results 

In the survey, 75% of the participant responded that they would rather keep their grades 

private, and when asked how comfortable they are sharing their grades with their tutor 

only, friends only, or everyone, 87% were comfortable sharing their grade with the tutor, 

compared to 38% with friends and only 8% with everyone. In particular, 69% responded 

that their willingness to share their grade is directly proportional to their performance, i.e. 

they are more willing to share their grades if they perform good and vice-versa, which is 

an indication that learners are self-conscious as highlighted in Hypothesis 1. In contrast, 

participants responded more favorably to sharing their grades anonymously, where 66% 

were comfortable in sharing their grades anonymously with everyone, while reporting 

that their performance in the case of anonymity had little impact on their willingness to 

share. Finally, 97% of the participants are in favor of Privacy within e-Learning. The 

following table summarizes the major findings of the survey. 
Table 9: Summary of survey 
Not comfortable that the tutor can see their mistakes and performance 50% 

In favor of the tutor performing a blind correction 87% 

Would rather keep their grades private 75% 

Comfortable sharing grades with the tutor 87% 

Comfortable sharing grades with friends 38% 

Comfortable sharing grades with everyone 8% 

Willingness to share grades directly proportional to performance 69% 

Comfortable sharing grades anonymously with everyone 66% 

In favor of Privacy in e-Learning 97% 
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Testing Results 

The purpose of this work is to evaluate the impact of privacy on the learner’s emotional 

state. Specifically, we analyze, using SPSS14, several recorded factors along with the 

participants’ feedback in order to confirm or refute the hypotheses stated in section 6.1.  

 

Hypothesis 1: Learners are self-conscious. Thus, privacy will help reduce performance 

related stress, and learners will tend to perform better. In order to validate this hypothesis, 

we compare (Table 10) the average score and the average time spent to answer a question 

for both tests, where score1 is the average for the test#1 (no privacy) and avgTime1 is the 

average time spent per question in test#1. Respectively, score2 and avgTime2 represent 

the score and the average time spent to answer a question in the test#2 (with privacy). 

Table 10 summarizes the correlation between the scores and the average time. 

Specifically, we can see that there is a strong correlation between score1 and score2 (r = 

0.56, p < 0.01) and a strong correlation between avgTime1 and avgTime2 (r = 0.76, p < 

0.01). This is not very surprising since one would be expected to perform fairly similarly 

on both tests. 
Table 10: Correlations for average score and time 

  
N Correlation Sig. 

Pair 1 score1 & score2 77 .559 .000 

Pair 2 avgTime1 & avgTime2 77 .757 .000 

 

Additionally, the paired-samples t-test (Table 11) reveals differences between the scores, 

t(76) = -5.913, p < 0.01, which indicates that the mean score2 is higher than the mean 

score1. Similarly, the paired-samples t-test (refer to Table 11) reveals differences 

between the average answer time, t(76) = 15.008, p < 0.01. These results indicate that the 

mean avgTime2 is lower than the mean avgTime1. Consequently, since the difficulty of 

both tests is comparable, we can deduce that on average, the participants performed better 

on the privacy enhanced test. 

                                                
14 http://www.spss.com/ 
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Table 11: Paired samples t-test for average score and time 

 
t df Sig. (2-tailed) 

Pair 1 score1 - score2 -5.913 76 .000 

Pair 2 avgTime1 - avgTime2 15.008 76 .000 

 

In order to evaluate the impact of the emotional state of the participants on their 

performance, an independent samples t-test was performed to determine the impact of the 

reported positive and negative emotions before each test and the obtained score. The 

results indicate that there was no significant difference in performance for the test#1 

between participants who reported a positive emotion and those who reported a negative 

emotion, t(72) = 1.4, p = 0.15. Similarly for the test#2, there was no significant difference 

in performance t(60) = 0.61, p = 0.14. Consequently we could conclude that regardless of 

their reported emotional state (whether positive or negative), the participants performed 

similarly. Although it is not statistically significant, we can still note that participants 

with a positive emotion prior to the test performed better than participants with a negative 

emotion prior to the test. In addition, note as well that this difference did decrease in 

test#2 (with privacy), which tends to imply that negative emotions had a smaller impact 

within the privacy preserving test. 

 

Hypothesis 2: Since the test results are private, learners will tend to be careless about the 

score, as long as they pass. For this hypothesis to be true, the participants’ emotion 

should not be affected by the result of the test, and they would report a positive emotion. 

Accordingly an independent samples t-test was performed to determine the impact of the 

score after test#2 on the reported emotions (positive or negative). The results indicate that 

there was no significant difference between the scores of the participants who reported a 

positive emotion and those who reported a negative emotion after viewing the test results, 

t(41) = -0.84, p = 0.41. Consequently we conclude that the participants’ reported 

emotional state, whether positive or negative, was not affected by the test score. 

Alternatively, when comparing the reported emotional state of the participants after the 
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tests, a higher number of participants conveyed a positive emotion after the second test 

(with privacy) which implies that although the test score is private, it remains an 

important factor. Referring to Table 12, we notice that the number of participants who 

reported a positive emotion after the test has increased from 16 after test#1 (no privacy), 

to 29 after test#2 (with privacy). This variance is expected since on average the 

participants performed better in test#2, hence they are more satisfied with their 

performance, even though the score is private. 

 
Table 12: Change in reported emotions after test1 and test2 

  
After test2 

Total 
  

Positive Negative Neutral 

After test1 Positive 12 4 0 16 

Negative 17 42 0 59 

Neutral 0 0 2 2 

Total 29 46 2 77 

 

In conclusion, the conducted experiment which involved 77 participants, mainly Masters 

and PhDs, attempted to determine whether privacy will have a positive, or a negative 

impact on the learners in the context on a web-based assessment. In particular, we 

investigated two issues: (1) whether privacy will reduce performance related stress and 

help learners perform better on their test, and (2) whether privacy will make learners 

careless about their grades. The obtained results indicate that in the context of privacy, 

learners performed better, with an increased mean score and a shorter question response 

time, hence indicating that privacy has a positive effect on learners. 

6.2 Privacy Preserving E-learning 

In this section we start by introducing the learning process within a classical 

environment. Afterwards we present the framework for privacy preserving E-learning 

and then discuss the desirable properties required from a privacy preserving E-learning 

system in order to perform the learning process while respecting the privacy requirements 

set by our framework. 
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6.2.1 Learning Process 

Whether in a classical, classroom environment, or in an E-learning environment, the 

learner must go through the learning process highlighted in Figure 50. At each step, the 

learner is required to provide some form of credentials. 

First, in order to enroll into a certain program, the candidate must demonstrate that he has 

the proper qualification: for example, to enroll in a Bachelor program, the candidate must 

have at least finished his schooling! Similarly, in order to enroll in a Masters program, 

the candidate must have his Bachelor’s degree in a related field, and a GPA (Grade Point 

Average) above a certain level. Thus, in the enrolment process, the candidate presents his 

credential to the E-learning system, which, in turn, validates these credentials with the 

proper authority or the issuer of these credentials.  

Second, in order to register for a course, the learner must confirm he has the necessary 

qualifications: that he is indeed enrolled in the proper program, and that he has 

successfully finished the course’s prerequisites. In this case, the E-learning system 

accesses the appropriate data (learner’s profile, course prerequisites, etc.) in order to 

validate the request. 

 
Figure 50: Learning Process 
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Third, to access the course’s learning resources, the learner must prove that he is part of 

the class and has the right to access these resources and activities. Again, in this case, the 

E-learning system verifies the appropriate data (learner’s profile, course structure and 

syllabus, etc.) in order to confirm the access privileges.  

Finally, after successfully finishing the course, the learner must either select new courses 

(repeat steps 2 and 3) or, alternatively, he already reached his learning objective. In the 

later case, the learner might need to confirm that he has reached his goal to an external 

entity: the E-learning system (to receive a degree or pursue higher education), to his 

manager (to attest that he finished his training), or even to a potential employer. In this 

case, the learner first requests a transcript or a degree from the E-learning system, and 

then presents the acquired document to the external entity, which in turn, can validate the 

authenticity of the documents with the proper authority, or the issuer of the documents. In 

a classical E-learning environment, since the learner’s data is readily available, the above 

illustrated process is performed without much difficulty. 

6.2.2 Framework for Privacy Preserving E-learning 

Different learners have different privacy requirements. With this in mind, consider the 

following components of the learner’s data (illustrated in Figure 51), which are of interest 

from a privacy point of view. 

The identity (id): refers to information that makes it possible to determine physically 

who the learner is (or at least to seriously circumscribe the possibilities). This includes 

data such as his name, address, and student id number. 

The demographic profile (dp): refers to demographic characteristics of the learner, such 

as age, gender, weight, race, ethnic origin, language, etc.  

The learning profile (lp): refers to information such as the learner’s qualifications, his 

learning style, interests, goal and aspirations.  

The course history (ch): lists the courses the learner has followed in the past, and their 

respective information such as the learner’s activities within the course and his final 

grade.  
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The current courses (cc): lists the courses in which the learner is currently registered 

and those he is attending, as well as the courses’ respective information such as the 

learner’s activities within the course. 

 

 

Figure 51: Learner’s data 

Moreover, we define, in this context, a learner’s activity within a course as being any act 

involving one of the course’s tools or resources. For example, an activity might involve 

the posting of a message in the forum, using one of the course’s learning objects, or even 

taking a quiz or a test. The above elements constitute the personal information on which 

we base our privacy framework for E-learning systems (Aïmeur, et al., 2007b) composed 

of the following privacy levels (Figure 52): 

1. No Privacy: the learner doesn’t wish, or doesn’t care to keep private any of his 

information. He does not mind the compilation of a dossier about him that consists of 

his identity, demographic information as well as his learning history. 

2. Soft Privacy: the learner wants to keep his identity and demographic profile private, 

but he does not mind if the tutor has access to his learning profile, course history and 

current courses. 

3. Hard Privacy: the learner wants to keep his identity, demographic profile, course 

history and learning profile private, but he does not mind if his current courses are 

known. 

Identity (id)
• Name
• Address
• ID Number
• Etc.

Demographic Profile (dp)
• Age
• Gender
• Race
• Etc.

Learning Profile (lp)
• Learning Style
• Interests
• Goal
• Etc.

Course History (ch)
• Course Activities
• Grades
• Final Grade
• Etc.

Current Courses (cc)
• Course Activities
• Grades
• Etc.
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4. Full Privacy: the learner wants to keep secret every component of his personal data. 

 

 

Figure 52: Proposed levels of privacy 

Another dimension to consider, which is independent of the personal data listed above, is 

the tracking of learners within a course. Even under soft, hard or full-privacy constraints, 

some learners might not want the tutor to know their activities and navigation within the 

system. Thus, we introduce the following terminology (Aïmeur, et al., 2007b), to account 

for the levels of tracking that different learners might accept: 

1. Strong Tracking: the system can relate the activities performed within all the 

courses to the specific learner, even though that learner may be anonymous. In this 

case, the system can track the same learner u and his access to courses c1, c2 … cn. 

2. Average Tracking: the system can relate the activities within a course to the same 

learner u, but cannot relate them to other activities within other courses. In this case, 

the system can relate the activity of u1 in c1, of u2 in c2 … and of un in cn, but cannot 

link u1 to u2 to … un. 

3. Weak Tracking: in this case, although the system recognizes the learner u as a 

regular visitor, it cannot link him to a course nor trace his activities. 

4. No Tracking: in this case, the system cannot even recognize the learner u as a 

recurring user of the system. 

No Privacy

•Identity
•Demographic Profile

Soft Privacy

•Identity
•Demographic Profile
•Learning Profile
•Course History

Hard Privacy

•Identity
•Demographic Profile
•Learning Profile
•Course History
•Current Courses

Full Privacy
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In order to illustrate the levels of tracking, consider the following example: a learner, 

Alice, is using a privacy-aware E-learning system to take the following courses: CSC101 

and CSC102. In the case of Strong Tracking, Alice creates a pseudonym, A, and uses it 

to access and perform the learning activities in CSC101 and CSC102. Hence, the system 

can track the activities of A within both courses, but cannot link A to Alice. In the case of 

Average Tracking, Alice creates two pseudonyms, A1 and A2, one for each course, such 

that the system cannot relate A1 and A2 to Alice, nor to each other. Hence, whenever 

Alice needs to access and perform the learning activities in CSC101 or CSC102, she uses 

respectively A1 or A2. In the case of Weak Tracking, the system only records that Alice 

was logged in, but leaves no trace of her activity (nor identity). And, in the case of No 

Tracking, the system cannot even trace that Alice was logged in at all. Selecting No 

Tracking is similar to using a guest account to access a demo of the E-learning system.  

6.2.3 Desirable Properties and Considerations 

In a Privacy-Preserving E-learning environment, the learner must provide his credentials 

throughout the learning process highlighted in  

Figure 50, while maintaining his privacy. As such, the learner must be able to present the 

necessary proofs, without revealing his personal information! 

Enrollment 

Ideally, in a privacy preserving E-learning environment, first, the learner would be able to 

prove that he satisfies the requirements in order to enroll in a certain program, without 

revealing who he is – whether those previous studies were performed in a privacy-

preserving environment or not! Indeed, there are four cases to consider: whether the 

learner comes from a privacy-preserving E-learning environment or not (cases 1 and 2), 

and whether he wants to continue his learning in a privacy-preserving environment or not 

(cases 3 and 4). Moreover, the E-learning system must include provision to allow the 

learner to switch during his studies, from privacy-preserving to classical E-learning and 

vice versa. 

Course Registration 

In this case, the privacy-preserving considerations highly depend on the learner’s 

preferred levels of privacy and tracking. Indeed, other than the case of No Privacy with 
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Strong tracking (the case of non privacy-preserving E-learning) the various combinations 

of Privacy and Tracking levels require different approaches. In this work, we limit our 

discussion to the case of hard privacy with average tracking. 

As such, in the case of Hard Privacy, for the registration process, the learner must prove 

that he has completed the prerequisites for the desired courses without revealing his 

course history. Specifically, knowing that a learner has completed the requirements of a 

certain course partially reveals his course history. Thus, it is important for a learner, in 

order to register for several courses, to provide a separate anonymous credential 

indicating that he satisfies the requirements for each different course independently. 

Consequently the E-learning system cannot piece together the learner’s course history. 

Similarly, the E-learning system must not be able to keep track of the learner’s 

registration process; otherwise the E-learning system would be able to link the separate 

anonymous credentials back to the learner. 

On the other hand, it is important for any mechanism that provides such functionalities to 

have specific provisions, such as to avoid learners taking advantage and abusing their 

state of anonymity. Indeed, one must consider the fact that learners might abuse the cover 

of anonymity and share their anonymous credentials. For instance, consider two learners 

Alice and Bob. Alice successfully completed the course C1, and Bob successfully 

completed the C2 course. Moreover, both C1 and C2 are prerequisites for the course C3. In 

order to register for the course C3, Alice can use her anonymous credentials, stating that 

she successfully finished C1, along with Bob’s anonymous credentials for C2. Likewise, 

Bob can use his anonymous credentials for C2 along with Alice’s for C1 to register for C3. 

Thus, these anonymous credentials must be valid only to their legitimate owner, and hard, 

if not impossible to share. 

Learning Activity 

Again, in this case, the privacy-preserving considerations highly depend on the learner’s 

preferred levels of privacy and tracking. As such, in the case of Hard Privacy, the learner 

must use at least the Average tracking option. Indeed, if the learner uses strong tracking, 

then the E-learning system can relate to the same learner all his current courses, and thus, 

successfully piece together the learner’s partial course history. As such, the system can 

relate the activity of u1 in c1, and the activity of u2 in c2. Moreover, the E-learning system 
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recognizes that u1 is registered in c2, and that u2 is registered in c2, but cannot link u1 to 

u2. 

It is important to note that in this case, sharing the anonymous credentials to access the 

learning material of a course does not increase the risk of consensual impersonation 

(where the actual learner asks someone else to take the course or perform the learning 

task in his stead), since it is an existing issue in E-learning. 

Learning Objective 

In the case of Hard Privacy, after completing all of the courses’ learning material and 

activities, first, the learner’s performance must be evaluated, afterwards, his profile, 

notably his course history, must be updated consequently. Evaluating the performance of 

the learner in the course is fairly straightforward: in the case of Average Tracking, the 

activities within the same course are traceable to the same learner. On the other hand, 

updating the learner’s profile must be completed such that the E-learning system is 

unable to track the learner and gradually construct a profile of the learner. Indeed, other 

than piecing together the learner’s course history, by tracking the learner’s activities 

across several courses, the E-learning system could successfully build the learner’s 

Learning Profile thus effectively reducing the level privacy from Hard to Soft. 

After updating his profile, the learner can register for new courses, or place a request for 

an anonymous transcript or an anonymous degree. The learner can then present his 

anonymous transcript/degree to an external entity, which must be able to verify the 

validity of such a document, and confirm that the learner is the rightful owner of the 

document without infringing his privacy. 

On the other hand, it is important to have specific provisions, such as to avoid learners 

taking advantage and abusing their state of anonymity. Essentially, one must consider the 

fact that learners might share their anonymous credentials, in a similar scenario as 

described previously, in order to obtain a degree. 

6.3 Related work on privacy in E-learning 

E-learning systems use information about a learner in order to adapt the learning activity 

and the interactions of the E-learning system. Such information is referred to as the 

learner profile or learner model. Many E-learning systems use their own internal 
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representation of the learner model. Nonetheless, there are several standards and 

specifications to represent the learner model, including the IEEE LTSC Personal and 

Private Information draft standard (LTSC) and the IMS Learner Information Package 

(IMS). Although these specifications contain some attributes and means that may uphold 

learner privacy, the detailed specification is still missing. Moreover, the learner 

involvement in deciding which information is private or not is not enabled (Jerman-

Blazic & Klobucar, 2005).  

On the other hand, there were concerns raised with regards to security. There exists 

literature, such as (Franz, et al., 2006; Raitman, et al., 2005b), on how to achieve basic 

security requirements: confidentiality, integrity and access control. The security of 

existing E-learning systems (such as Blackboard, WebCT, or Atutor) does provide a 

certain level of privacy. As such, integrity guarantees that the data is not maliciously or 

accidentally tampered with or modified: for example, when the learner submits his test, 

he requires the guarantee that his test answers are not modified after his submission. 

Moreover, confidentiality assures that the data and information is kept secret and private 

and is disclosed only to the authorized person(s): for example, test scores must be 

accessible only to the appropriate tutor. The confidentiality of the information is 

considered at two different stages: while it is being transmitted to/from the E-learning 

system, and when it is stored within the E-learning system. In the first case, the data can 

be encrypted such that only the appropriate receiver can read the data. In the second case, 

access control mechanisms can be employed to restrict access to the data. Access control 

cannot totally guarantee the privacy of the learner: first of all, it does not protect against a 

super user with full access privileges. Moreover, none of the previously mentioned 

security mechanisms can be used to observe the core of the definition of privacy, in such 

that the learner has no control on what information about him is being gathered by the E-

learning system and how it is used. Although Privacy Policies have been provided for this 

purpose (Yee & Korba, 2003), they cannot restrict unwanted access to the data. 

As such, although security is important within E-learning systems, it is not enough to 

properly protect learner privacy, and it does not provide the means for anonymous 

credentials. 
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6.4 Preliminaries 

In this section we present some preliminaries required to better understand the proposed 

solution in the next section. 

6.4.1 Pseudonymous and Anonymous Credentials 

Certificate Authorities (CA) are trusted entities whose central responsibility is certifying 

the authenticity of entities (persons or organizations) and their public keys. More 

precisely, an entity certificate issued and signed by a CA acts as proof that the legitimate 

public key is associated with the entity. Usually, the CA makes the decision to issue a 

digital certificate based on evidence or knowledge obtained in verifying the identity of 

the owner. In the context of privacy-preserving systems, the CA cannot be used to protect 

user private data and transactions. Therefore, new approaches are considered. 

In 1985, Chaum (Chaum, 1985) introduced the concept of pseudonymous credentials to 

protect individual privacy. More precisely, the resulting system enables users to engage 

in several anonymous and untraceable electronic transactions with organizations. Two 

years later, the implementation of this concept was proposed by Chaum and Evertse 

(Chaum & Evertse, 1987). However, it was not suitable in practice because it relied on 

the existence of a semi-trusted third party participating in all communications. 

In 1995, Chen (Lidong, 1995) proposed an approach that relies on blind signatures based 

on discrete-logarithms. Although efficient, this approach does not address the colluding 

users problem. Moreover, in order to use the same credential untraceably several times, 

the user must obtain a different signature form the issuing party for each instance. 

In 2000, Brand (Brands, 2000) used several properties of Chaum’s original concept to 

introduce a privacy-enhanced certificate system. Here, the system consists of two entities 

(Organizations and Users) and two protocols (Issue and Show). Unfortunately, Brand’s 

approach is also limited for practical implementations. For instance, every Brand’s 

credential is unique, thus it can be showed only once; otherwise, transactions by the same 

user could be linked. To overcome this limitation, the system needs to be extended by 

introducing recertification or batch issuing mechanisms (Brands, 2000). 
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Another implementation of Chaum’s proposal is the credential system proposed by 

Camenisch and Lysyanskaya (Camenisch & Lysyanskaya, 2001), which is based on 

previous work by Lysyanskaya et al. (Lysyanskaya, Rivest, Sahai, & Wolf, 1999). Here, 

users first register with the root pseudonym authority before using the system. Thus, 

users are unable to build up several parallel identities and they can be traced in case of 

fraudulent transactions. Users are limited to at most one pseudonym per organization. 

Each credential is related to a single attribute and an expiry date. Moreover, users are 

able to choose which statement to prove about an attribute, such as choosing to prove that 

the value of attribute “age” is greater than 18. While considered an interesting 

implementation of the concept of pseudonyms and credentials, Brand’s solution has the 

drawback of being based on zero knowledge proofs, thus the system is difficult to 

implement in environments with limited resources. 

Although the previous general solutions for anonymity, pseudonyms and credentials can 

be used to solve issues related to user privacy in various domains, we aim to use the 

specific structure of an E-learning setting in order to seek more efficient solutions. 

Therefore, we introduce the concept of Anonymous Credentials for E-learning Systems, 

to enable privacy-enhanced E-learning. 

6.4.2 Cryptographic preliminaries 

This section reviews some cryptographic tools and primitives that are used in the 

development of the Anonymous Credentials for Privacy-Preserving E-learning paradigm. 

Public key cryptography 

Public Key Cryptosystems (PKCs) were introduced independently by Merkle (Merkle, 

1978) and by Diffie and Hellman (Diffie & Hellman, 1976). Formally, a PKC consists of 

three efficient algorithms: a Key-Generation Algorithm that generates pairs of Secret Key 

(SK) and Public Key (PK); an Encryption Algorithm, E, that computes the ciphertext for 

a message given the public key; and a Decryption Algorithm, D, that computes the 

cleartext message back from the ciphertext, given the secret key. 
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Figure 53: Public Key Cryptosystem 

 

An example of PKC is RSA (Rivest, Shamir, & Adleman, 1978), from the names of its 

authors Rivest, Shamir, and Adleman. RSA is based on the difficulty of factoring the 

product of large integers. To use the RSA scheme, one needs to generate a public 

modulus N = p · q (where p and q are large prime numbers), a public exponent e, and a 

secret exponent d. The encryption of a message, m, is therefore c = me mod N, and the 

decryption process is m = cd mod N. 

Public Key Infrastructures (PKIs) have been introduced to make it possible to provide 

security services on the basis of PKCs. A PKI enables a security environment through a 

set of policies used to integrate and manage all the security parameters suitable for a great 

number of services, such as the authentication of entities, digital signature, secure 

communication between entities (learners, school partners, employers, etc.). A PKI aims 

at managing certificates and pairs of secret and public keys, including the ability to issue, 

maintain, recover and revoke public key certificates. PKIs make use of Certification 

Authorities (CAs), which are trusted entities whose central responsibility is certifying the 

authenticity of users and their public keys. More precisely, a user certificate issued and 

signed by a CA acts as proof that the legitimate public key is associated with the user. 
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Digital Signature and Blind Signature 

In (Diffie & Hellman, 1976), Diffie and Hellman also introduced the related notion of 

digital signatures, by which the party receiving a message can ascertain the identity of the 

sending party as well as the integrity of the message. This process works with two keys 

as well: A secret signing key is used on the message to generate its signature, but anyone 

can use the corresponding signature verification key to make sure that the message is 

legitimate and that it has not been modified in transit. In our work, we consider that the 

signing key is the entity’s private key and the corresponding verification key is the 

entity’s public key. 

 

Figure 54: Digital Signature System 

 

A blind signature scheme is a digital signature scheme which allows the signer to sign a 

message, u, without knowing anything about u. The main purpose of blind signatures is 

for applications where the privacy of the entity requesting the signature (the learner in our 

case) needs to protect its privacy. In our work, we use the blind signature scheme based 

on the RSA digital signature. To use the RSA scheme, one needs to generate a public 

modulus N = p · q (where p and q are large prime numbers), a public exponent e, and a 

secret exponent d. In this work, we use the blind RSA signature scheme described 

hereafter, where ES stands for the E-learning System in which the learner is enrolled, and 

all the computations are performed mod N. 
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6.5 Anonymous Credentials for Privacy-Preserving E-learning 

The ACES system consists of a set of protocols for a learner to obtain and show 

anonymous credentials from/to an E-learning system. 

6.5.1 Blind Signature on a Pseudonym 

Suppose a learner, L, who wants to enroll in a new ES. For this purpose, he requires some 

credentials from the ES, E0, where he performed some learning activities in the past. 

Before enrolling in the new ES, say E1, he chooses a pseudonym u, to be used within E1. 

Thus, any credential obtained from E0, and to be presented to E1 must be linked to u, 

without neither revealing u to E0 nor L to E1. In fact, revealing both L and u to either E0 

or E1 enables the constitution of a dossier infringing the learner’s privacy. Therefore E0 

RSA blind signature (u : thelearnermessage) 

• N, e, d: the ES’s RSA parameters 

• Output: s, a signature on u. 

 

1. The learner chooses a random value r, such that GCD(r, N) = 1. He then computes t = 

u·re, and then sends t to the ES. 

 

2. The ES computes t’ = td = (u · re)d = ud · r, and then sends t’ to the learner. 

 

3. The learner removes the blinding factor, r, by multiplying t’ by the inverse, r−1, of r 

(such an inverse exists since GCD(r, N) = 1). Thus, he obtains the valid RSA signature on u: 

s = Sd(u) = t’ · r−1 = ud, such that anybody can check the validity of s using the ES’s public 

key e. 
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blindly signs the pseudonym u along with the appropriate credentials (see below), using 

the RSA blind signature (Section 3.3.2) 

6.5.2 Obtaining Anonymous Credentials 

We define anonymous credentials at the following levels: Learner, Course, Transcript, 

and Degree. In the remainder of this section ES stands for the E-learning system issuing 

the anonymous credentials, and EE stands for the external entity to which the issued 

credentials are intended. 

 Anonymous Learner Credential (ALC) 

The Anonymous Learner Credential is used to prove to an External Entity (EE) that the 

learner has been, or is still enrolled in a given ES, even if his identity is unknown. This is 

similar to obtaining a registration certificate from a College or University. In other words, 

the ES delivers a letter saying that the learner, L, is currently, or has been a student in its 

institution. The Anonymous Learner Credential consists of two kinds of data: the 

message, m, describing the registration certificate, and a pseudonym that the learner 

intends to use within the EE, which could be another ES or organization. The 

Anonymous Learner Credential is generated as follows (the || symbol denotes 

concatenation): 
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The remaining anonymous credentials are generated in a similar manner as illustrated in 

Figure 55. 

1. The learner creates a pseudonym, u, in the EE. 

 

2. The learner, identified by L in the ES, requests from the ES to digitally sign m, the 

contents of the registration certificate. 

 

3. The ES signs m as SSK(m), and sends the result to the learner. 

 

4. The learner forms M = u||m||SSK(m), and asks the ES to appose a blind signature on M. 

 

5. The ES blindly signs M, obtains s = RSA_blind_signature(M), and then sends s, which is 

effectively the Anonymous Learner Credential, to the learner. 
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Figure 55: ALC process 

 

It is important to use a secure communication channel (such as by using SSL) between 

the ES and the learner such as to prevent an intruder, Eve, from intercepting the SSK(m) at 

step 3 from the protocol, and performing steps 4 and 5 instead of the actual learner L, 

thus successfully impersonating him. 

Anonymous Course Credential (ACC) 

The Anonymous Course Credential is used to prove to an EE that the learner has 

successfully completed a given course within the ES, even if the learner’s identity is 

unknown. This credential is generated as follows: 
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The Anonymous Transcript Credential is used to prove to an EE that the learner has 

successfully completed more than one course within the ES without revealing the 

learner’s identity. The Anonymous Transcript Credential is generated as follows: 

 

1. At the end of the course session, the ES generates a short transcript from the grades 

obtained from all the activities related to the course. Without loss of generality, we 

consider that the short transcript consists of the following data: the course identifier 

(course_id), the semester, and the grade. The course credential is therefore defined as:  

C = cred[course_id, semester, grade]. The ES signs C as C’ = SSK(C), using its private key, SK, 

and then sends C and C’ to the learner. 

 

2. The learner checks the signature C’ on C, using the ES’s public key, PK. If the checking 

operation is successful, the learner stores (C, SSK(C)) in his credentials database. 

 

3. The learner creates a pseudonym, u, in the EE. 

 

4. The learner forms and sends the message M = u||C||SSK(C) to the ES for a blind 

signature. 

 

5. The ES blindly signs M, obtains s = RSA_blind_signature(M), and then sends s, which is 

effectively the Anonymous Course Credential, to the learner. 

1. At the end of the semester, the learner obtains a set of anonymous course credentials: 

T = (s1, …, sv), where si is the Anonymous Course Credential of course i, and v is the 

number of courses that were taken by the learner within the same ES. T is effectively the 

Anonymous Transcript Credential. 
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6.5.2.1 Anonymous Degree Credential (ADC) 

The Anonymous Degree Credential is used to prove to the EE that the learner has 

obtained a degree related to his learning activities within the ES without revealing the 

learner’s identity. The Anonymous Degree Credential is granted when the learner has 

successfully passed all the courses necessary for obtaining the degree. The Anonymous 

Degree Credential consists of two kinds of data: the message, m, describing the degree, 

and a random number u that the learner intends to use as an authentication tag. 

 

1. The learner provides all the necessary Anonymous Course Credentials for obtaining the 

Anonymous Degree Credential to the ES. 

2. The ES verifies the various Anonymous Course Credentials. 

3. If the verification process is successful 

(a) The ES forms the message m = (degree_title, year, description), which 

constitutes the contents of the degree. 

(b) The learner chooses a random number, u, and invites the ES to digitally sign m. 

 (c) The ES signs m as SSK(m), and sends the result to the learner. 

(d) The learner forms M = u||m|| SSK(m), and requests the ES to appose a blind 

signature on M. 

(e) The ES blindly signs M, obtains s = RSA_blind_signature(M), and sends s, which 

is effectively the Anonymous Degree Credential, to the learner. 

4. If the verification process was not successful, the learner is invited to obtain the needed 

additional Anonymous Course Credential(s) before applying for the Anonymous Degree 

Credential. 
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6.5.3 Prevention of Anonymous Credentials Sharing 

Each anonymous credential is identified by a pseudonym, u, secretly chosen by the 

learner. After validating the anonymous credential, the EE inserts the pseudonym in a 

public Revocation of Anonymous Credentials List (RACL). The Revocation of 

Anonymous Credentials List contains all the anonymous credentials that have been 

shown to different EEs, such that no anonymous credential can be used twice. In 

particular, the validation of a given anonymous credential includes two steps: 

 

 The verification of ES’s signature 

 The search in the Revocation of Anonymous Credentials List for a duplicate of u 

 

This approach successfully prevents two learners from sharing the same credential issued 

by a certain ES. Nonetheless, it does not prevent the case were one learner gives away a 

credential. That is, learner Alice receives a properly deserved anonymous credential, 

which she gives to Bob who can now uniquely use this credential. 

6.5.4 Showing an Anonymous Credential 

After obtaining an anonymous credential from the ES, the learner provides it to an EE, 

which then checks the validity of the anonymous credential by using the ES’s public key 

to verify that it has been properly signed by the ES. If the anonymous credential is valid, 

the EE then verifies that it is not part of the Revocation of Anonymous Credentials List. 

6.5.5 Legitimacy of Anonymous Credentials 

To prove that a given learner is the legitimate owner a set of anonymous credentials, he 

needs to create a Blind Digital Certificate (BDC) for each entity he deals with. A BDC is 

a digital certificate that doesn’t reveal the learner’s personal information. As such let P be 

the learner’s personal information. The learner generates a pair of public/private key (PK, 

SK), then encrypts P as y=EPK(P) and obtains a digital certificate on z=[y, PK] from a 
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CA. z is a blind digital certificate, and y becomes a digital identity that the learner can use 

within an ES. 

If the learner requires proving to his manager, for example, that he did completed the 

training/course in the ES successfully, the blind digital certificate can be “revealed” to his 

manager, while maintaining the competitive or personal reasons mentioned in Section 

2.1. The required document is presented to the manager, who verifies its authenticity 

using the ES public key. The blind digital certificate is revealed by the learner who 

decrypts y into P using his private key, thus allowing the manager to check again that 

EPK(P)=y. 

In the case of a confidential training, the learner’s supervising entity can directly act as 

the CA, thus providing the learner with a unique pseudonym y. In short, the blind digital 

certificate acts as a means to ensure that the learner is the legitimate owner of a given 

anonymous credential. 

6.6 Discussion 

In the previous sections, we introduced various privacy considerations. However, we only 

focused on the case of hard privacy and average tracking. The full privacy option is more 

challenging and requires more cryptographic tools. For instance, in the case of full 

privacy, not only has the E-learning system no information about the courses currently 

taken by the learner, but the system must also evaluates the learner’s activities for these 

unknown courses! Nonetheless, this can be achieved by performing the computations 

with encrypted functions (CEF) (Sander & Tschudin, 1998). However, we leave the 

adaptation of the CEF technique, as well as a prototype for a more complete privacy-

preserving E-learning system for future work. 

In addition, in this work we provided tools and methods to protect learner privacy within 

an E-learning system. Admittedly, there are other aspects to consider: since most E-

learning systems are web-based, a learner could be easily tracked through his IP address, 

thus violating his privacy. However, this issue can be addressed by using well-known 

anonymous Web surfing systems. In more general context, there is a need to address the 

privacy issues related to tracking. However, we also leave this for future work. 
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Moreover, although our proposed approach, ACES, is technically sound, there is still 

work to be done in this field. Indeed, in this work we considered the case of Hard Privacy 

with Average Tracking. Although ACES can be easily adapted to the other privacy and 

tracking levels, considerations are due to the complexity of the protocol, and the implied 

overhead with the higher levels of privacy and tracking. 
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Chapter 7 : Conclusions and future work 

E-learning emerged over 20 years ago, and was merely book like text displayed on a 

computer screen. With the changes and advances in technology, E-learning has come a 

long way, providing interactive rich content, the ability to personalize the learning 

experience, even  the possibility to pursue a complete accredited education online at a 

virtual university. Today, E-learning is again going through major changes. Indeed, with 

the proliferation of E-learning systems and content authoring tools, as well as established 

standards, it has become easier to actually share and reuse learning content instead of just 

recreating what already exists. Moreover, learning content that has been used and 

evaluated is imperative in many cases for personalization, such as when using Item 

Response Theory. Moreover, with the shift to learner centered education and the effect of 

Web2.0 techniques and technologies, learners are no longer just recipients of the learning 

content, but can play an active role into enriching such content. Additionally, with the 

amount of information E-learning systems can gather about learners, and the impact this 

has on their privacy, concerns are being raised in order to protect learners’ privacy. 

Nonetheless, to the best of our knowledge, there hasn’t been any work to address the 

various facets of these issues. In this work, we address these issues by presenting 

Cadmus, SHAREK, and privacy preserving E-learning. Specifically, Cadmus is an IMS 

QTI compliant web based assessment authoring tool, offering the proper framework to 

enable tutors author and share questions and exams. Moreover, Cadmus provides 

functionalities such as the EQRS (Exam Questions Recommender System) to help tutors 

locate suitable questions, ICE (Identification of Conflicts in Exams) to help resolve 

conflicts between questions within the same exam, and the topic tree, designed to help 

tutors better organize their exam questions and easily ensure the content coverage of their 

exams. The various components of Cadmus have been successfully tested, where the 

EQRS was tested by a total of 33 different authors/users, and provided good 

recommendations: with an average of 40 questions in each recommendation, more than 

half of the questions selected by the tutors where ranked within the top 10. On the other 

hand, ICE reported conflicts with an accuracy of 83%, a very satisfactory result 

considering the short size of questions, and the high similarity in the textual content. 
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Moreover, the implementation of the topic tree enhanced the accuracy of ICE, effectively 

increasing its accuracy from 83% to almost 90%. As future work, we are considering 

adapting the EQRS in a more general context in E-learning, for recommending learning 

resources in general and not just exam questions; specifically adapting a multi-criteria 

recommender system approach to further enhance the accuracy of the recommendation. 

On the other hand, SHAREK (Sharing REsources and Knowledge) provides the 

framework to take advantage of both the rigidity of E-learning systems and the flexibility 

of PLEs (Personal Learning Environment) while enabling learners to enrich the learning 

content, and helping them locate new learning resources. Specifically, in order to 

promote new learning resources and help learners locate suitable content, SHAREK 

utilizes a multi-criteria content based recommender system, and combines Web2.0 

technologies and techniques such as RSS and social web. Specifically, we propose and 

test different approaches in the multi-criteria recommender systems to determine the most 

accurate approach. SHAREK was successfully evaluated with the help of 93 participants, 

where the evaluations of its functionalities were very favorable. Indeed, most learners 

reported they regularly access and use resources from outside the classroom, and are 

likely to use learning material recommended by friends and peers, as well as 

share/recommend their own resources. Moreover, most respondent were satisfied with the 

functionalities provided by SHAREK, and reported that such an environment would 

encourage them to further share their knowledge. Still there are some aspects that still 

require some future work. Specifically, further validation of the multi-criteria 

recommender system, on a real dataset, is required to further validate and to further 

enhance our approach. 

Lastly, in order to address the various needs for privacy in E-learning, we propose a 

framework with four levels of privacy, and four levels of tracking. When presented with 

the possibility to choose a privacy level and a tracking level, most learners opted to 

protect their privacy, selecting one of the three privacy levels (as opposed to No privacy). 

Additionally, in order to achieve the various privacy and tracking levels, we propose 

ACES (Anonymous Credentials for E-learning Systems), a set of protocols, based on well 

established cryptographic techniques, which allows the learner to perform an essential 

function within a privacy preserving E-learning environment: obtain and show 
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anonymous credentials from and to an E-learning system. Although there was no 

technical evaluation of ACES, we did demonstrate the validity of the protocol. Moreover, 

in order to evaluate the impact of privacy on learners, we conducted an experiment with 

77 participants, and the results indicated that privacy actually had a positive impact on 

learners. Indeed, the study indicated that learners tend to perform better in a privacy 

enhanced environment. Yet, the results include a bias, due to the fact that the study was 

conducted outside a classroom, where there was no real consequence to performing 

poorly. As future work, more validation, in the context of an actual course, is necessary 

to further evaluate the impact of privacy on learners’ attitudes. Additionally, we intend to 

implement the ACES protocol and evaluate the overhead it introduces to the E-learning 

process. 
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