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Abstract

A common real-life problem is to fairly allocate a number of indivisible objects and a fixed
amount of money among a group of agents. Fairness requires that each agent weakly
prefers his consumption bundle to any other agent’s bundle. Under fairness, efficiency
is equivalent to budget-balance (all the available money is allocated among the agents).
Budget-balance and fairness in general are incompatible with non-manipulability (Green
and Laffont, 1979). We propose a new notion of the degree of manipulability which can be
used to compare the ease of manipulation in allocation mechanisms. Our measure counts
for each problem the number of agents who can manipulate the rule. Given this notion,
the main result demonstrates that maximally linked fair allocation rules are the minimally
manipulable rules among all budget-balanced and fair allocation mechanisms. Such rules
link any agent to the bundle of a pre-selected agent through indifferences (which can be
viewed as indirect egalitarian equivalence).
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1 Introduction

Many real-life problems involve the allocation of indivisible objects among agents through
price or compensation mechanisms. Examples include the simultaneous allocation of jobs
among workers together with theirs salaries on labor markets and the assignment of apart-
ments together with their rents on housing markets. The fundamental criterion employed in
these problems is fairness meaning each agent likes his own consumption bundle (consisting of
an object and a monetary compensation) at least as well as that of anyone else. These types
of problems are sometimes referred to as fair (or envy-free) allocation problems and have
received considerable attention in the literature, see e.g. Alkan et al. (1991), Demange and
Gale (1985), Svensson (1983) or Tadenuma and Thomson (1991). Because each fair allocation
distributes the objects efficiently, budget-balance (all the available money is allocated among
the agents) is equivalent to efficiency under fairness. Now it follows from a famous result
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by Green and Laffont (1979) that there is no general budget-balanced and fair allocation
mechanism that is non-manipulable. This conclusion has also been stressed in a number of
recent papers where fair and non-manipulable allocation mechanisms are characterized, see
e.g. Andersson and Svensson (2008), Sun and Yang (2003) and Svensson (2009). Of course,
all these mechanisms violate budget-balance.

However, in many real-life applications, budget-balance is a necessary requirement, and
non-manipulability must be abandoned in order to achieve efficiency and fairness.1 This
paper considers such situations and develops a relevant notion that can be used to compare
budget-balanced and fair allocation mechanisms based on their degree of manipulability.

There is a growing literature aiming to compare the ease of manipulation or, equivalently,
the degree of manipulation in mechanisms which are known to be manipulable. Examples
include voting rules, matching mechanisms, school choice mechanisms etc. The early litera-
ture, e.g. Moulin (1980), primarily focuses on restricting the preference domain under which
a mechanism is non-manipulable. In evaluating the degree of manipulability, one direction of
recent research has adopted the idea of counting the number of preference profiles at which
a given mechanism is non-manipulable.2 A second direction relies on comparing the sets of
profiles on which any two mechanisms are manipulable. According to Pathak and Sönmez
(2009), a mechanism ϕ is said to be weakly more manipulable than mechanism ψ if (a) for
any profile where ψ is manipulable, also ϕ is manipulable, and (b) there is at least one profile
where ϕ is manipulable although ψ is not.

As we show, none of the above two measures of the degree of manipulability are satis-
factory when comparing budget-balanced and fair allocation rules. This conclusion follows
directly from the observation that if some budget-balanced and fair allocation rule is non-
manipulable at some preference profile, then each budget-balanced and fair allocation rule
is non-manipulable at the very same profile. Thus, all budget-balanced and fair allocation
rules are equally manipulable when counting the number of preference profiles at which a
mechanism is non-manipulable, and when comparing the sets of profiles where any two mech-
anisms are non-manipulable. To resolve this problem, we introduce a new measure of minimal
manipulability. More explicitly, an allocation rule ϕ is said to be weakly more individually
manipulable than the rule ψ if the number of agents that can manipulate ϕ is weakly greater
than the number of agents that can manipulate ψ at any admissible preference profile. Given
this criterion, we identify the least manipulable budget-balanced and fair allocation rules.

In order to describe the characterized rules, we will need to relate to some previous re-
sults in our environment. Each agent is supposed to have quasi-linear preferences and each
agent should be assigned exactly one object together with some (possibly negative) amount
of money under the restriction that the resulting allocation must be budget-balanced and
fair (envy-free). This type of problem has previously been considered in the literature by
e.g. Haake et al. (2000), Aragones (1995) and Klijn (2000). To find a rule that eliminates
profitable deviations through strategic misrepresentation for as many agents (and groups of
agents) as possible, we use the following key observation from the literature on fair and non-
manipulable allocation mechanisms: a necessary and sufficient condition for obtaining fair
and non-manipulable outcomes is that for each group of objects with compensations/prices
different from the reservation compensations/prices, there is a larger group of agents demand-

1Schummer (2000) shows that non-manipulable and efficient rules must be very “rigid”. See also Miyagawa
(2001).

2See e.g. Aleskerov and Kurbanov (1999), Kelly (1988,1993) and Maus et al. (2007a,b).
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ing objects from that group of objects.3 This observation cannot be directly applied to our
model because there are no reservation compensations/prices. However, the idea to select
compensations to make each object as attractive as possible for as many agents as possible
turns out to be very useful.4 More explicitly, we consider budget-balanced and fair allocation
rules where, given a fixed agent k, the compensations are chosen such that each agent i can
be “linked” through an indifference chain to agent k. This means that there is a sequence of
agents from i to k such that any agent in this sequence is indifferent between his consumption
bundle and the consumption bundle of the next agent in this sequence. This can be seen
as indirect egalitarian equivalence where any agent is linked through indifferences to agent
k’s consumption bundle. A budget-balanced and fair allocation rule selecting always such
allocations is said to be an agent k-linked fair allocation rule. Any rule choosing for each
preference profile agent k-linked fair allocations, where agent k belongs to an indifference
component with maximal cardinality, is said to be a maximally linked fair allocation rule.
Here, an indifference component is simply a maximal set of agents such that any two agents
are linked through an indifference chain in this set. According to our criterion, the main
result shows that maximally linked fair allocation rules are the minimally manipulable rules
among all budget-balanced and fair allocation rules.

Our main result turns out to be robust with respect to coalitional manipulations. In the
same vein as before, when comparing two mechanisms we count the number of coalitions
that can manipulate at a given profile. Again, maximally linked fair allocation rules are least
coalitionally manipulable among all budget-balanced and fair allocation rules. In particular,
we demonstrate that less than 50% of all coalitions can manipulate the maximal linked fair
allocation rule and provide an exact measure of the maximum number of manipulating agents
and coalitions for a given preference profile. This measure turns out to be very powerful
because it only requires knowledge of the number of agents that are included in an indifference
component containing agent k. As we show, the set of indifference components is identical
among all fair allocations for a given preference profile. Since an arbitrary fair allocation
easily can be found by a well-defined polynomially bounded algorithm, as demonstrated by
Klijn (2000), it is not even computationally hard to calculate our measures of individual and
coalitional manipulability (in sharp contrast to the measure where the number of preference
profiles at which a given mechanism is manipulable is calculated). Finally, we provide a simple
algorithm for identifying agent k-linked and maximally linked fair allocations for quasi-linear
utilities, and demonstrate that this algorithm converges in a finite number of iterations.

The paper is organized as follows. Section 2 states our model of assignment with com-
pensations and budget-balanced and fair allocation rules. Section 3 defines agent k-linked
fair allocations and maximally linked fair allocation rules, and provides some basic results.
Section 4 shows that previous measures of manipulability do not distinguish among budget-
balanced and fair allocation rules. It introduces our new criterion of minimal manipulability
and contains our main result showing that maximally linked fair allocation rules are mini-
mally manipulable among all budget-balanced and fair allocation rules. Section 5 identifies
both the set of agents and coalitions that can manipulate agent k-linked fair allocation rules.
It provides another characterization of maximally linked fair allocation rules using minimal
coalitional manipulability. Finally, Section 6 provides an algorithm for identifying agent k-

3See in particular Andersson and Svensson (2008, Lemma 4) and Mishra and Talman (2010, Theorem 2).
4Similar ideas have previously been used by e.g. Dubey (1982) and Svensson (1991) where the “tightness”

of the market is demonstrated to have a significant impact on the manipulation possibilities.
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linked fair and budget-balanced allocations and maximally linked fair allocations. Some proofs
are omitted in the main text and are given in the Appendix.

2 Assignment with Compensations

2.1 Agents, Allocations, and Preferences

Let N = {1, ..., n} and M = {1, ...,m} denote the set of agents and objects, respectively. The
number of agents and objects are assumed to coincide, i.e., |N | = |M |.5 Each agent consumes
exactly one object together with some amount of money. A consumption bundle is a pair
(j, α) ∈M ×R where α is the monetary compensation received when consuming object j. An
allocation (a, x) is a list of n consumption bundles where a : N →M is a mapping assigning
object ai to agent i ∈ N , and where x ∈ RM (or x : M → R) assigns the amount xj of money
for the object j ∈ M . An allocation (a, x) is feasible if ai �= aj whenever i �= j for i, j ∈ N ,
and

∑
j∈M xj ≤ 0.6 If

∑
j∈M xj = 0, then the allocation (a, x) satisfies budget-balance. Let

A denote the set of feasible and budget-balanced allocations.
Each agent i ∈ N has preferences over consumption bundles (j, xj) which are represented

by continuous utility functions ui : M × RM → R. We will write uij(x) instead of ui(j, x) to
denote the utility of agent i when consuming object j and receiving compensation xj in the
distribution vector x. The utility function is assumed to be quasi-linear and strictly increasing
in money, i.e.,

uij(x) = vij + xj for some vij ∈ R.

A list of utility functions u = (ui)i∈N is a (preference) profile. We also adopt the notational
convention of writing u = (uC , u−C) for C ⊆ N . The set of profiles with utility functions
having the above properties is denoted by U .

Let u ∈ U and (a, x) be a feasible allocation. Then (a, x) is efficient if there exists no
feasible allocation (b, y) such that uibi(y) ≥ uiai(x) for all i ∈ N with strict inequality holding
for some j ∈ N . Obviously, if (a, x) is efficient, then (a, x) is budget-balanced.

Throughout the paper we focus on feasible allocations satisfying budget-balance.7 For con-
venience, in the following allocation stands for “feasible allocation satisfying budget-balance”.

2.2 Fair Allocation Rules

The fundamental concept of fairness corresponds to envy-freeness which was first introduced
by Foley (1967). It says that each agent weakly prefers his consumption bundle to any other
agent’s bundle.

Definition 1. For a given profile u ∈ U , an allocation (a, x) is fair if uiai(x) ≥ uiaj (x) for all
i, j ∈ N . Let F (u) denote the set of fair allocations for a given profile u ∈ U .

It is well-known that under fairness, for feasible allocations efficiency is equivalent to
budget-balance.8

5If |N | < |M |, then we simply add |N | − |M | null objects with zero value for all agents.
6All our results remain true if the budget constraint is replaced by

∑
j∈M xj ≤ x0 for an arbitrary x0 ∈ R.

7When budget-balance is relaxed to
∑

j∈M xj ≤ 0, then general non-manipulability results are possible, see
e.g. Andersson and Svensson (2008) or Sun and Yang (2004).

8This is due to the fact that any fair allocation must assign the objects efficiently.

4



The following is a well-known property of fair allocations (see e.g. Svensson, 2009): if
two allocations are fair at a given profile, then one may interchange both the assignment of
objects and the monetary distribution without losing fairness. Obviously, this result holds for
fair allocations satisfying budget-balance.

Lemma 1. Suppose that allocations (a, x) and (b, y) are fair at profile u ∈ U . Then allocations
(a, y) and (b, x) are also fair at profile u ∈ U .

An allocation rule is a non-empty correspondence ϕ choosing for each profile u ∈ U a set
of allocations, ϕ(u) ⊆ A, such that uibi(y) = uiai(x) for all i ∈ N and all (a, x), (b, y) ∈ ϕ(u).
Hence, the various allocations in the set ϕ(u) are utility equivalent. Such a correspondence
is called essentially single-valued. It is important to note that alternatively we may consider
single-valued allocation rules choosing for each profile u ∈ U a unique allocation. All our
results remain unchanged for single-valued allocation rules.

An allocation rule ϕ is called fair if for any profile u ∈ U , ϕ(u) ⊆ F (u). The following is
a useful property of fair allocation rules.

Lemma 2. Let ϕ be a fair allocation rule and u ∈ U . If (a, x), (b, y) ∈ ϕ(u), then x = y.

Proof. Since (a, x), (b, y) ∈ ϕ(u), we have uiai(x) = uibi(y) for all i ∈ N . By fairness,
uiai(x) ≥ uibi(x). Thus, uibi(y) ≥ uibi(x) and ybi ≥ xbi . Similarly, we obtain xbi ≥ ybi . Hence,
x = y, the desired conclusion.

An important implication of Lemma 2 is that for fair allocation rules, the same distribution
of money is chosen for any given preference profile. Hence, often for the study of fair allocation
rules it is sufficient to consider its induced distributions of money.

3 Maximally Linked Fair Allocations

In the coming analysis, indifference chains and indifference components will be of primary
importance for allocations. These two concepts are introduced next.

Definition 2. Let (a, x) ∈ A.

(i) For any i, j ∈ N , we write i→(a,x) j if:

uiai(x) = uiaj (x).

(ii) An indifference chain at allocation (a, x) consists of a tuple of distinct agents g =
(i0, ..., ik) such that i0 →(a,x) i1 →(a,x) · · · →(a,x) ik.

(iii) An indifference component at allocation (a, x) is a non-empty set G ⊆ N such that for
all i, k ∈ G there exists an indifference chain at (a, x) in G, say g = (i0, ..., ik) with
{i0, . . . , ik} ⊆ G, such that i = i0 and ik = k, and there exists no G′ � G satisfying the
previous property at allocation (a, x).

Note that i →(a,x) j means that agent i is indifferent between his consumption bundle
and agent j’s consumption bundle, and agent i is directly linked via indifference to agent j at
allocation (a, x). An indifference chain at an allocation is simply a sequence of agents such
that any agent in the sequence is indifferent between his bundle and the bundle of the agent
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following him in the sequence. Indifference chains indirectly link agents via indifference in a
sequence of directly linked agents. In an indifference component, any two agents are linked
through an indifference chain in this component and there is no superset of this component
where any two agents are linked through an indifference chain.

The next result states an important property of indifference components, namely that
if there are two allocations that are budget-balanced and fair at some profile u ∈ U and if
there is an indifference component at one of these allocations, then the very same indifference
component must be present at the other allocation.

Lemma 3. Suppose that allocations (a, x) and (b, y) are budget-balanced and fair at profile
u ∈ U , and that there is an indifference component G at allocation (a, x). Then the same
indifference component G is present at allocation (b, y).

Proof. By Lemma 1, we know that (a, y) is fair. First we show that the indifference component
G is present at (a, y).

Because G is an indifference component at (a, x), G consists of indifference chains g =
(i0, i1, . . . , ik) such that ik →(a,x) i0. Thus, we have i0 →(a,x) i1 →(a,x) · · · →(a,x) ik →(a,x) i0.
We show i0 →(a,y) i1 →(a,y) · · · →(a,y) ik →(a,y) i0.

For any i ∈ N , let Δai = yai −xai . To obtain a contradiction, suppose that we do not have
i0 →(a,y) i1 →(a,y) · · · →(a,y) ik →(a,y) i0, say ui0ai0

(x) = ui0ai1
(x) but ui0ai0

(y) > ui0ai1
(y).

Thus, Δai0
> Δai1

. Now, fairness is respected among the agents in G at allocation (a, y) only
if:

Δaij
≥ Δaij+1

for all j ∈ {0, ..., k − 1}, (1)

Δaik
≥ Δai0

. (2)

From (1) and Δai0
> Δai1

, we obtain Δai0
> Δaik

. Hence, (2) is not satisfied. Thus, allocation
(a, y) cannot be fair, which contradicts our assumption. Hence, i0 →(a,y) i1 →(a,y) · · · →(a,y)

ik →(a,y) i0. Note that there exists no G′ � G such that G′ is an indifference component at
(a, y) because otherwise, using the previous arguments, any two agents in G′ are connected
through some indifference chain at (a, x) in G′ which contradicts the definition of G being an
indifference component at (a, x). Thus, the indifference component G is present at (a, y).

Next, we show that G must be also an indifference component at (b, y). Fairness implies
that:

uiai(y) = uibi(y) for all i ∈ N. (3)

Let j, k ∈ G and suppose that j →(a,y) k. Let ak �= bk and l1 ∈ N be such that al1 = bk.
Obviously, (3) implies k →(a,y) l1. More generally, let l1, . . . , lt be such that alr = blr−1 with
r = 2, . . . , t and ak = blt . Note that such a “cycle” exists because |N | = |M |. Now obviously
we have k →(a,y) l1, lr →(a,y) lr+1 for all r = 1, . . . , t− 1, and lt →(a,y) k. Since k ∈ G and G
is an indifference component at (a, y), we must have {l1, . . . , lt} ⊆ G.

Now by (3), we have ujbj (y) = ujaj (y) = ujak
(y) = ujblt

(y) which implies j →(b,y) lt. Note
that by construction, we also have l1 →(b,y) k and lr →(b,y) lr−1 for all r = 2, . . . , t. This
means that j and k are connected through the indifference chain j →(b,y) lt →(b,y) lt−1 →(b,y)

· · · →(b,y) l1 →(b,y) k in G under (b, y). Because this is true for any j, k ∈ G such that
j →(a,y) k, it also follows that any two agents belonging to G must be connected through an
indifference chain in G at (b, y). Furthermore, there can be no G′ � G satisfying this property
under (b, y) because by the same argument G′ would also satisfy this property under (a, x),
which would contradict the definition of an indifference component.
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Lemma 3 has the important implication that the same indifference components are present
at all budget-balanced and fair allocations (for a given profile). In other words, indifference
components at fair allocations only depend on the preference profile u because they are in-
variant with respect to the selected fair allocation.

Given the definition of indifference components, we next introduce the concept of linked
agents. We are especially interested in so-called agent k-linked allocations. At such an
allocation, each agent is linked to agent k through some indifference chain.

Definition 3. Let (a, x) ∈ A.

(i) Agent i ∈ N is linked to agent k ∈ N at allocation (a, x) if there exists an indifference
chain of type (i0, ..., it) at allocation (a, x) with i = i0 and it = k.

(ii) The allocation (a, x) is agent k-linked if each agent i ∈ N is linked to agent k.

In the following fair allocations which are agent k-linked (with k ∈ N) will play an
important role.

Remark 1. Agent k-linked fair allocations (a, x) can be viewed as (ak, xak
)-linked fair allo-

cations. In the same vein, any agent i is linked through an indifference chain to the consump-
tion bundle (ak, xak

) under allocation (a, x). One may interpret this as “indirect” egalitarian
equivalence where each agent is connected through some indifference chain to the consump-
tion bundle (ak, xak

). Recall that in “direct” egalitarian equivalence each agent views his
consumption bundle as utility equivalent to (ak, xak

).

The next result states that if there are two (or more) agent k-linked fair allocations at
a specific profile u ∈ U , then the monetary distribution of both of these allocations must
coincide. This is the analogue of Lemma 2 for agent k-linked fair allocations.

Lemma 4. If the budget-balanced and fair allocations (a, x) and (b, y) are agent k-linked at
profile u ∈ U , then x = y.

Proof. By Lemma 1, we know that (a, y) is also fair. First, we show that (a, y) is agent
k-linked if (b, y) is agent k-linked. Fairness implies:

uiai(y) = uibi(y) for all i ∈ N. (4)

Let ak �= bk and j ∈ N be such that aj = bk. Obviously, (4) implies j →(a,y) k. Now suppose
that i→(b,y) k and i �= j. But now by (4), we have uiai(y) = uibi(y) = uibk

(y) = uiaj (y) which
implies i →(a,y) j →(a,y) k and agent i is linked to agent k through some indifference chain.
Using these arguments, it is now easy to verify that (a, y) is agent k-linked (if either ak �= bk
or ak = bk). Thus, without loss of generality we may assume a = b.

Suppose that the fair allocations (a, x) and (a, y) are agent k-linked but x �= y. Then by
budget-balance and x �= y, there must be two non-empty groups of agents:

A = {i ∈ N | xai > yai},
B = {i ∈ N | xai ≤ yai}.

Note that for all i ∈ A and all j ∈ B, uiai(x) > uiai(y) ≥ uiaj (y) ≥ uiaj (x). Hence, no agent
in A can be linked to any agent in B at allocation (a, x). Because (a, x) is agent k-linked, we
must have k ∈ A. Let j ∈ B and i ∈ A. By fairness and monotonicity:

ujaj (y) ≥ ujaj (x) ≥ ujai(x) > ujai(y).
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Thus, at allocation (a, y) no agent in B can be linked to any agent in A. Hence, by k ∈ A,
allocation (a, y) cannot be agent k-linked which contradicts our assumption.

Given k ∈ N , let ψk(u) ⊆ F (u) denote the set of all budget-balanced and fair allocations
which are agent k-linked at profile u ∈ U . Section 6 establishes the non-emptiness of this set
by providing an algorithm to compute such allocations.

Proposition 1. ψk is an allocation rule, i.e. for any u ∈ U , all allocations (a, x), (b, y) ∈ ψk(u)
are utility equivalent.

Proof. Let (a, x), (b, y) ∈ ψk(u) and i ∈ N . By Lemma 4, we have x = y. Obviously, if ai = bi,
then uiai(x) = uibi(y). If ai �= bi, then by fairness both uiai(x) ≥ uibi(x) and uiai(y) ≤ uibi(y).
Hence, by x = y, uiai(x) = uibi(y), the desired conclusion.

We call ψk the agent k-linked fair allocation rule. As will become clear in the following
section, agent k-linked fair allocation rules have a number of good strategic properties. How-
ever, depending on the reported profile u ∈ U and the selection of k ∈ N , the manipulability
possibilities will differ. Thus, when defining the allocation rule, it is important to select the
right k ∈ N for a given profile u. For this reason, the selection of agent k will be endogenously
determined by the reported profile u ∈ U as explained below.

For a given report u ∈ U , recall that the set of indifference components is identical for all
allocations in F (u) by Lemma 3. Let

G(u) = {G ⊆ N | G is an indifference component at all (a, x) ∈ F (u)}.

denote the set of all indifference components of fair allocations for profile u. Note also that
for any i ∈ N , there exists G ∈ G(u) such that i ∈ G (where G = {i} is possible). Let

Ḡ(u) = {G ∈ G(u) | |G| ≥ |G′| for all G′ ∈ G(u)},

denote the set of indifference components with maximal cardinality, and let:

Ḡ(u) = ∪G∈Ḡ(u)G,

denote the union of all indifference components with maximal cardinality.
The idea of the following rules is first to select an indifference component with maximal

cardinality, second some agent k belonging to this indifference component and third the set
of agent k-linked fair allocations.

A maximal selection is a function κ : U → N such that for all u ∈ U we have κ(u) ∈ Ḡ(u).
The maximally linked fair allocation rule ψκ based on κ is defined as follows: for all u ∈ U ,
let ψκ(u) = ψκ(u)(u). Note that by Proposition 1, ψκ is a well-defined allocation rule because
ψk(u) is essentially single-valued for any k ∈ N and any u ∈ U . Furthermore, we will say
that an allocation rule ϕ is a maximally linked fair allocation rule if there exists a maximal
selection κ such that for all u ∈ U we have ϕ(u) ⊆ ψκ(u).

The function κ is a systematic selection from Ḡ(u). The meaning of “systematic selection”
is that there is a well defined rule for selecting k. This rule can be arbitrary and all our
results hold independently of this rule. For example, the rule could be based on a randomized
selection from Ḡ(u) or simply the k with the lowest or highest index in Ḡ(u).

Our main result will compare maximally linked fair allocation rules with arbitrary budget-
balanced and fair allocation rules.
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4 Minimal Manipulability

In the following we will determine the (non-)manipulation possibilities of budget-balanced
and fair allocation rules.

Definition 4. An allocation rule ϕ is manipulable at a profile u ∈ U by an agent i ∈ N if
there exists a profile (ûi, u−i) ∈ U and two allocations (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(ûi, u−i)
such that uibi(y) > uiai(x). If the allocation rule ϕ is not manipulable by any agent at profile
u ∈ U , then ϕ is said to be non-manipulable at profile u.

Remark 2. Since allocation rules may choose sets of allocations, one may alternatively
employ a more conservative notion of manipulability: ϕ is strongly manipulable at a profile
u ∈ U by an agent i ∈ N if there exists a profile (ûi, u−i) ∈ U such that uibi(y) > uiai(x) for
all (a, x) ∈ ϕ(u) and all (b, y) ∈ ϕ(ûi, u−i). From Svensson (2009, Proposition 3 and its proof)
it follows that for any fair allocation rule ϕ and any profile u ∈ U , ϕ is strongly manipulable
at profile u by i if and only if ϕ is manipulable at profile u by i. Hence, instead we may use
the conservative notion of manipulability instead of ours.

It is well-known (Green and Laffont, 1979) that any budget-balanced and fair rule is
manipulable for some profile u ∈ U . Thus, we need a measure of the degree of manipulability
in order to compare two different budget-balanced and fair allocation rules. As it will turn
out, previous notions of degrees of manipulability will not distinguish budget-balanced and
fair allocation rules.

We show that for any fair allocation rule and any profile u, the fair allocation rule cannot
be manipulated by any agent at profile u if and only if a maximally linked fair allocation rule
cannot be manipulated by any agent at profile u.

Proposition 2. Let ϕ be a budget-balanced and fair allocation rule, ψκ be a maximally
linked fair allocation rule and u ∈ U . Then the maximally linked allocation rule ψκ is non-
manipulable at profile u if and only if the fair allocation rule ϕ is non-manipulable at profile
u.

We will defer the proof to the next section where we identify agents who can manipulate
maximally linked fair allocation rules.

Remark 3 (Counting Profiles). Several authors (see e.g. Maus et al., 2007a, 2007b) have
proposed to compare two rules via counting the number of profiles where some agent can
manipulate the rule. Obviously, Proposition 2 shows for any profile u, that either all fair rules
are manipulable or all fair rules cannot be manipulated at the given profile by any agent.

Remark 4 (Comparing Sets of Profiles). Pathak and Sönmez (2009) propose to compare
two rules via comparing the sets of profiles where some agent can manipulate a rule. They
call a rule ϕ weakly more manipulable than a rule ϕ′, if for any problem where some agent
i manipulates ϕ′, there exists an agent j who manipulates ϕ at this problem. Again Propo-
sition 2 shows that all fair allocation rules are equally manipulable regarding this degree of
manipulability.

Given these observations, a “first-order approach” by considering profiles where no agent
can manipulate the rule does not refine the set of fair allocation rules. Here we will propose
a “second-order approach” by comparing the cardinalities of the sets of agents who can ma-
nipulate a fair allocation rule at a given profile. For this purpose, let Pϕ(u) denote the set of
agents who can manipulate the allocation rule ϕ at profile u ∈ U .
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Definition 5. An allocation rule ϕ̃ is weakly more (individually) manipulable than the allo-
cation rule ϕ if |P ϕ̃(u)| ≥ |Pϕ(u)| for all u ∈ U .

Our main result establishes that maximally linked fair allocation rules are minimally
manipulable among all budget-balanced and fair allocation rules. The proof is delegated to
the Appendix.

Theorem 1. Let ϕ be a budget-balanced and fair allocation rule and let ψκ be a maximally
linked fair allocation rule. Then ϕ is weakly more manipulable than ψκ.

In other words, maximally linked fair allocation rules are least manipulable in the class of
budget-balanced and fair allocation rules. One can also see that when a fair rule is not a max-
imally linked fair allocation rule, then there exists some profile where this rule is manipulable
by more agents than a maximally linked fair allocation rule. Therefore, maximally linked fair
allocation rules are characterized by minimal manipulability among all budget-balanced and
fair allocation rules.

The proofs of our result will also reveal the following corollary.

Corollary 1. (i) ψk cannot be manipulated by agent k at any profile u ∈ U .

(ii) For any two distinct agents i, j ∈ N , there exists no budget-balanced and fair allocation
rule ϕ such that neither i nor j can manipulate ϕ at any profile u ∈ U .

Note that Corollary 1 has the same flavor as the corresponding results in two-sided match-
ing (with men and women): (i) for any agent there exists a stable matching rule which is not
manipulable by this agent at any profile; and (ii) there is no stable matching rule which cannot
be manipulated by at least one man and at least one woman (Ma, 1995).

5 Identifying Non-Manipulating Agents and Coalitions

We will identify both the agents and coalitions who are able to profitably manipulate an agent
k-linked fair allocation rule. This will allow us to determine at which profiles such a rule is
non-manipulable and to compare budget-balanced and fair allocation rules regarding their
possibilities of coalitional manipulations.

We adopt the following version of coalition manipulability and non-manipulability.

Definition 6. An allocation rule ϕ is manipulable at a profile u ∈ U by a coalition C ⊆ N
if there is a profile (ûC , u−C) ∈ U and two allocations (a, x) ∈ ϕ(u) and (b, y) ∈ ϕ(ûC , u−C)
such that uibi(y) > uiai(x) for all i ∈ C. If the allocation rule ϕ is not manipulable by any
coalition at profile u, then ϕ is said to be coalitionally non-manipulable at profile u.

In the same vein as Remark 2, we may use a more conservative notion of coalitional
manipulability where all deviating agents are strictly better off after the deviation for any of
the chosen allocations. Again by Svensson (2009, Proposition 3 and its proof), this would not
change any of our results below.

Our next result shows that the agent k-linked fair allocation rule cannot be manipulated
by any coalition containing agent k. The intuition behind this is as follows. If agent k
successfully can manipulate the allocation rule, then by fairness agent k must be assigned a
consumption bundle where the monetary compensation increases. Then because each agent
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is linked to agent k, each agent must be assigned a consumption bundle where the monetary
compensation increases, because if this not is the case then fairness is violated at the new
allocation. But then the budget must be exceeded. Hence, agent k cannot manipulate.
The same intuition even holds for any fair allocation rule choosing only agent k-linked fair
allocations for some profile.

Lemma 5. Let ϕ be a budget-balanced and fair allocation rule, k ∈ N and u ∈ U . If
ϕ(u) ⊆ ψk(u), then no coalition C ⊆ N containing agent k can manipulate ϕ at profile u.

Proof. Let C ⊆ N be such that k ∈ C. Suppose that ϕ is manipulable at profile u by
coalition C. Then there is a profile (ûC , u−C) ∈ U and two allocations (a, x) ∈ ϕ(u) and
(b, y) ∈ ϕ(ûC , u−C) such that uibi(y) > uiai(x) for all i ∈ C. Note that ϕ(u) ⊆ ψk(u) and
(a, x) ∈ ψk(u).

By fairness, uiai(x) ≥ uibi(x) for all i ∈ C. Hence, for all i ∈ C, uibi(y) > uibi(x) and
ybi > xbi . Because (b, y) satisfies budget-balance, we must have C � N . Since k ∈ C and
(a, x) is an agent k-linked fair allocation, there exists i ∈ N−C and j ∈ C such that i→(a,x) j.
Now by yaj > xaj (j ∈ C) and uiai(x) = uiaj (x), fairness and monotonicity imply:

uibi(y) ≥ uiaj (y) > uiaj (x) = uiai(x) ≥ uibi(x).

Hence, ybi > xbi . Let C1 = C ∪ {i ∈ N | i→(a,x) j for some j ∈ C}. Thus, we have ybi > xbi

for all i ∈ C1.
Using the same arguments it follows that for each i ∈ N such that i →(a,x) j for some

j ∈ C1, we have ybi > xbi . For any l, let C l+1 = C l ∪ {i ∈ N | i→(a,x) j for some j ∈ C l}.
Because (a, x) is agent k-linked, for some t we obtain Ct = N and ybi > xbi for all i ∈ Ct,

which is contradiction to budget-balance of (b, y). Hence, C cannot manipulate ϕ at profile
u.

Remark 5. Lemma 5 implies that the agent k-linked fair allocation rule cannot be manip-
ulated by any coalition containing k at any profile. In particular, the agent k-linked fair
allocation rule is not manipulable by agent k at any profile u, which is the first part of
Corollary 1. The second part of Corollary 1 is easy to verify and left to the reader.

The following proposition identifies all preference profiles u ∈ U at which an agent k-linked
fair allocation rule is (coalitionally) non-manipulable.

Proposition 3. Let k ∈ N and u ∈ U . Then ψk is (coalitionally) non-manipulable at profile
u if and only if G(u) = {N}, i.e. if and only if N is the unique indifference component at
profile u.

Proof. We only prove the “if” part of because the “only if” part follows directly from Lemma
7 in the Appendix. Since G(u) = {N}, any (a, x) ∈ F (u) is agent i-linked for any i ∈ N .
Since ψk(u) ⊆ F (u), Lemma 5 implies that no coalition containing i can manipulate ψk at
profile u. Hence, ψk is both (individually) non-manipulable at profile u and coalitionally
non-manipulable at profile u, the desired conclusion.

Now Proposition 3 allows us to demonstrate that an arbitrary fair allocation rule is non-
manipulable at a profile if and only if the agent k-linked fair allocation rule is non-manipulable
at this profile. Using Lemma 5, this result implies Proposition 2 (which was used in Section
4 to motivate our “second-order approach” to minimal manipulability).
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Proposition 4. Let ϕ be a budget-balanced and fair allocation rule, k ∈ N and u ∈ U .
Then ψk is (coalitionally) non-manipulable at profile u if and only if ϕ is (coalitionally)
non-manipulable at profile u.

Proof. For the “only if” part, suppose that ψk is not (coalitionally) manipulable at profile u.
By Proposition 3, G(u) = {N} and any (a, x) ∈ F (u) is agent i-linked for all i ∈ N . Since
ϕ(u) ⊆ F (u), now any (a, x) ∈ ϕ(u) is agent i-linked for all i ∈ N . Thus, ϕ(u) ⊆ ψi(u) for
all i ∈ N . By Lemma 5, no coalition containing i can manipulate ϕ at profile u. Hence, ϕ is
(coalitionally) non-manipulable at profile u, the desired conclusion.

For the “if” part, suppose that ϕ is (coalitionally or individually) non-manipulable at
profile u but some ψk is manipulable by an agent or a coalition at profile u. By Proposition
3, G(u) �= {N}. But now Lemma 7 in the Appendix shows ϕ is manipulable at profile u, a
contradiction.

Lemma 5 showed that an agent k-linked fair allocation rule cannot be manipulated by any
coalition containing agent k at any given profile. Below we extend this result and determine
for any profile the precise number of coalitions who can manipulate the agent k-linked fair
allocation rule. Specifically, we demonstrate that ψk can be manipulated by less than 50% of
all coalitions at any profile.

Corollary 2. Let k ∈ N .

(i) Let u ∈ U and S ∈ G(u) be such that k ∈ S. Then ψk can be manipulated at profile u
by exactly 2|N |−|S| − 1 coalitions.

(ii) For any profile u ∈ U , ψk can be manipulated at profile u by at most 2|N |−1−1 coalitions.
As a consequence, ψk can be manipulated at any profile u ∈ U by less than 50% of all
coalitions.

Proof. To prove (i), note that for all i ∈ S and all (a, x) ∈ ψk(u), allocation (a, x) is agent
i-linked. Thus, ψk(u) ⊆ ψi(u) and by Lemma 5, no coalition containing i can manipulate
ψk at profile u. Thus, at most 2|N |−|S| − 1 coalitions can manipulate ψk at profile u. From
Lemma 7 in the Appendix, it follows that this bound is tight, i.e. that exactly 2|N |−|S| − 1
coalitions can manipulate ψk at profile u.

To prove (ii), note that |S| ≥ 1. Because 2|N |−|S| < 2|N |−1 for any |S| > 1, it follows
from Part (i) of this corollary that ψk can be manipulated at profile u by at most 2|N |−1 − 1
coalitions. Since there are 2|N |−1 non-empty coalitions of N and 2|N |−1 = 2(2|N |−1−1)+1,
less than 50% of all coalitions can manipulate ψk at profile u.

Note that Corollary 2 used the fact that for any indifference component, for agent k
belonging to this component, the agent k-linked fair allocation rule is not manipulable by
any coalition containing some agent in this indifference component. Now in order to calculate
the number of manipulating coalitions, at a given profile, one only need to know the number
of agents that are included in an indifference component containing agent k. Then since
indifference components are invariant with respect to the chosen fair allocation, the algorithm
in Klijn (2000) can be used to find the exact number of manipulating coalitions at a given
profile for any agent k-linked fair allocation rule. Because the algorithm in Klijn (2000) is
polynomially bounded, it is not even computationally hard to calculate this measure.

To investigate the degree of coalition manipulability, let Qϕ(u) denote the coalitions C ⊆
N that can manipulate the allocation rule ϕ at profile u ∈ U .
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Definition 7. An allocation rule ϕ̃ is weakly more coalitionally manipulable than the allo-
cation rule ϕ if |Qϕ̃(u)| ≥ |Qϕ(u)| for all u ∈ U .

The following result states that maximally linked fair allocation rules are least coalition-
ally manipulable among all budget-balanced and fair allocation rules. This can be seen as
an extension of Theorem 1 from minimal individual manipulability to minimal coalitional
manipulability and Theorem 1 is robust with respect to coalitional manipulations. The proof
can be found in the Appendix.

Theorem 2. Let ϕ be a budget-balanced and fair allocation rule and ψκ be a maximally
linked fair allocation rule. Then ϕ is weakly more coalitionally manipulable than ψκ.

Again one can see that when a fair rule is not a maximally linked fair allocation rule, then
there exists some profile where this rule is manipulable by more coalitions than a maximally
linked fair allocation rule.

6 The Algorithm

Given the results concerning manipulability from the previous section, it is important to
find an algorithm for identifying agent k-linked fair allocations. Once such allocations are
identified, it is also possible to identify G(u), and as a consequence, maximally linked fair
allocations. We provide an algorithm that achieves this task. In similarity with Aragones
(1995), our algorithm cannot start at an arbitrary feasible allocation. Instead, we suppose
that an arbitrary budget-balanced and fair allocation is known for the given profile. This
assumption is not restrictive since arbitrary such allocations can be identified in polynomial
time as demonstrated by Klijn (2000).9

Given that a budget-balanced and fair allocation (a, x) is known for a given profile u ∈ U ,
Lemma 3 can be used to find the set G(u). More explicitly, if allocation (a, x) is known,
all indifference components that are present at this allocation will also be present at each
allocation that is budget-balanced and fair for the same profile by Lemma 3. It is therefore
an easy task to identify the components containing the most agents. The following example
demonstrates the principle, and it will be used throughout this section to illustrate the main
ideas and concepts.

Example 1. Let N = {1, 2, 3, 4, 5} and M = {1, 2, 3, 4, 5}. Let the values of the objects for
the agents in the profile u be given by the matrix:

⎡
⎢⎢⎢⎢⎣

v11 v12 v13 v14 v15

v21 v22 v23 v24 v25

v31 v32 v33 v34 v35

v41 v42 v43 v44 v45

v51 v52 v53 v54 v55

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 2 2 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦

(5)

For these valuations it is clear that e.g. the allocation (a, x) where ai = i and xai = 0 for all
i ∈ N is budget-balanced and fair. There are two indifference chains present at this allocation,

9See Haake et al. (2000) for a similar procedure. Note also that there are a number of algorithms for
identifying so-called fair and optimal allocations, see e.g. Andersson and Andersson (2009) or Shioura et al.
(2006). Also these algorithms can be used to identify budget-balanced and fair allocations by adding a simple
rule for sharing the deficit (or the surplus) equally among the agents.
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namely 2 →(a,x) 1 and 4 →(a,x) 3. Any indifference component consists of a single agent, and
we have G(u) = {{i} | i ∈ N}.10 Consequently, Ḡ(u) = N . �

In the main algorithm so-called isolated groups will be crucial. This notion is defined
below.

Definition 8. A coalition of agents H ⊆ N is said to be isolated at allocation (a, x) if
i �→(a,x) j for all i ∈ N −H and all j ∈ H.

In other words, a coalition is isolated at allocation (a, x) if no agent outside of H is
indifferent between his consumption bundle and the bundle received by any agent in H.

Before we provide the main algorithm, we first state a simple algorithm that always
identifies an isolated group H at allocation (a, x) containing agent k.

Algorithm 1 (Isolated Groups). Let allocation (a, x) be an arbitrary budget-balanced and
fair allocation at profile u ∈ U and let k ∈ N . Introduce an iteration counter t and set t = 0.
Let K0 = {k}. For each iteration t = 1, 2, . . . :

Step t. Define Kt = Kt−1 ∪ {i ∈ N −Kt−1 | i →(a,x) j for some j ∈ Kt−1}. If Kt = Kt−1,
then stop. Otherwise continue to Step t+ 1.

Obviously, if Kt = N for some t, then (a, x) is agent k-linked and Algorithm 1 verifies
whether a given allocation is agent k-linked.

Lemma 6. For each u ∈ U and each K0 = {k}, Algorithm 1 identifies a (possibly empty)
isolated group that contains agent k in at most |N | iterations.

Proof. Assume that the algorithm terminates at Step t. If Kt �= N , then uiai(x) > uiaj (x)
(or i �→(a,x) j) for all i ∈ N −Kt and all j ∈ Kt by construction of the algorithm. Thus, Kt

is isolated by Definition 8. Note that k ∈ Kt since {k} = K0 ⊆ Kt.
Finally, let T be the last step of the algorithm, and note that because |Kt| − |Kt−1| ≥ 1

as long as 1 ≤ t < T , it is clear that the algorithm terminates in at most |N | number of
iterations.

We next illustrate Algorithm 1 using Example 1.

Example 2 (Example 1 continued). Start with K0 = {1}. Then Algorithm 1 terminates in
two steps, i.e.:

Step 1. From (5), it is clear that i→(a,x) 1 only for i = 2. Hence, K1 = {1} ∪ {2} = {1, 2}.

Step 2. From (5), it is clear that i �→(a,x) j for all i ∈ N−K1 and all j ∈ K1. Hence, K2 = K1

and Algorithm 1 terminates. �

Both the distribution and the assignment are fixed in Algorithm 1. Note that in the proof
of Lemma 4 we showed that for any agent k-linked fair allocation (b, y) and any fair allocation
(a, x), allocation (a, y) is also agent k-linked and fair. Thus, without loss of generality, in the
algorithm below the assignment of objects remains unchanged. We next provide an algorithm
for identifying an agent k-linked fair allocation given that the distribution is allowed to change.

10If e.g. v12 = 1 then there is one indifference component containing agents 1 and 2.
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Algorithm 2 (Agent k-linked Fair Allocation). Let allocation (a, x) be budget-balanced
and fair. Introduce an iteration counter t and let xt denote the distribution in iteration t. Set
t = 0 and initialize the distribution at x0 = x. Let K0 = {k}. For each iteration t = 1, 2, . . . :

Step t. For the given allocation (a, xt−1) run Algorithm 1 and letN t be the set identified in the
last step of Algorithm 1. If N−N t = ∅, then stop. Otherwise, let λt

ij = uiai(x
t−1)−uiaj (x

t−1)
for each i ∈ N −N t and each j ∈ N t. Define λt = mini∈N−Nt,j∈Nt λt

ij . Let the distribution
xt be given by:

xt
ai

= xt−1
ai

− |N t|
|N | · λt for each i ∈ N −N t,

xt
aj

= xt−1
aj

+
|N −N t|

|N | · λt for each j ∈ N t,

and continue to Step t+ 1. �

The following is our main convergence result. The proof is delegated to the Appendix.

Theorem 3. For each u ∈ U , Algorithm 2 identifies an agent k-linked fair allocation in at
most |N | number of iterations.

We use our example to illustrate the procedure described in Algorithm 2.

Example 3 (Example 1 continued). Recall that K0 = {1}, ai = i and x0
ai

= 0 for all i ∈ N .

Step 1. From Example 2 we know that N1 = {1, 2} (and N −N1 = {3, 4, 5}). From matrix
(5), it is also easy to see that λ1

3j = 1, λ1
4j = 2 and λ1

5j = 3 for all j ∈ N1. Thus, λ1 = 1, so
x1 = (x1

1, x
1
2, x

1
3, x

1
4, x

1
5) = (3

5 ,
3
5 ,−2

5 ,−2
5 ,−2

5).

Step 2. Given the distribution x1 identified in Step 1 the following holds:

[vij + x1
j ]i,j∈N =

⎡
⎢⎢⎢⎢⎣

8
5

3
5 −2

5 −2
5 −2

5
8
5

8
5 −2

5 −2
5 −2

5
3
5

3
5

3
5 −2

5 −2
5

3
5

3
5

8
5

8
5 −2

5
3
5

3
5 −2

5 −2
5

13
5

⎤
⎥⎥⎥⎥⎦

Thus, when we run Algorithm 1, agent 3 is first included in N2 (because agent 3 is indifferent
between objects 1, 2 and 3) and then agent 4 is included in N2 (because agent 4 is indifferent
between objects 3 and 4). Hence, N2 = {1, 2, 3, 4}. Now, λ2

51 = λ2
52 = 2 and λ2

53 = λ2
53 = 3.

Thus, λ2 = 2, and as a consequence, x2 = (x2
1, x

2
2, x

2
3, x

2
4, x

2
5) = (1, 1, 0, 0,−2).

Step 3. By construction of x2, agent 5 is indifferent between objects 1, 2 and 5 at allocation
(a, x2). Thus, N3 = N and Algorithm 2 terminates at Step 3. �

Appendix: Proofs

In the Appendix we prove Theorem 1, Theorem 2 and Theorem 3. The following two lemmas
will be useful.
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Lemma 7. Let ϕ be a budget-balanced and fair allocation rule. Let u ∈ U and (a, x) ∈ ϕ(u).
If the non-empty coalition G ⊆ N is isolated at allocation (a, x), then each C ⊆ G can
manipulate ϕ.

Proof. Let (a, x) ∈ ϕ(u), and suppose that G ⊆ N is a non-empty isolated coalition, i.e., that
both i �→(a,x) j and uiai(x) > uiaj (x) for all i ∈ N − G and all j ∈ G. Now simultaneously
all compensations for objects ai (i ∈ G) can be increased by the same amount and all com-
pensations for objects aj (j ∈ N − G) can be decreased by the same amount without losing
budget-balance and fairness. Hence, there is a number τ > 0 and (a, y) ∈ F (u) such that
uiai(y) > uiai(x) + τ for all i ∈ G (and yai > xai + τ for all i ∈ G). Fix 0 < ε < τ and define
for any i ∈ G the function ûi as follows: for all j ∈M and all x′ ∈ RM , let

ûij(x′) = (−yj + εij) + x′j , (6)

where εij = 0 if j �= ai and εiai = ε > 0. Note that v̂ij = −yj + εij . Let C ⊆ G and
ûC = (ûi)i∈C . By construction of ûC , we have (a, y) ∈ F (ûC , u−C).11

Let (b, z) ∈ ϕ(ûC , u−C). We first show bi = ai for all i ∈ C. Let δj = zj −yj for all j ∈M .
Without loss of generality, order M such that δj ≥ δj+1 for all j = 1, . . . , |M | − 1.

If z = y, then by fairness, ûibi(y) = ûiai(y) for all i ∈ C. Since for all i ∈ C, ûiai(y) = ε
and ûij(y) = 0 for j �= ai, we obtain bi = ai for all i ∈ C.

If z �= y, then by budget-balance of both (b, z) and (a, y), δ1 > 0 and δn < 0. Let (jl)l be
a subsequence of (1, . . . , n) such that jl < jl+1, δjl

> δjl+1
and δj = δjl

if jl ≤ j < jl+1. Let
Sl = {i ∈ N | jl ≤ ai < jl+1}. Then for i ∈ Sl:

uiai(z) = uiai(y + δai) > uibi(y + δbi) = uibi(z) if bi ≥ jl+1 and i ∈ N − C,

ûiai(z) = zai − yai + ε = δai + ε > δbi = ûibi(z) if bi ≥ jl+1 and i ∈ C.

Thus, by fairness, for all l, i ∈ Sl implies jl ≤ bi < jl+1. Moreover, for i ∈ C, ûiai(z) =
δai + ε > δbi = ûibi(z) if bi �= ai and bi ≥ jl. Hence, by fairness, bi = ai for all i ∈ C.

It remains to prove that uibi(z) > uiai(x) for all i ∈ C, i.e., ϕ is manipulable at u by
coalition C. From the above, we have ai = bi for all i ∈ C. Since ϕ is fair, we have
(b, z) ∈ F (ûC , u−C). Now we have for all i ∈ C with bi �= 1,

ûibi(z) = ûiai(z) = ziai − yiai + ε ≥ zi1 − yi1 = ûi1(z). (7)

Because δj = zj − yj , it follows from the above condition that δbi ≥ δ1 − ε for i ∈ C with
bi �= 1. Note that this inequality holds trivially if bi = 1 because ε > 0. Now this fact, the
definition of δj and our choice of 0 < ε < τ , δ1 ≥ 0 and ai = bi for all i ∈ C, yield for all
i ∈ C:

uiai(x) < uiai(y) − τ

= uibi(y) − τ

= vibi + zbi − (zbi − ybi) − τ

= uibi(z) − δbi − τ

≤ uibi(z) − δ1 − (τ − ε),
< uibi(z),

11Note that for all i ∈ C, ûiai(y) = ε and ûij(y) = 0 for j �= ai.
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where the first inequality follows from uiai(y) > uiai(x)+ τ , the first equality from ai = bi for
i ∈ C, the second inequality from −δbi ≤ −(δ1 − ε), and the last inequality from δ1 ≥ 0 and
τ > ε. Hence, uiai(x) < uibi(z) for all i ∈ C, which is the desired conclusion.

Lemma 8. Let ϕ be a budget-balanced and fair allocation rule. Let u ∈ U and (a, x) ∈ ϕ(u).
Let N − G be a (possibly empty) isolated coalition with maximal cardinality at allocation
(a, x). Then G is an indifference component at allocation (a, x).

Proof. We first show that all i, j ∈ G can be linked via an indifference chain in G. Suppose
not, i.e. there exist i, j ∈ G such that i cannot be linked to j via some indifference chain G.
Let H = {k ∈ G | k can be linked to j via some indifference chain in G}. Since i ∈ G −H,
we have G − H �= ∅. Because no agent in G − H can be linked to any agent in H, now by
construction, it follows that the set (N − G) ∪H is isolated and |(N − G) ∪H| > |N − G|,
which contradicts the assumption that N−G is an isolated coalition with maximal cardinality
at allocation (a, x) ∈ ϕ(u).

Now, the proof follows directly because the coalition N −G is isolated at allocation (a, x),
i.e., i �→(a,x) j for all i ∈ G and all j ∈ N −G. Consequently, there is no G′ � G such that G′

is an indifference component by Definition 2.

Proof of Theorem 1. Suppose that (a, x) ∈ ϕ(u) and (b, y) ∈ ψκ(u), and let N − G be
a (possibly empty) isolated coalition with maximal cardinality at allocation (a, x) ∈ ϕ(u).
Then G is an indifference component at allocations (a, x) and (b, y) by Lemma 3 and Lemma
8.

Note first that all agents in the isolated coalition N −G can manipulate ϕ by Lemma 7.
Consequently, at least |N − G| agents can manipulate ϕ. Hence, to conclude the proof we
need to show that at most |N −G| agents can manipulate ψκ.

Suppose now that κ belongs to the indifference component Ĝ ⊆ Ḡ(u), and note that
|Ĝ| ≥ |G| by construction of ψκ. Since ψκ(u) ⊆ ψk(u) for all k ∈ Ĝ, it now follows from
Lemma 5 that no agent k ∈ Ĝ can manipulate ψκ at profile u. Thus, at most |N − Ĝ| agents
can manipulate ψκ. The conclusion then follows directly from the observation that |Ĝ| ≥ |G|
implies |N − Ĝ| ≤ |N −G|. �

Proof of Theorem 2. Suppose that (a, x) ∈ ϕ(u) and (b, y) ∈ ψκ(u), and let N − G be
the (possibly empty) isolated coalition with maximal cardinality at allocation (a, x) ∈ ϕ(u).
Then G is an indifference component at allocations (a, x) and (b, y) by Lemma 3 and Lemma
8.

Note first that all coalitions in the isolated group N −G can manipulate ϕ by Lemma 7.
Consequently, at least 2|N−G| − 1 coalitions can manipulate ϕ. Hence, to conclude the proof
we need to show that at most 2|N−G| − 1 coalitions can manipulate ψκ. Suppose now that
κ belongs to the indifference component Ĝ ⊆ Ḡ(u), and note that |Ĝ| ≥ |G| by construction
of ψκ. It now follows from Lemma 5 and the construction of ψκ that at most 2|N−Ĝ| − 1
coalitions can manipulate ψκ. The conclusion then follows directly from the observation that
|Ĝ| ≥ |G| implies |N | − |Ĝ| ≤ |N | − |G|. �

Proof of Theorem 3. Note first that the adjustment of the compensation vector at Step t
from xt−1 to xt respects the balanced budget requirement by construction of xt because:

∑
i∈N

xt
ai

=
∑
i∈N

xt−1
ai

− |N t|
|N | · λt · |N −N t| + |N −N t|

|N | · λt · |N t| =
∑
i∈N

xt−1
ai

,
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and allocation (a, x0) is budget-balanced.
The adjustment of the compensation vector at Step t from xt−1 to xt also respects fairness

because the assignment a is held constant and the construction of xt guarantees that if
uiai(x

t−1) ≥ uiaj (x
t−1) then uiai(x

t) ≥ uiaj (x
t). If i, j ∈ N t or i, j ∈ N − N t this follows

directly since the adjustments of xt−1
ai

and xt−1
aj

are identical. In the case when i ∈ N t

and j ∈ N − N t, the result follows since xt−1
ai

is increased and xt−1
aj

is decreased. In the
last case when i ∈ N − N t and j ∈ N t, the conclusion follows by definition of λt and
λt

ij = uiai(x
t−1) − uiaj (x

t−1), i.e.:

uiai(x
t) = viai + xt

ai
= viai + xt−1

ai
− |N t|

|N | · λt ≥ viai + xt−1
ai

− |N t|
|N | · λt

ij =

= uiai(x
t−1) − λt

ij +
|N −N t|

|N | · λt
ij = uiaj (x

t−1) +
|N −N t|

|N | · λt
iaj

≥ viaj + xt−1
aj

+
|N −N t|

|N | · λt = viaj + xt
aj

= uiaj (x
t).

Thus, at Step t in the algorithm (a, xt) satisfies budget-balance and fairness. It remains
to prove that the algorithm terminates in at most |N | iterations at an agent k-linked fair
allocation.

By construction of N t, each agent i ∈ N t must belong to an indifference chain G =
{i, ..., k}. Note that at Step t, for i ∈ N − N t and j ∈ N t such that λt

ij = λt, all the above
inequalities become equalities and we obtain uiai(x

t) = uiaj (x
t), i →(a,xt) j and i ∈ N t+1.

Note that N t ⊆ N t+1 because for any i, j ∈ N t such that i→(a,xt−1) j we also have i→(a,xt) j.
Thus, |N t+1| − |N t| ≥ 1 as long as N − N t �= ∅. Now it is clear that the algorithm will
terminate in at most |N | number of iterations and that the resulting fair allocation is agent
k−linked. �
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