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Abstract

Social interactions arguably provide a rationale for several important phenomena, from smok-

ing and other risky behavior in teens to e.g., peer effects in school performance. We study

social interactions in dynamic economies. For these economies, we provide existence (Markov

Perfect Equilibrium in pure strategies), ergodicity, and welfare results. Also, we characterize

equilibria in terms of agents’ policy function, spatial equilibrium correlations and social mul-

tiplier effects, depending on the nature of interactions. Most importantly, we study formally

the issue of the identification of social interactions, with special emphasis on the restrictions

imposed by dynamic equilibrium conditions.
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1 Introduction

Agents interact in markets as well as socially, that is, in the various socioeconomic groups they

belong to. Models of social interactions are designed to capture in a simple abstract way socioeco-

nomic environments in which markets do not mediate all of agents’ choices. In such environments

agents’ choices are determined by their preferences as well as by their ability to interact with

others, on their position in a predetermined network of relationships, e.g., a family, a peer group,

or more generally any socioeconomic group.1

Social interactions arguably provide a rationale for several important phenomena, Peer effects,

in particular, have been indicated as one of the main empirical determinants of risky behavior in

adolescents.2 Relatedly, peer effects have been studied in connection with education outcomes,3

obesity,4 friendship and sex, 5 labor market referrals,6 neighborhood and employment segregation,
7 criminal activity,8 and several other socioeconomic phenomena.9

The large majority of the existing models of social interactions are static; or, when dynamic

models of social interactions are studied, it is typically assumed that agents are myopic and

their choices are subject to particular behavioral assumptions.10 In this paper, we contribute

1The integration of models of social interactions within economic theory is an active and interesting area of

research. See the recent Handbook of Social Economics, Benhabib, Bisin, and Jackson (2010).
2See e.g., Ali and Dwyer (2009), Axtell et al. (2006), Bauman and Ennett (1996), Bifulco et al. (2009),

Chaloupka and Warner (2000), Clark and Loheac (2007), Cook and Moore (2000), Cutler and Glaeser (2007),

DeCicca et al. (2008), Evans et al. (1992), Fletcher (2009), Gaviria and Raphael (2001), Gilleskie and Strumpf

(2005), Gilleskie and Zhang (2010), Jones (1984), Kobus (2003), Krauth (2005, 2006), Kremer and Levy (2008),

Krosnick and Judd (1982), Lewitt et al. (1981), Lundborg (2006), Nakajima (2007), Norton et al. (1998), Powell

et al. (2003), Sacerdote (2001), Soetevent and Kooreman (2007), Tyas and Pederson (1998), Wang et al. (1995,

2000).
3Altonji et al (2005), Ammermuller and Pischke (2009), Bénabou (1996), Borjas (1995), Boozer and Cacciola

(2001), Carrell et al. (2009), De Giorgi et al. (2009), Evans et al. (1992), Gaviria and Raphael (2001), Hoxby

(2000a, 2000b), Soetevent and Kooreman (2007), Zimmerman (2003).
4Burke and Heiland (2007), Christakis and Fowler (2007).
5Akerlof et al. (1996), Bearman et al. (2004), Bramoullé et al. (2009), Broadhead et al. (1998), Cipollone and

Rosolia (2007), Conti et al. (2009), Currarini et al. (2009), Kandel (1978), Leider et al. (2007), Mihaly (2007),

Moody (2001).
6Bayer et al. (2008), Bjorn and Vuong (1985), Calvo-Armengol and Jackson (2004), Conley and Topa (2002,

2007), De Giorgi et al. (2009), Goldin and Katz (2002), Granovetter (1973, 1995), Grodner and Kniesner (2007),

Ichino and Falk (2006), Ioannides and Datcher Loury (2004), Moro (2003), Topa (2001), Weinberg et al. (2004).
7Aizer and Currie (2004), Bénabou (1993), Case and Katz (1991), Crane (1991), Durlauf (1996, 2004), Goering

and Feins (1997), Hoff and Sen (2005), Ioannides and Topa (2009), Ioannides and Zabel (2008), Ioannides and

Zanella (2009), Katz et al. (2001), Ludwig et al. (2001), Mobius (2000), Rosenbaum (1995), Schelling (1971, 1972).
8Calvo Armengol et al. (2009), Glaeser et al. (1996), Kling et al. (2005), Ludwig et al. (2001).
9See Bisin et al. (2010), Glaeser and Scheinkman (2001), Moffitt (2001) for surveys.

10Exceptions include an example on female labor force participation in Glaeser and Scheinkman (2001), Binder

and Pesaran (2001) on life-cycle consumption under social Interactions, Blume (2003) on social stigma, Brock and

Durlauf (2010) and de Paula (2009) on duration models, and the theoretical analysis of Bisin, Horst, and Özgür

2



to this literature by studying social interactions in dynamic economies. We focus our attention

on linear economies, in which each agent’s preferences are quadratic. Dynamic linear models

of course have appealing analytical properties. Hansen and Sargent (2004) study this class of

models systematically, exploiting the tractability of linear control methods and matrix Riccati

equations. While the class of economies we study in this paper allows however for a countable

number of heterogeneous agents and an infinite horizon, giving rise to infinite dimensional systems,

some tractability is maintained. Furthermore, in the class of economies we study agents display

preferences for conformity, that is, preferences which incorporate the desire to conform to the

choices of agents in a reference group.

More specifically, each agent’s preferences are hit by random preference shocks over time.

Each agent interacts with agents in his social reference group, in the sense that each agent’s

instantaneous preferences depend on the current choices of agents in his social reference group,

as a direct externality. Each agent’s instantaneous preferences also depend on the agent’s own

previous choice, representing the inherent costs to dynamic behavioural changes due e.g., to

habits. When agents’ reference groups overlap, each agent’s optimal choice depends on all the

other agents’s previous choices and current preference shocks, as long as they are observable. We

allow for complete and incomplete information with respect to preference shocks. Requiring that

the social and informational structure of each agent satisfy a symmetry condition, we restrict our

analysis to symmetric Markov perfect equilibria. Agents’ choices at equilibrium are determined

by linear policy (best reply) functions. More specifically, e.g., in infinite-horizon economies, a

symmetric Markov perfect equilibrium is represented by a symmetric policy function, for each

arbitrary agent a ∈ A, a countable set, which maps the agent’s choice at time t, xat , linearly in

each agent’s past choices, xa+b
t−1 , in each agent’s contemporaneous idiosyncratic preference shock,

θa+b
t , and in the mean preference shock, θ:

xat =
∑

b∈A
cb xa+b

t−1 +
∑

b∈A
db θa+b

t + e θ

For these economies, we provide some fundamental theoretical results: (Markov perfect) equi-

libria exist (for finite economies they are unique) and they induce an ergodic stochastic process

over the equilibrium configuration of actions. Furthermore, a stationary ergodic distribution

exists. We also derive a recursive algorithm to compute equilibria. The proof of the existence

theorem, in particular, requires some subtle arguments. In fact, standard variational arguments

require to bound the marginal effect of any infinitesimal change dxa on the agent’s value func-

tion. But in the class of economies we study, the Envelope theorem (as e.g., in Benveniste and

Scheinkman (1979)) is not sufficient for this purpose, as dxa affects agent a’s value function di-

rectly and indirectly, through its effects on all agents b ∈ A\a’s choices, which in turn affect agent

a’s value function. The marginal effect of any infinitesimal change dxa is then an infinite sum of

(2006).
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endogenous terms. In our economy, however, we can exploit the linearity of policy functions to

represent a symmetric MPE by a fixed point of a recursive map which can be directly studied.

Exploiting the linear structure of our economies we can study equilibria in some detail, char-

acterizing the parameters of the policy function as well as a fundamental statistical property of

equilibrium, the cross-sectional auto-correlation of actions. In turn we obtain a series of results

regarding the welfare properties of equilibrium and various comparative dynamics exercises of

interest. First of all, we show that, since social interactions are modelled in this paper as a

preference externality, equilibria will not be efficient in general. We also characterize the form

of the inefficiency: at equilibrium each agent’s policy function weights too heavily the agent’s

own preference shock and previous action and not enough the other agents’. The comparative

dynamics exercises illustrate e.g., the equilibrium effects of the strength of social interactions and

of the social and informational structure of the economy.

Finally, we exploit our characterization results of the equilibria to address generally the issue

of identification of social interactions in our context, with population data. While the empirical

literature has often interpreted a significant high correlation of socioeconomic choices across

agents, e.g., peers, as evidence of social interactions, in the form e.g., of preferences for conformity,

it is well known at least since the work of Manski (1993) that the empirical study of social

interactions is plagued by subtle identification problems. Intuitively, in our economy for instance,

the spatial correlation of actions at equilibrium can be due to social interactions or to the spatial

correlation of preference shocks. More formally, take two agents, e.g., agent a and agent b. A

positive correlation between xat and xbt could be due to e.g., preference for conformity. But the

positive correlation between xat and xbt could also be due to a positive correlation between θat
and θbt . In this last case, preferences for conformity and social interactions would play no role in

the correlation of actions at equilibrium. Rather, such correlation would be due to the fact that

agents have correlated preferences. Correlated preferences could generally be due to some sort

of assortative matching or positive selection, which induce agents with correlated preferences to

interact socially.

In the context of our economy, we ask whether the restrictions implied by the dynamic equilib-

rium analysis help identify social interactions and distinguish them from correlated preferences.

We show that the answer is in fact affirmative, but only if the economy is non-stationary, in a

precise sense. To illustrate our results, consider for instance the issue of peer effects in adolescents’

substance use. Suppose the econometrician observes the behavior of a population of students in

a school over time (at different grades). A significant high correlation of socioeconomic choices

across students in the school could be due to selection in the endogenous composition of the

school in terms of unobserved (to the econometrician) correlated characteristics of the agents.

Any significant variation in students’ behavior through time (grades) must however be due to

social interactions. A student whose choice is affected by the choices of his school peers will in fact
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rationally anticipate how much longer he will interact with them. In particular, his propensity

to conform to his peers’ actions will tend to decrease over time (grades) and will be the lowest in

the final years in the school. This non-stationarity of each student’s behavior at equilibrium is

the key to the identification of social interaction in our class of economies.11

The simplicity of linear models allows us to extend our analysis in several directions which are

important in applications and empirical work. This is the case, for instance of general (including

asymmetric) neighborhood network structures for social interactions. But our analysis extends

also to general stochastic processes for preference shocks and to the addition of global interactions.

One particular form of global interactions occurs when each agent’s preferences depend on an

average of actions of all other agents in the population, e.g. Brock and Durlauf (2001a), and

Glaeser and Scheinkman (2003). This is the case, for instance, if agents have preferences for

social status. More generally, global interactions could capture preferences to adhere to aggregate

norms of behavior, such as specific group cultures, or other externalities as well as price effects.

Finally, and perhaps most importantly, we extend our analysis to encompass a richer structure of

dynamic dependence of agents’ actions at equilibrium. In particular we study an economy in which

agents’ past behavior is aggregated through an accumulated stock variable which carries habit

persistence, which can be directly applied e.g., to the issue of teenage substance addiction due

to peer pressure at school. With respect to the addiction literature, as e.g., Becker and Murphy

(1988), we model the dynamics of addiction considering peer effects not only in a single-person

decision problem, but rather as an equilibrium effect allowing for the intertemporal feedback

channel between agents across social space and through time.12 In this context we show that in

equilibrium each agent’s choice depends on the stock of his neighbors’ actions, on their long-term

behavioral patterns rather than just on their previous period actions. Also, in non-stationary

economies, as the final period approaches, each agent assigns higher weights to his own stock,

giving rise to an initiation-addiction behavioral pattern at equilibrium which is consistent with

observation, e.g., in Cutler and Glaeser (2007) and DeCicca, Kenkel, and Mathios (2008).

2 Dynamic economies with social interactions

While we develop most of our analysis in the context of linear models, it is useful to set up the

general model first, as we do in this section, to be as clear and specific as possible regarding the

assumptions we impose on the economy we study.

Time is discrete and is denoted by t = 1, . . . , T . We allow both for infinite economies (T =∞)

and economies with an end period (T < ∞). A typical economy is populated by a countable

11This pattern of behavior appears consistent with the peer effects study of Hoxby (2000a,b).
12See also Becker, Grossman, and Murphy (1994), Boyer (1978, 1983), Gul and Pesendorfer (2007), Gruber and

Koszegi (2001), Iannacone (1986); see Rozen (2010) for theoretical foundations for intrinsic linear habit formation;

see also Elster (1999) and Elster and Skog (1999) for surveys.
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number of agents a ∈ A.13 Each agent lives for the duration of the economy. At the beginning of

each period t, agent a’s random preference type θat is drawn from Θ, a compact subset of a finite

dimensional Euclidean space Rn. The random variables θat are independently and identically

distributed across time and agents with probability law ν. We assume, with no loss of generality,

that the random variable θt := (θat )a∈A is defined, for all t, on the canonical probability space

(Θ,F ,P), where Θ := {(θa)a∈A : θa ∈ Θ}. At each period t, agent a ∈ A chooses an action xat
from the set X, a compact subset of a finite dimensional Euclidean space Rp. Let X := {x =

(xa)a∈A : xa ∈ X} be the space of individual action profiles.

Each agent a ∈ A interacts with agents in the set N(a), a nonempty subset of the set of

agents A, which abstractly represents agent a’s social reference group. The map A : N → 2A is

referred to as a neighbourhood correspondence and is assumed exogenous. Agent a’s instantaneous

preferences depend on the current choices of agents in his reference group, {xbt}b∈N(a), represent-

ing social interactions as direct preference externalities. Agent a’s instantaneous preferences also

depend on the agent’s own previous choice, xat−1, representing inherent costs to dynamic be-

havioural changes due e.g., to habits. In summary, agent a’s instantaneous preferences at time t

are represented by a continuous utility function

(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

)
7→ u

(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

)

Agents discount expected future utilities using the common stationary discount factor β ∈ (0, 1).

The economy has an exogenous initial configuration x0 ∈ X. Let xt−1 = (x0, x1, . . . , xt−1)

and θt−1 = (θ1, . . . , θt−1) be the (t− 1)-period choices and type realizations. Before each agent’s

time t choice, xt−1 is observed by all agents and the current value of the random variable θt

realizes. Agent a ∈ A observes only the part Iaθt := {θbt : b ∈ I(a)}, where I(a) ⊂ A is

his information set. Similarly, let Iaθ
t−1 = (Iaθ1, . . . , Iaθt−1). We study both economies with

complete information, I(a) = A, and economies with incomplete information, I(a)  A. After

each agent’s time t choice, xt = (xbt)b∈A ∈ X becomes common knowledge and the economy moves

to time t+ 1.

A strategy for an agent a is a sequence of measurable functions xa = (xat ), where for each

t, xat : Xt × (ΘI(a))t → X. Agents’ strategies along with the probability law for types induce a

stochastic process over future configuration paths. Each agent a ∈ A’s objective is to choose xa

to maximize

E

[
T∑

t=1

βt−1u
(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

) ∣∣∣ (x0, θ1)

]
(1)

given the strategies of other agents and given (x0, Iaθ1) ∈ X×ΘI(a).

13We study an economy populated by a countably infinite number of agents where A := Z, but our analysis

applies to economies with a finite number of agents.
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We require that the social and informational structure satisfies the following symmetry re-

strictions:14

1. For all a, b ∈ A, N(b) = Rb−aN(a), where Rb−a is the canonical shift operator in the

direction b− a.15

2. For all a, b ∈ A, I(b) = Rb−aI(a).

We restrict our analysis to symmetric Markov perfect equilibria. Agents’ strategies are Marko-

vian if after any t − 1-period history (xt−1, θt), they depend only on the previous period con-

figuration xt−1 and the current type realizations θt. Because of symmetry, it is thus enough to

analyze the optimization problem relative to a single reference agent, say agent 0 ∈ A. Thus,

we assume that the optimal choice of any economic agent b ∈ A is determined by a continuous

choice function g : X×ΘI(0)×{1, . . . , T} → X such that for all t = 1, . . . , T and after any history

(xt−1, θt) ∈ Xt ×Θt, his t-th period choice is given by

xbt (g)
(
xt−1, θt

)
= gT−(t−1)(R

b xt−1, R
b I0 θt)

The value of the optimization problem of agent a is then given by16

V T
g (Ra x0, R

a I0 θ1) = max
(xat )Tt=1

E

[
T∑

t=1

βt−1u
(
xat−1, x

a
t , {xbt(g)}b∈N(a), θ

a
t

)]

The value function associated with this dynamic choice problem can be shown to satisfy Bellman’s

Principle of Optimality by standard arguments (see e.g., Stokey and Lucas (1989) ). It can be

written in the following recursive form,

V T−(t−1)
g (Ra xt−1, R

a I0 θt) (2)

= max
xat∈X

E

[
u
(
xat−1, x

a
t , {xbt(g)}b∈N(a), θ

a
t

)
+ β V T−t

g

(
Ra
(
xat ,
{
xbt(g)

}
b6=a

)
, Ra I0 θt+1

)]

for t = 1, . . . , T and for all (xt−1, θt) ∈ Xt × Θt.17 We are now ready to define our equilibrium

concept.

14Heterogeneity can be incorporated into the probabilistic structure of the types θat . Also, we can allow for

heterogeneity of the network structure across agents by augmenting the strategy spaces to incorporate network

structure into individual heterogeneity. We explain how we do this in Section 7.1.
15That is, c ∈ N(a) if and only if c + (b − a) ∈ N(b). Of course, we let A be a linear space when we study

symmetric interactions, typically A := Zd the d-dimensional integer lattice.
16The preference shocks being serially uncorrelated, we do not need to condition on the value of past realizations.

See Section 7.2 for a treatment of persistent shocks.
17We have adopted the the convention that V 0

g (x, I0 θ) := 0 for any (x, θ) ∈ X×Θ.
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Definition 1 A symmetric Markov Perfect Equilibrium (MPE) of a dynamic economy with social

interactions is a measurable map g∗ : X×ΘI(0)×{1, . . . , T} → X such that for all a ∈ A, for all

t = 1, . . . , T , and for all (xt−1, θt) ∈ Xt ×Θt

g∗T−(t−1) (Ra xt−1, R
a I0 θt) ∈ (3)

arg max
xat∈X

E

[
u

(
xat−1, x

a
t ,
{
xbt(g

∗)
}
b∈N(a)

, θat

)
+ β V T−t

g∗

(
Ra
(
xat ,
{
xbt(g

∗)
}
b6=a

)
, Ra I0 θt+1

)]

Clearly, an MPE is necessarily a subgame perfect equilibrium; that is, each agent’s continuation

strategy is a best response to other agent’s continuation strategies after any possible history.

Notice also the time notation we use for the Markovian policy: g∗T−(t−1) denotes the first-period

equilibrium choice in a T−(t−1)-periods economy. Since economies are nested, g∗T−(t−1) represents

also the t-period equilibrium choice in a T -periods economy.

We conclude this section with a few remarks to justify our focus on MPEs. First of all,

Markovian strategies are not a restriction for finite-horizon economies: we prove that the unique

symmetric subgame perfect equilibrium for any finite-horizon economy is necessarily Markovian.

Moreover, in an infinite horizon economy (T = ∞), a symmetric MPE is not necessarily sta-

tionary. The sequence of unique MPEs for finite horizon economies converges however to a

g∗ : X × ΘI(0) → X which turns out to be a stationary MPE of the infinite-horizon economy

whose properties we focus on. Finally, we refer to Bisin, Horst and Özgür (2006) for a discussion

of non-Markovian equilibria in a related context.

3 Dynamic Linear Economies with Social interactions and Con-

formity Preferences

We focus our attention on linear economies with conformity preferences. These are environments

in which each agent’s preferences incorporate the desire to conform to the choices of agents in his

reference group.18

Preferences for conformity arguably provide a rationale for several important social phe-

nomena. The empirical literature has for instance documented preferences for conformity as a

motivation for smoking and other risky behaviour in teens. Similarly, the role of conformity is

also documented by Glaeser, Sacerdote, and Scheinkman (1996) with regards to criminal activity

and by a large literature with regards to peer effects in education outcomes.19 Conformity also

represents a natural environment in which to study dynamic equilibrium. In many relevant social

18While we model preferences for conformity directly as a preference externality, we intend this as a reduced

form of models of behavior in groups which induce indirect preferences for conformity, as e.g., Jones (1984), Cole,

Mailath and Postlewaite (1992), Bernheim (1994), Peski (2007).
19See the Introduction for the relevant references.
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phenomena, in fact, the effects of preferences for conformity are amplified by the presence of lim-

its to the reversibility of dynamic choices. This is of course the case for smoking, alcohol abuse

and other risky teen behaviour, which are hard to reverse because they might lead to chemical

addictions. In other instances, while addiction per se is not at issue, nonetheless behavioural

choices are hardly freely reversible because of various social and economic constraints, as is the

case, for instance, of engaging in criminal activity. Finally, exogenous and predictable changes

in the composition of groups, as e.g., in the case of school peers at the end of a school cycle,

introduce important non-stationarities in the agents’ choice. These non-stationarities also call for

a formal analysis of dynamic social interactions.

With the objective of providing a clean and simple analysis of dynamic social interactions in a

conformity economy, we impose strong(er than required) but natural assumptions.20 In particular

(i) we restrict the neighborhood correspondence to represent the minimal interaction structure

allowing for overlapping groups, (ii) we restrict preferences to be quadratic, and (iii) we impose

enough regularity conditions on the agents’ choice problem to render it convex. Formally,

Assumption 1 A linear conformity economy satisfies the following.

1. Let A := Z represent a general social space. Each agent interacts with his immediate

neighbors, i.e., for all a ∈ A, N(a) := {a− 1, a+ 1}.

2. The contemporaneous preferences of an agent a ∈ A are represented by the utility function

u(xat−1, x
a
t , x

a−1
t , xa+1

t , θat ) := −α1(xat−1 − xat )2 − α2(θat − xat )2

−α3(xa−1
t − xat )2 − α3(xa+1

t − xat )2 (4)

where α1, α2, and α3, are positive constants.

3. Let X = Θ = [x, x̄] ⊂ R, where x < x̄. Let v be absolutely continuous with a positive

density21, E [θat ] =
∫
θat dν =: θ̄ ∈ (x, x̄), and V ar(θat ) =

∫ (
θat − θ̄

)2
dν <∞.22

Assumption 1-1 requires that the reference group of each agent a ∈ A be composed of his im-

mediate neighbors in the social space, namely the agents a − 1 and a + 1. The utility function

u defined in Assumption 1-2 describes the trade-off that agent a ∈ A faces between matching

his individual characteristics (xat−1, θ
a
t ) and the utility he receives from conforming to the current

choices of his peers (xa−1
t , xa+1

t ). The different values of αi represent different levels of intensity

of the social interaction motive relative to the own (or intrinsic) motive. Finally, Assumption 1-2

and 1-3 jointly guarantee that the agents’ choice problem is convex.

20See Section 7 for possible directions in which the structure and the results we obtain are easily generalized.
21We will call a measure µ ‘absolutely continuous’ if it is absolutely continuous with respect to the Lebesgue

measure λ, i.e., if µ(A) = 0 for every measurable set A for which λ(A) = 0.
22We need absolute continuity only when we prove inefficiency. All other results are obtained without that

assumption.
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3.1 Equilibrium

We provide here the basic theoretical results regarding our dynamic linear social interaction

economy with conformity. The reader only interested in the characterization can skip this section,

keeping in mind that equilibria exist (for finite economies they are unique) and they induce

an ergodic stochastic process over paths of action profiles. Furthermore, a stationary ergodic

distribution also exists for the economy. Finally, a recursive algorithm to compute equilibria is

derived. The proofs of all statements can be found in the Appendices.

Theorem 1 (Existence - Complete Information) Consider an economy with conformity pref-

erences and complete information.

1. If the time horizon is finite (T < ∞), then the economy admits a unique symmetric MPE

g∗ : X×Θ× {1, · · · , T} 7→ X such that for all t ∈ {1, . . . , T}, for all (xt−1, θt) ∈ X×Θ

g∗T−(t−1)(xt−1, θt) =
∑

a∈A
caT−(t−1) x

a
t−1 +

∑

a∈A
daT−(t−1) θ

a
t + eT−(t−1) θ P− a.s.

where caτ , d
a
τ , eτ ≥ 0, a ∈ A, and eτ +

∑
a∈A(caτ + daτ ) = 1, 0 ≤ τ ≤ T . Moreover, the

equilibrium is also unique in the class of subgame perfect equilibria (SPE), meaning that

there does not exist any non-Markovian SPE for our economy.

2. If the time horizon is infinite (T = ∞), then the economy admits a symmetric stationary

MPE g∗ : X×Θ 7→ X such that

g∗(xt−1, θt) =
∑

a∈A
ca xat−1 +

∑

a∈A
da θat + e θ P− a.s.

where ca, da, e ≥ 0, for a ∈ A, and e+
∑

a∈A(ca + da) = 1.23

The theorems in this section can be extended with straightforward modifications to the case

of incomplete information. We state without proof, e.g., the existence theorem for economies

with incomplete information next.

Theorem 2 (Existence - Incomplete Information) Consider an economy with conformity

preferences and with incomplete information.

1. For T <∞, the economy admits a unique symmetric MPE g∗ : X×ΘI(0)×{1, · · · , T} 7→ X

such that for all t ∈ {1, . . . , T},

g∗T−(t−1)(xt−1, I0 θt) =
∑

a∈A
caT−(t−1) x

a
t−1 +

∑

a∈I(0)

daT−(t−1) θ
a
t + eT−(t−1) θ P− a.s.

where caτ , d
a
τ , eτ ≥ 0 and eτ +

∑
a∈A c

a
τ +

∑
a∈I(0) d

a
τ = 1, 0 ≤ τ ≤ T .

23Several assumptions can be relaxed while guaranteeing existence. In particular, the symmetry of the neighbor-

hood structure can be substantially relaxed. See Section 7.1 for the discussion.
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2. For T =∞, the economy admits a symmetric MPE g∗ : X×ΘI(0) 7→ X such that

g∗(xt−1, I0 θt) =
∑

a∈A
ca xat−1 +

∑

a∈I(0)

da θat + e θ P− a.s.

where ca, da, e ≥ 0 and e+
∑

a∈ A c
a +

∑
a∈I(0) d

a = 1.

3.1.1 A Sketch of the Proof

The proof of the existence theorem requires some subtle arguments. While referring to the

Appendix for details, a few comments here in this respect will be useful. Consider the (infinite

dimensional) choice problem of each agent a ∈ A. To be able to apply standard variational

arguments to this problem it is necessary to bound the marginal effect of any infinitesimal change

dxa on the agent’s value function. To this end, the Envelope theorem (as e.g., in Benveniste and

Scheinkman (1979)) is not enough, as dxa affects agent a’s value function directly and indirectly,

through its effects on all agents b ∈ A\a’s choices, which in turn affect agent a’s value function.

The marginal effect of any infinitesimal change dxa is then an infinite sum. Furthermore, each

term in the sum contains endogenous terms from some agent b ∈ A\a’s policy function (and

there is an infinite number of them), which makes it impossible to adopt the methodology used

by Santos (1991) to prove the smoothness of the policy function in infinite dimensional recursive

choice problems. In our economy, with quadratic utility, policy functions are necessarily linear

and, provided we show that equilibria are interior, symmetric MPE’s can be represented by

a policy function which is obtained as a fixed point of a recursive map which can be directly

studied. Extending the existence proof to general preferences would require therefore sufficient

conditions on the structural parameters to control the curvature of the policy function of each

agent’s decision problem. We conjecture that this can be done although sufficient conditions do

not appear transparently from our proof. A more detailed sketch of the steps involved in the

existence proof follows.

Step 1 In the last period (1-period continuation) of any finite-horizon economy, first order condi-

tions (FOC’s) induce a contraction operator on the space of bounded measurable functions

having as arguments any t-length history. Hence, there exists a unique symmetric (possibly

history-dependent) equilibrium. We then show that the equilibrium policy must be Marko-

vian and should take the convex combination form in the statement of Theorem 1 (Lemma

1).

Step 2 For any finite horizon (T <∞) economy, we assume that in the continuation from period 2

on agents choose according to the unique symmetric MPE, g : X×Θ×{1, · · · , T −1} 7→ X.

Linearity of the policy in the continuation keeps a generic agent’s dynamic program strictly

concave and FOC’s are necessary and sufficient for a pure strategy maximum. We show

11



that we can write FOC’s as functions only of first period choices and preference and the

mean preference shocks. By the same token as in Step 1, we focus on Markovian strategies.

FOC induces a contraction operator on the set of Markovian strategies into itself. Hence,

there exists a unique fixed point g∗T : X × Θ 7→ X. We conclude that for the T -period

economy, the map (g∗T , g) : X ×Θ × {1, 2, · · · , T} 7→ X is the unique symmetric MPE in

pure strategies and has the convex combination form as in the statement of the theorem,

which completes the induction argument.

Step 3 The final step involves taking a limit. We construct a series of finite economies, approximat-

ing the ∞-horizon economy, given an appropriate topology. We then show that, the finite

truncation equilibrium correspondence is upper-hemi-continuous (u.h.c.) with respect to

the parametrization. This is however not enough for stationarity. We prove that the behav-

ioral Markovian strategy set (the set G) is compact. This helps us prove that the sequence

of finite-horizon equilibrium policy functions converges uniformly to a policy function in G

(which is an equilibrium policy due to u.h.c of the equilibrium correspondence), hence the

same one every period, after any history. This gives us stationarity.

3.2 The parameters of the policy function

By exploiting the linearity of policy functions, our method of proof is constructive, producing a

direct and useful recursive computational characterization for the parameters of the symmetric

policy function at equilibrium. We repeatedly exploit this characterization in the next section

e.g., when performing comparative dynamics exercises. Consider the choice problem of agent 0.

For any T -period economy, agent 0’s dynamic program yields a FOC that takes the following

form (see Lemma 3)

x0
1 = ∆−1

T


α1 x

0
0 + α2 θ

0
1 +

∑

a6=0

γbT x
b
1 + µT θ̄


 (5)

where ∆T and γbT , and µT are the effects on agent zero’s discounted expected marginal utility of

changes in agents 0 and b’s first period actions and the change in the level of θ̄, respectively. Let

Lc,d,e := {(c, d, e) : e ≥ 0, ca ≥ 0, da ≥ 0, ∀a and e+
∑

a

(ca + da) = 1}

be the space of nonnegative coefficient sequences whose sum is 1. The existence of an equilibrium

policy for the first period of a T -period economy is then equivalent to the existence of a coefficient

sequence (c∗T , d
∗
T , e
∗
T ) which is the fixed point of a map LT : Lc,d,e → Lc,d,e induced by (5) s.t.

12



(ĉ, d̂, ê) = LT (c, d, e) and for each a ∈ A

ĉa = ∆−1
T

(
α11{a=0} +

∑
b6=0 γ

b
T c

a−b
)

d̂a = ∆−1
T

(
α21{a=0} +

∑
b6=0 γ

b
T d

a−b
)

ê = ∆−1
T

(
µT + e

∑
b 6=0 γ

b
T

) (6)

by matching coefficients of the policy on both sides of (5). The parameters of the map LT ,

namely ∆T ,
(
γbT
)
a6=0

, µT , depend only on the continuation equilibrium coefficients (c∗s, d
∗
s, e
∗
s)
T−1
s=1

in a linear fashion (see (31), (48), and (50) for their detailed expressions). For T = 1, the

parameters of L1 are dictated directly by the underlying preferences, namely ∆1 = α1 +α2 +2α3,

γ1
1 = γ−1

1 = α3, γb1 = 0, for all b 6= −1, 0, 1, and µ1 = 0. Thus, the map L1 defined by the system

in (6) becomes

ĉa = ∆−1
1

(
α11{a=0} + α3 c

a−1 + α3 c
a+1
)

d̂a = ∆−1
1

(
α21{a=0} + α3 d

a−1 + α3 d
a+1
)

ê = ∆−1
1 (2α3 e)

(7)

which is a contraction mapping whose unique fixed point is computed as the unique root to a

second-order difference equation that satisfies transversality conditions toward both infinities.

Consequently, the equilibrium policy coefficients are computed as in the next Theorem.

Theorem 3 (Recursive algorithm) Consider a finite-horizon T -period economy with confor-

mity preferences (αi > 0, i = 1, 2, 3) and complete information.

(i) The map L1 for a one-period economy, defined in (6), forms a second-order difference

equation for the equilibrium coefficient sequence, whose unique non-explosive, exponential

solution is the unique fixed point of L1. We compute the coefficient sequence in closed-form.

For any a ∈ A,

c∗a1 = r
|a|
1

(
α1

α1 + α2

)(
1− r1

1 + r1

)
and d∗a1 = r

|a|
1

(
α2

α1 + α2

)(
1− r1

1 + r1

)
(8)

where

r1 =

(
∆1

2α3

)
−

√(
∆1

2α3

)2

− 1

with ∆1 = α1 + α2 + 2α3.

(ii) The coefficients (c∗s, d
∗
s, e
∗
s)
T
s=2 of the sequence of Markov equilibrium polices are computed

recursively as the unique fixed points of the recursive contraction maps Ls : Lc,d,e → Lc,d,e,

s = 2, . . . , T , defined in (6), whose parameters ∆s, (γ
a
s )a6=0 , µs depend linearly only on the

continuation equilibrium policy coefficients (c∗τ , d
∗
τ , e
∗
τ )s−1
τ=1, as defined in (31), (48), and (50).
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(iii) Moreover, limT→∞ (c∗T , d
∗
T , e
∗
T ) = (c∗, d∗, e∗) exists and it is the coefficient sequence of the

stationary Markovian equilibrium policy function for the infinite-horizon economy whose

existence is proved in Theorem 1.

Fixed point calculations take less than a few seconds on an ordinary computer, for each period.

Finally, the sequence of fixed point maps that we compute at each iteration converges to a policy

sequence, which turns out to be the infinite-horizon stationary MPE. The convergence is very

rapid, under a few minutes.
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Figure 1: Non-stationary Optimal Policy.

3.3 Ergodicity

With such characterization of the parameters of the policy function at hand, we are able to char-

acterize very tightly the spatial (cross-sectional) and intertemporal behavior of the equilibrium

process emerging from the class of dynamic models we study. Let π0 be an initial distribution on

the configuration space X. Given the initial distribution π0, a stationary MPE of the economy

with conformity induces an equilibrium process (xt ∈ X)∞t=0 (via the policy function g∗) and an

associated transition function Qg∗ . This latter generates iteratively a sequence of distributions

(πt)
∞
t=1 on the configuration space X, i.e., for t = 0, 1, . . .

πt+1 (A) = πtQg∗ (A) =

∫

X
Qg∗ (xt, A) πt (dxt+1) (9)

We show first that, given the induced equilibrium process, the transition function Qg∗ admits an

invariant distribution π, i.e., π = πQg∗ and that the stationary equilibrium process starting from
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π is ergodic24.

Ergodicity does not necessarily imply the convergence of the equilibrium process to a unique

distribution starting from an arbitrary initial distribution π0. Conditions are necessary to guar-

antee such convergence.25 We next show that, for any initial distribution π0 and a stationary

Markovian policy function g∗, the equilibrium process (xt ∈ X)∞t=0 converges in distribution to the

invariant distribution π, independently of π0.26 This also implies that π is the unique invariant

distribution of the equilibrium process (xt ∈ X)∞t=0. More specifically,

Theorem 4 (Ergodicity) Suppose the process
(
(θat )∞t=−∞

)
a∈A is i.i.d. with respect to a and t

according to ν. The equilibrium process (xt ∈ X)∞t=0 induced by a symmetric stationary Markov

perfect equilibrium of an economy with conformity via the policy function g∗(xt−1, θt) and the

unique invariant measure π as the initial distribution is ergodic; π is the joint distribution of

xt =


 e θ

1− C
+

∞∑

s=1

∑

b1∈A
· · ·
∑

bs∈A
cb1 · · · cbs−1 dbs θa+b1+···+bs

t+1−s



a∈A

(10)

where C :=
∑

a∈A c
a is the sum of coefficients in the stationary policy function that multiply cor-

responding agents’ last period choices. Moreover, the sequence (πt)
∞
t=1 of distributions generated

by the equilibrium process (xt ∈ X)∞t=0 converges to π in the topology of weak convergence for

probability measures, independently of any arbitrary initial distribution π0.27

4 Characterization of equilibrium

Exploiting the linear structure of our economies we can study equilibria in some detail. Recall

that the policy function in each period t = 1, . . . , T , for each agent a ∈ A, is

xat =
∑

b∈A
cbT−(t−1) x

a+b
t−1 +

∑

b∈A
dbT−(t−1) θ

a+b
t + eT−(t−1) θ, (11)

with eT−(t−1) +
∑

a∈A(caT−(t−1) + daT−(t−1)) = 1, when T is finite; and

24We call a Markov process (xt) with state space X under a probability measure P ergodic if 1
T

∑T
t=1 f(xt) →∫

fdP P -almost surely for every bounded measurable function f : X→ R. See for example Blume (1982), Duffie et

al (1994) and Hansen (1982) for the use of ergodicity in dynamic economic theory and modern econometric theory.
25The well-known Döblin conditions to that effect can be found in Doob (1953). See also Futia (1982), Neveu

(1965), and Tweedie (1975) for similar characterizations.
26Note however that Theorem 1 does not guarantee that the policy function g∗(xt−1, θt) is unique.
27A sequence of probability measures (λt) is said to converge weakly (or in the topology of weak convergence for

probability measures) to λ if, for any bounded, measurable, continuous function f : X→ R, limt→∞
∫
f dλt =

∫
fdλ

almost surely (see e.g. Kallenberg (2002), p.65).
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xat =
∑

b∈A
cb xa+b

t−1 +
∑

b∈A
db θa+b

t + e θ, (12)

with e+
∑

a∈A(ca + da) = 1, in the infinite-horizon case.

First of all, we study the parameters of the policy function. The coefficients cbT−(t−1) and

dbT−(t−1) (resp. cb and db in the case of infinite-horizon economies), in particular, may be viewed

as a measure for the total impact of the action xa+b
t−1 and of the preference shock θa+b

t of agent

a+b, respectively, on the optimal current choice of agent a; where b concisely represents the social

distance between the two agents.28 Furthermore, we study a fundamental statistical property

of equilibrium, cross-sectional auto-correlation of actions. In fact, although any agent a ∈ A
interacts directly only with a small subset of the population, at equilibrium, each agent’s optimal

choice is correlated with those of all the other agents. Let ρa,T denote the conditional correlation

between the first-period equilibrium actions of agents a-step away from each other, in the T -period

economy, given x0 ∈ X:29

ρa,T =
Cov

(
x0

1, x
a
1

∣∣∣ x0

)

V ar
(
x0

1

∣∣∣ x0

) . (13)

4.1 Policy Function

Consider first a finite-horizon economy. Since the policy function for this economy is well-defined,

the coefficients cbT−(t−1) and dbT−(t−1) satisfy

lim
|b|→∞

ca+b
T−(t−1) = lim

|b|→∞
da+b
T−(t−1) = 0

The impact of an agent a+b on agent a tends to zero as |b| → ∞. In this sense, linear conformity

economies display weak social interactions.

Furthermore, as we have shown in Section 3.2,

lim
T→∞

cT = c, lim
T→∞

dT = d, and lim
T→∞

eT = e

28See Akerlof (1997) for richer definitions of social distance.
29The correlation between the first-period optimal choices of agents a and b, is

Cov
(
xa1 , x

b
1

∣∣∣x0

)
√
V ar

(
xa1

∣∣∣x0

)
V ar

(
xb1

∣∣∣x0

) .
Due to the symmetry imposed on our economy, such correlations are independent of agents’ labels but depends

only on |b− a|. Consequently, we can define the conditional correlation function with distances computed relative

to any agent, in particular agent 0.
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The finite-horizon parameters converge (uniformly) to the infinite-horizon stationary policy pa-

rameters.

Finally, equilibrium policy functions are non-stationary in the finite economy, as rational

forward-looking agents change their behavior optimally through time. In the final periods, for

example, social interactions lose weight relative to individual characteristics; see Figure 1.30

4.2 Cross-sectional Auto-correlations

Exploiting the equilibrium characterization provided by Theorems 1 and 3, and the independence

of preference shocks across agents, we can compute the covariance terms:

Cov
(
x0

1, x
a
1

∣∣∣x0

)
= V ar(θ)

∑

a1∈A
d a1
T d a1−a

T . (14)

The expression
∑

a1∈A d
a1
T d a1−a

T is the discrete self-convolution of the equilibrium policy sequence

dT =
(
da1
T

)
a1∈A, where a acts as the shift parameter.31 In Figure 2 we show how the convolution

behaves with respect to the distance a, for the same set of parameters as in Figure 1. Substituting

the form in (14) back in (13) for both terms, we obtain
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Figure 2: Convolution of the Policy Coefficient Sequence.

30We plot in Figure 1 only one side of the policy coefficient sequence to get a close-up view of the change in

equilibrium behavior. The left hand side is the mirror image of that due to symmetry. Parameter values for this

figure are α1
α3

= 1, α3
α2

= 10, and β = .95
31See (53) for the derivation.
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ρa,T =

∑
b∈A d

b
T d

b−a
T∑

b∈A d
b
T d

b
T

(15)

the a-step conditional cross-sectional autocorrelations for the first-period equilibrium choices of

the T -period economy. Exploiting the recursive algorithm provided by Theorem 3, we can com-

pute these autocorrelations easily for any finite economy. We can then study the behavior of the

conditional correlation function ρa,T through time (T ) and across social space (a). These corre-

lations exhibit interesting dynamics: they are declining in a, for any T , but the rate of decline

cannot be ranked in T , given a; see Figure 3 for an example with the same parametrization we

used above for the policy weights in Figure 1. In particular, given a T -period economy, consider

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance between agents, a

A
u
to

-c
o
rr

el
a
ti

o
n

ρ
a

,T

 

 
T=1
T=2
T=3
T=4
T=5
T=

Figure 3: Cross-sectional Auto-correlations.

the T -period rate of convergence of the spatial autocorrelations, for a ≥ 032

ra,T =
ρa+1,T

ρa,T
.

It is easy to show analytically that ra,1 declines monotonically and becomes constant at the tail

in a.33 On the other hand, ra,T is typically non-monotonic in a, for longer horizons, including for

T =∞; see Figure 4.

Finally, consider the T -period rate of tail convergence of the spatial autocorrelations,

rT := lim
a→∞

ra,T = lim
a→∞

(
ρa+1,T

ρa,T

)

Similarly, let the same rate for the infinite-horizon economy (T =∞) be represented by r.

32The rate is symmetrically defined with respect to agent 0, i.e., ra,T =
ρa−1,T

ρa,T
, for any a ≤ 0.

33See the proof of Proposition 1 for the argument.
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Figure 4: Rate of Convergence of the Auto-correlations.

Proposition 1 (Tail Convergence Monotonicity) 34 The rate rT is monotone increasing

with respect to the length of the economy,

rT+1 > rT , for finite T ≥ 1.

Moreover, the sequence of tail convergence rate for finite-horizon economies converges to that of

the infinite-horizon economy as the horizon length gets larger and the limit rate is strictly less

than 1:

lim
T→∞

rT = r < 1.

In other words, even though the autocorrelation functions might behave non-monotonically for

shorter social distances, they eventually converge (as social distance a → ∞) to an exponential

rate in the tail. Moreover, rates of tail convergence are higher the farther is the final period

of the economy (as T → ∞). This is because rational agents choose to correlate their actions

more with their neighbors in early periods and progressively less so as they approach the end

of their social interactions. Finally, as the infinite-horizon limit is approached, the rate of tail

convergence becomes stationary (as to be expected since finite-horizon equilibria approximate

the stationary infinite-horizon equilibrium). We use this intuition to the fullest extent when

discussing identification in Section 6.

In an infinite-horizon economy social interactions manifest themselves at the stationary er-

godic distribution by means of spatial autocorrelation of actions. Given x0 ∈ X, the conditional

covariance in period t of an infinite-horizon economy, between two agents a agents away from each

34The proof is in Appendix D.
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other is denoted by Cov
(
x0
t , x

a
t

∣∣∣ x0

)
. Let Cov

(
x0, xa

)
be the a-step unconditional covariance

at the ergodic stationary distribution. Since the stationary MPE is ergodic, it is easy to see from

Lemma 2 (i) and Theorem 4 that as t gets arbitrarily large, the conditional t-period covariance

between agents 0 and a converges to its unconditional counterpart at the limit distribution, i.e.,

Cov
(
x0, xa

)
= lim

t→∞
Cov

(
x0
t , x

a
t

∣∣∣ x0

)

Moreover, the limit unconditional correlation ρb between the actions of agents a and a + b is

independent of x0 and it satisfies

ρb =
Cov

(
x0, xa

)

V ar (x0)
= lim

t→∞

Cov
(
x0
t , x

a
t

∣∣∣ x0

)

V ar
(
x0
t

∣∣∣ x0

)

Finally, because of the stationarity of the policy function in (12), the limit covariance between

two agents a agents away from each other can be written as

Cov
(
x0, xa

)
= lim

t→∞
Cov

(
x0
t , x

a
t

∣∣∣ x0

)

=
∑

a1∈A

∑

b1∈A
ca1cb1Cov

(
xa1 , xa+b1

)
+ V ar(θ)

∑

a1∈A
da1da1−a, (16)

and hence it has a simple recursive structure. In fact, since the sum of the stationary weights

multiplying covariances on the right hand side are strictly less than one, this system can be seen

as a contraction operator. Hence, for each one-step conditional autocorrelation sequence, there is

a unique stationary unconditional autocorrelation sequence that we can compute using the above

recursive system easily. We later exploit this recursive structure further in Section 6.1 when we

compare equilibrium stationary distributions induced by myopic and rational agents.

In Figure 5, we report the correlation functions in both the mild and strong conformity

parameterizations as a function of social distance, b.35 Two effects are worth mentioning here.

Firstly, both correlation functions converge to zero as the distance between two agents become

arbitrarily large. Secondly, this convergence is much faster in the case of mild interactions than

in the case of strong interactions. For example, the correlation between the equilibrium choices

of agent a and agent a+3 (or a−3 due to symmetry) is about 7% in the case of mild interactions

whereas it is about 75% in the case of strong interactions. The correlation between the equilibrium

choices of agent a and agent a+ 6 are about 0% and 40% respectively. The strength of the desire

to conform built in individuals’ preferences determine endogenously, at equilibrium, the size of

the effective neighborhood with which an individual interacts.

35See Section 5.2 for the parameter values for the mild and strong interaction cases.
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Figure 5: Correlation function at the ergodic distribution for Mild and Strong Interactions.

5 Equilibrium Properties and Comparative dynamics

In this section we first study the welfare properties of equilibrium and then we use the character-

ization of equilibria we obtained to produce several simulations illustrating various comparative

dynamics exercises of interest.

5.1 (In)efficiency

Social interactions are modelled in this paper as a preference externality, that is, by introducing

a dependence of agent a’s preferences on his/her peers’ actions. Not surprisingly, therefore, equi-

libria will not be efficient in general. In this section we also characterize the form the inefficiency

takes when social interactions are modelled as preferences for conformity.

A benevolent social planner, taking into account the preference externalities and at the same

time treating all agents symmetrically, would maximize the expected discounted utility of a generic

agent, say of agent a ∈ A, by choosing a symmetric choice function h ∈ CB(X×Θ, X), the space

of bounded, continuous, and X-valued measurable functions. In other words, h is the solution
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to36

max
{f∈CB(X×Θ,X)}

∫ [ T∑

t=1

βt−1

(
− α1

(
fT−(t−2)(R

a xt−2, R
a I0 θt−1)− fT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α2

(
θat − fT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
fT−(t−1)(R

a−1 xt−1, R
a−1 I0 θt)− fT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
fT−(t−1)(R

a+1 xt−1, R
a+1 I0 θt)− fT−(t−1)(R

a xt−1, R
a I0 θt)

)2
)]

T∏

t=1

P (dθt)π0 (dx0)

where π0 is an absolutely continuous distribution on the initial choice profiles with a positive

density. This problem can be written recursively. For any agent a ∈ A, for all t = 1, . . . , T , and

all (xT−1, θT ) ∈ X×ΘI(0), let the value of using the choice rule h in the continuation be defined

as

V h,T−(t−1) (Ra xT−1, R
a θT ) = −α1

(
x0
t−1 − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α2

(
θat − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a−1 xt−1, R
a−1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a+1 xt−1, R
a+1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

+β

∫
V h,T−t

(
Ra
{
ht(R

b xt−1, R
b I0 θt)

}
b∈A

, Ra I0 θt+1

)
P (dθt+1)

which leads us to the following definition

Definition 2 (Recursive Planning Problem) Let a T -period linear economy with social in-

teractions and conformity preferences be given. Let π0 be an absolutely continuous distribution

on the initial choice profiles with a positive density. A symmetric Markovian choice function

g : X ×ΘI(0) × {1, . . . , T} → X is said to be efficient if it is a solution, for all a ∈ A, and for

all t = 1, . . . , T , to

arg max
{f∈CB(X×Θ,X)}

∫ [
− α1

(
x0
t−1 − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α2

(
θat − hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a−1 xt−1, R
a−1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

−α3

(
hT−(t−1)(R

a+1 xt−1, R
a+1 I0 θt)− hT−(t−1)(R

a xt−1, R
a I0 θt)

)2

+β V h,T−t
(
Ra
{
h(Rb xt−1, R

b I0 θt)
}
b∈A

, Ra I0 θt+1

)]
P (dθt)P (dθt+1)πt (dxt−1)

where πt is the distribution on t-th period choice profiles induced by π0 and the planner’s choice

rule h.
36With the convention that fT−(t−2)(R

a xt−2, R
a I0 θt−1) = xa0 when t = 1.
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As noted, preferences for conformity introduce an externality in each agent a ∈ A’s decision

problem, which depends directly on the actions of agents in neighbourhood N(a) and, indirectly,

on the actions of all agents in the economy. In equilibrium, agents do not internalize the impact

of their choices on other agents today and in the future. More precisely,

Theorem 5 (Inefficiency of equilibrium) A symmetric MPE of a conformity economy is in-

efficient.

Furthermore, an efficient policy function will tend to weight less heavily the agent’s own-effect

and more heavily other agents’ effects, relative to the equilibrium policy. This effect, hence the

inefficiency, are neatly exhibited by comparing the equations determining policy weights in the

planner (36) and equilibrium (24) scenarios. The (absolute value of the) weights the planner’s

equation associates on neighbors’ choices is twice as large as the weights associated to neighbors in

the equilibrium equation (
(

α3
α1+α2+2α3

)
). As a consequence, the relative weights that the planner

assigns to neighbors’ choices are always higher than the ones that each agent uses in equilibrium.37
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Figure 6: Inefficiency of equilibrium.

A graphic representation of the inefficiency is obtained in Figure 6, which presents the coef-

ficient plot for the equilibrium policy of a one-period economy (equivalently the final period of

any finite-horizon economy): ceqbm (blue dots), and for the planner’s solution, cplanner (red dots),

respectively, for a given agent a ∈ A, and for a given set of parameter values (α1
α2

= α2
α3

= 1, and

37Normalizing the relative coefficients to form a probability measure (see the argument in the proof of Lemma

2 (iv)), we have that the measure obtained from the planner’s policy is a mean-preserving spread of the measure

obtained at equilibrium.
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Figure 7: Weights on past history in the stationary policy function.

β = .95).38

5.2 Comparative Dynamics: Peer Effects

The strength of the agents’ preferences for conformity depends on the size of the preference

parameter α3 relatively to α1 and α2. A policy function is represented in Figure 7, which compares

a case with mild preferences for conformity (with parametrization α1
α2

= α2
α3

= 1)39 with one with

strong preferences for conformity (with parametrization α1
α2

= 1, α2
α3

= 1
20). On the x-axis,

we plot agent a and his neighbors, while on the y-axis, we plot the weights (cb)b∈A that the

symmetric policy function g associates with the last period actions of agents (a + b)b∈A. While

each agent’s interaction neighborhood is only composed of two agents, in effect local interactions

involve indirectly larger groups. How large are the groups depends endogenously on the strength

of the agents’ preferences for conformity. Notice e.g., that in Figure 7, local interactions involve

effectively a group of about ten neighbors when preferences for conformity are mild and involve

a group of about thirty neighbors when preferences for conformity are strong. Furthermore,

for the same cases of mild and strong conformity, we compare in Figure 8 the case in which

neighborhoods are overlapping, N(a) = {a−1, a+ 1}, with the case of non-overlapping one-sided

neighborhoods, N(a) = {a+1}.40 Two effects are present here. Firstly, as in Figure 7, an increase

38We call this parametrization the mild-interaction case in Section 5.2.
39The discount rate is fixed at β = .95 in all the simulations unless mentioned otherwise.
40In this case, the policy function is

xat = g(Raxt−1, R
aθt) =

∑
b≥0

cb xa+b
t−1 +

∑
b≥0

db θa+b
t + e θ.
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Figure 8: One-sided vs. two-sided interactions.

in the strength of the interaction parameter spreads the interaction effects over a larger social

geography. Secondly, this spread is observed most significantly in the case of non-overlapping

neighborhoods due to the uni-directional nature of the interactions. In turn, spatial correlations

induce correlated actions of agents in endogenously formed groups.

At the ergodic stationary distribution, when the dependence of the agents’ actions in equilib-

rium are independent of the initial configuration of actions x0, such correlations in endogenously

formed groups is manifested in a phenomenon which we refer to as local norms of behavior (see

Figure 9).41 In Figure 9, we plot 100 neighboring agents on the x-axis and their optimal choices

drawn from the limit distribution at the same future date, on the y-axis. In the top panel, clearly

the optimal actions are more spread and do not follow a significant pattern. In the bottom panel

though, the optimal choices are more concentrated and follow a clear path. This is due to the

fact that, in equilibrium agents conform to the actions of neighboring agents, leading the way

to the creation of similar local behavior. In the bottom panel of Figure 9, we observe groups of

agents (e.g., in the neighborhood of agent 20) choosing relatively low actions, and other groups

(e.g., in the neighborhood of agent 70) choosing instead high actions. Two interesting aspects

of this phenomenon are firstly that every individual uses the same symmetric policy function to

make his choices and all heterogeneity is captured by random types and we still have high spatial

41See Appendix E for details about how we simulate the ergodic stationary distribution of actions of the economy.
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correlation and high spatial variation. Secondly, the initial configuration of actions is irrelevant

since the limit distribution of individual actions in this economy is ergodic.

0 10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Figure 9: Ergodic Limit of Mild (top) and Strong (bottom) Interactions for 100 adjacent agents.

5.2.1 Comparative Dynamics: Information

In Figure 10, we compare the case in which agents have complete information with the case in

which they have incomplete information. In this last case, the policy function is

xat = g(Raxt−1, R
aI0 θt) =

∑

b∈A
cb xa+b

t−1 +
∑

b∈I(0)

da θa+b
t + e θ.

In particular, we record the effect of an expansion of the information set Ra I0 θt (individuals

whose types are observed by agent a) on best responses. We start with an information structure

in which each agent observes his own type only. We then increase the number of types observed by
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each agent a (maintaining the symmetry of two-sided interactions) up to the complete information

limit. The red dots represent the optimal weights in the policy function of an of agent a as a

 

 M

M M
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Figure 10: Effect of Information on Interactions.

response to the informational structure. The lower left vertex represents (H)istory, the total

sum of weights assigned to last period’s choices. The lower right vertex represents (I)nformation,

the sum of weights on current types observed. Finally, the upper vertex represents average

information, (M)ean type, θ̄. In part (a), we have mild preferences for conformity once again.

The dots are concentrated near the middle of the triangle (equal weights on history, information,

and mean type) and they do not move much as a response to changes in the amount of current

information. Part (d) is the counterpart with strong interactions. Hence the significant change

from almost no weight on current information to almost equal weights. Individuals use the

information in the best possible way by putting more weight on it in their policy functions. This

is due to the fact that forming expectations more precisely how the neighbors will behave becomes

more important for each agent, due to the increased strength of interactions. Part (c) is mild

interactions but strong own-type effect (α1
α2

= 1
20 ,

α2
α3

= 20) and part (b) is strong interactions and

strong own-type effect (α1
α2

= 1
20 ,

α2
α3

= 1). We do not see much change in (b), although most of

the total weight is put on information. This is mainly due to the fact that any agent a cares so

much about his current type that, he neglects the other effects. In (c), although the own-effect is

still strong, due to the strength of interactions, each agent uses the average information to form

the best expectations regarding the behavior of the other agents. As the amount of information

increases, each agent forms better expectations by transferring the policy weight from average

information to precise information on close neighbors.
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6 Identification

We study here the identification of social interactions in the context of our linear dynamic economy

with conformity. Identification obtains when the restrictions imposed on actions at equilibrium

by preferences for conformity are distinct from those imposed by other relevant structural mod-

els.42 Consider in particular an alternative structural model characterized by (cross-sectionally)

correlated preferences across agents. This specific alternative model is focal because correlated

preferences could be generally due to some sort of assortative matching or positive selection in so-

cial interaction, which induces agents with correlated preferences to interact socially. Suppose an

econometrician observes panel data of individual actions over time displaying spatial correlation

of individual actions at each time. Such correlation can generally be due to social interactions, as

our analysis has shown. Such correlation could also ensue, however, from the spatial correlation

of preference types, which we have excluded by assumption in our analysis to this point. But

is there any structure in the spatial correlation which is implied by preference for conformity

and not by correlated preferences? An affirmative answer to this question implies that the social

interaction model is identified with respect to the correlated preferences model.

The structural analysis of identification in linear economies with social interactions starts

with Manski (1993).43 Manski restricts his analysis to static linear models, or, more specifically,

linear economies in which the social interactions operate through the mean action in a pre-

specified group, (linear in means models). In this context, identification is problematic due to

the colinearity problem introduced by the mean action, the so-called reflection problem, and due

to the possible correlation of unobservables. In the context of linear in means models, a recent

literature has studied identification under the condition that the population of agents could be

partitioned into a sequence of finitely-populated non-overlapping groups; see e.g., Graham and

Hahn (2005).44

The economies we study in this paper are related to those studied by Manski (1993) and others

in that we maintain linearity, an assumption which renders identification harder (see Blume et

42The question of identification in economics has been clearly defined by Koopmans (1949) and Koopmans and

Reiersøl (1950). The issue of identification goes back to Pigou (1910), Schultz (1938), Frisch (1928, 1933, 1934, and

1938), and Frisch et al (1931). By identification we mean identification in population (Sometimes identification

in population is called identifiability ; see e.g., Chiappori and Ekeland, 2009). See also Marschak (1942), Haavelmo

(1944), Koopmans, Rubin, and Leipnik (1950), Wald (1950), Hurwicz (1950). More recent surveys on the topic

exist of course; see Rothenberg (1971), Hausman and Taylor (1983), Hsiao (1983), Matzkin (2007), and Dufour

and Hsiao (2008).
43Blume et al. (2011), Blume and Durlauf (2005), Brock and Durlauf (2007), Graham (2011), and Manski (1993,

2000, 2007) survey the main questions pertaining to identification in this social context.
44Also: Davezies, D’Haultfoeuille and Fougère (2009) extends these results exploiting variation over the size of

the populations; Graham (2008) uses excess variance across groups; Bramoullé et al (2009) uses reference group

heterogeneity for identification. Other recent contributions include Glaeser and Scheinkman (2001), Graham and

Hahn (2005); De Paula (2009), Evans, Oates and Schwab (1992), Ioannides and Zabel (2008), and Zanella (2007).
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al. (2011)). On the other hand we introduce several fundamental distinguishing features: in

particular, we allow for more general forms of social interactions across agents and for dynamic

economies. More precisely, in the class of economies we study, the equilibrium action of agent a

in an infinite horizon economy satisfies

xat = β1x
a
t−1 + β2θ

a
t +

∑

b 6=0

β3,b x
a+b
t ;

while in a linear in means economy the corresponding equation is:45

xa = βθa + γ
∑

b∈N(a)

xb.

By studying populations composed of an infinite number of overlapping neighborhoods our

analysis sheds some light on the nature of identification results which exploit an infinite number

of non-overlapping groups, as in Graham and Hahn (2005) and in the literature discussed in

footnote 44. The overlapping structure of our neighborhoods, in fact, breaks the independence

which is required when non-overlapping groups are considered.46 Furthermore, by studying dy-

namic models we are able to exploit the theoretical implications deriving from the optimality

of the dynamic choices of agents on time series autocorrelations of actions, over and above the

implications regarding the cross-sectional (spatial) correlations. In a related context, de Paula

(2009) and Brock and Durlauf (2010) also exploit the properties of dynamic equilibrium, the

discontinuity in adoption curves in their continuous time model, to identify social interactions.47

We turn to our main identification results. The first series of results regards the identification

of the dynamic structure - that is, distinguishing the properties of dynamic social interaction

economies from those of myopic (hence static) economies. The second series of results regards

instead the identification of social interactions, that is, distinguishing preference for conformity

from correlated preferences.

6.1 Dynamic Rationality vs. Myopia

In this section we compare equilibrium configurations of dynamic economies with rational agents

with those of economies with myopic agents. When agents are myopic, even economies with a

dynamic structure, e.g., when agents’ actions at time t depend on their previous actions, are

45Note that, to ease the comparison we adopt here the best-reply representation of equilibrium actions; see

equation (5).
46We maintain however the assumption of symmetric neighborhoods, an assumption which, as is the case for

linearity, renders identification harder: see Bramoullé, Djebbari and Fortin (2009) for a study of the identification

power of observable asymmetric neighborhoods.
47See also Cabral (1990) for an early discussion of these issues and Young (2009); see Blume, Brock, Durlauf,

Ioannides (2011) for an up to date survey.
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effectively static. These economies have been extensively studied in the theoretical and empir-

ical literature on social interactions, following the mathematical physics literature in statistical

mechanics on interacting particle systems. Suppose that myopic agents, when called to make a

choice, act as if they expect never to be called to act again.48 Given initial history xt−1 and

realization θt, each myopic agent a ∈ A chooses xat ∈ X to maximize

u(xat−1, x
a
t , x

a−1
t , xa+1

t , θat ) := −α1(xat−1 − xat )2 − α2(θat − xat )2 − α3(xa−1
t − xat )2 − α3(xa+1

t − xat )2

There exists then a unique symmetric policy function for any agent a, ga,m (m for myopic) such

that

ga,m(xt−1, θt;α) :=
∑

b∈A
cb,mxa+b

t−1 +
∑

b∈A
db,mθa+b

t

where we make explicit the dependence of the policy function on the preference parameters

α = (α1, α2, α3).49 The coefficients of the policy function ga,m are equal to the ones of the unique

MPE policy function of a one-period (T = 1) social interactions economy: cb,m = cb1, db,m = db1,

for b ∈ A. In this sense, myopic models are nested within the class of dynamic models we study.

In the following we ask whether the spatial correlations generated by the long-run stationary

distribution of an infinite-horizon model can be distinguished from those obtained as the limit

distribution of a myopic model. Let ga(xt−1, θ
a
t ;α) denote agent a’s policy function from the

dynamic social interaction model, where we make once again explicit the dependence of the policy

function on α. We say that (xat )
a∈A
t≥1 is a stochastic process induced by the dynamic economy with

parameters α if it satisfies

xat = ga(xt−1, θ
a
t ;α), for any a ∈ A and any t ≥ 1

We instead say that (xat )
a∈A
t≥1 is a stochastic process induced by the myopic economy with param-

eters α if it satisfies

xat = ga,m(xt−1, θt;α), for any a ∈ A and any t ≥ 1

48See e.g., Blume and Durlauf (2001), Brock and Durlauf (2001b); and Glaeser and Scheinkman (2003) for a

comprehensive survey. Liggett (1985) is the standard reference for the mathematical literature.
49In some of the literature, myopic agents are modelled not only as assuming that all agents in the economy only

interact once, but also that their neighbors are not changing their previous period actions. In this case an agent a

solves

max
xat ∈X

−α1(xat−1 − xat )2 − α2(θat − xat )2 − α3(xa−1
t−1 − x

a
t )2 − α3(xa+1

t−1 − x
a
t )2.

and his policy function is

xat = β1x
a
t−1 + β2θ

0
t + β3x

−1
t−1 + β3x

1
t−1.

It can be shown, see Glaeser and Scheinkman (2003), that the ergodic stationary distribution of actions in this

economy coincides with that of myopic agents as defined in the text. As a consequence, our identification results

extend to this economy as well.
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We are now ready to introduce our definition of identification of social interactions.

Definition 3 Let (xat )
a∈A
t≥1 denote a stochastic process induced by the dynamic economy with pa-

rameters α. We say that the dynamic economy with parameters α is identified with respect to

myopic economies if there does not exist an α̂, such that the process (xat )
a∈A
t≥1 is also induced by a

myopic economy with parameter α̂.

The characterization of the spatial correlation of actions at equilibrium for different time-

horizons T , which we provided in Section 4.2, gives us a straightforward answer to the identifi-

cation question. Recall in fact that the coefficients of the policy function ga,m are equal to the

ones of the unique MPE policy function of a one-period (T = 1) social interactions economy.

Recall also that the covariances between agents’s choices obtained from data generated by a typi-

cal model of infinite-horizon stationary social interactions are fundamentally different from those

generated by a myopic model. In particular, we have shown in Section 4.2 that, for a typical

choice of α,

ra,T =
ρa+1,T

ρa,T

is non-monotonic in a, for longer horizon economies; and so is ra, the ratio of the limit economy

with T =∞); while ra,1 declines monotonically in a, for any α; see Figure 4. Moreover, the limit

unconditional covariances inherit the (non)-monotonicity features of their one-step conditional

counterparts. Finally, by continuity, the non-monotonicity property necessarily holds for an open

set of the parameter space, and is hence robust. Summarizing, then, we have the following.

Proposition 2 (Rationality vs. Myopia) A dynamic economy with parameter α is identified

with respect to myopic economies, for a robust subset α.

As an illustration we present in Figure 11, ra as a function of a, at the stationary distribution,

for different levels of strength of interaction proxied by the ratio
(

2α3
∆1

)
.50 Clearly, for a large set of

parameters, non-monotonicity obtains at the stationary distribution. The limit auto-correlation

function for the myopic model, on the contrary, inherits the behavior of its one-step transition

counterpart: it converges at a monotonically decreasing rate.

Consider an econometrician fitting a static (myopic) model through data generated by the

dynamic equilibrium of an economy with parameter α. From Proposition 1, r1(α) < r(α) for any

possible α. As a consequence, the parameter α̂ estimated by the econometrician imposing the

static (myopic) structure on the data, will satisfy

r1(α̂) = r(α) > r1(α) (17)

50More precisely, we set
(
α1
α2

)
= 1,

(
2α3
∆1

)
∈ {0.1, 0.2, 0.5, 0.75, 0.9} and β = .95.
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Figure 11: The ratio ra as a function of a for different values of
(

2α3
∆1

)
at the stationary distri-

bution.

From (51), however, r1 is monotonically decreasing in
(

∆1
2α3

)
. As a consequence,

(
α̂3

α̂1 + α̂2 + 2α̂3

)
>

(
α3

α1 + α2 + 2α3

)
,

and the econometrician overestimates the social interaction effects.

6.2 Social Interactions vs. Selection

In our dynamic economies, spatial correlation of individual actions at each time is induced by

social interactions and preference for conformity. But spatial correlation of actions could be

induced in principle also by spatial correlation of preference types, with no social interaction.

Take two agents, e.g., agent a and agent b. A positive correlation between xat and xbt could be

due to a positive correlation between θat and θbt . In this last case, preferences for conformity

and social interactions would play no role in the correlation of actions at equilibrium. Rather,

such correlation would be due to the fact that agents have correlated preferences. As we already

noted, correlated preferences could be generally due to some sort of assortative matching or

positive selection in social interaction, which induces agents with correlated preferences to interact

socially.

In our economy, at a symmetric Markov perfect equilibrium, each agent a ∈ A acts according

to the policy function gaT−(t−1)(xt−1, θ
a
t ;α), where we make once again explicit the dependence of
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the policy function on the preference parameters α = (α1, α2, α3). If T =∞, the policy function

is stationary ga(xt−1, θ
a
t ;α). Recall that the parameter α3 represents the weight of conformity

in each agent’s preferences. It follows that α3 = 0 corresponds to an economy with no social

interactions. We say that (xat )
a∈A
t≥1 is a stochastic process induced by α and (θat )a∈At≥1 if it satisfies

xat = gaT−(t−1)(xt−1, θ
a
t ;α), for any a ∈ A and any T ≥ t ≥ 1

We are now ready to construct our definition of identification of social interactions.

Definition 4 Let (xat )
a∈A
t≥1 denote a stochastic process induced by α and (θat )a∈At≥1 , where (θat )a∈At≥1

is i.i.d. across agents and serially uncorrelated, that is, where Cov(θat , θ
b
t ) = Cov(θat , θ

a
t+1) = 0

for any a 6= b ∈ A and any t ≥ 0. We say that α is identified if there does not exist an α̂, with

α̂3 = 0, such that the process (xat )
a∈A
t≥1 is also induced by α̂ and some stochastic process {θ̂at }a∈At≥1 .

We say that social interactions are identified if some α, with α3 > 0, is identified.

The conditions for identification of social interactions can be weakened by restricting the

stochastic process {θ̂at }a∈At≥1 . We say that α is (resp. social interactions are) identified relatively to

a set of preference shocks if {θ̂at }a∈At≥1 in Definition 4 is required to belong to a set of preference

shocks which satisfies some specific restriction.

Finally, the conditions for idenfication of social interactions can be strengthened by limiting

the observable properties of the process (xat )
a∈A
t≥1 .

We first consider the case of an infinite horizon economy: policy functions are stationary

and an ergodic distribution exists. In this context, we study first the possibility of obtaining

identification by observing the properties of the stationary distribution of actions rather than

the whole panel (xat )
a∈A
t≥1 . We then pass on to identification tout court, that is exploiting the

whole dynamic restrictions imposed by the model on (xat )
a∈A
t≥1 , not just the restrictions on the

stationary distribution. We shall see that results are negative in both cases, that is, identification

is not obtained in general. Secondarily, we study identification relatively to a series of relevant

restrictions on the stochastic process for preference shocks {θ̂at }a∈At≥1 . These restrictions are meant

to capture natural properties of the selection mechanism which induces agents to display spatially

correlated preferences.

6.2.1 Infinite horizon (stationary) economies

Consider first the stationary distribution of actions as identified by its implied spatial correlation

function ρb.

Proposition 3 Social interactions are not identified by the properties of the spatial correlation

function ρb of the stationary distribution of actions in infinite horizon economies.
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The proof is simple and instructive and hence it is reported following in the text.

Proof: We have shown in Section 3.3 that the stationary distribution of our dynamic economy

with social interactions, that is, α3 > 0, and i.i.d. preference shock process {θat }a∈At≥1 , is given by

the ergodic measure π in (10), i.e. π is the joint distribution of

xt =


 e (α) θ

1− C (α)
+

∞∑

s=1

∑

b1

· · ·
∑

bs

c (α)b1 · · · c (α)bs−1

(
d (α)bs θa+b1+···+bs

t+1−s

)


a∈A

Consider now an alternative specification of our economy with no interactions between agents

(α̂3 = 0) and no habits (α̂1 = 0) but simply a preference shock process {θ̂at }a∈At≥1 and own type

effects with α̂2 > 0. For this economy, equilibrium choice of agent a at time t is given by

xat = θ̂at

As long as the process {θ̂at }a∈At≥1 is the one where

θ̂at :=
e (α) θ

1− C (α)
+

∞∑

s=1

∑

b1

· · ·
∑

bs

c (α)b1 · · · c (α)bs−1

(
d (α)bs θa+b1+···+bs

t+1−s

)

the probability distributions that the two specifications (with and without interactions)) gener-

ate on the observables of interest, {xat }a∈At≥1 , are identical. Hence, one cannot identify from the

stationary distribution of choices which specification generates the data. �

More generally, we investigate if the dynamic equilibrium restrictions of our model are suffi-

cient to identify social interactions.

Proposition 4 Social interactions are not identified in infinite horizon economies.

This proof is also simple and instructive and hence it is reported following in the text.

Proof: In the case of complete information, the policy function is:

xat =
∑

b∈A
cb (α)xa+b

t−1 +
∑

b∈A
db (α) θa+b

t + e θ̄

As we saw in Lemma 2, one can obtain by iteration the reduced form51

xat =
∑

b1

· · ·
∑

bt

c (α)b1 · · · c (α)bt xa+b1+···+bt
0

+

t∑

s=1

∑

b1

· · ·
∑

bs−1

c (α)b1 · · · c (α)bs−1


∑

bs

d (α)bs θa+b1+···+bs
t−(s−1) + e (α) θ




51In Lemma 2, the iteration stops once it reaches period 1. But, since a stationary MPE exists by Theorem 1, we

iterate here once more on the form in Lemma 2 using the stationary policy function and write equilibrium choices

as a function of initial conditions x0.
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Consider now the alternative specification with no interactions between agents (α̂3 = 0) and no

habits (α̂1 = 0), a preference shock process {θ̂at }a∈At≥1 and own type effects with α̂2 > 0. For this

economy, equilibrium choice of agent a at time t is given by

xat = θ̂at

Defining the new preference shock process {θ̂at }a∈At≥1 as

θ̂at : =
∑

b1

· · ·
∑

bt

c (α)b1 · · · c (α)bt xa+b1+···+bt
0

+
t∑

s=1

∑

b1

· · ·
∑

bs

c (α)b1 · · · c (α)bs−1

(
d (α)bs θa+b1+···+bs

t−(s−1) + e (α) θ
)

would imply that for an arbitrary initial distribution π0 for x0, the joint probability distributions

that the two specifications (with and without interactions)) generate on the process {xat }a∈At≥1 , are

identical. Moreover, if one allows for infinite histories, one can define the preference shock process

{θ̂at }a∈At≥1 as before

θ̂at :=
e (α) θ

1− C (α)
+

∞∑

s=1

∑

b1

· · ·
∑

bs

(c (α))b1 · · · (c (α))bs−1

(
(d (α))bs θa+b1+···+bs

t−(s−1)

)

and obtain observational equivalence once again. Hence, we conclude that identification is not

possible. �

An intuition about this result can be obtained by loosely reducing the identification of social

interactions in infinite horizon economies to the well known problem of distinguishing a VAR

from an MA(∞) process. Stacking in a vector xt (resp. θt) the actions xat over the index a ∈ A
(resp. the preference shocks θat ), policy functions can be loosely written as a VAR:

xt = Φxt−1 + δt, with δt = Γθt + eθ

where E (δtδt−τ ) = 0 for all τ > 0. Under standard stationarity assumptions, the VAR has an

MA(∞) representation

xt = (IA − ΦL)−1δt = δt + Ψ1δt−1 + Ψ2δt−2 + ....

for a sequence Ψ1,Ψ2.... such that (IA − ΦL)
(
IA + Ψ1L + Ψ2L

2 + ...
)

= IA. The argument in the

proof of Proposition 4 therefore amounts to picking

xt = θ̂t = δt + Ψ1δt−1 + Ψ2δt−2 + ....

35



6.2.2 Finite-horizon (non-stationary) economies

Consider now the case of a finite horizon economy. In this case the unique policy function and the

distribution of actions are non-stationary, as we have shown, and hence identification might obtain

in those environments where correlated effects satisfy a stationary law through time. Consider

then a restriction to the class of admissible preference shock processes {θ̂at }a∈At≥1 which satisfy the

following conditional covariance stationarity restriction:

Definition 5 (Conditional Covariance Stationarity) A process {θ̂at }a∈At≥1 is said to be con-

ditional covariance stationary if Cov
(
θ̂at , θ̂

b
t

∣∣∣ θ̂1, · · · , θ̂t−1

)
= Z(a, b, θ̂t−n, . . . , θ̂t−1) ∈ R, for

a, b ∈ A, t = n+ 1, . . . , T .52

This condition defines a large class of stochastic processes for which Cov
(
θ̂at , θ̂

b
t

∣∣∣ θ̂1, · · · , θ̂t−1

)
=

Z(a, b, θ̂t−n, . . . , θ̂t−1) ∈ R depends on the position of agents a and b and on their finite memory

(at most n) of realizations of the process. It is a relatively weak and natural condition in that

it allows for the intertemporal dependence to be a function of the position of the agents; what it

excludes is events in the distant past from having a significant effect on the joint determination

of agents’ types today.53

Conditional covariance stationarity of preference shocks is in fact sufficient for identification

of social interactions.

Proposition 5 Social interactions are identified relatively to processes satisfying the conditional

covariance stationarity restriction with n ≤ T − 2.

While the spatial autocorrelations between agents’ choices are the same across periods in the

absence of interaction effects, they vary in presence of social interactions.54 This non-stationarity

feature of the equilibrium process is at the heart of the proof, whose details follow.

52The original definition is due to Mandelbrot (1967) who provides the conditional spectral analysis of sporadically

varying random functions in the mathematical theory of information transmission with noise. In his environment,

he requires E
[
θ̂t θ̂t+n

∣∣∣ 1 ≤ t < t+ n ≤ T
]

to be independent of t. Ours is a slightly weaker condition since it uses

fixed finite memory. For more recent usage of conditional covariance restrictions see the Times Series literature

studying persistence of conditional variances (ARCH, GARCH), especially Bollerslev (1986), Bollerslev and Engle

(1993), Engle (1982), Engle and Bollerslev (1986). For a survey of these models see Bauwens et al. (2006) and

Bollerslev et al. (1992, 1994). For analogous conditions of weak (unconditional) stationarity used in the times

series literature see Hamilton (1994), p. 45-46 and chapter 10.
53All existing social interaction models we can think of have stochastic structures that are special cases of this

class. More specifically, they typically assume either time-independent or finite memory Markov structures to

model exogenous effects; see e.g., Brock and Durlauf (2001b), Conley and Topa (2003, 2007), de Paula (2009),

Glaeser and Scheinkman (2001), Nakajima (2007), Topa (2001), and Young (2009).
54More specifically, they can be ordered with respect to their spatial rate of tail convergence; see Proposition 1.
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Proof: Consider a finite-horizon, T -period economy with T ≥ 2. We assume that n ≤ T − 2. In

the absence of interactions (α̂3 = 0), agent a’s final period optimal choice is55

xaT = c1 (α̂)xaT−1 + d1 (α̂) θ̂aT (18)

Thanks to the linearity of the policy functions across periods with (α̂3 = 0), any path of shock

realizations (θ̂1, . . . , θ̂T−1), given x0, generates a path of configurations (x0, x1, . . . , xT−1). Thus,

conditioning on all imaginable choice paths spans all imaginable preference shock paths, given

that the observables are generated by the above-mentioned policy functions. This observation

is useful because the a-step covariance between equilibrium choices of agent 0 and a in case of

interactions is given by

Cov
(
x0
T , x

a
T

∣∣∣xT−1

)
= Cov

(
x0
T , x

a
T

∣∣∣x0, x1, . . . , xT−1

)
, ∀ (x0, x1, . . . , xT−1)

= Cov


∑

b1∈A
db11 θb1T ,

∑

b2∈A
db21 θa+b2

T




= V ar(θ)
∑

b1∈A
db11 db1−a1 (19)

which means that the covariance term is independent of the conditioned upon path. The im-

plication of this is that in order the specification with no interactions to be observationally

indistinguishable from the interactions case, the a-step conditional covariances, computed using

(18)

Cov
(
x0
T , x

a
T

∣∣∣xT−1

)
= d1(α̂)2Cov

(
θ̂0
T , θ̂

a
T |x0, θ̂1, . . . , θ̂T−1

)

= d1(α̂)2 Z(0, a, θ̂T−n, . . . , θ̂T−1), ∀(x0, θ̂1, . . . , θ̂T−1)

= d1(α̂)2 Z̄(0, a) ∈ R, ∀(θ̂T−n, . . . , θ̂T−1) (20)

should be independent of previous realizations and vary only with respect to the positions of the

agents in the network and not with respect to previous realizations. The function Z̄ is implicitly

defined to capture that fact and so that the expression in (20) matches the one in (19). This

is not an assumption but an equilibrium restriction and we are bound to choose the covariance

structure accordingly.

Once again, in order the two model to be observationally indistinguishable, the a-step con-

ditional covariances, for all a ∈ A, under interactions and in the absence of interactions should

55 In the absence of interactions, problems (23) and (28) become individual maximization problems. Elementary

dynamic programming techniques, as in Stokey and Lucas (1989), yield the policy functions we use here.
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match, in period T − 1. Similar calculations in period T − 1 yield

Cov
(
x0
T−1 , x

a
T−1

∣∣∣xT−2

)
= Cov

(
x0
T−1 , x

a
T−1

∣∣∣x0, x1, . . . , xT−2

)
, ∀ (x0, x1, . . . , xT−2)

= V ar(θ)
∑

b1∈A
db12 db1−a2

= d2(α̂)2Cov
(
θ̂0
T−1 , θ̂

a
T−1

∣∣∣x0, θ̂1, . . . , θ̂T−2

)
, ∀ (x0, θ̂1, . . . , θ̂T−2)

= d2(α̂)2 Z(0, a, θ̂T−1−n, . . . , θ̂T−2) ∈ R, ∀(θ̂T−1−n, . . . , θ̂T−2)

= d2(α̂)2 Z̄(0, a), ∀(θ̂T−1−n, . . . , θ̂T−2) (21)

where the first two equalities are as in (19); third is the restriction imposed by observable in-

distinguishability; fourth by conditional covariance stationarity; finally fifth is by conditional

covariance stationarity across periods using (20). Putting the equilibrium restrictions in periods

T − 1 and T together, using (20) and (21), we can write

Cov
(
x0
T−1 , x

a+1
T−1

∣∣∣xT−2

)

Cov
(
x0
T−1 , x

a
T−1

∣∣∣xT−2

) =

(
d2(α̂)2

d2(α̂)2

)(
Z̄(0, a+ 1)

Z̄(0, a)

)

=

(
d1(α̂)2

d1(α̂)2

)(
Z̄(0, a+ 1)

Z̄(0, a)

)

=
Cov

(
x0
T , x

a+1
T

∣∣∣xT−1

)

Cov
(
x0
T , x

a
T

∣∣∣xT−1

)

Since the choice of a is arbitrary, we can look at the same expression as a becomes progressively

larger. So, as a→∞, the expression should give

lim
a→∞

Cov
(
x0
T−1 , x

a+1
T−1

∣∣∣xT−2

)

Cov
(
x0
T−1 , x

a
T−1

∣∣∣xT−2

) = r2 = r1 = lim
a→∞

Cov
(
x0
T , x

a+1
T

∣∣∣xT−1

)

Cov
(
x0
T , x

a
T

∣∣∣xT−1

) (22)

which is a contradiction to Proposition 1. Therefore, there does not exist a conditional covariance

stationary preference shock process {θ̂at }a∈At≥1 that generates an equilibrium choice process {xat }a∈At≥1

under the no interactions specification (α̂3 = 0) that is observationally equivalent to the process

generated by the local interactions (α3 6= 0) process. This concludes the proof. �

7 Extensions

The class of social interaction economies we studied in this paper has been restricted along several

dimensions to better provide a stark theoretical analysis. Some of these restrictions, however, turn

out to be important in applications and empirical work. In this section, therefore, we illustrate
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how our analysis can be extended to study more general neighborhood network structures for

social interactions, more general stochastic processes for preference shocks, the addition of global

interactions, that is, interactions at the population level, and the effects of stock variables which

carry habit effects.

7.1 General Neighborhood Network Structures

Throughout the paper, we studied symmetric neighborhood structures. This is generalized easily.

Consider an arbitrary neighborhood network structure (not necessarily translation invariant),

N : A → 2A. Suppose also that a generic agent a’s preferences are represented by the utility

function ua defined as

ua
(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t

)
:= −αa,1 (xat−1 − xat )2 − αa,2 (θat − xat )2 −

∑

b∈N(a)

αa,b (xbt − xat )2

Notice that we allow for the preferences of any two agents a and b to be arbitrarily different

in their parametrization, provided either αa,1 > 0 or αa,2 > 0 and
∑

b∈N(a) αa,b < ∞ so that

peer effects are bounded. Under this specification, best-responses are well defined, interior, and

well-behaved. An MPE exists and the policy function of an arbitrary agent a ∈ A at equilibrium

has the following form

gaT−(t−1) (xt−1, θt) =
∑

b∈A
ca,bT−(t−1) x

b
t +

∑

b∈A
da,bT−(t−1) θ

b
t + eaT−(t−1) θ̄

where, as before, all coefficients are non-negative and
∑

b∈A

(
ca,bt + da,bt

)
+eat = 1. For uniqueness

of equilibrium, it is sufficient that the relative composition of the peer effects within the deter-

minants of individual choice be uniformly bounded, i.e., that there exists a positive constant K

such that for each individual a ∈ A
∑

b∈N(a) αa,b

αa,1 + αa,2 +
∑

b∈N(a) αa,b
< K.

Under this condition,56 best responses induce a contraction operator and we obtain a unique

equilibrium for any finite-horizon economy.

Ergodicity (relative to a given MPE) and welfare results extend straightforwardly, as do

identification results. Notably, our positive identification result for non-stationary economies,

Proposition 5, also extends: since preference parameters of any agent a are stationary, in a finite-

horizon economy, correlations of equilibrium actions between agents vary only due to interactions

for preference processes that satisfy a Conditional Covariance Stationarity restriction.

56A related condition is referred to, in the literature, as the Moderate Social Influence condition; see e.g. Glaeser

and Scheinkman (2003) and Horst and Scheinkman (2006).
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7.2 General Stochastic Processes for Preference Shocks

The agents in our model make their decisions based on past behavior and current shocks. Our

analysis however extends straightforwardly to economies where shocks are persistent across time

as long as the economy is one of complete information.57 We give here, as an illustration, an

example of Markov dependence, where at any given period the probability of next period shocks

depends on current realizations.

Consider any T -period economy with T ≤ ∞. Recall from Section 2 that preference shocks

θt := (θat )a∈A are defined on the canonical probability space (Θ,F ,P), where Θ := {(θa)a∈A :

θa ∈ Θ}. Let Q : Θ×F → R+ be a transition function such that

(i) for any period t and any θ ∈ Θ, Q(θ,A) = Pr{θt+1 ∈ A | θt = θ}, for all A ∈ F .

(ii) for each A ∈ F , Q(·, A) is F-measurable.

Any agent a ∈ A solves the problem in (1) with persistent shocks where the expectation operator

acts on the distribution induced by Q and other agents’ strategies. We can write the problem

recursively. The policy function of an arbitrary agent a ∈ A at equilibrium, in this economy, is

gaT−(t−1) (xt−1, θt) =
∑

b∈A
cbT−(t−1) x

a+b
t−1 +

∑

b∈A
da+b
T−(t−1) θ

a
t + eT−(t−1) (θt, a)

for some positive coefficients (cbT−(t−1))b∈A, (dbT−(t−1))b∈A, and some constant eT−(t−1) (θt, a) that

depends only on the current type profile and on the agent’s name, a.

Once again, existence, ergodicity (relative to a given MPE), and welfare results extend

straightforwardly, as well as our identification results.

7.3 Global Interactions

Introducing global determinants of individual behavior into our framework is also relatively

straightforward.58 In particular, consider an economy in which the preferences of each agent

a ∈ A depend also on the average action of the agents in the economy. Let the average action

given a choice profile x be defined as

p(x) := lim
n→∞

1

2n+ 1

n∑

a=−n
xa,

57The mathematical issues arising in dynamic models with incomplete information are both well-known and

outside the scope of the present paper. See Mailath and Samuelson (2006) for an extensive survey.
58With respect to the analysis of MPE with local and global interactions in finite economies (as e.g., in Blume

and Durlauf, 2001, and in Glaeser and Scheinkman, 2003), a few technical subtleties arise in our economy due to

the infinite number of agents. The techniques we use are extensions of the ones we used in a previous paper, Bisin,

Horst, and Özgür (2006). We refer the reader to this paper for details. Some of the needed mathematical analysis

is developed in Föllmer and Horst (2001) and Horst and Scheinkman (2006).
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when the limit exists. Let Xe denote the set of all configurations such that the associated average

action exists:

Xe :=

{
x ∈ X : ∃ p(x) := lim

n→∞

1

2n+ 1

n∑

a=−n
xa

}

The preferences of the agent a ∈ A in period t are described by the instantaneous utility function

u : Xe ×Θ→ R of the conformity class

ua
(
xat−1, x

a
t , {xbt}b∈N(a), θ

a
t , p(xt)

)
:=

−αa,1 (xat−1 − xat )2 − αa,2 (θat − xat )2 − αa,3 (p(xt)− xat )
2 −

∑

b∈N(a)

αa,b (xbt − xat )2

Given x ∈ Xe, the initial configuration of actions, a symmetric stationary MPE of a dynamic

economy with local and global interactions is a map g : X×Θ×X → X and a map F : X → X

such that:

g (xt−1, θt, pt) = arg max
x0
t∈X

E

[
u

(
x0
t−1, x

0
t ,
{
g
(
Rb xt−1, R

b θt, pt

)}
b∈N(0)

, θ0
t , pt

)

+ βVg

(
x0
t ,
{
g
(
Rb xt−1, R

b θt, pt

)}
b 6=0

, θt+1, pt+1

) ∣∣∣ (xt−1, θt)

]

and

pt+1 = F (pt) ,

and

p1 = p(x) and pt = p (xt) almost surely.59

At a symmetric MPE, any agent rationally anticipates that all others play according to the

policy function g and also anticipates the sequence of average actions {p(xt)}t∈N to be determined

recursively via the map F .

For this economy, we can show that the endogenous sequence of average actions {p(xt)}t∈N
exists almost surely if the initial configuration x belongs to Xe, and that it follows a deterministic

recursive relation.60 As a consequence, our main results extend and the policy function of an

arbitrary agent a ∈ A at equilibrium is

ga(xt−1, θt) =
∑

b∈A
cb x

a+b
t−1 +

∑

b∈A
db θ

a+b
t + e θ̄ +B∗(p(x0))

for some positive coefficients (cb)b∈A, (db)b∈A, e, and some constant B∗(p(x0)) that depends only

on the initial average action, p(x0).

59As before, symmetry allows us to define a symmetric MPE with respect to agent 0. For an arbitrary agent

a ∈ A, then, his policy function is ga (xt−1, θt, pt) = g (Ra xt−1, R
a θt, pt), for all (xt−1, θt, pt) ∈ X×Θ×X.

60Linearity is crucial for these results. Only in this case, in fact, can the dynamics of average actions {p(xt)}t∈N
be described recursively. In models with more general local interactions, the average action typically is not a

sufficient statistic for the aggregate behavior of the configuration x; hence a recursive relation typically fails to

hold. In such more general cases, the analysis must be pursued in terms of empirical fields. Interested reader

should consult Föllmer and Horst (2001).
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7.4 Social Accumulation of Habits

In this section, we generalize the class of the economies we have studied to encompass a richer

structure of dynamic dependence of agents’ actions at equilibrium. Consider an economy where

preferences of agent a ∈ A are represented by a utility function

u
(
Sat , x

a
t , {xbt}b∈N(a), θ

a
t

)
:= −α1 (Sat − xat )2 − α2 (θat − xat )2 −

∑

b∈N(a)

αa,b (xbt − xat )2

where Sat represents an accumulated stock variable,

Sat+1 = (1− δ)Sat + xat

For instance, Sat captures what the addiction literature calls a “reinforcement effect” on agent

a’s substance consumption. In this economy the policy function at equilibrium is

gaT−(t−1) (St, θt) =
∑

b∈A
ca,bT−(t−1) S

b
t +

∑

b∈A
da,bT−(t−1) θ

b
t + eaT−(t−1) θ̄

Note that in equilibrium each agent’s choice depends on the stock of his neighbors’ actions,

that is, on their long-term behavioral patterns rather than just their previous period actions.

Also, as the final period approaches, agent a assigns uniformly higher weights to his own stock.

8 Conclusion

Social interactions provide a rationale for several important phenomena at the intersection of

economics and sociology. The theoretical and empirical study of economies with social interac-

tions, however, has been hindered by several obstacles. Theoretically, the analysis of equilibria in

these economies induces generally intractable mathematical problems: equilibria are represented

formally by a fixed point in configuration of actions, typically an infinite dimensional object; and

embedding equilibria in a full dynamic economy adds a second infinite dimensional element to

the analysis. Computationally, these economies are also generally plagued by a curse of dimen-

sionality associated to their large state space. Finally, in applications and empirical work, social

interactions are typically identified, even with population data, only under heroic assumptions.

In this paper we have attempted to show how some of these obstacles to the study of economies

with social interactions can be overcome. Admittedly, we have restricted our analysis to linear

economies, but in this context we have been able i) to obtain several desirable theoretical prop-

erties, like existence, uniqueness, ergodicity; ii) to develop simple recursive methods to rapidly

compute equilibria; and iii) to characterize several general properties of dynamic equilibria. Fur-

thermore, while linearity in principle renders the identification problem in static economies with

social interaction almost insurmountable, we have been able to exploit the properties of dynamic

equilibria in non-stationary economies to produce a positive identification result.

42



In conclusion, we believe that the class of dynamic linear economies with social interactions

we have studied in this paper can be fruitfully and easily employed in applied and empirical work.
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10 Appendix A: The existence proof (Theorem 1)

The proof is constructive and works in three steps, by induction on the length of the continuation

economies.61

Step 1: Existence, uniqueness and the Markov property for T = 1. In this symmetric environment,

it is enough to analyze the optimization problem of a single agent, say of agent 0 ∈ A. We will allow for

arbitrary initial histories so that one can interpret the current step either as a one-period economy or

the last period of a finite-horizon economy. We will show that, agents will use only the information

contained in the previous period choices x0 and current type realizations θ1. Let any t-length history

(xt−1, θt) = (x−(t−1), θ−(t−2), . . . , x−1, θ0, x0, θ1) of previous choices and preference shock realizations be

given. Agent 0 solves

max
x0

1∈X

{
−α1

(
x0

0 − x0
1

)2 − α2

(
θ0

1 − x0
1

)2 − α3

(
x−1

1 − x0
1

)2 − α3

(
x1

1 − x0
1

)2}
(23)

The first order condition

2
[
α1

(
x0

0 − x0
1

)
+ α2

(
θ0

1 − x0
1

)
+ α3

(
x−1

1 − x0
1

)
+ α3

(
x1

1 − x0
1

)]
= 0

implies that

x0
1 = ∆−1

1

(
α1 x

0
0 + α2 θ

0
1 + α3 x

−1
1 + α3 x

1
1

)
(24)

where

∆1 := (α1 + α2 + 2α3) > 0

This choice is feasible (in X) since it is a convex combination of elements of X, a convex set by assumption.

The objective function (23) is strictly concave in x0
1, thus x0

1 in (24) is the unique optimizer. We see from

(24) that showing the existence of a symmetric equilibrium in the continuation given history (xt−1, θt) is

equivalent to finding the fixed point of an operator L1 : B ((X×Θ)t, X)→ B ((X×Θ)t, X) that acts on

the class of bounded measurable functions x1 : (X×Θ)t → X according to

(L1x1)
(
xt−1, θt

)
= ∆−1

1

(
α1 x

0
0 + α2 θ

0
1 + α3 x1

(
R−1 xt−1, R−1 θt

)
+ α3 x1

(
Rxt−1, R θt

))

Clearly, L1 is a self-map. We show next that it is a contraction. Endow B ((X×Θ)t, X) with the sup

norm which makes (B ((X×Θ)t, X) , || · ||∞) a Banach space. Pick x1, x̂1 ∈ B ((X×Θ)t, X). We have

61We laid out the problem in its recursive form for clarity in Section 2. Our method of proof attacks the sequence

problem directly.
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for all
(
xt−1, θt

)

∣∣∣ (L1x1)
(
xt−1, θt

)
− (L1x̂1)

(
xt−1, θt

) ∣∣∣ = ∆−1
1

∣∣∣α1 x
0
0 + α2 θ

0
1

+ α3 x1

(
R−1 xt−1, R−1 θt

)
+ α3 x1

(
Rxt−1, R θt

)

− α1 x
0
0 − α2 θ

0
1

− α3 x̂1

(
R−1xt−1, R−1θt

)
− α3 x̂1

(
Rxt−1, R θt

) ∣∣∣

= ∆−1
1

∣∣∣α3

(
x1

(
R−1 xt−1, R−1 θt

)
− x̂1

(
R−1 xt−1, R−1 θt

))

+ α3

(
x1

(
Rxt−1, R θt

)
− x̂1

(
Rxt−1, R θt

)) ∣∣∣

≤
(
α3

∆1

) ∣∣∣x1

(
R−1 xt−1, R−1 θt

)
− x̂1

(
R−1 xt−1, R−1 θt

) ∣∣∣

+

(
α3

∆1

) ∣∣∣x1

(
Rxt−1, R θt

)
− x̂1

(
Rxt−1, R θt

) ∣∣∣

≤
(

2α3

∆1

)
‖x1 − x̂1‖∞

The coefficient 2α3 ∆−1
1 < 1 since αi > 0, for i = 1, 2, 3. Hence L1 is a contraction on B ((X×Θ)t, X).

Thus, by Banach Fixed Point Theorem (see e.g., Aliprantis and Border (2006), p.95) L1 has a unique fixed

point x∗1 in B ((X×Θ)t, X). Next, we argue that this equilibrium strategy must be Markovian and should

assume the convex combination form as in the statement of Theorem 1.

Lemma 1 (Markov Property and the Convex Combination Form) Unique symmetric equilibrium

strategy x∗1 is Markovian, i.e., it depends solely on last period equilibrium choices and current preference

shock realizations: for any t-length history (xt−1, θt), x∗1(xt−1, θt) = g1(x0, θ1), for some g1 : X×Θ→ X.

Moreover, the Markovian policy function g1 has the convex combination form as in the statement of the

theorem.

Proof: Let

G :=





g : X×Θ→ X s.t. g(x, θ) =
∑
a∈A c

a xa +
∑
a∈A d

a θa + e θ

with

(i) ca, da, e ≥ 0 and e+
∑
a∈A(ca + da) = 1

(ii) ( 1
2 )ca+1 + ( 1

2 )ca−1 ≥ ca,∀a 6= 0

(iii) cb ≤ ca,∀a, b ∈ A with |b| > |a|.
(iv) ca = c−a, ∀a ∈ A

and properties (ii), (iii), and (iv) also holding for the d = (da)a∈A sequence.





(25)

be the class of functions that are convex combinations (i) of one-period before history, current types and

average type, having the (ii) ‘convexity’, (iii) ‘monotonicity’, and (iv) ‘symmetry’ properties. Property (ii)

states that the rate of ‘spatial’ (cross-sectional) convergence of the policy weights is non-increasing in both

directions, from the center. Monotonicity property, (iii), has a very natural interpretation: agent b’s effect

on agent 0’s marginal utility is smaller than agent a’s effect on it, if a is closer to 0 than b is. Finally, (iv)

says that the policy weights are symmetric around 0. Let g ∈ G be such that after any history (xt−1, θt)

x1(xt−1, θt) = g(x0, θ1)
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and let (c, d, e) be the coefficient sequence associated with g. Applying L1 to x1 (hence to g), we get

(L1x1)
(
xt−1, θt

)
= ∆−1

1

(
α1 x

0
0 + α2 θ

0
1 + α3 g

(
R−1x0, R

−1θ1

)
+ α3 g (Rx0, R θ1)

)

= ∆−1
1

(
α1 x

0
0 + α2 θ

0
1 (26)

+ α3

(∑

a∈A
ca xa−1

0 +
∑

a∈A
da θa−1

1 + e θ

)
+ α3

(∑

a∈A
ca xa+1

0 +
∑

a∈A
da θa+1

1 + e θ

))

Reorganizing the terms gives

= ∆−1
1

(
α1 x

0
0 + α2 θ

0
1

+α3

(∑

a∈A
ca+1 xa0 +

∑

a∈A
da+1 θa1 + e θ

)
+ α3

(∑

a∈A
ca−1 xa0 +

∑

a∈A
da−1 θa1 + e θ

))

and rearranging gives

= ∆−1
1

(
x0

0(α1 + α3 c
−1 + α3 c

1

︸ ︷︷ ︸
∆1ĉ0

) + θ0
1(α2 + α3 d

−1 + α3 d
1

︸ ︷︷ ︸
∆1d̂0

) + 2α3 e θ̄

+
∑

a6=0

(α3 c
a−1 + α3 c

a+1

︸ ︷︷ ︸
∆1ĉa

)xa0 +
∑

a6=0

(α3 d
a−1 + α3 d

a+1

︸ ︷︷ ︸
∆1d̂a

θa1

)
(27)

The function after the last equality sign is linear in x0, θ1 and θ̄. So, L1x1 preserves the same linear form.

By definition of the new coefficient sequence (ĉ, d̂, ê) in (27), each element of the sequence is nonnegative

since each element of the original one was so. New coefficients sum up to 1 since convex combination form

of g makes the sum of the coefficients inside the two parentheses on the right hand side of (26) equal to

1. Thus, the total sum of coefficients on the right hand side of (26) is ∆−1
1 (α1 + α2 + 2α3) = 1, which

proves property (i). The final form in (27) is just a regrouping of elements in (26). Let (ĉa)a∈A be the new

coefficient sequence associated with L1xT as defined in equation (27). Pick a 6= 0 in A,

ĉa+1 + ĉa−1 ≥
(
α3

∆1

)(
ca + ca+2

)
+

(
α3

∆1

)(
ca−2 + ca

)

≥
(
α3

∆1

)(
2ca+1 + 2ca−1

)

= 2

(
α3

∆1

)(
ca+1 + ca−1

)

= 2ĉa

By definition of ĉ in (27), first inequality is strict if |a| = 1, is an equality otherwise; second inequality is

by property (ii) on c; last equality is once again by definition of ĉ in (27). Therefore, for any a 6= 0 in A,

ĉa+1 + ĉa−1 ≥ 2ĉa, which is property (ii). Pick any a, b ∈ A with |a| < |b|.
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ĉa =

(
α3

∆1

)
ca−1 +

(
α3

∆1

)
ca+1

=

(
α3

∆1

)
c|a|−1 +

(
α3

∆1

)
c|a|+1

≥
(
α3

∆1

)
c|b|−1 +

(
α3

∆1

)
c|b|+1

=

(
α3

∆1

)
cb−1 +

(
α3

∆1

)
cb+1

= ĉb

First equality is from (27); second by property (iv) of G in (25); the inequality is property (iii) of G in (25);

next equality is due to property (iv) of G again; and finally the last equality is by (27). Hence, property

(iii) in (25) holds for the new sequence. We next show that ĉ satisfies (iv) in (25).

ĉa =

(
α3

∆1

)
ca−1 +

(
α3

∆1

)
ca+1

=

(
α3

∆1

)
c−a−1 +

(
α3

∆1

)
c−a+1

= ĉ−a

where first equality is by (27); the second is due to (iv) of G in (25); finally the last is again by (27).

Thus, the restriction of L1 to the space of bounded measurable functions that agree with an element of

G after any history (call it BG), maps elements of this latter into itself. Moreover, endowed with the sup

norm, BG is a closed subset of B ((X×Θ)t, X) since it is defined by equality and inequality constraints,

hence a complete metric space in its own right. Since L1 is a contraction on this latter as we just showed,

it is so on BG too and the unique fixed point x∗1 in B ((X×Θ)t, X) must lie in BG. Since the choice

of t was arbitrary, the unique symmetric equilibrium in a one-period (continuation) economy, after any

length history must be Markovian and should assume the convex combination form stated in the theorem

(x∗1(xt−1, θt) = g1(x0, θ1) ). This concludes the proof of Lemma 1. �

This proves Step 1, namely that the statement of the Theorem is true for 1-period continuation economies.

Next, we prove that this result generalizes to any finite-horizon economy.

Step 2: Induction, T-1 implies T. Let a T -period finite-horizon economy be given, with T ≥ 2. Assume

that the statement of Theorem 1 is true up to T −1-period. The T -period economy can be separated into a

first period and a T−1-period continuation economy. Then, by hypothesis, there exists a unique symmetric

MPE, g : X×Θ×{1, · · · , T − 1} 7→ X, for the T − 1-period continuation economy. Agent 0 believes that

all other agents, including his own reincarnations, will use that unique symmetric equilibrium map from

period 2 on. Given any t-length history (xt−1, θt), agent 0 solves

max
x0

1∈X

{
− α1

(
x0

0 − x0
1

)2 − α2

(
θ0

1 − x0
1

)2 − α3

(
x−1

1 − x0
1

)2 − α3

(
x1

1 − x0
1

)2
(28)

+E

[
T∑

τ=2

βτ−1
(
−α1

(
x0
τ−1 − x0

τ

)2 − α2

(
θ0
τ − x0

τ

)2 − α3

(
x−1
τ − x0

τ

)2 − α3

(
x1
τ − x0

τ

)2)
∣∣∣∣∣
(
xt−1, θt

)
] }
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The hypothesis that agents’ optimal future choices are given by the policy function g can be used to

characterize the forms of the optimal choices on the equilibrium path as composite linear functions as in

the following Lemma62.

Lemma 2 (Convexity and Monotonicity) Given a T -period economy, equilibrium choices satisfy the

following properties:

(i) For any period t ≥ 2, agent a’s period t equilibrium choice, xat , can be written as a non-negative

weighted some of the first period choices and the realized paths of the type shocks and their expected

value, i.e., 63

xat =
∑

b1∈A
· · ·

∑

bt−1∈A
cb1T−(t−1) · · · c

bt−1

T−1 x
a+b1+···+bt−1

1 (29)

+

t−1∑

s=1

∑

b1∈A
· · ·

∑

bs−1∈A
cb1T−(t−1) · · · c

bs−1

T−(t−(s−1))

(∑

bs∈A
dbsT−(t−s)θ

a+b1+···+bs
t−(s−1) + eT−(t−s) θ

)

(ii) The impact on agent 0’s period t equilibrium choice of agent a’s first period choice is decreasing with

respect to the social distance of agent a to agent 0, i.e., for any a, b ∈ A, any t ≥ 2,

|a| ≤ |b| =⇒ ∂x0
t

∂xa1
≤ ∂x0

t

∂xb1

(iii) Agent a’s first period choice’s average impact on agents −1 and 1’s period t equilibrium choices is

greater than his impact on agent 0’s, i.e.,

∂

∂xa1

(
2x0

t − x1
t − x−1

t

)
≤ 0

(iv) The impact of agent 0’s own first period choice on his future choices declines geometrically across

periods, i.e.,
∂

∂x0
1

x0
t ≤

(
α1

α1 + α2

)
∂

∂x0
1

x0
t−1

Thanks to the linearity of the optimal future choices as shown in Lemma 2, agent 0’s problem is

differentiable with respect to x0
1 and the unconstrained (x0

1 ∈ R) first order condition for (28) is

0 = α1

(
x0

0 − x0
1

)
+ α2

(
θ0

1 − x0
1

)
+ α3

(
x−1

1 − x0
1

)
+ α3

(
x1

1 − x0
1

)

+ E

[
T∑

τ=2

βτ−1

(
−α1

(
x0
τ−1 − x0

τ

) ∂

∂x0
1

(
x0
τ−1 − x0

τ

)
+ α2

(
θ0
τ − x0

τ

) ∂

∂x0
1

x0
τ (30)

− α3

(
x−1
τ − x0

τ

) ∂

∂x0
t

(
x−1
τ − x0

τ

)
− α3

(
x1
τ − x0

τ

) ∂

∂x0
1

(
x1
τ − x0

τ

))
∣∣∣∣∣
(
xt−1, θt

)
]

62Unless otherwise stated, the proofs of the Lemmas are relegated to Appendix D: The Technical Appendix in

order to make the reading uninterrupted.
63We use in expression (29) the convention that in the sum after the plus sign, for s = 1, the summand becomes∑
bs∈A d

bs
T−(t−s)θ

a+b1+···+bs
t−(s−1) + eT−(t−s) θ.
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Agent 0’s problem is strictly concave in his choice x0
1 since the second partial of the objective function in

(28) with respect to x0
1, −∆T by definition, is negative, or

∆T := α1 + α2 + 2α3

+

T∑

τ=2

βτ−t

(
α1

(
∂

∂x0
1

(
x0
τ−1 − x0

τ

))2

+ α2

(
∂

∂x0
1

x0
τ

)2

(31)

+α3

(
∂

∂x0
1

(
x−1
τ − x0

τ

))2

+ α3

(
∂

∂x0
1

(
x1
τ − x0

τ

))2
)
> 0

Consequently, the FOC characterizes the unique maximizer of the unconstrained problem (x0
1 ∈ R). The

following Lemma shows that equation (30) has a much simpler representation.

Lemma 3 (Interiority) Equation (30) can be written in the following alternative form

0 = −x0
1 ∆T + α1 x

0
0 + α2 θ

0
1 +

∑

a 6=0

γaT x
a
1 + µT θ̄ (32)

where ∆T := α1 + α2 +
∑
a 6=0 γ

a
T + µT . Moreover, the coefficients α1, α2, (γaT )a6=0, and µT are all non-

negative.

By isolating the choice x0
1 on the left hand side, we have

x0
1 = ∆−1

T


α1 x

0
0 + α2 θ

0
1 +

∑

a 6=0

γaT x
a
1 + µT θ̄


 (33)

which means that the maximizer of the unconstrained problem is a convex combination of x0
0, θ

0
1, (xa1)a 6=0

and θ̄. Each of these are elements of X, a convex set. Hence, the maximizer of the unconstrained problem is

in the feasible set of the constrained problem. Consequently, it is the unique maximizer of (28). The form in

(33) implies that showing the existence of a symmetric equilibrium policy for the first period of a T -period

economy is equivalent to finding the fixed point of an operator LT : B ((X×Θ)t, X)→ B ((X×Θ)t, X)

that acts on the class of bounded measurable functions x1 : (X×Θ)t → X according to

(LT x1)
(
xt−1, θt

)
= ∆−1

T


α1 x

0
0 + α2 θ

0
1 +

∑

a6=0

γaT x1

(
Ra xt−1, Ra θt

)
+ µT θ̄




Clearly LT is a self-map. Using straightforward modifications of the arguments in the proof of Step 1,

we can show for x1, x̂1 ∈ B ((X×Θ)t, X) that

∣∣∣ (LT x1)
(
xt−1, θt

)
− (LT x̂1)

(
xt−1, θt

) ∣∣∣ ≤
∑

a6=0

(
γaT
∆T

)
‖x1 − x̂1‖∞

The coefficient
∑
a 6=0

(
γaT
∆T

)
< 1 since αi > 0, i = 1, 2, 3. Thus, LT is a contraction on the Banach

space of bounded measurable functions (B((X×Θ)t, X), || · ||∞), consequently has a unique fixed point

x∗1. Once again, straightforward modifications of the arguments in Lemma 1 yield that perfect equilibria

are necessarily Markovian thus we can focus attention on Markovian strategies. As in the proof of Lemma

63



1, it suffices to show that LT (BG) ⊂ BG. To that effect, let x1 ∈ BG be such that there exists a g ∈ G such

that after any history (xt−1, θt), x1(xt−1, θt) = g(x0, θ1); let (c, d, e) be the coefficient sequence associated

with g. Applying LT to x1, we get

(LT x1)
(
xt−1, θt

)
= ∆−1

T


α1 x

0
0 + α2 θ

0
1 +

∑

a6=0

γaT g (Ra x0, R
a θ1) + µT θ̄




= ∆−1
T

(
α1 x

0
0 + α2 θ

0
1

+
∑

a6=0

γaT

(∑

a1∈A
ca1 xa+a1

0 +
∑

a2∈A
da2 θa+a2

t + e θ̄

)
+ µT θ̄

)
(34)

= ∆−1
T

(
[α1 +

∑

a6=0

γaT c
−a

︸ ︷︷ ︸
∆T ĉ0

]x0
0 + [α2 +

∑

a1 6=0

γaT d
−a

︸ ︷︷ ︸
∆T d̂0

] θ0
1

+
∑

b6=0

{
[
∑

a6=0

γaT c
b−a

︸ ︷︷ ︸
∆T ĉb

]xb0 + [
∑

a6=0

γaT d
b−a

︸ ︷︷ ︸
∆T d̂b

] θb1

}
+ [µT + e

∑

a6=0

γaT

︸ ︷︷ ︸
∆T ê

] θ̄

)
(35)

The function in (35) is linear in x0, θ1 and θ̄. So, LT x1 is linear. By definition of the new coefficient

sequence (ĉ, d̂, ê) in (35), each element of the new sequence is nonnegative since each element of the original

one was so and the new elements are positive weighted sums of the original ones. The sum of the coefficients

inside the parentheses on the right hand side of (34) is 1 since g1 has the convex combination form.

Consequently, the total sum of coefficients on the right hand side of (34) is ∆−1
T (α1+α2+

∑
a 6=0 γ

a
T+µT ) = 1,

which proves property (i). The final form in (35) is just a regrouping of elements in (34). The proof of the

properties (ii), (iii), and (iv) follows straightforward modifications of the arguments in Lemma 1. Thus,

the unique fixed point x∗1 should lie in the set BG with an associated equilibrium Markovian policy function

g∗∗T .

Therefore, when the symmetric continuation equilibrium policies are Markovian, i.e., g : X × Θ ×
{1, · · · , T − 1} 7→ X, after any history (xt−1, θt), the unique symmetric equilibrium policy in the first

period, g∗∗T is Markovian too. Since the choice of t was arbitrary, this must be true for any length

history. Now, construct the policy function g∗ as g∗T (x0, θ1) = g∗∗T (x0, θ1) for any initial (x0, θ1); and

g∗T−(t−1)(xt−1, θt) = gT−(t−1)(xt−1, θt), for all t ∈ {2, · · · , T} and all (xt−1, θt). But then, the function g∗

is by construction the unique MPE of the T -period economy. This completes the induction step for any

given T ≥ 2. Therefore, the claim in Theorem 1 is true for any finite horizon economy.

Step 3: Convergence and stationarity. This step proves that the sequence of finite horizon symmetric

Markovian equilibria tends to a stationary symmetric Markov Perfect equilibrium. To do that, we treat

finite-horizon economies as finite truncations of the infinite-horizon economy. Let G∞ :=
∏∞
t=1G be

the infinite-horizon Markovian strategy set. For a fixed discount factor β ∈ (0, 1), let Lβ := {βT ∈
[0, 1]∞ | βT,t = βt−1, for 1 ≤ t ≤ T, and βT,t = 0, for t > T, where T ∈ {1, 2, . . .} ∪ {∞}} be the space of

exponentially declining sequences (at the rate β) that are equal to zero after the T -th element. Endow Lβ

with the sup norm.
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Lemma 4 (Compactness) Lβ and G endowed with the supnorm are compact metric spaces.

Given g ∈ G∞, let xa(g) be agent a’s strategy induced by g, i.e., xa(g)(xt−1, θt) = gt(R
axt−1, R

aθt), for

all a ∈ A and all (xt−1, θt). Define the objective function U for agent 0 in the class of truncated economies

as U : G∞ × Lβ ×G∞ as

U(g0 ; βT , g) := E

[ ∞∑

t=1

βT,t u
(
x0
t−1(g0), x0

t (g
0), {xbt(g)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

where u represents the conformity preferences and N(0) = {−1, 1} as in Assumption 1. Let the feasibility

correspondence Γ : Lβ × G∞ → G∞ be defined for T < ∞ as Γ(βT , g) = {g0 ∈ G∞ | g0
t (x, θ) = θ̄, ∀t >

T, ∀(x, θ) ∈ X×Θ}, and for T =∞ as Γ(β∞, g) = G∞. It is easy to see, thanks to the monotonicity of Γ

in T (through βT ) and the compactness of G that Γ is a compact-valued and continuous correspondence.

Moreover, as the next Lemma shows, the parameterized objective function U is continuous in g0, the choice

variable.

Lemma 5 (Continuity) For any given (βT , g) ∈ Lβ × G∞, U(·; βT , g) is continuous on Γ(βT , g) with

respect to the product topology.

For every T -period symmetric Markovian equilibrium policy sequence g∗T , define g∗∗T ∈ G∞ as

∀t,∀(x, θ) ∈ X×Θ, g∗∗Tt (x, θ) :=

{
g∗TT−(t−1)(x, θ), if t ≤ T
θ̄, if t > T

G∞ endowed with the product topology is compact since each G endowed with the supnorm is compact

from Lemma 4. Since product topology is metrizable, say with metric d, (G∞, d) is a compact metric

space hence the sequence (g∗∗T )T has a convergent subsequence (g∗∗Tn)Tn in G∞ that converges say to

g∗ ∈ G∞.64 Let M : Lβ × G∞ → G∞ be the correspondence of maximizers of U given the value of the

parameters. Also, let E : Lβ → G∞ be the symmetric equilibrium correspondence for the sequence of finite

economies. Since g∗Tn is a symmetric Markovian equilibrium for any Tn, for all gTn ∈ G∞ we have

U(g∗Tn ; βTn , g
∗
Tn) = E

[ ∞∑

t=1

βTn,tu
(
x0
t−1(g∗Tn), x0

t (g
∗Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

= E

[
Tn+1∑

t=1

βt−1u
(
x0
t−1(g∗Tn), x0

t (g
∗Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

≥ E

[
Tn+1∑

t=1

βt−1u
(
x0
t−1(gTn), x0

t (g
Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

= E

[ ∞∑

t=1

βTn,tu
(
x0
t−1(gTn), x0

t (g
Tn), {xbt(g∗Tn)}b∈N(0), θ

0
t

) ∣∣∣ (x0, θ1)

]

= U(gTn ; βTn , g
∗
Tn)

Thus, g∗Tn ∈M(βTn , g
∗
Tn

) for all Tn. Since U is continuous in the choice dimension due to Lemma 5 and that

the feasibility correspondence Γ is continuous, by the Maximum Theorem (see Berge (1963), p. 115), the

64See the proof of Lemma 5 in Appendix D for a metrization product topology.
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correspondence of maximizers, M , is upper hemi-continuous. This implies that if (βTn , g
∗
Tn

) → (β∞, g
∗),

then g∗ ∈ M(β∞, g
∗) hence g∗ is a symmetric MPE of the infinite-horizon economy. The immediate

implication of this is that the equilibrium correspondence E is upper hemi-continuous too. Since, each finite-

horizon T -period economy has a unique symmetric MPE, E is single-valued hence continuous for T <∞.

Define F(βT ) := E(βT ), for T < ∞ and let F(β∞) = g∗. With this construction, F is continuous on the

space Lβ , which is compact under the supnorm by Lemma 4. This makes F uniformly continuous. So, for

a given ε > 0, we can pick δ > 0 small enough so that ||βT − βT ′ ||∞ < δ implies d (F(βT ),F(βT ′)) <
ε
2 .

We know from the previous approximation that for βT → β∞ there is a subsequence g∗Tn → g∗. Since

(βT )T is convergent, it is Cauchy. So, choose T (δ) large enough such that ∀T, T ′ ≥ T (δ), ||βT − βT ′ || < δ

and ∀Tn ≥ T (δ), ||g∗Tn − g∗||∞ < ε
2 . Pick an element, Tn, of the subsequence and any other element, T ′,

such that Tn, T
′ ≥ T (δ). We have

d
(
g∗T

′
, g∗
)

= d (F(βT ′),F(β∞))

≤ d (F(βT ′),F(βTn)) + d (F(βTn),F(β∞))

<
ε

2
+ d

(
g∗Tn , g∗

)

< ε

The first inequality is the triangle inequality; the second is due to the uniform continuity of F and the third

is by the fact that g∗Tn → g∗ uniformly. This proves that the whole sequence g∗T → g∗ uniformly. The

implication of this latter is that, as the finite-horizon economies approach the infinite-horizon economy,

every two consecutive period, we make choices approximately with respect to the same MPE policy, hence

g∗ is stationary. This concludes Step 3 which in turn establishes the proof of the statement of Theorem

1. �

11 Appendix B: Proof of Inefficiency (Theorem 5)

We give the proof for economies with complete information. Once again, the extension of the line of proof

to the incomplete information economies is straightforward.

Finite-Horizon

Take any finite horizon economy (T <∞). We will use continuity arguments so endow the underlying space

X×Θ with the product topology. Product topology is metrizable, say by metric d65. In the final period

of this finite horizon economy, with absolutely continuous distribution πT−1 on the space of choice profiles

xT−1
66 with a positive density, the planner maximizes ex-ante (before the realization of θT ) the expected

65Let | · | be the usual Euclidean norm. For any (x, θ), (x′, θ′) ∈ X×Θ, let

d
(
(x, θ) ,

(
x′, θ′

))
:=
∑
a∈A

2−a
(
|xa − x′a|+ |θa − θ′a|

)
Since X = Θ = [x, x̄] is a compact interval, this is a well-defined metric that metrizes the product topology on

X×Θ. See also Aliprantis and Border (2006, p. 90)
66Stating with an initial π0 which is absolutely continuous, the MPE policy function and the absolutely continuous

66



utility of a given agent, say of agent 0 ∈ A, by choosing a symmetric policy function h ∈ CB(X×Θ, X),

the space of bounded, continuous, and X-valued measurable functions. 67

max
{h∈CB(X×Θ,X)}

∫
u
(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
P (dθT )πT−1 (dxT−1)

The space X×Θ is compact with respect to the product topology since X and Θ are compact. Since the

utility function is continuous and strictly concave in all arguments, the maximizer exists and it is unique.

The necessary condition for optimality is summarized in the following lemma.

Lemma 6 The first order necessary condition for optimality requires that, for any (xT−1, θT ) ∈ X×Θ68

0 = α1

(
x0
T−1 − h(xT−1, θT )

)
+ α2

(
θ0
T − h(xT−1, θT )

)

+ α3

(
h(R−1 xT−1, R

−1 θT )− h(xT−1, θT )
)

+ α3 (h(RxT−1, R θT )− h(xT−1, θT ))

− α3 (h(xT−1, θT )− h(RxT−1, R θT ))

− α3

(
h(xT−1, θT )− h(R−1 xT−1, R

−1 θT )
)

This implies that

h(xT−1, θT ) [α1 + α2 + 4α3] = α1x
0
T−1 + α2θ

0
T−1 + 2α3 h(R−1 xT−1, R

−1 θT ) + 2α3 h(RxT−1, R θT ) (36)

Following the proof of existence, note that the operator induced by equation (36) is a contraction on the

Banach space of bounded, continuous, measurable functions with the supnorm, whose unique fixed point

turns out to be in G, the space of linear policy maps that have the convex combination form, defined in

(25). Therefore, one can fit the following solution

h(xT−1, θT ) =
∑

a

caP x
a
T−1 +

∑

a

daP θ
a
T

substituting, we get

∑

a

caP x
a
T−1 +

∑

a

daP θ
a
T = (α1 + α2 + 4α3)

−1

[
α1 x

0
T−1 + α2 θ

0
T

+ 2α3

(∑

a

caP x
a−1
T−1 +

∑

a

daP θ
a−1
T

)

+ 2α3

(∑

a

caP x
a+1
T−1 +

∑

a

daP θ
a+1
T

)]

By matching coefficients, we get

caP = (α1 + α2 + 4α3)
−1

[
2α3 c

a−1
P + 2α3 c

a+1
P + α11{a=0}

]
, ∀a ∈ A

preference shocks will induce a sequence (πt) of absolutely continuous distributions on t-period equilibrium choice

profiles.
67Since the planner’s choice rule is symmetric, the choice of agent 0 rather than another agent is inconsequential.
68The proof is in Appendix D.
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and

daP = (α1 + α2 + 4α3)
−1

[
2α3 d

a−1
P + 2α3 d

a+1
P + α21{a=0}

]
, ∀a ∈ A

One can solve for the coefficient sequence in closed form by mimicking the same proof that we provided

to characterize the equilibrium policy function weights in Theorem 3. Thus, one gets for any a ∈ A,

caP = r
|a|
P

(
α1

α1 + α2

)(
1− rP
1 + rP

)
and daP = r

|a|
P

(
α2

α1 + α2

)(
1− rP
1 + rP

)
(37)

where

rP =

(
∆P

2α3

)
−

√(
∆P

2α3

)2

− 1 and ∆P = α1 + α2 + 4α3

We next compare the equilibrium policy sequence in Theorem 3 with the planner’s optimal choice coefficient

sequence. Notice that

(
∆P

2α3

)
=
α1 + α2 + 4α3

2α3
= 2 +

α1 + α2

2α3
< 2 +

α1 + α2

α3
=

(
∆1

α3

)

which implies from (51) that rP > r1. Thus, the planner’s optimal policy coefficient sequence converges to

zero slower than the equilibrium policy coefficient sequence. This also means that the equilibrium policy

cannot satisfy the FOC of the planner’s problem. Therefore, the equilibrium is inefficient for finite-horizon

economies.

Infinite-Horizon

The argument here is very similar to the one in the finite horizon case. We know from Theorem 1 that the

equilibrium whose existence we are assured has the following structure

g(xT−1, θT ) =
∑

a

ca xaT−1 +
∑

a

da θaT + e θ̄

We argue that this solution cannot satisfy the planner’s problem’s optimality condition. For a given

function h ∈ G (see (25)), define H : X×Θ→ X as

H(xT−1, θT ) := (h (Ra xT−1, R
a θT ))a∈A (38)

Let V h be the continuation value of using the function h in the future, defined recursively as

V h (xT−1, θT ) = u
(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)

+β

∫
V h (H (xT−1, θT ) , θT+1) P (dθT+1) (39)

where u represents the conformity preferences in Assumption 1. Since the policy h ∈ G is linear and the

utility function is continuously differentiable and strictly concave with respect to all arguments, elementary

dynamic programming techniques (see for e.g. Stokey and Lucas (1989)) guarantee that for the given choice

rule h ∈ G, the value function V h exists, it is bounded, continuous, strictly concave and continuously

differentiable. We will also denote by V ha the partial derivative of V h with respect to agent a’s initial

choice. Given an initial absolutely continuous distribution πT−1 on the space of previous period’s choice
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profiles with a positive density, the planner maximizes ex-ante (before the realization of θT ) the expected

discounted utility of a given agent, say of agent 0 ∈ A. So, the planner’s problem is

max
{h∈G}

∫ [
u
(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)

+ β

∫
V h (H (xT−1, θT ) , θT+1)

]
P (dθT )P (dθT+1)πT−1 (dxT−1)

As in the finite case, he solution to this problem exists and it is unique thanks to the compactness (with

respect to the product topology) of the underlying space X ×Θ and the continuity and strict concavity

of the utility and value functions. A straightforward modification of the first order condition argument in

the finite case yields, for any (xT−1, θT ) ∈ X×Θ

0 = u2(x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T )

+ u3(x1
T−1, h(RxT−1, R θT ), h(xT−1, θT ), h(R2 xT−1, R

2 θT ), θ1
T )

+ u4(x−1
T−1, h(R−1 xT−1, R

−1 θT ), h(R−2 xT−1, R
−2 θT ), h(xT−1, θT ), θ−1

T )

+ β
∑

a

∫
V ha
(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1)

But if the equilibrium policy is h, the FOC yields

0 =

∫
u2(x0

T−1, h(xT−1, θT ), h(R−1 xT−1, R
−1 θT ), h(RxT−1, R θT ), θ0

T )

+ β

∫
V ha (H (xT−1, θT ) , θT+1)P (dθT+1)

For the same solution to satisfy both FOCs, it has to be the case that for any (xT−1, θT ) ∈ X ×Θ, the

difference of the two FOCs is zero, i.e.

0 = u3(x1
T−1, h(RxT−1, R θT ), h(xT−1, θT ), h(R2 xT−1, R

2 θT ), θ1
T )

+ u4(x−1
T−1, h(R−1 xT−1, R

−1 θT ), h(R−2 xT−1, R
−2 θT ), h(xT−1, θT ), θ−1

T )

+ β
∑

a 6=0

∫
V ha
(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1)

For the quadratic specification, this entails

0 = 2α3 (h (xT−1, θT )− h (RxT−1, R θT )) + 2α3

(
h(xT−1, θT )− h(R−1 xT−1, R

−1 θT )
)

+ β
∑

a6=0

∫
V ha
(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1)

Substituting the equilibrium policy function g and recollecting terms

2α3

[∑

a

ca
(
2xaT−1 − xa−1

T−1 − x
a+1
T−1

)
+
∑

a

da
(
2θaT−1 − θa−1

T−1 − θ
a+1
T−1

)
]

+β
∑

a 6=0

∫
V ha
(
H
(
R−a xT−1, R

−a θT
)
, θT+1

)
P (dθT+1) = 0 (40)

We next show in the following lemma that there exists a positive measure subset of the underlying space

on which the above expression assumes non-zero values.
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Lemma 7 Let
(
x̂, θ̂
)
∈ X×Θ be the point where x̂a = x̄ and θ̂a = x̄, for all a ∈ A69. Then the expression

in (40) is negative on a positive measure subset E ⊂ X×Θ, that includes
(
x̂, θ̂
)

.

The statement of Lemma 7 leads to a contradiction since it means that the planner’s optimal rule and the

equilibrium policy function g does not agree on E. Therefore, g is inefficient. This concludes the proof.

�

12 Appendix C: Proof of Ergodicity (Theorem 4)

Suppose that the process
(
(θat )∞t=−∞

)
a∈A is i.i.d. with respect to a and t according to ν. Let π be the

initial measure on the configuration space X which is the distribution of

x0 =

(
e θ

1− C
+

∞∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

1−s

))

a∈A

(41)

Given that (xt ∈ X)∞t=0 is an equilibrium process generated by the stationary MPE g∗ in Theorem 1, given

x0, one obtains on the equilibrium path

xa1 =
∑

b1∈A
cb1 xa+b1

0 +
∑

b1∈A
db1 θa+b1

1 + e θ

=
∑

b1∈A
cb1

(
e θ

1− C
+

∞∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

1−s

))

+
∑

b1∈A
db1 θa+b1

1 + e θ

=

∞∑

s=1

∑

b1

· · ·
∑

bs+1

cb1 · · · cbs
(
dbs+1 θ

a+b1+···+bs+1

1−s

)
+
∑

b1∈A
db1 θa+b1

1

+C
e θ

1− C
+ e θ

=
e θ

1− C
+

∞∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

2−s

)

which has exactly the same form as in (41). Hence, xa0 and xa1 are distributed identically when the initial

measure is π. Since the choice of a was arbitrary, π is a stationary distribution of the Markov process

(xt)
∞
t=0. Moreover, from Lemma 2 for a stationary policy function, on any arbitrary path (θ1, θ2, . . .) of

69Recall from Assumption 1 that x̄ is the upper boundary of the feasible action and type sets X and Θ
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the stochastic process

xat =
∑

b1

· · ·
∑

bt

cb1 · · · cbt xa+b1+···+bt
0

+

t∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

t−(s−1) + e θ
)

= Ct
∑

b1

· · ·
∑

bt

(
cb1 · · · cbt

Ct

)
xa+b1+···+bt

0

+

t∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

t+1−s + e θ
)

(42)

Thus, independent of the initial conditions, xat converges pointwise to xa ∈ X, i.e.,

xa := lim
t→∞

xat = lim
t→∞

[
Ct
∑

b1

· · ·
∑

bt

(
cb1 · · · cbt

Ct

)
xa+b1+···+bt

0

+

t∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

t+1−s + e θ
) ]

(43)

The first term of the previous expression Ct → 0 since C < 1 due to αi > 0, for all i. The first term in the

parentheses in the summand is a convex combination of uniformly bounded terms. Hence, the first part of

the above expression goes to 0 as t → ∞. Moreover, since the equilibrium is symmetric, the convergence

is uniform across agents: xt → x = (xa) uniformly. Since the exogenous shock process is i.i.d, the part

after the plus sign in (43) is identical to the distribution of

t∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

1−s + e θ
)

which is the ‘t-translated-into-the-past’ version of the former. Thus, for any given initial value x0, and a

path (. . . , θ−1, θ0), the pointwise limit of xat can be written as

xa =
e θ

1− C
+

∞∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

1−s

)
(44)

For the rest of the proof, let P∞(·) :=
∏∞
t=0 P(·) and θ := (. . . , θ−1, θ0, ). We next show that, for any

arbitrary initial distribution π0, the sequence of equilibrium distributions πt generated by the exogenous

law P and the stationary MPE policy g∗ converges weakly to the invariant distribution π. To that effect,

pick any f ∈ C(X,R), the set of bounded, continuous, and measurable, real-valued functions from X into
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R. Let π0 be an arbitrary initial distribution for x0. We have

lim
t→∞

∫
f(xt)πt (dxt) = lim

t→∞

∫
f

((
Ct
∑

b1

· · ·
∑

bt

(
cb1 · · · cbt

Ct

)
xa+b1+···+bt

0

t∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

1−s + e θ
))

a∈A


P∞(dθ)π0(dx0)

=

∫
f



(

e θ

1− C
+

∞∑

s=1

∑

b1

· · ·
∑

bs

cb1 · · · cbs−1

(
dbs θa+b1+···+bs

1−s

))

a∈A


P∞(dθ)π0(dx0)

=

∫
f (x)π (dx) (45)

The first equality is from (42); the second is due to Lebesgue Dominated Converge theorem; third is due

to the continuity of f and the pointwise limit of xt in (44). Thus, for any f ∈ C(X,R), limt→∞
∫
fdπt =∫

fdπ, meaning that the sequence πt converges weakly to π, the invariant distribution of the equilibrium

process. The choice of π0 was arbitrary. Hence, for any initial distribution, the process induced converges

weakly to the same invariant distribution π. Therefore, π is the unique invariant distribution of the

equilibrium process. Here is why: Suppose that π̂ is another invariant distribution. This implies that the

induced process starting with π0 = π̂ should satisfy πt = π̂, for all t = 1, 2, . . .. From the above convergence

argument πt → π weakly. Hence π̂ = π.

Finally, to show ergodicity, pick an f ∈ B(X,R), the set of bounded, measurable, real-valued functions

from X into R. The process starting with π is stationary, hence πt = π for all t = 0, 1, . . .. Since the

process xt is stationary, so is the process (f (xt)). We can then use Birkhoff’s Ergodic Theorem (see e.g.

Aliprantis and Border (2006), p. 659) on the process (f (xt)) to obtain

lim
T→∞

1

T

T∑

t=1

f(xt) =

∫
f(xt)π(dxt)

almost surely. Since the choice of f was arbitrary, the last expression holds for all f ∈ B(X,R). Thus the

equilibrium process (xt ∈ X)∞t=0 starting from initial distribution π is ergodic. This concludes the proof of

Theorem 4. �
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13 Appendix D: Technical Appendix

Proof of Lemma 2 :(i) This part is simply by iterated application of the policy maps, i.e.,

xat = gT−(t−1)(R
a xt−1, R

a θt)

=
∑

b1∈A
cb1T−(t−1) x

a+b1
t−1 +

∑

b1∈A
db1T−(t−1) θ

a+b1
t + eT−(t−1) θ

=
∑

b1∈A
cb1T−(t−1) gT−t(R

a+b1 xt−2, R
a+b1 θt−1)︸ ︷︷ ︸

x
a+b1
t−1

+
∑

b1∈A
db1T−(t−1) θ

a+b1
t + eT−(t−1) θ

=
∑

b1∈A
cb1T−(t−1)

(∑

b2∈A
cb2T−(t−2) x

a+b1+b2
t−2 +

∑

b2∈A
db2T−(t−2) θ

a+b1+b2
t−1 + eT−(t−2) θ

)

+
∑

b1∈A
db1T−(t−1) θ

a+b1
t + eT−(t−1) θ

...

=
∑

b1∈A
· · ·

∑

bt−1∈A
cb1T−(t−1) · · · c

bt−1

T−1 x
a+b1+···+bt−1

1

+

t−1∑

s=1

∑

b1∈A
· · ·

∑

bs−1∈A
cb1T−(t−1) · · · c

bs−1

T−(t−s)+1

(∑

bs∈A
d
bτ+1

T−(t−s)θ
a+b1+···+bτ
t−(s−1) + eT−(t−s) θ

)

(ii) For t = 2, ∂
∂xa1

x0
2 = ca1 ≥ cb1 = ∂

∂xb1
x0

2 by (25) (iii). Suppose the claim is true for t ≤ k and let t = k+ 1.

Assume w.l.o.g that a < b. Let s := max{s ∈ A : s ≤ a+b
2 } and s̄ : min = {s ∈ A : s ≥ a+b

2 }. This implies

that ∂
∂xa1

xsk − ∂
∂xb1

xsk ≥ 0 (≤ 0) for s ≤ s (s ≥ s). Due to the assumed symmetry,
[
∂
∂xa1

x
s−s
k − ∂

∂xb1
x
s−s
k

]
=

[
∂

∂x
a−s+s
1

x0
k − ∂

∂x
b−s+s
1

x0
k

]
and

[
∂

∂xa−s̄−s1

x0
k − ∂

∂xb−s̄−s1

x0
k

]
=
[
∂
∂xa1

xs̄k − ∂
∂xb1

xs̄k

]
. This implies that for any

s > 0
[

∂

∂x
a−s+τ
1

x0
k −

∂

∂x
b−s+τ
1

x0
k

]
= −

[
∂

∂xa−s̄−τ1

x0
k −

∂

∂xb−s̄−τ1

x0
k

]

Thus, we can use this to separate A into {s ∈ A : s ≤ s} {s ∈ A : s ≥ s̄} and rearrange the sum

∂

∂xa1
x0
t −

∂

∂xb1
x0
t =

∑

s∈A
csT−k

[
∂

∂xa1
xsk −

∂

∂xb1
xsk

]

=
∑

s∈A
csT−k

[
∂

∂xa−s1

x0
k −

∂

∂xb−s1

x0
k

]

=
∑

τ≥0

(
c
s−s
T−k − c

s̄+s
T−k

)[ ∂ x0
k

∂x
a−s+s
1

− ∂ x0
k

∂x
b−s+s
1

]

≥ 0

The term in the brackets is nonnegative by hypothesis. Since a < b, s ≥ 0 which implies that c
s
T−k ≥ cs̄T−k.

But this implies that c
s−s
T−k ≥ cs̄+sT−k for any s ≥ 0 which means that the argument in the parenthesis is

nonnegative too. So, the claim is true. The analysis for the case a > b is a straightforward modification of

the same argument.
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(iii) Using the t-th period equilibrium policy

∂

∂xa1

(
2x0

t − x1
t − x−1

t

)
=

∂

∂xa1

[
2
∑

b∈A
cbT−(t−1) x

b
t−1 +

∑

b∈A
dbT−(t−1) θ

b
t + eT−(t−1) θ

−
∑

b∈A
cb−1
T−(t−1) x

b
t−1 +

∑

b∈A
db−1
T−(t−1) θ

b
t + eT−(t−1) θ

−
∑

b∈A
cb+1
T−(t−1) x

b
t−1 +

∑

b∈A
db+1
T−(t−1) θ

b
t + eT−(t−1) θ

]

=
∑

b∈A

(
2cbT−(t−1) − c

b−1
T−(t−1) − c

b+1
T−(t−1)

) ∂

∂xa1
xbt−1 ≤ 0 (46)

The weights in the last parenthesis are negative by property (ii) in (25). By iteratively applying the policy

functions from period t backwards, at each iteration the weights on one-period before choices would all be

positive and one preserves the convex combination form. This process ends after t − 1 iteration, the end

result being a convex combination of (xb1)b∈A, θt and θ̄. Thus, the weight on xa1 is positive, which makes

the last term in the last line positive. Therefore the claim is true.

(iv) Let t ≥ 2.

∂

∂x0
1

x0
t =

∑

a∈A
caT−(t−1)

∂xat−1

∂x0
1

=
∑

a∈A
caT−(t−1)

∂x0
t−1

∂xa1

≤
∑

a∈A
caT−(t−1)

∂x0
t−1

∂x0
1

= CT−(t−1)

∂x0
t−1

∂x0
1

First and second equalities and the first inequality are by the definition of the policy mapping and (i) of

Lemma 2; CT−(t−1) is the sum of coefficients on the past history in the period t policy. Since gT−(t−1)

satisfies (32), coefficients should match and we should have

0 = caT−(t−1) ∆T−(t−1) − α1 I{a=0} −
∑

b 6=0

γbT−(t−1) c
a−b
T−(t−1)

summing over a, 0 = CT−(t−1)∆T−(t−1) − α1 −
∑

b 6=0

γbT−(t−1)CT−(t−1)

But ∆T−(t−1) = α1 + α2 +
∑
b 6=0 γ

b
T−(t−1) + µT−(t−1) by definition. So,

CT−(t−1) =
α1

∆T−(t−1) −
∑
b6=0 γ

b
T−(t−1)

=
α1

α1 + α2 + µT−(t−1)
≤ α1

α1 + α2
(47)

Thus,

∂

∂x0
1

x0
t ≤ CT−(t−1)

∂

∂x0
1

x0
t−1

≤
(

α1

α1 + α2

)
∂

∂x0
1

x0
t−1

which proves the claim. �
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Proof of Lemma 3: The coefficient of xa1 in (32), γaT , is the total effect of a change in xa1 (a 6= 0) on the

expected discounted marginal utility of agent 0 (the right hand side of (30)), i.e.,

γaT := α3 I{a∈{−1,1}}

−
T∑

τ=2

βτ−1

(
α1

∂

∂xa1

(
x0
τ−1 − x0

τ

) ∂

∂x0
1

(
x0
τ−1 − x0

τ

)
+ α2

∂

∂xa1
x0
τ

∂

∂x0
1

x0
τ (48)

+α3
∂

∂xa1

(
x−1
τ − x0

τ

) ∂

∂x0
1

(
x−1
τ − x0

τ

)
+ α3

∂

∂xa1

(
x1
τ − x0

τ

) ∂

∂x0
1

(
x1
τ − x0

τ

))

For any τ ≥ 2, the last two term in the summand for each period in equation (48) can be written as

∂

∂x0
1

(
x1
τ − x0

τ

) [
α3

∂

∂xa1

(
x−1
τ − x0

τ

)
+ α3

∂

∂xa1

(
x1
τ − x0

τ

)]

=
∂

∂x0
1

(
x1
τ − x0

τ

) [
α3

∂x0
τ

∂xa+1
1

+ α3
∂x0

τ

∂xa−1
1

− 2α3
∂x0

τ

∂xa1

]

≤ 0 (49)

The equality is due to the symmetry of the policy function across agents; Lemma 2 (ii) and (iii) imply that

the terms in the parentheses are non-positive and the terms in the brackets are non-negative, respectively.

Similarly, the first terms in the summand in (48) can be written as

α1
∂

∂xa1

(
x0
τ − x0

τ−1

) ∂

∂x0
1

(
x0
τ − x0

τ−1

)
+ α2

∂

∂xa1
x0
τ

∂

∂x0
1

x0
τ

≤ α1
∂

∂xa1
x0
τ

∂

∂x0
1

(
x0
τ − x0

τ−1

)
+ α2

∂

∂xa1
x0
τ

∂

∂x0
1

x0
τ

=
∂x0

τ

∂xa1

[
(α1 + α2)

∂

∂x0
1

x0
τ − α1

∂

∂x0
1

x0
τ−1

]

≤ 0

which is nonpositive since for any τ ≥ 2

∂

∂x0
1

x0
τ ≤

α1

(α1 + α2)

∂

∂x0
1

x0
τ−1

due to Lemma 2 (iv). Thus, we established the non-positiveness of each term of the summand for any

period τ ≥ 2 in (48). Since, the latter is basically a finite weighted some of such terms with a negative

sign in front, for any a ∈ A, γaT ≥ 0. Finally we account for the coefficients multiplying θ̄ in equation (30)

and show that

µT =
∂

∂θ̄
E

[
T∑

τ=2

βτ−1

(
−α1

(
x0
τ−1 − x0

τ

) ∂

∂x0
1

(
x0
τ−1 − x0

τ

)
+ α2

(
θ0
τ − x0

τ

) ∂

∂x0
1

x0
τ (50)

−α3

(
x−1
τ − x0

τ

) ∂

∂x0
1

(
x−1
τ − x0

τ

)
− α3

(
x1
τ − x0

τ

) ∂

∂x0
1

(
x1
τ − x0

τ

))
∣∣∣∣∣
(
xt−1, θt

)
]

≥ 0

Expectation washes out all individual θaτ ’s and we have only θ̄ apart from (xa1)a∈A in each period’s ex-

pression in (50). By symmetry of the form in Lemma (2) (i) across agents, the weight on θ̄ in x0
t , is
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equal to the weight on θ̄ in x1
t and on x−1

t . Thus, ∂
∂θ̄
E[
(
x0
t − x1

t

)
] = ∂

∂θ̄
E[
(
x0
t − x−1

t

)
] = 0. This makes

the second line of (50) equal to zero. By Lemma (2)-(i), the weight on θ̄ in E[x0
t ], 1 − Πt

s=2CT−(t−1)

(residual of the sum of the effects of {xb1}) is bigger than that in E[x0
t−1], 1 − Πt−1

s=2CT−(t−1); hence the

term ∂
∂θ̄
E[
(
x0
t−1 − x0

t

)
] ≤ 0. By Lemma (2)-(i), ∂

∂θ̄
E[x0

t ] ≥ 0. By Lemma (2)-(iv), ∂
∂x0

1

(
x0
t − x0

t−1

)
≤ 0.

All these together imply that the expression in (50) is non-negative. Each E[xbτ ] in (30) can be written as

a convex combination of (xa1)a∈A, θ̄, x
0
0, θ

0
1, with the help of Lemma 2-(i). Since at each iteration, convex

combination structure is preserved, it is so at the end too. Then, the sum of coefficients in each of the

differences involving those variables in the parentheses is zero. This in turn implies that the total sum of

coefficients in (30) is zero. Thus, the alternative formulation in (32) is true. This concludes the proof of

Lemma 3. �

Proof of Theorem 3 (Recursive Computation) : Consider a finite-horizon T -period economy with

conformity preferences (αi > 0, i = 1, 2, 3) and complete information. For part (i), we simply assume that

T = 1 and show that one can fit an exponentially declining sequence into equation 24. Since that equation

has a unique solution as argued in the existence proof, that solution must have exponentially declining

coefficients. Matching the coefficients of the policy function using equation 24, one gets for a 6= 0

d a+1
1 =

(
α3

∆1

)
d a+2

1 +

(
α3

∆1

)
d a1

Dividing both sides by da1 and multiplying them by
(

∆1

α3

)
, one gets

(
∆1

α3

)(
da+1
T

da1

)

︸ ︷︷ ︸
r1

=

(
da+2

1

da+1
1

)

︸ ︷︷ ︸
r1

(
da+1

1

da1

)

︸ ︷︷ ︸
r1

+1

which induces a quadratic equation

r2
1 −

(
∆1

α3

)
r1 + 1 = 0

whose determinant
(

∆1

α3

)2

− 4 > 0 since ∆1 = α1 +α2 + 2α3 > 2α3 (remember that αi > 0 for i = 1, 2, 3).

The equation has two positive roots, one bigger and one smaller than 1. The bigger root cannot work since

it is explosive as |a| → ∞. We pick the smaller root

0 < r1 =

(
∆1

2α3

)
−

√(
∆1

2α3

)2

− 1 < 1 (51)

which is decreasing in
(

∆1

2α3

)
spanning the interval (0, 1) for different values of the former in the interval

(1,∞). Finally, the sum of coefficients can be written

∑

a∈A
da1 =

∑

a∈A
d0

1 r
|a|
1

= d0
1 + 2 d0

1

r1

1− r1

=
α2

α1 + α2
(52)

76



The first equality is due to the exponentiality of the sequence; the third uses the same argument as in (47)

with µ1 = 0, for the coefficient sequence (da1)a∈A. Solving for d0
1 from above, we obtain

d0
1 =

(
α2

α1 + α2

)(
1− r1

1 + r1

)

and finally thanks to exponentiality

da1 = r
|a|
1

(
α2

α1 + α2

)(
1− r1

1 + r1

)
, for a ∈ A

The argument for the sequence (ca1)a∈A is identical with one change: The sum of coefficients
∑
a c

a
1 =(

α1

α1+α2

)
. This proves part (i) of the theorem.

For part (ii), observe that the parameters of the maps Ls, namely ∆s, (γ
a
s ) , µs are functions only of

the continuation policy coefficients (c∗τ , d
∗
τ , e
∗
τ )s−1
τ=1 as defined in (31), (48), and (50), simply because these

are “forward-looking” expressions. We saw in the induction step (Step 2) of the existence proof that Ls

defined in this fashion becomes a contraction and has a unique fixed point, which is the coefficient sequence

of the first-period policy of an s-period continuation. This establishes part (ii).

For part (iii), observe that each g ∈ G is associated with coefficients ((ca, da)a, e). Clearly, for any

sequence of policies in G, gn → g in sup norm if and only if the associated coefficients ((can, d
a
n)a, en) →

((ca, da)a, e) in sup norm. In Step 3 of the existence proof, we establish the convergence of the finite-

horizon equilibrium policies to the stationary infinite-horizon MPE policy as the horizon expands. But

this implies that the associated unique coefficient sequence also should converge, then, to the coefficient

sequence of the infinite-horizon stationary MPE policy. This establishes part (iii) of Theorem 3. �

Proof of Proposition 1 (Tail Convergence Monotonicity) : The proof is by induction on T . For

T = 1, we know from Theorem 3 (i) that the policy coefficient sequence (da1)a∈A is exponentially declining

on both sides of the origin, at the rate r1. From the form of the policy function in Theorem1, the conditional

covariance between agents 0 and a+ 1, with a ≥ 0 w.l.o.g., given x0 is

Cov
(
x0

1, x
a+1
1

∣∣∣x0

)
= Cov

(∑

b1∈A
db11 θb11 ,

∑

b2∈A
db21 θa+1+b2

1

)

=
∑

b1∈A
db11 Cov

(
θb11 ,

∑

b2∈A
db21 θa+1+b2

1

)

= V ar(θ)
∑

b1∈A
db11 d

b1−(a+1)
1 (53)

We will focus on the summation term in the last expression in (53). Write it as
∑

b1∈A
db11 d

b1−(a+1)
1 =

∑

b1<0

db11 d
b1−(a+1)
1 + d0

1 d
−a−1
1 +

∑

b1>0

db11 d
b1−(a+1)
1

=
∑

b1<0

db11 d
b1−(a+1)
1 + d0

1 d
−a−1
1 +

∑

b1≥0

db1+1
1 d

b1−(a)
1

=
∑

b1<0

db11

(
r1 d

b1−a
1

)
+ (d0

1)2(r1)a+1 +
∑

b1≥0

(
r1 d

b1
1

)
db1−a1

= r1

∑

b1∈A
db11 db1−a1 + (d0

1)2(r1)a+1

= r1 V ar(θ)
−1Cov

(
x0

1, x
a
1

∣∣∣x0

)
+ (d 0

1 )2 ra+1
1
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The first equality is a partitioning, the second a simple change of variable, and the third is due to the

symmetry and the exponentiality of the da1 sequence. Substituting the final expression back in (53) yields,

for all a ≥ 0

Cov
(
x0

1, x
a+1
1

∣∣∣x0

)
= r1 Cov

(
x0

1, x
a
1

∣∣∣x0

)
+ ra+1

1 V ar(θ) (d 0
1 )2 (54)

which implies that the rate of decay of the covariances is greater than r1, for any a ≥ 0. Since the second

term on the right hand side of (54) decays at the rate r1, this implies that the ratio

ra+1
1 V ar(θ) (d 0

1 )2

Cov
(
x0

1, x
a
1

∣∣∣x0

) (55)

decreases monotonically, and being non-negative, it converges. Actually it converges to zero. Here is why.

Since the ratio is less than 1, suppose that it converges to k ∈ (0, 1). This means from (54) that the limit

rate of decay of the covariances is r1 + k, greater than the rate for the term in the numerator in (55).

Thus, the ratio in (55) should converge to zero at the limit, a contradiction to k ∈ (0, 1). So, the limit of

(55) is zero, which in turn implies from (54), after dividing both sides by Cov
(
x0

1, x
a
1

∣∣∣x0

)
, that

lim
a→∞

Cov
(
x0

1, x
a+1
1

∣∣∣x0

)

Cov
(
x0

1, x
a
1

∣∣∣x0

) = r1 (56)

The argument is symmetric for a ≤ 0; hence the sequence
{
Cov

(
x0

1, x
a
1

∣∣∣x0

)}
a∈A

declines exponentially

on both tails at the same rate r1 and the statement is true for T = 1.

Now assume that the statement in Proposition 1 is true for economies up to T − 1 period. We will

show that it should also hold for T -period economies. We will base the main induction arguments on the

following Lemma.

Lemma 8 The sequence
{
γbT
}
b∈A in Lemma 3 and the equilibrium coefficient sequence (cT , dT ) for the

first-period policy of a T -period economy have the following properties: The rate at which they decline at

the tail satisfies, for T ≥ 2

lim
a→∞

(
γa+1
T

γaT

)
= lim
a→−∞

(
γa−1
T

γaT

)
= rT−1,

and

lim
a→∞

(
d a+1
T

d aT

)
= lim
a→−∞

(
d a−1
T

d aT

)
= rT > rT−1.

Proof of Lemma 8 : Let u(t) := u
(
x0
t−1, x

0
t , {xbt}b∈{−1,1}, θ

0
t

)
where u represents the conformity prefer-

ences in Assumption 1. Let u0(t) := ∂
∂x0

1
u(t). From equation (48), γaT can be written as

γaT := α3 I{a∈{−1,1}} (57)

+

T∑

τ=2

βτ−1

[(
∂x0

τ−1

∂xa1

)
∂

∂x0
τ−1

u0(τ) +

(
∂x0

τ

∂xa1

)
∂

∂x0
τ

u0(τ) +

(
∂x−1

τ

∂xa1

)
∂

∂x−1
τ

u0(τ) +

(
∂x1

τ

∂xa1

)
∂

∂x1
τ

u0(τ)

]
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We will focus on the second term inside the summand since the method of proof will apply to the remaining

terms straightforwardly. Assume w.l.o.g. that a ≥ 0.

(
∂x0

τ

∂xa1

)
∂

∂x0
τ

u0(τ) =
∑

s∈A

(
∂xs2
∂xa1

)(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u0(τ)

=
∑

s∈A
ca−s2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u0(τ)

and the corresponding term for γa+1
T is

∑

s∈A
ca+1−s
2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u0(τ)

as a→∞ the tail convergence rate for the continuation kicks in and

lim
a→∞

∑

s∈A
ca+1−s
2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u(τ) = lim
a→∞

∑

s∈A
rT−1 c

a−s
2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u(τ)

= rT−1 lim
a→∞

∑

s∈A
ca−s2

(
∂x0

τ

∂xs2

)
∂

∂x0
τ

u(τ)

thus

lim
a→∞

(
∂x0

τ

∂xa+1
t

)
∂

∂x0
τ

u(τ) = rT−1 lim
a→∞

(
∂x0

τ

∂xb1

)
∂

∂x0
τ

u(τ)

Hence at the tail, the second term of the sum inside the brackets of 57 decays at the rate rT−1. The same

one-step transition argument applies to each terms of the sum, in equation (57). Moreover, since (57) is a

discounted sum, the entire expression is summable and it implies that

lim
a→∞

(
γa+1
T

γaT

)
= rT−1

inheriting the rate of tail convergence of the continuation economy, as is argued in the Lemma. The

method of proof for a ≤ 0 is identical thanks to the symmetry of the environment.

For the second part of the Lemma, let D(rT−1) be the space of sequences that satisfies the properties

in (25) and that converges at the tail at a rate rT ≥ rT−1. This is a closed subset of the space of

sequences that satisfy only the properties in (25), hence a complete metric space itself. Consequently,

the unique coefficient sequence dT that is the fixed point of the map in (33) should lie in D(rT−1). Let

D′(rT−1) ⊂ D(rT−1) be the space of sequences in D(rT−1) whose convergence at the tail is strictly greater

than rT−1. We will show below that the map in (33) maps elements of D(rT−1) into the set D′(rT−1),

which will imply that the unique solution of the map (33) converges at a rate rT > rT−1 at the tail.

Pick agent 2a + 1 and assume w.l.o.g. that a ≥ 0. Let dT ∈ D′(rT−1). From (33) by matching
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coefficients

d̂ 2a+1
T = ∆−1

T


∑

b 6=0

γbT d
2a+1−b
T




= ∆−1
T


∑

b>a

γbT d
2a+1−b
T + γaT d

a+1
T +

∑

b<a,b6=0

γbT d
2a+1−b
T




= ∆−1
T


∑

b≥a

γb+1
T d 2a−b

T + γaT d
a+1
T +

∑

b<a,b6=0

γbT d
2a+1−b
T




= ∆−1
T


∑

b≥a

γbT d
2a−b
T

(
γb+1
T

γbT

)
+ γaT d

a+1
T +

∑

b<a,b6=0

γbT d
2a−b
T

(
d2a+1−b
T

d2a−b
T

)
 (58)

The second equality is a partioning of the sum taking agent a as the ‘middle’; the first sum after the third

equality is a simple shift and change of the dummy variable b; the first term after the first equality sign is

by multiplying and dividing each term in the summand by γbT ; finally the last term after the fourth equality

sign is by multiplying and dividing each term in the summand by d2a−b
T . Since all elements involved are

non-zero, the algebraic manipulation above is feasible. We can add to and substract from equation (58)

the term ∆−1
T

∑
b<a,b6=0 γ

b
T d

2a−b
T rT−1 and rearrange the order of the terms to obtain

d̂ 2a+1
T = ∆−1

T




∑

b≥a

γbT d
2a−b
T

(
γb+1
T

γbT

)
+

∑

b<a,b6=0

γbT d
2a−b
T rT−1

︸ ︷︷ ︸
A

+ γaT d
a+1
T︸ ︷︷ ︸
B

+
∑

b<a,b6=0

γbT d
2a−b
T

{(
d2a+1−b
T

d2a−b
T

)
− rT−1

}

︸ ︷︷ ︸
C




(59)

The analagous expression for d̂2a
T is given, after a similar partitioning with agent a as the middle agent, by

d̂ 2a
T = ∆−1

T


∑

b 6=0

γbT d
2a−b
T




= ∆−1
T




∑

b≥a

γbT d
2a−1−b
T

(
γb+1
T

γbT

)
+

∑

b<a,b6=0

γbT d
2a−1−b
T rT−1

︸ ︷︷ ︸
A′

+ γaT d
a
T︸ ︷︷ ︸

B′

+
∑

b<a,b6=0

γbT d
2a−1−b
T

{(
d2a−b
T

d2a−1−b
T

)
− rT−1

}

︸ ︷︷ ︸
C′




(60)
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We showed above in the first part of the proof of Lemma 8 that as b → ∞, the ratio
(
γb+1
T /γbT

)
→ rT−1.

Consequently, the following limits hold

lim
a→∞

∆−1
T A = rT−1 lim

a→∞
d̂ 2a
T (61)

lim
a→∞

∆−1
T A′ = rT−1 lim

a→∞
d̂ 2a−1
T (62)

lim
a→∞

∆−1
T C = (rT − rT−1) lim

a→∞
d̂ 2a
T (63)

lim
a→∞

∆−1
T C ′ = (rT − rT−1) lim

a→∞
d̂ 2a−1
T (64)

The expressions in (61) and (63) put together imply that as a gets large the ratio

(
d̂ 2a+1
T

d̂ 2a
T

)
≈ rT +

γaT d
a+1
T

d̂ 2a
T

≥ rT (65)

and the expressions in (62) and (64) put together imply that

(
d̂ 2a
T

d̂ 2a−1
T

)
≈ rT +

γaT d
a
T

d̂ 2a−1
T

≥ rT (66)

The last two expressions imply that the ratios
γaT d

a+1
T

d̂ 2a
T

and
γaT d

a
T

d̂ 2a−1
T

converge. This is because as a gets

arbitrarily large, the numerator converges at the rate rT−1 rT and the denominator at a rate greater

than equal to r2
T . Since both ratios are strictly less than one, one of the following two possibilities must

hold: either (i) they converge to a positive constant less than one (the case where rT = rT−1) or (ii)

they converge to zero (the case where rT > rT−1). The first case is not possible. Suppose it is. Then,

rT = rT−1. This implies from (59) along with (61) and (63) that

rT = lim
a→∞

(
d̂ 2a+1
T

d̂ 2a
T

)
= rT + lim

a→∞

(
γaT d

a+1
T

d̂ 2a
T

)
> rT (67)

a contradiction. Therefore the second case (ii) must be true. The argument for a ≤ 0 is symmetric. This

means that any sequence dT ∈ D(rT−1) is mapped to a sequence d̂T ∈ D′(rT−1), meaning that it converges

at the rate rT > rT−1 at the tail. So our claim in the beginning is true and the unique sequence dT that

satisfies properties in (25) and the equation (33) converges at the tail at a rate rT > rT−1. This concludes

the proof of Lemma 8. �

Rest of the ‘Proof of Proposition 1’ Now assume that the statement in Proposition 1 is true for

economies up to T − 1 period. We will show that it should also hold for T -period economies. Consider
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first the covariance between agents 0 and 2a+ 1, with a ≥ 0 w.l.o.g.

Cov
(
x0

1, x
2a+1
1

∣∣∣x0

)
= V ar(θ)

∑

b∈A
db1 d

b−(2a+1)
1

= V ar(θ)


∑

b≤a

dbT d
b−(2a+1)
T + da+1

T d−aT +
∑

b≥a+2

dbT d
b−(2a+1)
T




= V ar(θ)


∑

b≤a

dbT d
b−(2a+1)
T + da+1

T d−aT +
∑

b≥a+1

db+1
T d

b+1−(2a+1)
T




= V ar(θ)


∑

b≤a

dbT d
b−(2a)
T

(
d
b−(2a+1)
T

d
b−(2a)
T

)
+
∑

b≥a+1

dbT d
b−(2a)
T

(
db+1
T

dbT

)
+ da+1

T d−aT




where the algebraic manipulation is the same as in the proof of Lemma 8. The analogous expression for

agent 2a, taking agent a as the agent in the middle, is

Cov
(
x0

1, x
2a
1

∣∣∣x0

)
= V ar(θ)


∑

b≤a

dbT d
b−(2a−1)
T

(
db−2a
T

d
b−(2a−1)
T

)
+
∑

b≥a+1

dbT d
b−(2a−1)
T

(
db+1
T

dbT

)
+ daT d

−a
T




We know from Lemma 8 that as a → ∞, the ratio (da+1
T /daT ) → rT > rT−1. This implies, from the

expressions above for the covariance terms, that for large a,

Cov
(
x0

1, x
2a+1
1

∣∣∣x0

)

Cov
(
x0

1, x
2a
1

∣∣∣x0

) ≈ rT +
da+1
T d−aT

Cov
(
x0

1, x
2a
1

∣∣∣x0

) ≥ rT > rT−1 (68)

and

Cov
(
x0

1, x
2a
1

∣∣∣x0

)

Cov
(
x0

1, x
2a−1
1

∣∣∣x0

) ≈ rT +
daT d

−a
T

Cov
(
x0

1, x
2a−1
1

∣∣∣x0

) ≥ rT > rT−1 (69)

and straightforward modifications of the argument used in the proof of Lemma 8 implies that the ratios

da+1
T d−aT Cov

(
x0

1, x
2a
1

∣∣∣x0

)−1

and daT d
−a
T Cov

(
x0

1, x
2a−1
1

∣∣∣x0

)−1

both converge to zero and one obtains

lim
a→∞

Cov
(
x0

1, x
2a+1
1

∣∣∣x0

)

Cov
(
x0

1, x
2a
1

∣∣∣x0

) = rT > rT−1 (70)

lim
a→∞

Cov
(
x0

1, x
2a
1

∣∣∣x0

)

Cov
(
x0

1, x
2a−1
1

∣∣∣x0

) = rT > rT−1 (71)

thus the statement of Proposition 1 is true for any finite T -period economy. Clearly, rT ≤ 1 for any T ≥ 1

since the non-negative d sequences sum up to less than 1. Hence, what we have is a monotone increasing

sequence bounded from above by 1. Hence, the limit r∞ = limT→∞ rT exists and is less than or equal

to 1. Moreover, we know from Theorem 3 that the sequence of finite-horizon MPE coefficients converges
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to that of the infinite-horizon MPE coefficient sequence d, thus r∞ is the tail convergence rate of the

infinite-horizon MPE coefficient sequence d. Therefore r∞ < 1 since otherwise that would contradict the

summability of the sequence d. This establishes the proof of Proposition 1. �

Proof of Proposition 2 We showed in the proof of Proposition 1 that, for T = 1, the ratio
(
ρa+1,T

ρa,T

)

is necessarily monotonically decreasing in a for any underlying preference parameter vector α, converging

eventually, at the tail, to the rate r1 given in Theorem 3 (i). As we showed in Section 4.2, the cross-

sectional covariances at the stationary distribution can be written recursively given the weights of the

policy function. For the myopic policy function, they take the form

Cov
(
x0, xa

)
=

∑

a1∈A

∑

b1∈A
ca1
1 cb11 Cov

(
xa1 , xa+b1

)
+ V ar(θ)

∑

a1∈A
da1

1 da1−a
1 , (72)

Since the c1 and d1 sequences are exponential at the rate r1 from Theorem 3 (i), by straightforward

modifications of the arguments in the first part of the proof of Proposition 1, one can show that the ratio

of consecutive covariances for the myopic,
(
Cov(x0,xa+1)
Cov(x0,xa)

)
converges monotonically for a ≥ 0 as gets large.

As we presented in Figure 11, however, the above ratio for the stationary policy function is non-

monotonic for a set of parameter values. Moreover, the map in (5) that generates the policy weights as

fixed points is continuous in the parameters (α1, α2, α3) of the utility function. Thus, for each element

of the above set of parameters for which the ratio of consecutive stationary covariances converges non-

monotonically, there is an open-neighborhood around it such that for each element α̂ of the neighborhood,

the same non-monotonicity property obtains. This concludes the proof. �

Proof of Lemma 4 (Compactness of Lβ and G) Let (βTn)n be a sequence lying in Lβ that converges

to x = (xt) ∈ [0, 1]∞. This implies that βTn,t → xt, for all t ≥ 1, which in turn means that xt ∈ {0, βt}
by the construction of Lβ . Moreover, if xt = 0 for some t, xt+τ = 0 for all τ ≥ 1 since the terms βTn are

geometric (finite or infinite) sequences. There are two possibilities: either x = (1, β, . . . , βT , 0, 0, . . .) or

x = βt for all t ≥ 1. Both lie in Lβ which means that the limit of any convergent sequence in Lβ lies in Lβ .

This establishes that Lβ is closed. Given any ε > 0, choose N ≥ 1, a natural number, s.t. βN < ε. It is

easy to see that any element in Lβ lies in the ε-neighborhood (with respect to the sup metric) of one of the

elements in the finite set {β1, β2, . . . , βN} ⊂ Lβ . This establishes that Lβ is totally bounded. Therefore,

Lβ is compact. We next show that G endowed with the sup norm is compact.

Let H :=
{
x = (xa)a∈A | xa ≤

(
1
2a

)
, for all a ∈ A

}
. Defined by inequality constraints, this set is

closed under the sup norm. We will show that it is also totally bounded. For a given ε > 0, one can find

an N ≥ 1 s.t. 1
2N < ε. Pick a sequence x̄ ∈ H. For any a ∈ A s.t. |a| ≥ N , [0, (2N)−1] ⊂ B∞(xa, ε), the

ε-ball around xa with respect to the sup norm. For |a| ≤ N , let Y (a) :=
{

0, ε, 2ε, . . . , kaε, (2a)−1
}

, where

ka is the greatest integer s.t. kaε ≤ (2a)−1. The set



x ∈ H | x

a = x̄a, for |a| ≥ N, and (x−(N−1), . . . , x0, . . . , xN−1) ∈
∏

|a|≤N

Y (a), for |a| ≤ N





is a finite set of elements of H. Moreover, it is dense in H by construction. This establishes that H is

totally bounded. Thus, H is compact under the sup norm.

Each g ∈ G is associated with coefficients ((ca, da)a, e). Clearly, for any sequence of policies in G,

gn → g in sup norm if and only if the associated coefficients ((can, d
a
n)a, en) → ((ca, da)a, e) in sup norm.

83



We know from (25) that c satisfies properties (i), (ii) and (iii). Thus, for any a ∈ A, c0 > c1 > . . . > c|a|,

ca = c−a and
∑
|b|≤|a| c

b < 1. Combining all these, we have 2|a|ca <
∑
|b|≤|a| c

b < 1 which in turn implies

that ca < 1
2|a| , for all a ∈ A. Same bounds hold for the d sequence. But then, the space of associated

coefficient sequences, call it LG, can be seen as a closed subset of H, a compact metric. Consequently,

LG is compact, thus sequentially compact. Pick a sequence (gn) ∈ G and let (cn, dn, en) be the asso-

ciated coefficient sequence lying in LG. Since LG is sequentially compact, there exists a subsequence

(cmn , dmn , emn) → (c, d, e) ∈ LG. The latter, being an admissible coefficient sequence, is associated with

the policy g(x, θ) :=
∑
a c

axa+
∑
a d

aθa+eθ̄. Thus, the respective policy subsequence gmn → g ∈ G. This

establishes that G is sequentially compact hence compact. This concludes Lemma 4. �

Proof of Lemma 5 (Continuity): Since G endowed with the sup norm is a compact metric space due

to Lemma 4, the metric d(g, g′) :=
∑∞
t=1 2−t||gt − g′t||∞ induces the product topology on G∞ (see e.g.,

Aliprantis and Border (2006, p. 90)), where || · ||∞ is the supnorm as before. Let (βT , g) ∈ Lβ ×G∞ and

ε > 0 be given. Set ε′ := ( 1−β
1−βT+1 ) ε. The period utility u is uniformly continuous since X is compact.

Thus, one can choose a δ′ > 0 such that for any t, |x0
t − y0

t | < δ′ implies

∣∣u
(
x0
t−1, x

0
t , {xbt(g)}b∈N(0), θ

0
t

)
− u

(
y0
t−1, y

0
t , {xbt(g)}b∈N(0), θ

0
t

)∣∣ < ε′.

Set δ = 2−T δ′. Pick g0, g′0 ∈ Γ(βT , g) such that d(g0, g′0) < δ. This implies that for all t ≤ T , ||g0
t −

g′0t ||∞ < 2T δ = δ′ hence |x0
t (g

0)−x0
t (g
′0)| < δ. Uniform continuity of u then implies that the period utility

levels are uniformly bounded above by ε′ for all periods t ≤ T . The claim therefore follows from

|U(g0 ; βT , g)− U(g′0 ; βT , g)| <
1− βT+1

1− β
ε′ = ε

�

Proof of Lemma 6 (Planner’s First Order Condition): The proof uses an extension of the usual

calculus of variation technique to our symmetric strategic environment. We prove it for the class of

bounded, continuous, and measurable, real-valued functions on X×Θ. Then, we use the restriction of the

result to a subset of it, the space of bounded, continuous, and measurable, X-valued functions. Suppose

that the function h provides the maximum for the planner’s problem. For any other admissible function

h′, define k = h′ − h. Consider now the expected utility from a one-parameter deviation from the optimal

policy h, i.e.,

J(a) :=

∫
u
(
x0
T−1, (h+ ak)(xT−1, θT ), (h+ ak)(R−1 xT−1, R

−1 θT ), (73)

(h+ ak)(RxT−1, R θT ), θ0
T

)
P (dθT )πT−1 (dxT−1) (74)

where a is an arbitrary real number and u represents the conformity preferences in Assumption 1.. Since

h maximizes the planner’s problem, the function J must assume its maximum at a = 0. Leibnitz’s rule

for differentiation under an integral along with the chain rule for differentiation gives us

J ′(a) :=

∫ (
u2 k + u3 k ◦R−1 + u4 k ◦R

)
dP dπT−1
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where ui is the partial derivative of u with respect to the i-th argument. For J to assume its maximum at

a = 0, it must satisfy

J ′(0) :=

∫ [
u2

(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
k(xT−1, θT )

+ u3

(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
k(R−1xT−1, R

−1θT )

+ u4

(
x0
T−1, h(xT−1, θT ), h(R−1 xT−1, R

−1 θT ), h(RxT−1, R θT ), θ0
T

)
k(RxT−1, RθT )

]

×P (dθT )πT−1 (dxT−1) = 0 (75)

for any arbitrary admissible deviation k. Suppose that the statement of the lemma is not true. This

implies that there is an element (x̄, θ̄) ∈ X×Θ such that

0 6= u2

(
x̄0, h(x̄, θ̄), h(R−1 x̄, R−1 θ̄), h(R x̄,R θ̄), θ̄0

)

+ u3

(
x̄1, h(R x̄,R θ̄), h(x̄, θ̄), h(R2 x̄, R2 θ̄), θ̄1

)

+ u4

(
x̄−1, h(R−1 x̄, R−1 θ̄), h(R−2 x̄, R−2 θ̄), h(x̄, θ̄), θ̄−1

)
(76)

Assume w.l.o.g. that the above expression takes a positive value (the proof for the case with a negative

value is identical). Since the utility function, its partials, and the deviation functions are all continuous

with respect to the product topology, and that the measures π and P have positive densities, there exists

a (π × P)-positive measure neigborhood A ⊂ X ×Θ around (x̄, θ̄) such that the above expression stays

positive for all (xT−1, θT ) ∈ A.70 Assume that a1 = (x̄, θ̄), a2 = (R x̄,R θ̄), and a3 = (R−1 x̄, R−1 θ̄) are

distinct points. Otherwise, since the underlying space X is a real interval and the maps R and R−1 are

right and left shift maps, one can always pick a point in A that has that property.

Now choose ε > 0 small enough so that the ε-balls Bε (a1), Bε (a2), and Bε (a3) are disjoint. R and

R−1 being both continuous are homeomorphisms. So, one can find ε > δ1 > 0 and ε > δ2 > 0 such that

R (Bδ1 (a1)) ⊂ Bε (a2) and R−1 (Bδ2 (a1)) ⊂ Bε (a3). Let δ = min{δ1, δ2} and A1 := Bδ (a1). We next

define a particular deviation k. Let the function k be defined as

k(x, θ) = k(Rx,R θ) = k(R−1 x,R−1 θ) =

{
γ [δ − d((x, θ), a1)] , if (x, θ) ∈ A1

0, otherwise.
(77)

where γ > 0 is a scalable constant. This is possible because A1, R(A1) and R−1(A1) are disjoint sets.

Constructed this way, k is a bounded, continuous, and measurable function71. Substitute k into equation

(75). By construction, the only set on which k is positive is the set A1 which is itself a subset of A, the set of

elements of X×Θ for which the expression (76) is positive. Hence, evaluated with the constructed deviation

function k, J ′(0) > 0, a contradiction to the fact that the policy function h was optimal. Therefore the

statement of the lemma must be true. This concludes the proof. �

70Endowed with the product topology, the space X×Θ is metrizable by the metric d. See footnote 65. Product

topology and the associated metric allows us to choose positive measure proper subsets of X for choices of near-by

agents and the whole sets X and Θ for far-away agents, staying at the same time in the close vicinity of the point

(x̄, θ̄).
71We endow the range space, the real line, with the Borel σ-field hence any continuous function into the real line

is automatically measurable.
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Proof of Lemma 7 Using (39) iteratively, one can write for any (xT , θT+1) ∈ X×Θ

V ha (xT , θT+1) =

∫ T+N∑

t=T+1

βt−T−1

[
2α1

(
x0
t − x0

t−1

) ∂

∂xaT

(
x0
t−1 − x0

t

)
+ 2α2

(
θ0
t − x0

t

) ∂

∂xaT
x0
t

+2α3

(
x−1
t − x0

t

) ∂

∂xaT

(
x−1
t − x0

t

)
+ 2α3

(
x1
t − x0

t

) ∂

∂xaT

(
x1
t − x0

t

)

+βN+1 V ha (xt+N , θt+N+1)

]
N∏

i=1

P (dθT+1+i) (78)

where xt is written as, using iterations of the policy function g and Lemma 2 (i) with xT instead of x1

xat =
∑

b1∈A
· · ·

∑

bt−T∈A
cb1 · · · cbt−T xa+b1+···+bt−T

T

+

t−T∑

s=1

∑

b1∈A
· · ·

∑

bs−1∈A
cb1 · · · cbs−1

(∑

bs∈A
dbsθa+b1+···+bs

t−(s−1) + e θ

)
(79)

At the point
(
x̂, θ̂
)

, xaT = x̄ for all a ∈ A. So, the first part after the equality sign in (79) is the same

for all agents. Since the preference shocks are i.i.d., the second part will be the same for all agents in

expectations, which eliminates the terms in the second line after the equality sign in (78). Thanks to

Lemma 2 (i), ∂
∂xaT

x0
t > 0 for any a ∈ A, and for all t = T + 1, . . . , T + N . But then, the second term

in (78) after the first bracket is negative in expectations. This is because using (79) E[x0
t | (xT , θT+1)] =

Ct−T x̄ + (1 − Ct−T ) θ̄ > θ̄, where C =
∑
a c

a. The first term after the bracket sign too is negative in

expectations. Here is why: The term

E[
(
x0
t − x0

t−1

)
| (xT , θT+1)] = Ct−T x̄+ (1− Ct−T ) θ̄ − Ct−1−T x̄− (1− Ct−1−T ) θ̄

= Ct−1−T (1− C)
(
θ̄ − x̄

)
< 0

for any t = T + 1, . . . , T +N . So, one can write

E [ 2α1

(
x0
t − x0

t−1

) ∂

∂xaT

(
x0
t−1 − x0

t

)
| (xT , θT+1)] < E [ 2α1

(
x0
t − x0

t−1

) ∂

∂xaT
x0
t−1 | (xT , θT+1)] < 0

which shows that the summand in (78) is negative in expectations in every period. In turn, the whole

sum, then, until the last line of (78), is negative in expectations for any arbitrary N . The choice of a

was arbitrary and that V ha is continuous on X × Θ for any a ∈ A. The latter is compact with respect

to the product topology. Hence, V ha is bounded. So, one can choose an N large enough to make the

βN+1 V ha (xt+N , θt+N+1) term arbitrarily small. This implies that the whole expression in (78) is negative,

which in turn means that V ha

(
x̂, θ̂
)
< 0 for any a ∈ A.

At the point
(
x̂, θ̂
)

, the first line of (40) is zero and the second line is negative, as we just showed,

which makes the whole expression in (40) negative. Since the first line in (40) is continuous and so are Va

for any a ∈ A, the whole expression in (40) is continuous. Hence, as in the proof of Lemma 6, there exists

a (π × P)-positive measure neigborhood E ⊂ X ×Θ around (x̄, θ̄) such that the above expression stays

negative for all (xT−1, θT ) ∈ E. This concludes the proof. �

86



14 Appendix E: Details about the simulations

We build an artificial economy that consists of a large number of agents ( |A| = 1300, 2500, and 5000,

depending on the treatment) distributed on the one-dimensional integer lattice. At both ends “buffer”

agents that act randomly are added to smooth boundary effects. Depending on the treatment, we start

the economy with the following initial configuration of choices: (i) the highest action for all agents; (ii)

the lowest action for all agents, (iii) the action equal to the mean shock for all agents.

The core engine behind the simulations is a Matlab code, g.m, which computes the equilibrium policy

weights recursively as outlined in Section 3.2 of the paper. The code is posted on Özgür’s webpage,

http://www.sceco.umontreal.ca/onurozgur/, at the Université de Montréal; the code contains also detailed

explanations. The correlation computations use another code, cor.m, also available on Özgür’s webpage.

Both codes use as input parameters values of the preference parameters αi, i = 1, 2, 3, the discount

factor β, the horizon for the economy T , the number of agents |A|, and the longest distance between agents

for which the equilibrium correlation is computed M .

For the limit distributions results, once g.m computes the policy weights, we let the computer draw

(θat )
|A|
a=1 from the interval [−D,D] according to the uniform distribution (this is for simplicity since all

results in the paper are distribution-free).
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