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RESUME

Nous donnons un cadre théorique pour expliquer le fait empirique que les béta
estimés sont sensibles a lintervalle de I'échantillon méme en utilisant des rendements
composés sans interruption. La composante permanente est un mouvement brownien
géomeétrique standard et la composante transitoire est un processus stationnaire Orstein-
Uhlenbeck. La représentation en temps discret des béta dépend de lintervalle de
I'échantillon et de deux composantes appelées "béta permanent et transitoire”. Nous
montrons que, si la composante transitoire n'est pas présente dans les prix des actifs, il
n'existe pas d'effet d'intervalle de I'échantillon. Cependant, la présence d'une composante
transitoire implique que le béta est une fonction croissante (décroissante) de l'intervalle de
I'échantillon pour actifs plus (moins) risqués. Dans notre cadre théorique, les actifs sont
risqués si ses "béta permanents"” sont plus grands que ses "béta transitoires” et vice versa
pour des actifs moins risqués. Les simulations montrent que nos résultats théoriques
donnent une bonne approximation pour les moyennes et écart-types des béta estimés en
petits échantillons. Nos résultats peuvent étre percus comme une évidence indirecte de la
présence d'une composante transitoire dans les prix des actifs, comme proposeé par Fama
et French (1988) et Poterba et Summers (1988).

Mots clés : équations différentielles stochastiques, processus de Wiener, efficacité des
marchés, retour a la moyenne, processus d'Ornstein-Uhlenbeck

ABSTRACT

We provide a theoretical framework to explain the empirical finding that the
estimated betas are sensitive to the sampling interval even when using continuously
compounded returns. We suppose that stock prices have both permanent and transitory
components. The permanent component is a standard geometric Brownian motion while
the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time
representation of the beta depends on the sampling interval and two components labelled
"permanent and transitory betas". We show that if no transitory component is present in
stock prices, then no sampling interval effect occurs. However, the presence of a transitory
component implies that the beta is an increasing (decreasing) function of the sampling
interval for more (less) risky assets. In our framework, assets are labelled risky if their
"permanent beta" is greater than their "transitory beta" and vice versa for less risky assets.
Simulations show that our theoretical results provide good approximations for the means
and standard deviations of estimated betas in small samples. Our results can be perceived
as indirect evidence for the presence of a transitory component in stock prices, as
proposed by Fama and French (1988) and Poterba and Summers (1988).

Key words : stochastic differential equations, Wiener process, market efficiency, mean-
reversion, Ornstein-Uhlenbeck process



1 Introduction

The Capital Asset Pricing Model (CAPM) has been the object of numerous studies over
the past thirty years. Developed by Sharpe (1964) and Lintner (1965), it is based on the
assumption that investors are risk-averse and construct their portfolios according to a mean-
variance criterion. The basic relation says that in equilibrium there exists a linear relation
between the return of a given asset or portfolio and the return of the market portfolio.

An empirical feature that has attracted some attention is the fact that the estimated
beta (or systematic risk of an asset or portfolio) is sensitive to the sampling interval used
to compute the returns. This “interval effect” has been analyzed in relation with another
anomaly, the size effect, which shows a significant relation between returns and the market
values of firms. Banz (1981) has analyzed this effect and showed that the smaller is a firm
the higher is its expected return. For the interval effect, the empirical studies show that
changes in the sampling interval used induce a bias in the estimate of the systematic risk
whose magnitude depend on the size of the firms as measured by their market value.

According to Pogue and Solnik (1974), Roll (1981) and Reinganum (1982), the beta is
under-estimated for small firms and overestimated for large firms when using daily data. Such
a bias is attributed to the small frequency at which the assets of small firms are transacted
[Scholes and Williams (1977) and Dimson (1979)] and more generally to f{rictions in the
exchange process [Cohen, Hawawini, Maier, Schwartz and Whitcomb (1983)]. According to
Cohen et al., prices adjust following the arrival of information and the adjustment delays
are related to the size of firms. Accordingly, for large firms with a greater trading volume,
the adjustment delays are shorter than for small firms whose trading volume is smaller.
The infrequent exchange for small firms is accompanied with the non-synchronization of
individual prices in relation to the market index which induces an intertemporal correlation
between returns and an autocorrelation in the market returns.

In this study, we shall not be concerned about such relations holding at very short sam-
pling interval where market microstructure effect are operative. Rather, we shall concentrate
on ranges of sampling interval where these market microstructure effects are not present; for
example constructing returns from weekly to annual intervals. On a theoretical level, Levary
and Levy (1977) and Hawawini (1980) show a relation between the beta and the sampling in-
terval in the case where the returns are computed using the relative prices P(th)/P((t—1)h)
to define the h-periods returns. In such cases, the “interval effect” is simply due to an

accounting issue.



With relative prices used to construct returns Handa, Kothari and Wasley (1989, 1993)
show clearly that an interval effect is present empirically and that the betas of more risky
assets increase as the sampling interval increases, while the betas of less risky assets are
decreasing. Their results also show that the estimated betas approach that of the market
portfolio (i.e. one) when the sampling interval gets smaller. They argue that if continuously
compounded returns (the first difference of the log of prices) are used, no such interval
effect should hold if the market is efficient. An interesting fact is that Corhay (1990) and
Defrére (1995) show that similar sampling interval effect are present empirically when using
continuously compounded returns.

The purpose of our study is to provide a theoretical framework where interval effects are
present even when using continuously compounded returns. We suppose that stock prices
have both permanent and transitory components. The permanent component is a standard
geometric Brownian motion with constant volatility while the transitory component is a
stationary Ornstein-Uhlenbeck process. We derive the discrete time representation of the
beta which depends on the sampling interval and two components labelled “permanent and
transitory betas” (to be defined explicitly). We show that if no transitory component is
present in stock prices then no sampling interval effect occurs. However, the presence of
a transitory component implies that the beta is an increasing (decreasing) function of the
sampling interval for more risky (less risky) assets. In our framework assets are labelled
risky if their “permanent beta” is greater than their “transitory beta” and vice versa for less
risky assets. Simulations show that our theoretical results provide good approximations for
the means and standard deviations of estimated betas in small samples.

According to our results, the presence of a transitory component is the crucial element
to explain the “interval effect”, without it no such effect should be present. This transitory
component is similar to that used by Fama and French (1988) and Poterba and Summers
(1988) to explain the presence of negative serial correlation in returns at long horizons. Our
theoretical results and the presence of the interval effect empirically can be perceived as
indirect evidence for the presence of a transitory component in stock prices as proposed by
Fama and French (1988) and Poterba and Summers (1988).

The paper is structured as follows. Section 2 defines the basic model in continuous
time and derives its discrete time representation. In section 3, we discuss the properties of
the beta in relation to the sampling interval and the limiting behavior of estimates of it.
Section 4 provides simulation evidence that supports the theoretical results. Section 5 offers

concluding comments and a mathematical appendix some technical derivations.



2 The Basic Model

We denote by P;(t), the price of a stock or a portfolio at date ¢, and by P,(t) the price of the
market portfolio at the same date. We suppose that each price has two multiplicative com-
ponents. One, denoted P?(t) represents the transitory component while the other, denoted

P?(t), is the permanent component. Hence, we have:
p(t) = Pr0P(t)  (i=1,2).

The assumption of a permanent and transitory component for stock prices is frequently
made (see, e.g., Poterba and Summers (1988), and Fama and French (1988)). It is usually
motivated by the fact that it allows negative correlation in returns over long horizons which
has been shown to be present empirically. Also, we denote by lower cases, the logarithm of

the respective components, i.e.:
P =WF/(t) (=12 j=ab).

The continuous time model describing the time paths of each component is intentionally
kept simple to highlight the features of interest and is not intended as a precise description
of the behavior of stock prices at all sampling intervals. It is intended to be a useful approx-
imation for the sampling intervals of interest, namely weekly to yearly, for which positive
serial correlation due to market microstructure effects do not hold but for which negative
serial correlation is a possibility in the presence of transitory components. Accordingly, the
transitory P*(t) and permanent P (t) components are governed by the following stochastic

differential equations, defined over [0, N|, with N the span of the data:
dpi(t) = —ypi(t)dl + ofdWi (1), (1)
dpi(t) = P} (t)dt + ol P} (t)dW;(t),
for i = 1,2, with Wi(t) = (Wf(t), WQj(t))/, (j = a,b) where W*(t) and W*(t) are indepen-
dent standard Weiner processes. We make the following assumptions:
v, > 0,0; >0, o¢>0,00>0, i=1,2

The stochastic differential equation describing the dynamics of the transitory component
specifies that the logarithm of the transitory component of prices Pf(t) is an Ornstein-

Uhlenbeck process. Accordingly, the long term effect of a chock on the level of the transitory
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component is zero and constraining the parameters v, (i = 1,2) to be positive ensures mean
reversion. On the other hand, the dynamics of the permanent component P?(t) is governed
by a geometric Brownian motion. The parameters a; here reflects mean returns. The
parameters (Ug )2 (i =1,2and j = a, b) represent the variances of the noise components Wl-j (t)
and are often called diffusion components. The parameters p; account for the correlation
between the noise of the temporary components (j = a) or permanent components (j = b) of
the price of the asset (or portfolio) and the price of the market portfolio. Such specifications
are often encountered in the finance literature. For example, a geometric Brownian motion
is often postulated for risky stock prices while an Ornstein-Uhlenbeck is used for riskless
assets (e.g., the short term interest rate on a safe asset); see, e.g., Merton(1973) and Black
and Scholes (1973).

The assumption of the independence of the Weiner processes W(t) and W?(t), allows us

to write the system (1) as two sub-systems; namely

dp (1) = —ypi (t)dt + o dW (1), (2)
and
dP!(t) = a; Pl (t)dt + o P} (£)dW7 (1), (3)
for i = 1,2. The systems (2) and (3) have the following solutions:
¢
Pi(t) = (0 exp(—it) + 0 | exp (=it — ) AWE(s), (4)
and )
(1)
pi(0) = pi(0) + | i =~ | L+ W (1), (5)

fori = 1,2 (see, e.g. Theorems 8.2.2 and 8.4.3 of Arnold (1974)). These solutions show that
the logarithm of the transitory component is stationary while the logarithm of the permanent
component 1s an integrated component with a linear trend. For simplicity and without loss
of generality, we suppose, in what follows, that pZ(O) =0(i=1,2;j=a,b).

To compare our model with that of Poterba and Summers (1988) and Fama and French
(1988), we need to derive the discrete time representation. To that effect, we define the
sampling interval h such that Th = N with T the number of observations and /N the span
of the data. We have the following discrete time solutions for (4) and (5).

Proposition 1 Let pi(t) and P!(t) (i = 1,2) be defined by (1), then the discrete time

solutions for a sampling interval h are given by:
p; (th) = exp(—;h)pi ((t — 1)h) + u;(th), (6)
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and

pi(th) = pi((t = 1)h) = Oéi—<0i) h+wvi(th), (7)

fori=1,2 andt=1,...,T; with
th

u; (th) = 0?/ exp (—,;(th — s)) dW/(s),

(t-1)h

and

v; (th) = of (W] (th) = Wi ((t = 1)h)).

The proof follows immediately from the solutions (4) and (5). The errors u; (th) and
v; (th) have mean zero, are independent and are identically normally distributed. The mo-

ments of order two satisly (for i = 1,2):

1 — exp(—2y,h)

Elu? (th)] = ol G

Blus ) un )] =+
B2 (th)] = (o) h,

Elvy (th) vy (th)] = p,alobh.

We now need to define the returns over an horizon of h periods. Supposing that dividends
are zero (or that they are re-invested), the instantanecous returns are R(t) = d1n P(t)/dt.
Given the nature of the continuous-time solutions for prices as functions of Weiner processes,
we cannot define the instantaneous returns (since the Weiner processes are non-differentiable).
Nevertheless, we can use the discrete time solutions of prices to define the discrete time so-

lution for returns over h periods defined by:
R; (th) = (1= L) (pf(th) + pl(th)) | (8)

where L is the lag operator such that Lz, = x4 1. A representation for R;(th) in terms of
the errors v;(th) and u;(th) is given by:
i

Ri(th) = | oy — @ h+v;(th) + (1 — exp(—7,h) L) " (1 — L) ug(th). 9)



Using the notation Ry, = (Ry(th), Ry(th))’, we can write
R = VYh+ny,
where ¥ = (01, ,) , 7, = (1, (th), ,(th)), ¥ = a; — (0%)” /2 and
0;(th) = vi(th) + (1 — exp(=h) L) " (1 = L) us(th).

We can use these specifications to derive the following result pertaining to the discrete time

representation of returns.

Proposition 2 In discrete time the returns R;(th) are characterized by an ARMA(1,1)

process with first-order correlation coefficient given by:

cov (Ry(th), Ri((t — 1)h)) = — (1= exgstih)> (o

In particular, for small vy, or h we have the approximation:

cov (Ry(th), Ri((t — 1)h)) ~ —%’ThQ (69, i=1,2, (11)

so that when either vy, or h approaches 0, the returns R;(th) are i.i.d..

This proposition shows that our model satisfies the same qualitative properties as that of
Poterba and Summers (1988). In particular, it implies negative correlation in returns that
becomes stronger as the horizon h increases but that this correlation is negligeable for short
horizons. Also, when the transitory component is nul (¢¢ = 0 or =y, = 0) this correlation
disappears and the returns are 7.7.d..

In this study, we wish to consider the behavior of the estimator of the systematic risk
(the betas) when the sampling interval is allowed to vary. To that effect, we shall adopt
different asymptotic frameworks whereby either h decreases to 0 keeping the span N fixed,
or keeping h fixed and letting the span N increases.

3 Estimates of beta: asymptotic properties and implications

We start by defining the notion of the systematic risk beta implied by the model and it’s limit
value as the sampling interval increases or decreases. After a discussion of the population

value, we turn to the characterization of the estimates.



3.1 Population values of betas.
Definition 1 Let Ry, = (Ry(th), Ry(th)) be defined by (9). For a sampling interval h, the
systematic risk is defined by:

cov (Ry(th), Re(th))
var (Ry(th))

ﬂOh = (12>

In particular, if h — 0, we use the notation B, = limy, 0By, and if h — oo, we use
Bop = limp o0 Bop-

We have the following representation of 3, as a function of the sampling interval h and
the parameters of the model.

Proposition 3 Let Ry, = (R (th), Ry(th)) be defined by (9) and By, by (12). We have:

b b a —a2—exp(—y1h)—exp(—7y,h)
ek TN W e (13)

Bon = 2

a2 1—exp(—oh
(8)" + (o)? ool
If h— 0, we have:
_ P010% + pa070%8

ﬂO - 2
(08)" + (09)?

(14)

and if h — oo,

b
7 P91

= —. 1
B = 25 (15)

The expression (13) differ from those of Levary and Levy (1977) and Hawawini (1980)
who present the ratio of an asset’s beta computed over h periods relative to that over one
period as a function of h and intertemporal cross correlations. The relation (13) suggests
that if the transitory component is not present in the assets’ prices (0§ = 0§ = 0), the
true value of beta is independent of the sampling interval and coincides with BOb defined as
the limit of 3y, when h increases. Hence, without the transitory component the sampling
interval does not affect the value of the beta. For that reason, we shall refer to BOb as the
“permanent-beta”. By analogy, we refer to BOG = p,09/05 as the “transitory-beta”. It is the
value that the beta would take in the absence of a permanent component when h is small.
Using this notation, we see that the true value of beta, 3, is a function of Bom BOG and h

given by:

s s a 2 9 exp(—1h)—exp(—~oh
P + Po (03/0) " ottt
2 1 .

)

Bon =
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For small values of the sampling interval h, we have

(03)2B0b + (O_g)QBOa
(05)? + (%)%

Bo = (16)

which shows that the beta is a linear combination of the permanent and transitory betas.
The equation (16) also makes clear that, when the permanent and transitory betas are equal,
they both correspond to (3, and, hence, there is no interval effect since the beta is the same
for small and large values of the sampling interval h.

Figure 1.0 presents the graph of 3, as a function of h. It shows that if BOG < BOb (resp.
BOG > Eoz;) then (g, is a strictly increasing (resp. decreasing) function of h for any 7, > 0.
However, when BOG = Bom the true value (3, is independent of h if y; = v, and is a non-
monotonic function of h if v, # 7,. Note that if v, is very small, 5, = 5, and there is no

sampling interval effect.

3.2 Properties of estimates of betas

We now turn to the properties of estimates of ;. To that effect, we define the following

Capital Asset Pricing Model (CAPM) for any given sampling interval h

Ry (th) = aop + Bop Ra(th) + e(th), (17)
with 2 2
aon = | g — @ Rl — Bon | 2 — @ h1/2,
and

e(th) = ny(th) — Bouna(th).

The ordinary least-squares estimate of (3, is:

— : (18)
S (Ra(th) — Ry)
where R; = T YL | Ri(th) fori =1,2.
Proposition 4 For any sampling interval h, we have, as T — o0:
T (Bh - ﬂOh) —* N (0, V4), (19)



with

Vh = jlggo Tvar (Bh - ﬂOh) (20)
—exp(— 2 a —exp(— 2
(o8)? =02t . (01" — 8, | (09 L2t 1 (o))

2 —exp(—
(78)"+ (o) Loczatd

If h — 0, we have:

and if h — oo,
) ~2
Voo = hhfolo Vi = B, (1 — Pg>//)g;
which corresponds to the asymptolic variance for any fixed h in the absence of a transitory

component.

The proof of this result is quite standard and omitted. What it basically says is that the
estimated betas will be close to the true betas as defined by 3,. Hence, we can approximate
the behavior of the estimated betas by the behavior of the population values as h varies. Of
interest also, is the fact that when h is large, the variance of the estimated beta is directly
proportional to the permanent beta. This last convergence result for Bh in conjunction
with Proposition 3 concerning the behavior of 3, as a function of h have the following

implications:

e In the absence of a transitory component in prices, there is no sampling interval effect

on the estimated betas, for large enough sample sizes;

e If the transitory and permanent betas are equal there will, to a first approximation,

also be no sampling interval effect;

e With a transitory component in prices and a difference between the permanent and
transitory betas, the limit of Bh when h increases (which corresponds to the permanent
beta) can be less than or greater than 3, (the limit as h goes to zero) which is a linear
combination of the permanent and transitory beta. The sign of the difference will

depend on the sign of the difference between the permanent and transitory beta.



We can explain the systematic bias (Eﬁh — [p) in terms of some relations which have
a direct link with the size of a firm. To make explicit these relations, we first define some

concepts.

Definition 2 We say that there is under-evaluation of the beta when EOb < By or equiva-
lently when the limit of Bh when h increases is less than the limit of Bh when h decreases.

Conversely, we say that there is over-evaluation when BOb > [y

These definitions only involve the limiting values 3, et EOb. Intuitively, the sampling
interval h can be interpreted for an investor as the horizon of the investments’ profitability
(Levary and Levy (1977)). Under the hypothesis that the investors often choose a short
horizon for such purposes, the beta corresponding to the “true horizon” would be 3,. In
general, 3, is a linear combination of the permanent and transitory betas. If these are
equal, then the beta at a short horizon (3,) is the same as the beta at a long horizon (Eoz;)
and increases in the sampling interval involves no biases. Consider now the case where
the transitory beta is smaller than the permanent one (BOG < Eoz;)- This implies that the
systematic risk is larger for the long term than over the short term. This is the characteristic
of more risky firms in the sense that short term considerations do not account for all of the
risk. Hence, following Banz (1981), we may interpret this case as applying to small firms.
Thus, for small firms, the limit of Bh increases 1f the sampling interval increases and there
is over-evaluation of the betas (this follows since, if BOb > EOG, we have, taking the limit as
h — 0, BOb > B, > By > EOG). The case with the permanent beta smaller than the transitory
beta is one where short term considerations account for more of the long term risk. We may
thus expect this case to apply to less risky or larger firms. Thus for large firms, we have he
opposite relation, namely Bh decreases with an increase in the sampling interval and there

is under-evaluation of the betas.

4 Simulation Experiments

In this section, we verify if the theoretical results obtained provide an adequate description
of the finite sample properties of the estimates of the betas and if these are robust to various
changes in the parameters. As interesting cases for the simulations, we consider the 3 cases

depicted in Figure 1, namely:

e (Case 1: BOb = EOG. If the permanent and transitory betas are identical, then the limit

of Bh is independent of h when the coeflicients «y, (which control the degree of mean-
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reversion) are equal (v, = v,). However, if v, # 7,, the limit of Bh is a non-monotonic

function of h.

e Case 2: BOb < EOG. If the permanent beta is less than the transitory beta, the limit
of B ,, decreases if the sampling interval increases and there is under-evaluation of the

betas.

e Case 3: BOb > EOG. If the permanent beta is greater than the transitory beta, Bh
increases with an increase in the sampling interval and there is over-evaluation of the
betas.

The cases 2 and 3 are consistent with the theoretical results of Levary and Levy (1977)
and of Handa and al. (1989) concerning the monotonicity result that the betas of risky
assets increase with the sampling interval, while the betas of less risky assets decrease with

the sampling interval.

4.1 Calibration of the model

To calibrate the model, we first start by normalizing 3, to 1. This leads us to retain values of
BOG = p,0%/0% and BOb = p,0%/ob which satisfy for case 2 the inequality BOb <l EOG, and
for case 3, the inequality BOG <1l EOb. For case 1, we have the equality BOb = BOG = 1 when
Y1 = V9. We select the values of p,, 0¥, 0%, p,, 0}, and o} to have five base cases, see Table
1. The first, P1, specifies that the asset or portfolio have a permanent and a transitory beta
which are equal BOb = BOG = 1. For the second portfolio, P2, the permanent beta is much less
than the tansitory beta (BOb = 0.15 and BOG = 1.35). For the third portfolio, the difference
between the transitory and permanent betas is reduced (BOb = 0.90 and BOG = 1.35). For
portfolios 4 and 5, the specifications are the same as for portfolios 2 and 3 except that we
interchange the values for BOG and EOb.

The values retained for the coeflicients v, are 0.20, 0.60 and 0.01. The value 0.01 is
considered to illustrate the effect of a weak reversion to the mean for the transitory compo-
nent. Here, we can no longer really consider that component as transitory since it is nearly
integrated, and we would expect to have results corresponding to the no-transitory com-
ponent case. The other values are such that they imply autoregressive coefficients of 0.98
and 0.95 selected by Poterba and Summers (1988) with monthly data (—0.20 ~ 121n(0.98)
and —0.6 ~ 121In(0.95)). Given the absence of any empirical results giving information on

the relative magnitude of 7, (the mean-reversion coeflicient for a stock or portfolio) and 7,
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(the mean-reversion coefficient for the market portfolio), we set v, = v, in the base case.
However, given that returns are ARMA(1,1) stationary processes for any fixed h, it is likely
that the effect of a shock on the transitory component of prices becomes negligeable faster
than for the market portfolio for some types of assets and slower for others. Hence, we also

assess the extent to which the results are sensitive to setting v, /v, <1 or 7,/v, > 1.

4.2 Specifications of the simulation design

To assess the effect of the sampling interval on the distribution of Bh, the number of
observations T" and the sampling interval h are chosen such that 7" = 25,50, 100, and 200 and
h=0,1,2,48,12,24, and oco. For a given sampling interval h, we simulate T’ independent
realization of the processes u*(th) = (u}(th),us(th))" and v*(th) = (vi(th),v3(th))" from a
multivariate N(0,Q) distribution where 2 is the variance-covariance matrix of the process
u*(th) or v*(th) (see Proposition 1). We then construct the processes n}(th) (i = 1,2) and
deduce from them the returns R}(th) et R%(th) and estimate (3, from (18). We repeat this

procedure 3000 times to obtain the distribution of the estimator.

4.3 The finite sample distribution of Bh in the base case

The results are presented in Tables 2, 3 and 4 for the cases v, = v, = .20, v; = v, = .60
and v, = 7, = .01, respectively. In general, the results support the theoretical findings of
section 3.

If the transitory and permanent betas are equal (P1), there is indeed no sampling interval
effect for any value of the mean-reversion coefficients v; and y,. However, when the transitory
beta is greater than the permanent beta, BOG > Bom the mean of the estimated beta decreases
as h increases while the opposite holds when BOG < EOb. This rate of decrease (when BOG >
Eoz;) or increase (when BOG < Eoz;) is faster the larger is the difference between BOG and EOb.
The differences are also more important when the mean-reversion coefficient increases (i.e.,
from 0.2 to 0.6). When the mean-reversion coeflicients are set to 0.01, we see that the bias
practically disappears. This is to be expected, since with such small value there is no longer
a temporary component since it is almost integrated.

Consider now the standard deviations of the estimated betas presented in panels (b) of
Tables 2 to 4. We first remark that, among the cases considered, these are smallest for P1
when the sampling interval effect is absent. They are also decreasing as h increases unless
v, = v9 = .01. For the other portfolios, the behavior of the standard-deviations depends

on the difference between the transitory and permanent betas. When this difference is
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large (portfolios P2 and P4), the betas of the risky portfolios (3, > 1) are more precisely
estimated than the betas of the less risky portfolios (3, < 1). However, when the difference
between the transitory and permanent betas is smaller (portfolios P3 and P5), the standard
deviations are larger for more risky portfolios. For such portfolios (P3 and P5) we do not
observe the same monotonic behavior for the standard deviations as h increases as for the
portfolios P2 and P4. When the difference between the transitory and permanent betas is
large, the standard deviations decrease as h increases; when the difference is smaller they
tend to remain constant or increase as h increases.

The fact that portfolios for which the estimated betas increase with h (G, > 1) are less
variable (smaller standard deviations of the estimated betas) contrasts with some empirical
results which showed that volatility is in general larger for small firms and that it has a
tendency to increase with the sampling interval; see Corhay (1990) and Handa et al. (1989).

Finally, it is important to remark that the bias in the estimated betas is almost entirely
due to the systematic bias (Eﬁh — fy) as opposed to the statistical bias (Eﬁh —Bon). Results,

not reported, show the latter to be close to zero in all cases.

4.4 Sensitivity Analyses

To study the sensitivity of the results to changes in various parameters, we consider, as a
basis for reference, the case where v; = 7, = 0.20 and the difference between BOG and BOb
is large, for example BOG > BOb with BOG = 1.35 and BOb = 0.15 (Table 2 with P2). We
performed simulations using different cases as a basis for reference and the conclusions are
similar.

The sensitivity of the results is analyzed in three directions in relation to the sub-groups
of parameters (v1,7s), (p,, 0$,0%) and (p,, 0¥, ab). The strategy is to vary the parameters of
one group while keeping the others constant. We first consider variations in the parameters
(v1,7v2) and in particular on the effect of specifying v, > 7, or 7, < 7,. Secondly, we analyze
the effect of changing the parameters of the variance-covariance matrix of the transitory
component keeping constant BOG = p,0$/0%. Finally, we examine the effect of changes in

the parameters (p,, 0%, 0%), related to the permanent component, keeping constant BOb =

P01/
4.4.1 Effect of changes in the parameters -,

Table 5 presents the mean of the estimated betas as a function of h for different values

of 7, (resp. v,) when 7y, (resp. ;) is fixed, the reference curve corresponding to the case

13



vy = 79 = 0.20. We observe that the monotonically decreasing behavior of the estimated
betas is not affected by alternative choices of the mean-reversion parameters. However,
changes in these parameters have an influence on the systematic (F B n — Bo) and statistical
(B Bh — Bon) biases in small samples (T' = 25 or 50). Indeed, the systematic bias (measured
as the distance between each curve and the horizontal line 3, = 1) increases (in absolute
value) as v, /7, increases with v, fixed or when 7, /v, > 1 with 7, fixed.

Consider the statistical bias, which we approximate as the difference between the means
at T'= 25 and T" = 200. From Table 5, we see that it is positive (except for h = 4 and 8).
Its relative magnitude depends on the ratio 7y,/7v, but the pattern does not appear to be
monotonic.

As shown in Table 5, changes in the mean-reversion coeflicients affect the standard devi-

ations of the estimated betas. It is smaller when v, /v, > 1 and larger when 7, /v, < 1.

4.4.2 Effect of changes in the parameters (p,, 0¢,0%) and (p,, 0%, 0?)

We analyze jointly the effect of changes in the parameters p,, 0% and o§ (resp. p,, o} and
b)) keeping BOG = p,0}/0% (resp BOb = p,0l/0h) and the ratio 0§/0? fixed (the reference
values are those in Table 2 for the case P2). From the results, presented in Table 6, we
see that the sampling interval effect remains and that changes in these parameters affects
the systematic and statistical biases. The systematic bias is always negative (except for
some rare cases) and its importance increases as 0§ increases. For example, in Table 2 with
o} = 3.01, the systematic bias is —0.066 for T = 25 and h = 2 and —0.275 when h = 12; on
the other hand, from Table 6, for the same value of T', it is —0.074 and —0.290, for h = 2
and 12, respectively, when o = 21.040. The corresponding values are —0.048 and —0.273
when o = 5.26. A similar behavior is observed for the statistical bias for 7" = 25 unlike the
reference case which basically showed no such bias.

Concerning the parameters p,, o and o3, Table 6 (compared to the reference case)
shows that variations in these parameters do not significantly affect the mean and standard
deviations of the estimated betas. However, if o} is very large relative to ¥, there can be

large dispersions in small samples when h is small.

5 Conclusion

In this study, we have provided a theoretical framework to analyze the empirically supported

effect of the sampling interval used to compute returns on the estimated betas. The model
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used specifies the presence of both permanent and transitory components in prices as in
Fama and French (1988) and Poterba and Summers (1988). As in these papers, the discrete-
time representation of returns is an ARMA(1,1) process with negative serial correlation.
We have derived the corresponding theoretical value of the beta not only as a function of
the sampling interval but also of the various parameters of the permanent and transitory
components.

Our theoretical results show the importance of the presence of a transitory components
in explaining the effect of the sampling interval. Without such a component the betas and
their estimates show no relation to the sampling interval. With it, there is a clear monotonic
relation whose sign depends on the difference between what we call the permanent and
transitory betas. We argues that small firms which are more risky have a transitory beta
smaller than the permanent beta and that this implies a beta which increases as the sampling
interval decreases. The inverse relation holds for large firms whose transitory beta is greater
than the permanent beta. Our theoretical results which rely on asymptotic arguments are
shown to yield adequate approximations in finite sample using simulation experiments. The
extent to which the presence of a transitory component affects the strength of the sampling
interval effect depends on parameters such as the coefficients of mean-reversion for the stock
(or portfolio) and for the market portfolio.

What we have established is that, in our framework, it is possible to explain the empirical
results of Handa et al. (1989), Corhay (1990) and Defrére (1995) only when a transitory
component in present in prices. We interpret this as indirect evidence giving support to the

claims made by Poterba and Summers (1988) and Fama and French (1988).
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Mathematical Appendix

Proof of Proposition 2: From the definition of #,(th) as:
n;(th) = vith) + (1 — exp(—y;h) L) (1 = L) wi(th),

we can write, after some manipulations:

) = ) 3500+ (1= ) S = ),

with ¢; = exp(—~,;h). Consider first the variance of R;(th). We have:

var(Ri(th)) = o2 + o2, +( E) ) Z¢2”

1 3 1

2
= 012),—|- 03,.
2 1 _|_¢Z 0

Substituting for ¢, U%i and Uii, we obtain:

var(R;(th)) = (¢9)? Lo eng_%h) + (017)2 h.

Consider now the covariance of R;(th) and R;((t — 1)h). We have:
cou (R (h), R(t = DR)) = con (n,(th), (¢ — 1))

= —1;@001}(uZ ((t—1h i ((t—17) ))

% 7j=1

+( ¢Z¢Z> Z¢k Leov (u ((t—k Zqﬁjuz t—9) ))

k=2

Upon some developments, we obtain:

2 )
con (). (0= 1) =~ o0t + L0t S
7 7 k=2
1-9 o2
1+,

_<1—¢i>2 .,




We deduce that:
lim cov (R;(th), R;((t — 1)h)) = 0,

h—0

and

lim cov (R;(th), R;((t — 1)h)) = 0.

i

Consider now the time series representation of Ry;,. To deduce that it is an ARM A(1,1),
it suffices to show that n,, = (n,(th),ny(th)) is an ARM A(1,1) for h fixed. Let

¢ = 1 — exp(—,h) L 0 1 (th)
th = )
0 1 —exp(—yoh)L | | na(th)

and define:

¢; = exp(=v;h),

Ugi = (0;’)2h,
1— —2v,h
i, = (oo
Vi
Pla = poioyh,
“ o ol —exp(—(vy +79)h
P12 = Pa9192 O 2 )
Y1+ Ve

It is easily shown that:

oo~ (1+¢1) 02 + 202, (14 ¢16) pla + 208,
th>th — ’
(Lt i) o+ 208 (14 65) 02, + 202,

[ 2 2 b
B, _ —¢1‘7v1 — Oy —1P15 — P2

thS (t—1)h ) . X ) ;
i —®9P12 — Pla _¢2‘7w — Oy,

and
ECthC/(tfk)h =0,

for k > 2. We conclude that (), is an M A(1) process. Accordingly, 1, is an ARM A(1,1)
for any fixed h. This is also true for n¥, = n,,/h'/? and we have:

B () = (o2 22 ()"

and

. . o 02— exp(—yh) — exp(—yh
Eni(th)ns(th) = p,oios <<,yl_|_>,y Vh Sk >+Pb‘7ggg-
1 2
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When h — 0, 0}, is and i.7.d. process such that:

n*(th) = v*(th)+u*(th)
(02) + (09 paoios + pyoo}
~ ia.d. N |0, 9 )
0018+ pyotoh (03) +(03)

Proof of Proposition 3: From the preceding proof, we readily obtain:

o cov (R1(th), Ry ()th))

var (Ry(th)
cov (ny(th),n,(th))
var (ny(th))

a a2—exp(—yh)—exp(—7yyh) b b
P00 + P00
a” 1% 2 (71+72)h v 1Y 2

(03)2 - 52hv . + (Ug)

The limiting values when h converges to 0 or oo are easily deduced.
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Table 1:

Selected parameter values

Portfolio
P1 P2 P3 P4 P5
pe 0.6000 0.7000 0.7000 0.1000 0.6000
of 20000 3.0055 1.0309 1.5000 1.5000
0% 1.2000 1.5584 0.5345 1.0000 1.0000
pp 07500 0.1000 0.6000 0.7000 0.7000
o} 1.0000 1.5000 1.5000 3.0055 1.0309
03 0.7500 1.0000 1.0000 1.5584 0.5345
BOa 1.0000 1.3500 1.3500 0.1500 0.9000
Bop  1.0000 0.1500 0.9000 1.3500 1.3500
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Table 2: Mean and standard deviation of the estimated beta;
Y1 = V2 = 0.20.

h

0

1

2

4

8

12

24

Mean

T=25

P1
P2
P3
P4
P5

0.993
0.991
0.997
0.993
0.991

1.005
0.991
0.997
1.029
1.010

0.994
0.944
0.993
1.046
1.017

1.001
0.904
0.977
1.079
1.030

1.000
0.807
0.965
1.148
1.069

0.996
0.725
0.947
1.187
1.094

1.001
0.554
0.928
1.257
1.163

1.002
0.143
0.901
1.353
1.353

P1
P2
P3
P4
P5

1.000
1.002
1.001
1.006
1.002

1.005
0.987
0.993
1.023
1.006

0.996
0.945
0.989
1.044
1.019

0.995
0.898
0.973
1.079
1.026

1.000
0.810
0.958
1.145
1.065

0.997
0.723
0.938
1.180
1.089

0.998
0.548
0.928
1.259
1.164

0.999
0.153
0.900
1.349
1.349

T=100

P1
P2
P3
P4
P5

0.999
0.997
0.999
0.998
0.998

0.999
0.976
0.992
1.022
1.005

1.003
0.954
0.989
1.048
1.019

0.999
0.900
0.975
1.085
1.031

1.001
0.810
0.958
1.146
1.066

0.996
0.722
0.939
1.182
1.090

1.000
0.555
0.927
1.257
1.162

1.002
0.147
0.901
1.352
1.352

T=200

P1
P2
P3
P4
P5

1.003
1.002
1.002
1.003
1.002

0.998
0.974
0.991
1.021
1.005

1.003
0.952
0.989
1.049
1.018

1.001
0.902
0.977
1.089
1.034

1.000
0.809
0.957
1.145
1.065

0.997
0.724
0.941
1.183
1.091

1.001
0.556
0.928
1.258
1.163

1.002
0.150
0.902
1.352
1.352

Standard
deviation

T=25

P1
P2
P3
P4
P5

0.253
0.322
0.269
0.322
0.272

0.252
0.328
0.270
0.324
0.276

0.250
0.331
0.269
0.321
0.270

0.251
0.335
0.264
0.321
0.276

0.245
0.350
0.260
0.316
0.292

0.237
0.348
0.261
0.309
0.287

0.218
0.343
0.260
0.302
0.293

0.191
0.320
0.259
0.298
0.298

T=50

P1
P2
P3
P4
P5

0.168
0.219
0.185
0.222
0.181

0.173
0.226
0.187
0.224
0.189

0.172
0.225
0.183
0.223
0.188

0.173
0.234
0.177
0.215
0.188

0.168
0.242
0.179
0.215
0.201

0.163
0.243
0.178
0.212
0.199

0.151
0.236
0.177
0.208
0.201

0.128
0.220
0.173
0.200
0.200

T=100

P1
P2
P3
P4
P5

0.121
0.155
0.130
0.155
0.130

0.119
0.155
0.127
0.153
0.129

0.118
0.158
0.126
0.152
0.132

0.116
0.160
0.124
0.150
0.132

0.117
0.164
0.126
0.151
0.138

0.114
0.168
0.125
0.149
0.143

0.104
0.167
0.125
0.146
0.140

0.088
0.152
0.119
0.137
0.137

T=200

P1
P2
P3
P4
P5

0.086
0.109
0.090
0.110
0.091

0.083
0.109
0.088
0.107
0.090

0.084
0.111
0.089
0.107
0.093

0.083
0.114
0.088
0.106
0.094

0.080
0.112
0.086
0.104
0.096

0.080
0.117
0.088
0.105
0.100

0.073
0.117
0.087
0.102
0.098

0.064
0.105
0.088
0.100
0.100
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Table 3: Mean and standard deviation of the estimated beta;
Y1 = V2 = 0.60.

h

0

1

2

4

8

12

24

Mean

T=25

P1
P2
P3
P4
P5

0.993
0.991
0.997
0.993
0.991

1.005
0.934
0.983
1.072
1.027

1.002
0.857
0.970
1.120
1.049

1.000
0.724
0.947
1.185
1.094

1.006
0.555
0.934
1.262
1.168

1.002
0.458
0.919
1.286
1.203

1.002
0.331
0.911
1.318
1.264

1.002
0.143
0.901
1.353
1.353

P1
P2
P3
P4
P5

1.000
1.002
1.001
1.006
1.002

1.001
0.927
0.980
1.065
1.022

1.002
0.856
0.966
1.117
1.050

0.995
0.724
0.944
1.183
1.089

1.001
0.552
0.927
1.257
1.162

0.996
0.448
0.912
1.279
1.196

1.002
0.330
0.911
1.319
1.264

0.999
0.153
0.900
1.349
1.349

T=100

P1
P2
P3
P4
P5

0.999
0.997
0.999
0.998
0.998

1.000
0.927
0.980
1.065
1.022

1.002
0.855
0.967
1.121
1.051

1.000
0.725
0.946
1.189
1.094

1.001
0.553
0.927
1.257
1.163

0.996
0.450
0.912
1.279
1.198

1.000
0.327
0.910
1.318
1.263

1.002
0.147
0.901
1.352
1.352

T=200

P1
P2
P3
P4
P5

1.003
1.002
1.002
1.003
1.002

0.999
0.924
0.978
1.064
1.022

1.003
0.854
0.967
1.122
1.050

1.002
0.727
0.947
1.192
1.096

1.000
0.553
0.925
1.255
1.162

0.997
0.452
0.914
1.281
1.199

1.001
0.329
0.911
1.318
1.264

1.002
0.150
0.902
1.352
1.352

Standard
deviation

T=25

P1
P2
P3
P4
P5

0.253
0.322
0.269
0.322
0.272

0.254
0.338
0.268
0.322
0.281

0.242
0.337
0.268
0.319
0.282

0.235
0.348
0.261
0.314
0.289

0.217
0.338
0.255
0.302
0.292

0.206
0.335
0.258
0.300
0.287

0.199
0.332
0.257
0.295
0.291

0.191
0.320
0.259
0.298
0.298

T=50

P1
P2
P3
P4
P5

0.168
0.219
0.185
0.222
0.181

0.173
0.231
0.186
0.223
0.193

0.166
0.234
0.183
0.219
0.196

0.158
0.233
0.175
0.210
0.195

0.150
0.233
0.175
0.205
0.200

0.143
0.228
0.174
0.205
0.199

0.137
0.225
0.174
0.202
0.200

0.128
0.220
0.173
0.200
0.200

T=100

P1
P2
P3
P4
P5

0.121
0.155
0.130
0.155
0.130

0.118
0.157
0.126
0.152
0.131

0.116
0.165
0.125
0.151
0.137

0.110
0.166
0.122
0.146
0.138

0.104
0.163
0.123
0.144
0.139

0.101
0.163
0.122
0.143
0.141

0.095
0.158
0.123
0.142
0.140

0.088
0.152
0.119
0.137
0.137

T=200

P1
P2
P3
P4
P5

0.086
0.109
0.090
0.110
0.091

0.083
0.112
0.088
0.106
0.092

0.083
0.115
0.088
0.107
0.097

0.078
0.116
0.087
0.103
0.098

0.072
0.112
0.085
0.100
0.096

0.071
0.114
0.087
0.101
0.099

0.067
0.110
0.086
0.099
0.098

0.064
0.105
0.088
0.100
0.100
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Table 4: Mean and standard deviation of the estimated beta;
Y1 = V2 = 0.01.

h

0

1

2

4

8

12

24

Mean T=25

P1
P2
P3
P4
P5

0.993
0.991
0.997
0.993
0.991

1.002
1.003
1.001
1.010
1.003

1.003
1.000
1.005
1.006
1.003

0.999
0.992
1.000
0.998
0.999

1.006
0.999
1.006
1.011
1.008

1.000
0.993
0.997
1.008
1.004

1.001
0.980
0.997
1.029
1.009

1.002
0.143
0.901
1.353
1.353

P1
P2
P3
P4
P5

1.000
1.002
1.001
1.006
1.002

1.001
1.000
1.000
1.002
1.000

1.003
1.002
1.002
1.002
1.004

0.995
0.992
0.996
0.997
0.997

1.001
0.994
1.000
1.007
1.004

0.995
0.983
0.988
1.002
0.999

1.001
0.975
0.995
1.030
1.009

0.999
0.153
0.900
1.349
1.349

T=100

P1
P2
P3
P4
P5

0.999
0.997
0.999
0.998
0.998

0.998
0.999
0.999
1.000
0.998

1.003
1.001
1.003
1.005
1.003

0.999
0.995
1.000
1.004
1.001

1.001
0.994
0.999
1.010
1.005

0.996
0.985
0.990
1.007
1.002

1.001
0.973
0.994
1.030
1.010

1.002
0.147
0.901
1.352
1.352

T=200

P1
P2
P3
P4
P5

1.003
1.002
1.002
1.003
1.002

0.998
0.997
0.998
0.999
0.998

1.003
0.999
1.003
1.006
1.003

1.000
0.995
1.001
1.007
1.002

1.001
0.993
0.998
1.009
1.005

0.998
0.986
0.992
1.010
1.004

1.001
0.975
0.994
1.030
1.011

1.002
0.150
0.902
1.352
1.352

Standard T=25
Deviation

P1
P2
P3
P4
P5

0.253
0.322
0.269
0.322
0.272

0.255
0.328
0.270
0.322
0.272

0.244
0.315
0.269
0.321
0.263

0.246
0.321
0.267
0.323
0.262

0.249
0.320
0.264
0.325
0.269

0.248
0.323
0.266
0.322
0.270

0.252
0.335
0.270
0.322
0.274

0.191
0.320
0.259
0.298
0.298

T=50

P1
P2
P3
P4
P5

0.168
0.219
0.185
0.222
0.181

0.176
0.224
0.188
0.225
0.187

0.169
0.218
0.134
0.224
0.183

0.168
0.218
0.179
0.217
0.179

0.173
0.217
0.181
0.220
0.185

0.170
0.219
0.181
0.219
0.184

0.169
0.225
0.183
0.220
0.1834

0.128
0.220
0.173
0.200
0.200

T=100

P1
P2
P3
P4
P5

0.121
0.155
0.130
0.155
0.130

0.119
0.153
0.127
0.153
0.128

0.118
0.153
0.126
0.153
0.128

0.117
0.153
0.126
0.151
0.125

0.120
0.153
0.128
0.154
0.129

0.121
0.157
0.129
0.155
0.131

0.119
0.160
0.129
0.154
0.130

0.088
0.152
0.119
0.137
0.137

T=200

P1
P2
P3
P4
P5

0.086
0.109
0.090
0.110
0.091

0.083
0.108
0.088
0.107
0.089

0.083
0.108
0.089
0.108
0.090

0.084
0.108
0.090
0.107
0.090

0.083
0.105
0.088
0.106
0.089

0.085
0.110
0.090
0.109
0.092

0.084
0.112
0.090
0.108
0.092

0.064
0.105
0.088
0.100
0.100
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Table 5: Effect of the mean-reversion coefficients
on the mean and standard deviation of the estimated beta

h 0 1 2 4 8 12 24 00

Mean

v =0.01 v =0.20
T=25 0991 0993 0.973 0926 0.859 0.787 0.640 0.143
50 1.002 0985 0.968 0.919 0.848 0.772 0.638 0.153
100 0997 0981 0964 0.920 0.843 0.771 0.632 0.147
200 1.002 0978 0.961 0921 0.843 0.771 0.630 0.150

v =0.60 v =0.20
T=25 0991 0.868 0.758 0614 0484 0421 0.332 0.143
50 1.002 0.859 0.758 0.613 0482 0414 0.333 0.153
100 0997 0858 0.756 0.615 0483 0416 0.330 0.147
200 1.002 0.856 0.754 0617 0483 0417 0.332 0.150

1 =3 v =0.20

T=25 0991 0417 0.279 0202 0.171 0.164 0.162 0.143
50 1.002 0408 0.280 0.205 0.171 0.159 0.162 0.153
100 0.997 0410 0278 0.204 0.172 0.162 0.161 0.147
200 1.002 0.409 0.277 0206 0.173 0.163 0.162 0.150

Standard deviation

v =0.01 v =0.20
T=25 0322 0337 0.342 0374 0426 0463 0.552 0.320
50 0.219 0.232 0.237 0.256 0.289 0.315 0.374 0.220
100 0.155 0.159 0.167 0.179 0.201 0223 0.265 0.152
200 0.109 0.112 0.117 0.125 0.138 0.157 0.183 0.105

v =0.60 v =0.20
T=25 0322 0313 0.296 0287 0.282 0.279 0.294 0.320
50 0.219 0215 0208 0.196 0.192 0.190 0.200 0.220
100 0.155 0.148 0.147 0.138 0.134 0.136 0.140 0.152
200 0.109 0.105 0.103 0.098 0.092 0.096 0.098 0.105

1 =3 v =0.20

T=25 0322 0253 0.233 0221 0.232 0.240 0.270 0.320
50 0.219 0.178 0.162 0.153 0.158 0.164 0.184 0.220
100 0.155 0.122 0.113 0.107 0.110 0.116 0.128 0.152
200 0.109 0.086 0.079 0074 0077 0.082 0.089 0.105
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Table 5 (cont’d): Effect of the mean-reversion coefficients
on the mean and standard deviation of the estimated beta

h 0 1 2 4 8 12 24 00

Mean

v =0.20 v =0.01
T=25 0991 0947 0.867 0.737 0565 0459 0.304 0.143
50 1.002 0931 0.860 0.728 0.560 0.448 0.301 0.153
100 0.997 0924 0.852 0.727 0.560 0.449 0.299 0.147
200 1.002 0918 0.849 0.726 0.559 0450 0.299 0.150

v =0.20 o =0.60
T=25 0991 0983 0.942 0858 0.715 0.606 0429 0.143
50 1.002 0974 0939 0.857 0.711 059 0429 0.153
100 0997 0972 0937 0857 0.712 0596 0425 0.147
200 1.002 0.969 0.936 0860 0.712 0.599 0426 0.150

71 =020 =3

T=25 0991 0.760 0.593 0454 0.340 0.295 0.237 0.143
50 1.002 0.748 0.591 0.456 0.344 0.288 0.237 0.153
100 0997 0742 0590 0.454 0346 0.291 0.234 0.147
200 1.002 0.738 0.591 0459 0.348 0.293 0.234 0.150

Standard deviation

v =0.20 v =0.01
T=25 0322 0322 0.301 0296 0279 0.260 0.240 0.320
50 0.219 0.219 0.212 0.202 0.190 0.177 0.163 0.220
100 0.155 0.150 0.149 0.142 0.134 0.127 0.116 0.152
200 0.109 0.107 0.104 0.101 0.093 0.089 0.081 0.105

v =0.20  =0.60
T=25 0322 0359 0.375 0424 0438 0424 0401 0.320
50 0.219 0.244 0.259 0.284 0.300 0.290 0.271 0.220
100 0.155 0.166 0.182 0.200 0211 0209 0.191 0.152
200 0.109 0.118 0.127 0.140 0.144 0.146 0.134 0.105

71 =020 =3

T=25 0322 0493 0.539 0568 0531 0483 0430 0.320
50 0.219 0.337 0377 0.380 0.359 0.330 0.287 0.220
100 0.155 0.230 0.266 0.267 0.253 0236 0.202 0.152
200 0.109 0.163 0.183 0.186 0.176 0.166 0.141 0.105
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Table 6: Effect of the coefficient of the variance-covariance

matrix on the mean and standard deviation of the estimated beta.
Base Case: 1 = vy = 0.20, 0%/0 = 1.558, (ps, 0%, 0%) = (0.10, 1.50, 1.00),

oy = 1.558.

0 1 2 4

12

24

pa = 0.10

P = 0.40

0% =21.038
T=25
50
100
200
0% = 5.2596
T=25
50
100
200

Mean

0.966
1.029
0.970
1.015

1.065
1.011
0.988
0.971

0.926
0.947
0.933
0.949

0.840
0.866
0.881
0.906

0.983
1.007
0.992
1.005

1.001
0.983
0.977 0951 0.897
0.973 0.952 0.902

0.952
0.955

0.888
0.892

0.763
0.774
0.781
0.791

0.804
0.803
0.805
0.806

0.710
0.722
0.706
0.716

0.727
0.722
0.721
0.723

0.563
0.590
0.576
0.559

0.559
0.563
0.558
0.557

0.143
0.153
0.147
0.150

0.143
0.153
0.147
0.150

pa = 0.10

P = 0.40

0% =21.038
T=25
50
100
200
0% = 5.2596
T=25
50
100
200

Standard-deviation

2.353
1.649
1.149
0.803

2.415
1.635
1.119
0.788

2.427
1.664
1.143
0.821

2.379
1.650
1.145
0.804

0.588
0.403
0.281
0.202

0.591
0.408
0.284
0.200

0.596
0.406
0.280
0.196

0.576
0.401
0.282
0.199

2.364
1.605
1.138
0.772

0.593
0.405
0.284
0.193

2.087
1.425
1.011
0.722

0.543
0.372
0.268
0.189

1.811
1.226
0.859
0.605

0.508
0.345
0.243
0.170

0.320
0.220
0.152
0.105

0.320
0.220
0.152
0.105
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Table 6 (Cont’d): Effect of the coefficients of the
variance-covariance matrix on the

mean and standard deviations of the estimated beta
1 =Y = 0.20, 0% /0 = 1.558,
(pa,a%,ag) = (0.70,3.005, 1.558), Jg =1.0

Base Case:

h

0

1

2

4

8

12

24

pp = 0.40

pp = 0.70

ob =0.375
T= 25
50
100
200
ob =0.214
T= 25
50
100
200

0.966
1.015
0.973
1.017

0.964
1.003
0.975
1.018

0.984
0.981
0.976
0.975

0.982
0.981
0.976
0.975

Mean

0.958
0.956
0.954
0.952

0.958
0.956
0.953
0.952

0.900
0.894
0.899
0.901

0.902
0.895
0.899
0.900

0.813
0.808
0.808
0.808

0.812
0.808
0.808
0.803

0.729
0.725
0.723
0.723

0.729
0.727
0.723
0.724

0.554
0.555
0.551
0.552

0.552
0.553
0.550
0.550

0.149
0.150
0.150
0.150

0.150
0.150
0.150
0.150

pp = 0.40

oy = 0.70

ot =0.375
T= 25
50
100
200
o =0.214
T= 25
50
100
200

2.419
1.660
1.142
0.819

2.420
1.662
1.143
0.819

Standard deviation

0.282
0.190
0.131
0.093

0.278
0.188
0.130
0.093

0.270
0.185
0.131
0.094

0.266
0.182
0.129
0.092

0.283
0.193
0.134
0.094

0.280
0.193
0.133
0.092

0.275
0.191
0.134
0.091

0.272
0.190
0.133
0.091

0.260
0.178
0.127
0.088

0.256
0.174
0.124
0.087

0.231
0.161
0.113
0.080

0.224
0.156
0.109
0.077

0.074
0.049
0.034
0.025

0.033
0.022
0.015
0.011
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