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SOMMAIRE

La méthode de projection et Iapproche variationnelle de Sasaki sont deux
techniques permettant d’obtenir un champ vectoriel a divergence nulle a partir
d’un champ initial quelconque. Pour une vitesse d’un vent en haute altitude, un
champ de vitesse sur une grille décalée est généré au-dessus d’une topographie
donnée par une fonction analytique. L’approche cartésienne nommée Embedded
Boundary Method est utilisée pour résoudre une équation de Poisson découlant
de la projection sur un domaine irrégulier avec des conditions aux limites mixtes.
La solution obtenue permet de corriger le champ initial afin d’obtenir un champ
respectant la loi de conservation de la masse et prenant également en compte les
effets diis a la géométrie du terrain. Le champ de vitesse ainsi généré permettra
de propager un feu de forét sur la topographie a ’aide de la méthode iso-niveaux.
L’algorithme est décrit pour le cas en deux et trois dimensions et des tests de

convergence sont effectués.

Mots clés : Approche cartésienne, feux de forét, propagation, méthode de pro-

jection, conservation de la masse.
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SUMMARY

The Projection method and Sasaki’s variational technique are two methods
allowing one to extract a divergence-free vector field from any vector field. From
a high altitude wind speed, a velocity field is generated on a staggered grid over
a topography given by an analytical function. The Cartesian grid Embedded
Boundary method is used for solving a Poisson equation, obtained from the pro-
jection, on an irregular domain with mixed boundary conditions. The solution
of this equation gives the correction for the initial velocity field to make it such
that it satisfies the conservation of mass and takes into account the effects of the
terrain. The incompressible velocity field will be used to spread a wildfire over
the topography with the Level Set Method. The algorithm is described for the

two and three dimensional cases and convergence tests are done.

Key words : Embedded boundary method, wildfires, spread, projection method,

mass-consistent model.
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INTRODUCTION

British-Columbia, Alberta and California face each year important forest fires
on their territories. Fires are essential for maintaining the diversity and health
of forest ecosystems, but they also bring a lot of drawbacks. Many mathemati-
cal models are currently used to predict the propagation of fires. More accurate
simulations could prevent the negative impacts of wildfires on public health and
safety of individuals, and could also decrease the loss of property and natural
resources.

Simulation models for the spread of wildfires, such as PROMETHEUS and
FARSITE, use the equations of fluid mechanics. Different factors must be taken
into consideration when simulating the spread. The weather, the effects of the
topography, the different type of fuels and obstacles are a few examples. Adding
more parameters and variables to the model increases its accuracy but also the
computational cost, hence choices must be made. Most current models tend to
use the law of conservation of mass and conservation of momentum, but those
models often neglect the effects of the terrain and of the fire as a dilation source
term.

The aim of this thesis is to develop the first part of a new model to predict
efficiently and accurately the spread of forest fires. The approach chosen here takes
into account the topographic effects of the terrain on the wind direction, which is
often neglected in current models. The tangential wind to the surface is non-zero
since the effects of viscosity, more specifically the friction of the wind field with
the terrain, are neglected. The final velocity vector field must only satisfy the

law of conservation of mass. Two procedures can be used to transform an initial
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vector field into an incompressible vector field. After a short discussion on mass-
consistent models, chapter one presents Sasaki’s variational technique followed by
the projection method. The model will also construct the initial vector field from
a high altitude wind. The different possibilities are discussed at the end of the
first chapter.

In order to apply the constraint of incompressibility on the wind vector field,
a Poisson equation is solved on an irregular domain. In fact, the shape of the
topography is embedded in the computational domain using a Cartesian grid. This
method is called the Embedded Boundary Method and was developed by Phillip
Colella and his team at the Lawrence Berkeley National Laboratory (LBNL).
This approach is based on the Finite Volume Method and is explained in chapter
two for the two-dimensional case. Convergence of the solutions and error analysis
are also studied.

In chapter three, the model and the algorithm are generalized to three dimen-
sions. The implementation of the model was done with EBChombo, a software
developed by the Applied Numerical Algorithms Group (ANAG) at the Berkeley
Lab. The test cases used in the two-dimensional case are generalized for a domain

in three dimensions in order of study the convergence of the solutions.



Chapitre 1

A MASS-CONSISTENT MODEL

Models for simulating wind flow fall into two main categories : prognostic
models and diagnostic models. The first kind considers time-dependent hydrody-
namic equations such as Navier-Stokes to forecast how the wind flow will evolve.
These models also include many factors such as turbulence, moisture, momentum
and heat. Elaborated models require precise data in order to deliver accurate
predictions and such data is not always available. On the other hand, diagnos-
tic models generate wind fields that satisfy specific physical constraints. Models
that assure the conservation of mass are typically called mass-consistent models.
These are simpler than prognostic models, they require less data and have the
big advantage of having a low computational cost.

The goal of this thesis is to construct a predictive mass-consistent model for
wildfire propagation. The model will generate a velocity field that will take into
account the effects of the topography on the wind flow. A more accurate wind field
will lead to better predictions of the fire front spread. Since only the constraint
of conservation of mass is considered, the simulations will be faster than models
using also the momentum equation and hence be useful for predictions.

Following a description of the problem, two methods which generate mass-
consistent flow are presented. Then, a short discussion on the initialization of the

vector field reveals the challenges for accurate predictions.



1.1. FORMULATION OF THE PROBLEM

The model is explained for the two-dimensional case, but it can be easily
generalized to three dimensions. Consider a rectangular region in R? of length L,
and height L,. The topographical height above mean sea level is expressed by a
function H : R — R depending on the horizontal coordinate x. The computational
domain €2 is the region contained between the function H(z) and the top of the
rectangular region as shown in figure 1.1. The only information given for the wind
is the magnitude of a high altitude horizontal wind v, = (u?,0) from which an
initial velocity vector field v = (u, v) must be constructed. This initial vector field
might not be divergence-free, but since the wind is assumed to be inviscid (no
viscosity) it must be tangential to the terrain surface, which means that it satisfies
the slip condition v - n = 0, where n is the outward normal at the topography
surface. We then look for a correction that will transform the vector field v in
an incompressible vector field v4 which also fulfils the slip condition v4-n = 0.
Boundary conditions for the sides and top of the domain have to be defined such

that the flow will be allowed to go through.

1.1.1. Conservation of mass and incompressibility

In order to get an incompressible vector field v, we must apply a constraint
to the vector field. In fluid dynamics, the conservation of mass is expressed by

the continuity equation

dp
i . — 1.1.1
9 +V-(pv)=0 ( )

where the operator V = (&, 8%, 2), p=p(z,y,z) is the density of the fluid and
v = (u(z,y, 2),v(x,y, z),w(x,y, z)) where u, v and w are the velocity of the flow
in the z, y and z directions. Notice that in our model, the variables p and v do
not depend on time, since we are interested in a stationary flow, hence dp/0t = 0.
The density of the fluid is assumed to be constant everywhere on the domain, so

equation (1.1.1) becomes

V-v=0 (1.1.2)
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Fia. 1.1. Representation of the computational domain €2 in 2 and
3 dimensions, with the topography given by H(z) and the high

altitude wind v,.

where equation (1.1.2) is the incompressibility constraint on the flow. This con-
dition expresses and guarantees the conservation of mass for our model. Mathe-

matically, it also means that the vector field is divergence-free.

1.2. SASAKI'S VARIATIONAL TECHNIQUE

There are different approaches to apply the constraint of mass conservation
on a given vector field. A quick look at the literature in atmospheric sciences
shows that most models are based on a variational calculus method developed by
Sasaki [22]. Ratto et al. [20] have reviewed these models which are adapted to
take into account certain parameters and features of the flow, but the core of the

technique remains the same.



1.2.1. Elliptic equation

Sasaki’s variational technique is a natural approach in atmospheric sciences.
Meteorologists construct their models with a variety of empirical data, such as
wind velocity. The variational method allows them to find, for a set of observed
wind data, a minimal correction to adjust the wind such that it will become
divergence-free.

In fact, this method minimizes the variation between the adjusted values v =
(u?,v?, w?) and the initial values v = (u,v,w) in a generalized least squares

formulation :

I(u®, v w?) = /Q (B (u® —w)® + B3 (v* — v)* + G5 (w? — w)*| AV (1.2.1)

where ; (1 = 1,2,3) are the Gauss precision moduli. These weights are used for
the calibration of the adjustments of the wind field v; with the observed values
v. They will be explained in more details in section 1.2.3.

Since we are looking for an adjusted vector field v, which fulfils the conserva-

tion of mass, we add the constraint given by equation (1.1.2) :

out ot ow?
d d . .dy _
Gl vy ) = ox + Ay + 0z

—0 (1.2.2)

x?) Ty

to the functional [ :
J:/EdV=]+/)\GdV (1.2.3)
Q Q

where A\ = A(z,v, z) is a Lagrange multiplier. Writing explicitly the functional J

in equation (1.2.3) we have :

J(u®, v, w? \) = /

[ﬁ%(ud S 4 B — o)+ B — w)
Q

out  ovt  ow?
(aa; 5+ )]dv (1.2.4)

We now want to minimize the functional J under the strong constraint of

conservation of mass. To achieve this goal, we must look at the first variation

of J and find when it is equal to zero : 6J = 0. From calculus of variations,
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one knows that the solutions which minimize the functional J satisfy the Euler-
Lagrange equations :

OF <~ 0 OFE

where F is the integrand of the functional J, f = (u?, v?, w?, \) and (21, 29, 13) =

(x,y, z). Solving with the Euler-Lagrange equations (1.2.5), we find

1 9\

d _ R —
wl=utsmo (1.2.6)

1 9\
= —5 1.2.7
v =0+ 23 0y ( )

1 O\

d f— ——
wl=wt oo (1.2.8)

d d d

Out [ OvT 0wty (1.2.9)

ox + oy + 0z
Note that solution (1.2.9) corresponds to the incompressibility constraint (1.1.2).

Ratto et al. [20] noticed that all mass-consistent models assume the Gauss pre-

cision moduli to be equal in the horizontal plane of the euclidean space :

B = Po. (1.2.10)

In fact, important distinctions are seen between the horizontal components and
the vertical component of the adjusted vector field with the initial vector field.
There is no such big difference between the horizontal directions of the two ve-
locity fields.

Differentiating equations (1.2.6), (1.2.7), (1.2.8) with respect to z, y, z re-
spectively, and substituting the results in equation (1.2.9), this elliptic equation
is obtained :

2 2 2 92
%—Fg—y)g\-i- (%) %:—2612 (%Jrg—ZJr(;—f). (1.2.11)

Using the solution A(z,y, z) of equation (1.2.11), we can correct the initial
vector field v with equations (1.2.6)-(1.2.8) and find the divergence-free vector
field v4. In order to solve the elliptic equation, we need to specify the boundary

conditions related to the model.



1.2.2. Boundary conditions

For the variational problem described above, Ishikawa [13] gives the associated
boundary conditions as :

3

OF
]gfz of [Z a(@f/axi)

=1

ndA =0 (1.2.12)

where n is the outward normal vector to the domain boundary 92 and Jf an
arbitrary first variation of f. Solving the part between the brackets always leads to
A. The integral will be zero if the integrand is zero, hence the boundary conditions

become
Advg-n =0 on 0 (1.2.13)

where dv, denotes the first variation of the velocity.

From equation (1.2.13), either the multiplier A or the normal velocity compo-
nent variation dv,-n must be zero at a boundary. Sherman |24] claimed that only
one of those two conditions must be imposed at a time, otherwise it would overde-
termine the problem and the solution would not be unique. In fact, Ninez et al.
[19] have shown that the sole properties of J guarantee the existence and unique-
ness of a field v; that minimizes globally J. Most authors of atmospheric sciences
articles have followed the choice adopted by Sherman and her interpretation of
the boundary conditions.

For flow-through or open boundaries, the appropriate boundary condition is

the homogeneous Dirichlet condition,
A=0. (1.2.14)

For this condition, the normal derivative of A might not be equal to zero, which is
generally the case. Hence, a non-zero adjustment of the initial velocity component
normal to the boundary might occur. Moreover, a constant value of \ at an open
boundary also implies that no correction is made for the velocity components in
the non-normal direction, since the non-normal derivatives of A are zero. This
property is useful since we want to conserve the magnitude of the wind at the

top boundary.
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For no-flow-through or closed boundaries, the homogeneous Neumann bound-
ary condition,

o\
— =0 1.2.15
o ( )
is chosen. It implies that there is no adjustment in the normal velocity component,

hence the variation of normal velocity is zero :
ovg-n=0. (1.2.16)
If the initial normal velocity component through the boundary is zero :
v-n=>0 (1.2.17)

the adjusted flow of mass across the boundary is also zero which means that the
corrected vector field will satisfy the slip condition. The Neumann condition is
then appropriate for the terrain surface boundary. According to Nufiez et al. [19],
a more appropriate boundary condition for the terrain surface would be
nzﬁiz% =—v-n (1.2.18)
Notice that this boundary condition only coincides with the homogeneous Neu-
mann boundary condition in two cases. First when the topography is flat and the
initial velocity field is parallel to the terrain boundary : v-n = 0. The second case
is when all 3; = 1 and again the initial velocity field is parallel to the boundary.
They also mentioned that the homogeneous Neumann condition is inconsistent
when using the Finite Element Method, hence FDM should be used with this con-
dition. From equation (1.2.18), we understand why Barnard et al. |2] and Ross
et al. [21] mentioned that applying the closed boundary condition requires that
the initial velocity field must respect the slip condition at the surface in order to
satisfy the impenetrability constraint when solving the elliptic equation with the
Finite Difference Method.
For our model, the following boundary conditions are selected :
@
n
A = 0 for the top and sides boundaries (1.2.20)

= 0 for the terrain surface boundary (1.2.19)
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1.2.3. Stability parameters

We now discuss the parametrization of the Gaussian precision moduli. It was
noted that the coefficients #; = 5 and 3 play an important role in the correc-
tion of the velocity field. These weights can alter the flow pattern and the residual
divergence of the adjusted flow field. Determining the right values for these pa-
rameters remains a major problem for wind models in atmospheric sciences. It
has been noted through simulations of mass-consistent models that the codes are
not directly sensitive to the values of 3, and 5 but to their ratio. This is why a
new parameter was introduced :

_b
Bs
We recall the functional I in equation (1.2.1) now with ) = (s :

g (1.2.21)

I(u®, v w?) = / [Bi(u® —u)® + Br(v? — v)* + B (w” —w)?] dV.  (1.2.22)
Q

One can see that large values of 33 will imply minimal adjustments for w? in

4 _w)? since the functional is being minimized. The same argument is valid for

(w
small values of 35 that will enforce bigger adjustments of w?. The same reasoning
can be used with the parameter . For § > 1, flow adjustment in the vertical
direction will predominate, so that wind is more likely to go over a terrain barrier
rather than around it. For § < 1, flow adjustment will occur primarily in the
horizontal plane, so the wind is more likely to go around a terrain barrier rather
than over it.

Notice that when § — 0, the adjustment is purely horizontal and when § — oo
the adjustment is strictly vertical. From a physical perspective, this last remark
was used by the WINDS software [11]| so that § could be defined as the at-
mospheric stability parameter, where the stratification obtained is unstable when
(> 1, stable when 3 < 1 and neutral when 3 = 1.

The mass-consistent models usually adopt one of these two approaches when
using the parameter (3. It is either constant in the entire domain €2 and the values

depend on atmospheric stability or it can be expressed as a function § = f(z,y, 2)

and the values depend on the atmospheric stability and features of the topography.
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1.3. PROJECTION METHOD

In the last section, we explained an approach widely used in atmospheric
sciences to get a solenoidal vector field from a given vector field. Here, we introduce
another method for solving problems in computational fluid dynamics. Chorin 4]
has introduced this method based on the Hodge decomposition which allows one

to extract a divergence-free vector field from any given vector field.

1.3.1. Hodge decomposition

Theorem 1.3.1 (Hodge decomposition). Let Q2 be a simply connected domain
with smooth boundary 0. Any vector field v on £ can be uniquely decomposed

in the form
v=vg+Vp (1.3.1)

where V -vyg =0 1 Q and vy-n =0 on 0S2.

In other words, any vector field v can be decomposed into two orthogonal
components; one divergence-free part v; and a curl-free part expressed as the
gradient of a scalar field ¢ . Applying the divergence operator on each side of
equation (1.3.1) we have

V'v:u—l—V'V(p (1.3.2)
=0

V-v=Ap (1.3.3)

where A is the Laplacian operator in Cartesian coordinates. The solution of this
elliptic equation given by ¢(z,y, z) will give the correction to be added to the

initial vector field v such that we get the solenoidal vector field v, :
vqg =V — V. (1.3.4)

The boundary conditions required for solving the elliptic equation can be found

by taking the normal component on both sides of equation (1.3.1) :

v-n=v;-n+Vy-n (1.3.5)
-0

v-n=Vy-n (1.3.6)
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which is the Neumann boundary condition :

¢

5, — v mon oS (1.3.7)

1.3.2. Projection operator

Since vy is uniquely determined, we can define a projection operator P, such

that
P(v) =va. (1.3.8)
Based on the procedure described above, we can define P as
P=I-V(V-V)'V. (1.3.9)

The operator P defined this way is idempotent, P? = P, self-adjoint, P = PT
and the norm of the operator is less than or equal to one, ||[P(v)||2 < ||v||2. These

properties are used to prove that the operator is stable.

1.3.3. Comparison with the variational method

Once again, the projection method requires the solution of the following Neu-

mann problem :

Ap=V-von{ (1.3.10)
dp
o, =V mon osL. (1.3.11)

Setting the parameters 3; = 5 = 3 = 1 in equation (1.2.11) we have

82)\+82)\+82)\__ @—f—@—f—a—w (1.3.12)
ox Oy 022 or 0Oy 0Oz o
that is
AN= -2V .v (1.3.13)

It can be noticed that equation (1.3.13) is exactly the same as equation (1.3.10)
up to the constant -2. The solution of both elliptic equations is a scalar field
from which the gradient gives the correction to the initial vector field (equations
(1.2.6)-(1.2.8) and (1.3.4)) that will make it divergence-free. We can therefore say

that both methods are similar.
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There are two main differences between these methods. First, the boundary
conditions for solving the elliptic equations are not the same. In the projection
method, only Neumann conditions are used unlike the mixed conditions (Dirichlet
and Neumann) used in the variational method. The Hodge decomposition assumes
that the divergence-free vector field v4 will be parallel to the domain boundary
0f2 since vy - n = 0, which is definitely not the kind of vector field we are looking
for.

It is also important to notice that the projection P is well-defined since vy is
uniquely determined as mentioned in the Hodge decomposition theorem. Unicity
of the projection is guaranteed by the Neumann boundary conditions. In the
current model, we are interested in using both Dirichlet and Neumann conditions.
We will then lose the unicity of the projection. Hence, the corrected field v,
found with the projection P will be the closest vector field to v such that it is
incompressible.

Finally, the main difference reside in the Gauss moduli. Since our model does
not rely on experimental data, except the high altitude wind speed, there is no
need for a calibration of the model with the weights (;, hence they will be set
equal to one. In order to avoid confusion with the notation, the scalar field will

be noted by ¢ rather than A and the problem that will be solved is the following :

Ap = -2V -von )

0

8_SO = 0 on terrain surface boundary (1.3.14)
n

% = 0 on side and top boundaries

1.4. VECTOR FIELD INITIALIZATION

The way the initial vector field is initialized has a huge impact on the structure
of the adjusted vector field. Remember that the corrected vector field will be the
closest vector field to the initial vector field that satisfies the conservation of mass.
Hence the initialization process is a very important step.

There are different types of data that are available to construct the initial wind
vector field ; meteorological data from ground stations or towers stations, wind

profilers, gradients or geostrophic wind. It has been observed that the quality
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of this data is usually poor and that its density is more than often insufficient
for resolving variations of the flow above complex topography. Moreover, the data
gives only information for the vertical profile of the wind, never for the horizontal.
These reasons encourage an initialization of the vector field with a high altitude
wind, which is called the geostrophic wind in the literature.

As in WINDS [11], a vertical profile can be constructed from the geostrophic
wind. Most of the models studied by Ratto et al. [20] split the atmosphere into two
layers : the surface layer (SL) and the Planetary Boundary Layer (PBL). Over the
PBL (1000m-2000m), the wind is assumed to be constant with height and given
by the geostrophic wind. The surface layer takes into account friction/viscous
effects and is usually contained in the first 100m of the atmosphere. This layer
is not of great interest since the slip condition is applied at the surface of the
terrain in this model. Between the two layers, different interpolation schemes can
be used to get the vertical profile : linear, logarithmic or power law.

Barnard et al. [2] and Ross et al. [21] have also noticed that applying the
closed boundary condition on the terrain surface requires that the initial velocity
field must respect the slip condition at the terrain surface in order to satisfy the
impenetrability constraint. Since there is usually no information on the horizontal
profile, i.e. on the vertical component of the wind field, we will follow Barnard

and set the vertical wind component to zero w = 0.

1.4.1. Potential flow and conformal coordinates

Barnard et al. |2] have observed that lack of verification is a major difficulty
for mass-consistent models. Many papers used real data to calibrate and verify
the results given by the model. Ross et al. [21] found out that if 51 = f; = (3 and
that the right hand side of equation (1.3.14) vanishes, then ¢ represents a velocity
potential. They also used simple terrain shapes (half-cylinder, hemisphere, ellip-
soid) for which the analytic solution of the potential flow is known to generate a

potential flow and verify the efficiency of their model. They use terrain-following
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(conformal) coordinates to solve the Poisson equation :

\

19 =
n =y (1.4.1)
J(%,y) . ht(way) —

~ hy(z,y) — H(z,y)

where hy(z,y) is the height of the domain which in our case is constant and where

H(z,y) is the height of the topography. The surface of the terrain is reached when

o = 1 and the top boundary when ¢ = 0. They still solve the elliptic equation

with Cartesian coordinates but with a different Neumann boundary condition at

the terrain surface in order to get the potential flow. They initialized their model

with a uniform background wind in conformal coordinates and they found that

the generated flow is in good agreement with the analytic potential flow. Even if

the problem is solved in Cartesian coordinates, conformal coordinates are useful

for constructing an initial velocity field tangent to the terrain and parallel to the

top domain boundary.



Chapitre 2

SOLVING THE MODEL IN 2 DIMENSIONS

There exists many ways to solve the Poisson equation introduced in the last
chapter. Differences between previous mass-consistent models come from numer-
ical algorithms for solving elliptic equations and from the choice of the values
used for the parameters. For instance, Sherman [24] used the Finite Difference
Method (FDM) and discretized the topography in a stair-step fashion. Ishikawa
[13] solved the elliptic equation with FDM as well but on a staggered grid. Ross
et al. 21| and Barnard et al. |2] used conformal coordinates to solve the elliptic
equation in order to get better integration of the terrain surface and ensure the
application of the slip condition. Forthofer [10] used the Finite Element Method
(FEM) to solve the PDE.

This chapter will consider the Embedded Boundary Method (EBM) for solv-
ing the elliptic equation with the appropriate boundary conditions for the two-
dimensional case. This is the first time that EBM is applied to an empirical model
used to simulate the spread of wildfires. The particular feature of this approach is
that it embeds an irregular boundary into a Cartesian grid. Hence, the generated
wind fields should be in better agreement with the terrain surface.

Since the EBM is based on the Finite Volume Method (FVM), this last method
is first introduced before moving on to EBM. The convergence of the algorithm
is tested for different terrain shapes and initial wind vector fields, and an error
analysis is also conducted. Finally, the divergence-free vector fields are used to

spread the fire over different terrain surfaces.
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2.1. FINITE VOLUME METHOD

The FVM is a useful approach for solving numerically partial differential
equations (PDE). It allows the divergence operator to be discretized using the
divergence theorem, such as in the Poisson equation. The finite-volume approach
has some considerable advantages such as regular predictable memory access and
higher accuracy for less computation. In this section, we explain how the FVM
can solve our elliptic equation without topography embedded in the rectangular

domain.

2.1.1. Discretization of the domain

Consider a rectangular domain 2 C R?. The domain has length L, and height
L, and is discretized using a Cartesian grid whose rectangular control volumes are
defined as Y ; = [(i — 3)ha, (i +3)ha] X [(1 = 3)hy, (j+3)hy] fori =1,..., N, and
j =1,...,N,. The number of horizontal and vertical cells, N, and N,, are used
to define the horizontal and vertical mesh spacing h, = L, /N, and h, = L,/N,.

The method uses control volumes V; ; = T, ; N €.

L,

|

Fia. 2.1. Discretization of the two-dimensional domain for FVM.

2.1.2. Divergence operator

We are now looking to solve the following Poisson equation

Ap=-2V-v (2.1.1)
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where v = (u,v) is the initial vector field and ¢ is a scalar field. Equation (2.1.1)

can be written in conservation form
V.-F=-2V.v (2.1.2)

where the flux F = Vi is the conserved quantity.

To achieve a discretization of the divergence operator, we first recall the di-
vergence theorem :
Theorem 2.1.1 (Divergence theorem). Let Q2 be a compact region in R"™ with a
piecewise smooth boundary 0. If ¥ is a continuously differentiable vector field

defined on a neighbourhood of €2, then we have

/V-dez]{ F - ndA. (2.1.3)
Q o0

Using the cell average value of the divergence of F and the divergence theorem

in R? we have;

1 1
V.F~— | V.F&V=—¢ F -ndA (2.1.4)
Vil Jv, Vil Jov,

1
- [Py Fiayy + heFopry = hyFioy = By

(2.1.5)

where n is the outward unit normal to the control volume cell V; ; and |V ;| = hyh,,
the volume of V; ;. This corresponds to the midpoint rule discretization of the line
integral. Hence, the discretized divergence operator D™ (F); ; is

ha h,

.1
7]75

DM(F);; = (2.1.6)
The fluxes are illustrated in figure 2.2. In the Poisson equation, a discretized

TFUI

L+ 5

F1G. 2.2. Fluxes on every edge of control volume V; ;.
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divergence operator is also applied to the initial vector field v. It would be de-
sirable to use the same discretization of the operator. We also need a consistent
discretization for the gradient operator since F = V. The MAC projection seems

quite appropriate for this case.

2.1.3. Marker-and-Cell Projection

There are many ways to discretize mathematical operators. The discretization
mostly relies on the kind of grid on which the computation is done. The Marker-
and-Cell (MAC) projection introduced by Harlow and Welch [12] uses a staggered
grid, where the components of the vector field are defined on the edges of the

control cells and the scalar field is defined at the center as shown in Figure 2.3.

i+,

Fia. 2.3. Staggered grid with the cell-centered scalar field ¢ and

the edge-centered components of the velocity field (u,v).

Let DM and GM be the discrete divergence and discrete gradient operators
over the staggered grid. The divergence is defined using the divergence theorem on

the control cell as before and the gradient by centered difference over the edges :

U; 1 . — U1 V, ;1,1 — V. 1

DM(v)yy = 2Tl g M W (2.1.7)

J hy h,
and define
GM (@)1, = —%“’2_ oL (2.1.8)
Pij+1 — Pij
GM(SO)z‘,jJr% - % (2.1.9)
y

Remember that our method uses a projection operator P defined in equation

(1.3.9). Let PM be the discretization of this projection. It is then defined as

PY =1- GV (DMGM)™ DM (2.1.10)
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and it is easy to verify that D™ (PM(v)) = 0. This means that the discretized
projection operator is exact. See Appendix A for a discussion of the discretization
of projections.

For the MAC projection, the discretization of the Laplace operator (A = V-V)
is defined as DM(GM(yp));; which corresponds to the standard 5 point stencil
Laplacian for interior control volume cells (i = 2,..., N, —1 and j = 2,..., N, — 1)

as shown in Figure 2.4.

FI1G. 2.4. Standard 5 point stencil Laplacian DM (GM(p)); ;.

Despite the fact that the components of the vector field are not collocated,
the MAC projection has the advantage that the no-flow boundary condition can
be set explicitly at walls for rectangular domains since the edges of the boundary

cells match the domain boundaries.

2.1.4. Boundary fluxes

In order to use the divergence operator on the control volume cells on the
boundaries of the domain, the fluxes at the boundaries must be specified. For the
bottom boundary, the problem uses a Neumann condition g—‘g = 0. In this case,
the flux is simply zero, Fl% = 0.

For the top and side boundaries, the Dirichlet condition ¢ = 0 is used. This
type of condition does not prescribe directly a particular value for the flux at
the boundary. Hence, we follow Johansen and Colella [14] and use a three-point

gradient stencil in order to get a specific value of the flux on the boundary. The

gradient formula is given by

o0 1 [d
8n_d2—d1 d1

(0" —¢1) = (¢" — ¥2) (2.1.11)
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where ¢? is the value of the function ¢ on the boundary given by the Dirichlet
condition, ¢, and ¢, are the closest grid point values of ¢ to ¢?. Those two grid
points are respectively at distances d; and dy from the boundary. This stencil has
a discretization error of order O(h?). Figure 2.5 shows how the flux on the right

boundary is calculated by

Oy 1 B 1, 5
or FNer%,j = e 3 (90 - @Nz,j) ) (@ - SDNrLJ) (2.1.12)
PN, -1, PN, b
R B S

Fia. 2.5. Interpolation of the boundary flux FNﬁ%’j for applying

the Dirichlet condition using ¢, ¢y, ; and @n, 1.

Note that this interpolation leads to an outward pointing gradient. With the
fluxes at the boundary fixed, it is easy to see that the Laplacian operator will

have 3 different stencils over the domain as pictured in Figure 2.6.

FiG. 2.6. The 3 different stencils for the Laplacian operator.

2.1.5. Symmetric matrix

Solving the Poisson equation with the FVM reduces to find a solution of a

linear system A¢ = b. For the two-dimensional case, we use the row-wise ordering
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to form the vector ¢ of the ; ; defined at the center of the control volume cells :

(,O = ((,0171, ey QONIJ, 30172, e ,QDNZQ, Ce ,QOLNy, ey QOszNy) (2113)

The coefficients in front of the unknown values of ¢; ; fill up the matrix A of
size N, N, x N, N,. More precisely, the main diagonal contains the coefficients of
¢i ;, the diagonals above and below the main diagonal the coefficients of y;1; ; and
the two extra diagonals, with N, —2 zero elements between the upper/lower diag-
onal, the coefficients of ¢; ;1. Hence, the symmetric matrix A has the structure

shown in figure 2.7 which is the same as that of the FDM.

Non-zero entries in Poisson Matrix

20+

T 251

30+

351

401

451

0 10 20 30 40
i

FiG. 2.7. Symmetric matrix of the linear system with N, = 6 and
N, = 8.

All known values such as ¢ and the RHS of the Poisson equation, D™ (v); ;,
are put in the vector b. The linear system A = b is solved using the solver

mldivide in MATLAB which uses a direct method.

2.1.6. Corrected vector field

Once we get the solution given by the vector ¢, we can compute the corrected
vector field with equations (1.2.6)-(1.2.8) of chapter 1. The corrected field on the
staggered grid is easily calculated with the MAC gradient operators :

1
ufis g =g+ 56 (@i (2.1.14)
d 1

U ies = Vit T 50 (9D (2.1.15)
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ijrl on the

Notice that it is important to calculate GY(¢);,1; and G ()
boundaries with the same gradient stencil used for computing the fluxes on the
boundaries. Otherwise, the final divergence will not be zero on the cells next to

the boundaries.

2.2. EMBEDDED BOUNDARY METHOD

We will now focus on the Embedded Boundary Method for solving numeri-
cally the elliptic equation (2.1.1) on an irregular two-dimensional domain . This
approach uses a finite-volume discretization on the Cartesian grid on which the
boundary of the topography is embedded. In this chapter, we will focus on the
simple 2D case which is discussed by Johansen and Colella [14].

The rectangular domain €2 uses the same Cartesian grid as mentioned earlier.
The topography which is given by the function H(z) is represented as a piecewise
linear function where the coordinate x = (i £ %)hx is defined on the control
volume cell edges. The function H(x) corresponds to the lower boundary of .
The geometry of the irregular domain €2 is represented with its intersection with
the Cartesian grid. The method uses control volumes V;; = T, ; N and their
faces A;y1 ; and A, ;.1 which are the intersection of dV; ; with the coordinate lines
{z = (i £ $)h,} and {y = (j = 1)h,}. The intersection of the boundary of the
irregular domain and the Cartesian control volumes are the faces Afj =7,,;NoO.

In order to construct an appropriate divergence operator, areas and volumes

are written as nondimensional terms :

(hwhy)_l

volume fractions : x; ; = |V ;
bl il

: _ -1 _ -1
face apertures : ayy1 ;= [A1 lhy " and o0 = [A; ;1 ]h;

B
i7j '

boundary apertures : «

It is assumed that those values can be calculated with an accuracy of order O(h?).

Notice that «,x € [0,1]. When x = 0, the control volume cell is completely

contained in the topography and when x = 1, the cell is full, meaning that the
topography does not cut the cell.

As before, we use the fact that the Laplacian operator Ay in LHS of equation

(2.1.1) can be written on a conservative form as V - F with F = V. It is then
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possible to discretize the divergence operator V- using the divergence theorem :

M
DY (F);; =
1 (QiaFigy —agifiogy | B —daliin | 5 op
+ + ok
Rij hz hy
(2.2.1)

where the fluxes Fi, 1 ;, F; ;.1 and the flux on the embedded boundary F° B defined
at the centroid of every cell faces, are linear combinations of ¢;; and of the
boundary values . This discretization takes into account the structure of the
volume cell, particularly when we are calculating the divergence in a cut cell
(0 < kK < 1). The left picture in Figure 2.8 gives an example of fluxes located
at the face centroids in a cut cell, while the face centroids coincide with the face

centers in a full cell.

F1G. 2.8. Fluxesin a cut cell (0 < k < 1) and in a full cell (k = 1).
The flux F” = 0 (red arrow) since a Neumann condition is applied

at the terrain surface boundary.

Remember that a homogeneous Neumann condition g—i = 0 is applied on
the terrain surface boundary which implies that FZBJ = (0. Hence, the divergence

operator becomes

DM(FY, 1 (it — o1l i —og, 1, 1
Ki,j x y

(2.2.2)

It is important that the fluxes be defined at the centroid of the faces A, | 1 ;and
Ay 1 in order to keep a good approximation of the discretization of the integral.

For fluxes defined on the vertical faces A,, 1 ., a linear interpolation scheme is

1 -
57]’
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used with the above cell. For instance, the flux Fj 1 ; on the face A; 1 ; when
0<a,, 15 < 1 can be calculated using the interpolation formula :

Fipyy = (#) GM(‘P)H%,J' T <Tz) GM(SO)H%,J'H (2.2.3)
This interpolation is illustrated in Figure 2.9. Note that for full faces (without
embedded boundary), the face aperture a;, 15 = 1, hence the regular centered

difference is used :

Fiy1;=G"(0)i1; (2.2.4)

M
G (@it 1 5
° > ®
1
1
1
1
1
1
I

Fic. 2.9. Interpolation of the flux FH%’]- on a cut cell edge using

G (@)H—%,j and GM(SO)H%,J'H :

For the fluxes defined on the horizontal faces A, . 1, a linear interpolation
scheme using the flux in either the right or left cell is required. It is important to
use the appropriate interpolation so the computation makes sense. The flux F; ; 1

on the face AMJF% when 0 < ;.1 <1 can be calculated using this interpolation

formula :
Lta 1
2, M
Fi,j—i—% = <TZ) G (@)i,j+%

1—a; i1\ | GM(¢);yq 01 if terrain is on the left side
+ ( ,]+2) ( +1,]+2 (225)

2 GY();15+1 if terrain is on the right side

The two cases are shown in Figure 2.10.
When the divergence is calculated in a full cell (k;; = 1) for which all face

apertures @ = 1, we recover the MAC divergence operator given by equation
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F1G. 2.10. Interpolation of the flux £ ;, 1 on a cut cell edge when

the terrain is on the right hand side or left hand side.

(2.1.6) for the FVM :

i+i i—1 ij+i ij—i
DM (F),; = — 2 PR S (2.2.6)

A critical feature of the EBM, as explained by Johansen and Colella [14], is
the assumption that the solution can be extended smoothly outside of 2. As can
be seen in Figure 2.10, some grid values ¢ are covered by the terrain. Johansen
and Colella assume that there are solution values for them that are sufficiently
smooth so that a truncation error analysis based on Taylor expansions will be
valid.

For top and side boundaries which have Dirichlet conditions, the same gradient
stencil is used as in the previous section. Johansen and Colella use one more
constraint on the discretization of the domain that is related to this gradient
formula : the interpolation stencil must not reach into cells with zero volume
(k = 0), hence the Cartesian grid must be fine enough.

The divergence on the right hand side of equation (2.1.1) is

DM(v);; =

I i ™

1 (O‘z‘+;,j“z‘+;,j %oty YiriVigel — 0‘@1‘—5%’—5)
Kij

(2.2.7)
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The interpolation of the vector field components in the middle of the faces in a

cut cell use the same interpolation explained earlier

UI . L+ ai-&-%d u + L= ai+%:j w
i+55 2 45 2 i+gdt]

ol = —1 Qi v
Qij+i T 9 6+

(1 — 041-7#;) Uiy 41 if terrain is on the left side
+ - w2 b2
v

i—1;+1 if terrain is on the right side

2.2.1. Sparse matrix

(2.2.8)

(2.2.9)

As before, the solution of the Poisson equation is found by solving a linear

system of the form Ay = b with the mldivide solver in MATLAB. Since the

computational domain 2 is irregular, (the zero volume cells, k = 0, are not

taken into account in the computation), the matrix loses its symmetric property,

but it is still a sparse matrix. For the purpose of computation, lines and rows

corresponding to cells where k = 0 are not removed, but instead, a fake value is

added to the main diagonal element, so the matrix is not singular. See Figure 2.11

for the structure of the matrix A for the case of an exponential terrain surface.

Sparse matrix

Fia. 2.11. Sparse matrix A for solving Poisson equation on an

irregular domain with an embedded exponential hill with N, = 6

and N, = 8.
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2.2.2. Corrected vector field

Once the vector ¢ is known, the corrected field on the staggered grid is easily

calculated with the MAC gradient operators :

1
d M
Uig; = Uik 56 (P)ird (2.2.10)
1
d M
Vij+1 = Vij+3 + §G (W)i,ﬂ% (2.2.11)

when o, 1. and «, ., 1 are not equal to zero. Once again, it is important to
5.7 2,7+ ’
27 % 2

calculate GY(p);, 1 ; and GY(p); ;1 on the domain boundaries with the same

ij+3

gradient stencil used for computing the fluxes on the boundaries.

2.3. CONVERGENCE AND ERROR ANALYSIS

In order to study the efficiency and accuracy of the Embedded Boundary
Method, the algorithm will be used for solving constant or particular initial ve-
locity fields over different geometries.

Two definitions of the usual norms were used for evaluating the convergence.

In the case of values on the staggered grid, the p—norm is defined as :

1/p

€l =1 > |&sPh’ (2.3.1)

where T; ; is the Cartesian grid over the total rectangular domain. Knowing that

h* = L*/N?, we can rewrite (2.3.1) as :

1

1€l = N2 Z I3% (2.3.2)
(i,j)eTiJ
1/2

1

lell =5 Do 1l (2.3.3)
(iuj)e,ri,j

I€lloe = max €51 (2.3.4)

up to a constant L. When the exact analytic solution for a given test case is
unknown, a reference solution is used to check the convergence of the algorithm.
The reference solution is a numerical solution for a problem on a finer grid. Then,

we check at which rate the error between solutions on the coarser grids and the
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reference solution diminishes when the grid resolution gets closer to the reference
grid. In our case, we will compute the absolute error of the horizontal and vertical
components of the corrected vector field vy = (u?, v?) with the components of the
reference solution. Then we will check if the errors converge for different norms
above.

For instance, the absolute error for u? is given by

en(uy) = ‘Uﬁlvref - uﬁlv‘ : (2.3.5)
where N,.; is the number of cells of reference grid and N the number of cells of
the actual grid.

In order to compute the absolute error ey for the staggered components of
the wind, we must compare the same grid nodes for each discretization of the
grid. Since we are using a staggered grid for our vector field components, we must
take the mean of the components of every grid except the coarsest grid, so we can
compute the error at the same location on all grids. Figure 2.12 shows the vector

component u? for N = 2 and N = 8. Notice that the number of cells N in those

SRS B AR
IR R
SRS B AR
IR R

FI1G. 2.12. The convergence of u? on the red points of the grid
N = 2 is done with the mean of the blue points of the grid N = 8.

norms will have to be replaced by N,q which is the number of horizontal (resp.
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vertical) components of the velocity of the coarsest grid on which the convergence
tests are done. This corresponds to N, = 6 in our example in figure 2.12.

Since the discretization of the topography relies on the grid, each discretization
changes the geometry of the domain. In order to avoid misleading errors, we will
not consider the vector field components where ;| 1 and o ;, 1 are not equal to
one for the coarsest discretization.

The second definition of the norm is a volume-weighted norm as used by
Johansen and Colella [14] for cell-centered quantities. For a cell-centered variable

¢, the max norm is :

€l = max s (2:3.6)
and the p—norm :
1/p
ey = | S lalrigh?/ 0 righ? (2:3.7)
(4,5)€Q (i,)EQ

where (2 is the computational domain and &; ; the volume fraction of each control
cell.

This definition of the norms is particularly useful when the exact solution of
the equation is known. If it is not the case, we proceed as before using a reference
solution which is the solution on a grid of very fine resolution. Then, we compute
the error between the solutions of the coarsest grids and the reference fine grid. In
our case, we are interested in the convergence of the velocity field. Since the norms
are defined for cell-centered quantities, we average the edge-centered velocity field
at the center of each cell. Then, the reference solution must be averaged to the

coarse grid using a volume-weighted average :

ry = VL S vie, (2.3.8)

vf€.7:
where F is the set of cells of the fine grid v; contained in the cell of the coarse grid
v. and where V/ and V¢ are the volume of cells v; and v, respectively. Figure

2.13 shows the cells vy of the fine grid when N = 8 that are contained in the

coarse cell v. of the grid N = 2.
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******************

******************

Fia. 2.13. The fine to coarse averaging of a cell-centered quantity
using a volume-weighted average of values of the fine grid N = 8

to the coarse grid N = 2.

This average is useful since it allows us to use all the grid cells of any resolution
grid size for comparing with the reference grid, which is not the case with the
previous definition of the norm, since we were restricted to the number of values of
the coarsest grid N, yq,. Also, the volume-weighted average considers the geometry
of the terrain in the two grids.

The absolute error for the component u? is then given by
en(ul) = Av(u‘]ivmf) —uk|. (2.3.9)

where N,.¢ is the number of cells of reference grid and N the number of cells
of a coarser grid. The absolute error is computed for the other components of
the corrected vector field vy = (u?,v?). Then, we check if the errors converge
to zero for different volume-weighted norms. It is important to note that for the
two-dimensional test cases, the volume-weighted norms were taken over all full

volume cells only.

All convergence tests are performed on square domains :

L=L,=1L,
N =N, =N,
h=hy=h,.

For all our cases, we set L = 10 and we use as a reference solution the results

obtained on the grid with NV,.; = 512 cells and the coarsest grid is NV = 8.
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The solutions of the different cases will be shown with the streamlines of the
velocity field and the contour plots for the final divergence and velocity compo-
nents. Those figures will be done using the following parameters for the discretiza-

tion of the rectangular domain in all case tests :

N | L

64 | 10
TAB. 2.1. Parameters used for test cases in 2D.

2.3.1. Flat terrain case

The first test is done on a topography which is a flat line defined by

L
Hflat(l’) = ?y (2310)

This simple geometry does not show the powerful features of EBM but it allows
us to check if the convergence rate of EBM for a rectangular domain is similar
to the FVM. We also want to see the effects of the boundary conditions on the
final velocity field. Even if we are just considering velocity fields for which the
magnitude changes with height in our model, we define the following arbitrary

initial velocity field for this test case :
(1, v) 1ot = (100 + 7, 0). (2.3.11)

Note that for a constant horizontal velocity field over a flat terrain and even a
horizontal velocity field with increasing amplitude over the y—axis, the initial
divergence will be zero, meaning that the initial vector field is already mass-
consistent. This will result in the trivial solution ¢ = 0 over the whole domain,
hence the gradient giving the correction will be zero and the final vector field will
be the same as the initial one. For that reason, we use an initial velocity field
which depends on z.

Since the velocity increases with z, we can therefore expect an increasing
divergence on the x—axis. The algorithm results in a zero-divergence velocity

field as is shown in Figure 2.14.
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FiGg. 2.14. Streamlines and divergence of initial and final vector

fields (u, v) fi1ar Over the flat terrain surface H .

Notice that the streamlines of the final vector field are not exactly straight

as we could expect. Figure 2.15 shows the contour plot of the final velocity field

components.
Horizontal component of final vector field Vertical component of final vector field
100 v -1
80 -2
-3
60
4
40
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0
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Fig. 2.15. Contour plot of the final velocity field components

(u?, v?) y10¢ over the flat terrain surface H fiq.
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As we can see, even if the initial vertical velocity component v was zero, a
correction was added to this component. This might be explained by the homo-
geneous Dirichlet boundary condition at the top of the domain which does not
force the final vector field to remain horizontal at the top boundary.

In figure 2.16, we plot the different norms of the absolute errors defined above

on a log-log scale as a function of the parameter N.
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F1G. 2.16. Norms of the staggered absolute error ey (top) and
volume-weighted norms of the cell-centered absolute error ey (bot-

tom) of (u®, v?) 1.

The convergence rate of the absolute error ey in the different norms are shown
in the following tables.

We notice a big difference between the max norm of the two tables even if
their definition is the same. This is explained by the fact that in the case of the

max norm of the absolute error of the staggered components, only a few number
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eN Loo L1 L2
w | 1.87 ] 1.83 | 1.85
v | 1.87]1.89]1.88

TAB. 2.2. Convergence rate of staggered absolute error ey for (ud, vd) flat-

EeN Loo L1 Lg
w | 1.06|2.05]1.94
v [ 1.08]2.00|1.93

TaB. 2.3. Convergence rate of cell-centered absolute error ey for (ud, vd) Flat-

of edges are used for computing the error, while in the volume-weighted norm,
all cells are considered, especially those close to the embedded boundary, where
the larger errors usually occur. Otherwise, for the L; and Ly norms, the rate of

convergence is about O(h?).
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2.3.2. Sinusoidal hills case

We now consider a slightly more complicated geometry in order to check the
performance of the Embedded Boundary Method. The topography is defined by

a sinusoidal function :

L L
Hgn (1) = 3—6’ sin(z + 10) + gy (2.3.12)

The arbitrary initial vector field is horizontal and constant and given by
(u,v)sin = (1,0). (2.3.13)

The initial velocity field does not satisfy the slip condition at the terrain
boundary, hence we expect some divergence at the terrain surface, as shown by
Figure 2.17. Notice that the streamlines of the initial vector field are only hor-
izontal and that some streamlines are missing in the second cavity. This is due
to the fact that the particles near the terrain surface that trace the streamlines
reach the terrain surface at some point and remember that the velocity vector
field is defined as zero under the topography. The vector field is well corrected
since the streamlines of the final vector field are parallel to the topography and
the final divergence is zero everywhere.

The convergence of the error for the two components of the final vector field
is shown in Figure 2.18.

The convergence rates of the absolute error ey in the different norms are

shown in the following tables.

en | Loo | L1 | Lo
w | 2.21]1.96 | 2.05
v |2.061]2.09]2.06

TAB. 2.4. Convergence rate of staggered absolute error ey for (uf, v4),.

en | Lo | L1 Lo
U — | 1.82 | 1.57
v - | 1.81|1.12

TAB. 2.5. Convergence rate of cell-centered absolute error ey for (u?, v?)g,.
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Streamlines of the initial vector field Divergence of the initial vector field

Streamlines of the final vector field Divergence of the final vector field x10™

F1G. 2.17. Streamlines and divergence of initial and final vector

fields (u,v)si, over the sinusoidal hills Hg,.

We notice that the max norm does not converge in the lower graph. The max
norm is reached in a cell near the terrain surface. The most plausible explanation
for the non-convergence in this norm is the change in the geometry of the topog-
raphy for each discretization of the grid. Since the geometry is not exactly the
same for two different discretizations this would affect the averaging of the refer-
ence solution on a coarser grid done with (2.3.8) and thus affect the convergence
of the solution.

For the other volume-weighted norms, the convergence rate is a bit lower than
what we have seen in the flat terrain case since the geometry is more complicated.
The norms of the staggered errors are better though, which might be explained
by the fact that the initial velocity field was constant rather than accelerating as

in the flat terrain case.
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2.3.3. Exponential hill case

The two previous test cases used relatively smooth topographical shapes. We
now want to test the EBM algorithm over a more complicated geometry. The

topography is defined by

Heyp(z) = 4exp (— (x - %)2> + f—é (2.3.14)

with the highest peak reaching half of the vertical domain length. Sherman [24|
remarks that the topography should not reach the top boundary of the compu-
tational domain, which makes sense. Ratto et al. [20] adds that the top domain
boundary should be high enough over the topography in order to obtain good
results.

We once more use a constant horizontal initial vector field given by
(U, V) exp = (1,0). (2.3.15)

As in the case of the sinusoidal hills, the region where the computed divergence
of the initial velocity field is not zero will be near the terrain surface and the
resulting streamlines will be horizontal. This is shown in Figure 2.19.

We remember that Ross et al. [21] and Barnard et al. |2| insisted that the
slip condition should be applied on the initial velocity field with the homogeneous
Neumann boundary condition at the terrain surface for satisfying the impenetra-
bility constraint. Since we initialized our velocity field with a horizontal vector
field, we should therefore observe a final vector field that is not tangent to the
terrain surface. Figure 2.20 shows that it is not the case and that the slip condi-
tion is satisfied on the topography. This might be an advantage of the EBM over
the FDM.

We now verify if the coarse shape of the geometry has some repercussions on
the convergence of the final vector field. Convergence of the absolute error in the
different norms is presented in Figure 2.21.

The convergence rates of the absolute error for different norms of figure 2.21

are shown in the following tables.
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Streamlines of the initial vector field Divergence of the initial vector field

10 10
\ . 200
\ . 150
. ; 100
\ o 50
> 5 0
A -50
3 -100
2 -150
4 -200
0 -250
0 2 4 6 8 10
x
Divergence of the final vector field x107"°
10 5
9 4
8
3
7
2
6
1
- 5
. 0
3 -1
2 -2
1 -3
0
[ 2 4 6 8 10

F1G. 2.19. Streamlines and divergence of the initial and final vector

fields (u, v)esp over exponential hill H,,,.

Final vector field (u,w)
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44 5.6

F1G. 2.20. Final vector fields (u,v).s, over the exponential hill H.,,,.

The max norm still does not seem to converge when only full cells are taken
into account. The non-convergence in this norm is not caused by small volume
cells, since these are not used when the max norm is computed. It can be shown

that even if those cells are not taken into account, the maximum of the error is
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Fic. 2.21. Norms of the staggered absolute error ey (top) and

volume-weighted norms of the cell-centered absolute error ey (bot-

tom) of (u®, v?)eyp.

EeN Loo L1 L2
w | 0.85|1.82]1.57
v [0.59]1.81]1.12

TAB. 2.6. Convergence rate of staggered absolute error ey for (u?, v%).,,.

en | Loo | Ly Lo
U 1.621.12
v 1.80 | 1.35

TaB. 2.7. Convergence rate of cell-centered absolute error ey for (u?, v?).,,.

always reached in the cells close to the terrain surface. Even if the max norm

does not converge, the generated velocity field is still incompressible since it has
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zero-divergence and can be used for wildfire spread simulations. In actual models
for wildfires spread, the wind velocity which is considered for the propagation of
the fire is always taken from a certain height above the topography, hence we
don’t need to worry much about the fact that the max norm of the absolute error
is not converging.

For the Ly-norm, the rate of convergence is now about O(h). The exponential

topography has a greater impact on the final velocity field as was expected.
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2.3.4. Half-cylinder hill case

We now want to check if our numerical solution converges to an exact solution.
Exact solutions for the Poisson equation are known for very simple geometries
such as the half-cylinder. Final velocity fields generated from uniform constant
initial velocity fields are expected to generate a potential-like flow. Hence, from an
initial vector field, we will try to generate a potential flow for which the analytic
solution is known. Wang et al. |25| and Ross et al. 21| used a uniform velocity
field in conformal coordinates to achieve this. We will see that good results can
be obtained in Cartesian coordinates when solving with the EBM.

Our test case will be to find the potential flow around a half-cylinder. We use

conventional polar coordinates (r,#) to solve the following Laplace equation :
Ap=0 (2.3.16)

with the following boundary conditions :
Far away from the cylinder of radius R, i.e. r/R > 1, the flow is assumed to be

only horizontal :
Ve = (u,0) (2.3.17)

and on the cylinder surface, i.e. r = R, the slip condition must be fulfilled :

v.-n=Ve-n=0 (2.3.18)
dp
= 5 =0. (2.3.19)

The exact solution of this problem is given by the potential ¢ :
R2
o(r,0) =u (r + —) cos 0. (2.3.20)
T
The vector field can be found first of all in polar coordinates :
v_@_go_u 1—R—2 cos 6 (2.3.21)
"or r2 o

2
=22 = _y (1 + —) sin 6 (2.3.22)
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but since we are using Cartesian coordinates for our computation, we will use the

vector field (u,v) :

U cosf —sinf| |v,
_ . (2.3.23)
v sinf cos6 Vg

Once again, the convergence will be tested in square domains. We will compare the
vector field components of the numerical solution (u4, v¢) with the exact solution

(ueract peract) by calculating the absolute error of the difference. For example,
en(u?) = [uf* —u|. (2.3.24)

Then we will take the volume-weighted norms of ey (u?) defined earlier. All this
is also done for v

In the articles [21] and [25], the authors use a uniform background wind in
conformal coordinates as the initial vector field. They say that since V - v = 0,
the Poisson equation will then be reduced to the Laplace equation Ay = 0 so
the numerical solution should converge to the solution of potential flow. Ross et
al. use terrain-following coordinates to satisfy the slip condition on the terrain
boundary and solve the Laplace equation. In our case, we use the initial vector

field given by

(U, 0) ey = (1,0) (2.3.25)

and the topography is defined by
L
with R = ==,

o) =10 (v &) 280
8

We already know that the divergence of the initial velocity field will not be zero
everywhere since the vector field is not tangential to the half-cylinder boundary.
This can be seen in Figure 2.22. In this figure, the streamlines of the final velocity
field are drawn in red and those of the exact velocity field in black. As we can see,
the profiles drawn by the streamlines are very similar, but this does not mean

that the numerical solution converges to the analytic solution.
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Fia. 2.22. Streamlines and divergence of the initial and final vector

fields (u,v)ey over half-cylinder hill H.,,.

Figure 2.23 shows the absolute error of the numerical solution with the exact
solution in different volume-weighted norms. We can therefore conclude that there

is no convergence. This might occur for different reasons. First, the exact solution
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Fiag. 2.23. Volume-weighted norms of the cell-centered absolute

error ey of (u?,v?)qy.
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is found when solving the Laplace equation. In our case, we are solving a Poisson
equation since the initial divergence is not zero over the whole domain. In the
mathematical problem, one of the boundary conditions assumes that the initial
velocity must be only horizontal at infinity. Our solution is found with Dirichlet
boundary conditions on a finite domain. The size of the domain might be too
small for the cylinder radius. Probably the two solutions would be even closer for
a smaller cylinder radius. However, even if the solution does not converge, the
resulting numerical flow looks very much like a potential flow.

Figure 2.24 shows the contour plot of the horizontal components u of the final
vector field and exact vector field. The profile is very similar except in magnitude.

This is even more obvious when looking at Figure 2.25 which shows the profile

Horizontal component of exact vector field Horizontal component of final vector field
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Fia. 2.24. Contour plot of horizontal component of numerical and

exact velocity fields over a half-cylinder hill H,.

of the components of the numerical vector field over the exact vector field. We
see that the profiles have quite the same shapes but that the magnitude of the
velocity is different, particularly for the component w.

Figure 2.26 shows the numerical and exact vector fields close to the surface
of the half-cylinder. The vector fields do not match perfectly close to the terrain
surface, which might contribute to the errors between the numerical and exact
solutions. This difference might be an artefact due to the average of the numerical
staggered velocity field since no extrapolation is done in zero volume cells when

computing the average in the cut cells.
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F1Gg. 2.25. Numerical and exact velocity magnitude at y = 2.34
over a half-cylinder hill H,.
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FI1G. 2.26. Final vector field (u?, v?)., (red) and exact vector field

(black) on half-cylinder hill given by H.,.
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2.4. FIRE SPREAD BY AN INCOMPRESSIBLE FLOW

In this section, we explain how the fire is moved by a mass-consistent wind.
First, a divergence-free vector field v is generated from a given initial wind vector
field v which fulfils the slip condition on the terrain surface. The global velocity

Viot Of the fire is given by
Viot = V4 + Vtire

where v, is the divergence-free wind vector field and v ;.. some constant velocity
for the fire itself moving on the topography. In case of absence of wind, the fire
would move at constant speed vy;... Since the vector field v, is tangent to the

topography, only the horizontal component u¢ is needed.

tot _.d fire
Uiply = W15 T U1
where u{ff = proj,vyire and where j is the lowest vertical index where w; 1 is
2 2
NON-Zero.
Euler’s method is used to simulate the fire propagation :
dx
— =V 2.4.1
dt tot ( )
Xn+1 g
—— =V 2.4.2
X" = X" + Atvyy (2.4.3)

Figure 2.27 shows the evolution of the position of a fire represented by a point
(e) and starting on the left side of the domain. The fire is pictured at every time
step At = 1 for different terrain geometries on a 50 x 50 grid. The initial vector

field is definded as v = (1,0) and norm of the fire velocity |vsie| = 0.5.

2.4.1. Wind effect depending on its altitude

We now illustrate how the wind affects the fire spread depending on the height
at which it is chosen. Here, we experiment with this effect using the sinusoidal and
exponential hills. In both cases, the initial wind vector field is uniform, v = (1, 0),
and the fire velocity is |v | = 0.5. The corrected wind vector field is calculated

on a uniform 50 x 50 grid and At = 1. Figure 2.28 shows that the wind at different
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(c¢) Exponential hill (d) Cylindrical hill

F1G. 2.27. Fire spreading over different terrain shapes (wind inflow

is on the left side).

heights over the topography has little influence on the fire spread, which is not
the case with the exponential topography in figure 2.29.
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F1G. 2.28. Fire position z(t) over sinusoidal hills with different
heights of the wind.
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Streamlines of the final vector field

Position of fire x(t) depending on wind at a given hei
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F1G. 2.29. Fire position x(t) over an exponential hill with different
heights of the wind.



Chapitre 3

SOLVING THE MODEL IN 3 DIMENSIONS

We now generalize the model for the three dimensional case. This part of
the project was achieved with the use of EBChombo, a software developed by
the ANAG team at the Lawrence Berkeley National Laboratory. EBChombo is
a collection of C++ classes with FORTRAN subroutines for the construction of
numerical PDE algorithms in complex geometries using the Embedded Boundary
Method. It is based on Chombo which also provides tools for solving PDE such
as Adaptive Mesh Refinement (AMR) and allows the use of parallel computing.

We first explain how EBM is implemented in EBChombo and more precisely
how the embedded boundary and the operators are discretized to 3D. Then the
test cases of the previous chapter are generalized in 3D for testing the convergence

of the algorithm.

3.1. EMBEDDED BOUNDARY METHOD

We recall that the aim of the Embedded boundary method here is to solve

the elliptic equation :
V-Vp=-2V-v (3.1.1)

on an irregular domain in three dimensions with homogeneous Neumann condi-
tion at the embedded boundary and homogeneous Dirichlet condition at domain
boundaries. This chapter generalizes the algorithm based on the finite volume
method explained in chapter two. The general idea of the approach is well ex-

plained in the article of Schwartz et al. [23].
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3.1.1. Discretization of the domain

The underlying discretization of space is given by rectangular cell-centered
control volumes on a Cartesian grid T; = [(i — 3u)hq, (i + 3u)hg), i € ZP where
hg is the mesh spacing in the d—direction, and u € ZP” is the vector with all
components equal to one.

The geometry of the irregular domain 2 is represented by its intersection with
the Cartesian grid. The method uses control volumes V; = T;N(2 and faces A; +ley
which are the intersections of V; with the coordinate planes {x : x4 = (iq%3)ha}-
Here e, is the unit vector in the d—direction. The intersection of the boundary
of the irregular domain and the Cartesian control volumes are the faces AP =
15 N oS

The discretized divergence operator requires some geometric data on the con-

trol volume cells such as areas and volumes written in nondimensional terms :

1
volume fractions : k; = |Vj| HdD:1 -
d

1

face apertures : oy 1,, = |Aii%ed| [z e

boundary apertures : .

It is also assumed that these values can be calculated with accuracy of O(h?).
Location of centroids and the average outward normal can also be computed with
these explicit formulas :

face centroid : x; +ley | A | f
1+2

boundary face centroid : x xdA

|AB| fAB

outward normal : nj

1
= mfAlB l'leA

B

where n” is the outward normal to the boundary 0f2 defined for each point on

0. Again, the accuracy of these computed quantities is assumed to be O(h?).
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3.1.2. Embedded Boundary representation

EBChombo uses an implicit function ¢ : RP — R for embedding the irregular

geometry in the Cartesian grid and defining the computation domain €2 :
Q={x:9¢(x) <0} (3.1.2)

00 = {x : ¢(x) = 0}. (3.1.3)

This approach has been chosen by the ANAG team for different reasons,
namely the easy computation of functions such as the normal at the boundary
and representation of sophisticated geometries. Moreover, the moments which
are used for computing the centroids can be found using the divergence theorem,
Taylor expansions, least squares, recursion, and 1D root finding. An advantage is
that an explicit representation of the irregular domain and its boundary is never
needed nor computed. The article of Ligocki et al. |16] explains in more detail
how this is achieved.

In our case, we assume in the 2D model that the topography was given by
an analytic function H : RP~! — R where D = 2. In order to represent such
functions in EBChombo, we will use an implicit function of the form ¢(z,y, z) =

H(z,y) — z.

3.1.3. Divergence operator

The divergence operator V- is discretized using the divergence theorem as

before. Let F = (F',..., FP) be a function of x. By the midpoint rule we have :

1 1
|V;'7j’ Vi ’V;,j| aV;
1 D
~ ah [( >, Zi&ii;edFd(Xii;ed)) +afn;” - F(x") (3.1.5)
' t=+,— d=1

Once again, the homogeneous Neumann boundary condition is applied on the
embedded boundary, meaning that F(x;®) = 0. Hence, the discrete divergence

operator becomes

D
1
M d d
DY (F)ij = — (Z O te, Filre, — ai%edFi_;ed> (3.1.6)
! d=1
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3.1.4. Flux interpolation

In order to use the divergence operator on the volume control cells next to
the boundaries of the domain, the fluxes on the boundaries must be specified. At

the embedded boundary, the problem uses a homogeneous Neumann condition

o _

5> = 0, which means that the flux is simply zero, F(x;%) = 0.

For the top and side domain boundaries, the homogeneous Dirichlet condition
¢ = 0 is applied as in the 2D case. As we have seen before, this kind of condition
does not prescribe a particular value for the flux at the boundary, hence the flux
must be interpolated. We use the same three-point gradient stencil as in equation
(2.1.11) of the two-dimensional problem in order to get a specific value of the flux
on those boundaries.

For example, the flux on the right boundary in the direction d = 1 is given by

1 1
Firte =513 (” — ) - 3 (¥" = vie)) |- (3.1.7)

where o is the value of ¢ at the boundary.

The divergence operator requires fluxes to be defined on the face centroid of
the volume cells. For cut cells, the flux must be specified at the centroid of the
face cells. In order to achieve this, EBChombo applies a bilinear interpolation
using the value of the fluxes in the neighbouring cells. A bilinear interpolation
can be seen as a composition of two linear interpolations.

For instance, given a face with outward normal e; with centroid x, the flux

Fi”i 1e, in the d—direction for d # 1 is linearly interpolated by :
2

1-5€e1
|X : ed|
=1- 3.1.9
U - (3.1.9)
+ x-e;>0
+= . (3.1.10)
— X-€q S 0

This part is illustrated by the red dashed lines in Figure 3.1. Then, the flux

is interpolated at the centroid using a linear interpolation of the two previous



linearly interpolated fluxes, which results in the bilinear interpolation :

Fiite, =0Fi 1, + (1= n)F

1 1+%e1 1+%e1:|:ed/
|X : ed/|
n=le T
4+ x-ey >0
4+ =

— x-edfgo

o7

(3.1.11)

(3.1.12)

(3.1.13)

where d' # d and d' # 1. This last step is pictured by the blue dashed line in

Figure 3.1 which gives an example of the bilinear interpolation of the flux F; le,

at the centroid in the case where d = 2 and d' = 3.

1

F1G. 3.1. Interpolation of the flux Fj, 1, at the centroid of the cut

1

face cell edge using bilinear interpolation. The scheme here is for

the case where d = 2 and d' = 3.

Note that for cut faces where the distance between the face centroid and the

face center only depends on one of the two tangential components of the face, the

bilinear interpolation reduces to a simple linear interpolation as shown in Figure

3.2.

As mentioned by Schwartz et al. [23], this is a nontrivial choice for computing

the fluxes on cut face cells. In fact, experiments have shown that this choice

of bilinear interpolation assures the stability of the method for all test cases,

especially for some configurations of adjacent small control volumes, which was

not true when using a more simple linear interpolation.
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€1
€2

Fia. 3.2. Interpolation of the flux F;

itle, at the centroid of the
cut cell face using linear interpolation when the distance between
the face centroid and the face center only varies in the tangential

direction es.

3.1.5. MAC Projection

We give some details on the class EBCompositeMACProjector which was used
to obtain the divergence-free velocity field from an initial velocity field using
the MAC projection and the Embedded Boundary Method. EBChombo is built
so that it takes advantage of the adaptive mesh refinement (AMR) multigrid
algorithm developed by Martin and Cartwright [17]. Since the 2D version has
not been implemented with AMR, the tests in 3D use only one level, meaning
that none of the multigrid features were used here.

The functions in the class first compute the right hand side of equation (3.1.1)
p = —2V - v. Then the elliptic equation Ay = p is solved with the Embedded
Boundary Method on a Cartesian grid. Finally, the projection is completed by

doing the correction :
d 1 -1
% zv—|—§V(A V-v). (3.1.14)

Some parameters must be defined in order to use the class correctly. For all
simulations, a number of 40 iterations were done for pre-conditioning. The Gauss-
Seidel method was used as the relaxation method and the minimum residual

method for solving the elliptic equation.
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3.2. CONVERGENCE AND ERROR ANALYSIS

As in chapter two, we study the efficiency and accuracy of the Embedded
Boundary Method. The algorithm will be used for solving constant or particular
initial velocity fields over different geometries.

When the exact solution is unknown, we study the convergence of the algo-
rithm using a reference solution which is solution on a grid of very fine resolution.
Then, we compute the error between the solutions of the coarsest grids and the
reference fine grid. In our case, we are interested by the convergence of the veloc-
ity field. Since the norms are defined for cell-centered quantities, we average the
edge-centered velocity field at the center of each cell. Then, the reference solution
must be averaged to the coarse grid using a volume-weighted average available in

the EBCoarseAverage class :

Av(¢!) = vi » vie, (3.2.1)

vf€.7:

where F is the set of cells of the fine grid vy contained in the cell of the coarse
grid v, and where V/ and V¢ are the volume of cells v s and v, respectively. Figure
3.3 shows the cells vy of the fine grid N = 8 that are contained in the coarse cell

v, of the grid N = 2.

******************

******************

FiG. 3.3. The fine to coarse averaging of a cell-centered quantity
using a volume-weighted average of values of the fine grid N = 8

to the coarse grid N = 2.
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The absolute error for the component u is given by

en(un) = [Av(un,,,) — un| . (3.2.2)

where N,.s is the number of cells of the reference grid and /N the number of cells
of a coarser grid. The absolute error is computed for the other components of the
corrected vector field vy = (u?, v?, w?). Then, we check if the errors converge for
different norms. We use the volume-weighted norm defined in the Johansen and
Colella article [14], which is available in the EBArith class. For a cell-centered

variable &, the max norm is :

1€llo0 = max 184 (3.2.3)
and the p—norm :
1/p
el = { D laslmiaah®/ 3" kigeh® (3.2.4)
(,5,k)eR (4,5,k)€Q

where €2 is the computational domain and &; ; ; the volume fraction of each control
cell.

For the 3D test cases, the norms of the absolute error were taken over all
non-zero volume cells.

All convergence tests are performed on square domains :

L=L,=L,=L.

N=N,=N, =N,

and where the vertical axis is given by y. For all our tests, L = 10 and we use as
a reference solution the results obtained on the grid N,.; = 128 and the coarsest
grid is N = 4.

The solutions of the different cases will be shown with the streamlines of the
velocity field and the contour plots for the final divergence and velocity compo-
nents. Those figures will be done using the following parameters for the discretiza-

tion of the rectangular domain in all test cases :
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N | L

64 | 10
TAB. 3.1. Parameters used for test cases in 3D.

3.2.1. Flat terrain case

The flat terrain is a simple topography for which the Embedded Boundary
Method should not be so different from the Finite Volume Method. The topog-
raphy is a plane surface defined by

Ly, (3.2.5)

Hpo(x,y) = 3

For the tests, we use a horizontal initial velocity field which is accelerating in the

r—direction :
(u, v, W) frar = (100 + 27, 0,0). (3.2.6)

Figure 3.4 shows the divergence of the corrected velocity field on three planes
crossing the computational domain 2, the grey horizontal plane being the flat

topography.

F1G. 3.4. Divergence of the final vector field (u, v, w) 4 over the

flat terrain H fq.
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The convergence of the corrected velocity field with a reference solution is

shown in figure 3.5.
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Fia. 3.5. Volume-weighted norms of the cell-centered absolute er-

ror ey of (u?, v? w?) fra.

Using the polyfit function in Matlab, we find that the rate of convergence
for the three components of the velocity field presented in the following tables.

The rate of convergence is about O(h?) for the L;—norm and the Lo—norm. For

en | Loo | L1 | Lo
w | 1.11]2.00 | 1.89
v | 1.10 ] 2.09 | 1.89
w | 1.09]2.07 | 1.87

TAB. 3.2. Convergence rate of (u,v,w)fq in different norms.

the Lo,—norm, the error convergence rate is O(h). This might be explained by

the fact that the largest errors are contained in partial volume cells.

3.2.2. Sinusoidal hills case

As in chapter two, we try our 3D algorithm over a geometry which has a few

more features. The topography is defined by the sinusoidal function :

Hsin(J:? y)

L
= —Zsin

30

L
(z+10) +

= (3.2.7)
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and the initial velocity field is horizontal and constant in the x—direction :

The results are

<u> v, w)sin -

(1,0,0).

(3.2.8)

similar to those obtained in 2D. We take a closer look to the

convergence which is shown in figure 3.6.

Norms of absolute error
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FiG. 3.6. Volume-weighted norms of the cell-centered absolute er-

ror ey of (u?,v

d7 wd)sin-

In this case, we already notice that the rate of convergence in L., —norm does

not converge. Remember that in the 3D case, the partial volume cells are kept

in the computation of the volume-weighted norms, which is not the case in 2D.

Since the largest errors occur near the terrain surface, this might explain why the

errors don’t converge in the L,,—norm. Moreover, as explained for this test case in

chapter two, the geometry of the terrain surface changes with each discretization

of the grid which affects the averaging of the reference solution on a coarser grid.

This could also explain the non-convergence in this norm.

en | Lo | L1 | Lo
w | — [1.76]1.11
v | — |1.61]1.22
w | — | 1.75]1.07

TAB. 3.3. Convergence rate of (u,v,w)g;, in different norms.
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The rate of convergence in the other two norms is lower that what was seen

in the flat terrain test case. In fact, the Ly—norm seems to be more 1% order

accurate rather than 2°¢. Compared to the results obtained for u and v in the

two-dimensional case, it is quite similar but still lower order. Again, this might

be caused by the values of the velocity field in the partial volume cells when

computing these norms.

3.2.3. Exponential hill case

The last test case aims to challenge the algorithm with a more complex to-

pography. The exponential hill is defined by

L.\*\ L
Hewp(x,y) = 4exp (— (3: — 7) ) + 1—8

We use the same initial vector field as before :

(U, v, W)erp = (1,0,0).

(3.2.9)

(3.2.10)

The exponential topography is represented by the grey surface in Figure 3.7

while the 3 other planes show the remaining divergence after correcting the initial

vector field. Once again, we notice that the final divergence is zero everywhere.

X-Axi

s Z-Axis
50 60 60 50 40 30 20 19 ¢

Il KRR R AR RARR A o2 SRR

F1G. 3.7. Divergence of the final vector field (u, v, w).s, over expo-

nential hill H,,.
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The constant horizontal velocity field is corrected to become the divergence-
free velocity field tangent to the topography where wind speed-up can be observed
at the top of the hill. This is pictured by the contour plot of the velocity compo-

nent v in Figure 3.8.

X-Axis Z-Axis
0 10 20 30 40 50 60 60 50 40 30 20 100

FiG. 3.8. Contour plot of the component u of the final vector field.

Figure 3.9 shows the final vector field over the exponential hill.

X-Axis
0 10 20 30 40 50 60

F1G. 3.9. Vector plot of the final vector field (u,v,w)es, over ex-

ponential hill H,,.
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The convergence of the algorithm for this test case is graphed in Figure 3.10.
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Fic. 3.10. Volume-weighted norms of the cell-centered absolute

error ey over exponential hill He,,.

Once again, nothing seems to converge in the L,,—norm. The convergence rate
in the Ly—norm is even lower than in the sinusoidal hills case. This is probably
caused by the fact that the geometry is more prominent than the small sinusoidal

hills and takes up a bigger region of the domain.

EN Loo L1 L2

w | — | 1.57]0.96
v | — | 1.590.82
w | — |1.93|1.19

TAB. 3.4. Convergence rate of (u,v,w)e,, in different norms.



CONCLUSIONS

The goal for this project was to implement a new approach for modelling wild-
fire spread. The model is based on mass-consistent models that were developed
over the last 30 years for wind modelling in atmospheric sciences. We have shown
that Sasaki’s variational technique was very similar to the projection method.
This last approach was used for extracting a divergence-free velocity field from
any initial vector field.

The model was formulated in such a way that it can be initialized with a
high altitude wind which can be interpolated over the whole domain down to
the surface. The geometric features of the topography which accounts for most of
the final velocity profile are now treated efficiently with the Embedded Bound-
ary Method. This technique based on the Finite Volume Method was used for
modelling wind in two and three dimensions.

Error analysis has shown that the EBM algorithm converges for all cases
except in the max norm. This norm is more sensitive to the error occurring in cut
cells than the other cells of the computational domain. In 2D, the half-cylinder
case test has shown that the resulting mass-consistent wind velocity is very similar
to the potential flow even if our numerical solution does not converge to the exact
solution.

Further research will implement the inclusion of the fire feedback as a dilation
source term in the computation of the wind, more precisely when solving the
Poisson equation. This additional step will lead to a mass-consistent and fire-
induced flow that could be more representative of the actual wind in a wildfire
region, especially for high intensity fires. New numerical methods will have to be

developed in order to address the numerical issues related to the inclusion of the
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source term in the projection operators. It will also be interesting to determine
the regimes where the coupled fire-atmosphere mass-consistent model should be

used prior to the use of the conservation of momentum equation.
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Annexe A

PROJECTIONS

The projection method which has been introduced in chapter one was used
throughout the thesis for solving the Poisson Equation. We have chosen a dis-
cretization of the operators on a MAC grid for our algorithm. We show here two
other ways for discretizing the projection operators, the divergence operator V-,

the gradient operator V and the projection operator P.

CELL-CENTERED PROJECTION

The cell-centered projection uses a grid where the components of the vector
field v and the scalar field ¢ are collocated, i.e. defined at the center of the control
cells. Let D° and G° be the discrete divergence and discrete gradient operators
over the cell-centered grid. The natural way to define those operators is using the

centered difference approximations :

0 Uitl,j — Wi-15 | Wij41 — Wij—1
(V) 5] 2h$ + th ( )
and
GO(¢);; = <90i+1,j2; Sﬁi—l,j’ ‘pi,j—i-12; ‘;Oi,j—l) ' (A.0.12)
x y

The projection operator is then defined as
P°=1-G°(D°G°) "' D° (A.0.13)

and D°(P°(v)) = 0.
Unfortunately, solving the Poisson equation is more complicated since the

Laplacian D°(G°(p)); ; is different from the standard Laplacian. The stencil is like



A-ii
the standard 5 point Laplacian but it is expanded as it can be seen in Figure A.1.

This decouples a two-dimensional grid into four distinct subgrids which makes

F1G. A.1. Expanded Laplacian D°(G°(y)); ;

the linear algebra more complicated to solve the Poisson equation. Oscillations in
the solution might also occur but it can be corrected with filters. Note also that

the subgrids can be recoupled with the boundary conditions.

MAC PROJECTION

The Marker-and-Cell (MAC) projection introduced by Harlow and Welch [12]
uses a staggered grid, where the components of the vector field are defined on the
edges of the control cells and the scalar field is defined at the center as shown in

Figure A.2.

i+d,5

Fic. A.2. Staggered grid with the cell-centered scalar field ¢ and

the edge-centered components of the velocity field (u,v).

Let DMAC and GMAC be the discrete divergence and discrete gradient op-
erators over the staggered grid. The divergence is defined using the divergence
theorem on the control cell and the gradient by centered differences over the

edges :

Ujpl j — Uy 1, W1 — W 1
DMAC (v, ; = +2”h 2y 7J+2h . (A.0.14)
x Yy
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and
Pit1j — P
GMA(p)yyy = T (A.0.15)
GMAC ), 11 = —%vj“h_ Pisj (A.0.16)

Y

The projection operator is then defined as

PMAC _ 1 _ qMAC (DMACGMAC)’l DMAC (A.0.17)

and DMAC(PMAC(v)) = (.
For this projection, the Laplacian defined as DMAC(GMAC (), ; is the stan-

dard 5 point stencil Laplacian as shown in Figure A.3.

Fia. A.3. Standard 5 point stencil Laplacian

Despite the fact that the components of the vector field are not specified at
the same place on the grid, the MAC projection has the advantage that the slip

boundary condition can be set explicitly at walls for rectangular domains.

CELL-CENTERED APPROXIMATE PROJECTION

The two previous projections are called exact projections since the divergence
of the divergence-free vector field is exactly zero. Some properties of the MAC and
cell-centered projections would be desirable in the same projection. For instance,
we might want the components of the vector field to be collocated. Also, it would
be easier to use the standard Laplacian rather than the expanded one. These
properties are included in the cell-centered approximate projection. The vector
and scalar fields are defined at the center of the control cells, so the operators G°
and D can be used. To avoid difficulties with the expanded Laplacian, we use

the standard Laplacian defined by GMA¢ and DMAC when solving the Poisson
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equation. Hence, we are solving
DMAGMA(p))iy = D°(V)ij. (A.0.18)
The operator P is then defined as
P=1-G°(L)"'D° (A.0.19)

where L # D°G°. Hence, the projection P is non-idempotent P # P2 but P ~ P2.

Also, D°(P(v)) = O(h?), which means that v, is not exactly divergence-free and

P is then called an approximate projection operator.



