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Abstract

This paper studies testing for a unit root for large n and 7' panels in which the
cross-sectional units are correlated. To model this cross-sectional correlation, we
assume that the data is generated by an unknown number of unobservable common
factors. We propose unit root tests in this environment and derive their (Gaussian)
asymptotic distribution under the null hypothesis of a unit root and local alterna-
tives. We show that these tests have significant asympotitic power when the model
has no incidental trends. However, when there are incidental trends in the model
and it is necessary to remove heterogeneous deterministic components, we show that
these tests have no power against the same local alternatives. Through Monte Carlo
simulations, we provide evidence on the finite sample properties of these new tests.

Résumé:

Cet article analyse des tests de racines unitaires dans les panels ou n et T sont
tous les deux grands et ou les unités d’observations sont corrélées. Cette corrélation
transversale est modélisée a 1'aide d’un modéle & facteurs dynamiques inobservables.
Nous proposons plusieurs tests dans cet environnement et dérivons leurs lois limites
sous ’hypothése nulle d’une racine unitaire et des alternatives locales. Nous mon-
trons aussi que ces tests n’ont pas de puissance contre ces mémes alternatives locales
lorsqu’il est nécessaire d’estimer des composantes déterministes. A l'aide d’une ex-
périence de Monte Carlo, nous comparons les propriétés en échantillons finis de ces
tests et de d’autres suggérés dans la littérature.
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1 Introduction

In this paper we propose several unit root test statistics for panels in which cross-sections
are correlated. Over the last few years, there has been a lot of research on nonstationary
panels with large cross section and time series dimensions in particular in the context
of testing for the presence of a unit root. A common feature of these studies is the re-
striction that the cross-sections are independent. Under this assumption, various central
limit theorems can be applied to obtain test statistics with an asymptotic normal distrib-
ution. However, this cross sectional independence assumption is quite restrictive in many
empirical applications in macroeconomics, finance or international finance. For example,
consider a panel of cross-country real exchange rates. As argued by O’Connell (1998),
due to the strong links across markets and the use of a numeraire country in defining
real exchange rates, real exchange rates should have high cross-correlation both in the
short-run and in the long run.

To model this cross sectional dependence, we consider an approximate linear dynamic
factor model in which the panel data is generated by both idiosyncratic shocks and unob-
servable dynamic factors that are common to all the individual units but to which each
individual reacts heterogeneously.

When common factors exist in the panel, tests that suppose independence among
cross-sectional units will suffer size distortions. To correct this problem, we propose a test
statistic that uses de-factored panel data obtained by projecting the panel data to the
space orthogonal to the factor loadings. To estimate the matrix of factor loadings, we use
a modified version of the principal component method used in Stock and Watson (1998)
and Bai and Ng (2001, 2002). A similar orthogonalization procedure is also suggested in
Phillips and Sul (2002),

Considering cross sectional dependence in a panel context is quite new. Recently, Chen
and Conley (2001) study a semiparametric spatial model for fixed n and large T" panels
in which the time series component is stationary and mixing. For nonstationary panels,
Chang (2001) develops a nonlinear instrument variable unit root test for a panel with large
T and fixed n and Choi (2001) proposes a unit root test based on a Fisher-type statistic
for panels with large 7 and 7. In independent work, Bai and Ng (2001) and Phillips and
Sul (2002) also use a factor structure to model cross-sectional dependence in panels and
to construct unit root tests in such a setting.

An important contribution of this paper is the study of the behavior of our test sta-
tistics under local alternative hypotheses. We show that our tests have power against
alternatives that shrink towards the unit root at rate 1/y/nT under some circumstances.
However, we also show that our tests do not have power in such a neighborhood in the
case where heterogeneous deterministic trends exist in the data, the so-called incidental
trends problem (cf. Moon and Phillips, 1999). We also provide an upper bound on the
rate at which the alternative hypothesis can drift towards the null for nontrivial power to
exist.

The paper is organized as follows. Section 2 introduces the model and proposes various
test statistics for a unit root and finds their asymptotic properties under local alternatives.
In section 3, we show that the proposed tests have no power against the same local
alternatives when deterministic components have to be removed. In Section 4 we compare



finite sample properties of our proposed panel unit test statistics, while section 5 concludes
All the technical proofs and derivations are in the Appendix.

A word on notation. We use notation M to denote a generic constant that is finite.
For an n x K matrix 3, Pz = 6(6’6)716’ and Qg = I — Ps. For a matrix A, 4 > 0
denotes that A is positive definite. For a matrix A, ||A|| denotes the Euclidean norm,

Al = (tr (ATA)"2.

2 A Simple Model

The model we will consider is the dynamic panel model:

0

2it = o;+ 2y (1)
0o _ 0 .

g = PRt Vi

where we set the initial observations 2% = 0 for all i. The model allows for fixed effects
and is therefore suitable for use with panels of macroeconomic data that do not exhibit
deterministic trends such as most real exchange rates, interest rates, or inflation rates.
Deterministic trends, relevant for variables such as GDP or industrial production, will be
considered in the next section. We are interested in testing the null hypothesis:

Hy:p,=1 Wi
against the stationary alternative hypothesis:
Hy:p;, <1 forsome i

In order to simultaneously handle unit roots and local alternatives, we will nest these two
hypotheses using the near unit root model:

T =1= 2
P =TT @
where 8; is a non-negative random variable.

Assumption 1 The random variables 0; are wid with mean p, and a finite fourth mo-
ment, and they are defined on [0, Mp).t

With this assumption, the hypotheses we will consider are
HO L He = 0.

against the local alternative
Hll e > 0.

Under Assumption 1, the null hypothesis is equivalent to
Hy : 8; =0 for all 4.

The near unit root model has been extensively used in the univariate literature starting
with Phillips (1987) to study the behavior of test statistics under local alternatives. The
rate of approach of the local alternative to the null hypothesis is faster in our case because

L Assuming the upper bound Mj is for convenience. It could be relaxed at the expense of technical
complexity.



the use of panel data will entail faster convergence of the estimator of the autoregressive
parameter as we will see below.

To model the correlation among the cross-sectional units, we will assume that the error
term in (1) follows an approximate factor model:

it = 6?’]”? + €y, (3)

where f{ are K —vectors of unobservable random factors, 6? are nonrandom factor loading
coeflicient vectors (also K —vectors), e;; are idiosyncratic shocks, and the number of factors
K is possibly unknown. The extent of the correlation is determined by the factor loading
coefficients 37, i.e

E (yieyjt) = BglE (f? z?,> 69'

The factor model in (3) is introduced to model cross sectional dependence. The common
factors fl? play an important role in reducing the dimensionality of the cross sectional
covariance structure of y;;.

Assumption 2 (i) ¢;; = Z;‘io d;jvie—j, where vy are 1d(0,1) across i and over t, have
a finite eighth moment.

(ZZ) inf; Z;’;O d;; > 0. -
(iii) Let d; = sup, |dij| . Then, 3752, j™d; < M for some m > 1.

Assumption 3 (i) = Z;‘io cju—j, where c; are K X K matrices of real numbers and
the K-vectors u; are #d(0, Ix) across i and over t.

(i) 35— i llejll < M for some m > 1.
Assumption 4 0;,u;, and v;, are independent.
Assumption 5 1 < K < K < oo, where K is known.
Assumption 6 Asn — oo, 237 38) — 55> 0.
Assumption 7 As T — oo, + Zthl oY —, 2 > 0.

2
Define 02, = Y% @2, w?, = (Z?io dij) sand Aoy = Y00, Y00 dijdijr. In this

notation, Uii signifies the variance of e, wii the long-run variance of e;;, and A.; the

one-sided long-run variance of e;;.

Assumption 8 As n — oo,
(i) w? “ lim,, % Sy wi i (> 0) is well defined.
(i) ¢ 2 Jim my, ; . w“- (> 0) is well defined.

(iii) 0% = lim,, 1 02, (> 0) is well defined.
Assumption 9 sup, I/ (oz?) < 0o0.

Remarks



(a)

In the special case where ﬁ? = 6? for all 4,7, our factor model becomes an error
component model with time specific effect f{ as studied in Choi (2002). Phillips
and Sul (2002) study a similar model with a single factor (K =1). In addition to
unit root testing using Hausman-type and Fisher-type tests, they also analyze me-
dian unbiased estimation and general homogeneity hypotheses. Finally, Bai and Ng
(2001) develop a testing methodology for dynamic panels with factors that allows
for stationary and nonstationary factors and idiosyncratic errors. Their methodol-
ogy allows to test separately the nonstationarity of the factors and the idiosyncratic
components.

Under Assumption 3, it is known that

[Tr]

%Zf? = By (r), (1)

t=1

By (r) is a K-vector Brownian motion with covariance Q; = c¢(1)c(1)', ¢(1) =
Z;‘i1 ¢;. In this paper, we do not require that the long-run covariance matrix of the
factors, ()¢, be of full rank. The positive definiteness restriction is imposed on the
variance matrix of f;, Xy (see Assumption 7). This implies that under the null it
is possible to have cointegrating relations among the nonstationary factors. Also,
note under Assumption 7 that f? is allowed to contain some lagged variables: e.g.,
2= (g, gt,l)’ for some random variable ¢g; with finite second moments. Then,
under the null hypothesis, we have FY = (G, G;_1), where F? = ZZZI R, G =
ZZ:I gs. In this case, Gy and G_1 are cointegrated in the sense that Gy — Gy 1 = g¢
is stationary.

However, the restrictions in Assumption 2 exclude the possibility of cointegrating re-
lations in the integrated idiosyncratic shocks F;; = ZZZI e;s. The assumed indepen-
dence across i implies that the covariance matrix of the stacked F;; is block-diagonal

and Assumption 2 (i7) ensures that each element along the diagonal is non-zero.

Assumptions 2 and 3 assume that the random factors f? and the idiosyncratic
shocks e;; are stationary linear processes and that they are independent of each
other. These assumptions correspond to Assumption 1 of Forni et al (2000) but
are more restrictive than Assumptions C and D of Bai and Ng (2002), Assumptions
C, D, and E of Bai (2001), or Condition M of Stock and Watson (1998). The
conditions assumed in Bai and Ng (2002), Bai (2001), or Stock and Watson (1998)
do not restrict f? and e; to be linear processes and allow for weak dependence
between e;; and f? and among the cross sectional units of e;;. The assumption of
linear processes for e;; and f is convenient yet very general in terms of the temporal
dependence allowed and allows avoiding high level assumptions such as Assumption
E of Bai (2001). Also, assuming independence between e;; and f? is not likely to
be too restrictive considering the nature of the factor model and it could be relaxed
as in, for example, Bai and Ng (2002) at the expense of complexity of the proofs.

Assumptions 6 and 7 are standard assumptions in factor models (e.g., Bai and Ng,
2002). An implication of Assumption 6 is that the contribution from each factor
to at least one of the y;; is significant, and in this context it may correspond to
Assumption 4 of Forni et al (2000). However, this assumption does not impose that
all cross-sections respond to all factors so that some of the factor loadings could be
zZero.



(f) Assumption 5 assumes that there exists at least a common factor in y;; and the
number of factors, K, is bounded by a finite number K that is assumed to be
known. In this paper, we first discuss testing the null hypothesis of a unit root
assuming that K is known, and then later we discuss how to estimate consistently
the true number of factors.

(g) By definition, wii =2X.; + Uii. Thus, under Assumptions 8(a) and (c),

Ae = lim % Z:; Acs

is well defined.

(h) Assumption 9 restricts the moment of the incidental parameters ;. Under this
assumption, since the stochastic trend term z?t dominates the incidental parameters,
the presence of the incidental parameters can be ignored as we will see. In Section
3, we investigate a model that does not assume the restriction in Assumption 9.

We now define our matrix notation: Define

¥y = (gl,.--,gT) » Y, = (Yirs ~~~7yiT),7
e = (e,€,)s & = (€1, eir),
Z = (Zy,nZy) s Zi = (i1, 2i1)
Z = (ZayZoan) Zog,= (2i05 s 2i7—1)
7% = (20,..20), 20 = (%, ... 2%) .
291 = (Zgl,17"'7291,n> ) Zgu = (Z?m ~~~7Z?T71>,7
o= (1) = (8, 80)

Define
p (L) =diag (pyL,...,p, L),

where L denotes a lag operator. Write Ip = (1,..., 1),7 T x 1 vector of ones. Using our
matrix notation, we rewrite the model as

Z Ipa + 7°, (5)
Z° (I, —p(L) = f°8”+e

2.1 Pooled Estimators and Their Asymptotics

Define the pooled autoregressive estimator:

R ot (ZLIZ)
ppaol - tr (ZL1271> .

Our choice of the pooled estimator rests on three reasons: First, it simplifies the joint
limit theory (as n,T — ©0). Secondly, this allows us to analyze our tests under the local
alternative H;. Thirdly, it is clearly appropriate for the linear structure of the model and
is an implication of our null hypothesis.

If there is no common factor, i.e, ﬁglfl? = 0 for all ¢, ¢, then the error term y;; contains
only idiosyncratic shocks and is thus cross-sectionally independent. It is well known in



this case that it is possible to modify the pooled estimator Ppoot DY fixing a second-order
bias due to the serial correlation in the time series of the panel Z and make the modified
pooled /nT— consistent and have a normal limit distribution (see, for example, Levin et
al, 2001, and Moon and Phillips, 2000).

As mentioned in the previous section, when the panel is generated by the common
factors 6?’f$ satisfying Assumptions 6 and 7, the influence of the common factor f{ and
cross-sectional correlation persist in all the individual units. In this case, the conventional
central limit theorem cannot be applied to the conventional modified pooled estimator.
Hence, this estimator is not /nT— consistent and does not have a normal limit. The
limit of the pooled estimator p,,,, is derived in the following lemma.

Lemma 1 Suppose that Assumptions 1 — 9 hold. Then, as (n,T — o0), under the null
of unit root,

ytr (By (1) By (1) £5) + §w2 — 3tr (S, %5) — 307
tr (Jo By (r) By () dr) Ss+ $?

where By (1) is the Brownian motion in (4).

T (lbpaal - 1) =

?

In Lemma 1, due to the presence of the nonstationary common factor and since each
factor is significant in the sense that % Sy 6? 6?’ converges to a positive definite matrix
¥, the pooled estimator p,,,, has a limit that is a function of By (r), and its convergence
rate is determined only by the time dimension. Adding cross-sectional units does not
improve the rate of convergence.

In order to achieve \/nT— consistency and the conventional normal limit, we need to
eliminate the common factors from the panel. To have an intuition, we first consider a
simple case where the factor loading matrix 3° and the coefficients of the dynamics of the
idiosyncratic shock e are known. Notice that under the null hypothesis,

22=72° 4+ 8" +e. (6)

To eliminate the common factor in the panel, in this case, we multiply equation (6) by
the projection matrix Qﬁoz. Then, under the null hypothesis, we have

ZOQﬁo = ZQIQBO +6Q@0' (7)
In view of (7), we define

o tr(Z4QgoZ') —nTA]
Proot = "5 (7 1QuoZ’y)

(8)

n

A= 1 Y ieq Aeyi- The estimator ,b;'wl is a modified pooled OLS estimator using the

n
de-factored panel data. The modification is required because of the serial correlation in

6@60.
Define © = diag (64, ..., 8,) . Now to find the asymptotic distribution of ,b;' we write

by definition that ool
\/ET (lb;_aol - 1)
Vi (Fptr (2-4Qp0 (2= 7-1)") = 1)
st (Z-1QgoZ" )
ahrtr (2,Q0007%) | Vi (Frir (22,Qe’) )

1 ! 1 !
mt?“ (Z*1Q60271> nTQtT (Z*1Q50271>
2Recently, Phillips and Sul (2002) independently propose a similar orthogonalization procedure.




Lemma 2 provides the asymptotic analysis of each component in this expression.

Lemma 2 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with & — 0.
Then, the following holds.

(a) ﬁtr( _1QpgoZ" ) o %,ug
(0) ngtr( 1Q509 or ) —p %ug,ug.
(c) /n (25t (2°,Qpoe’) — \Y) = N (0, 10%)

Using the results in Lemma 2, we can derive the asymptotic distribution of /nT (,b;w L= 1)

as follows.
Theorem 1 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with 7 — 0.

Then,
) 26,
NG <p;001 ~1) =N (-ug, - ) .

e

Theorem 1 shows that under the null, ,b;'a .1 18 v/nT— consistent and asymptotically nor-
mal. This result is fully expected because the common factors in the panel are eliminated
and the de-factored data Z()zo has no cross-sectional dependence. Also, the estimator
,b;'wl does not depend on the factors in f?. Thus, if a test is constructed using ,b;'a o1+ bhen
we may expect that the test statistic is robust with respect to the factors in f? .

Another way to eliminate the factors would be to project the panel data on the orthog-
onal space generated by the nonstationary factors FQ. In this paper, we do not consider
this approach because handling nonstationary factors would be more complicated than
handling non-random factor loading vectors and the primary interest of this paper is to
eliminate the common factors 6?’}7}0 under the null, and not to estimate them.

In view of Theorem 1 and Lemma 2, we may deduce that

F) ([
20 = N | o 200 1 (9)
:
w2 ;u4
\/_T lopaal —tT 71QBOZL1> ¢_z =N — Mg ?1;54, 1 (10)

as (n, T — co) with & # — 0. These statistic are not useful in applications, however, because

and

one does not observe the true factor loading coeflicient ﬁ? and the long-run variances of
the idiosyncratic shock e;; in general. Feasible versions of these statistics will be developed
in the next section.

Notice by the Cauchy-Schwarz inequality that 25 3 < 1, and 2% 5= =1 only when w2 are
identical for all i. So, the test statistic will have a better power when the cross sectlon
data are homogeneous, more specifically, when the long-run variance of the idiosyncractic
shocks e;; are identical across ¢ then the panel of heterogeneous cross section.



2.2 Feasible Panel Unit Root Test Statistics

In the previous section, we have defined test statistics in (9) and (10) that are not feasible
since they depend on unknown parameters. In this section, we obtain feasible versions
of these statistics that will have the same asymptotic behavior. We proceed by first
discussing the estimation of the long-run variances of e¢;; and factor loading coefficients
assuming that the true number of the factors, K, is known. We show that the estimation of
these quantities does not affect the distribution of our statistics in large samples. Finally,
we discuss how to obtain a consistent estimator of K.

Estimation of 3°

To estimate 6?, we use the principal component method. This approach has been

used widely in the literature on factor models of panels with large n and large T, for
example Connor and Korajczyk (1986, 1988, 1993), Stock and Watson (1998), Bernanke
and Boivin (2002), Brisson, Campbell, and Galbraith (2001), Bai and Ng (2002), and Bai
(2001).

In model (1), since the error term y;; is not observable, we use the residual
i=7 - Ibpaolzfl'
To estimate 3° and f°, we minimize

tr((w-18) (0 18)")
nT

VnT (f767K) =

with respect to 67/6 = Ik or LT/i = Ix. With the normalization 6—;6 = Ik, we have the

estimated factor loading matrix 3y that is a (n x K) matrix of \/n times the eigenvectors
corresponding to the K largest eigenvalues of §j'fj. Then, we obtain an estimator of the

factor, fx = %QBK On the other hand, if we use the normalization %ﬁ = Ik, we have the

estimated factor fK that is a (1" x K) matrix of VT times the eigenvectors corresponding
to the K largest eigenvalues of ', and the estimated factor loading 35 = %Q’fK. Define

e N 1/2
@:@0%2)7 (11)

a re-scaled estimator of the factor loading®. This is the estimator of 8° that we will use
in defining our feasible panel unit root test statistics.

The following lemma shows that the projection matrix Q By is consistent and provides
its convergence rate.

Lemma 3 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with % — 0.

Then, L
=0 (m (%7%))-

Estimation of the long-run variances

o, o

3The rescaled estimator studied in Bai (2001) is B (—K—K



In order to implement the t-statistics in (9) and (10), we also need consistent estima-

M 9 4 n 92 4 . C e
tors, say A, , w., and ¢, for A}, wZ, and ¢, respectively, satisfying

,ug — wg = op(1), (13)
and "
e — be =0, (1). (14)

In this section we propose estimators of A7, w?, and qﬁi that satisfy these conditions.
Let é;; denote the (t, i)th element of € = QQ@K. Define the sample covariances T'; (§) =

% >, €itéirrj, where the summation Y, is defined over 1 < ¢,2 4 j < T. To define the
estimators of the long-run variances A7, wg, and gbi, we use the following kernel estimators
of Ac; and wii,

=1

Z K (%) i), (16)

—T+

S = S (%) . (7) (15)
I (

e,

j

where w (-) is a kernel function and A is a bandwidth parameter. Define

n n
an 1 “ 9 1 9 -4 1 4
A, :EZAEJ, %:EZ%J, and ¢, = = > Wei (17)
=1 =1 =1
“ ~4
In order for the estimators A:, &2, and ¢, to satisfy the desirable properties in (12) —(14)
we need the following assumptions on the kernel function and the bandwidth parameter.

Assumption 10 (Restriction on the convergence rate of n and T). The size of the panel

- 3 3 s logT
(n,T) tends to infinity with (}Lljr%l lecli )—g—logn > 1.

Define a = (lir%l inf)ll‘;—‘;—z. The parameter a is related to the speed of 7 tending to zero.
n,T—oo

The restriction @ > 1 implies that (n,7 — oo) with # — 0 because for n, T large,

n _log T _logT
? = elognflogT = e(l logn)IOgn = n(l logn) S n(lia’) — 0.

The above assumption allows the parameter a to be infinity.

Assumption 11 (Kernel Conditions) The kernel function w () : R — [0, 1] is continuous
at zero and all but a finite number of other points, satisfying

() w(0) =1, w(x) = w(—z), /O:Ow(x)de <M,

(i) wy = lim [1 —w(x) /[2]"] < oo

for some O < q < m, where parameler m is defined in Assumptions 2 and 3.

10



In some cases, we need to strengthen this assumption to:

Assumption 12 (Kernel Conditions*) The kernel function w (-) satisfies the kernel con-
ditions in Assumption 11 as well as

1
1, —— .
(#ii) max{ ’a—1}<q

The parameter g is related to the smoothness of the kernel w (-) at zero. It is well
known that for the truncated kernel, w, = 0 for all ¢ < oo, for the Bartlett kernel, w, < oo
only if ¢ < 1, and for the Parzen, Tukey-Hanning, and Quadratic-Spectral kernel, w, < co
only if ¢ < 2 {e.g., see Andrews, 1991). The requirement 0 < ¢ < m is related to the
smoothness of the spectral densities of ¢;; and f?.

Assumption 13 (Bandwidth Conditions) The bandwidths hy, h,,, and hy tend to infinity
satisfying the following conditions.

(a) by~ n® with 5 <b<min{%1,%,%}.

(b) For 0 < q <1, hy ~ n® with 0 < b < min{1,%}. For ¢ > 1, hy ~ n® with

o<b<min{1,g,g}

(¢) For 0 < q¢ < 1, hy ~nP with0 < b < §. For ¢ > 1, hy ~ n® with 0 < b <

; 1 a
mln{4,q}.

Lemma 4 Suppose that Assumptions 1 — 10 hold.
(a) If the kernel window satisfies Assumption 12 and the bandwidth hy satisfies As-
sumption 13(a), then,

Vi (Ar =) =o0,(1).

(b) If the kernel window satisfies Assumption 11 and the bandwidth h.,, satisfies As-
sumption 153(b), then

’J)g—wg:op(l).

(c) If the kernel window satisfies Assumption 11 and the bandwidth hy satisfies As-
sumption 15(c), then

In view of (9) and (10), using (11) and (17), we may define the following feasible

t-statistics for Hy:
"= \/ﬁT (IZ);OOl B 1)

a ?

23"
o
and
% ~k 1 ’ &)e
tb = \/ET (Iopaal — 1) Wtr (Z,lQ@KZfl) f
where

tr (Z,lQ@KZ’) —aTA

tr (Z,lQ@KZLl)

ok _
ppOOl -

11



Theorem 2 Suppose that Assumptions 1 — 13 hold. Then,
[t
i =N — —=1].
ar “b ( Ho 2¢3 )

(a) Theorem 2 indicates that the t-ratio statistics ¢} and ¢; have significant asymptotic
power in ﬁ— neighborhoods of the null of unit root. As expected, the power

Remarks

increases as [ty deviates from zero.

(b) The finite-sample performance of univariate unit root tests suffer from the difficulty
of estimating long-run variances such wii. Our panel tests should perform better in
this regard since what is required is the average wii. This averaging should remove
a lot of the uncertainty in long-run variance estimation. Of course, this averaging
will not remove the bias in the estimation of the long-run variances.

2.3 Estimation of the number of factors

As mentioned in the beginning of the previous section, all the results in the previous section
are established under the condition that the number of the factors, K, is known. When
it is unknown, a natural approach is treat the estimation problem as a model selection
issue and to estimate K using an information criterion. In this section, we discuss how to
obtain a consistent estimator of the number of factors, K, using this approach. Now for
a given (n X r) matrix 5, let

tr((5—£6.) @@= 18" (504 4
War (@ﬂ“)zrr}in ( o ): 7“@73@,«9).

To estimate the true number of factors, K, Bai and Ng (2002) propose to maximize the
following criterion functions,

PC(r) = WnT<Ar,7“)+7“GnT7
IC(r) = In (WnT (Ar,r))+anT,

where the penalty function G, p satisfies (i) G,, r — 0 and (ii) min{n, T} G, p — oco. as
(n, T — 00).

Theorem 3 Suppose that Assumptions 1 — 9 hold and (n,T — oo) following Assumption
10. Let i
K =argminPC (r), K =argminlC (r).
1<r<K 1<r<K

Then,
(a) pliml {K - K} =1 and () pliml {K = K} = 1.

The specific forms of the penalty function proposed by Bai and Ng (2002) are:

_ LaanTt T n+T
Gpcanr = 0, T In < |
T
Gpeonr = 062" nq;; In (min {n,7T7}),
o _ el + 7 (In(min{n,T})
PC3nT = 02— r min {0 7T )
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and

n+T n+T
Groanr = T In )
n+T .
Grogar = — I (min {n,T}),
o n+T (In(min{n,7})
et nT min {n, T} }°

We also consider the modified BIC' criterion that they proposed which they called
BICg .

e

. T
BICs = War ( r,r) + r&“% In (n7)
n

because their evidence suggests that it performs better in selecting the number of factors
when min (n, T') is small (< 20) as is often the case in empirical applications (such as ours).
Bai and Ng rejected this criterion because it does not satisfy the required conditions for
consistency when either n or 7' dominates the other one exponentially, but this appears to
be a rather unusual case. For small n and T of roughly the same magnitude, this criterion
preformed best among those they considered.

3 A Model with Incidental Trends

In this section, we extend our analysis and consider the dynamic panel model that may
include incidental trends:

Zit = Oé;gigkt‘FZ?t (18)
z?t = PiZ?t71+yit7

where

go: = 1 and g1 = (1,1)".
We continue to assume the local-to-unity framework (2) for p,; and the approximate factor
structure (3) for y;;. We also assume that Z?o =0 for all 7. As in the previous section, we
want to test for the null hypothesis Hy against the (local) alternative H;.

The model (18) is an extension of the model in the previous section as it adds incidental
trend components g representing individual effects. When & = 0, i.e., gx: = 1, the
model with incidental trends (18) reduces to our original model (1). However, in this
section we do not assume any restriction on the incidental parameters (or trends) such as
Assumption 9. To distinguish the two different models of ¥ = 0 and k¥ = 1, we call them
model £ = 0 and model k = 1, respectively.

The main purpose of this section is to study the local power of t-ratio type statistics
based on a (bias-modified) pooled estimator ( such as p™) using detrended (or demeaned)
panel data. Detrending (or demeaning) is required to eliminate the incidental trends
(parameters) in the model and have a test statistic that is independent of the incidental
trends (or parameters).

To make our point, we will simplify our analysis as much as possible by making more
restrictive assumptions than in the previous section. In particular, we assume that e;; ~
itd (0, 1) with finite fourth moments across i and over £, f; ~ 7id (0, 1) over t, and e;; and
f: are independent. We also assume for convenience that the factor loading coefficient ﬁ?
is observed.

13



Finally, we replace our local-to-unity framework of (2) by assuming that the autore-
gressive roots are identical cross ¢ and assume that

4 He .
p;=1 T for all <.

In what follows, we will investigate the asymptotic powers of the models k =0 and k =1
within a n%T— neighborhood of the null hypothesis of a unit root and find that the test
has no asymptotic power if 1 > 71; for Kk =0 and n > % for k = 1. The restrictions made
in this section could be relaxed to the more general conditions assumed in the previous
section without changing any of the main results.

To distinguish the notation for the panel under the null hypothesis, we denote Z° (0)
for Z° in (1) when p; = 1 (or equivalently §; = 0) for all i. Define F® = =f° and F = Ze,
where = be a (T' x T') lower triangular matrix such that

10 - 0
11 0

(TxT) : ’
11 |

So,

7z°(0) = F°3” + F.
Similarly we define Z°, (0), F°,, and F_; to denote the matrices of lagged panel data of
7Z0(0), F°, and E, respectively. Define Grr = (g1, ..., grr) > a T x (k + 1) trend matrix
(or a vector consisting of ones). Let Qg = It — Gip (G}CTG;CTYI Gjp. When A is a
(T x n) matrix of panel data, we denote A = Q¢A, the matrix of panel data from which

the trends (or the means) along the time dimension have been subtracted. Using this
notation together with the notation defined in the previous section, we may deduce that

Z=2°
and
2% (In—p(L) = f°8% + &
Analogous to ,b;a o 1n (8), we may define
r (Z,lQﬁoZ’) — nT by,
r (Z,IQEOZLI)

Iopoal =

where the bias term is by, , 7 = —E (tr (E 16’)). The limit of the bias by, 7 as T — oo is
(fo fo r) hy (r s) aw (s )dr) , where W (1) is a Wiener process, hy, (r,s) =
(fo agr ( dr) g (8), go(r) = 1 and g (r) = (1,7)". The correction term

bka is the mean of the bias generated by the correlation between the detrended data

E,l and €.
The typical t- ratio statistic is defined as

=\ fir (7100071, (0 1).

4 A direct calculation shows that by — f% for £ =0 and 1.
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Then, we may write
NG _ﬁtr {ZOIng ( A +’§),} — bint
Vit (Z1Qm2" )
\/ﬁ :#tr <E~71é’) - bk,nT] n \/ﬁ {#tr <<291 - 291 (0)) Q@"é,)} .
et (220021,) atr (74Qu07",)
V[t (20 (00Qp0 2, 0)|
ni - N
\/#tr (Z,lQﬁoZLl)
\/— nTZtT <<ZO - 291 (0)) Qo <291 - 291 (0)),>
9 pn ~ N
\/nlztr (Z,lQﬁoZLl)
T st (720 = 2°,(0)) Quo 2, (0))
t \/#tr (Z,IQEOZLI)

Lemma 5 provides the asymptotic analysis of each component in this expression.

# =

Lemma 5 Assume that n > ;IL for model k = 0 and n > % for model k = 1. Under the
assumptions made in this section, the following hold.

(a) Thtr (220Quo 2% ) —p (fo rdr = 3 fy win (r,8) P (r, ) dsdr)
() /n [ ( Y ) - bka] - N <0,limn7T E (L S ST B — b nT)2> .
(c) Vi [ﬁtr ((291 _ 70, (o)) Q@oé’) Lo (117 (1 — ) hy (1, 5) dsdr} =0, (1).
(Sz) nl/2=m [n;m (291(0) Q2" (o)) - ( Jrdr = [ [ min (r, 8) by (1, 3) dsdr)} -
(@ st (220~ 22, 0) Qo (2, - 22,0)') = o 0.

(e — ((291 e (o)) Q' 4 (o)) =0, (1).

Note that according to Remark (c) on page 950 of Moon and Phillips (2000), we have

1 1 g1 1 pr
/ rdr — / / min (7, s) hy, (r, 8) dsdr = / / (r — 8) hy (r,s) dsdr for k=0, 1.
0 o Jo o Jo

Then, we may deduce that for n > i in model £ =0 and 1 > % in model k =1,

\/ﬁ {#tr (Eflé,) — bk,nT]

= +0, (1)
\/n;ztr <Z,1QQOZL1)

. 2
V1o lim, 7 & (# Sy Zthl Eit 185 — bk,nT)
= , ;
fol rdr — fol fol min (7, $) hy, (1, s) dsdr
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from which we find that the limit distribution does not depend on g, and is identical
under Hy and H;. Therefore, the t#, the t-ratio statistic based on ,b;i o1 does not have any
n%T— neighborhoods of the null of a unit root, where 1 > i in model
k=0andn> % in model & = 1. Summarizing this, we have the following theorem.

asymptotic power in

Theorem 4 Assume that n > 4—1 for model k =0 and n > % for model k = 1. Under the

assumptions made in this section, the t% statistic does not have any asymptotic power in

n%T— neighborhoods of the null of unit root.

Remarks

(a) Again, as mentioned earlier, the same result as Theorem 4 could be obtained under
more general conditions than those assumed in the previous section at the cost of
complexity. However, due to space limitations, we omit this.

(b) Recently, Ploberger and Phillips (2002) have investigated optimal invariant panel
unit root tests that maximizes average power, and Moon and Phillips (2002) and
Moon, Perron, and Phillips (2002) have proposed a similar test using the OLS de-
trended data®. One of their main findings is that when the panel includes incidental
trends (in our case, it corresponds to model & = 1), their tests have power within
m neighborhoods of the null of unit root. In view of Theorem 4, their tests
asymptotically dominates the test based on t# since the latter does not have any
power in such a shrinking neighborhood.

4 Simulation experiment

In this section, we will conduct a small Monte Carlo experiment to assess the finite-sample
properties of the tests presented on section 2. We also want to demonstrate the lack of
power of the tests when deterministic components are estimated. For this purpose, the
data generating process we will use is:

0
Zit = Qi+ il + 2y
0o _ 0
Zig = PiZig—1 Vit
0 _
2o = 0

with a factor structure for the error terms:
K
Yir = TZﬁijftj +VKegy
j—1

and all stochastic shocks i.i.d. standard normal:
(ftj76ijveit> ~ 11dN (0, I3)

The DGP for y;; is identical to the one used by Bai and Ng (2002) for 7= 1. We add
to that an autoregressive structure as well as deterministic components.

We will conduct 2 experiments that will differ according to the specifications of the
deterministic components.:

Experiment 1 (fixed effects, no trend) :  ayp ~ N(0,1),0 =0
Experiment 2 (deterministic trend) : a0 ~ N (0,1), ;1 ~ N (0,1)

5However, these papers do not consider cross sectional dependence in the panels.
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For each of these data-generating processes, we will consider two assumptions on the
autoregressive parameters:

Case A : p,=1 Wi
Case B : p; ~U[0.98,1]

Case A is used to study the size of the proposed tests. Case B is used to study the
power of the tests. Two distinctive features of this case are worth emphasizing. First,
we do not impose a common autoregressive parameter under the alternative. As we have
shown in section 2, our test is consistent against this type of alternative despite our
pooling approach. Of course, tests that do allow for different autoregressive parameters
under the alternative hypothesis may prove to be more powerful. Secondly, we consider
a fixed alternative regardless of the size of n and T to show the increased power as n
and/or T increase. Thus in terms of the theoretical framework of section 2, the random
variable representing the local alternative, 8;, has a uniform distribution over the interval

{0, 3%] . The chosen specification ensures that the average value of p is 0.99.

Finally, we will consider three values of the parameter controlling the relative impor-
tance of common versus idiosyncratic shocks 7 : 0, 1, and 10. A larger value of 7 represents
a greater importance of the common shocks relative to the idiosyncratic ones. The base
case T = 1 represents a situation in which the two components have equal importance,
and the case T = 0 corresponds to the absence of common factors (i.e. an independent
panel).

We set the true number of factors at K = 1. For the estimation of the number of
factors we use the IC' and BICj3 criteria and follow Bai and Ng and set the maximum
number of factors K = 8. Since the three IC' criteria gave essentially identical results, we
only report the results using the IC3 criterion here. The long-run variances are estimated
using the Andrews-Monahan (1992) estimator using the quadratic spectral kernel and
prewhitening. All tests are carried out at the 5% significance level, and the number of
replications is set at 1000.

We choose two values for each of n and T : n = 10 or 20 and 7" = 100 or 300. The
larger value of the time dimension 1" corresponds to panels of about 25 years of monthly
data, approximately the length of post Bretton Woods exchange rate data often used for
testing of the purchasing power parity (PPP) theory. The smaller value of T is meant to
represent similar panels of quarterly data.

Table 1 presents the results for the size of the tests in experiment 1. Except for the
last two columns, each entry in the table represents the percentage of replications in which
the null hypothesis of a unit root is rejected using the appropriate test statistic. The first
column provides results for our ¢} test with the number of factors either set to the true
number (1), estimated using the information criteria suggested by Bai and Ng (2002) and
BICj3, or set to 0 (i.e. neglecting to defactor the data). The following column gives the
same information for the t; test. The last two columns give the mean estimated number
of factors using either the IC3 or BICj5 criteria.

In almost all cases, the test based on the ¢} statistic has better size properties . As
pointed out by Bai and Ng (2002) , with at least 20 cross-sections, the number of factors is
estimated with extreme precision. This means that for the small number of cross-sections
(n = 10), the number of factors is grossly overestimated by their information criteria, and
this distorts the size of our tests. The use of the BIC) criterion alleviates this problem
to some degree. In fact, with such a small number of cross-sectional units, it is often
preferable to use tests that assume cross-sectional independence rather than estimate the
factor structure.

The value of the parameter 7 controls the relative importance of common versus idio-
syncratic shocks. Looking down the table, it appears that the more important are the

17



common shocks (larger value of T), the more difficult it is to control size with the small
value of n. This results stems from the imprecise estimation of the factors allowed by
the small number of cross sections. The last part of table 1 shows the price to pay for
handling cross-sectional dependence when it is not present (the case where 7 = 0). The
size distortions in that case are quite mild for the ¢} test.

Table 2 presents power results for the first experiment. Remember that the autore-
gressive parameter varies with ¢ but has a mean value of 0.99. Each cell in the table has
two entries, the first one is raw power and the second one is size-adjusted power. Our tests
have very good power for this very diflicult alternative hypothesis. As expected, power
goes down as the importance of the factor (characterized by the parameter 7) increases.

Table 3 reports the size results for experiment 2 (with a deterministic trend). The
same results as without trend are observed. With a small number of cross-sections, we
overestimate the number of factors and obtain large size distortions as a result. Once that
number is well estimated (with 20 cross-sections), our tests have good size properties,
especially when T" = 300. The size properties also do not seem to be much affected by the
value of 7 in this case.

Finally, table 4 reports the power of our test with deterministic trends. As expected,
power is almost absent. Our theoretical result that the distribution of the statistics is
the same under the null and local alternative hypotheses implies that size-adjusted power
should be approximately equal to size or 5%. Our results are quite suggestive of that.

In summary, our tests require at least 20 cross-sectional units for precise estimation
of the number of factors. Once this is accomplished, our tests show good size properties
and are quite powerful when no deterministic component is estimated. As we have shown
theoretically, our tests have no power (beyond size) under local alternative hypotheses
when deterministic components have to be estimated.

5 Conclusion

This paper has developed new procedures for testing the null hypothesis of a unit root in
cross-sectionally correlated panels of large dimensions. This is quite important since recent
use of panels involving long time series of a large number of countries, regions or industries
has been rapidly increasing. Assuming independence among cross-sectional units in such
cases seems very restrictive as there should be common shocks such as business cycle
effects. The approach used here is to model the dependence among cross-sectional units
through an approximate factor model. Conditional upon these factors, the cross-sectional
units are assumed to be independent, though their idiosyncratic shocks could be serially
correlated.

We have shown that with individual fixed effects, we can construct tests based on
a bias-modified pooled estimate of the autoregressive parameter that have power in a
local neighborhood that shrinks towards the null hypothesis at rate ﬁ The limiting

distribution of our test statistics is normal and therefore no special table is required to
compute p-values.

Secondly, we have shown that corresponding tests in cases where heterogeneous deter-
ministic components have to be estimated has no power in such neighborhoods. We have
given upper bounds on the rate at which local alternative must approach the unit root
null hypothesis in order for nontrivial asymptotic power to exist in such cases. This rate

1

is slower than the T neighborhood obtained when no deteministic components have to

be estimated and is with deterministic linear trends.

1
nl/éT
Finally, we have provided simulation evidence that supports our theoretical results.

In particular, we have shown that we can have tests with good size and excellent power
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when no estimation of deterministic components is necessary. When such estimation is
necessary, the tests typically have no power beyond their size.
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6 Appendix A: Preliminary Results

Suppose that A and B are (n x n) matrices. The following facts will be used frequently
in the following proofs; (a) tr (AB) < ||A||||B]| by the Cauchy-Schwarz inequality, (b)
if A is symmetric and positive semidefinite, then ||A|| < tr(A) and tr(A4) < nl||A],
and (c) if both of A and B are positive semidefinite, then tr (AB) < tr(4)|B||, and
tr (AB) <tr(B)||A||. To distinguish the notation for the panel with p; = 1(¢; = 0) for all
i, we denote Z (0) and Z° (0) for Z and Z° in (5), respectively. Also we define F? = Zf°
and F/ = Ee, where = be a (T' x T') lower triangular matrix such that

1 0 --- 0
_ 11 0
(TxT) : ’
11 1
So,
Z(0) = lIrd'4+27°(0),
Z°(0) = F°8" +E,

where I7 = (1,...,1). Similarly we define Z 1,71 (0),2°, (0), F°,, and F_; to denote
\=\,=/

T
the matrices of lagged panel data of Z, Z (0) , Z° (0) , F°, and FE, respectively. We denote

p=diag (py, -y Pp) -

We use M to denote a generic positive constant.
The following lemmas are useful in proving the main results of the paper.

Lemma 6 Let X;;r = ﬁ Zthl (eireje — E (eirejr)) . Under Assumption 2, sup; ; 2 (X%}T) <
M.

Lemma 7 Under Assumptions 1 — 9, the following hold. Let E;; = ZZZI e;s With B,g =
0.

(a) As (n,T — o0), # Z:'L=1 ZtT=1 0.E7, —p %MQW?

(b) As (n,T — c0) with 2 — 0, \/n (% S ST Biven — )\Z) = N (0,16}

Lemma 8 We assume Assumptions 1 — 9. Then, Parts (h) holds as (n,T — co0) with

% — 0, and the other parts hold as (n,T — oo), where

(0) 72 121017 = Oy (1),

(b) ﬁ 12"y +y'Z || =0, (1),
(c) mtr (8" 10 ") =0, (1)
(& S| BaB 4 5 sl

(¢) 5 Ie'ell = O (max (ﬁ %)),

) = L ir (fo’ee’fo) = O (1),

(9) = 1 tr (80’6’66 ) O, (1),

(h) n\/_T\/T (Bo’e’eET) =o0p (1), where Ep =€'lp,

O 11n] =0, () g = 0,1 ) e Wil = 0,0,
0t ||60'EL11T|| — 0, (1),

o) 2 =0, 1),

) 7

|a 50 zT| b (1)
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Lemma 9 Suppose that Assumptions 1 — 9 hold, Then, the following hold.

() b S 0 S0, (S =100 10) = 0,(0).

2

(b) 3 S 0 iy (T 5 lew) =0, (1).

(c) ot Ty 08 (Tl it 5 f )60 <1>.

(4) s iy 007 (S0 T S5 lfoen)

(e) ot Ty 01 (e TU) S5 tenen) = 0y (
T T i 80800, S e (4 ”*Sﬁf?) 8
A S T #8005 Y e (XU St ) 8

(h) i || 0808 (20 (1= ) 12)] =0

() 2 [, 800 (S0 (1= $) )| = 0p (1)
Lemma 10 Suppose that Assumptions 1 — 9 hold. Then, the following hold.

(a) %1”2—1 —Z_1(0)| =0, (1).

() St (71— 71 (0)) ) = Oy (1)

(¢) Zoptr (Z-1— Z-1(0)) Qp,€’) = 0p (1).

(d) \/—||50’ ZT—ZT(O)

where Zr = (217, ..., 2or) and Zr (0) = (217 (0) , ..., 2ur (0)).

= 0p (1)
=op(1).

Let 8, denote an (n x r) matrix, 7 < K. Define

s = o(5(2)%)
err = o(5(2)%)

and

HgnT(ﬁ,ﬂ):tr(\/% (BOfmfo ) )

The following lemma establishes the uniform convergence of the three functions.

Lemma 11 Suppose that Assumptions 1 — 9 hold. As (n,T — oo) with % — 0,
(a) SUP sis. ;- [Hant (8,) — Hanr (B,)] = 0p (1)
(b) DUPM =1, |H2nT (6 ) HSnT (61“)| = 0p (1)

The relationship among the various estimators for 60 and f° are well known. Let
An7 Kk denote the diagonal matrix of the K largest eigenvalues of §§’. Then, by definition,

and so



Since tr (]\;%7/12( %QQ,%A;%E) = I, we have

- n s -
BK = £y, KAn’]l“/[2(7
T El
and in consequence,
. 1/2
Fi = LBy = fuc (oL
K= ny K=K nT
Also, using the definition of BK = %y” frc and the relations above, we deduce that
Lo N 1/2 y
Be =5 B,KBK :lw]z Ant K 1/22147 :@B
K=ZPK\ Ty T/ Tar TRy

This relation between & x and 3 « will be used a lot in the proofs of the appendix.
Recall that G is v/n times the (n x K) matrix of the orthonormal eigenvectors of the

first K largest eigenvalues of yn_’jg Let A1k be the (K x K) diagonal matrix consisting
of the first K largest eigenvalues of yn_’jg (and also of §'%), i.e.,

PPN

ﬁBK = BKAnT,K~

Define Ak to the (K x K) diagonal matrix consisting of the eigenvalues of ¥ ;X 3. The
following lemma shows that the limit of A1 x is Ax. This lemma corresponds to Lemma
A.3 of Bai (2001), which was also implicitly proved by Stock and Watson (1998). The
main difference between the two lemmas is that Bai analyzes the relationship between
two estimators of the factors f? using the observable data, while the following lemma
characterizes the relationship between two estimators of the factor loadings 6? using the
residuals.

Lemma 12 As (n,T — oo) with & — 0, under Assumptions 1 — 9, the following hold.
(a) 10k Bk = Mur i —p Ak

o (5 () ) =

Lemma 13 Suppose that Assumptions 1 — 9 hold. Assume that (n,T — oo) with 7 — 0.

Then, the limit of
_ fO/fO BO/BK
= (1) (5)

is of full rank, and Hy is asymptotically bounded.

Lemma 14 Suppose that Assumptions 1 — 9 hold.
(a) Suppose that (n, T — oo). Then,

[ o (o (G2 )

0/ 0 0773
where 6}(:60HK,HK: f—nf— 8 Bk

n

(b) Suppose that (n, T — oo) with % — 0. Then,

B — Bk
n

Bk — Bk

=0,(1).
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(c) Suppose that (n,T — oo) with % — 0. Then,

By (%) — 0, (1).

(d) Suppose that (n, T — oo) with & — 0. Then,

~ 7
NG ®
Proofs of Lemmas 6, 7, 8, and 9
In this paper, we omit the proofs. The required results for Lemmas 6, 8, and 9 could
be obtained by calculating relavent moments directly. The proof of Lemma 7 is similar

to the proofs of Theorem 14. All the detailed proofs could be found in Moon and Perron
(2002).

=o0p(1).

Proof of Lemma 10
Part (a). The required result follows by Lemma 9(a) and (b) because

IA
3
[\]
[\=]
M-
=10
M)~
—
M1
S~
ﬂ [V
=
= Q
o
SN—
[ =]
_I_
3
%hol
M-
=
M=
T
M2
S~
<o
L
J=
¥2)
SN—
[ =]
[ ]

Part (b). By Lemma 9(c), (d), and (e),

\/%Ttr (Z_1 — 71 (0))y)

- T /t-1
- = it-1 2 JPSILI o) tms—1\ ), _
= AT ; ; (2ir-1 = 21 (0)) yue nT 2= 0; ; (521 < T > yzs> yie = 0, (1),

as required. W

Part (c). Write

\/%Ttr (2% — 2°, (0)) Quoc’)
_ 1 tr (2%, =2°,(0))€') — —==

/T

= [I.—11., say.

By definition,

L o L, - [ (t—s—1
o= e (O e HZ(Z<T>y>

=1 t=2 =1 t=2 \s=1
n T t—1 n T t—1
1 t—s—1 1 t—s—1
= A 01 v 5 7 —— 01 18 7
Tat 3 (55 8 e o (S (5 )
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where the last equality holds by Lemma 9(d) and (e). So we have

I.=o0,(1).
Also,
1 1a0N=1 07
e = e (20 - 22, (0) 8° (8%5°) " 57¢')
B 1 3 3° ! 0/ 1 {0 0 0
= nﬁTtr(< - ) BV (22, —2°,(0) 8
g\ o
< |(B) |l -2 00
- 8o8°\ | _ 01, 0 ol —
Since ( - ) H—Op() the required result follows if we show that \/THB ( =722, (O))ﬁ ||_

0p (1), which follows because

e =2 ) )
n n n T t—1
- n\/lﬁT ZBOZZ% Zji— 1_%15 1())50, ansz Zﬁgzojzeit (Z(t—3—1)9j5>
=1 i=1  j=1 =2

j=1t=2

LS s 880 e (S (-5 1) 1)
T\ S 8 S 870 S e (T -5 D)
by Lemma 9(f) and (g). W

<

“ =0, (1)

Part (d). The required result follows because

8% (Zy — Z7 (0))|

o=l

- o] - SR (S a-a )|
1 LA r s—1
- o (50
1 001 [ = s—1 d s—1
< s S (5072w (5057 )| -0
by Lemma 9(g) and (i). B

Proof of Lemma 11
Part (a).
By definition,

g =7 - ppaalzfl =y+ ZTO/ (1 - ppaal) + Zgl (,0— pp00l1n> .

Then, we may write

<
A

q\
%‘g



where

R . 2 ao' B . ylra' + ally

Ri = T#(1— pp00l> T Re=T(1- Ppooz) <T
(p— 1) 2%y +y'Z°, (p = I) . Z%y+4'72°,
Rs = e Ry=T (1 — Ppooz) —
- al’,l“Zgl (Io — In) + (/0 - In) ZglllTO/
R5 = T<1_Iop00l> < nT2
R — T2 (1 o )2 ZQ,IZTO/ +O[UTZQI R = (IO B Ibpaalln> ZQ,IZQI (IO - Ibpool[n>
6 ppOUl TLT?’ ’ 7 nT .

By the triangle inequality,

sup  |[Hinr (8,) — Hont (8,)] < Z
= =

1—’”—[

()= Fma

Notice that T(l — ,bpwl) = O, (1) by Lemma 1, M%Hi = O, (1) by Assumption 9, and

Tlp—1In| = /23", 07 = O, (1). Using the results in Lemmas 8 and 9, we can show
that

Rl = 70 2 = 0, (),

Rall < i |71 ) WS — 0, (52,

a2 Al o ()

Rl = 17 (1= )| EE 0 o (1),

i = i B ()

2 Ir| || 2° 1
IRsll < —\T? (1~ | L2, (L),
1 Z0 C] 1
I || =0, <?> , (19)

n  nl?
where “—“ = O, (1) holds by similar arguments in the proof of Lemma 8(a). Then,

B Hunr (8,) — Honr (8 |<7“Z||Rk|| (fmax{f }}) 0, (1),

and this completes the proof of Part (a).

IRzl

IA

T

Part (b).
Write

3. (8%f%  efop” ee\ B
tr | —= — L <I+II+111
T(ﬁ( Y +nT>ﬁ> = b
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where

P (5 %)
= su
BBTIiI Vvn nl’ vn
3. [efo3” 6r>‘
I = tr
st <ﬁ<n NG

T
B [ee\ B
Irr = sup tr( L <—> r)‘
5/57‘:[ \/ﬁ TLT ﬁ

First,
60f0/ BOfO, fO/ 1
= o =5 < E o ()
BhPr_p \/_ nT VT
. o e 0/ ! £0
since %H =0 (1) \/ =l =1t (%L) = O, (1) by Lemma 8(f).
Thus,
I=o0,(1).

Similarly, we can show that

=o, (\%) — o, (1).

Consider the last term, I7T1. Let 3, = (6177“, ceees By ...,ﬁnm),. Notice that

n n T
17 = sup ﬁZZZe“eﬁﬁémﬁm

BrBr g i=1 j=1t=1

n on T
1
< sup —QZZ(?Z Citeje — E(%%))) Bi.:8i
L e | t=1
LI EHICCH
sup |— = ut
Erﬁ =I, n? i=1 Tt:l

= Ill,+ 111, say.

Notice by Lemma 7(a) that sup; 7 Zthl E (e?t) < M. Then, since

LS, (L)

1=1

sup
BrBr _ I,

n

T
_sup( Z ) B/oﬁup ”
t=1 Bele 7

we have
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Next, we consider I11,. Recalling the definition of

T
Xijr = \/—_ Z eieje — B (euejr)) ,
we write

X
111, (28| < sup|—LE
1,]

/Sup 222|61rﬁjr

—T—Bnﬁ’“ I =1 j=1

).

[l
w
=
=
|»—
W'Ms
I
o,
”MS
I

Xy

VT

X1
VT

sup
1,7

IA

wn

P2

ol
£ £
TN =
3| = S
i

5

3

<r (sup
1,J

Notice by Lemma 6,

sup EXU <M.
iJ

So, for any ¢ > 0,

4
X,
Xijr E (Supizﬂ \/T ) 77 2 iet ZJ 1 E( i, T) n? sup; ; EX%,T
P sup \/T >egr < 1 < < T2 1
i g g
as (n,T — oo) with # — 0. Thus,
Xij T n
sup |—=| =0 —1,
o | VT ! < T)

from which we deduce that as (n,7 — oo) with % — 0,

I, =0, (ﬁ) =0, (1).

In view of 111, and II1,, we have

1I1=0, <max (% %)) =0, (1), (20)

as required for Part (b). W

Proof of Lemma 12
Let 3, be v/n times the orthonormal eigenvectors corresponding to the first » (< K)

largest eigenvalues of £Z£. Similarly, let 6 be \/n times the orthonormal eigenvectors of
the first 7 (< K) largest eigenvalues of 2 —Ow Then 6 and 3, maximize Hynr (3,)
and Hz,1 (8,.) , respectively, among the 3.5 oatlsfylng = I,. Define

p = B (5N B
nT,r \/ﬁ nT \/—

by 0 0/ 0’ b
[ (M) 5, 1)

nT

E
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We first show that H]\nT,K — AKH —p 0. Let

. 01 .£0 3% 3 . a*
Bk = (fo ) ( 5K> and Sy = Hgf :

~ ~xxl 07 £0 0’ 30 ~ %k
[ (fo ) (ﬁnﬁ >,6K.

Notice that ]\nT i is the (K x K) diagonal matrix consisting of the first K eigenvalues
0 0os 0/60

of —f—f— , and it is also the (K x K) diagonal matrix consisting of the eigenvalues of

the (K x K) matrix (LO%LO) (60 60).

n

Then,

Now since (LO%LO) <6On60) —p 2 r2g, a full rank matrix, by Assumptions 7 and 6, we
have ~
HA,LT,K - AKH 0 (22)
as (n,T — 00) (for further details on this, refer to Anderson, 1963).

Next, we establish that ‘ v ]\nT’K

‘ —p 0. By Lemma 11, as (n,7 — oo) with

T =0,
sup  [Hint (8,) = Haar (6,)] = 0p (1)
BrBr_g
and
sup  |Hant (8,) — Hanr (8,)] = 0p (1)
sLA. _;
for 1 <r <K.
Then, by the triangle inequality, it follows that
sup  [Hint (6,) — Hanr (8,)] = 0p (1) (23)

BLlr

n

for 1 <r < K. Since Br and Br are maximizers of Hy,1 (5,) and Ha,r (5,) , respectively,
it follows that

‘HlnT (Br> - H3”LT (Br)‘ = OP (1) (24)
for 1 < r < K. Also, by (23) and (24), we have
‘HSnT (Br) Hanr (8,)| < [Hinr (8,) — Hanr (Br>|+‘H1nT (8,) — Hanr (B ) = 0(10 (1))
25

for 1 <r <K.
>From (24) , it follows that

- (A () %) -

= ‘HlnT (8,) — Hanr <Br)

‘tr (Angr) —tr <AnT,r)

. BOfO/fOBO/ r
\/ﬁ

, (26)

3

4

for 1 <r < K. Since the sequences {A,7,}, and {]\nT’r} are nested, (26) implies that
HAnT,K - ]\nT,KH —p 0. (27)
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Then, Part (a) follows by the triangle inequality and (22) and (27), so

lAur — Al < |

Anr ko — ]\nT,KH + H]\nT,K - AKH —p 0.
Similarly, Part (b) follows by (25) and (22). B

Proof of Lemma 13
>From Lemma 12(b), as (n,T — oo) with % — 0, we have

B’ 0 07 £0 60/*
() (F) (52 =

where Ag a (K x K) full rank matrix. Since J%ﬁ —p 2y, a full rank matrix, EnLO is

asymptotically of full rank. Then, we have that Hx = (%ﬁ) (60—;?’1) is asymptotically

of full rank.
Also, from (28),

H(f‘):’Ff0>1/2 (50;5K>H2 — i ((6}ij) (fO;f(J) (@051()) o,

Therefore,

as required. W

Proof of Lemma 14.
Parts (a) and (b).
By the definitions of 3y and B,

PPN

~ yy7
=ZZ 29
where
g = Z_lbpaalzfl
= f060,—|—6—291 (lbpooll’ﬂ_lo) +ZTO/ (1_12);000[)' (30)

>From (29) and (30) and by applying the triangle inequality, we may have

Bx — Bx BB e/ f08% B eeﬁK

R I H T H e+ i %]
- Sl -
- ,¢—\ L H —FEjHRkH

max{ ! })

29

ot (o e
0,



where the last equality holds by Lemma 8(e) and (f), the results in (19) together with
H f/ﬁH = VK (by the definition of 8 ) 6—— ‘ O (1) (by Assumption 6). From this
we deduce both Parts (a) and (b). B

Part (c).
Similar to (31), we may write
g BK“—Q%
MK ﬁ
BK 50f0’€51( BK e’fOBO,BK B,KG’GBK G d
< FK K
< v n vanT + v n nnd + nnd Z HRkH ’
k=
>From (32) and H%%H = 0, (1), we have
3 [ Bk =Bk Vn 51(6 Bk L1
Px ZPK )< VT —, — ).
BK( NG ) —\/TOp(l)O(l)O » (1)+ ‘ JinT +v/n0, \/_max = T
Thus, as (n,T — oo) with # — 0, we have
[ By — 3 B, e'ef3
Since BK = }/TL—/%BK = BKAnTyK, we have
Bie'eB | _ || Bxe'eBrrnt HeﬁKH st = eﬁKH (1)
anT anT \/_ nT "T K vanT Op (1),

where the last equality holds by Lemma 12. Notice that

el = [le (B —5ic) +edi| < 2l (i — 83 + 2 leicl®

< ed|” I x|
So,
N 2
Bl ENEP 2 [ e
vl = \/n nT Vo nT "
1 1
= %Op(l)Op(l)‘F%Op(l)Op(l)v (34)

where the last equality holds since sup,; F(¢2) < M, by Lemma 14(b), Lemma 8(g), and
Lemma 13. So we have

~t _
Bre'ebk
/nnT

Thus, in view of (33) and (35), we have the required result,

(7))

30

=0, (1). (35)




as (n,T — oo) with 2 — 0. W

Part (d).
Similarly to the proof of Part (c), the required result follows if we show that
Breeby
H e =, (36)
Notice that
Bre'efy Bre'ely
< |45
/nnT /nnT
- 60161660 A " 60,6,6 <BK BK
= JanT H nTKH+|| K|l JanT H nTK
1 660 3°
< =l H s ] et | |
1 1
= =0, (10, (10, () +0, ()0 (10, (max { I=, f}) 0, (1)0, (1)
= o0,(1), (37)

where the last line holds by Lemma 13, Lemma 8(g), Lemma 8(e), Lemma 14(b), and
Lemma 12. Therefore, we have the required result. l
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7 Appendix B: Proofs of the Main Results

Proof of Lemma 1.
The proof is omitted. The proof could be found in Moon and Perron (2002). W

Proof of Lemma 2.

Part (a).

Part (a) is a special case of Part (b) with © =1, (14 = 1) and we omit the proof. H

Part (b).

By definition,

—1 [4
-
nT?

(7.1Qp02%) = #tr(zm’c}@o@z@l)+#tr(291c960929’1)
_ L ory L L liz]l flell €22, ]
= nT2t7" (Z*1Q60®Z*1> + \/T \/T \/ﬁ \/ﬁT

1
= 5t (22,Q5002%) + 0, (1).

Also, by Lemma 8(a) and Lemma 9(a)®, we have

1
el

= [ (220 - 22 0) 00022, ) + 22,000 (22, — 20, 0))

tr (22,Q002% ) —tr (7%, (0) Q002°, (0)')|

(122, O +[|122,])

NG

So

1120, - 22, (0)] 19°]
T T (1+ ( Vn

||6°’@||>>
n

60/60 -1
n

o (k)

1

Since 2%, (0) = F°, 8" + F_,,

/T

1
—tr (Z-1Qp002%) = —tr (22, (0)Qe© 22, (0)') + 0, (1).

1 0 0 ! 1 0 1
sl (22, (0)Qp02°%, (0)") = Tl (E_1Qp®8 F' |) + " (E_1Qz0OE" )
= Iy+ 11, say.
First,
1 1 _
Ib = —ir <E71@60Fi1> — —2tT <E7160 (60,60> ! 60,@60Fi1) = Iba +Ibb7 say.

nT?
Notice that

nT

n T
1 1 1
Ia:——E 8, 0’—§ F1E; 4.
T/ 61T2t=1 e

Then, it is possible to show that

B (i) =0(3),

6 Notice th

at Z_1— Z_1(0)=2°, - z°,(0).
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which yields

0(%)

Also,

808 |FLiB-18)

Iy

IA

‘ 60/ ) 160,@60Fi1E7160) S

72000,10,(=0, ().

where “?E—T;B“ = O, (1) holds by similar arguments used in [5,. Combining I, and
1
L,=0,—]).
S <x/ﬁ>

Iy, we have
1 1 878N\ " o 0
_ / ; / _
Il = —tr (E_1OE" ) — poroL ( - > BY"OF' \E_13" | = IIya — L1y, say.

60/60 -
n

Sl-

n /nT?

Next,

Using similar arguments in the proof of Lemma 8(0)7, we have

() e, (1Y
n oF ’

Iy < —
[ 1| nT VT n

For I, by Lemma 7(a),

1
Iy, = —Talr r(E_,©F ) T2 ZZHQE” 17 M9~U2~

i=1 t=1

Combining I I, and Iy, we have

1

>From I, and 11, we have the required result. B

Part (c).
Notice that

1 1 1
i (St (Z1Qane) =30 ) =t (e Quee’) Vi (it (22, Qane’) ~
= ﬁtr (Ilra’Qgoe’) + \/%Ttr ((Z2°, — 2%, (0)) Qgoe’) + v/n (n—thr (22, (0) Qpoe’) —

= I.+1I.+1I1., say.

By Lemma 9(c), I, = o, (1). In what follows, we will show that as (n,7 — oco) with
20,1, =o0p,(1) and ITI. = N (0,1¢7).

"For the proof of Lemma 8(c), see Moon and Perron (2002).
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First, by Lemma 8 (i) and (i*), Assumptions 6 and 9, we have

[tr (a'e’lr)] N |tr (o Pgoe’ly)|

< [rladlietl 1 Jlal |5 (60’60>1 (A
= T /n /nT T Vvn Vn n VnT

I
)
~i
TN
NS
SN———"
+
Qo
~i
N
%‘“
SN
I
"BO
=

Next, for I11., write

111,

/i <%tr (B Quec’) — AZ)
= a (itr(Ele') _ AZ) _

1
tr (E_yPgoe’) = I11,, — I114, say.

nT NG

First, we have

1/ 1 1 050N (8% B, 80 + 8V e
111, = 5 <\/5Tt7“ <E1P@06,+6P@0E,1>> = mt?" ((6 5 ) 10 b L s
1

n
60/60 -1 60,6,E7160+60,EL1660 B 1 B 1 B
(57 ‘ = 22000, =0, (=) =0, 1),

nT
where the third equality holds by Assumption 6 and Lemma 8(d).
Next, for 111, by Lemma 7(b), we have

n T
1 , 2\ 1 1 Loy
ﬁ(Wtr(Ele)—Ae> = %; (?;Eitleit_)\e,i> :>N<07§¢5>

as (n,T — oo) with % — oco. Therefore,

1
III,= N (0, 5¢>§>
as (n,T — oo) with # — oo, and we have all the required results. H

Proof of Lemma 3
Recall that 55 = 3° Hy . Notice by Lemma 13 that, for n and T large, the matrix Hx
is invertible. Then, Pg: = Pgo. So, the required result follows if we show that

HP@K - P@;{H =0, <max{%\/if}> =0, (1).
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By definition,

P@K—P@;{H
_ Bk (BiBi\ Bk B (BiBi\ " B
A AR AN AR
(B (BB B B (Bbic) i | B (BB B
T v\ on VOV Vvn N Vvn
B (Bibe ) T Bk (5usk ) 6K
v\ n NV Vn
< @(@’M)l B _ B +‘B_K_ﬁ;( ‘(B}(BK>1H‘6;(
= v\ TRV I v i
% 2 5o -1 1 % -1
Bk | Bula | (BiB
vn n n
Be| || (BN B _ 0|, || Ba _ || Bicbx ) || 55
Vol |\ Vv I v L i
o : (B’KBK>1 H(ﬁ%ﬁ%)lHB}BK_B%ﬁ%‘
N n n n n
i Bl || ( BB B8\ B
B Bx ‘fH() +H<) | %
. (12 Y -1 wrge \ —1 2 *
RGN COR G oN ()

First, using the definitions of BK and 3, we have

PPN

N dU\ _

By Lemma 12(a), as (n,7 — oo) with & — 0,

BB _
n

where Ag is a full rank matrix. Thus,

n
Next,
.12
YK —
Vvn
because
N 2 B, N
B |l [ BxPr ) _
N n

AnT,K —p AK7




Recall that 5} = 8°Hy. By Lemma 13 and Assumption 6,

(B45) " Zo,q.
|

Similarly,

=0,(1).

Bk
Jn

: B B}
Finally, by Lemma 14(a), Nl Oy (maX (ﬁ’ ﬁ)) )

Thus, in view of (38), we have the required result,

0, <max{%\/if}> —0,(1). 1 (41)

|22 = P

_ Before we start the proof of Lemma 4, we introduce the following Lemmas. Define
r;(j) = % >, €it€itrj, where the summation Y, runs over 1 < ¢,t+j < 7. Define A, ;

and &)ii
~ T71 y ~
)‘ez: w<i> Fz(])
3 4 hA
=1
and
T-1 j
~92 ~
_ EAN
2= Y (R0
j=—T+1
We denote
~n:lzn:5\ ~n72_lzn:a)2 anqu’ :l n&)4.
e n gt €, e n o e, e n P €,

Proof of Lemma 15.
We omit the proof. The proof could be found in Moon and Perron (2002). W

Proof of Lemma 4.

Part (a).
In order to have the required result, by Lemma 15(a), it is enough to show that

Vi (A=) =0, (1).

Along the same lines as the proofs of Theorems 9 and 10 of Hannan (1970), it is possible
to show under Assumption 2 that

E (ﬁ (5\: - )\Z))z < supvar (5\@,1') +n <s1l}p bias (5\@,1')>2 =0 <%> +0 (%) ;
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if ETqA — 0 in the case of ¢ > 1%. So, we have
~n n /hA n
\/ﬁ()\e—)\e):Op (max{ ?, h_?\q}>7

it 2 0 with ¢ > 1

. . 1
First, since 3 < D,
n (1-2g5) _, o

— ~7n

2q
hy

Next, for n,T large,

h nbd (n_bq> log T log T . plogT
O — elog T ) e(bqug—n)logn — an,é_ < anfhm 1nfE§—n —0

T T

since b < % if ¢ > 1. Similarly, %A — 0. Therefore,
i(Al-am) =0 Y U
n e e — P max T ? h?\q - OP ’

as required for Part (a). B

Part (b).

Similar to Part (a), by Lemma 15(b), it is sufficient to show that

D" — Wi =0y (1)
Along the same lines as the proofs of Theorems 9 and 10 of Hannan (1970), it is possible
to show under Assumption 2 that
1 C1g :

2,n\2 ~2 ~2 ~2 2
™2 g = B2, ST (BR?, — W2,

P e(Ey e (33w )

~2.n ,
E (u)e’ —wy
i=1 i=1

1 . a2 1) —o e
< - sgp var (“%,i) + <s1l}p bias (weﬂ-)> =0 <nT>

if ETZ* — 0 in the case of ¢ > 1. So, we have

[h, 1
52m _2m R
@GP — W2 =0, (max{ g }) .

Under the conditions in the lemma,
1
— =0
hg
and for n,T large,
h. nb—1 nb— log. T log T . alog®
w _ elog( T ) — e(bili_g_logn)logn — nb*lf _g_logn < nb*l*llm inf Togn —s ()

nl "~ T
8For details on this, see equation (B.27) on page 985 of Moon and Phillips (2000).
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since b <1 <a+1. Also,if¢g>1

b

n°d log T log T s oelog T
— 6105( T ) — e(bqfﬁi—n)logn — an7ﬁ7 < anfhmlnfﬁé—n

since ¢ < min {1, 5 %}, a = lim inf ll—zi—:. Therefore,

DI — Wit =0y (1),

and we have all the required results to complete the proof. B

Part (c)
Part (c) follows from Lemma 15(c) and the arguments used in the proof of Lemma
15(c). For details, see Moon and Perron (2002). B

Proof of Theorem 2
In view of (9) and (10) and Lemma 4, the required result follows if we show

tr (Z,IQBKZL1 - Z,IQ@OZLl)
nT?

(a) =0y (1)

and
tr (Z,lQ@K (Z—71) —Z_1Quo (7 — Z,l)’)

(b) N = 0, (1).

Part (a)
Part (a) follows because

tr (Z,IQ@KZLI . Z,IQ@OZLl) tr (Z,lpﬁ%ZL1 . Z,IP@KZLI) tr ((PﬁK . P@K) ZLIZ,l)

nT? nl? nT?
2
< ||Py — Pax _||Z,1||__0 (1)O, (1) =0, (1)
- F7e B% TLT2 - p P — Yp ’

where the second line holds by Lemma 13 and the last line holds by Lemma 8(a) and

Lemma 3, recalling that HP@K — Pg;{ = HQBK — Q@O because Hg is asymptotically
invertible. .
Part (b)

By definition Z — 7 | = 2% - 7%, = — \/%TZ91@ + y, and we write

tr (Z,lQ@K (Z—27.1) — 7 1Quo (4 — Z,l)’)
nT
tr (Z*IQ@KGZQ,I — Z,IQ/@O@ZQ,I) tr <Z,1Q@Ky, — ZleBOy,)

= — T2 + NG =—Iy+ 11, say.

First for I,
Iy = Ipg + Ips

38



where

r (lTo/Q@K@ZQ’l - zTo/Q@o@@’l)
nT?

r (ZQIQ@KGZE’I — ZElQﬁoez@l)

Lo =
b nT?

and Ibb =

Then, by modifying the proof of Lemma 8(a)? and noting that HP@K H = 0, (1) , we have
L izl lledl [|22,]] (H H ( L )
ba < Py |+ || Pso ) =0, (—
VT VT Vno /il |+ 1 "\VT

The proof of Iy, = 0, (1) is similar to the proof of Part (a) and we omit it. Combining
Iy, and Iy, we have

Iy,

Ib = 0p (1) .
Next, for 11, notice that
A ! . ] 3 / YN —1
" (Zflpﬁxy) — ltr (ZflP@Ky +yP5KZ*1) __ 1 t Bk Bk 3 (v 7 A 5
T 9 T = on/nl n Bic (021 +2"4y) Bic
Then,
r (Zle@Ky’ - Zle@oy’) tr (ZflP@Ky’ - Z71P@}<y,)
NGIA N NGIA
LU -1 1 % -1
1 KBK o ! ! 7 BK K ®/ / ! ®
= g | (5 ) ez v 20) B = () (05 (070 +7210) 5]
1 5B\
Y z % %
= 2n\/ﬁTt ( Kn K) [6K (W'Z1+201y) B = Ok (v 71 + Z1y) BK]
1 Bb\ (88
t KMK _ KMK ®] ,Zf Z/ ®
+ 2n/nT ( n ) < n Ok (y 1+ 71y> Pk
< l ﬁKﬁK ﬁK y'zZ o+ 7" 1y)6 6 ( 'Z 1 +Zl1y) Bx
- 2 n ny/nT
1 61{51{ - y'Za+2 1y
+§ Vi n B < ‘ nT H
= Il + IV, say.
In what follows, we will show that IIIb,IVb =op(1).
First, for IV}, since %%H H |HK|| O, (1) by Assumption 6 and Lemma

’

Z_14+2"
13. Also, || £E2rEt

follows if we show that

Gl (B) (),

9See Moon and Perron (2002) for the proof of Lemma 8(a).

‘ = O, (1) by Lemma 8(b). Thus, the required result IV, = o, (1)
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which holds because

A )
_ ﬁ<mé K> (6KﬁK

IA
TN
‘;b*
¥ |l=
N%
N——
[

)
o)

865\ ! o Bx =0 Br =83\ .
< (%) o () + ()
= 0,(1)0, (1) (0, (1) + 0, (1)) = 0, (1),

where the last line holds by Lemma 14(c) and (d).

}

PN -1
For I'l1,, since (é%l‘:) = O, (1), for the required result, it is enough to show that

@;((y/Z—1+ZL1?/)@1(*6;(/(?//2—1“‘2/,1?/)6;(
ny/nT

=0, (1). Since

y’Z,1 +ZL1y
= Ylra' +alpy + 2329 + (p— I,) 22022, (p— I,)
"‘29,1291 (P - In) + (P - In) 29,1291 + (P - In) 29,19 + ’y,ZL (P - In) +y'y,

the required result follows by the triangle inequality if we show that

o || Bxyina'By = Bicy'ina'Bic | _
(i) ‘ /T = op(1),
(id) B,K (p— 1) 2%, 2°, (p— In) Bk = By (p = 1) 2%, 2°, (p— 1)) B = o,(1)
ny/nT P
(i) B,KZQ,IZQI(IO_ITL) B = BRZ™ 2% (p— 1) By = o,(1)
ny/nT P
(iv) B,K (p—1In) ZQ,MBK — By (p—1n) 7% yBk = o0,(1)
ny/nT P
By 2079 By — B 2298k | _
(v) nnT = op(1),
o || BuyyBi — Bitvusi||
and (vi) ‘ T = op,(1).

10



Part (i) holds because

Brey'lra By — By'lra’ By
nﬁT
_ (BK — 6;{),yllTOé,BK Bry'lra’ (BK — 6;()
B ny/nT - ny/n’T
virl ol 18«]| 18k (1)
Welly —o (=) =
B \/_T Vvn Vvn + NG P\ T op (1),

where the first equality holds by Lemma 14(b) and Lemma 8(i**).
Part (ii) holds because

B,K (P - In) 29,1291 (P - In) BK - 6;(, (P - In) 29,1291 (P - In) Bk

ny/nT
o2
201 | |8k | + 18k

For Part (iii), by the triangle inequality and the Cauchy-Schwarz inequality, we have

B,KZ%ZL (P - In) BK - 6;(129,1291 (P - In) Bk
ny/nT
(B = 8x) 242% (0= 1) (Bx = 85) | || (B = 85) 22,22 (o — 1) B
= ny/nT + ny/nT
6*120/ ZO ( ) 6
+ ny/nT ( — )
o > Bk — 61 B —8
S PVt T S

By modifying the proof of Lemma 14(a) and (b), it is possible to show that

o (- 52)] =0

Also,
o5kl . [o2]
< Hil|l=0,(1).
il SO g = 0,0
Thus, together with Lemma 8(a), we have
(42)=0,) {10, 1)+ =0, =0, (1)
=Up g Nl =0pll),

as required for Part (iii).
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Part (iv) holds similarly since

B (p— 1n) 2% By — B3 (p — In) 71y Bk
ny/nT
- (BK - 6;() (p—1In) Z%QBK K (p—1I.) 2%y (BK - 6;()
- ny/nT + ny/nT
Lzl (s syel 125 9]
< 7= ver (B =gk ) o F=t = 13 - R
1
= Op <ﬁ> = Op (1) .
For Part (v), notice that
B 29298y — B 292933
ny/nT
I R i | EA )
- ny/nT ny/nT
, 2
 Gemmi) AL okl |2 (5 - i)
- ny/nT + ny/nT
B Zy (BK - 6;() 1 (BK - 6;() 73 ok H Bz, (13)
- VT Nl NN, NG
In what follows we show that
BK - 6;( ,Z[% O/ZO
) % =0, (1) ana (v) [ 22| = 0,0,
Then, the result of Part (v) follows.
First, Part (vg) follows because
BO,Z% HBOIZT H 60, ZO ZO (0)>
n\/f T
. |#B0). 112 || 12~ 2.0
- VT
= M0 (ﬁ) |

where the O, ( = ) term holds by similar arguments used in Lemma 10(a), and the O, (1
p\/n P
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holds since

28] < 20428
- ‘ 7 fﬁ
- 0(1)op(1)+%0p(1):op(1) (44)

by Assumptions 6, 3, and Lemma 8(i). Next, for Part (vs2), by the triangle inequality,

(BK —6;()’29
VnT
(5 -:) 0| (s -5:) -2 0)|
= VT * VT
(5-0) 5| (B 53) B| (8- 53) (22 -z )
= VT T VT

= Vit Vi+ Vi, say.

In view of (31), (36), and by the triangle inequality, we have

!

L Prereen] [ptron| e
¢ = n\/ﬁT\/T + n\/ﬁT\/T + n\/ﬁT\/T
7 ya 0
Bl 180 1F
o5 il fn || f_n
- 9. /2 K ’fo B’KeeﬁK || 1|| Fr
B T ny/nT K T
||5K|| ||5 || (27
R
+;\/ﬁll xll NN N
1
= Op<\/g>+op(1)+0p<ﬁmax{7 ﬁ})z%(l)'
Similarly,
v B8 B | ||| 8B ey | | || Bielelr
b= n\/—T\/_ ny/nTNT ny/nTNT
||5K|| |z
Byeeliy

IN

: ,
+ 3 valre e
k=1

S
3=

\[HBKH le' 720 [18°] 11wl
Vi T N VnT o ||ny/nTVT

T e !
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where the last line holds by the same principle of the last line of Part V; with ﬂ\/_TU =

Hj—:;“ = O, (1) by Lemma 8 (i) and (i*). For the remaining term J-Ifj;—;]j%“, using

BK = B Aur i and Bf = 3°Hy and by the triangle inequality,

|gxeent] _ < [nske] |3 — icyerern| T s |8
TL\/_T\/_ = nTK n\/ﬁTﬁ nTK TL\/ﬁTﬁ .
The first term is
) it O R T VP N A 5
nTK TL\/ET\/T = nT,K K — TLT ﬁ

~ 0,01)0, <max{\/_ \}}) (1) =0, (1),

where the last line holds by Lemma 14(b), Lemma 8(e). Also the second term is

|8”e'ebr|| _
[ 1231 = 0r W O Doy () =0 (1)
by Lemma 8(h). Therefore, J-Iﬁje—;?/z“ = 0p (1) and so in consequence,

Vo =o0p (1). (45)

Before we start the proof of V. = 0, (1), we define

and
a ¢
Er = 1—= e
f=3 ( T) )
t=1
where e; = (eyy, ..., emg),. Using this notation, we write

1 1
08°F; — —=OF:.

WV Vi

Zy — Zp (0) ~

. E|FL|? E|0EL|?
Since ZlEzl” ElOBz|- < M, we have
T o ol )

E

and

By the triangle inequality,

(- i) 0°rt|| | (B - 5)
T " T

=V + Vcb7 say.
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Similar to V,, we have

"’K 'FO8 080 F B 008 HB’Ke'e@ﬁOF;
Vea < + +
n2TT n2T\/T n2TT
||5K|| |©8°|| 174
+57 IR,
ZH s
< 2 ||5K|| e’ 118°]] [|1e8° 117 N 1B lle’ell |08° 11721

VT Vi il VR YR VT vm ol i T

7 P 0
1B [©°] 1]
+> IR
k:lH A A VT

0 () 0 om ) 0 (o

Similar to Vj, we have

v, < |Bxes08"0BL | | | BB fYeOB; | | Bxe'eOB]
NS n2TT n2T\/T n2T\/T
18« e £5]
+ Ry
le e
1£0 73 ¥ 7 7 .
< IIBKII le P I8° el |, 18]l lleel 1o Es ] +Z||Rkll [EPRINIE22A

VT Vi T v T Vm T T

- ool ) B0 (oG ) o0

>From V., and Vi, we have the required result that V; = o, (1) . Combining V, V;, and
V. we have the required result for Part (v2), and in consequence, we complete the proof
of Part (v).

Finally, for Part (vi), notice by the triangle inequality that

2

NG

Bxy'uB — B¥y'yBx (BK _B%),y,yBK+6%y,y (BK _6;()

ny/nT ny/nT
(BK —~ 6%),y’y (BK — 6%) + (BK —~ 6%),y’y6§< + By'y (BK - 5;()
B ny/nT
- (BK - 6;()”%;@( - 5;() Lo (BK —nﬁ\;—I;)Ty’yﬁ;(
N
< % B — Bk ”ﬁf +2 <6K Tf/lgpyyﬁ || H |

Vi, + VI, say.
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By Lemma 14(b) and Lemma 8(k), the first term

VI, = %op (1) = o, (1).

n

Bx—B83) yv'yB°
n/nT

Next, we consider the term V1. Using (31), we expand ‘

. Using “%“ <
Lwl® e i :
4+ = 0, (1) by Lemma S(k) HTH =0(1), and (31), it is not difficult to find that all

the expanded terms of - \/nT

are of order O, (\/j) = 0p (1) (under Assumption

10) except for the term H%H . Expand &% by substituting f°8Y + e for y

and apply the triangle inequality. Then,

Bre'ey'ys’
n2\/nT?
o || Bueredr 08" || Bice'ef e | | Bre'ee! fO8VE° | Bicelectes”
- n?\/nT? n?\/nT? n?\/nT? n?\/nT?
o
HBKeeﬁKH ||H71|| 07 0 0/ 30
ny/nT K T n
B’Ke’ee’eﬁo

fO/ H ‘

A I T
op(1)op(1)op(1)+\/%op(1)0(1)o <max{\/_ }})o (1) +

n2\/nT?

where the last line holds by Equation (36), Lemma 13, Assumption 7, Lemmas 8(e) and

@/Ke/ee/eﬁo

(f). For the remaining term ‘ S| using BK = BKATLT,K and B = 3°Hy and

the triangle inequality, we have

B’Ke’ee’eﬁo _ a2 B,Ke’ee’eﬁo
n2y/mT? || || "TE n2y/nT?
N ’
(51(—5;() e'ee’e” 3% ee’e3°
e Y e o L
2 07 0
ee GVeec’es
< T +HAMH il r <7nz¢m )

11 1
0,(1)0,(1)0, (max{; ?}) 01)+0,1)0, (10, (=) =0, (1),
where the last line holds by Lemmas 12, 14(b), 8(e), and 13, by Assumption 6, and by

3Ve'eee3 ee'e 3"’ lle||? tr (8”'eB”) 1
() = ( —0,1)0,(1)

n2\/‘T2>—%nT nT U

ar ot ! ¢}
due to sup;, E (¢%,) < M and Lemma 8(g). From this, we deduce that ‘ Bice'ey'ypB H =

n2,/nT?
0p (1), which leads to
VI =o,(1).
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Therefore,

HﬁKyyﬁK Bxy'yBy — o, (1)
=0, (1),

ny/nT

as required, and this completes the proof part (vi). B

Proof of Lemma 5.
The proofs of Parts (a) and (b) are similar to those of Lemma 2(a) - (c), and we omit
it.t0

Part (c). Let Pg = I — Q¢. For a T x n matrix A, A} denotes the transpose of the ¢
row of A. Then,

—ur (22,2, (0)) Qu?')
= n—lT““ (¢' (2% = 2°1(0) Qgo) — LTtr (¢'Pg (2%, — Z2°, (0)) Qgo) .

In what follows we show that

ﬁtr (e (291 - 7%, (0)) Qgo) =0, (1), (16)
and
a n_thr (¢'Pa (22, = 2°,(0)) Qgo) + (%% 2 7 <%> e (Sj))] ot

Then, since % Zthz 22;11 <t75T71> her (5,t) — 01 for (r—8)he (r,8)dsdr = O (%) , We
have the required result.
First, for (46),

=1 t=2 s=
Ho o (t—s—1 1 ¢ 01 0/ a I & 0
+n1/2+77TtZ:;S:1< T > %;ezsﬁ ZB 6 %;ﬁie“

= I, +11,, say.

Since

T T -1
p—g—1
EU?L) = n2nT2 Z Z < > (P ;{ )E(eiseiteipeiq)

t=2 s=1 p=2 q=1
T t—1
t—s—1 1
Hay > () o) —ow
t s=1

10 Upon requestion, the details of the proofs could be obtained from the authors.
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we have

I, =0,(1).
Also, similarly, it is possible to show that

, 12 £t S Sy | p—qg—1
E(II7) = EW;Z;Z;E( T )( T >
=2 s=1 p=2q=

Il
c
N
3‘
.
¥l
[}
3
—

so that
11, =0, (1),
which leads (46) .
Next, for (47) we write
1 70
ﬁtr (e'P (2°, — Z°,(0)) Qpo)
1
= oot ( 'Grr (GrrGrr) ™ G (29 — 7%, (0)) Q@O)

= LT (Z t9kt> (Zth%’m) (ngt ~ 774 (0 )>1Q60>
o _nllj-enTtT (Z etgkt> (Z gthkt) (Z Kt Z <t o 1> e;Q@o>

s=1

<T1> hir (p,t) ,Qgoeyp
7 T t—s—1
- Y (S e (L
p=1t=2 s=1
—1
<£> her (p,t ( 261560,> (-iﬁ?’ﬁ?) Lanﬁoejp
T Vi 2

=1

A direct calculation shows that

st =05k

which yields

Vnll, = o, (1).
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Also,

e (L))
e (B ST (T o) =

as required for Part (c). W

Part (d). Here we show that

Vi [ (24007, <o>)_(1

nn nT?

Then, since

the proof of Part (d)~ is done.
Since Z_; (0) = FEIBO’ + E_1, we have

1 N -
Wtr <Z91 (0) Qﬁozgl (0),)
1 . .
Wtr <E—1Q@0EL1)
1 60/60 -1 B B
! 07 ot 0
rm\/—T2 ( 1B ) B n1+nﬁT2tr (( n > G BB
Using similar arguments in the proof of Lemma 8(c), we can show that
1 60/60 -1 01 = - 0 1 60/
et (22) ) < (22

1
OP <n1/2+77> .

Therefore, to have the required result (48), it is enough to show

v [ir(Fai) (

] | ot
NG,

Nl =

nn nT
=2

T L _ 1 r T t—1 s—1
3 g (T o) | <o



which follows by a direct calculation that leads to

nn nl?

_ o(%) —o(1),

and we have all the required result.

@ tT(ELlELl) B (1 ZT:t_l—

Part (e). Notice that
122, = 2%, (0)]| =

because

by Lemma 9(a) and (b). Then, the required result follows because for some constant

M >0,

1

0, (Tnl/Q’”)

i=1 t=1

9 1 n T 9
nl-2n72 ||ZO ZO (O)H = o272 ZZ (Z?tfl - Z?tq (0)>

|20, — 7°, (0]

0 50 50 =0 ! 2.3 | bt 2
nl/2+nT2 tr <<Zl — 474 (0)) Qpo (Zq — 474 (0)) <n'/FM nl-2072

and since 1/6 < 7 in both model & = 0 and k = 1, n'/2737 = 0(1) , as required. W

Part (f). Define

Eir (1g) ;( n”T) €is
Let
Bi(pe) = (B (o) s s Bni (1))
E_1(ug) = (0, F (Me),v~~~7ETf1(M9),),~
By definition,
B, (0)=E_,

Using this notation, write

n1/2+nT2““(( ) QwZ'1 ()
= n1/2+ﬂT2tr<QG E_1)QgE' Q¢)
1
= n1/2+nT2tr( E'1Qa (E )_E*1)>
= I;—II; sa
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Then,

1 60/60
IIf = n3/2+77T2t7‘ (( n )

1 60/ oy —1 o
- n3/2+nT2tT (( n6> BOEI(EI(MQ)_E1)60>

1 60/60 -1 0 4 0
ey L (( n > BB Grr (GhrGrr) G;cT(El(MQ)_El)6>

-1

BYE"\Qa (B-1 (1g) — 1) 50)

t—

1 T t-1
, —1 ,
= n3/2+2nT2 ( 26060> ZZQ?Z; 1( = > it 16;‘55?
t=2 s=

=1 j=1

t—1

iiii}ﬁ Eip—1hy,1 (b, )( T ) ejs 3

i=1 j=1p=21t=2s

0 20/
TR L ( ZW )
= IIfa—IIfb, say.

A direct calculation shows that

I =0, (nl—i%> =0,(1) and II;, = O, (nl—i%> —0,(1).
Also, for Iy,
n T t—1 f—s—1
n = ey (S () e ) e
zzl t;Q .zfi 1 .
T 2 ( (=) ) > By 1)
= = 8= =

Notice that

E (% XT: (ti <%> ei5> Ej 1 — % ZT: (ti <%> %) ZT:Eip,lhk,T (t,p))

=2 s=1 =2 s=1 p=2
T t—1 min(¢,p)—1
1 t—s—1 t—s—1
- Ay () A e Y (2
t=2 s=1 t=2 p=2 s=1

1 1 1 min(r,p) 1
= / / (r—s) dsdr—/ / hz, (r,p)/ (r — ) dsdpdr + O <—> .
0o Jo 0o Jo 0 r

Notice that a direct calculation shows that

1 pr 1 r1 min(r,p) 1
/ / (r—s) deT—/ / Ay (1, P)/ (r — s) dsdpdr = 3 for & = 0 (so that hy (r,p) = 1)
o Jo o Jo 0

and
1 pr 1 rl min(r,p)
/ / (r—s)dsdr—/ / hk(r,p)/ (r — s)dsdpdr =0 for k= 1.
o Jo o Jo 0

51



Then, for model k& = 0, it is possible to show that

n T t—1 _s
1/2-2q T it D=2 (Zs:l (7°) eis) Eit 1
n T t—1 _s T
— s S S (X0 (5F) s ) Y B b (4,1)

—0, () =0, )

because 1 > i, and for model k = 1, it is possible to show that

1
20N _ _
E(If) =0 <W> =o(1),
SO
If = 0Op (1) ’
as required. W
Proof of Theorem 3

The proof is quite similar to the proof of Theorem 2 in Bai and Ng (2002), and we
omit the proof. The details of the proof could be found in Moon and Perron (2002). B
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Table 1. Size of tests for experiment 1
DGP: Zit = Qo + Z?t
th - z(‘)t—l + Tzle Bijftj + \/I_(eit
0,845, fi, €ir ~ 1idN (0,1)

K—1
t* t K
n T | True K IC; BIC; K=0| True K IC; BIC; K=0| IC; BICs
10 100 | 136 406 346 224 3.0 340 277 141 | 8.00 6.75
r=1 20 100 | 104 104 104  26.3 7.0 70 70 18.2 | 1.00  1.00
10 300 | 141 385 212 245 8.0 206 13.7 141 | 8.00 3.25
20 300| 111 111 11.1 285 7.3 73 73 20.3 | 1.00  1.00
10 100 | 207 597 57.0 463 115 516 495  37.1 | 800 6.78
=10 20 100 | 205 303 262  49.1 142 263 215 444 | 118 1.12
10 300| 165 589 431  46.0 8.6 505 360 360 | 800 3.30
20 300 | 126 157 136 499 8.1 121 97 449 | 1.05  1.02
10 100 | 139 361 304 139 7.6 271 205 76 | 8.00 6.71
r=0 20 100 9.7 12.7 127 9.7 6.8 91 9.1 6.8 | 1.00 1.00
10 300| 125 359 17.0 125 6.6 282 114 6.6 | 800 297
20 300 8.5 109 109 8.5 5.0 72 72 50 | 1.00 1.00

Note: Each entry represents the percentage of replications in which the null hypothesis of a
unit root is rejected for the appropriate test with the number of factors either set to the true
number (1), estimated using the information criteria suggested by Bai and Ng (2002) , or set to 0
The last two columns provide the mean number of estimated factors with K = 8 for both criteria
considered The number of replications is 1000.

Table 2. Power of tests for experiment 1
DGP: Zit = Qo + Z?t
Z?t - pizz(’)t—l + Tzle Bijftj + \/I_(eit
0,85, ftj, €ir ~ 1idN (0,1)

p; ~ U [0.98,1]
K=1
£ t
n T | Truek 1C; BICs True K 1C; BICs

10 100 | 56.6 33.3 644 69 63.3 10.8 | 445 34.2 537 6.8 524 11.2
T=1 20 100 | 744 576 744 576 744 576 | 648 577 648 577 648 577
10 300 | 89.5 77.8 83.7 253 882 678 | 829 77.6 757 246 B83.6 64.7
20 300 | 966 93.8 96.6 93.8 96.6 938 | 945 938 945 93.8 945 938

10 100 | 26.3 10.0 748 6.1 732 7.1 18.0 9.7 68.5 6.4 66.6 6.3
7=10 20 100 | 264 139 636 6.6 46.5 5.8 230 144 610 5.9 43.7 6.2

10 300 | 254 155 845 152 821 162 | 217 169 784 150 775 16.1

20 300 | 234 165 73.0 234 402 315 | 219 171 704 23.7 38.3 31.2

10 100 | 624 38.1 594 10.6 595 188 | 47.7 40.5 51.0 10.8 50.0 178
7=0 20 100 | 80.0 655 772 568 772 568 | 717 645 69.6 572 69.6 572
10 300 | 96.1 90.2 845 252 909 755 | 920 89.8 773 259 B87.0 747
20 300 | 99.2 989 994 9385 99.4 985 | 988 987 987 9O8.1 98.7 981

Note: The first entry in each cell represents the percentage of replications in which the null
hypothesis of a unit root is rejected for the appropriate test with the number of factors either
set to the true number (1)7 estimated using the information criteria suggested by Bai and Ng
(2002), or set to 0 using the asymptotic critical values The second entry in each cell is the
corresponding size-adjusted power. The number of replications is 1000.
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Table 3. Size of tests for experiment 2

DGP: 2y = o + vzt + 25

0

Zit = z(‘)t—l +Tzf:1 Bijftj + \/I_(eit

40, Q31,8445 fii, € ~ iidN (0, 1)

K=1
t* t K

n T | TrueK IC; BIC; K=0|TmeK IC; BIC; K=0| IC; BICs

10 100 13.2 453 455 18.7 11.5 38.5 39.5 18.2 8.00 6.80
T=1 20 100 18.5 19.0 18.5 26.5 16.7 17.2 16.7 24.9 1.01 1.00

10 300 8.7 27.2 18.3 11.4 8.6 24.2 16.0 11.2 8.00 3.28

20 300 6.9 6.9 6.9 16.0 6.8 6.8 6.8 15.7 1.00 1.00

10 100 11.0 51.6  55.2 26.4 10.0 44.1 47.1 23.4 8.00 6.78
=10 20 100 14.0 23.5 17.1 32.7 12.7 20.2 14.9 29.2 1.15 1.06

10 300 7.6 30.1 21.1 16.3 6.8 24.9 17.2 14.8 8.00 3.36

20 300 6.4 6.5 6.4 21.8 6.4 6.5 6.4 19.2 1.01 1.00

10 100 11.6 475 469 11.6 10.6 41.0 419 10.6 8.00 6.70
T=0 20 100 15.6 38.2 38.2 15.6 14.0 34.5 34.5 14.0 1.00 1.00

10 300 5.8 25.4 15.4 5.8 5.5 22.7 13.6 5.5 8.00 297

20 300 8.1 13.0 13.0 8.1 8.5 12.0 12.0 8.5 1.00 1.00

Note: see table 1.
Table 4. Power of tests for experiment 2
DGP: z; = a0 + a1t + Z?t
Z'?t = pizz(’)t—l + TE]I‘(:1 Bijftj + \/I_(eit
G0, Q61,8,4, fig, € ~ 1dN 0,1)
p; ~U [0.987 1]
K=1
tr t;

n T True K I1C; BICs True K I1C; BIC;

10 100 | 12.3 4,5 431 59 46.6 5.3 98 4.3 351 49 38.5 5.7
T=—1 20 100 | 18.1 5.0 18.3 44 18.1 5.0 159 4.5 16.1 4.2 159 4.5

10 300 | 4.0 2.1 23.1 36 12.1 3.7 27 18 18.2 3.8 8.3 2.5

20 300 | 54 28 54 2.8 54 2.8 39 22 3.9 22 3.9 22

10 100 | 129 7.5 57.0 4.6 58.7 5.0 13.4 8.4 474 6.0 51.1 5.9
=10 20 100 | 17.3 10.7 50.1 155 34.2 21.7 | 17.8 128 464 204 32.3 22.0

10 300 | 9.5 85 31.1 5.5 23.2 6.1 149 139 249 39 18.3 6.2

20 300 | 169 146 280 236 224 197 | 221 21.1 256 233 252 234

10 100 | 12.0 7.7 42.7 4.1 46.5 5.2 106 7.1 371 4.5 39.0 4.0
T=0 20 100 | 179 6.0 384 5.8 384 5.8 159 5.1 336 5.3 336 5.3

10 300 | 4.1 39 240 3.6 11.7 2.9 27 26 186 24 8.0 19

20 300 | 49 25 8.8 3.1 8.8 3.1 3.5 1.5 6.7 1.7 6.7 1.7

Note: see table 2.
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