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RÉSUMÉ

Les paradigmes GARCH et Volatilité Stochastique sont souvent opposés comme
deux points de vue concurrents sur ce que serait un concept adéquat de variance
conditionnelle : variance conditionnelle au passé du processus lui-même ou variance
conditionnelle à une information passée plus large (incluant éventuellement des variables
d'état non observables). La thèse principale de cet article est que, puisqu'en général
l'économètre n'a pas d'idée sur ce que pourrait être un niveau structurel de désagrégation,
un modèle de volatilité bien formulé devrait être spécifié de façon à ce que l'on puisse
toujours réduire la filtration d'information sans invalider le modèle. De ce point de vue, le
débat entre modèles à variables d'état observables (dans l'esprit GARCH) ou non
observables (dans l'esprit état-mesure) est non pertinent. On met en exergue dans cet
article un processus à volatilité stochastique autorégressive en racine carré (SR-SARV)
qui reste conforme à la tradition GARCH d'une dynamique ARMA pour le carré des
innovations, mais affaiblit la structure GARCH pour obtenir les propriétés requises
d'invariance vis-à-vis des différents types d'agrégation. Il apparaît que le défaut
d'invariance du modèle GARCH usuel est dû à deux hypothèses très restrictives :
corrélation linéaire parfaite entre le carré de l'innovation et la variance conditionnelle d'une
part, relation de proportionnalité entre la variance conditionnelle de la variance
conditionnelle future et le carré de la variance conditionnelle d'autre part. En relâchant ces
hypothèses grâce à une approche état-mesure, on parvient à démontrer des résultats
d'agrégation sans renoncer au concept de variance conditionnelle (et aux effets de levier
associés), à la différence du modèle GARCH faible récemment proposé et qui, lui, obtient
les résultats d'agrégation en remplaçant les espérances conditionnelles par des
projections linéaires sur les innovations passées supposées de loi symétrique. Un autre
avantage de l'approche SR-SARV par rapport au modèle GARCH faible est de permettre
des généralisations multivariées, incluant même éventuellement des dynamiques d'ordre
supérieur et de primes de risque (dans l'esprit de GARCH(p,p) et de GARCH-M) et de
fournir des restrictions de moments conditionnels qui peuvent être avantageusement
exploitées pour l'inférence statistique. Enfin, nous caractérisons les relations d'inclusion
entre nos modèles SR-SARV (y compris dans le cas de dynamique d'ordre supérieur,
d'effet en moyenne et d'effet de levier) et les différentes classes de modèles GARCH et de
modèles de diffusion à volatilité stochastique. Ces caractérisations impliquent que les
résultats déjà disponibles dans la littérature au sujet de l'agrégation des GARCH faibles et
de leur lien avec les modèles de diffusion apparaissent comme des corollaires des
résultats de cet article.

Mots clés : GARCH, volatilité stochastique, SR-SARV, agrégation, rendements d'actifs,
processus de diffusion



ABSTRACT

The GARCH and Stochastic Volatility paradigms are often brought into conflict as
two competitive views of the appropriate conditional variance concept : conditional
variance given past values of the same series or conditional variance given a larger past
information (including possibly unobservable state variables). The main thesis of this paper
is that, since in general the econometrician has no idea about something like a structural
level of disaggregation, a well-written volatility model should be specified in such a way
that one is always allowed to reduce the information set without invalidating the model. To
this respect, the debate between observable past information (in the GARCH spirit) versus
unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper,
we stress a square-root autoregressive stochastic volatility (SR-SARV) model which
remains true to the GARCH paradigm of ARMA dynamics for squared innovations but
weakens the GARCH structure in order to obtain required robustness properties with
respect to various kinds of aggregation. It is shown that the lack of robustness of the usual
GARCH setting is due to two very restrictive assumptions : perfect linear correlation
between squared innovations and conditional variance on the one hand and linear
relationship between the conditional variance of the future conditional variance and the
squared conditional variance on the other hand. By relaxing these assumptions, thanks to
a state-space setting, we obtain aggregation results without renouncing to the conditional
variance concept (and related leverage effects), as it is the case for the recently suggested
weak GARCH model which gets aggregation results by replacing conditional expectations
by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH
literature, we are able to define multivariate models, including higher order dynamics and
risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive
conditional moment restrictions well suited for statistical inference. Finally, we are able to
characterize the exact relationships between our SR-SARV models (including higher order
dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time
stochastic volatility models, so that previous results about aggregation of weak GARCH
and continuous time GARCH modeling can be recovered in our framework.

Key words : GARCH, stochastic volatility, SR-SARV, aggregation, asset returns, diffusion
processes



� Introduction

R� Engle ������ introduced his seminal paper about ARCH modeling via the one�period

forecast issue of a random variable yt� 	the forecast of today
s value based upon the past

information� under standard assumptions� is simply E�yt j yt��
� which depends upon

the value of the conditioning variable yt��� The variance of this one�period forecast

is given by V �yt j yt��
� Such an expression recognizes that the conditional forecast

variance depends upon past information and may therefore be a random variable��

But� on the outside of the very special case of an univariate Markovian �of order ��

process yt� there is no reason why to summarize the 	past information� by last values

yt�� of the dependent variable� More generally� if we assume unbounded memory�

forecasts are based on an increasing �ltration Jt� t � IR� � of ���elds such that Jt

summarizes the information provided by the observation �until time t� of variables of

interest� In other words� if we focus for the moment on the volatility issue in discrete

time� we address the issue of modeling the second order dynamics of the martingale

di�erence sequence �m�d�s� hereafter��

�t � yt � E�yt j Jt��
�

A usual way to specify such a model is to start from the factorization�

�t �
q
ft��ut �����

where�

ft�� � Jt��

E�ut j Jt��
 � �� E�u�
t
j Jt��
 � �� �����

It is important to notice that� besides the m�d�s� property� the above factorization

does not state any additional assumption but only introduces the notation�

ft�� � V ��t j Jt��
 �����

A volatility model is then a speci�cation �nonparametric� semiparametric or para�

metric� of dynamics of the �squared� volatility process ft�

On the other hand� a current criticism against ARCH literature is its apparent

lack of any structural foundations� that is of any structural dynamic economic theory

explaining the variation of conditional second order moments� Faced with that situa�

tion� it is important to propose volatility models that do not violate obvious necessary

conditions to have structural interpretations� Among these conditions� robustness with

respect to both temporal and contemporaneous aggregation as well as marginalization

�



are fairly crucial since in general situations� the econometrician has no idea about

something like a structural level of disaggregation� Therefore we would like specify

volatility models for which aggregating or pooling could be innocuous�

Of course� this requirement may complicate statistical inference� The �rst example

of such a con�ict between structural interpretation and simple statistical inference is

the dynamic speci�cation of higher order conditional moments� It is for instance a

current practice to assume that standardized innovations ut in ����� are iid� This is a

basic assumption of both semiparametric ARCH modeling �a la Engle and Gonz�alez	

Rivera ��

�� and the general volatility de�nition of Andersen ��

��� This assumption

allows one to de�ne estimation methods without taking care of conditional skewness

or kurtosis while� in the general setting ������ they could matter for e�cient estimation

�see e�g� Bates andWhite ��

�� and Meddahi and Renault ��


��� But a fundamental

contribution of Drost and Nijman ��

�� �see Section �� Example �� �Strong GARCH

are not closed�� is precisely to have stressed that the classical ARCH��� model�

�t �
q
� � ���t�� ut � ut iid N��� ��

is not closed under temporal aggregation since� even if we consider the simplest case of

stock variables� lower	frequency rescaled innovations �for instance when �t is observed

only for odd dates t� involve some non degenerated conditional kurtosis� Therefore it

is necessary to extend the usual �strong� GARCH or stochastic volatility models to

obtain robustness with respect to various kinds of aggregation� There is nevertheless a

general agreement to consider that the �rst model of volatility dynamics we must have

in mind is the simplest AR����

ft � � � �ft�� � �t �����

� � � � �� E��t� � �� Cov��t� f� � � � �� � t�

As a matter of fact� the GARCH����� modeling considers the very special case

where�

�t � ����
t
� ft��� ���
�

since we then recover from ����� the usual GARCH����� representation�

ft � � � ���
t
� 	ft��� � � � � 	 � �� �����

Indeed� it is clear that the choice �t � ����
t
� ft��� is allowed since�

E���
t
j Jt��� � ft�� � E��t j Jt��� � �� E��t� � � and Cov��t� f� � � � �� � t�

�



We get then the concept of semi�strong GARCH����� model as it is de�ned by Drost

and Nijman ������� Unfortunately� Drost and Nijman ������ have also shown �see

Section �� Example 	� 
Semi�strong GARCH not closed�� that even this extended

class of GARCH processes is not closed under temporal aggregation�

Then� it turns out that we have to extend even more the class of GARCH�����

processes if we want to get some structural interpretations� The main idea of the

present paper is to o�er an alternative to the Drost and Nijman ������ extension�

which presents in our opinion several advantages�

On the one hand� the Drost and Nijman ������ idea is to weaken the structure


E��t j Jt��� � �

�t � ����
t
� ft��� and thus Jt � ���� � � � t�

by maintaining the restriction

�t � ����
t
� ft��� �����

but assuming only


E��t� � � and Cov��t� f� � � � �� � t

instead of the non�robust conditional moment restrictions


E��t j Jt��� � �� �����

The advantage of this proposal is to focus on the linear structure of GARCH modeling


the usual GARCH representation


��
t
� � � ���

t��
� 	ft��

may then be interpreted as a linear projection on the Hilbert space Hs

t
spanned by �

and ��
�
� � � t� This is the so�called weak GARCH����� model� The main drawback of

this approach is that by relaxing ����� into the setting ������ one renounces to interpret

ft�� as a conditional variance of �t� This is a pity for both �nancial interpretation of

volatility �what could be for instance the use of linear projections for option pricing

which is� by de�nition� highly nonlinear�� and statistical inference �without conditional

moment restrictions� we lose the consistency of usual Quasi Maximum likelihood or

GMM��

On the other hand� our main proposal is the following
 we remain true to the

conditional moment restrictions

E��t j Jt��� � �

�



but we no longer consider that �t is perfectly linearly correlated with ��
t
conditionally

to Jt�� �according to ������� it may involves a separate contemporaneous stochastic

component� and in that case� according to the usual terminology �see Andersen ��������

we say that volatility is stochastic�

In order to compare the weak GARCH modeling with our stochastic volatility ap	

proach� it is 
rst important to stress that weak GARCH����� processes which are out	

side the usual semi	strong GARCH class do involve stochastic volatility features�

Since we only know that�

EL���
t�� j H

s

t

 � � � �EL���

t
j Hs

t��


where EL denotes the linear projection� V ��t�� j Jt
 � E���
t�� j Jt
 will generally involve

some nondegenerated random variables like�

E���
t�� j Jt
� EL���

t�� j H
s

t

�

In other words� weak GARCH processes and stochastic volatility models are not nec	

essarily inconsistent extensions of the semi	strong GARCH class� The choice between

the two approaches has been done in relationship with the objective� 
nancial interpre	

tations� statistical inference� robustness with respect to various kinds of aggregation���

But we want to argue here that besides its advantages for 
nancial interpretation

and statistical inference� the stochastic volatility approach is even better suited for

aggregation issues� while Drost and Nijman ������ are led to restrict themselves to

symmetric GARCH processes� no such restrictions are needed within our stochastic

volatility framework� This degree of freedom matters to capture the so	called leverage

e�ect� already well documented in the stock price literature �see Black ������� Nelson

������� Bollerslev� Engle and Nelson �������� Indeed� we check that if we renounce

to capture this leverage e�ect by adding to our setting some symmetry restrictions �a

la Drost and Nijman ������� we are led back to weak GARCH processes� Moreover�

while Drost and Werker ������ suggest to �close the GARCH Gap� by relating contin	

uous time stochastic volatility models with discrete time weak GARCH modeling� the

stochastic volatility framework allows us to a more direct relation between continuous

time and discrete time models�

The paper is organized as follows�

The sections � focuses on the so	called SR	SARV��� class� that is to say the family

of volatility models conformable to ����� in the framework ����� to ������ We detail

its relation with both discrete time GARCH����� models �semi	strong or weak� and

continuous time stochastic volatility models� Indeed� our SR	SARV��� class is closed

�



under temporal aggregation and may be viewed as a discrete time sampling from usual

continuous time stochastic volatility models� Moreover� we stress that temporal aggre�

gation of semi�strong GARCH����� processes does create in general stochastic volatility

features or time�varying coe�cients which are hidden in the weak GARCH represen�

tation� In the same way� discretization of univariate heteroskedastic di�usions may

create stochastic volatility features� This is the reason why the stochastic volatility

model is� in our opinion� the most versatile tool�

The section � propose various extensions of the SR�SARV��� model�

In order to get rid of richer correlation patterns in conditional variances than the

simplest AR��� case� we 	rst introduce in section ��� the SR�SARV�p� class which cor�

responds to GARCH�p�p� as SR�SARV��� corresponds to GARCH������ However� to

remain true to the Markovian paradigm of state variables which is dominating in mod�

ern Finance� the order�p structure is obtained by marginalization of a p�dimensional

VAR��� process of state variables� This allows us to extend to higher orders� on the

one hand the main result about temporal aggregation and on the other hand� the

relationship with continuous time stochastic volatility di�usion models�

Besides� to capture some structural interpretations of asset returns time series mod�

els� and particularly of dynamic models of 	rst order and second order conditional

moments� we need some versatile statistical structures where conditional expectations�

conditional variances and covariances may be combined through linear aggregators to

characterize risk premia� This is the main puzzle which motivates the sequel of section

�� More precisely� we want to extend the basic SR�SARV�p� model in order to get on

the one hand statistical models able to capture structural restrictions about risk premia

dynamics and� on the other hand which remain true to the requirement of robustness

w�r�t� temporal aggregation� After a brief discussion of such structural restrictions

�section ��
�� we introduce in a given asset risk premium another marginalization of

the p�dimensional state variable process already used to characterize the conditional

variance dynamics� This is the concept of SR�SARV�M �that is SR�SARV in mean�

which as presented in subsection ��� adapts to our setting the usual ARCH�M model

introduced by Engle� Lilien and Robins ����
�� As far as we are concerned by ro�

bustness w�r�t� temporal aggregation� the SR�SARV�M model is shown to be not only

closed under changes of the sampling frequency but also under discretizations where

Ito�s lemma may introduce squared volatilities in the drift of the processes� Moreover�

it is shown that temporal aggregation of the SR�SARV�M processes should introduce

some kind of leverage e�ect� through the volatility features of unobserved risk premia�

Besides the corporate 	nance�based Black�s argument� this could provide an additional

explanation for the well�documented evidence of leverage e�ect in 	nancial time series�

�



Subsection ��� is concerned with SV models with a predictable part� which may be

itself generated by a VAR��� models of several factors� Indeed� the complete multi�

variate model of factors which may appear in both conditional expectations� variances

and covariances of a vector of returns is described in Section ��

The proofs of the main results are provided in the Appendix�

� The SR�SARV��� Class

��� GARCH versus Stochastic Volatility

Let us consider a martingale di�erence sequence �m�d�s� hereafter� �t� t	��
���� adapted

to the natural �ltration

It 	 ���� � � � t�� �
���

Typically� �t could be the log�return of a given asset whose price at time t is denoted

by St�

�t 	 Log
St

St��

� �
�
�

If St is the value at time t of a given currency in terms of dollar� the martingale dif�

ference hypothesis is generally accepted� according to the e
ciency of foreign exchange

markets� More generally� if we consider that log�return could have non�zero conditional

expectation� the framework �
�
� may be extended by considering �t as the innovation

process of the log�return process �see section ���

Indeed� we follow here the usual practice �according to the mainstream GARCH

and SV literature� of introducing the conditional heteroskedasticity setting at the level

of innovations processes� As far as we are concerned with GARCH modeling� the basic

idea was to introduce a serial linear correlation pattern through ��
t
�see Engle ����
��

Bollerslev ������� while� by de�nition of the martingale di�erence property� �t does not

involve such correlation�

E��t j It��� 	 � �
���

This is surely the main reason for the widespread use of the GARCH����� model�

If we denote by ht the conditional variance process�

ht 	 E���
t
j It��� �
���

�



the usual GARCH����� setting�

ht � w � ���
t��

� �ht��� � � �� � � �� � � � � �� ��	
�

may be simply rearranged in�

��
t
� w � �� � ����

t��
� ����

t��
� ht��� � ���

t
� ht� ��	��

which stresses the ARMA����� structure � of ��
t
with innovation process

�t � ��
t
� ht� ��	��

Moreover� let us recall that the ARMA����� representation of ��
t
is tantamount to an

AR��� representation of the conditional variance process ht �see ��	
����	
���

ht � � � ��� ��ht�� � ��t��� ��	��

As a matter of fact� we want to stress here that� if it is natural to use the ARMA�����

setting to summarize the pattern of serial correlation of ��
t
� the framework ��	�� is

too restrictive since the innovation process �t is not only serially uncorrelated but is

a m	d	s	 �due to ��	
��	 This restrictive feature involves several shortcomings as a

lack of robustness with respect to temporal aggregation� contemporaneous aggrega�

tion� marginalization			 This is the reason why it would be interesting to remain true

to the ARMA pattern of serial correlation but with a general weak white noise inno�

vation	 Indeed� the serial uncorrelation assumption �in a linear sense� does not involve

the same drawbacks that the martingale di�erence one	 This is the reason why this

�weak� concept was used by Drost�Nijman ������ and Nijman�Sentana ������ to derive

aggregation properties in a GARCH setting	

As announced in the introduction� the main goal of this paper is to de�ne a semi�

parametric model of conditional heteroskedasticity which on the one hand corresponds

to a weak concept of ARMA process for ��
t
�in order to obtain robustness properties�

but on the other hand remains true to the same martingale concepts	 These concepts

matter for at least two reasons� statistical inference and logical relationship with con�

tinuous time models of modern Finance	 This is the reason why we suggest to forsake

the GARCH framework �the exact relation with weak GARCH modeling will be made

more precise later� and to de�ne the parameters of interest in the following SV setting�

�R� Engle ������� page xiii� explains with humor why� according to ����� and ������ 	ARCH is
autoregressive while GARCH is ARMA
� in contradiction to his �rst intuition that the main drawback
of the ARCH speci�cation was that 	it appeared to be more a moving�average speci�cation than an
autoregression
�

�



De�nition ���

A stationary squared integrable process �t� t � N� is called a SR�SARV��� process

with respect to an increasing �ltration Jt� t � N� if there exists a positive Jt�adapted

stationary AR��� process ft� t � N� such that�

�t �
q
ft��ut ��	
	a�

E�ut j Jt��� � 
 ��	
	b�

E�u�
t
j Jt��� � � ��	
	c�

Of course� the de�nition �	� is related to the so�called square�root stochastic autore�

gressive volatility setting introduced by Andersen ��

�� �which justi�es the notation

SR�SARV� since by ��	
�� the process ft can be interpreted as the conditional vari�

ance process�

ft�� � V ar��t j Jt���� ��	�
�

and this process admits by de�nition an AR��� representation

ft � � � �ft�� � �t ��	��	a�

E��t j Jt��� � 
 ��	��	b�

Since stationarity is assumed� we have implicitly assumed that j � j� �� and in order

to provide simple su�cient conditions of positivity� a maintained assumption hereafter

will be

� � 
 and 
 � � � �� ��	���

This AR��� representation of the conditional variance process remains true to the basic

idea of GARCH modeling �see ��	��� but is stated in a more general framework since

nothing is assumed about the information set �observable or not� contains past returns

or not			�	 The logical relationships between SR�SARV and GARCH will be detailed

below	 Let us �rst notice moreover that� by ��	
��

E��t j Jt��� � 
�

In other words� �t will be a m	d	s	 adapted to Jt if we set the additional assumption

that Jt contains past returns�

It � Jt� ��	���

But we are able to prove that one always may reduce the information sets of the SR�

SARV representation� even without taking into account the restriction ��	����

�



Proposition ��� If �t is a SR�SARV��� process w�r�t� a �ltration Jt and ft the as�

sociated conditional variance process� then� for any sub�ltration J�
t
� Jt� �t is a SR�

SARV��� process with respect to J�
t
and the associated conditional variance process f �

t

is given by

f �
t
� E�ft j J

�

t
��

This Proposition ��� stresses the fact that� in contradiction with a common idea� the

di�erence between SV and GARCH is not characterized in terms of �observability	

of the volatility process� Of course� one is always allowed to consider an information

set which is reduced to a �
�eld J�
t
spanned by variables which were observed at

time t� but the corresponding SR
SARV��
 representation �with f �
t
� E�ft j J

�

t
�� ��

t
�

f �
t
����f �

t��

 is not necessarily a GARCH����
 model� since the AR��
 representation

of the conditional variance process is not necessarily linear w�r�t� observables� according

to ����
�

��
t
� ����

t
� f �

t��



Indeed� this linearity conditional to J�
t��

with a constant slope coe�cient � is charac


teristic property of GARCH models as stated by Proposition ��� below� But we want

to stress here� that� even outside of the GARCH class� our class of SV models is not

a�ected by the criticism against Log
normal SV models �see section ��� below
 rightly

formulated by Engle �����
� While� for Log
normal SV models� it is right to claim

that the conditional variance given observables �has a form that is not easy to evaluate

except possibly by simulation methods	� the SR
SARV��
 representation provides a

conditional variance process which is AR��
� whatever the information set� including

an information �ltration de�ned only by past returns�

Let us notice that until now� we have not explicitly assumed that the information

set Jt contains at least the past returns� This is however a natural assumption which

facilitates several interpretations below� relation with ARCH models� leverage e�ect���

This is the reason why this assumption will be maintained in all the rest of the paper

and� except in case of ambiguity� the terminology �SR
SARV��
	 without specifying

the benchmark �ltration will be used for cases where this �ltration Jt contains the

�returns �ltration	 It� Let us notice that� since ft is Jt
adapted by de�nition� we then

have for any SR
SARV��
 model�

J�

t
� Jt ������a


where

J�

t
� ���� � f� � � � t
 � ��u� � �� � � � t
� ������b


�



is the natural �ltration� We are then able to state�

Proposition ��� The class of semi�strong GARCH����� processes �t �de�ned by ������

���	� and ���
� with a conditional variance process ht� coincides with the subclass of

the SR�SARV��� processes �de�ned by ����� with a squared volatility process ft� which

veri�es�

� First� ��
t
and ft are conditionally perfectly positively correlated given Jt�� �con�

ditional linear correlation equal to ���

� Second� the ratio V ar�ftjJt���
V ar���

t
jJt���

is constant and smaller or equal to ���

In this case�

ht�� � ft� � � ��� and Jt � ���� � f� � � � t� � ���� � � � t� with � � �
V ar�ft j Jt���

V ar���t j Jt���
�����

The �rst restriction is related to the common idea that ARCH models correspond

to the degenerate case where there are no exogenous source of randomness in the

conditional variance dynamics� As discussed above through reduction �by Proposition

	�
� of information sets� the invocated degeneracy corresponds to GARCH only if it is

a perfect linear correlation�

Moreover the second restriction introduced by Proposition 	�	 is less known even

though it was already coined by Nelson and Foster �
��
� �pages 	
�		�� �most

commonly�used ARCH models e�ectively assume that �the variance of the variance�rises

linearly with ��
t �� that is V ar�ft j Jt��� is proportional to V ar���t j Jt���� which is itself

proportional to f �
t�� �that is ��

t � in case of strong GARCH �that is iid standardized

innovations ut�� In other words� the semi�strong or strong GARCH setting implies non�

trivial restrictions on the conditional kurtosis dynamics� this last remark was the source

of a Drost and Nijman �
���� counterexample of lack of robustness w�r�t� temporal

aggregation�

As far as we are concerned by the �rst restriction� it provides some insight on the

ability of the various models to capture the so�called leverage e�ect phenomenon� This

e�ect� �rst stressed by Black �
����� refers to the well�documented evidence that� for

various asset prices� bad news and good news of the same amplitude have not the same

e�ect on subsequent volatilities� Actually� it appears that� according to the theory

of the levered �rm� stock price volatilities raise relatively more after bad news than

after good ones� In any case� a versatile stochastic volatility model should be able to


�



capture asymmetric responses of the return �t �
p
ft��ut to some shocks in previous

information Jt�� or contemporaneous volatility
p
ft�

Two types of asymmetry could be imagined�

� Either� the conditional skewness of ut given Jt�� is non�zero�

� Or� the conditional correlation of ut with ft �given Jt��� is non�zero�

According to the notations ����� and ���		� we then de
ne�

De�nition ���

Leverage e�ect occurs as soon as one of the two following properties is ful
lled�

E�u�
t
j Jt��
 �� � ���	��a�

or

E�ut�t j Jt��
 �� �� ���	��b�

Let us notice that we have de
ned leverage e�ect w�r�t� conditional probability

distributions� which appears more conformable to the idea of responses to shocks�

However� unconditional leverage e�ect in terms of observables �E��
t
�� � or E�t�

�
t�� �� ��

implies conditional leverage e�ect�

Let us consider now processes which� as semi�strong GARCH�	�	� ful
ll the 
rst

restriction of Proposition ���� In this case� ft � at���
�
t
� bt��� with at��� bt�� � Jt���

so that�

E�ut�t j Jt��
 � E�utft j Jt��
 � at��E�ut�
�

t
j Jt��
 � at��ft��E�u�

t
j Jt��


so that�

Proposition ��� For any SR�SARV��� process which ful�lls the �rst restriction of

Proposition ��� �for instance a semi�strong GARCH����� process�� the two conditions

of leverage e�ect ����	�a� and ����	�b� are equivalent�

It is worthwhile to notice that� according to Proposition ��� and in contradiction

with a common idea� usual GARCH�	�	� process may involve some kind of leverage

e�ect in case of asymmetric innovations� that is�

E���
t
j It��
 �� ��

Let us notice that such a leverage e�ect is not spurious since we are able to check

more generally that a reduction of information in the sense of Proposition ��	 cannot

introduce spurious leverage e�ect�

		



Proposition ��� If �t is a SR�SARV��� process w�r�t� a �ltration Jt� than� for any

sub�ltration J�
t
such that It � J�

t
� Jt� we have with obvious notations�

E�u�
t
j Jt��� � � �� E�u��

t
j J�

t��
� � �

E�ut�t j Jt��� � � �� E�u�
t
��
t
j J�

t��
� � ��

Actually� if for instance we observe that a GARCH����� process is such that

E���
t
j It��� �� �� we are able to claim that any associated SR�SARV��� modeling of �t

should involve usual leverage e	ect in the sense of �
����b�� This is the reason why we

do consider the conditional skewness of �t as a genuine occurrence of leverage e	ect�

��� Statistical Issues

Since Taylor ��
��� seminal work� one observes a burgeoning literature about stochastic

volatility models such that the terminology is still not well�established �see Ghysels�

Harvey and Renault ��

�� for a survey�� In order to place our SR�SARV��� concept

in relation to the available literature� several properties have to be emphasized�

� First� even in the general case where it is not Jt�adapted� the process �t ful�lls

the m�d�s� property�

E��t j Jt��� � ��

This would not be the case if we considered� as Taylor ��

�� the so�called �contem�

poraneous autoregressive random variance model� �t �
p
ftut� Let us recall that this

does not prevent us to consider occurrences of leverage e	ect�

� This leverage e	ect� or more generally the empirical evidence of asymmetry in

the relationship return�volatility has led D� Nelson ��

�� to propose the exponential

GARCH or EGARCH as an alternative to the usual GARCH setting� On the other

hand� the log�normal stochastic variance model introduced by Taylor ��
����

Logft � � � �Logft�� � �t� �
����

�t iid N��� ����

is the natural SV analogue of EGARCH models� It is the most popular SV model

since Harvey� Ruiz and Shephard ��

�� have popularized it by exploiting its linear

state space form� In particular� the exponential form of EGARCH and �
���� simpli�es

inference since non�positive variances are automatically excluded� However� as noticed

by Engle ��

�� page xiii�� �it has the drawback that forecasts of variance require a

numerical simulation or at least a distributional assumption which is not the case for

linear models�� Indeed� as already stressed� our SR�SARV��� models preserves the

�




linear AR��� structure of the conditional variance process emphasized by R� Engle as a

distinctive feature of GARCH processes� This is the reason why we are able to forecast

variances in a semiparametric framework� without distributional assumptions on

the error terms� Besides robustness� the distribution�free framework is crucial to get

convenient properties of aggregation� Moreover� we have shown that� in contradiction

with a common idea� leverage e�ect can be captured in linear settings�

As far as linearity is concerned� we know that the AR��� representation of the

conditional variance process corresponds to an ARMA����� representation of ��
t
� As

already explained� the usual semi�strong GARCH setting assumes that the innovation

process of the ARMA����� model is a m�d�s� while the weak GARCH setting only

involves white noises in a weak �second order� sense� The point we want to stress here� is

that� by introducing the SR�SARV��� modeling ������ we remain true to an ARMA�����

modeling for ��
t
� but with some additional restrictions w�r�t� a weak concept�

Proposition ��� If �t admits a SR�SARV��� representation� then ��
t
is a weak stationary

ARMA����� process�

��
t
� � � ���

t��
	 �t ����
�

where �t is a MA��� process such that�

E��t j Jt��� 	 
 ������

Moreover� �t admits a MA��� representation �t 	 �t � ��t��� �t white noise� � � ��

It is worthwhile to notice that�

Jt � It 	 ���� � � � t� � ����
�
� � � t� 	 ���� � � � t�

In particular� the property ������ is much more powerful than the usual de�nition of a

weak ARMA����� process�

Cov��t� �t�h� 	 
 � h � �

Beside its interpretation close to a martingale di�erence property� the property ������

may be useful for statistical inference through GMM �see Drost� Meddahi and Renault

������� because it implies the following observable conditional moment restrictions�

E���
t
� � � ���

t��
j It��� 	 
 ������

Indeed� ������ is an example of application of a general class of lagged conditional

moment restrictions studied by Hansen and Singleton �������

��



This may produce estimates of the parameters � and � of interest for the SV

dynamics ����� much more accurate than unconditional moments based estimates of

the weak ARMA model of ��
t
� On the other hand� the usual m�d�s� restriction ����� on

the innovation process of ��
t
�which of course implies ������� is too restrictive because it

corresponds to the concept of semi�strong GARCH����� model �see Drost and Nijman

����	�� which is not robust w�r�t� temporal aggregation� In the opposite� we shall

see in the following subsection ��	 that the SR�SARV��� model ����� is robust w�r�t�

temporal aggregation�

To summarize� the SR�SARV��� concept provides su
cient restrictions to remain

true to some martingale concepts of the semi�strong GARCH class � E��t j It��� 
 � and

E��t j It��� 
 �� but a su
ciently larger class �indeed strictly larger than semi�strong

GARCH class� to ensure robustness w�r�t� temporal aggregation�

As already announced� Drost and Nijman ����	� have proposed an other �weaken�

ing� of the semi�strong GARCH concept through the so�called weak GARCH property�

The main idea is to ensure robustness w�r�t� temporal aggregation by using only linear

concepts of information sets� More precisely� let us consider the Hilbert space Ht��

spanned by the constant� �� and ��
�
� � � t� Drost and Nijman�s ����	� weak GARCH

de�nition is�

EL��t j Ht��� 
 � ������a�

EL���
t
j Ht��� 
 � � ���

t��
� �EL���

t��
j Ht��� ������b�

� � �� � � � ������c�

which is conformable to the usual de�nition ���	�� ������ ����� but with usual concepts

of conditional expectation replaced by the concept EL�� j Ht��� of linear projection on

the Hilbert space Ht��� With such a de�nition� the weak GARCH class clearly en�

compasses the semi�strong one� Indeed� one may interpret the weak GARCH concept

proposed by Drost and Nijman ����	� as the following�

Proposition ��� If �t is a weak GARCH����� process� than ��
t
is a weak stationary

ARMA����� process�

Conversely� if ��
t
is a weak stationary ARMA����� process�

��
t
� � � ���

t��

 �t � ��t�� ������

with �t weak white noise � �t is a weak GARCH����� if and only if�

Cov��t	 �� � 
 �	 �� � t ������

��



In this case� the representations ������ and ������ are related by parameters �� � and

� � � � �� Moreover� EL���
t
j Ht��� coincides with the linear optimal prediction

EL���
t
j Hs

t��� where Hs

t�� is the Hilbert space spanned by the constant and ��
�
� � � t�

Of course� the Proposition ��� is stated with the maintained assumption ���	
 which

implies ������a
� Moreover� it is worth noting that �����
 has something in common

with ����

 since ����

 means that�

E��t � ��t�� j �� � 	� � � � t� �� � �

which in turn implies�

Cov��t � ��t��� ��
 � �� �� � t� �


Unfortunately� to obtain their temporal aggregation result� Drost and Nijman ����	


are led to restrict themselves to the class of �symmetric weak GARCH processes�� But

we want to argue here that� insofar as one needs to impose symmetry� the weak GARCH

concept is not the convenient one to extend the semi�strong GARCH class since it pre�

cludes a leverage e�ect phenomenon which can be captured by general GARCH models�

Indeed� as soon as the following symmetry assumption is maintained �

��t� �t�
 and ���t���t�
 have the same probability distribution for any �t� t�

 ����	


the weakest notion of leverage e�ect is precluded in a weak GARCH framework � since

����	
 implies that�

E�EL���
t�� j Ht��t� � �

because�

EL���
t�� j Ht� � EL���

t�� j H
s

t
�

and

E���
�
�t� � �� ��


Moreover� as soon as the above leverage e�ects are precluded� the weak GARCH con�

cept provides no more structure than the SR�SARV��
 one since it can be proved that�

Proposition ��� If �t is a SR�SARV��� process de�ned by ���	���� with the additional

restrictions


E�u�
t
j Jt��� � � ������a


E�ut	t j Jt��� � � ������b


then �t is a weak GARCH����� process�

�In a weak GARCH framework� the leverage e�ect should be characterized by the �unconditional�
linear correlation between �t and EL��

�
t�� j Ht��

��



To summarize� we claim that the general SR�SARV��� concept is the convenient

structure in order to�

� First� capture leverage e�ects�

� Second� extend the semi�strong GARCH����� class�

� Third� allow temporal aggregation�

On the opposite� the weak GARCH����� class provides the last two properties only by

excluding the �rst one� Moreover� we shall show in subsection 	�
 below that� not only

the SR�SARV��� representation� but also the restrictions �	�	�� which relate this class

to the weak GARCH one� are robust w�r�t� temporal aggregation�

Moreover� it is worthwhile to notice that the symmetry assumption used by Drost and

Nijman ����
� is even stronger than �	�	
� since it assumes that �

For any positive integer h� for any h�uplet �ak���k�h � f��� �gh�

��t�k���k�h and �ak�t�k���k�h have the same probability distribution� �	�	
�

Amazingly� if we are ready to maintain �	�	
� in a semi�strong GARCH framework� we

can always state a degenerated SR�SARV representation of our process

�t �
q
ft��ut

with ft�� � ��
t
and ut is the sign of �t� Indeed� we are able to check that E�ut j Jt��� � �

since� in this case� Jt�� is generated by �� � � � t� and ��
t
� and thanks to �	�	
�� ut and

��
t
are conditionally independent� given �� � � � t�

��� Temporal aggregation of SR�SARV��� process�

As suggested by �	�	�� we have in mind the interpretation of �t as a continuously

compounded rate of return over the period �t � �� t�� Since the unit of time of the

sampling interval is to a large extent arbitrary� we would surely want the SV model

de�ned by equations �	��� to be closed under temporal aggregation� As rates of return

are �ow variables� closeness under temporal aggregation means that for any integer m�

�
�m�
tm � Log

Stm

Stm�m
�

m��X
k��

�tm�k

is again conformable to a model of the type �	��� with suitably adapted parameter

values�

��



However� to encompass too the case of stock �or prices� variables we consider more

generally�

�
�m�
tm �

m��X
k��

akm�tm�k ������

Typically� for stock variables observed at the dates m� �m� �m� ���� tm�

a�m � 	 and akm � 
 �k � 


while� for �ow variables�

akm � 	 �k � 
� 	� ��� m� 	�

We are then able to state�

Proposition ��� Let �t a SR�SARV��� process w�r�t� Jt and a conditional variance

process ft with innovation �t� If for a given natural integer m� we consider a �ltration

J
�m�
km

� k � N� such that for any k�

�
�m�
km

� J
�m�
km

� Jkm�

then �
�m�
tm is a SR�SARV��� process w�r�t� J

�m�
tm � with a conditional variance process

f
�m�
tm �

f
�m�
tm�m � V ar��

�m�
tm j J

�m�
tm�m
�

We have�

�
�m�
tm �

q
f
�m�
tm�mu

�m�
tm

f
�m�
tm � ��m� � ��m�f

�m�
tm�m � �

�m�
tm

and

��m� � �m

��m� � a�m��
	� �m

	� �
� b�m��	� �m�

where

a�m� �
m��X
k��

a�
km

�m�k��

b�m� �
�

	� �

m��X
k��

a�
km

�	� �m�k���

	�



To give the intuition of the proof of Proposition ���� it is worthwhile to notice that

f
�m�
tm�m is the optimal prediction� given J

�m�
tm�m available at time tm�m� of the aggregated

squared volatility
P

m��
i�� a�

im
ftm�i��� Therefore� taking into account the Markovian

feature of ft� we see that�

f
�m�
tm � a�m�E�ftm j J

�m�
tm � � b�m�� 	���
�

To a certain extent� 	���
� is counterintuitive since it shows that� although volatility

of returns is aggregated as a �ow variable 	
P

m��
i�� a�

im
ftm�i�� with aim � 
� �i�� its

informational content appears as a stock variable� at least in the case of low�frequency

observation scheme of the stock type 	ftm � J
�m�
tm �� For instance� in this case� to price

at time tm an option written on the asset of price S� the volatility f
�m�
tm corresponding

to the low frequency data has the same informational content that the volatility ftm of

high frequency data ��

As far as we are concerned with weak GARCH processes which are SR�SARV 	which

is the case for semi�strong GARCH�� our Proposition ��� extends the results of Drost

and Nijman�s 	
���� section � about temporal aggregation of GARCH	
�
��

In a �rst case� we consider stock variables and obtain�

��m� � �m

��m� � �

� �m


� �

which in GARCH notations provides Drost and Nijman�s 	
���� equation 	���

��m� � ��m� � 	� � ��m

��m� � �

� 	� � ��m


� 	� � ��
�

In the second case of �ow variables� we have

��m� � �m

������� proves that� in the particular case ftm � J
�m�
tm

� if we consider the more �exible SV represen�
tation� �t 	

p
aft�� 
 b ut� the aggregation result may be written without changing the f process�

In particular if a 	 � and b 	 �� �
�m�
tm

	
p

a�m�ftm�m 
 b�m� u
�m�
tm

admits f too as leading process of
its volatility process� Of course� the degree of freedom added by the scalar a and b implies a lack of
identi
ability for the coe�cients � and � of the AR representation� This is the reason why we have
preferred to maintain the usual identi
ability restriction �a� b� 	 ��� �� which implies some rescaling
of f for a given aggregation schedule�


�



��m� � m�
�� �m

�� �
������

which in GARCH notations provides Drost and Nijman�s ����	� equation ��	�


��m� � ��m� � �� � ��m

��m� � m�
�� �� � ��m

�� �� � ��
� ������

Indeed� as it is clear from the SARV setting� the parameter of interest is � � � � �


in particular� if ftm � J
�m�
tm � it speci�es the weight of the exponential smoothing of the

stochastic volatility innovations since one can easily deduce in this case from ������

and ������ that


�
�m�
tm � a�m�

m��X

k��

�k�tm�k ���	��

In other words� as it already well�known in the GARCH literature �see Drost and

Nijman ����	��� ��m� � �����m characterizes the persistence of shocks in the volatility

process� Therefore� if the stochastic volatility feature appears to be still signi�cant at

low frequency data ��m signi�cant for large m�� it is likely to be highly persistent for

high frequency data �� close to ���

As far as we are concerned with leverage e�ect� the decompositions ������ and ���	��

allow us to characterize its invariance w�r�t� temporal aggregation


� First� the unconditional leverage e�ect E��t�t� �� � occurs at the lowest

frequency if and only if it occurs at the highest�

� Second� if conditional leverage e�ect occurs at the lowest frequency


E��
�m�
tm �

�m�
tm j J

�m�
tm�m� �� �

it necessarily occurs at the highest


E��tm�tm j Jtm��� �� ��

The converse is true if above conditional covariances are constant�

More generally� we have introduced in ������ two restrictions of conditional symme�

try which are equivalent in the semi�strong GARCH case and allow us to consider the

class of �symmetric� �in the sense of ������� SR�SARV��� processes as a subclass of the

weak GARCH processes� In order to show that our aggregation result �for SR�SARV���

process� extends the Drost and Nijman�s ����	� one �for this subclass of weak GARCH

��



processes�� we have to check that the restrictions ������ themselves are robust w�r�t�

temporal aggregation� This is the following result�

Proposition ��� With the assumptions and notations of Proposition ���� If�

E�u�
t
j Jt��� 	 E�ut�t j Jt��� 	 


Then for any m � ��

E��u
�m�
tm �� j J

�m�
tm�m� 	 E�utm�

�m�
tm j J

�m�
tm�m� 	 
�

��� Continuous time SR�SARV modeling�

According to the martingale di�erence framework for log
returns� we consider here a

general continuous time stochastic volatility model with zero
drift for the asset price

process�

dLogSt 	 �t dWt ������

d�t 	 �t dt� �t dW
�

t

Cov�dWt� dW
�

t
� 	 �t dt

where �Wt�W
�

t
� is a bivariate Wiener process and the stochastic processes �t� �t� �t and

�t are J
c

t
	 ��W� �W

�

�
� � � t� adapted where the superscript c means that the available

information is now de�ned in continuous time� To ensure that �t is a nonnegative

process one typically follows either one of two strategies� ��� considering a di�usion

with a linear drift for log��
t
or ��� describing ��

t
as a CEV process �or Constant Elasticity

of Variance process following Cox ������ and Cox and Ross ������� �� The former is

frequently encountered in the option pricing literature �see e�g� Wiggins ������� and is

also clearly related to Nelson ������� who introduced EGARCH� and to the log
normal

SARV model of Taylor ����� and ������ The second modeling strategy involves CEV

processes which can be written as

d��
t
	 k�� � ��

t
�dt� ����

t
�� dW �

t
������

where �
�
� 	 � � ensures that ��

t
is a stationary process with nonnegative values�

Equation ������ can be viewed as the continuous time analogue of the discrete time SR


SARV��� class of models presented above as it is con�rmed by the exact discretization

�Occasionally one encounters speci�cations which do not ensure nonnegativity of the �t process� For
the sake of computational simplicity some authors for instance have considered Ornstein�Uhlenbeck
processes for �t or �

�

t
�see e�g� Stein and Stein ��������

�




results of continuous time SV models stated below� Here� as in the previous section� it

will be tempting to draw comparisons with the GARCH class of models� in particular

the GARCH�di�usion processes proposed by Drost and Werker ������ in line with the

temporal aggregation of weak GARCH processes�

Indeed� one should note that the CEV process in �	�
	� implies a SR�SARV model

in discrete time for ��
t
� namely�

��
t�h � ���� e�kh� 
 e�kh��

t

 e�kh

Z
t�h

t

ek�u�t�����
u
��dW �

u
�	�

�

We are then able to prove�

Proposition ���� When the continuous time stochastic process St is conformable to

������� for any sampling interval h� the associated discrete time process Log Sth

S�t���h
�

t � N� is a SR�SARV��� process w�r�t� J
�h�
th

� J
�h�
th

� ��Log S�h

S�����h
� ��

�h
� � � t� � � N��

In other words� from the di�usion �	�
�� and �	�
	�� we obtain the class of discrete time

SR�SARV��� which is closed under temporal aggregation� as discussed in the previous

section�

As already announced� we have so built a class of SR�SARV��� processes in discrete

time which automatically ful�ll the positivity requirement of the volatility process�

thanks to the well�suited dynamics of the underlying continuous�time process�

The relation between the continuous time parameters k� �� and the discrete time

parameters ��h� and ��h� is the following�

��h� � e�kh �	�
��a�

��h� � h���� e�kh� �	�
��b�

The relation between continuous time and discrete time volatility process is similar

to �	�	���

fth � a�h���
th

 b�h� �	�
��

with

a�h� �
�� e�kh

k

b�h� � � �h�
�� e�kh

k
��

Since the log�return are of course considered here as �ow variables� �	�
�� has to be

seen as a generalization of �	�	�� with�

� � ���� � e�k

	�



� � ���� ��

where � is the unconditional variance� that is the expectation of ��
t
�

If we use the GARCH notations ������� it is clear that ����	� is a generalization

of the temporal aggregation result of Drost and Werker ����
�� which closes �the

GARCH Gap� by interpreting discrete time sampling in a continuous time SV model

of the type ������� ������ as a weak GARCH process� Moreover� contrarily to Drost and

Werker ����
�� we do not exclude the possibility of leverage e
ect �no restrictions are

considered with respect to the correlation process �t�� Moreover� as explained in the

previous subsections� we prefer the SR�SARV representation which provides an explicit

characterization of innovations in variance �which is not the case for the weak GARCH

modeling�� As it is shown in the proof of Proposition ����� we have here the following

innovation process�

�
�h�
th

�
��� e�kh�

k
�e�kh

Z
th

�t���h
ek�u��t���h����

u
�� dW �

u
����
�

The exponential smoothing formula ������ is clearly implied by ����
�� Therefore� ����
�

allows one to state same conclusions about leverage e
ect� generically� the occurrence

of this e
ect at the highest frequency �that is in continuous time� is tantamount to the

occurrence of it at lower frequencies�

� Univariate SV models for asset returns�

We propose in this section various extensions of the basic SR�SARV��� model in order

to capture some well�documented evidence about asset returns�

A �rst evidence is that the patterns of the sample autocorrelations for the squared

process are not always conformable to the theoretical pattern of an ARMA����� process�

This is the reason why there are more and more �ndings in the empirical GARCH lit�

erature of GARCH models of higher orders� or even of long memory GARCH models�

to reproduce some stylized empirical regularities like for instance a sample autocorrela�

tion function which �decreases very fast at the beginning� and then decreases very very

slowly and remains signi�cantly positive� �quoted from Ding and Granger ����
��� The

fact that �the ����� order speci�cation fails to account for the variety of dynamic pat�

terns in many time series� has also recently been stressed by Diebold and Lopez ������

and by their discussant Steigerwald ������� However� a major drawback of GARCH

processes of higher order for asset returns �that is of ARMA process of higher order

for squared asset returns� is that they do not generally remain true to the Markovian

��



�of order �� property of the volatility process usual in Finance� in particular they may

lead to di�erentiable underlying continuous time process for asset prices� which is in�

consistent with the fundamental no free�lunch assumption �existence of an equivalent

martingale measure conformable to arbitrage pricing theory �a la Harrison et Kreps

���	���
 This is the reason why we will suggest in this section a particular class of

ARMA�p�q� representations of the volatility process �namely ARMA�p�p���� which

can be interpreted as marginalization of a VAR��� process of p state variables
 In

other words� according to a classical asset pricing methodology� �under the umbrella

of the Harrison�Kreps model� �quoted from Du
e �������� the Markovian property is

maintained at the level of a latent multivariate process of state variables� including the

case of a continuous time multifactor representation


This idea is �rst exploited in subsection �
� to de�ne the SR�SARV�p� class which

corresponds to a weak concept of GARCH�p�p� models �that is a weak concept of

ARMA�p�p� models for squared returns� as well as the SR�SARV��� class corresponds

to weak GARCH����� model
 We prove in particular a temporal aggregation property

which extends the Drost and Nijman ������ result for weak GARCH as it was already

extended for weak GARCH����� in section �
 The relationship with both semi�strong

GARCH�p�p� and continuous time multifactor models are also characterized


The main goal of the rest of section � is to capture in our SV framework the basic

idea of GARCH�M modeling� the conditional variance process may enter in the condi�

tional mean through the so�called risk premium
 We �rst brie�y discuss in subsection

�
� some lessons of economic theory about the trade�o� between mean of returns and

their variance
 We propose in section �
� various SR�SARV�M speci�cations which

are conformable to these economic ideas and mimic the usual GARCH�M speci�ca�

tion
 Moreover� our SR�SARV�M models are closed under temporal aggregation while

GARCH�M are not for three reasons�

� First� usual GARCH speci�cations are not closed under temporal aggregation�

except if we weaken their structure �a la Drost and Nijman ������


� Second� there is no aggregation theory available for GARCH�M models� even in

a weak sense� since the proposed risk premium patterns are clearly not robust

w
r
t
 temporal aggregation


� Third� as already emphasized by Proposition �
�� �commonly�used ARCH models

e�ectively assume that the variance of the variance rises linearly with �
�

t
� �see

Nelson and Foster ������� which is inconsistent with a joint aggregation of risk

premia and conditional variance �see Proposition �
	 below�


��



��� The SR�SARV�p� models

De�nition ��� A stationary squared integrable process �t is called SR�SARV�p� w�r�t�

an increasing �ltration Jt� t � N� if there exists a p�dimensional Jt�adapted stationary

VAR��� process Ft� t � N� with nonnegative components� such that�

�t �
q
ft��ut �	���a�

E
ut j Jt��� � � �	���b�

E
u�
t
j Jt��� � � �	���c�

ft � e�Ft �	���d�

with e is a vector of IRp with nonnegative components�

It is clear that de�nition 	�� extends the de�nition 
�� to a higher order dimensional

vector Ft of state variables� This process admits by de�nition a VAR��� representation�

Ft � �� �Ft�� � Vt �	�
�a�

E
Vt j Jt��� � � �	�
�b�

while ft � e�Ft is still interpreted as the conditional variance process�

ft�� � V ar
�t j Jt���� �	�	�

In other words� the conditional variance process is now characterized as a linear combi�

nation �de�ned by e� of state variables� the vector e will be called hereafter the variance

marginalization vector�

Since stationarity of Ft is assumed� we have implicitly assumed that the eigenvalues

of � have a modulus smaller than �� and in order to provide simple su�cient condi�

tions of positivity� a maintained assumption hereafter will be the nonnegativity of the

coe�cients of ��

One can lead here the same discussion about information sets as in the comment

of de�nition 
��� In the same way� one may state�

Proposition ��� If �t is a SR�SARV�p� process w�r�t� a �ltration Jt� with Ft the as�

sociated p�dimensional state variable and e the corresponding variance marginalization

vector� then� for any sub�ltration J�

t � Jt� �t is a SR�SARV�p� process with respect to

J�

t � and the associated p�dimensional state variable F �

t is given by

F �

t � E
Ft j J
�

t �

with the same variance marginalization vector�


�



As previously announced� the volatility process ft is no longer Markovian but follows an

ARMA�p�p��� process �as a marginalization of a VAR��� of size p� see e�g� Lutkepohl

�������� We are then able to prove the following generalization of Proposition ��� which

shows that for p � �� the squared innovation ��
t
will appear as an ARMA of higher

order and therefore reproduce a richer class of autocorrelation patterns	

Proposition ��� If �t admits a SR�SARV�p� representation� then ��
t
is a weak sta�

tionary ARMA�p�p� process�

��
t
� � �

pX

i��

�i�
�

t�i 
 �t �����

where �t is an MA�p� process such that

E
wt j Jt�p��� 
 � �����

We denote by �t 
 �t �
Pp

i�� �i�t�i� �t white noise�
Pp

i�� �i � �� the MA�p� repre�

sentation of �t� It is then straightforward to deduce from this representation something

like a weak GARCH�p�p� representation for �t	

EL
��t j H
s
t��� 
 ht �����a�

ht 
 � �
pX

i��

�i�
�

t�i �
pX

i��

�iht�i �����b�

where� according to the notations of Proposition ���� Hs
t�� is the Hilbert space spanned

by the constant and ��� � 	 � t�

Moreover	

�i 
 �i � �i� i 
 �� �

p

and then �see proof of Proposition ����	

pX

i��

�i 
 �� det�Id� ��

is the convenient measure of persistence of conditional heteroskedasticity if p is the

minimal order of the ARMA�r�r� representations �r�p� of ��t
��

However� as already stressed in section �� a property like ����� is much more pow�

erful that the usual de�nition of weak ARMA�p�p� �and corresponding notion of weak

GARCH�p�p�� which ensures only zero linear correlations� Its interpretation is close to

�Of course� if the marginalization ft � e�Ft creates some degeneracies in the dynamics �that is some
common roots in the ARMA representation ������� the measure of persistence should be reevaluated�

��



a martingale di�erence property� which may allow statistical inference through GMM

from the following observable moment restrictions�

E���
t
� � �

pX

i��

�i�
�
t�i j It�p��� � � ��	
�

Like to ��	
��� ��	
� belongs to the class of lagged moment restrictions studied by

Hansen and Singleton �
����	 For the SV framework� see Drost� Meddahi and Renault

�
����	 Moreover� the interest of restrictions ��	�� is that they are consistent with

the requirement of closeness under temporal aggregation	 This explain that the SR�

SARV�p� class itself is closed under temporal aggregation�

Proposition ��� Let �t a SR�SARV�p� process w�r�t� Jt� with the associated p�dimensional

state variable Ft and marginalization vector e� If for a given natural integer m� we con�

sider a �ltration J
�m�
km � k � N� such that for any k�

�
�m�
km � J

�m�
km � Jkm�

where

�
�m�
tm �

m��X

k��

akm�tm�k� ��	��

then �
�m�
tm � t � N� is a SR�SARV�p� process w�r�t� J

�m�
tm � with a corresponding p�

dimensional state variable vector F �m�
tm and a marginalization vector e�m� de�ned by�

e�m� � e

F
�m�
tm � A�m�E�Ftm j J

�m�
tm � �B�m�

where

A�m� �
m��X

k��

a�km�
m�k��

B�m� � �
m��X

k��

a�km�
m�k��X

i��

�i���

We have�

�
�m�
tm �

q
f
�m�
tm�mu

�m�
tm

f
�m�
tm � e�F

�m�
tm

F
�m�
tm � ��m� � ��m�F

�m�
tm�m � V

�m�
tm

with
��m� � �m

��m� � A�m��Id� �m��Id� ����� � �Id� �m�B�m��

��



In other words� the SR�SARV�p� class is on the one hand better suited to statistical

inference than the weak GARCH�p�p� class �thanks to ������ and on the other hand

shares with the weak GARCH class a temporal aggregation property �see Drost and

Nijman ������� for the weak GARCH result�� Moreover� we have a generalization of

the result �	�	��


F
�m�
tm � A�m�E�Ftm j J

�m�
tm 
 �B�m� �����

which proves that the temporal aggregation does not change the state variables process�

up to a convenient rescaling�

Indeed� our SR�SARV�p� representation shares with the weak GARCH�p�p� one the

idea of ARMA�p�p� dynamics for squared innovations� But� by stressing the underlying

VAR��� process of state variables Ft� we get� as already announced� a direct relation�

ship with usual continuous time multifactor modeling in Finance� This is the issue

addressed by Proposition ��� below� To the best of our knowledge� the relationship

between GARCH�p�p� modeling of higher order �p � �� and continuous time stochastic

volatility models was not clearly stated before in the literature� whatever the approach


di�usion approximation � �ltering �a la Nelson ������ � Nelson and Foster ������ or

closing the GARCH gap �a la Drost and Werker �������

De�nition ���

A continuous time stochastic volatility model �with zero�drift� for the asset price St

with p volatility factors F c
t is de�ned by


d�
LogSt
F c
t

� � �
�
K��� F c

t �
�dt�N�Diag��� F c�

t ��
���dWt ������

where Wt is a �p����univariate standard Wiener process and Diag�x� is the diagonal

matrix whose diagonal coe�cients are de�ned by the coe�cients of the row vector x�

Proposition ��� below is then the multifactor generalization of Proposition 	���


Proposition ��� When the continuous time stochastic process St is conformable to

������� for any sampling interval h� the associated discrete time process Log Sth

S�t���h
�

t � N� is a SR�SARV�p� process w�r�t� J
�h�
th � J

�h�
th � ��Log S�h

S�����h
� F c

�h� � � t� � � N��

In other words� from the di�usion ������� we obtain the class of discrete time SR�

SARV�p� which is closed under temporal aggregation� as discussed above� The relation

	�



between the continuous time parameters K� � and the discrete time parameters ��h��

��h� is the following �

��h� � e�Kh ���		�a


��h� � �Id� e�Kh
�h ���		�b


To see this� it is useful to understand that the state variable process F
�h�
t in discrete

time is one�to�one linearly related to the state process F c

t
in continuous time�

F
�h�
t � A�h�F c

t
�B�h� ���	



with

A�h� �
Z

th

�t���h
e�K�u��t���h� du � K���Id� e�kh


B�h� �
Z

th

�t���h
��Id� e�K�u��t���h��� du � �h Id�K���Id� e�kh
���

The equations ���		
����	

 extend respectively �
���
��
���
� We obtain in particular

the discrete time representation ���	
 for h � 	�

If we use the GARCH notations ����
� we see that we have �closed the GARCH

gap� �a la Drost and Werker �	���
 for GARCH of higher orders� Once more� we stress

that the SR�SARV�p
 structure is richer than the weak GARCH�p�p
 one� On the

other hand� any semi�strong GARCH�p�p
 can be seen as a particular SR�SARV�p


process� according to Proposition ��� below�

Proposition ��� If �t admits a semi�strong GARCH�p�p� representation then it is a

SR�SARV�p� w�r�t� Jt� Jt � It � ���� � � � t
�

Of course� the factor process Ft of size p exhibited in Proposition ��� is highly degen�

erated since it depends of one source of randomness� More generally� it is important to

keep in mind that a given ARMA�p�p�	
 volatility process ft may be represented as the

marginalization of a lot of VAR�	
 p�dimensional factor process Ft� and in particular

degenerated VAR�	
 processes�

However� for asset pricing purposes� the modeling we suggest here raises at least

two new issues�

� First� when the market for a given �nancial asset of price St involves incompleteness� it

is not always su�cient to introduce one state variable �t to fully describe the relevant

uncertainty� Indeed� even the joint process �St� �t
 may be not Markovian and the

relevant Markovian representation �St� Ft
 for asset pricing involve more state variables�

Moreover� this case appears to be realistic� according to the widespread �nding of asset

returns dynamics which correspond to GARCH of higher orders�


�



� Second� the de�nition ��� introduces a multivariate concept of leverage e�ect which

could be identi�ed with discrete time data through the correlation structure between

underlying ut and Vt� Let us notice that we could consider in �����	 even more general

structures �for instance positive exponent other than �
� and di�erent for all element

in the diagonal matrix of di�usion coe�cients of the state variables F c

t
	 since we only

need to ensure positivity and stationarity of the process F c

t
�

��� Time�varying risk premia

A large variety of dynamic asset pricing models is now available to explain how the

dynamics of the risk premia in asset returns may be related to stochastic volatility

dynamics by structural relations involving �xed parameters like risk aversion� discount

factor� elasticity of intertemporal substitution��� Such structural relations are often de�

duced from Euler equations corresponding to an intertemporal optimization program of

a representative agent� Among these models� the so�called consumption based CAPM

�see Lucas ��
��		 may be considered as a template� It provides the following Euler

equation�

� � �Et�rt���
ct��

ct
	�a� �����	

where � is a discount factor� a is a relative risk aversion parameter� ct is the time t

consumption and rt�� is the return on a given asset over period �t� t � ��� Et denotes

the conditional expectation given available information at time t� Without going into

details about it� we may deduce from �����	 and an assumption of joint conditional log�

normality the following usual relation �see for instance Hansen and Singleton ��
��		�

�Log� � mrt � amct �
�

�
���

rt
� a���

ct
� �a�rct	 �����	

where� with obvious notations�mrt�mct� �
�
rt
� ��

ct
and �rct denote respectively conditional

expectations� conditional variances and covariances�

The main issue we want to stress here is that� through such Euler equation� the

conditional expectation of a log�return may appear like a linear combination of�

� First� conditional expectation of some macroeconomic factors like aggregate con�

sumption� As usual� when risk aversion is present �a �� �	� predictability of asset

returns is not inconsistent with market e�ciency�

� Second� conditional variances of the return itself and of other factors�

� Third� conditional covariances between this return and other factors�

�




Of course� for several models �see for instance the basic CAPM�� some factors are

themselves asset returns�

In other words� some structural interpretations of asset returns time series models�

and particularly of dynamic models of �rst order and second order conditional moments�

imply that we have at our disposal versatile statistical structures where conditional

expectations� conditional variances and covariances may be combined through linear

aggregators� This is the main puzzle which motivates the sequel of the paper� More

precisely� we want to extend the basic SR�SARV�p� model in order to get on the one

hand statistical models able to capture structural restrictions like ������ about risk

premia dynamics and� on the other hand which remain true to the requirement of

robustness w�r�t� temporal aggregation�

According to ������� we have �rst to introduce in a given asset risk premium an

a	ne function of its conditional variance� This is the concept of SR�SARV�M �that

is SR�SARV in mean� which as presented in subsection ��� adapts to our setting the

usual ARCH�M model introduced by Engle� Lilien and Robins ��
���� As far as we

are concerned by robustness w�r�t� temporal aggregation� the SR�SARV�M model is

shown to be not only closed under changes of the sampling frequency but also under

discretizations where Ito
s lemma may introduce squared volatilities in the drift of the

processes�

��� SR�SARV�M models

The main purpose of this subsection is to extend the SR�SARV�p� model in order

to describe the dynamics of a time series yt� t � �� ���� of log�returns which is not a

martingale di�erence sequence� due to a risk premium linear w�r�t� conditional variance�

Indeed such a linearity must be seen as a marginalization of the state variable vec�

tor Ft whose variance marginalization e�Ft de�nes the conditional variance process� In

order to be consistent with our temporal aggregation requirement� it is important to

allow these two marginalizations to be di�erent� that is to consider a process�

yt � c� d�Ft�� � �t

E��t j Jt��� � �

V ar��t j Jt��� � e�Ft��

where d �resp e� is the risk premium �resp variance� marginalization vector� and these

two marginalization vectors may not be collinear� If one imagines for instance that the

sampling frequency is divided by two� one has to consider the conditional variance of

��



yt�� given a sub�� �eld J
���
t�� of Jt��� It is then clear that�

� On the one hand� the conditional variance V ar�yt�� j J
���
t��� will involve� not only the

volatility due to the innovation terms �t�� �and eventually �t in the �ow case	� but also

the conditional variance of the high�frequency risk premium d�Ft� In other words� the

temporal aggregation mixes the two marginalization vectors d and e in the conditional

variance process� This is the reason why a concept which would require collinearity

between d and e should not be robust with respect to temporal aggregation�

� On the other hand� the mere fact that the conditional variance of the high frequency

risk premium enters the conditional variance of the low frequency process implies that

we need a SV speci�cation of the state variable process Ft itself�

This is the reason why we propose the following de�nition�

De�nition ���

A stationary squared integrable process yt is called SR�SARV�p	 in mean �SR�

SARV�p	�M hereafter	 w�r�t� an increasing �ltration Jt� t � N� if there exists a

p�dimensional Jt�adapted stationary VAR�
	 process Ft� t � N� with nonnegative

components� such that�

yt � c� d�Ft�� � �t �
�
��a	

�t �
q
ft��ut �
�
��b	

ft � e��
� F �
t
	� �
�
��c	

E�ut j Jt��� � � �
�
��d	

E�u�
t
j Jt��� � 
 �
�
��e	

V ech�V ar��
yt

Ft

	 j Jt���	 � R � SFt�� �
�
��f	

where d is a vector of size p� e a vector of size p � 
 with nonnegative components�

R � �ri	 is a vector of size �p����p���
�

and S � �sij	 is a matrix of size �p����p���
�

�p such

that�

�r�� �s�i	
�
��i�p	

� � e� �
�
��g	

It is clear that de�nition 
�
 extends the de�nition 
�
� which� roughly speaking�

corresponds to the case c � � and d � �� But� as explained above with regard to the

temporal aggregation requirement� we need the additional restriction �
�
��f	 about

V ar�Ft j Jt��� and Cov�yt� Ft j Jt��	� Indeed� let us notice that� taking into account

�
�
��g	� the north�west equality of �
�
��f	 is nothing but the de�nition of e as the

variance marginalization vector of the SR�SARV�p	 process �t
�� Moreover� following

�The variance marginalization vector e is de�ned here by ft � e���� F �

t
�� instead of ft � e�Ft in the

de�nition ���� Indeed� this only corresponds to a change in the intercept of the VAR��� process Ft of
state variables�







a widespread tradition �see e�g� Bollerslev� Engle and Wooldridge ������� Engle and

Kroner ������� we represent in ������f� linear functions of Ft�� taking values in the

space of symmetric positive de	nite matrices by the notation V ech which does not

ensure by itself the positivity requirement� Of course� positivity could be ensured by

a representation 
a la BEKK �Baba� Engle� Kraft and Kroner quoted by Engle and

Kroner ��������

V ar��
yt

Ft

� j Jt��
 � H � � Diag �F �

t��
� �� ������

which reinforces the assumption ������f�� Indeed� we shall introduce below �see Propo�

sition ���� a continuous time process whose instantaneous variance is of the type �������

so that positivity is automatically ful	lled for any frequency of discrete time sampling�

To summarize� one way to understand the above discrete time modeling is to have

in mind an underlying continuous time model where both the �variance of the variance�

and the �conditional multivariate� leverage e�ect have to rise linearly with the condi�

tional variance� As noticed by Nelson and Foster ������ �see Proposition ��� below��

this is inconsistent with usual GARCH modeling� But Nelson and Foster ������ �pages

������ themselves with an optimal 	ltering point of view have stressed the continuous

time foundation of such an assumption�

By de	nition� the state variable process Ft admits a VAR��� representation

Ft � � � �Ft�� � Vt

E�Vt j Jt��
 � �

where � has eigenvalues of modulus smaller than �� Let us notice that with a mul�

tivariate notion of SR�SARV�p� process �see section � below for a precise de	nition��

������f� means that ��t� V
�

t
�� is a SR�SARV�p� process w�r�t� Jt�

As far as we are concerned by reducing the information sets along the lines of

Propositions ��� and ���� it is clear that any time�varying risk premium conformable

to a structural model like Euler equations will generally become stochastic w�r�t� a

reduced information set� This is the reason why we get only a �weak� version of the

reduced information result�

Proposition ��� If yt is a SR�SARV�p��M process w�r�t� a �ltration Jt� with Ft the

associated p�dimensional state variable� then� for any sub�ltration J�

t
� Jt� yt is a

SR�SARV�p��M process w�r�t� J�

t
as soon as Ft is J

�

t
�adapted�

When applied to a general SR�SARV�p� process� this result is weaker than Propo�

��



sition ��� since we have assumed that�

F
�
t
� Ft � J

�
t

instead of

F
�
t
� E�Ft j J

�
t
��

This additional requirement is necessary to ensure that the risk premium c � d
�
Ft��

belongs to J
�
t��

� Such a requirement is not innocuous since it may prevent us to main�

tain an assumption of 	observability
 of the state variables� that is to say a modeling

w�r�t� an information �ltration de�ned only by past returns and other data available

for the econometrician� 
volumes� durations� other asset price series���� Indeed� as al�

ready noticed by Pagan and Ullah 
������ Glosten� Jagannathan and Runkle 
�����

and by King� Sentana and Wadhwani 
������ 	the relations between risk premia and

conditional variances are sensitive to di�erential information between agents and econo�

metricians
 
quoted from King� Sentana and Wadhwani 
������� In other words� our

framework is not inconsistent with structural models of risk premia which belong� by

de�nition� to the information sets of the agents� We only claim that there are cases

where the information set of the economic agents are larger than the one of econome�

tricians� Option pricing models �a la Hull and White 
����� are typical examples where

a stochastic volatility process may belong to the agent�s information set 
for instance

because it is one�to�one related to quoted option prices� but is a latent 
unobserved�

process for the econometrician�

Of course� one could imagine to reduce the information set to past returns� As

already stressed in Proposition ���� this does not necessarily lead to a GARCH repre�

sentation since the latter maintains an additional assumption of perfect linear corre�

lation between conditional variance and squared returns� The point we want to stress

here is that such a perfect linear correlation is generally inconsistent with restriction


�����f�� In other words� even though GARCH models are particular case of SR�SARV

processes� they cannot be considered as innovation process of our SR�SARV
p��M mod�

els� Therefore� the setting of de�nition ��� does not contain the so�called 	GARCH

in mean
 processes �a la Engle� Lilien and Robins 
������ This is the price to pay to

de�ne a class which is robust w�r�t� temporal aggregation� The following proposition

provides a counterexample�

Proposition ��� Let �t be a strong�ARCH��� process� with conditional variance �given

It��� denoted by ht� and ut �
�tp
ht

standard gaussian white noise� Then� if there was

�We are grateful to R� Engle for having drawn our attention on this issue�

��



a state variable Ft of size p conformable to the de�nition ��� w�r�t� the �ltration

It �ft�� � ht � e���� F �

t��
�� � It���� we should have� for any positive integer k� a

marginalization ek �ek � IRp��� such that hkt � e�k��� F
�

t���
��

In other words� we are not able in general to de�ne a state variable vector Ft which

ensures that a given ARCH�M model

yt � f�ht� � �t

�t ARCH

falls in the category of SR�SARV�p��M� The main reason for this inconsistency is the

restriction �	��
�f� which plays an essential role for the temporal aggregation result be�

low for SR�SARV�p��M� Moreover� according to the Engle requirement �already quoted

in subsection ���� that linearity is needed to allow one to compute forecasts of vari�

ance without distributional assumptions� �	��
�f� is needed to compute something like

V ar�yt�� j Jt��
 without assumptions about the conditional higher order moments of

yt �for instance conditional kurtosis should appear through the conditional variance of

the risk premium d�Ft given Jt����

As far as we are concerned by temporal aggregation� we want to extend the argu�

ments of Proposition ��� with respect to aggregates�

y
�m�
tm �

m��X

k��

akmytm�k �	����

where y is a SR�SARV�p��M� We are then able to prove�

Proposition ��� Let yt a SR�SARV�p��M process w�r�t� Jt� with the associated p�dimensional

state variable Ft and marginalization vectors d and e� If for a given natural integer m�

we consider a �ltration J
�m�
km � k � N� such that for any k�

y
�m�
km � J

�m�
km � Jkm and Fkm � J

�m�
km

then y
�m�
tm � t � N is a SR�SARV�p��M process w�r�t� J

�m�
tm � with a corresponding p�

dimensional state variable vector F
�m�
tm and a risk premium �resp variance� marginal�

ization vector d�m� �resp e�m���

y
�m�
tm � c�m� � d�m��Ftm�m � �

�m�
tm

�
�m�
tm �

q
e���� F �

tm�m��u
�m�
tm

Ftm � ��m� � ��m�Ftm�m � V
�m�
tm

��m� � �m

	�



To understand the Proposition ���� it is worthwhile to have in mind the same

intuition as in ����� with the additional requirement Ftm � J
�m�
tm � Indeed� we have now

F
�m�
tm � Ftm�

Since as a di�erence with proposition ��� the matrices A�m� and B�m� do no longer

incorporate the computation of an expected aggregated squared volatility �see subsec	

tion 
�� for more explicit formulas in the simplest case�� one has to change the variance

marginalization vector� e�m� �� e�

On the other hand� due to the already explained more complicated e�ects of tem	

poral aggregation on risk premia� the risk premium marginalization vector d�m� does

not admit a so simple expression� However� we have of course�

d � �� d�m� � �

since temporal aggregation cannot introduce 
in mean� variance e�ects� Besides� it

turns out that if 
in mean� e�ects are present� they will generally introduce spurious

leverage e�ects by temporal aggregation since it can be shown �see Appendix� that�

�
�m�
tm �

m��X

k��

LkmVtm�k �
m��X

k��

akm�tm�k

where

Lkm � d�
k��X

i��

aim�
k�i��

such as the leverage e�ect will be introduced by the terms LkmVtm�k as soon as d �� ��

This general phenomenon will be illustrated below by an example in continuous time�

As in subsection ���� it is interesting to notice that our temporal aggregation result

can be extended to close the gap between continuous time and discrete time modeling�

by stating a direct relationship between our discrete time SR	SARV�p�	M framework

and usual multifactor di�usion models�

More precisely� we can consider an asset price process for which risk premium is

linear w�r�t� the factors of volatility�

d�
LogSt

F c
t

� � �
�� ��F c

t

K��� F c
t �

�dt�N�Diag��� F c�

t ��
���dWt ������

Let us notice that we had focused in the previous section on the particular case � � �

and � � �� Moreover� the precise structure of the di�usion matrix �Diag��� F c�

t ��
���

does matter now since we want to introduce conditional variances and covariances

which are linear w�r�t� F c
t �as already noticed� these restrictions were to a large extent

useless in the pure SR	SARV�p� setting�� We are then able to state�

��



Proposition ��� When the continuous time stochastic process St is conformable to

������� for any sampling interval h� the associated discrete time process Log Sth

S�t���h
�

t � N� is a SR�SARV�p��M process w�r�t� J �h�
th

� J �h�
th

� ��Log S�h

S�����h
� F c

�h
� � � t� � � N��

As for ������f�� the crucial assumption for this temporal aggregation result is the

linear structure of the instantaneous variance matrix NDiag��� F c�

t
�N w�r�t� F c

t
� This

type of multivariate square root process was already emphasized by Du�e and Kan

��		
�� and by Frachot and Lesne ��		�� as necessary and su�cient to get linear

factorial representation of the term structure of interest rates� It is quite amazing to

observe that this class of processes is also well�suited for linear aggregation�

To give more insight on the resulting leverage e�ect� it is worthwhile to detail the

case of one factor �F c

t
� ��

t
� which follows a usual square root process


d��
t
� k�� � ��

t
�dt� ��t dW

�

t
����	�a�

and can be identi�ed with the instantaneous volatility of


dSt

St

� ��� ���
t
� dt � �t dWt� ����	�b�

If for instance we assume a constant leverage e�ect

Cov�dWt� dW
�

t
� � � dt ����	�c�

the model ����	� is conformable to the general setting ������� This model is widely

used in the option pricing literature �see Bates and Pennachi ��		��� Gennotte and

Marsh ��		�� and Heston ��		���� Moreover� it is important to notice that the �in

mean� e�ect introduces a feature which is new w�r�t� all the previous results of this

paper� Until now� we were always able to claim �see for instance Proposition ��	� that

if leverage e�ect appears at a low frequency� it is necessarily occurs at the highest�

Unfortunately� this is no longer true with SR�SARV�p��M models since� due to mean

e�ect� temporal aggregation can creates a spurious leverage e�ect� To see this� we can

compute one�period returns by integrating ������b�


Log
St��

St

�
Z

t��

t

��� �� � �	����
u
�du �

Z
t��

t

�udWu� ������

Indeed� there is �in mean� e�ect as soon as � �� �	�� In this case� we observe that

the term �� � �	����
u
introduces the path of W �

u
� t � u � t � � � in the innovation

of Log St��

St
� As a consequence� it produces automatically a correlation between this

�




innovation and the one of the volatility process in discrete time� In other words� as

soon as � �� ���� it turns out that� even � � �� a leverage e�ect occurs which is

spurious because due to the risk premium ���
u
� Moreover� it is amazing to observe

that if the risk premium is not too large �� � ����� the resulting leverage e�ect

will be automatically in the usual sense �negative correlation�� This could provide

a theoretical explanation for widespread empirical 	nding as stressed for instance by

French� Schwert and Stambaugh ��
���
 �Our longer sample period and more inclusive

market index support Black�s conclusion
 leverage is probably not the sole explanation

for the negative relation between stock returns and volatility��

��� SV models with a predictable component

The previous section has stressed the di�culty of introducing common features in risk

premium and conditional variance processes� This di�culty has even led us to brush

away the GARCH processes as innovations processes�

This is no longer the case if we restrict the predicable part to be linear function

of lagged endogenous variables� The general multivariate setting which integrates the

two types of predictable components will be presented in section �� Let us just brie�y

stress in this subsection some speci	c features of univariate AR��� processes with SR�

SARV�p� innovations�

De�nition ���

A stationary squared integrable process yt is called AR��� with SR�SARV�p� errors

w�r�t� an increasing 	ltration Jt� t � N� if


yt � c� �yt�� � �t ������

j � j� �

�t SR� SARV�p� w�r�t� Jt�

Since� on the one hand the AR��� structure is robust w�r�t� information reduction

or temporal aggregation� and on the other hand ������ does not restrict the dynamics

of the innovation process more than the general SR�SARV�p� setting� all the results

of section ��� can easily be extended to the framework of de	nition ���� For example�

AR��� process with semi�strong GARCH�p�p� innovations are particular cases of �������

To be more precise� we just detail below some results about temporal aggregation�

To extend the arguments of Proposition ���� we should be interested on aggregates


y
�m�
tm �

m��X

k��

akmytm�k

��



where y is AR��� with SR�SARV�p� innovations� In this case� the temporal aggregation

of the AR��� structure would lead to ARMA����� in the general case �see e�g� Drost

and Nijman �������� To limit ourselves to a simpler case� easy to interpret �see below

interpretations in terms of interest rates�� we consider the case of stock variables�

y
�m�
tm 	 ytm� t 	 �� 
� ���

Proposition ���� Let yt 	 c � �yt�� � �t� where �t is a SR�SARV�p� w�r�t� an

increasing �ltration Jt� If for a given natural integer m� we consider a sub�ltration

J
�m�
km � k � N� such that for any k�

y
�m�
km 	 ykm � J

�m�
km � Jkm

then� y
�m�
km � t � N� is an AR��� process with SR�SARV�p� innovation process �

�m�
tm �

y
�m�
tm 	 c�m� � ��m�y

�m�
tm�m � �

�m�
tm

with
c�m� 	 c���

m

���

��m� 	 �m

�
�m�
tm 	

Pm��
k�� �k�tm�k

Let us notice that the properties of the SR�SARV�p� process �
�m�
tm can be deduced from

those of �t by applying the general results of Proposition ��� with akm 	 �k�

As in previous sections� the temporal aggregation result allows us to close the gap

with a classical continuous time model�

Proposition ���� Let us consider a generalized square�root process yt de�ned by�

d�
yt
F c
t

� 	 �
k�� � yt�
K��� F c

t �
�dt�N�Diag��� F c�

t ��
���dWt� ���

�

Then� for any sampling interval h� the associated discrete time process yth� t � N� is

AR��� with SR�SARV�p� innovations w�r�t� J
�h�
th � J

�h�
th 	 ��y�h� F

c
�h� � � t� � � N��

t � N�

yth 	 ���� e�kh� � e�khy�t���h � �
�h�
th

where �
�h�
th is conformable to the process characterized by Proposition ��	�

An interesting particular case is the degenerated one� where the only factor of the

SR�SARV process is yt itself� We are then led to consider the square�root process

popularized by Cox� Ingersoll and Ross ���
�� when yt is a short term rate�

dyt 	 k�� � yt�dt�
q
ayt � b dWt� ���
��

�




In this case� the discrete time representation may be written�

yth � ���� e�kh� � e�khy�t���h � �
�h�
th

with

�
�h�
th

� e�kh
Z

th

�t���h
ek�u��t���h�

q
ayu � b dWu

and

V ar��
�h�
th

j y�h� � � t� � a�h�y�t���h � b�h�

where�

a�h� � a
�� e��kh

k

b�h� � �a� � b�
�� e��kh

	k
� ae�kh

�� e�kh

k
�

It is amazing to notice that we have in this case something like AR��� process

with ARCH��� innovations� except that the conditional heteroskedasticity is charac


terized by linear combinations of past values of the process itself rather than squared

innovations�� Indeed� this is not surprising since� as already stressed� the general re


duction information result �in line of Proposition ���� may be applied in this setting�

In other words� one can always reduced the information set to past observables� which

opens the door to ARCH
type models�

As far as we are concerned by temporal aggregation of interest rates models� it is

worth noting that if yt is a continuously compounded 
short� term interest rate and we

divide by m the frequency of data recording� we generally observe� not only the short

term interest rate ytm� t � N� but also a longer term interest rate which is a �ow
type

aggregate of short term ones�

y
�m�
tm �

�

m

m��X
k��

ytm�k�

We are then able to complete the Proposition ���� �which may be applied to the

underlying continuous time model ���	��� by considering the general case

y
�m�
tm �

m��X
k��

akmytm�k� ���	��

Proposition ���� Let yt � c � �yt�� � �t� where �t is a SR�SARV�p� w�r�t� an

increasing �ltration Jt� If� for a given natural integer m� we consider a �ltration J
�m�
km

�

k � N� such that for any k�

fy
�m�
tm � ytmg � J

�m�
km

� Jkm

�We thank Feike Drost to have drawn our attention on this example�

��



where y
�m�
tm is de�ned by ������� then�

y
�m�
tm � c�m� � ��m�ytm�m � �

�m�
tm

with
c�m� � c �

���

Pm��
k�� akm��� �m�k�

��m� �
Pm��

k�� akm�
m�k

�
�m�
tm SR� SARV�p� process w�r�t� J �m�

km �

� Multivariate Case

We �rst provide in the subsection ��� below some natural multivariate generalizations of

the previous concepts of SR�SARV�p� and SR�SARV�p��M processes� We do not detail

the extended statements of the previous results �projection	 temporal aggregation	

relationships with GARCH and di
usion models� since these results could generally be

easily extended at the price of cumbersome formulas� We prefer to stress in subsection

��� below the speci�c issues of the multivariate analysis	 that is contemporaneous

aggregation and marginalization�

��� The general setting

We �rst extend to a multivariate m�d�s� Yt the de�nition ���


De�nition ��� A stationary second order process Yt of size n	 is called a multivariate

SR�SARV�p� w�r�t� an increasing �ltration Jt	 t � N	 if there exists a p�dimensional

Jt�adapted stationary VAR��� process Ft	 t � N	 with nonnegative components	 such

that


Yt � �Gt���
�
�Ut �����a�

E�Ut j Jt��� � � �����b�

V ar�Ut j Jt��� � Idn �����c�

V echGt � R � S Ft �����d�

where Yt � IRn� Ft � IRp� Ut � IRn	 R � IR
n�p���

� 	 S is a matrix of size n�n���
�

� p and

Gt is a process of symmetric positive de�nite matrices of size n�

It is clear that de�nition ��� extends the de�nition ��� to a multivariate setting�

Indeed	 if n � �	 Gt � R � S Ft is a scalar process which can be rewritten Gt � e� �Ft

where e � S � and �Ft is a VAR��� process of size p which can for instance be de�ned

from Ft by


�Ft �
R

s�
��� ������� � Ft

��



if the �rst coe�cient s� of S is nonzero� In any case� the VAR��� representation of Ft

and �Ft di�er only by the intercept ��

Up to this slight change of notations� all the results of section 	�� can easily be

extended to this setting� Even if we do not detail it for briefness� we want particularly

stress here the temporal aggregation result for a multivariate SR
SARV�p� process�

since� to the best of our knowledge� no such results are available in the literature for

multivariate conditional heteroskedasticity� Indeed� the weak GARCH concept has not

been extended to a multivariate setting�

As far as one is concerned by the relationship between de�nition ��� and multivariate

GARCH� one can notice some similarity between our de�nition ��� and the multivariate

Generalized ARCH models as described by Engle and Kroner ����
�� It turns out that�

like us� Engle and Kroner ����
� introduce �rst the so
called �vec representation�

before claiming that the BEKK representation is �a new parameterization that easily

imposes �the positivity� restrictions and that eliminates very few if any interesting

models allowed by the vec representation�� As already announced� we are able to write

a BEKK type representation�

Gt�� � H � � Diag�F �

t��
��� �����

which ensures positivity� Moreover� a continuous time setting may be built with such a

variance representation �the multivariate extension of de�nition 	�� is straightforward��

On the other hand� for temporal aggregation purposes� we have chosen here to stress

the VAR��� representation of a state variables vector� This VAR��� representation is

not well
suited with respect to the BEKK parameterization since there is no simpler

way to incorporate VAR��� dynamics

Ft � �� �Ft�� � Vt ���	�

in the BEKK representation ������ Of course� as noticed by Engle and Kroner ����
��

almost all V ec representation can be rewritten in a BEKK form�

Gt�� � H �
KX

k��

�k Diag�F
�

t��
���

k
�����

for su�ciently large K� As already explained� we have preferred here for various rea


sons �in particular� the relation with modern continuous time �nance� to focus on

�Indeed� this choice of parameterization was already encountered in the ARCH literature� When
one considers a ARCH��� model� �t �

p
htut� ht � ����

�

t��
� various authors �see for instance Broze

and Gouri�eroux ��		
� and Newey and Steigerwald ��		��� prefer the parameterization �t � �

p
�htut�

�ht � � � ����
t��

�

��



p�dimensional VAR��� process of state variables� Let us recall that it may represent

higher order GARCH�p�p� models �as it was detailed in the univariate setting� see

proposition ���� while BEKK representation of GARCH�p�p� model �a la Engle and

Kroner ��		�� necessitates a large number of parameters� Indeed� one additional ad�

vantage of our representation is that the p state variables play the role of factors

in both the transversal and longitudinal dimensions
 they summarize not only the

cross�covariances but also the higher order dynamics� Our approach follows an old

tradition of multivariate time series analysis where ARMA processes are represented

by Markovian state space models
 �If one accepts the notion of a vector variable� then

it is natural to think that in a su�ciently full description of a given physical situation

the process would be Markov
 �quoted from Whittle ��		��� page ����

Finally� it is worthwhile to notice that the de�nition ��� allows for stochastic dy�

namics even at the level of cross�correlations� in other words� we capture more general

multivariate dynamics than the restricted multivariate GARCH model of Bollerslev

��		�� or the log�normal multivariate stochastic volatility model of Harvey� Ruiz and

Shephard ��		�� which maintain an assumption of constant cross�correlations� How�

ever� it is clear that such a degree of freedom could be introduced in the log�normal

SV model in the same way that here by considering for instance


Gt � A exp�Diag�F �

t
�� A��

Let us now consider the multivariate extension of the SV in mean de�nition ���


De�nition ��� A stationary second order process Yt of size n� is called a multivariate

SR�SARV�p��M w�r�t� an increasing �ltration Jt� t � N� if there exists a p�dimensional

Jt�adapted stationary VAR��� process Ft� t � N� with nonnegative components� such

that


Yt � C �DFt�� � �t �����a�

�t � �Gt���
�
�Ut �����b�

E�Ut j Jt��� � � �����c�

V ar�Ut j Jt��� � Idn �����d�

V ech�V ar��
Yt

Ft

� j Jt���� � R � S Ft�� �����e�

where Yt � IRn� Ft � IRp� Ut � IRn� C � IRn� R � IR
n�p���

� � D is a matrix of size

n� p� S is a matrix of size n�n���
�

� p and Gt is a process of symmetric positive de�nite

matrices of size n�

��



Let us notice that� for sake of notational simplicity� we have not introduced in def�

inition ��� the most general setting with both risk premia and predictable components

in the spirit of de�nition ���� Both the previous de�nitions and the previous results

�projection� temporal aggregation� relation with continuous time� could be easily ex�

tended at the price of cumbersome formulas� This is the reason why we have chosen

to focus in this section � on the speci�c features of the multivariate analysis� that is

contemporaneous aggregation and marginalization�

��� Marginalization and Contemporaneous aggregation

As already stressed by Nijman and Sentana �	

��� little attention has been paid in

the literature until now on �rst the relation between a multivariate model of condi�

tional heteroskedasticity and the implied univariate models for the components �the

so�called marginalization issue� and second the e�ect of taking linear combination

of univariate GARCH models �the so�called contemporaneous aggregation issue��

Nijman and Sentana �	

�� emphasize some contexts of Financial Econometrics where

contemporaneous aggregation is a crucial issue


� First� if one considers �the �log� returns in the Deutsche mark�US dollar exchange

rate � the US dollar�Japanese yen rate� and the Deutsche mark�Japanese yen rate� As

the returns on the third exchange rate are simply the sum of the returns on the �rst

two exchange rates� the GARCH models for these exchange rates implicitly specify a

model for the third exchange rate as well��

� Second� in the same spirit� �the relation between the models for �the� individual

stocks and the one for the portfolio� should imply some robustness of conditional

heteroskedasticity models with respect to contemporaneous aggregation�

But� Nijman and Sentana �	

�� observe that �the parametric structure of the com�

monly used GARCH models is lost by taking linear combinations or by marginalizing��

This is the reason why they prove that linear combinations and marginalizations are

of the weak GARCH type�

However� their seminal work raises at least two issues


�On the one hand� as already stressed in section �� the weak GARCH concept su�ers

from a lack of structure and one would like to get more statistical properties about the

scalar processes obtained by marginalization or contemporaneous aggregation�

� On the other hand� it is a pity that Nijman and Sentana �	

�� do not obtain a

robustness result �a la Drost and Nijman �	

��� Indeed� they have not been able to

de�ne a multivariate weak GARCH concept and to prove that the resulting class of

processes is invariant by linear transformations�

��



This is the reason why we believe that it is useful to prove a general invariance result

for the class of multivariate SR�SARV�p� processes� This is the following proposition

����

Proposition ��� If Yt is a multivariate �of size n� SR�SARV�p� �resp SR�SARV�p��

M� process w�r�t� an increasing �ltration Jt� t � N� with the associated p�dimensional

state variable Ft� while A and B are given matrices of respective sizes q� � and q� n�

then B Yt �resp A�B Yt� is a multivariate SR�SARV�p� �resp SR�SARV�p��M� process

w�r�t� Jt with the same vector Ft of state variables�

Of course� Proposition ��� is a generalization of the Nijman and Sentana result�

due to the relationships between SR�SARV� semi�strong GARCH and weak GARCH

already described in section �� Let us notice moreover that our general multivariate

linear setting may be incorporated without additional di	culty within simultaneous

equations systems �including exogenous variables� 
a la Engle and Kroner ������� In the

same way� structural ARCH 
a la Harvey� Ruiz and Sentana ������ and King� Sentana

and Wadhwani ������ as well as ARCH factor models 
a la Diebold and Nerlove ���
��

can be seen as particular cases of our setting�

� Conclusion

We have proposed in this paper a new concept of semiparametric stochastic volatil�

ity model which appears to be the good framework for structural interpretations of

times series models with conditional heteroskedasticity� Actually� if one wants to con�

sider time series of conditionally heteroskedastic asset returns� there was no framework

available until now to capture in the same setting temporal aggregation or portfolios

of these returns� On the one hand� it is well known that the usual GARCH setting is

not robust with respect to temporal and contemporaneous aggregations� On the other

hand� the only robust setting already suggested in the literature� that is the Drost and

Nijman ������ weak GARCH one� su�ers from several drawbacks�

� It renounces to the concept of conditional variance� which is a pity for both

�nancial interpretation and statistical inference�

� It does not admit multivariate or �in mean� versions and cannot capture the well

documented leverage e�ect�

The SR�SARV setting proposed here overcomes these di	culties because it extends

the usual GARCH class without losing the essential above properties and the nice

intuition of ARMA representation of squared innovations� Moreover� all the results

��



of the weak GARCH literature �Drost and Nijman ������� Drost and Werker �������

Nijman and Sentana ������� are shown to be particular cases of our general results

since� roughly speaking� if leverage e�ect is precluded� our SR�SARV processes are

weak GARCH	

Moreover� we are even able to give stochastic volatility type representations of

GARCH�p�p�

The only loss with respect to GARCH is the introduction of an unobserved stochas�

tic volatility process which obliges one to think in a state space form	 But� perhaps

one of the main contribution of this paper is to stress that volatility models are always

speci
ed with respect to a given information set and that� according to the mainstream

asset pricing tradition� the econometrician is always allowed to reduce the information

set without invalidating the model	 In particular� one always can reduce the infor�

mation set up to observables� without necessarily encountering the GARCH setting

since it is shown that the usual GARCH����� model is tantamount to two restrictive

assumptions�

� First� it assumes perfect linear correlation between squared innovations and

conditional variance	

� Second� it assumes that the variance of the variance raises linearly with the

squared variance �a drawback already pointed out by Nelson and Foster �������	

Moreover� we are even able to give stochastic volatility type representations of

GARCH�p�p� of higher orders �p � �� through a state �volatility� vector which is a

VAR��� of size p	

The only case where one cannot reduce the information sets without changing the

form of the model is the 
in mean� case� where risk premium have to be in the infor�

mation sets of the economic agents	 This is conformable to the most recent modeling

of asset returns �see e	g	 King� Sentana and Wadhwani ������� and opens the door

for future research on structural multivariate modeling of time varying volatility	 Fi�

nally� let us recall that the inference issue is not explicitly addressed in this paper even

though we provide here the main tool for it� conditional lagged moment restrictions

�a la Hansen and Singleton ������	 The details of practical implementation in the sto�

chastic volatility setting of Hansen and Singleton ������ general approach for optimal

instruments are discussed in Drost� Meddahi and Renault ������ paper	

��
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APPENDIX

Proof of Proposition ���

Let u�
t
� �tp

f�
t��

� We have�

E�u�t j J�t��� � �p
f�
t��

E�E��t j Jt��� j J�t��� � ��

E��u�t �
� j J�t��� � �

f�
t��

E�E���t�
� j Jt��� j J�t��� � �

f�
t��

E�ft�� j J�t��� � ��

Proof of Proposition ���

Let us consider �t a GARCH��	�� de
ned by ����
��� Let ft�� � ht � E���t j It���
and ut �

�tp
ht

� By de
nition	 ut is conformable to �����b� and �����c�

E�ut j It��� � � and E�u�t j It��� � �

while ft is an It
adapted AR��� process since	 by ������

ft � � � ���t � �ft�� � � � �ft��u
�

t � �ft�� � � � �� � ��ft�� � �t

which provides the AR��� representation with an innovation process�

�t � �ft���u
�

t � ��

since�

E�u�t j It��� � � �� E��t j It��� � ��

Then	 given It��	 �
�

t and �t � �ft���
��
t

ft��

� �� are conditionally perfectly positively

correlated �since � � ��� A fortiori this is the case for ��t and ft � � � �ft�� � �t�

Moreover�

V ar�ft j Jt��� � V ar��t j Jt��� � ��V ar���t j Jt���
with �� � �� � �� � ����

Conversely	 let us now consider a SR
SARV��� process �t which ful
lls the two

restrictions of Proposition ���� By the 
rst restriction	 we know that�

ft � at�
�

t � bt� at� bt � Jt���

with �V ar�ft j Jt������� � at�V ar���t j Jt��������
Thus	 by the second restriction	 we know that at is a positive constant � smaller or

equal to �� Therefore�

ft � �ft � bt

and	 taking conditional expectation E�� j Jt����

E�ft j Jt��� � �ft�� � bt�

��



By identi�cation with the AR��� representation �see ������a�� of ft� we conclude

that�

bt � � 	 �ft�� where � � � � � � 
�

Thus� ft � � 	 ���
t
	 �ft���

which proves that ft is also It�adapted �see 
 � � � � � ��� Then we know by

Proposition ��� that �t is also a SR�SARV��� process w�r�t� It and ft � V ar��t�� j It
�

Therefore� with�

ht � ft�� � V ar��t j It��


we do get the GARCH����� representation�

ht � � 	 ���
t�� 	 �ht���

Proof of Proposition ���

Let �t be a SR�SARV��� process which ful�lls the �rst restriction of Proposition ����

Then�

ft � at�
�

t
	 bt� at� bt � Jt���

and�

E�ft j Jt��
 � atE���
t
j Jt��
 	 bt � atft�� 	 bt�

Therefore� by di�erence�

�t � at��
�

t
� ft���

and�

E�ut�t j Jt��
 � atE�ut�
�

t
j Jt��
� atft��E�ut j Jt��
 � atft��E�u�

t
j Jt��
�

which proves that�

E�ut�t j Jt��
 �� 
�� E�u�
t
j Jt��
 �� 
�

Proof of Proposition ���

�t �
q
ft��ut �

q
f �
t��u

�

t
�

Then� E���
t
j Jt��
 � f

���
t��E�u�t j Jt��
� and

E���t j Jt��
 �� 
�� E�u�t j Jt��
 �� 
�

For the same reason�

E���t j J
�

t��
 �� 
�� E��u�t �
� j J�t��
 �� 
�

��



Since� by iterated projections�

E���
t

j Jt��� � � �� E���
t
j J�

t��
� � ��

we can conclude that�

E�u�

t
j Jt��� � � �� E��u�

t
�� j J�

t��
� � ��

On the other hand�

E�ut�t j Jt��� � E�utft j Jt��� �
�p
ft��

E��tft j Jt����

Thus�

E�ut�t j Jt��� � ��� E��tft j Jt��� � ��

and for the same reason

E�u�
t
��
t
j J�

t��
� � ��� E��tf

�

t
j J�

t��
� � ��

But�

E��tf
�

t
j J�

t��
� � E��tE�ft j J�t � j J�t��

� � E�E��tft j J�t � j J�t��� � E��tft j J�t���

since �t � It � J�
t
and J�

t��
� J�

t
	 But� by iterated projections�

E��tft j Jt��� � � �� E��tft j J�t��� � ��

and therefore

E�ut�t j Jt��� � � �� E�u�
t
��
t
j J�

t��
� � ��

Proof of Proposition ���

��
t
� ft��u

�

t
� �u�

t

 �ft��u

�

t

 �t��u

�

t
�

Therefore� if we de�ne� �t � ��
t
� � � ���

t��
� we have�

�t � ��u�

t
� �� 
 �ft���u

�

t
� u�

t��
� 
 �t��u

�

t
�

It is clear that� E��t j Jt��� � �

since�
E�u�

t
j Jt��� � �

E�u�

t
� u�

t��
j Jt��� � �� � � �

E��t��u
�

t
j Jt��� � E��t��E�u�

t
j Jt��� j Jt��� � E��t�� j Jt��� � ��

Therefore� since� ���� � � � t� �� � ����
�
� � � t� �� � Jt���


�



we have�

Cov��t� �t�h� � � � h � ��

Thanks to our stationarity assumption� we are able to conclude that �t is MA���� that

is �t � �t � ��t��� where �t is a white noise�

Proof of Proposition ���

Let us denote by �t the innovation of the process ��
t
�

��
t
� �t � EL	��

t
j �� ��

�
� � � t
�

We want to show that �t is a weak GARCH if and only if�

Cov��t� ��� � �� �� � t�

But� these equalities are tantamount to claim that

��
t
� EL	��

t
j �� ��

�
� � � t


is orthogonal� not only to �� ��
�
� � � t� but also to �� � � � t� that is�

EL	��
t
j �� ��

�
� � � t
 � EL	��

t
j Ht��
�

In other words�

Cov��t� ��� � �� �� � t�� ��
t
� �t � EL	��

t
j Ht��
 �t�

Thanks to this characterization� we �rst check that ������ implies that �t is a weak

GARCH� Let us de�ne� � � 	 � ��

We want to prove that ������ implies that�

EL	��
t
j Ht��
 � � � ���

t��
� �EL	��

t��
j Ht��


that is� according to the above characterization� that�

��
t
� �t � � � ���

t��
� ����

t��
� �t����

This results straightforwardly from the ARMA representation of ��
t
�

Conversely� let us assume that �t is a weak GARCH� that is�

EL	��
t
j Ht��
 � � � ���

t��
� �EL	��

t��
j Ht��


for a given �� with � � �� � � �� We want to prove that ��
t
is an ARMA����� process

conformable to ������ and �������


�



Let us de�ne ��t � ��
t
� EL���

t
j Ht���� By de�nition�

Cov���t� ��� � 	� �� � t�

Therefore
 it is su�cient to prove that ��t � �t� But by de�nition of the weak GARCH

representation
 we have�

��
t
� ��t � � � ���

t��
� ����

t��
� ��t���

that is�

��
t
� �� � ����

t��
� � � ��t � ���t���

Moreover
 thanks to the assumed stationarity of �t
 we know that ��t is a white noise


and by �
�
	�c�
 	 � � � � � ��

We are then able to conclude
 thanks to the unicity of the ARMA representation of

the stationary process ��
t
that�

��t � �t and � � � � 	�

This achieves the proof of Proposition 
���

Proof of Proposition ���

The SR�SARV��� property implies
 by Proposition 
��
 that ��
t
is an ARMA��
��

process� Therefore
 by Proposition 
��
 �t is a weak GARCH��
�� if and only if �
�

� is

ful�lled� But
 since by the ARMA representation of ��
t

 the Hilbert space Hs

t
coincides

with the Hilbert space spanned by �� �� � � � t
 the condition �
�

� is implied by the

following symmetry property of the process ��

Cov��t�� �
�

t
� � 	 � t� t�

that is

E��t��
�

t
� � 	 � t� t��

Thus
 we are going to prove this symmetry property� Indeed
 we will prove the stronger

result �which will be useful in the following��

E��t��
�

t
j J� � � 	 � t� t� and � �Min�t� t��� � �A���

� �st case� t� 
 t� Then�

E��t��
�

t
j Jt��� � E���

t
E��t� j Jt���� j Jt��� � 	

by �
���b��

� 
nd case� t� � t� Then�

E��t��
�

t
j Jt��� � E���

t
j Jt��� � f

�

�

t��E�u
�

t
j Jt��� � 	

��



by ������a��

� �rd case� t� � t� Then

E��t��
�
t
j Jt���� 	 E��t�ft��E�u�

t
j Jt��� j Jt���� 	 E��t�ft�� j Jt����

by to ���
�c��

Since ft is an AR��� �by ������a��� we have�

ft�� 	
�X

i��

�i�t���i 
 E�ft����

Hence

E��t�ft�� j Jt���� 	
�X
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Proof of Proposition ���

In this proof� we will produce a VAR�
� such that the GARCH�p�p� conditional

variance process ht is a marginalization of this vector


Let �t �
p
htut a GARCH�p�p�� with

ht � � �
pX

i��

�i�
�
t�i �

pX
i��

�iht�i

Hence

ht � � �
pX

i��

��i � �i�ht�i �
pX

i��

�iht�i�u
�
t�i � 
�

This implies that the process ht is an ARMA�p�p�
� and its innovation process is

�t�� � ��ht���u
�
t�� � 
�
 Then� there exist coe�cients ��i� �i�� i � 
� ��p of modulus

smaller than one and such that�

�
pY

i��

�
� �iL���ht � 	� � �
p��Y
i��

�
� �iL���t��

where 	 � E�ht� and L is the Lag operator
 For the simplicity of the proof� we assume

that the coe�cients �i are di�erent� and are not equal to zero �other cases could be

handled in the same way�
 Let us de�ne for j�
��

p��

Aj�x� �
pY

i���i��j

�
� �ix��

��



For j������p� Aj�x� is in Cp���X�� the family of polynomial of degree smaller or equal

than p� � and with coe	cients in the 
eld of complex numbers C� We have

�i� i �� j� Aj�
�

�i

� � �

and

Aj�
�

�j

� �� ��

Therefore Aj�x�� j � �� ��p is a basis of Cp���X��
Qp��

i�� ����ix� is in Cp���X�� so there

exist aj� j � ����p such that�

p��Y

i��

��� �ix� �
pX

j��

ajAj�x��

Let

Fj�t�� �
�

p

 ��� �jL�

��aj�t���

We have�

�
pY

i��

��� �iL���Fj�t�� �
�

p
� � Aj�L�aj�t���

Hence
pX

j��

�
pY

i��

��� �iL��Fj�t�� �
�

p
�� �

pX

j��

Aj�L�aj�t���

that is

�
pY

i��

��� �iL���
pX

j��

�Fj�t�� �
�

p
�� � �

pX

j��

ajAj�L���t�� �
p��Y

i��

��� �iL��t��

But the ARMA representation de
nes an unique second order stationary process� we

can conclude that

ht �
pX

j��

Fj�t��

that is ht � e�Ft�� with e� � ��� ���� and F �

t � �F��t� ��Fp�t�� Moreover� it is clear that Ft

is a VAR��� w�r�t� It�

This achieves the proof of Proposition ����

Proof of Proposition ���

Since Ft � J�

t and J�

t � Jt� we have�

E�yt j J
�

t��� � c
 d�Ft�� 
 E�E��t j Jt��� j J
�

t��� � c
 d�Ft���

��



By Proposition ���� we know that �t is a SR�SARV�p� w�r�t� J�

t
� To complete the

proof� we should prove that �yt� Ft� is conformable to the restriction ������f� w�r�t� J�

t
�

We have�

V ech�V ar	�
yt

Ft

� j J�

t��

�

� V ech�E	V ar	�
yt

Ft

� j Jt��
 j J�

t��

 � V ar	E	�

yt

Ft

� j Jt��
 j J�

t��

�

� E	R � S Ft�� j J�

t��

 � V ech�V ar	�

c� d�Ft��


 � �Ft��

� j J�

t��

�

� R � S Ft�� � � � R � S Ft���

This achieves the proof of Proposition ����

Proof of Proposition ���

The proof will be performed by induction on k� taking into account that for k � ��

hk
t is by de�nition a marginalization of ��� F �

t��
���

ht � e���� F �

t��
���

Let as assume that�

hr
t � e�r��� F

�

t��
��� for r � �� ���k�

Then

Cov�ht� h
k
t j Jt��� � e�Cov���� F �

t���
�� ��� F �

t���
� j Jt���ek � e��

� �
� V ar	Ft�� j Jt��


�ek

Since� by ������f�� V ar	Ft�� j Jt��
 has all its coe�cients expressed as a marginalization

��� F �

t���
�� it is then clear that Cov�ht� h

k
t j Jt��� is itself a marginalization of ��� F �

t���
��

But� by the ARCH representation�

ht � � � ���t���

we have�

hk
t � �k � �k��kt�� �

k��X

j��

C
j
k�

j�k�j�
��k�j�
t��

and thus�
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k
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�
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j
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Moreover� since �t is a strong ARCH��� process� Cov�u�t��� u
��k�j�
t�� j Jt��� for j �

�� ���k��� is a �xed real number ��k�j�� Taking into account the induction assumption�

��



we get�
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k
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C
j
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j�k���j��k � j�e�k���j��� F
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Since Cov�ht� h
k
t j Jt��� is also a marginalization of ��� F �

t���
�� we conclude that �k��hk��t����k�

is such a marginalization too� This proves that hk��t�� is itself a marginalization of

��� F �

t���
� �which achieves the proof by induction� as soon as�

�k����k� �� �

that is� as soon as�

� �� � �genuine ARCH e	ect� and ��k� � E�u�k��t�� �� E�u�kt��� �� ��

This is the case if ut� t � N� are i�i�d N ��� �� since in this case� we have E�u�k��t�� � �

�
k � ��E�u�k��t�� ��

Proof of Proposition ���
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m��X

k��

akmd
��
m�k��X

j��


j��

d�m� � �
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where
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i

Hence�

�
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m��X
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Pkm�
�tm�k

Vtm�k
�

where Pkm � �akm� Lkm� for k � �� ��m and P�m � �a�m� ���

If we de	ne F �m�
tm � Ftm
 F

�m�
tm is a VAR��� with�

Ftm � ��m� � ��m�Ftm�m � V
�m�
tm
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��m� �
m��X
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�k�

��m� � �m
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�m�
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m��X

k��
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�

We will prove that �
�
�m�
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V
�m�
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� is conformable to ����
�f�� We have�
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tm

V
�m�
tm

� �
m��X
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�tm�k
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�
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Pkm

�� �k ��

Since ��tm�k� V
�

tm�k� are not correlated
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�
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Let us recall some properties of the Vec and Vech operators
 quoted from Lutkepohl

�������Let D� and L� the duplication and elimination matrices
 with the appropriate

sizes� We have�
V ec�A� � D�V ech�A��
V ech�A� � L�V ec�A��
V ec�ABC� � �C � � A�V ec�B��

Hence

V ech�ABC� � L��C
� � A�V ec�B� � L��C

� � A�D�V ech�B��

��



Then we have�
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Let r�m�
� the 	rst coe
cient of R�m�� e�m��

� � �S�m�
�i ���i�p and e�m�� � ��� e�m��

� ��
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f
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tm�m � V ar��
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tm�m� � e�m����� F �
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We must show that u
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By construction E��
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This achieves the proof of Proposition �
�


Proof of Proposition ��� Let us 	rst show an exact discretisation formula in a

general setting
 Let a multivariate process Xt of size n such that�

dXt � G�H �Xt� �N�Xt�dWt �A
��

We de	ne Yt � eGt�Xt �H�
 By the Ito lemma� we have

dYt � eGtN�Xt�dWt

Hence

Yt��t � Yt �
Z t��t

t
eGuN�Xu�dWu

��



and

Xt��t � �Idn � e�G�t�H � e�G�tXt � e��t
Z t��t

t
eG�u�t�N�Xu�dWu �A���

Let us consider the process de�ned by �	�
�� � we assume� without loss of generality�

that ���� � ���� The process de�ned by �	�
�� is conformable to �A�
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The �rst component of the equation �A��� gives the SR�SARV�p��M equation� and the

p last components give the dynamic of F c
th� t � N� As usual�
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This achieves the proof of Proposition 
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Proof of Proposition ����

Let L be the Lag operator� We have y
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This achieves the proof of Proposition ���	�

Proof of Proposition ����
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Proof of Proposition ����

��



We have yt � c� �yt�� � �t� hence�
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Proof of Proposition ���
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