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SOMMAIRE

La méthode de proje
tion et l'appro
he variationnelle de Sasaki sont deux

te
hniques permettant d'obtenir un 
hamp ve
toriel à divergen
e nulle à partir

d'un 
hamp initial quel
onque. Pour une vitesse d'un vent en haute altitude, un


hamp de vitesse sur une grille dé
alée est généré au-dessus d'une topographie

donnée par une fon
tion analytique. L'appro
he 
artésienne nommée Embedded

Boundary Method est utilisée pour résoudre une équation de Poisson dé
oulant

de la proje
tion sur un domaine irrégulier ave
 des 
onditions aux limites mixtes.

La solution obtenue permet de 
orriger le 
hamp initial a�n d'obtenir un 
hamp

respe
tant la loi de 
onservation de la masse et prenant également en 
ompte les

e�ets dûs à la géométrie du terrain. Le 
hamp de vitesse ainsi généré permettra

de propager un feu de forêt sur la topographie à l'aide de la méthode iso-niveaux.

L'algorithme est dé
rit pour le 
as en deux et trois dimensions et des tests de


onvergen
e sont e�e
tués.

Mots 
lés : Appro
he 
artésienne, feux de forêt, propagation, méthode de pro-

je
tion, 
onservation de la masse.
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SUMMARY

The Proje
tion method and Sasaki's variational te
hnique are two methods

allowing one to extra
t a divergen
e-free ve
tor �eld from any ve
tor �eld. From

a high altitude wind speed, a velo
ity �eld is generated on a staggered grid over

a topography given by an analyti
al fun
tion. The Cartesian grid Embedded

Boundary method is used for solving a Poisson equation, obtained from the pro-

je
tion, on an irregular domain with mixed boundary 
onditions. The solution

of this equation gives the 
orre
tion for the initial velo
ity �eld to make it su
h

that it satis�es the 
onservation of mass and takes into a

ount the e�e
ts of the

terrain. The in
ompressible velo
ity �eld will be used to spread a wild�re over

the topography with the Level Set Method. The algorithm is des
ribed for the

two and three dimensional 
ases and 
onvergen
e tests are done.

Key words : Embedded boundary method, wild�res, spread, proje
tion method,

mass-
onsistent model.
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INTRODUCTION

British-Columbia, Alberta and California fa
e ea
h year important forest �res

on their territories. Fires are essential for maintaining the diversity and health

of forest e
osystems, but they also bring a lot of drawba
ks. Many mathemati-


al models are 
urrently used to predi
t the propagation of �res. More a

urate

simulations 
ould prevent the negative impa
ts of wild�res on publi
 health and

safety of individuals, and 
ould also de
rease the loss of property and natural

resour
es.

Simulation models for the spread of wild�res, su
h as PROMETHEUS and

FARSITE, use the equations of �uid me
hani
s. Di�erent fa
tors must be taken

into 
onsideration when simulating the spread. The weather, the e�e
ts of the

topography, the di�erent type of fuels and obsta
les are a few examples. Adding

more parameters and variables to the model in
reases its a

ura
y but also the


omputational 
ost, hen
e 
hoi
es must be made. Most 
urrent models tend to

use the law of 
onservation of mass and 
onservation of momentum, but those

models often negle
t the e�e
ts of the terrain and of the �re as a dilation sour
e

term.

The aim of this thesis is to develop the �rst part of a new model to predi
t

e�
iently and a

urately the spread of forest �res. The approa
h 
hosen here takes

into a

ount the topographi
 e�e
ts of the terrain on the wind dire
tion, whi
h is

often negle
ted in 
urrent models. The tangential wind to the surfa
e is non-zero

sin
e the e�e
ts of vis
osity, more spe
i�
ally the fri
tion of the wind �eld with

the terrain, are negle
ted. The �nal velo
ity ve
tor �eld must only satisfy the

law of 
onservation of mass. Two pro
edures 
an be used to transform an initial
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ve
tor �eld into an in
ompressible ve
tor �eld. After a short dis
ussion on mass-


onsistent models, 
hapter one presents Sasaki's variational te
hnique followed by

the proje
tion method. The model will also 
onstru
t the initial ve
tor �eld from

a high altitude wind. The di�erent possibilities are dis
ussed at the end of the

�rst 
hapter.

In order to apply the 
onstraint of in
ompressibility on the wind ve
tor �eld,

a Poisson equation is solved on an irregular domain. In fa
t, the shape of the

topography is embedded in the 
omputational domain using a Cartesian grid. This

method is 
alled the Embedded Boundary Method and was developed by Phillip

Colella and his team at the Lawren
e Berkeley National Laboratory (LBNL).

This approa
h is based on the Finite Volume Method and is explained in 
hapter

two for the two-dimensional 
ase. Convergen
e of the solutions and error analysis

are also studied.

In 
hapter three, the model and the algorithm are generalized to three dimen-

sions. The implementation of the model was done with EBChombo, a software

developed by the Applied Numeri
al Algorithms Group (ANAG) at the Berkeley

Lab. The test 
ases used in the two-dimensional 
ase are generalized for a domain

in three dimensions in order of study the 
onvergen
e of the solutions.



Chapitre 1

A MASS-CONSISTENT MODEL

Models for simulating wind �ow fall into two main 
ategories : prognosti


models and diagnosti
 models. The �rst kind 
onsiders time-dependent hydrody-

nami
 equations su
h as Navier-Stokes to fore
ast how the wind �ow will evolve.

These models also in
lude many fa
tors su
h as turbulen
e, moisture, momentum

and heat. Elaborated models require pre
ise data in order to deliver a

urate

predi
tions and su
h data is not always available. On the other hand, diagnos-

ti
 models generate wind �elds that satisfy spe
i�
 physi
al 
onstraints. Models

that assure the 
onservation of mass are typi
ally 
alled mass-
onsistent models.

These are simpler than prognosti
 models, they require less data and have the

big advantage of having a low 
omputational 
ost.

The goal of this thesis is to 
onstru
t a predi
tive mass-
onsistent model for

wild�re propagation. The model will generate a velo
ity �eld that will take into

a

ount the e�e
ts of the topography on the wind �ow. A more a

urate wind �eld

will lead to better predi
tions of the �re front spread. Sin
e only the 
onstraint

of 
onservation of mass is 
onsidered, the simulations will be faster than models

using also the momentum equation and hen
e be useful for predi
tions.

Following a des
ription of the problem, two methods whi
h generate mass-


onsistent �ow are presented. Then, a short dis
ussion on the initialization of the

ve
tor �eld reveals the 
hallenges for a

urate predi
tions.
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1.1. Formulation of the problem

The model is explained for the two-dimensional 
ase, but it 
an be easily

generalized to three dimensions. Consider a re
tangular region in R
2 of length Lx

and height Ly. The topographi
al height above mean sea level is expressed by a

fun
tion H : R → R depending on the horizontal 
oordinate x. The 
omputational

domain Ω is the region 
ontained between the fun
tion H(x) and the top of the

re
tangular region as shown in �gure 1.1. The only information given for the wind

is the magnitude of a high altitude horizontal wind vg = (ug, 0) from whi
h an

initial velo
ity ve
tor �eld v = (u, v) must be 
onstru
ted. This initial ve
tor �eld

might not be divergen
e-free, but sin
e the wind is assumed to be invis
id (no

vis
osity) it must be tangential to the terrain surfa
e, whi
h means that it satis�es

the slip 
ondition v · n = 0, where n is the outward normal at the topography

surfa
e. We then look for a 
orre
tion that will transform the ve
tor �eld v in

an in
ompressible ve
tor �eld vd whi
h also ful�ls the slip 
ondition vd · n = 0.

Boundary 
onditions for the sides and top of the domain have to be de�ned su
h

that the �ow will be allowed to go through.

1.1.1. Conservation of mass and in
ompressibility

In order to get an in
ompressible ve
tor �eld vd, we must apply a 
onstraint

to the ve
tor �eld. In �uid dynami
s, the 
onservation of mass is expressed by

the 
ontinuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1.1)

where the operator ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

), ρ = ρ(x, y, z) is the density of the �uid and

v = (u(x, y, z), v(x, y, z), w(x, y, z)) where u, v and w are the velo
ity of the �ow

in the x, y and z dire
tions. Noti
e that in our model, the variables ρ and v do

not depend on time, sin
e we are interested in a stationary �ow, hen
e ∂ρ/∂t = 0.

The density of the �uid is assumed to be 
onstant everywhere on the domain, so

equation (1.1.1) be
omes

∇ · v = 0 (1.1.2)
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Fig. 1.1. Representation of the 
omputational domain Ω in 2 and

3 dimensions, with the topography given by H(x) and the high

altitude wind vg.

where equation (1.1.2) is the in
ompressibility 
onstraint on the �ow. This 
on-

dition expresses and guarantees the 
onservation of mass for our model. Mathe-

mati
ally, it also means that the ve
tor �eld is divergen
e-free.

1.2. Sasaki's variational te
hnique

There are di�erent approa
hes to apply the 
onstraint of mass 
onservation

on a given ve
tor �eld. A qui
k look at the literature in atmospheri
 s
ien
es

shows that most models are based on a variational 
al
ulus method developed by

Sasaki [22℄. Ratto et al. [20℄ have reviewed these models whi
h are adapted to

take into a

ount 
ertain parameters and features of the �ow, but the 
ore of the

te
hnique remains the same.
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1.2.1. Ellipti
 equation

Sasaki's variational te
hnique is a natural approa
h in atmospheri
 s
ien
es.

Meteorologists 
onstru
t their models with a variety of empiri
al data, su
h as

wind velo
ity. The variational method allows them to �nd, for a set of observed

wind data, a minimal 
orre
tion to adjust the wind su
h that it will be
ome

divergen
e-free.

In fa
t, this method minimizes the variation between the adjusted values vd =

(ud, vd, wd) and the initial values v = (u, v, w) in a generalized least squares

formulation :

I(ud, vd, wd) =

∫

Ω

[
β2

1(u
d − u)2 + β2

2(v
d − v)2 + β2

3(w
d − w)2

]
dV (1.2.1)

where βi (i = 1, 2, 3) are the Gauss pre
ision moduli. These weights are used for

the 
alibration of the adjustments of the wind �eld vd with the observed values

v. They will be explained in more details in se
tion 1.2.3.

Sin
e we are looking for an adjusted ve
tor �eld vd whi
h ful�ls the 
onserva-

tion of mass, we add the 
onstraint given by equation (1.1.2) :

G(ud
x, v

d
y , w

d
z) =

∂ud

∂x
+

∂vd

∂y
+

∂wd

∂z
= 0 (1.2.2)

to the fun
tional I :

J =

∫

Ω

EdV = I +

∫

Ω

λGdV (1.2.3)

where λ = λ(x, y, z) is a Lagrange multiplier. Writing expli
itly the fun
tional J

in equation (1.2.3) we have :

J(ud, vd, wd, λ) =

∫

Ω

[

β2
1(u

d − u)2 + β2
2(v

d − v)2 + β2
3(w

d − w)2

+λ

(
∂ud

∂x
+

∂vd

∂y
+

∂wd

∂z

)]

dV (1.2.4)

We now want to minimize the fun
tional J under the strong 
onstraint of


onservation of mass. To a
hieve this goal, we must look at the �rst variation

of J and �nd when it is equal to zero : δJ = 0. From 
al
ulus of variations,
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one knows that the solutions whi
h minimize the fun
tional J satisfy the Euler-

Lagrange equations :

∂E

∂f
−

3∑

i=1

∂

∂xi

∂E

∂(∂f/∂xi)
= 0 (1.2.5)

where E is the integrand of the fun
tional J , f = (ud, vd, wd, λ) and (x1, x2, x3) =

(x, y, z). Solving with the Euler-Lagrange equations (1.2.5), we �nd

ud = u +
1

2β2
1

∂λ

∂x
(1.2.6)

vd = v +
1

2β2
2

∂λ

∂y
(1.2.7)

wd = w +
1

2β2
3

∂λ

∂z
(1.2.8)

∂ud

∂x
+

∂vd

∂y
+

∂wd

∂z
= 0. (1.2.9)

Note that solution (1.2.9) 
orresponds to the in
ompressibility 
onstraint (1.1.2).

Ratto et al. [20℄ noti
ed that all mass-
onsistent models assume the Gauss pre-


ision moduli to be equal in the horizontal plane of the eu
lidean spa
e :

β1 = β2. (1.2.10)

In fa
t, important distin
tions are seen between the horizontal 
omponents and

the verti
al 
omponent of the adjusted ve
tor �eld with the initial ve
tor �eld.

There is no su
h big di�eren
e between the horizontal dire
tions of the two ve-

lo
ity �elds.

Di�erentiating equations (1.2.6), (1.2.7), (1.2.8) with respe
t to x, y, z re-

spe
tively, and substituting the results in equation (1.2.9), this ellipti
 equation

is obtained :

∂2λ

∂x2
+

∂2λ

∂y2
+

(
β1

β3

)2
∂2λ

∂z2
= −2β2

1

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

. (1.2.11)

Using the solution λ(x, y, z) of equation (1.2.11), we 
an 
orre
t the initial

ve
tor �eld v with equations (1.2.6)-(1.2.8) and �nd the divergen
e-free ve
tor

�eld vd. In order to solve the ellipti
 equation, we need to spe
ify the boundary


onditions related to the model.
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1.2.2. Boundary 
onditions

For the variational problem des
ribed above, Ishikawa [13℄ gives the asso
iated

boundary 
onditions as :

∮

∂Ω

δf

[
3∑

i=1

∂E

∂(∂f/∂xi)

]

· ndA = 0 (1.2.12)

where n is the outward normal ve
tor to the domain boundary ∂Ω and δf an

arbitrary �rst variation of f . Solving the part between the bra
kets always leads to

λ. The integral will be zero if the integrand is zero, hen
e the boundary 
onditions

be
ome

λδvd · n = 0 on ∂Ω (1.2.13)

where δvd denotes the �rst variation of the velo
ity.

From equation (1.2.13), either the multiplier λ or the normal velo
ity 
ompo-

nent variation δvd ·n must be zero at a boundary. Sherman [24℄ 
laimed that only

one of those two 
onditions must be imposed at a time, otherwise it would overde-

termine the problem and the solution would not be unique. In fa
t, Núñez et al.

[19℄ have shown that the sole properties of J guarantee the existen
e and unique-

ness of a �eld vd that minimizes globally J . Most authors of atmospheri
 s
ien
es

arti
les have followed the 
hoi
e adopted by Sherman and her interpretation of

the boundary 
onditions.

For �ow-through or open boundaries, the appropriate boundary 
ondition is

the homogeneous Diri
hlet 
ondition,

λ = 0. (1.2.14)

For this 
ondition, the normal derivative of λ might not be equal to zero, whi
h is

generally the 
ase. Hen
e, a non-zero adjustment of the initial velo
ity 
omponent

normal to the boundary might o

ur. Moreover, a 
onstant value of λ at an open

boundary also implies that no 
orre
tion is made for the velo
ity 
omponents in

the non-normal dire
tion, sin
e the non-normal derivatives of λ are zero. This

property is useful sin
e we want to 
onserve the magnitude of the wind at the

top boundary.
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For no-�ow-through or 
losed boundaries, the homogeneous Neumann bound-

ary 
ondition,

∂λ

∂n
= 0 (1.2.15)

is 
hosen. It implies that there is no adjustment in the normal velo
ity 
omponent,

hen
e the variation of normal velo
ity is zero :

δvd · n = 0. (1.2.16)

If the initial normal velo
ity 
omponent through the boundary is zero :

v · n = 0 (1.2.17)

the adjusted �ow of mass a
ross the boundary is also zero whi
h means that the


orre
ted ve
tor �eld will satisfy the slip 
ondition. The Neumann 
ondition is

then appropriate for the terrain surfa
e boundary. A

ording to Núñez et al. [19℄,

a more appropriate boundary 
ondition for the terrain surfa
e would be

ni
1

β2
i

∂λ

∂xi
= −v · n. (1.2.18)

Noti
e that this boundary 
ondition only 
oin
ides with the homogeneous Neu-

mann boundary 
ondition in two 
ases. First when the topography is �at and the

initial velo
ity �eld is parallel to the terrain boundary : v ·n = 0. The se
ond 
ase

is when all βi = 1 and again the initial velo
ity �eld is parallel to the boundary.

They also mentioned that the homogeneous Neumann 
ondition is in
onsistent

when using the Finite Element Method, hen
e FDM should be used with this 
on-

dition. From equation (1.2.18), we understand why Barnard et al. [2℄ and Ross

et al. [21℄ mentioned that applying the 
losed boundary 
ondition requires that

the initial velo
ity �eld must respe
t the slip 
ondition at the surfa
e in order to

satisfy the impenetrability 
onstraint when solving the ellipti
 equation with the

Finite Di�eren
e Method.

For our model, the following boundary 
onditions are sele
ted :

∂λ

∂n
= 0 for the terrain surfa
e boundary (1.2.19)

λ = 0 for the top and sides boundaries (1.2.20)



11

1.2.3. Stability parameters

We now dis
uss the parametrization of the Gaussian pre
ision moduli. It was

noted that the 
oe�
ients β1 = β2 and β3 play an important role in the 
orre
-

tion of the velo
ity �eld. These weights 
an alter the �ow pattern and the residual

divergen
e of the adjusted �ow �eld. Determining the right values for these pa-

rameters remains a major problem for wind models in atmospheri
 s
ien
es. It

has been noted through simulations of mass-
onsistent models that the 
odes are

not dire
tly sensitive to the values of β1 and β3 but to their ratio. This is why a

new parameter was introdu
ed :

β =
β1

β3

. (1.2.21)

We re
all the fun
tional I in equation (1.2.1) now with β1 = β2 :

I(ud, vd, wd) =

∫

Ω

[
β2

1(u
d − u)2 + β2

1(v
d − v)2 + β2

3(w
d − w)2

]
dV. (1.2.22)

One 
an see that large values of β3 will imply minimal adjustments for wd in

(wd−w)2 sin
e the fun
tional is being minimized. The same argument is valid for

small values of β3 that will enfor
e bigger adjustments of wd. The same reasoning


an be used with the parameter β. For β ≫ 1, �ow adjustment in the verti
al

dire
tion will predominate, so that wind is more likely to go over a terrain barrier

rather than around it. For β ≪ 1, �ow adjustment will o

ur primarily in the

horizontal plane, so the wind is more likely to go around a terrain barrier rather

than over it.

Noti
e that when β → 0, the adjustment is purely horizontal and when β → ∞

the adjustment is stri
tly verti
al. From a physi
al perspe
tive, this last remark

was used by the WINDS software [11℄ so that β 
ould be de�ned as the at-

mospheri
 stability parameter, where the strati�
ation obtained is unstable when

β ≫ 1, stable when β ≪ 1 and neutral when β = 1.

The mass-
onsistent models usually adopt one of these two approa
hes when

using the parameter β. It is either 
onstant in the entire domain Ω and the values

depend on atmospheri
 stability or it 
an be expressed as a fun
tion β = β(x, y, z)

and the values depend on the atmospheri
 stability and features of the topography.
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1.3. Proje
tion method

In the last se
tion, we explained an approa
h widely used in atmospheri


s
ien
es to get a solenoidal ve
tor �eld from a given ve
tor �eld. Here, we introdu
e

another method for solving problems in 
omputational �uid dynami
s. Chorin [4℄

has introdu
ed this method based on the Hodge de
omposition whi
h allows one

to extra
t a divergen
e-free ve
tor �eld from any given ve
tor �eld.

1.3.1. Hodge de
omposition

Theorem 1.3.1 (Hodge de
omposition). Let Ω be a simply 
onne
ted domain

with smooth boundary ∂Ω. Any ve
tor �eld v on Ω 
an be uniquely de
omposed

in the form

v = vd + ∇ϕ (1.3.1)

where ∇ · vd = 0 in Ω and vd · n = 0 on ∂Ω.

In other words, any ve
tor �eld v 
an be de
omposed into two orthogonal


omponents ; one divergen
e-free part vd and a 
url-free part expressed as the

gradient of a s
alar �eld ϕ . Applying the divergen
e operator on ea
h side of

equation (1.3.1) we have

∇ · v = ∇ · vd
︸ ︷︷ ︸

=0

+∇ · ∇ϕ (1.3.2)

∇ · v = ∆ϕ (1.3.3)

where ∆ is the Lapla
ian operator in Cartesian 
oordinates. The solution of this

ellipti
 equation given by ϕ(x, y, z) will give the 
orre
tion to be added to the

initial ve
tor �eld v su
h that we get the solenoidal ve
tor �eld vd :

vd = v −∇ϕ. (1.3.4)

The boundary 
onditions required for solving the ellipti
 equation 
an be found

by taking the normal 
omponent on both sides of equation (1.3.1) :

v · n = vd · n
︸ ︷︷ ︸

=0

+∇ϕ · n (1.3.5)

v · n = ∇ϕ · n (1.3.6)
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whi
h is the Neumann boundary 
ondition :

∂ϕ

∂n
= v · n on ∂Ω. (1.3.7)

1.3.2. Proje
tion operator

Sin
e vd is uniquely determined, we 
an de�ne a proje
tion operator P , su
h

that

P(v) = vd. (1.3.8)

Based on the pro
edure des
ribed above, we 
an de�ne P as

P = I −∇ (∇ · ∇)−1 ∇· (1.3.9)

The operator P de�ned this way is idempotent, P2 = P , self-adjoint, P = PT

and the norm of the operator is less than or equal to one, ‖P(v)‖2 ≤ ‖v‖2. These

properties are used to prove that the operator is stable.

1.3.3. Comparison with the variational method

On
e again, the proje
tion method requires the solution of the following Neu-

mann problem :

∆ϕ = ∇ · v on Ω (1.3.10)

∂ϕ

∂n
= v · n on ∂Ω. (1.3.11)

Setting the parameters β1 = β2 = β3 = 1 in equation (1.2.11) we have

∂2λ

∂x2
+

∂2λ

∂y2
+

∂2λ

∂z2
= −2

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

(1.3.12)

that is

∆λ = −2∇ · v (1.3.13)

It 
an be noti
ed that equation (1.3.13) is exa
tly the same as equation (1.3.10)

up to the 
onstant -2. The solution of both ellipti
 equations is a s
alar �eld

from whi
h the gradient gives the 
orre
tion to the initial ve
tor �eld (equations

(1.2.6)-(1.2.8) and (1.3.4)) that will make it divergen
e-free. We 
an therefore say

that both methods are similar.
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There are two main di�eren
es between these methods. First, the boundary


onditions for solving the ellipti
 equations are not the same. In the proje
tion

method, only Neumann 
onditions are used unlike the mixed 
onditions (Diri
hlet

and Neumann) used in the variational method. The Hodge de
omposition assumes

that the divergen
e-free ve
tor �eld vd will be parallel to the domain boundary

∂Ω sin
e vd ·n = 0, whi
h is de�nitely not the kind of ve
tor �eld we are looking

for.

It is also important to noti
e that the proje
tion P is well-de�ned sin
e vd is

uniquely determined as mentioned in the Hodge de
omposition theorem. Uni
ity

of the proje
tion is guaranteed by the Neumann boundary 
onditions. In the


urrent model, we are interested in using both Diri
hlet and Neumann 
onditions.

We will then lose the uni
ity of the proje
tion. Hen
e, the 
orre
ted �eld vd

found with the proje
tion P will be the 
losest ve
tor �eld to v su
h that it is

in
ompressible.

Finally, the main di�eren
e reside in the Gauss moduli. Sin
e our model does

not rely on experimental data, ex
ept the high altitude wind speed, there is no

need for a 
alibration of the model with the weights βi, hen
e they will be set

equal to one. In order to avoid 
onfusion with the notation, the s
alar �eld will

be noted by ϕ rather than λ and the problem that will be solved is the following :







∆ϕ = −2∇ · v on Ω

∂ϕ

∂n
= 0 on terrain surfa
e boundary

ϕ = 0 on side and top boundaries

(1.3.14)

1.4. Ve
tor field initialization

The way the initial ve
tor �eld is initialized has a huge impa
t on the stru
ture

of the adjusted ve
tor �eld. Remember that the 
orre
ted ve
tor �eld will be the


losest ve
tor �eld to the initial ve
tor �eld that satis�es the 
onservation of mass.

Hen
e the initialization pro
ess is a very important step.

There are di�erent types of data that are available to 
onstru
t the initial wind

ve
tor �eld ; meteorologi
al data from ground stations or towers stations, wind

pro�lers, gradients or geostrophi
 wind. It has been observed that the quality
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of this data is usually poor and that its density is more than often insu�
ient

for resolving variations of the �ow above 
omplex topography. Moreover, the data

gives only information for the verti
al pro�le of the wind, never for the horizontal.

These reasons en
ourage an initialization of the ve
tor �eld with a high altitude

wind, whi
h is 
alled the geostrophi
 wind in the literature.

As inWINDS [11℄, a verti
al pro�le 
an be 
onstru
ted from the geostrophi


wind. Most of the models studied by Ratto et al. [20℄ split the atmosphere into two

layers : the surfa
e layer (SL) and the Planetary Boundary Layer (PBL). Over the

PBL (1000m-2000m), the wind is assumed to be 
onstant with height and given

by the geostrophi
 wind. The surfa
e layer takes into a

ount fri
tion/vis
ous

e�e
ts and is usually 
ontained in the �rst 100m of the atmosphere. This layer

is not of great interest sin
e the slip 
ondition is applied at the surfa
e of the

terrain in this model. Between the two layers, di�erent interpolation s
hemes 
an

be used to get the verti
al pro�le : linear, logarithmi
 or power law.

Barnard et al. [2℄ and Ross et al. [21℄ have also noti
ed that applying the


losed boundary 
ondition on the terrain surfa
e requires that the initial velo
ity

�eld must respe
t the slip 
ondition at the terrain surfa
e in order to satisfy the

impenetrability 
onstraint. Sin
e there is usually no information on the horizontal

pro�le, i.e. on the verti
al 
omponent of the wind �eld, we will follow Barnard

and set the verti
al wind 
omponent to zero w = 0.

1.4.1. Potential �ow and 
onformal 
oordinates

Barnard et al. [2℄ have observed that la
k of veri�
ation is a major di�
ulty

for mass-
onsistent models. Many papers used real data to 
alibrate and verify

the results given by the model. Ross et al. [21℄ found out that if β1 = β2 = β3 and

that the right hand side of equation (1.3.14) vanishes, then ϕ represents a velo
ity

potential. They also used simple terrain shapes (half-
ylinder, hemisphere, ellip-

soid) for whi
h the analyti
 solution of the potential �ow is known to generate a

potential �ow and verify the e�
ien
y of their model. They use terrain-following
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(
onformal) 
oordinates to solve the Poisson equation :







ξ = x

η = y

σ(x, y) =
ht(x, y) − z

ht(x, y) − H(x, y)

(1.4.1)

where ht(x, y) is the height of the domain whi
h in our 
ase is 
onstant and where

H(x, y) is the height of the topography. The surfa
e of the terrain is rea
hed when

σ = 1 and the top boundary when σ = 0. They still solve the ellipti
 equation

with Cartesian 
oordinates but with a di�erent Neumann boundary 
ondition at

the terrain surfa
e in order to get the potential �ow. They initialized their model

with a uniform ba
kground wind in 
onformal 
oordinates and they found that

the generated �ow is in good agreement with the analyti
 potential �ow. Even if

the problem is solved in Cartesian 
oordinates, 
onformal 
oordinates are useful

for 
onstru
ting an initial velo
ity �eld tangent to the terrain and parallel to the

top domain boundary.



Chapitre 2

SOLVING THE MODEL IN 2 DIMENSIONS

There exists many ways to solve the Poisson equation introdu
ed in the last


hapter. Di�eren
es between previous mass-
onsistent models 
ome from numer-

i
al algorithms for solving ellipti
 equations and from the 
hoi
e of the values

used for the parameters. For instan
e, Sherman [24℄ used the Finite Di�eren
e

Method (FDM) and dis
retized the topography in a stair-step fashion. Ishikawa

[13℄ solved the ellipti
 equation with FDM as well but on a staggered grid. Ross

et al. [21℄ and Barnard et al. [2℄ used 
onformal 
oordinates to solve the ellipti


equation in order to get better integration of the terrain surfa
e and ensure the

appli
ation of the slip 
ondition. Forthofer [10℄ used the Finite Element Method

(FEM) to solve the PDE.

This 
hapter will 
onsider the Embedded Boundary Method (EBM) for solv-

ing the ellipti
 equation with the appropriate boundary 
onditions for the two-

dimensional 
ase. This is the �rst time that EBM is applied to an empiri
al model

used to simulate the spread of wild�res. The parti
ular feature of this approa
h is

that it embeds an irregular boundary into a Cartesian grid. Hen
e, the generated

wind �elds should be in better agreement with the terrain surfa
e.

Sin
e the EBM is based on the Finite Volume Method (FVM), this last method

is �rst introdu
ed before moving on to EBM. The 
onvergen
e of the algorithm

is tested for di�erent terrain shapes and initial wind ve
tor �elds, and an error

analysis is also 
ondu
ted. Finally, the divergen
e-free ve
tor �elds are used to

spread the �re over di�erent terrain surfa
es.
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2.1. Finite Volume Method

The FVM is a useful approa
h for solving numeri
ally partial di�erential

equations (PDE). It allows the divergen
e operator to be dis
retized using the

divergen
e theorem, su
h as in the Poisson equation. The �nite-volume approa
h

has some 
onsiderable advantages su
h as regular predi
table memory a

ess and

higher a

ura
y for less 
omputation. In this se
tion, we explain how the FVM


an solve our ellipti
 equation without topography embedded in the re
tangular

domain.

2.1.1. Dis
retization of the domain

Consider a re
tangular domain Ω ⊂ R
2. The domain has length Lx and height

Ly and is dis
retized using a Cartesian grid whose re
tangular 
ontrol volumes are

de�ned as Υi,j = [(i− 1
2
)hx, (i+

1
2
)hx]× [(j− 1

2
)hy, (j + 1

2
)hy] for i = 1, . . . , Nx and

j = 1, . . . , Ny. The number of horizontal and verti
al 
ells, Nx and Ny, are used

to de�ne the horizontal and verti
al mesh spa
ing hx = Lx/Nx and hy = Ly/Ny.

The method uses 
ontrol volumes Vi,j = Υi,j ∩ Ω.
PSfrag repla
ements
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hx
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Υi,j

Fig. 2.1. Dis
retization of the two-dimensional domain for FVM.

2.1.2. Divergen
e operator

We are now looking to solve the following Poisson equation

∆ϕ = −2∇ · v (2.1.1)
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where v = (u, v) is the initial ve
tor �eld and ϕ is a s
alar �eld. Equation (2.1.1)


an be written in 
onservation form

∇ · F = −2∇ · v (2.1.2)

where the �ux F = ∇ϕ is the 
onserved quantity.

To a
hieve a dis
retization of the divergen
e operator, we �rst re
all the di-

vergen
e theorem :

Theorem 2.1.1 (Divergen
e theorem). Let Ω be a 
ompa
t region in R
n with a

pie
ewise smooth boundary ∂Ω. If F is a 
ontinuously di�erentiable ve
tor �eld

de�ned on a neighbourhood of Ω, then we have

∫

Ω

∇ · FdV =

∮

∂Ω

F · ndA. (2.1.3)

Using the 
ell average value of the divergen
e of F and the divergen
e theorem

in R
2 we have ;

∇ · F ≈
1

|Vi,j|

∫

Vi

∇ · FdV =
1

|Vi,j|

∮

∂Vi

F · ndA (2.1.4)

=
1

|Vi,j|

[

hyFi+ 1

2
,j + hxFi,j+ 1

2

− hyFi− 1

2
,j − hxFi,j− 1

2

]

(2.1.5)

where n is the outward unit normal to the 
ontrol volume 
ell Vi,j and |Vi,j| = hxhy

the volume of Vi,j. This 
orresponds to the midpoint rule dis
retization of the line

integral. Hen
e, the dis
retized divergen
e operator DM(F)i,j is

DM(F)i,j =
Fi+ 1

2
,j − Fi− 1

2
,j

hx

+
Fi,j+ 1

2

− Fi,j− 1

2

hy

(2.1.6)

The �uxes are illustrated in �gure 2.2. In the Poisson equation, a dis
retized

PSfrag repla
ements
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Fi,j+ 1
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2

,j

Fig. 2.2. Fluxes on every edge of 
ontrol volume Vi,j.
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divergen
e operator is also applied to the initial ve
tor �eld v. It would be de-

sirable to use the same dis
retization of the operator. We also need a 
onsistent

dis
retization for the gradient operator sin
e F = ∇ϕ. The MAC proje
tion seems

quite appropriate for this 
ase.

2.1.3. Marker-and-Cell Proje
tion

There are many ways to dis
retize mathemati
al operators. The dis
retization

mostly relies on the kind of grid on whi
h the 
omputation is done. The Marker-

and-Cell (MAC) proje
tion introdu
ed by Harlow and Wel
h [12℄ uses a staggered

grid, where the 
omponents of the ve
tor �eld are de�ned on the edges of the


ontrol 
ells and the s
alar �eld is de�ned at the 
enter as shown in Figure 2.3.

PSfrag repla
ements

ui− 1
2

,j ui+ 1
2

,j

vi,j− 1
2

vi,j+ 1
2

ϕi,j

Fig. 2.3. Staggered grid with the 
ell-
entered s
alar �eld ϕ and

the edge-
entered 
omponents of the velo
ity �eld (u, v).

Let DM and GM be the dis
rete divergen
e and dis
rete gradient operators

over the staggered grid. The divergen
e is de�ned using the divergen
e theorem on

the 
ontrol 
ell as before and the gradient by 
entered di�eren
e over the edges :

DM(v)i,j =
ui+ 1

2
,j − ui− 1

2
,j

hx

+
vi,j+ 1

2

− vi,j− 1

2

hy

(2.1.7)

and de�ne

GM(ϕ)i+ 1

2
,j =

ϕi+1,j − ϕi,j

hx

(2.1.8)

GM(ϕ)i,j+ 1

2

=
ϕi,j+1 − ϕi,j

hy

(2.1.9)

Remember that our method uses a proje
tion operator P de�ned in equation

(1.3.9). Let P
M be the dis
retization of this proje
tion. It is then de�ned as

P
M = I − GM

(
DMGM

)−1
DM

(2.1.10)
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and it is easy to verify that DM(PM(v)) = 0. This means that the dis
retized

proje
tion operator is exa
t. See Appendix A for a dis
ussion of the dis
retization

of proje
tions.

For the MAC proje
tion, the dis
retization of the Lapla
e operator (∆ = ∇·∇)

is de�ned as DM(GM(ϕ))i,j whi
h 
orresponds to the standard 5 point sten
il

Lapla
ian for interior 
ontrol volume 
ells (i = 2, ..., Nx − 1 and j = 2, ..., Ny − 1)

as shown in Figure 2.4.

Fig. 2.4. Standard 5 point sten
il Lapla
ian DM(GM(ϕ))i,j.

Despite the fa
t that the 
omponents of the ve
tor �eld are not 
ollo
ated,

the MAC proje
tion has the advantage that the no-�ow boundary 
ondition 
an

be set expli
itly at walls for re
tangular domains sin
e the edges of the boundary


ells mat
h the domain boundaries.

2.1.4. Boundary �uxes

In order to use the divergen
e operator on the 
ontrol volume 
ells on the

boundaries of the domain, the �uxes at the boundaries must be spe
i�ed. For the

bottom boundary, the problem uses a Neumann 
ondition
∂ϕ
∂n

= 0. In this 
ase,

the �ux is simply zero, Fi, 1
2

= 0.

For the top and side boundaries, the Diri
hlet 
ondition ϕ = 0 is used. This

type of 
ondition does not pres
ribe dire
tly a parti
ular value for the �ux at

the boundary. Hen
e, we follow Johansen and Colella [14℄ and use a three-point

gradient sten
il in order to get a spe
i�
 value of the �ux on the boundary. The

gradient formula is given by

∂ϕ

∂n
=

1

d2 − d1

[
d2

d1

(
ϕB − ϕ1

)
−

d1

d2

(
ϕB − ϕ2

)
]

(2.1.11)
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where ϕB is the value of the fun
tion ϕ on the boundary given by the Diri
hlet


ondition, ϕ1 and ϕ2 are the 
losest grid point values of ϕ to ϕB. Those two grid

points are respe
tively at distan
es d1 and d2 from the boundary. This sten
il has

a dis
retization error of order O(h2). Figure 2.5 shows how the �ux on the right

boundary is 
al
ulated by

∂ϕ

∂x
= FNx+ 1

2
,j =

1

hx

[

3
(
ϕB − ϕNx,j

)
−

1

3

(
ϕB − ϕNx−1,j

)
]

(2.1.12)

PSfrag repla
ements
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Fig. 2.5. Interpolation of the boundary �ux FNx+ 1

2
,j for applying

the Diri
hlet 
ondition using ϕB, ϕNx,j and ϕNx−1,j.

Note that this interpolation leads to an outward pointing gradient. With the

�uxes at the boundary �xed, it is easy to see that the Lapla
ian operator will

have 3 di�erent sten
ils over the domain as pi
tured in Figure 2.6.

Fig. 2.6. The 3 di�erent sten
ils for the Lapla
ian operator.

2.1.5. Symmetri
 matrix

Solving the Poisson equation with the FVM redu
es to �nd a solution of a

linear system Aϕ = b. For the two-dimensional 
ase, we use the row-wise ordering
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to form the ve
tor ϕ of the ϕi,j de�ned at the 
enter of the 
ontrol volume 
ells :

ϕ = (ϕ1,1, . . . , ϕNx,1, ϕ1,2, . . . , ϕNx,2, . . . , ϕ1,Ny
, . . . , ϕNx,Ny

) (2.1.13)

The 
oe�
ients in front of the unknown values of ϕi,j �ll up the matrix A of

size NxNy ×NxNy. More pre
isely, the main diagonal 
ontains the 
oe�
ients of

ϕi,j, the diagonals above and below the main diagonal the 
oe�
ients of ϕi±1,j and

the two extra diagonals, with Nx−2 zero elements between the upper/lower diag-

onal, the 
oe�
ients of ϕi,j±1. Hen
e, the symmetri
 matrix A has the stru
ture

shown in �gure 2.7 whi
h is the same as that of the FDM.
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Fig. 2.7. Symmetri
 matrix of the linear system with Nx = 6 and

Ny = 8.

All known values su
h as ϕB and the RHS of the Poisson equation, DM(v)i,j,

are put in the ve
tor b. The linear system Aϕ = b is solved using the solver

mldivide in MATLAB whi
h uses a dire
t method.

2.1.6. Corre
ted ve
tor �eld

On
e we get the solution given by the ve
tor ϕ, we 
an 
ompute the 
orre
ted

ve
tor �eld with equations (1.2.6)-(1.2.8) of 
hapter 1. The 
orre
ted �eld on the

staggered grid is easily 
al
ulated with the MAC gradient operators :

ud
i+ 1

2
,j

= ui+ 1

2
,j +

1

2
GM(ϕ)i+ 1

2
,j (2.1.14)

vd
i,j+ 1

2

= vi,j+ 1

2

+
1

2
GM(ϕ)i,j+ 1

2

(2.1.15)
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Noti
e that it is important to 
al
ulate GM(ϕ)i+ 1

2
,j and GM(ϕ)i,j+ 1

2

on the

boundaries with the same gradient sten
il used for 
omputing the �uxes on the

boundaries. Otherwise, the �nal divergen
e will not be zero on the 
ells next to

the boundaries.

2.2. Embedded Boundary Method

We will now fo
us on the Embedded Boundary Method for solving numeri-


ally the ellipti
 equation (2.1.1) on an irregular two-dimensional domain Ω. This

approa
h uses a �nite-volume dis
retization on the Cartesian grid on whi
h the

boundary of the topography is embedded. In this 
hapter, we will fo
us on the

simple 2D 
ase whi
h is dis
ussed by Johansen and Colella [14℄.

The re
tangular domain Ω uses the same Cartesian grid as mentioned earlier.

The topography whi
h is given by the fun
tion H(x) is represented as a pie
ewise

linear fun
tion where the 
oordinate x = (i ± 1
2
)hx is de�ned on the 
ontrol

volume 
ell edges. The fun
tion H(x) 
orresponds to the lower boundary of Ω.

The geometry of the irregular domain Ω is represented with its interse
tion with

the Cartesian grid. The method uses 
ontrol volumes Vi,j = Υi,j ∩ Ω and their

fa
es Ai± 1

2
,j and Ai,j± 1

2

whi
h are the interse
tion of ∂Vi,j with the 
oordinate lines

{x = (i ± 1
2
)hx} and {y = (j ± 1

2
)hy}. The interse
tion of the boundary of the

irregular domain and the Cartesian 
ontrol volumes are the fa
es AB
i,j = Υi,j∩∂Ω.

In order to 
onstru
t an appropriate divergen
e operator, areas and volumes

are written as nondimensional terms :

volume fra
tions : κi,j = |Vi,j|(hxhy)
−1

fa
e apertures : αi± 1

2
,j = |Ai± 1

2
,j|h

−1
y and αi,j± 1

2

= |Ai,j± 1

2

|h−1
x

boundary apertures : αB
i,j.

It is assumed that those values 
an be 
al
ulated with an a

ura
y of order O(h2).

Noti
e that α, κ ∈ [0, 1]. When κ = 0, the 
ontrol volume 
ell is 
ompletely


ontained in the topography and when κ = 1, the 
ell is full, meaning that the

topography does not 
ut the 
ell.

As before, we use the fa
t that the Lapla
ian operator ∆ϕ in LHS of equation

(2.1.1) 
an be written on a 
onservative form as ∇ · F with F = ∇ϕ. It is then
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possible to dis
retize the divergen
e operator ∇· using the divergen
e theorem :

DM(F)i,j =

1

κi,j

(
αi+ 1

2
,jFi+ 1

2
,j − αi− 1

2
,jFi− 1

2
,j

hx

+
αi,j+ 1

2

Fi,j+ 1

2

− αi,j− 1

2

Fi,j− 1

2

hy

+ αB
i,jF

B
i,j

)

(2.2.1)

where the �uxes Fi± 1

2
,j, Fi,j± 1

2

and the �ux on the embedded boundary FB, de�ned

at the 
entroid of every 
ell fa
es, are linear 
ombinations of ϕi,j and of the

boundary values ϕB. This dis
retization takes into a

ount the stru
ture of the

volume 
ell, parti
ularly when we are 
al
ulating the divergen
e in a 
ut 
ell

(0 < κ < 1). The left pi
ture in Figure 2.8 gives an example of �uxes lo
ated

at the fa
e 
entroids in a 
ut 
ell, while the fa
e 
entroids 
oin
ide with the fa
e


enters in a full 
ell.

Fig. 2.8. Fluxes in a 
ut 
ell (0 < κ < 1) and in a full 
ell (κ = 1).

The �ux FB
i,j ≡ 0 (red arrow) sin
e a Neumann 
ondition is applied

at the terrain surfa
e boundary.

Remember that a homogeneous Neumann 
ondition
∂ϕ
∂n

= 0 is applied on

the terrain surfa
e boundary whi
h implies that FB
i,j ≡ 0. Hen
e, the divergen
e

operator be
omes

DM(F)i,j =
1

κi,j

(
αi+ 1

2
,jFi+ 1

2
,j − αi− 1

2
,jFi− 1

2
,j

hx

+
αi,j+ 1

2

Fi,j+ 1

2

− αi,j− 1

2

Fi,j− 1

2

hy

)

(2.2.2)

It is important that the �uxes be de�ned at the 
entroid of the fa
es Ai± 1

2
,j and

Ai,j± 1

2

in order to keep a good approximation of the dis
retization of the integral.

For �uxes de�ned on the verti
al fa
es Ai± 1

2
,j, a linear interpolation s
heme is
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used with the above 
ell. For instan
e, the �ux Fi+ 1

2
,j on the fa
e Ai+ 1

2
,j when

0 < αi+ 1

2
,j < 1 
an be 
al
ulated using the interpolation formula :

Fi+ 1

2
,j =

(
1 + αi+ 1

2
,j

2

)

GM(ϕ)i+ 1

2
,j +

(
1 − αi+ 1

2
,j

2

)

GM(ϕ)i+ 1

2
,j+1 (2.2.3)

This interpolation is illustrated in Figure 2.9. Note that for full fa
es (without

embedded boundary), the fa
e aperture αi+ 1

2
,j = 1, hen
e the regular 
entered

di�eren
e is used :

Fi+ 1

2
,j = GM(ϕ)i+ 1

2
,j. (2.2.4)
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Fig. 2.9. Interpolation of the �ux Fi+ 1
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2
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For the �uxes de�ned on the horizontal fa
es Ai,j± 1

2

, a linear interpolation

s
heme using the �ux in either the right or left 
ell is required. It is important to

use the appropriate interpolation so the 
omputation makes sense. The �ux Fi,j+ 1

2

on the fa
e Ai,j+ 1

2

when 0 < αi,j+ 1

2

< 1 
an be 
al
ulated using this interpolation

formula :

Fi,j+ 1

2

=

(
1 + αi,j+ 1

2

2

)

GM(ϕ)i,j+ 1

2

+

(
1 − αi,j+ 1

2

2

)







GM(ϕ)i+1,j+ 1

2

if terrain is on the left side

GM(ϕ)i−1,j+ 1

2

if terrain is on the right side

(2.2.5)

The two 
ases are shown in Figure 2.10.

When the divergen
e is 
al
ulated in a full 
ell (κi,j = 1) for whi
h all fa
e

apertures α = 1, we re
over the MAC divergen
e operator given by equation
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Fig. 2.10. Interpolation of the �ux Fi,j+ 1

2

on a 
ut 
ell edge when

the terrain is on the right hand side or left hand side.

(2.1.6) for the FVM :

DM(F)i,j =
Fi+ 1

2
,j − Fi− 1

2
,j

hx

+
Fi,j+ 1

2

− Fi,j− 1

2

hy

(2.2.6)

A 
riti
al feature of the EBM, as explained by Johansen and Colella [14℄, is

the assumption that the solution 
an be extended smoothly outside of Ω. As 
an

be seen in Figure 2.10, some grid values ϕ are 
overed by the terrain. Johansen

and Colella assume that there are solution values for them that are su�
iently

smooth so that a trun
ation error analysis based on Taylor expansions will be

valid.

For top and side boundaries whi
h have Diri
hlet 
onditions, the same gradient

sten
il is used as in the previous se
tion. Johansen and Colella use one more


onstraint on the dis
retization of the domain that is related to this gradient

formula : the interpolation sten
il must not rea
h into 
ells with zero volume

(κ = 0), hen
e the Cartesian grid must be �ne enough.

The divergen
e on the right hand side of equation (2.1.1) is

DM(v)i,j =
1

κi,j

(
αi+ 1

2
,jui+ 1

2
,j − αi− 1

2
,jui− 1

2
,j

hx

+
αi,j+ 1

2

vi,j+ 1

2

− αi,j− 1

2

vi,j− 1

2

hy

)

(2.2.7)
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The interpolation of the ve
tor �eld 
omponents in the middle of the fa
es in a


ut 
ell use the same interpolation explained earlier

uI
i+ 1

2
,j

=

(
1 + αi+ 1

2
,j

2

)

ui+ 1

2
,j +

(
1 − αi+ 1

2
,j

2

)

ui+ 1

2
,j+1 (2.2.8)

vI
i,j+ 1

2

=

(
1 + αi,j+ 1

2

2

)

vi,j+ 1

2

+

(
1 − αi,j+ 1

2

2

)







vi+1,j+ 1

2

if terrain is on the left side

vi−1,j+ 1

2

if terrain is on the right side

(2.2.9)

2.2.1. Sparse matrix

As before, the solution of the Poisson equation is found by solving a linear

system of the form Aϕ = b with the mldivide solver in MATLAB. Sin
e the


omputational domain Ω is irregular, (the zero volume 
ells, κ = 0, are not

taken into a

ount in the 
omputation), the matrix loses its symmetri
 property,

but it is still a sparse matrix. For the purpose of 
omputation, lines and rows


orresponding to 
ells where κ = 0 are not removed, but instead, a fake value is

added to the main diagonal element, so the matrix is not singular. See Figure 2.11

for the stru
ture of the matrix A for the 
ase of an exponential terrain surfa
e.
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15

20

25

30

35

40

45

nz = 222

Sparse matrix

Fig. 2.11. Sparse matrix A for solving Poisson equation on an

irregular domain with an embedded exponential hill with Nx = 6

and Ny = 8.
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2.2.2. Corre
ted ve
tor �eld

On
e the ve
tor ϕ is known, the 
orre
ted �eld on the staggered grid is easily


al
ulated with the MAC gradient operators :

ud
i+ 1

2
,j

= ui+ 1

2
,j +

1

2
GM(ϕ)i+ 1

2
,j (2.2.10)

vd
i,j+ 1

2

= vi,j+ 1

2

+
1

2
GM(ϕ)i,j+ 1

2

(2.2.11)

when αi+ 1

2
,j and αi,j+ 1

2

are not equal to zero. On
e again, it is important to


al
ulate GM(ϕ)i+ 1

2
,j and GM(ϕ)i,j+ 1

2

on the domain boundaries with the same

gradient sten
il used for 
omputing the �uxes on the boundaries.

2.3. Convergen
e and error analysis

In order to study the e�
ien
y and a

ura
y of the Embedded Boundary

Method, the algorithm will be used for solving 
onstant or parti
ular initial ve-

lo
ity �elds over di�erent geometries.

Two de�nitions of the usual norms were used for evaluating the 
onvergen
e.

In the 
ase of values on the staggered grid, the p−norm is de�ned as :

‖ξ‖p =




∑

(i,j)∈Υi,j

|ξi,j|
ph2





1/p

(2.3.1)

where Υi,j is the Cartesian grid over the total re
tangular domain. Knowing that

h2 = L2/N2, we 
an rewrite (2.3.1) as :

‖ξ‖1 =
1

N2

∑

(i,j)∈Υi,j

|ξi,j| (2.3.2)

‖ξ‖2 =
1

N




∑

(i,j)∈Υi,j

|ξi,j|
2





1/2

(2.3.3)

‖ξ‖∞ = max
(i,j)∈Υi,j

|ξi,j|. (2.3.4)

up to a 
onstant L. When the exa
t analyti
 solution for a given test 
ase is

unknown, a referen
e solution is used to 
he
k the 
onvergen
e of the algorithm.

The referen
e solution is a numeri
al solution for a problem on a �ner grid. Then,

we 
he
k at whi
h rate the error between solutions on the 
oarser grids and the
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referen
e solution diminishes when the grid resolution gets 
loser to the referen
e

grid. In our 
ase, we will 
ompute the absolute error of the horizontal and verti
al


omponents of the 
orre
ted ve
tor �eld vd = (ud, vd) with the 
omponents of the

referen
e solution. Then we will 
he
k if the errors 
onverge for di�erent norms

above.

For instan
e, the absolute error for ud is given by

eN(ud
N) =

∣
∣
∣ud

Nref
− ud

N

∣
∣
∣ . (2.3.5)

where Nref is the number of 
ells of referen
e grid and N the number of 
ells of

the a
tual grid.

In order to 
ompute the absolute error eN for the staggered 
omponents of

the wind, we must 
ompare the same grid nodes for ea
h dis
retization of the

grid. Sin
e we are using a staggered grid for our ve
tor �eld 
omponents, we must

take the mean of the 
omponents of every grid ex
ept the 
oarsest grid, so we 
an


ompute the error at the same lo
ation on all grids. Figure 2.12 shows the ve
tor


omponent ud for N = 2 and N = 8. Noti
e that the number of 
ells N in those

Fig. 2.12. The 
onvergen
e of ud on the red points of the grid

N = 2 is done with the mean of the blue points of the grid N = 8.

norms will have to be repla
ed by Ncoar whi
h is the number of horizontal (resp.
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verti
al) 
omponents of the velo
ity of the 
oarsest grid on whi
h the 
onvergen
e

tests are done. This 
orresponds to Ncoar = 6 in our example in �gure 2.12.

Sin
e the dis
retization of the topography relies on the grid, ea
h dis
retization


hanges the geometry of the domain. In order to avoid misleading errors, we will

not 
onsider the ve
tor �eld 
omponents where αi+ 1

2
,j and αi,j+ 1

2

are not equal to

one for the 
oarsest dis
retization.

The se
ond de�nition of the norm is a volume-weighted norm as used by

Johansen and Colella [14℄ for 
ell-
entered quantities. For a 
ell-
entered variable

ξ, the max norm is :

‖ξ‖∞ = max
(i,j)∈Ω

|ξi,j| (2.3.6)

and the p−norm :

‖ξ‖p =




∑

(i,j)∈Ω

|ξi,j|
pκi,jh

2
/ ∑

(i,j)∈Ω

κi,jh
2





1/p

(2.3.7)

where Ω is the 
omputational domain and κi,j the volume fra
tion of ea
h 
ontrol


ell.

This de�nition of the norms is parti
ularly useful when the exa
t solution of

the equation is known. If it is not the 
ase, we pro
eed as before using a referen
e

solution whi
h is the solution on a grid of very �ne resolution. Then, we 
ompute

the error between the solutions of the 
oarsest grids and the referen
e �ne grid. In

our 
ase, we are interested in the 
onvergen
e of the velo
ity �eld. Sin
e the norms

are de�ned for 
ell-
entered quantities, we average the edge-
entered velo
ity �eld

at the 
enter of ea
h 
ell. Then, the referen
e solution must be averaged to the


oarse grid using a volume-weighted average :

Av(ξf ) =
1

V c

∑

vf∈F

V fξvf
(2.3.8)

where F is the set of 
ells of the �ne grid vf 
ontained in the 
ell of the 
oarse grid

vc and where V f and V c are the volume of 
ells vf and vc respe
tively. Figure

2.13 shows the 
ells vf of the �ne grid when N = 8 that are 
ontained in the


oarse 
ell vc of the grid N = 2.
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Fig. 2.13. The �ne to 
oarse averaging of a 
ell-
entered quantity

using a volume-weighted average of values of the �ne grid N = 8

to the 
oarse grid N = 2.

This average is useful sin
e it allows us to use all the grid 
ells of any resolution

grid size for 
omparing with the referen
e grid, whi
h is not the 
ase with the

previous de�nition of the norm, sin
e we were restri
ted to the number of values of

the 
oarsest grid Ncoar. Also, the volume-weighted average 
onsiders the geometry

of the terrain in the two grids.

The absolute error for the 
omponent ud is then given by

eN(ud
N) =

∣
∣
∣Av(ud

Nref
) − ud

N

∣
∣
∣ . (2.3.9)

where Nref is the number of 
ells of referen
e grid and N the number of 
ells

of a 
oarser grid. The absolute error is 
omputed for the other 
omponents of

the 
orre
ted ve
tor �eld vd = (ud, vd). Then, we 
he
k if the errors 
onverge

to zero for di�erent volume-weighted norms. It is important to note that for the

two-dimensional test 
ases, the volume-weighted norms were taken over all full

volume 
ells only.

All 
onvergen
e tests are performed on square domains :

L = Lx = Ly

N = Nx = Ny

h = hx = hy.

For all our 
ases, we set L = 10 and we use as a referen
e solution the results

obtained on the grid with Nref = 512 
ells and the 
oarsest grid is N = 8.
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The solutions of the di�erent 
ases will be shown with the streamlines of the

velo
ity �eld and the 
ontour plots for the �nal divergen
e and velo
ity 
ompo-

nents. Those �gures will be done using the following parameters for the dis
retiza-

tion of the re
tangular domain in all 
ase tests :

N L

64 10

Tab. 2.1. Parameters used for test 
ases in 2D.

2.3.1. Flat terrain 
ase

The �rst test is done on a topography whi
h is a �at line de�ned by

Hflat(x) =
Ly

3
. (2.3.10)

This simple geometry does not show the powerful features of EBM but it allows

us to 
he
k if the 
onvergen
e rate of EBM for a re
tangular domain is similar

to the FVM. We also want to see the e�e
ts of the boundary 
onditions on the

�nal velo
ity �eld. Even if we are just 
onsidering velo
ity �elds for whi
h the

magnitude 
hanges with height in our model, we de�ne the following arbitrary

initial velo
ity �eld for this test 
ase :

(u, v)flat = (100 + x
5

4 , 0). (2.3.11)

Note that for a 
onstant horizontal velo
ity �eld over a �at terrain and even a

horizontal velo
ity �eld with in
reasing amplitude over the y−axis, the initial

divergen
e will be zero, meaning that the initial ve
tor �eld is already mass-


onsistent. This will result in the trivial solution ϕ = 0 over the whole domain,

hen
e the gradient giving the 
orre
tion will be zero and the �nal ve
tor �eld will

be the same as the initial one. For that reason, we use an initial velo
ity �eld

whi
h depends on x.

Sin
e the velo
ity in
reases with x, we 
an therefore expe
t an in
reasing

divergen
e on the x−axis. The algorithm results in a zero-divergen
e velo
ity

�eld as is shown in Figure 2.14.
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Fig. 2.14. Streamlines and divergen
e of initial and �nal ve
tor

�elds (u, v)flat over the �at terrain surfa
e Hflat.

Noti
e that the streamlines of the �nal ve
tor �eld are not exa
tly straight

as we 
ould expe
t. Figure 2.15 shows the 
ontour plot of the �nal velo
ity �eld


omponents.
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Fig. 2.15. Contour plot of the �nal velo
ity �eld 
omponents

(ud, vd)flat over the �at terrain surfa
e Hflat.
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As we 
an see, even if the initial verti
al velo
ity 
omponent v was zero, a


orre
tion was added to this 
omponent. This might be explained by the homo-

geneous Diri
hlet boundary 
ondition at the top of the domain whi
h does not

for
e the �nal ve
tor �eld to remain horizontal at the top boundary.

In �gure 2.16, we plot the di�erent norms of the absolute errors de�ned above

on a log-log s
ale as a fun
tion of the parameter N .
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Fig. 2.16. Norms of the staggered absolute error eN (top) and

volume-weighted norms of the 
ell-
entered absolute error eN (bot-

tom) of (ud, vd)flat.

The 
onvergen
e rate of the absolute error eN in the di�erent norms are shown

in the following tables.

We noti
e a big di�eren
e between the max norm of the two tables even if

their de�nition is the same. This is explained by the fa
t that in the 
ase of the

max norm of the absolute error of the staggered 
omponents, only a few number
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eN L∞ L1 L2

u 1.87 1.83 1.85

v 1.87 1.89 1.88

Tab. 2.2. Convergen
e rate of staggered absolute error eN for (ud, vd)flat.

eN L∞ L1 L2

u 1.06 2.05 1.94

v 1.08 2.00 1.93

Tab. 2.3. Convergen
e rate of 
ell-
entered absolute error eN for (ud, vd)flat.

of edges are used for 
omputing the error, while in the volume-weighted norm,

all 
ells are 
onsidered, espe
ially those 
lose to the embedded boundary, where

the larger errors usually o

ur. Otherwise, for the L1 and L2 norms, the rate of


onvergen
e is about O(h2).
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2.3.2. Sinusoidal hills 
ase

We now 
onsider a slightly more 
ompli
ated geometry in order to 
he
k the

performan
e of the Embedded Boundary Method. The topography is de�ned by

a sinusoidal fun
tion :

Hsin(x) =
Ly

30
sin(x + 10) +

Ly

8
(2.3.12)

The arbitrary initial ve
tor �eld is horizontal and 
onstant and given by

(u, v)sin = (1, 0). (2.3.13)

The initial velo
ity �eld does not satisfy the slip 
ondition at the terrain

boundary, hen
e we expe
t some divergen
e at the terrain surfa
e, as shown by

Figure 2.17. Noti
e that the streamlines of the initial ve
tor �eld are only hor-

izontal and that some streamlines are missing in the se
ond 
avity. This is due

to the fa
t that the parti
les near the terrain surfa
e that tra
e the streamlines

rea
h the terrain surfa
e at some point and remember that the velo
ity ve
tor

�eld is de�ned as zero under the topography. The ve
tor �eld is well 
orre
ted

sin
e the streamlines of the �nal ve
tor �eld are parallel to the topography and

the �nal divergen
e is zero everywhere.

The 
onvergen
e of the error for the two 
omponents of the �nal ve
tor �eld

is shown in Figure 2.18.

The 
onvergen
e rates of the absolute error eN in the di�erent norms are

shown in the following tables.

eN L∞ L1 L2

u 2.21 1.96 2.05

v 2.06 2.09 2.06

Tab. 2.4. Convergen
e rate of staggered absolute error eN for (ud, vd)sin.

eN L∞ L1 L2

u � 1.82 1.57

v � 1.81 1.12

Tab. 2.5. Convergen
e rate of 
ell-
entered absolute error eN for (ud, vd)sin.
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Fig. 2.17. Streamlines and divergen
e of initial and �nal ve
tor

�elds (u, v)sin over the sinusoidal hills Hsin.

We noti
e that the max norm does not 
onverge in the lower graph. The max

norm is rea
hed in a 
ell near the terrain surfa
e. The most plausible explanation

for the non-
onvergen
e in this norm is the 
hange in the geometry of the topog-

raphy for ea
h dis
retization of the grid. Sin
e the geometry is not exa
tly the

same for two di�erent dis
retizations this would a�e
t the averaging of the refer-

en
e solution on a 
oarser grid done with (2.3.8) and thus a�e
t the 
onvergen
e

of the solution.

For the other volume-weighted norms, the 
onvergen
e rate is a bit lower than

what we have seen in the �at terrain 
ase sin
e the geometry is more 
ompli
ated.

The norms of the staggered errors are better though, whi
h might be explained

by the fa
t that the initial velo
ity �eld was 
onstant rather than a

elerating as

in the �at terrain 
ase.
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Fig. 2.18. Norms of the staggered absolute error eN (top) and

volume-weighted norms of the 
ell-
entered absolute error eN (bot-

tom) of (ud, vd)sin.
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2.3.3. Exponential hill 
ase

The two previous test 
ases used relatively smooth topographi
al shapes. We

now want to test the EBM algorithm over a more 
ompli
ated geometry. The

topography is de�ned by

Hexp(x) = 4 exp

(

−

(

x −
Lx

2

)2
)

+
Ly

10
(2.3.14)

with the highest peak rea
hing half of the verti
al domain length. Sherman [24℄

remarks that the topography should not rea
h the top boundary of the 
ompu-

tational domain, whi
h makes sense. Ratto et al. [20℄ adds that the top domain

boundary should be high enough over the topography in order to obtain good

results.

We on
e more use a 
onstant horizontal initial ve
tor �eld given by

(u, v)exp = (1, 0). (2.3.15)

As in the 
ase of the sinusoidal hills, the region where the 
omputed divergen
e

of the initial velo
ity �eld is not zero will be near the terrain surfa
e and the

resulting streamlines will be horizontal. This is shown in Figure 2.19.

We remember that Ross et al. [21℄ and Barnard et al. [2℄ insisted that the

slip 
ondition should be applied on the initial velo
ity �eld with the homogeneous

Neumann boundary 
ondition at the terrain surfa
e for satisfying the impenetra-

bility 
onstraint. Sin
e we initialized our velo
ity �eld with a horizontal ve
tor

�eld, we should therefore observe a �nal ve
tor �eld that is not tangent to the

terrain surfa
e. Figure 2.20 shows that it is not the 
ase and that the slip 
ondi-

tion is satis�ed on the topography. This might be an advantage of the EBM over

the FDM.

We now verify if the 
oarse shape of the geometry has some reper
ussions on

the 
onvergen
e of the �nal ve
tor �eld. Convergen
e of the absolute error in the

di�erent norms is presented in Figure 2.21.

The 
onvergen
e rates of the absolute error for di�erent norms of �gure 2.21

are shown in the following tables.
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Fig. 2.19. Streamlines and divergen
e of the initial and �nal ve
tor

�elds (u, v)exp over exponential hill Hexp.
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Fig. 2.20. Final ve
tor �elds (u, v)exp over the exponential hill Hexp.

The max norm still does not seem to 
onverge when only full 
ells are taken

into a

ount. The non-
onvergen
e in this norm is not 
aused by small volume


ells, sin
e these are not used when the max norm is 
omputed. It 
an be shown

that even if those 
ells are not taken into a

ount, the maximum of the error is
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Fig. 2.21. Norms of the staggered absolute error eN (top) and

volume-weighted norms of the 
ell-
entered absolute error eN (bot-

tom) of (ud, vd)exp.

eN L∞ L1 L2

u 0.85 1.82 1.57

v 0.59 1.81 1.12

Tab. 2.6. Convergen
e rate of staggered absolute error eN for (ud, vd)exp.

eN L∞ L1 L2

u � 1.62 1.12

v � 1.80 1.35

Tab. 2.7. Convergen
e rate of 
ell-
entered absolute error eN for (ud, vd)exp.

always rea
hed in the 
ells 
lose to the terrain surfa
e. Even if the max norm

does not 
onverge, the generated velo
ity �eld is still in
ompressible sin
e it has
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zero-divergen
e and 
an be used for wild�re spread simulations. In a
tual models

for wild�res spread, the wind velo
ity whi
h is 
onsidered for the propagation of

the �re is always taken from a 
ertain height above the topography, hen
e we

don't need to worry mu
h about the fa
t that the max norm of the absolute error

is not 
onverging.

For the L2-norm, the rate of 
onvergen
e is now about O(h). The exponential

topography has a greater impa
t on the �nal velo
ity �eld as was expe
ted.
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2.3.4. Half-
ylinder hill 
ase

We now want to 
he
k if our numeri
al solution 
onverges to an exa
t solution.

Exa
t solutions for the Poisson equation are known for very simple geometries

su
h as the half-
ylinder. Final velo
ity �elds generated from uniform 
onstant

initial velo
ity �elds are expe
ted to generate a potential-like �ow. Hen
e, from an

initial ve
tor �eld, we will try to generate a potential �ow for whi
h the analyti


solution is known. Wang et al. [25℄ and Ross et al. [21℄ used a uniform velo
ity

�eld in 
onformal 
oordinates to a
hieve this. We will see that good results 
an

be obtained in Cartesian 
oordinates when solving with the EBM.

Our test 
ase will be to �nd the potential �ow around a half-
ylinder. We use


onventional polar 
oordinates (r, θ) to solve the following Lapla
e equation :

∆ϕ = 0 (2.3.16)

with the following boundary 
onditions :

Far away from the 
ylinder of radius R, i.e. r/R ≫ 1, the �ow is assumed to be

only horizontal :

∇ϕ = (u, 0) (2.3.17)

and on the 
ylinder surfa
e, i.e. r = R, the slip 
ondition must be ful�lled :

v · n = ∇ϕ · n = 0 (2.3.18)

⇒
∂ϕ

∂r
= 0. (2.3.19)

The exa
t solution of this problem is given by the potential ϕ :

ϕ(r, θ) = u

(

r +
R2

r

)

cos θ. (2.3.20)

The ve
tor �eld 
an be found �rst of all in polar 
oordinates :

vr =
∂ϕ

∂r
= u

(

1 −
R2

r2

)

cos θ (2.3.21)

vθ =
∂ϕ

∂θ
= −u

(

1 +
R2

r2

)

sin θ (2.3.22)
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but sin
e we are using Cartesian 
oordinates for our 
omputation, we will use the

ve
tor �eld (u, v) :




u

v



 =




cos θ − sin θ

sin θ cos θ








vr

vθ



 . (2.3.23)

On
e again, the 
onvergen
e will be tested in square domains. We will 
ompare the

ve
tor �eld 
omponents of the numeri
al solution (ud, vd) with the exa
t solution

(uexact, vexact) by 
al
ulating the absolute error of the di�eren
e. For example,

eN(ud) =
∣
∣uexact

N − ud
N

∣
∣ . (2.3.24)

Then we will take the volume-weighted norms of eN(ud) de�ned earlier. All this

is also done for vd.

In the arti
les [21℄ and [25℄, the authors use a uniform ba
kground wind in


onformal 
oordinates as the initial ve
tor �eld. They say that sin
e ∇ · v = 0,

the Poisson equation will then be redu
ed to the Lapla
e equation ∆ϕ = 0 so

the numeri
al solution should 
onverge to the solution of potential �ow. Ross et

al. use terrain-following 
oordinates to satisfy the slip 
ondition on the terrain

boundary and solve the Lapla
e equation. In our 
ase, we use the initial ve
tor

�eld given by

(u, v)cyl = (1, 0) (2.3.25)

and the topography is de�ned by

Hcyl(x) =

√

R2 −

(

x −
Lx

2

)2

(2.3.26)

with R =
Lx

8
.

We already know that the divergen
e of the initial velo
ity �eld will not be zero

everywhere sin
e the ve
tor �eld is not tangential to the half-
ylinder boundary.

This 
an be seen in Figure 2.22. In this �gure, the streamlines of the �nal velo
ity

�eld are drawn in red and those of the exa
t velo
ity �eld in bla
k. As we 
an see,

the pro�les drawn by the streamlines are very similar, but this does not mean

that the numeri
al solution 
onverges to the analyti
 solution.
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Fig. 2.22. Streamlines and divergen
e of the initial and �nal ve
tor

�elds (u, v)cyl over half-
ylinder hill Hcyl.

Figure 2.23 shows the absolute error of the numeri
al solution with the exa
t

solution in di�erent volume-weighted norms. We 
an therefore 
on
lude that there

is no 
onvergen
e. This might o

ur for di�erent reasons. First, the exa
t solution
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Fig. 2.23. Volume-weighted norms of the 
ell-
entered absolute

error eN of (ud, vd)cyl.
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is found when solving the Lapla
e equation. In our 
ase, we are solving a Poisson

equation sin
e the initial divergen
e is not zero over the whole domain. In the

mathemati
al problem, one of the boundary 
onditions assumes that the initial

velo
ity must be only horizontal at in�nity. Our solution is found with Diri
hlet

boundary 
onditions on a �nite domain. The size of the domain might be too

small for the 
ylinder radius. Probably the two solutions would be even 
loser for

a smaller 
ylinder radius. However, even if the solution does not 
onverge, the

resulting numeri
al �ow looks very mu
h like a potential �ow.

Figure 2.24 shows the 
ontour plot of the horizontal 
omponents u of the �nal

ve
tor �eld and exa
t ve
tor �eld. The pro�le is very similar ex
ept in magnitude.

This is even more obvious when looking at Figure 2.25 whi
h shows the pro�le
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Fig. 2.24. Contour plot of horizontal 
omponent of numeri
al and

exa
t velo
ity �elds over a half-
ylinder hill Hcyl.

of the 
omponents of the numeri
al ve
tor �eld over the exa
t ve
tor �eld. We

see that the pro�les have quite the same shapes but that the magnitude of the

velo
ity is di�erent, parti
ularly for the 
omponent u.

Figure 2.26 shows the numeri
al and exa
t ve
tor �elds 
lose to the surfa
e

of the half-
ylinder. The ve
tor �elds do not mat
h perfe
tly 
lose to the terrain

surfa
e, whi
h might 
ontribute to the errors between the numeri
al and exa
t

solutions. This di�eren
e might be an artefa
t due to the average of the numeri
al

staggered velo
ity �eld sin
e no extrapolation is done in zero volume 
ells when


omputing the average in the 
ut 
ells.
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2.4. Fire spread by an in
ompressible flow

In this se
tion, we explain how the �re is moved by a mass-
onsistent wind.

First, a divergen
e-free ve
tor �eld vd is generated from a given initial wind ve
tor

�eld v whi
h ful�ls the slip 
ondition on the terrain surfa
e. The global velo
ity

vtot of the �re is given by

vtot = vd + vfire

where vd is the divergen
e-free wind ve
tor �eld and vfire some 
onstant velo
ity

for the �re itself moving on the topography. In 
ase of absen
e of wind, the �re

would move at 
onstant speed vfire. Sin
e the ve
tor �eld vd is tangent to the

topography, only the horizontal 
omponent ud is needed.

utot
i+ 1

2
,j

= ud
i+ 1

2
,j

+ u
fire

i+ 1

2
,j

where u
fire

i+ 1

2
,j

= proj
x
vfire and where j is the lowest verti
al index where ui+ 1

2
,j is

non-zero.

Euler's method is used to simulate the �re propagation :

dx

dt
= vtot (2.4.1)

x
n+1 − x

n

∆t
= vtot (2.4.2)

x
n+1 = x

n + ∆tvtot (2.4.3)

Figure 2.27 shows the evolution of the position of a �re represented by a point

(•) and starting on the left side of the domain. The �re is pi
tured at every time

step ∆t = 1 for di�erent terrain geometries on a 50 × 50 grid. The initial ve
tor

�eld is de�nded as v = (1, 0) and norm of the �re velo
ity |vfire| = 0.5.

2.4.1. Wind e�e
t depending on its altitude

We now illustrate how the wind a�e
ts the �re spread depending on the height

at whi
h it is 
hosen. Here, we experiment with this e�e
t using the sinusoidal and

exponential hills. In both 
ases, the initial wind ve
tor �eld is uniform, v = (1, 0),

and the �re velo
ity is |vfire| = 0.5. The 
orre
ted wind ve
tor �eld is 
al
ulated

on a uniform 50×50 grid and ∆t = 1. Figure 2.28 shows that the wind at di�erent
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Fig. 2.27. Fire spreading over di�erent terrain shapes (wind in�ow

is on the left side).

heights over the topography has little in�uen
e on the �re spread, whi
h is not

the 
ase with the exponential topography in �gure 2.29.
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Chapitre 3

SOLVING THE MODEL IN 3 DIMENSIONS

We now generalize the model for the three dimensional 
ase. This part of

the proje
t was a
hieved with the use of EBChombo, a software developed by

the ANAG team at the Lawren
e Berkeley National Laboratory. EBChombo is

a 
olle
tion of C++ 
lasses with FORTRAN subroutines for the 
onstru
tion of

numeri
al PDE algorithms in 
omplex geometries using the Embedded Boundary

Method. It is based on Chombo whi
h also provides tools for solving PDE su
h

as Adaptive Mesh Re�nement (AMR) and allows the use of parallel 
omputing.

We �rst explain how EBM is implemented in EBChombo and more pre
isely

how the embedded boundary and the operators are dis
retized to 3D. Then the

test 
ases of the previous 
hapter are generalized in 3D for testing the 
onvergen
e

of the algorithm.

3.1. Embedded Boundary Method

We re
all that the aim of the Embedded boundary method here is to solve

the ellipti
 equation :

∇ · ∇ϕ = −2∇ · v (3.1.1)

on an irregular domain in three dimensions with homogeneous Neumann 
ondi-

tion at the embedded boundary and homogeneous Diri
hlet 
ondition at domain

boundaries. This 
hapter generalizes the algorithm based on the �nite volume

method explained in 
hapter two. The general idea of the approa
h is well ex-

plained in the arti
le of S
hwartz et al. [23℄.
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3.1.1. Dis
retization of the domain

The underlying dis
retization of spa
e is given by re
tangular 
ell-
entered


ontrol volumes on a Cartesian grid Υi = [(i − 1
2
u)hd, (i + 1

2
u)hd], i ∈ Z

D where

hd is the mesh spa
ing in the d−dire
tion, and u ∈ Z
D is the ve
tor with all


omponents equal to one.

The geometry of the irregular domain Ω is represented by its interse
tion with

the Cartesian grid. The method uses 
ontrol volumes Vi = Υi∩Ω and fa
es A
i± 1

2
ed

whi
h are the interse
tions of ∂Vi with the 
oordinate planes {x : xd = (id±
1
2
)hd}.

Here ed is the unit ve
tor in the d−dire
tion. The interse
tion of the boundary

of the irregular domain and the Cartesian 
ontrol volumes are the fa
es AB
i

=

Υi ∩ ∂Ω.

The dis
retized divergen
e operator requires some geometri
 data on the 
on-

trol volume 
ells su
h as areas and volumes written in nondimensional terms :

volume fra
tions : κi = |Vi|
∏D

d=1

1

hd

fa
e apertures : α
i± 1

2
ed

= |A
i± 1

2
ed
|
∏

d′ 6=d

1

hd′

boundary apertures : αB
i
.

It is also assumed that these values 
an be 
al
ulated with a

ura
y of O(h2).

Lo
ation of 
entroids and the average outward normal 
an also be 
omputed with

these expli
it formulas :

fa
e 
entroid : x
i+ 1

2
ed

=
1

|A
i+ 1

2
ed
|

∫

A
i+1

2
ed

xdA

boundary fa
e 
entroid : xB
i

=
1

|AB
i
|

∫

AB
i

xdA

outward normal : nB
i

=
1

|AB
i
|

∫

AB
i

n
BdA

where n
B is the outward normal to the boundary ∂Ω de�ned for ea
h point on

∂Ω. Again, the a

ura
y of these 
omputed quantities is assumed to be O(h2).
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3.1.2. Embedded Boundary representation

EBChombo uses an impli
it fun
tion φ : R
D → R for embedding the irregular

geometry in the Cartesian grid and de�ning the 
omputation domain Ω :

Ω = {x : φ(x) < 0} (3.1.2)

∂Ω = {x : φ(x) = 0}. (3.1.3)

This approa
h has been 
hosen by the ANAG team for di�erent reasons,

namely the easy 
omputation of fun
tions su
h as the normal at the boundary

and representation of sophisti
ated geometries. Moreover, the moments whi
h

are used for 
omputing the 
entroids 
an be found using the divergen
e theorem,

Taylor expansions, least squares, re
ursion, and 1D root �nding. An advantage is

that an expli
it representation of the irregular domain and its boundary is never

needed nor 
omputed. The arti
le of Ligo
ki et al. [16℄ explains in more detail

how this is a
hieved.

In our 
ase, we assume in the 2D model that the topography was given by

an analyti
 fun
tion H : R
D−1 → R where D = 2. In order to represent su
h

fun
tions in EBChombo, we will use an impli
it fun
tion of the form φ(x, y, z) =

H(x, y) − z.

3.1.3. Divergen
e operator

The divergen
e operator ∇· is dis
retized using the divergen
e theorem as

before. Let F = (F 1, . . . , FD) be a fun
tion of x. By the midpoint rule we have :

∇ · F ≈
1

|Vi,j|

∫

Vi

∇ · FdV =
1

|Vi,j|

∮

∂Vi

F · ndA (3.1.4)

≈
1

κih

[(
∑

±=+,−

D∑

d=1

±α
i± 1

2
ed

F d(x
i± 1

2
ed

)

)

+ αB
i
ni

B · F(xi
B)

]

. (3.1.5)

On
e again, the homogeneous Neumann boundary 
ondition is applied on the

embedded boundary, meaning that F(xi
B) = 0. Hen
e, the dis
rete divergen
e

operator be
omes

DM(F)i,j =
1

κih

(
D∑

d=1

α
i+ 1

2
ed

F d
i+ 1

2
ed

− α
i− 1

2
ed

F d
i− 1

2
ed

)

(3.1.6)
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3.1.4. Flux interpolation

In order to use the divergen
e operator on the volume 
ontrol 
ells next to

the boundaries of the domain, the �uxes on the boundaries must be spe
i�ed. At

the embedded boundary, the problem uses a homogeneous Neumann 
ondition

∂ϕ
∂n

= 0, whi
h means that the �ux is simply zero, F(xi
B) = 0.

For the top and side domain boundaries, the homogeneous Diri
hlet 
ondition

ϕ = 0 is applied as in the 2D 
ase. As we have seen before, this kind of 
ondition

does not pres
ribe a parti
ular value for the �ux at the boundary, hen
e the �ux

must be interpolated. We use the same three-point gradient sten
il as in equation

(2.1.11) of the two-dimensional problem in order to get a spe
i�
 value of the �ux

on those boundaries.

For example, the �ux on the right boundary in the dire
tion d = 1 is given by

F
i+ 1

2
e1

=
1

h1

[

3
(
ϕB − ϕi

)
−

1

3

(
ϕB − ϕi−e1

)
]

. (3.1.7)

where ϕB is the value of ϕ at the boundary.

The divergen
e operator requires �uxes to be de�ned on the fa
e 
entroid of

the volume 
ells. For 
ut 
ells, the �ux must be spe
i�ed at the 
entroid of the

fa
e 
ells. In order to a
hieve this, EBChombo applies a bilinear interpolation

using the value of the �uxes in the neighbouring 
ells. A bilinear interpolation


an be seen as a 
omposition of two linear interpolations.

For instan
e, given a fa
e with outward normal e1 with 
entroid x, the �ux

F d
i+ 1

2
e1

in the d−dire
tion for d 6= 1 is linearly interpolated by :

F d
i+ 1

2
e1

= η
(ϕi+e1

− ϕi)

h
+ (1 − η)

(ϕi+e1±ed
− ϕi±ed

)

h
(3.1.8)

η = 1 −
|x · ed|

h
(3.1.9)

± =







+ x · ed > 0

− x · ed ≤ 0
. (3.1.10)

This part is illustrated by the red dashed lines in Figure 3.1. Then, the �ux

is interpolated at the 
entroid using a linear interpolation of the two previous
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linearly interpolated �uxes, whi
h results in the bilinear interpolation :

F
i+ 1

2
e1

= ηF d
i+ 1

2
e1

+ (1 − η)F d
i+ 1

2
e1±ed′

(3.1.11)

η = 1 −
|x · ed′ |

h
(3.1.12)

± =







+ x · ed′ > 0

− x · ed′ ≤ 0
. (3.1.13)

where d′ 6= d and d′ 6= 1. This last step is pi
tured by the blue dashed line in

Figure 3.1 whi
h gives an example of the bilinear interpolation of the �ux F
i+ 1

2
e1

at the 
entroid in the 
ase where d = 2 and d′ = 3.

PSfrag repla
ements

e1

e2

e3

Fig. 3.1. Interpolation of the �ux F
i+ 1

2
e1

at the 
entroid of the 
ut

fa
e 
ell edge using bilinear interpolation. The s
heme here is for

the 
ase where d = 2 and d′ = 3.

Note that for 
ut fa
es where the distan
e between the fa
e 
entroid and the

fa
e 
enter only depends on one of the two tangential 
omponents of the fa
e, the

bilinear interpolation redu
es to a simple linear interpolation as shown in Figure

3.2.

As mentioned by S
hwartz et al. [23℄, this is a nontrivial 
hoi
e for 
omputing

the �uxes on 
ut fa
e 
ells. In fa
t, experiments have shown that this 
hoi
e

of bilinear interpolation assures the stability of the method for all test 
ases,

espe
ially for some 
on�gurations of adja
ent small 
ontrol volumes, whi
h was

not true when using a more simple linear interpolation.
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PSfrag repla
ements

e1
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Fig. 3.2. Interpolation of the �ux F
i+ 1

2
e1

at the 
entroid of the


ut 
ell fa
e using linear interpolation when the distan
e between

the fa
e 
entroid and the fa
e 
enter only varies in the tangential

dire
tion e3.

3.1.5. MAC Proje
tion

We give some details on the 
lass EBCompositeMACProjector whi
h was used

to obtain the divergen
e-free velo
ity �eld from an initial velo
ity �eld using

the MAC proje
tion and the Embedded Boundary Method. EBChombo is built

so that it takes advantage of the adaptive mesh re�nement (AMR) multigrid

algorithm developed by Martin and Cartwright [17℄. Sin
e the 2D version has

not been implemented with AMR, the tests in 3D use only one level, meaning

that none of the multigrid features were used here.

The fun
tions in the 
lass �rst 
ompute the right hand side of equation (3.1.1)

ρ = −2∇ · v. Then the ellipti
 equation ∆ϕ = ρ is solved with the Embedded

Boundary Method on a Cartesian grid. Finally, the proje
tion is 
ompleted by

doing the 
orre
tion :

v
d = v +

1

2
∇(∆−1∇ · v). (3.1.14)

Some parameters must be de�ned in order to use the 
lass 
orre
tly. For all

simulations, a number of 40 iterations were done for pre-
onditioning. The Gauss-

Seidel method was used as the relaxation method and the minimum residual

method for solving the ellipti
 equation.
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3.2. Convergen
e and error analysis

As in 
hapter two, we study the e�
ien
y and a

ura
y of the Embedded

Boundary Method. The algorithm will be used for solving 
onstant or parti
ular

initial velo
ity �elds over di�erent geometries.

When the exa
t solution is unknown, we study the 
onvergen
e of the algo-

rithm using a referen
e solution whi
h is solution on a grid of very �ne resolution.

Then, we 
ompute the error between the solutions of the 
oarsest grids and the

referen
e �ne grid. In our 
ase, we are interested by the 
onvergen
e of the velo
-

ity �eld. Sin
e the norms are de�ned for 
ell-
entered quantities, we average the

edge-
entered velo
ity �eld at the 
enter of ea
h 
ell. Then, the referen
e solution

must be averaged to the 
oarse grid using a volume-weighted average available in

the EBCoarseAverage 
lass :

Av(ξf ) =
1

V c

∑

vf∈F

V fξvf
(3.2.1)

where F is the set of 
ells of the �ne grid vf 
ontained in the 
ell of the 
oarse

grid vc and where V f and V c are the volume of 
ells vf and vc respe
tively. Figure

3.3 shows the 
ells vf of the �ne grid N = 8 that are 
ontained in the 
oarse 
ell

vc of the grid N = 2.

Fig. 3.3. The �ne to 
oarse averaging of a 
ell-
entered quantity

using a volume-weighted average of values of the �ne grid N = 8

to the 
oarse grid N = 2.
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The absolute error for the 
omponent u is given by

eN(uN) =
∣
∣Av(uNref

) − uN

∣
∣ . (3.2.2)

where Nref is the number of 
ells of the referen
e grid and N the number of 
ells

of a 
oarser grid. The absolute error is 
omputed for the other 
omponents of the


orre
ted ve
tor �eld vd = (ud, vd, wd). Then, we 
he
k if the errors 
onverge for

di�erent norms. We use the volume-weighted norm de�ned in the Johansen and

Colella arti
le [14℄, whi
h is available in the EBArith 
lass. For a 
ell-
entered

variable ξ, the max norm is :

‖ξ‖∞ = max
(i,j,k)∈Ω

|ξi,j,k|. (3.2.3)

and the p−norm :

‖ξ‖p =




∑

(i,j,k)∈Ω

|ξi,j,k|
pκi,j,kh

D
/ ∑

(i,j,k)∈Ω

κi,j,kh
D





1/p

(3.2.4)

where Ω is the 
omputational domain and κi,j,k the volume fra
tion of ea
h 
ontrol


ell.

For the 3D test 
ases, the norms of the absolute error were taken over all

non-zero volume 
ells.

All 
onvergen
e tests are performed on square domains :

L = Lx = Ly = Lz

N = Nx = Ny = Nz

h = hx = hy = hz.

and where the verti
al axis is given by y. For all our tests, L = 10 and we use as

a referen
e solution the results obtained on the grid Nref = 128 and the 
oarsest

grid is N = 4.

The solutions of the di�erent 
ases will be shown with the streamlines of the

velo
ity �eld and the 
ontour plots for the �nal divergen
e and velo
ity 
ompo-

nents. Those �gures will be done using the following parameters for the dis
retiza-

tion of the re
tangular domain in all test 
ases :
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N L

64 10

Tab. 3.1. Parameters used for test 
ases in 3D.

3.2.1. Flat terrain 
ase

The �at terrain is a simple topography for whi
h the Embedded Boundary

Method should not be so di�erent from the Finite Volume Method. The topog-

raphy is a plane surfa
e de�ned by

Hflat(x, y) =
Ly

3
. (3.2.5)

For the tests, we use a horizontal initial velo
ity �eld whi
h is a

elerating in the

x−dire
tion :

(u, v, w)flat = (100 + x
5

4 , 0, 0). (3.2.6)

Figure 3.4 shows the divergen
e of the 
orre
ted velo
ity �eld on three planes


rossing the 
omputational domain Ω, the grey horizontal plane being the �at

topography.

Fig. 3.4. Divergen
e of the �nal ve
tor �eld (u, v, w)flat over the

�at terrain Hflat.
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The 
onvergen
e of the 
orre
ted velo
ity �eld with a referen
e solution is

shown in �gure 3.5.
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Fig. 3.5. Volume-weighted norms of the 
ell-
entered absolute er-

ror eN of (ud, vd, wd)flat.

Using the polyfit fun
tion in Matlab, we �nd that the rate of 
onvergen
e

for the three 
omponents of the velo
ity �eld presented in the following tables.

The rate of 
onvergen
e is about O(h2) for the L1−norm and the L2−norm. For

eN L∞ L1 L2

u 1.11 2.00 1.89

v 1.10 2.09 1.89

w 1.09 2.07 1.87

Tab. 3.2. Convergen
e rate of (u, v, w)flat in di�erent norms.

the L∞−norm, the error 
onvergen
e rate is O(h). This might be explained by

the fa
t that the largest errors are 
ontained in partial volume 
ells.

3.2.2. Sinusoidal hills 
ase

As in 
hapter two, we try our 3D algorithm over a geometry whi
h has a few

more features. The topography is de�ned by the sinusoidal fun
tion :

Hsin(x, y) =
Ly

30
sin(x + 10) +

Ly

8
(3.2.7)
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and the initial velo
ity �eld is horizontal and 
onstant in the x−dire
tion :

(u, v, w)sin = (1, 0, 0). (3.2.8)

The results are similar to those obtained in 2D. We take a 
loser look to the


onvergen
e whi
h is shown in �gure 3.6.
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Fig. 3.6. Volume-weighted norms of the 
ell-
entered absolute er-

ror eN of (ud, vd, wd)sin.

In this 
ase, we already noti
e that the rate of 
onvergen
e in L∞−norm does

not 
onverge. Remember that in the 3D 
ase, the partial volume 
ells are kept

in the 
omputation of the volume-weighted norms, whi
h is not the 
ase in 2D.

Sin
e the largest errors o

ur near the terrain surfa
e, this might explain why the

errors don't 
onverge in the L∞−norm. Moreover, as explained for this test 
ase in


hapter two, the geometry of the terrain surfa
e 
hanges with ea
h dis
retization

of the grid whi
h a�e
ts the averaging of the referen
e solution on a 
oarser grid.

This 
ould also explain the non-
onvergen
e in this norm.

eN L∞ L1 L2

u � 1.76 1.11

v � 1.61 1.22

w � 1.75 1.07

Tab. 3.3. Convergen
e rate of (u, v, w)sin in di�erent norms.
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The rate of 
onvergen
e in the other two norms is lower that what was seen

in the �at terrain test 
ase. In fa
t, the L2−norm seems to be more 1st order

a

urate rather than 2nd. Compared to the results obtained for u and v in the

two-dimensional 
ase, it is quite similar but still lower order. Again, this might

be 
aused by the values of the velo
ity �eld in the partial volume 
ells when


omputing these norms.

3.2.3. Exponential hill 
ase

The last test 
ase aims to 
hallenge the algorithm with a more 
omplex to-

pography. The exponential hill is de�ned by

Hexp(x, y) = 4 exp

(

−

(

x −
Lx

2

)2
)

+
Ly

10
. (3.2.9)

We use the same initial ve
tor �eld as before :

(u, v, w)exp = (1, 0, 0). (3.2.10)

The exponential topography is represented by the grey surfa
e in Figure 3.7

while the 3 other planes show the remaining divergen
e after 
orre
ting the initial

ve
tor �eld. On
e again, we noti
e that the �nal divergen
e is zero everywhere.

Fig. 3.7. Divergen
e of the �nal ve
tor �eld (u, v, w)exp over expo-

nential hill Hexp.
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The 
onstant horizontal velo
ity �eld is 
orre
ted to be
ome the divergen
e-

free velo
ity �eld tangent to the topography where wind speed-up 
an be observed

at the top of the hill. This is pi
tured by the 
ontour plot of the velo
ity 
ompo-

nent u in Figure 3.8.

Fig. 3.8. Contour plot of the 
omponent u of the �nal ve
tor �eld.

Figure 3.9 shows the �nal ve
tor �eld over the exponential hill.

Fig. 3.9. Ve
tor plot of the �nal ve
tor �eld (u, v, w)exp over ex-

ponential hill Hexp.
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The 
onvergen
e of the algorithm for this test 
ase is graphed in Figure 3.10.
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Fig. 3.10. Volume-weighted norms of the 
ell-
entered absolute

error eN over exponential hill Hexp.

On
e again, nothing seems to 
onverge in the L∞−norm. The 
onvergen
e rate

in the L2−norm is even lower than in the sinusoidal hills 
ase. This is probably


aused by the fa
t that the geometry is more prominent than the small sinusoidal

hills and takes up a bigger region of the domain.

eN L∞ L1 L2

u � 1.57 0.96

v � 1.59 0.82

w � 1.93 1.19

Tab. 3.4. Convergen
e rate of (u, v, w)exp in di�erent norms.



CONCLUSIONS

The goal for this proje
t was to implement a new approa
h for modelling wild-

�re spread. The model is based on mass-
onsistent models that were developed

over the last 30 years for wind modelling in atmospheri
 s
ien
es. We have shown

that Sasaki's variational te
hnique was very similar to the proje
tion method.

This last approa
h was used for extra
ting a divergen
e-free velo
ity �eld from

any initial ve
tor �eld.

The model was formulated in su
h a way that it 
an be initialized with a

high altitude wind whi
h 
an be interpolated over the whole domain down to

the surfa
e. The geometri
 features of the topography whi
h a

ounts for most of

the �nal velo
ity pro�le are now treated e�
iently with the Embedded Bound-

ary Method. This te
hnique based on the Finite Volume Method was used for

modelling wind in two and three dimensions.

Error analysis has shown that the EBM algorithm 
onverges for all 
ases

ex
ept in the max norm. This norm is more sensitive to the error o

urring in 
ut


ells than the other 
ells of the 
omputational domain. In 2D, the half-
ylinder


ase test has shown that the resulting mass-
onsistent wind velo
ity is very similar

to the potential �ow even if our numeri
al solution does not 
onverge to the exa
t

solution.

Further resear
h will implement the in
lusion of the �re feedba
k as a dilation

sour
e term in the 
omputation of the wind, more pre
isely when solving the

Poisson equation. This additional step will lead to a mass-
onsistent and �re-

indu
ed �ow that 
ould be more representative of the a
tual wind in a wild�re

region, espe
ially for high intensity �res. New numeri
al methods will have to be

developed in order to address the numeri
al issues related to the in
lusion of the
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sour
e term in the proje
tion operators. It will also be interesting to determine

the regimes where the 
oupled �re-atmosphere mass-
onsistent model should be

used prior to the use of the 
onservation of momentum equation.
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Annexe A

PROJECTIONS

The proje
tion method whi
h has been introdu
ed in 
hapter one was used

throughout the thesis for solving the Poisson Equation. We have 
hosen a dis-


retization of the operators on a MAC grid for our algorithm. We show here two

other ways for dis
retizing the proje
tion operators, the divergen
e operator ∇·,

the gradient operator ∇ and the proje
tion operator P .

Cell-Centered Proje
tion

The 
ell-
entered proje
tion uses a grid where the 
omponents of the ve
tor

�eld v and the s
alar �eld ϕ are 
ollo
ated, i.e. de�ned at the 
enter of the 
ontrol


ells. Let Do and Go be the dis
rete divergen
e and dis
rete gradient operators

over the 
ell-
entered grid. The natural way to de�ne those operators is using the


entered di�eren
e approximations :

Do(v)i,j =
ui+1,j − ui−1,j

2hx

+
wi,j+1 − wi,j−1

2hy

(A.0.11)

and

Go(ϕ)i,j =

(
ϕi+1,j − ϕi−1,j

2hx

,
ϕi,j+1 − ϕi,j−1

2hy

)

. (A.0.12)

The proje
tion operator is then de�ned as

P
o = I − Go (DoGo)−1

Do
(A.0.13)

and Do(Po(v)) = 0.

Unfortunately, solving the Poisson equation is more 
ompli
ated sin
e the

Lapla
ian Do(Go(ϕ))i,j is di�erent from the standard Lapla
ian. The sten
il is like
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the standard 5 point Lapla
ian but it is expanded as it 
an be seen in Figure A.1.

This de
ouples a two-dimensional grid into four distin
t subgrids whi
h makes

Fig. A.1. Expanded Lapla
ian Do(Go(ϕ))i,j

the linear algebra more 
ompli
ated to solve the Poisson equation. Os
illations in

the solution might also o

ur but it 
an be 
orre
ted with �lters. Note also that

the subgrids 
an be re
oupled with the boundary 
onditions.

MAC Proje
tion

The Marker-and-Cell (MAC) proje
tion introdu
ed by Harlow and Wel
h [12℄

uses a staggered grid, where the 
omponents of the ve
tor �eld are de�ned on the

edges of the 
ontrol 
ells and the s
alar �eld is de�ned at the 
enter as shown in

Figure A.2.
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Fig. A.2. Staggered grid with the 
ell-
entered s
alar �eld ϕ and

the edge-
entered 
omponents of the velo
ity �eld (u, v).

Let DMAC and GMAC be the dis
rete divergen
e and dis
rete gradient op-

erators over the staggered grid. The divergen
e is de�ned using the divergen
e

theorem on the 
ontrol 
ell and the gradient by 
entered di�eren
es over the

edges :

DMAC(v)i,j =
ui+ 1

2
,j − ui− 1

2
,j

hx

+
wi,j+ 1

2

− wi,j− 1

2

hy

(A.0.14)
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and

GMAC(ϕ)i+ 1

2
,j =

ϕi+1,j − ϕi,j

hx

(A.0.15)

GMAC(ϕ)i,j+ 1

2

=
ϕi,j+1 − ϕi,j

hy

(A.0.16)

The proje
tion operator is then de�ned as

P
MAC = I − GMAC

(
DMACGMAC

)−1
DMAC

(A.0.17)

and DMAC(PMAC(v)) = 0.

For this proje
tion, the Lapla
ian de�ned as DMAC(GMAC(ϕ))i,j is the stan-

dard 5 point sten
il Lapla
ian as shown in Figure A.3.

Fig. A.3. Standard 5 point sten
il Lapla
ian

Despite the fa
t that the 
omponents of the ve
tor �eld are not spe
i�ed at

the same pla
e on the grid, the MAC proje
tion has the advantage that the slip

boundary 
ondition 
an be set expli
itly at walls for re
tangular domains.

Cell-Centered Approximate Proje
tion

The two previous proje
tions are 
alled exa
t proje
tions sin
e the divergen
e

of the divergen
e-free ve
tor �eld is exa
tly zero. Some properties of the MAC and


ell-
entered proje
tions would be desirable in the same proje
tion. For instan
e,

we might want the 
omponents of the ve
tor �eld to be 
ollo
ated. Also, it would

be easier to use the standard Lapla
ian rather than the expanded one. These

properties are in
luded in the 
ell-
entered approximate proje
tion. The ve
tor

and s
alar �elds are de�ned at the 
enter of the 
ontrol 
ells, so the operators Go

and Do 
an be used. To avoid di�
ulties with the expanded Lapla
ian, we use

the standard Lapla
ian de�ned by GMAC and DMAC when solving the Poisson
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equation. Hen
e, we are solving

DMAC(GMAC(ϕ))i,j = Do(v)i,j. (A.0.18)

The operator P̃ is then de�ned as

P̃ = I − Go (L)−1 Do
(A.0.19)

where L 6= DoGo. Hen
e, the proje
tion P̃ is non-idempotent P̃ 6= P̃
2 but P̃ ≈ P̃

2.

Also, Do(P̃(v)) = O(h2), whi
h means that vd is not exa
tly divergen
e-free and

P̃ is then 
alled an approximate proje
tion operator.


