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RESUME

Ce papier considére plusieurs approximations asymptotiques dans le modeéle
autorégressif de premier ordre presque intégré avec une condition initiale non nulle. En
premier, nous élargissons le travail de Knight et Satchell (1993) qui ont considéré le cas
d'une marche aléatoire avec une condition initiale nulle. Ensuite, nous dérivons
I'expansion de la fonction génératrice de moments conjointe qui est pertinente dans ce
cadre théorique plus général. Nous considérons aussi, comme approximation alternative,
I'expansion stochastique de Phillips (1987c) et I'approximation en temps continu de Perron
(1991). Nous assurons comment ces méthodes alternatives donnent ou non une
approximation adéquate pour la distribution en échantillon fini de I'estimateur de moindres
carrés dans un modele AR(1). Les résultats montrent que, quand la condition initiale est
non nulle, 'approximation en temps continu de Perron (1991) fonctionne tres bien, alors

gue les autres offrent seulement des améliorations lorsque la condition initiale est nulle.

Mots clés : expansion d'Edgeworth, asymptotigues en temps continu, expansion

stochastique, fonction de répartition, modéle autorégressif

ABSTRACT

This paper considers various asymptotic approximations in the near-integrated first-
order autoregressive model with a non-zero initial condition. We first extend the work of
Knight and Satchell (1993), who considered the random walk case with a zero initial
condition, to derive the expansion of the relevant joint moment generating function in this
more general framework. We also consider, as alternative approximations, the stochastic
expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We
assess how these alternative methods provide or not an adequate approximation to the
finite-sample distribution of the least-squares estimator in a first-order autoregressive
model. The results show that, when the initial condition is non-zero, Perron's (1991)
continuous time approximation performs very well while the others only offer

improvements when the initial condition is zero.

Key words : Edgeworth expansion, continuous-time asymptotics, stochastic expansion,

distribution function, autoregressive model



1 Introduction

It is often the case that a nuisance parameter has a substantial effect on the distribution
of some statistic in finite samples but that asymptotically this effect disappears. For that
reason, several refinements of the usual asymptotic framework have been suggested which
retain the effect of such nuisance parameters. A standard example is the Edgeworth ex-
pansion which has been applied to several cases. In this paper, we consider the standard
first-order autoregressive model where the initial condition is one such nuisance parameter
that substantially affects the finite sample distribution of the least-squares estimator but
whose effect dissipates asymptotically.

The autoregressive model of order one has attracted considerable attention in both the
statistics and econometrics literature, especially concerning the study of various asymptotic
refinements. It is simple enough to yield tractable solutions, yet complex enough to generate
interesting problems. It is somewhat of a base case by which we can learn useful features
about the properties of alternative asymptotic refinements that can be helpful in guiding our
efforts in more complex and empirically relevant models.

Since the pioneering works of Mann et Wald (1943) and Rubin (1950) establishing the
root-T asymptotic normality of the least-squares estimator in the stationary case much of
the research has focused on the case where the autoregressive coefficient, say «, is equal to
one; see White (1958), Fuller (1976), Dickey et Fuller (1979), Evans et Savin (1981), Phillips
(1987a), and Phillips et Perron (1988) among others. A feature of interest in this case is
that the rate of convergence is T and that the limit distribution can be expressed in terms
of a functional of a Weiner process. Also, White (1958) has shown in the explosive case that
the rate of convergence is even faster (and depends on «), and that the limit distribution is
non-standard and depends on the value of the initial condition. When the latter is zero the
limit is that of a Cauchy random variable.

Two features emerge from these asymptotic results which contrast with the finite sample
distribution of the estimator: the discontinuity (of both the rate of convergence and the
limit) at the boundary o = 1 and the invariance of the distribution with respect to the initial
condition (unless « is greater than one). Since the finite sample distribution is continuous
with respect to « and is influenced by the initial condition, this suggests that these limiting
distributions should be poor approximations to the finite sample distribution when « is not

equal but near to one. This problem has effectively been demonstrated by Evans and Savin

(1981).



To alleviate the first problem concerning the discontinuity at one, the research has concen-
trated on the so-called near-integrated model where the autoregressive coefficient is modeled
as being local to unity, for example using the specification a = exp(c/T) where T is the
sample size and ¢ some non-centrality parameter. When ¢ = 0, we recover the unit root
case; when ¢ < 0, the process is said to be locally stationary and when ¢ > 0, it is locally
explosive. The resulting limiting distribution of the least-squares estimator is continuous
with respect to the non-centrality parameter ¢ and can be expressed as a functional of an
Ornstein-Uhlenbeck process. Also, it provides a very good approximation to the finite sam-
ple distribution when the initial condition is zero. See Bobkoski (1983), Cavanagh (1986),
Chan et Wei (1987), Phillips (1987b) and Perron (1989). The limiting distribution remains,
however, invariant with respect to the initial condition and, accordingly, the adequacy of the
approximation deteriorates when this initial value is non-zero.

A few asymptotic approximations have been proposed to capture the effect of this initial
condition while retaining the continuity at & = 1. One is the stochastic expansion of Phillips
(1987¢) and the other is the continuous time approximation of Perron (1991).

This paper contributes to this literature by first considering the Edgeworth expansion in
this near-integrated context. Phillips (1977) showed that in the stationary case the Fdge-
worth expansion is not satisfactory when the autoregressive coefficient is close to one. Satchell
(1984) considered the Edgeworth expansion to order O(T~'/2) for the case of a fixed initial
condition in the stationary and explosive cases and Vodounou (1997b) extended his results
to order O(T 1) for the stationary case (the expansion to order O(T!) is necessary for the
initial condition to affect the distribution). Also, Knight and Satchell (1993) have shown
that the Edgeworth expansion performs well in the unit root case when the initial condi-
tion is zero. Our aim is to see how it performs in the general near-integrated case with a
non-zero initial condition and compare its relative merits, as an approximation to the fi-
nite sample distribution, with Phillip’s stochastic expansion and Perron’s continuous time
approximation.

The rest of this paper is structured as follows. Section 2 presents the model and the
estimator as well as some finite sample distributional results. Section 3 presents the three
asymptotic approximations and the relevant moment generating functions used to numer-
ically evaluate the corresponding distribution functions. Section 4 contains a study of the
adequacy of the various approximations for a selected range of cases. Section 5 offers some

concluding comments and a mathematical appendix some technical derivations.



2 Model and Estimator
We consider the AR(l) model defined as follows:

Yo = QY1 + Ug,
ug ~ N(0,0?),
a = exp(c/T), (1)
Yo/0 = K fixed,
t=1..T

Here the scaled initial value yo/0 is considered fixed at some constant , the errors u; are
independent and normally distributed with mean 0 and variance o2 and ¢ is some real fixed
coefficient. Here, the autoregressive coefficient « is said to be local to unity. When ¢ = 0, we
have a unit root; when ¢ < 0, the process is locally stationary, and when ¢ > 0 it is locally

explosive. We consider the OLS estimator of « defined by:

T T
a = Zytyt—l/zyf—l' (2)
t=1

t=1
This is also the maximum likelihood estimator conditional upon 7y. The estimate & being
invariant to a scale transformation of the data, we can, without loss of generality, suppose

that u; ~ N(0,1) so that yo = k. We are interested in the distribution of the statistic:

T (ZtT:1 YYt—1 — & Zthl yt{l)

T(a—a) = : (3)
T2 i
Using matrix notation and the vector ¥ = (y1, s, ....., y7)’', we can write this statistic as:
"Ay /T — k2a)/T
T@—a) =Y y/T + (pr-ra)/ 7 (4)
yByITT + RT

where A and B are T' by T' symmetric matrices (and B is positive definite) defined by (see,
e.g., White (1958), Evans et Savin (1981b), Satchell (1984), and Knight and Satchell (1993)):

—a 1/2 0 -+ 0
1/2 -«
A= 0 1/2 . . 0
—a 1/2
0 -~ 0 1/2 0




and

Iry O

O 0

B =

where Ip 1 is the identity matrix of dimension T'—1 and Oisal by (T —1) vector of zeros.

We use the notation:

X = yAy/T+ (s — wa)/T. (5)
H = o By/T* + &/T?, (6)

and define the joint moment generating function of (X, H) by m, (u,v) = E(exp {uX + vH}).
From the result of White (1958), we have:

v 2 K2 3 D(T — 1) } D(T)fl/Q, (7>

my (u,v) = exp {K2<ﬁ — oz? — 7) + 7<T + a)? DT

where D(T) satisfies the second order difference equation:

D(T) = pD(T — 1) = ¢’D(T - 2),
with initial conditions D(1) =1 et D(2) = p — ¢* and where p = 1 + o — 2v/T? + 2au/T
and ¢ = —(a+ u/T). Solving this system, we have:

1— 1—
D(T) = T " T

r—s S—7T

, (8)

where r and s are the roots of the equation z? — px + ¢*> = 0. Expression (7) allows to
compute the joint characteristic function of the pair (X, H) and, using Gurland’s (1948)

inversion theorem, to obtain the exact distribution of the statistic T (& — «).

3 Alternative asymptotic approximations

We now discuss three different asymptotic approximations which apply to this near-integrated
context and deliver distributions that are specifically influenced by the value of the initial
condition. These are: an extension of the Edgeworth approximation studied by Knight and
Satchell (1993), the stochastic expansion considered by Phillips (1987¢) and the continuous-
time approximation analyzed by Perron (1991).



3.1 The Edgeworth approximation

Here, we extend the work of Knight and Satchell (1993) who considered the case ¢ = 0 with
a zero initial condition. We first consider the joint moment generating function of the pair

(X, H) defined by (5) and (6). The result is given in the following theorem®.

Theorem 1 Let {y.} be generated by (1) and denote by MGF(u,v) the joint moment-
generating function of the pair (X, H) defined by (5) and (6), then:

s\ 2
Fi(u,v,c)siné o Fo(u,v,¢)sind 5 F3(u,v,c) »
: - §¢+0(r
X { + 1T ; + K 5T 5 @ 1T cos b + O )
where
Fi(u,v,¢) = (u? + 20) (2¢2 + ¢ — 2uv + 2cu? —I— 2cu — 2v — 2cv + 362u)7
5 (cos o — 7"1%)
u? + 20
F: = '
b(u,v,c) cosd — B
2
2
Fs(u,v,¢) = u”+ v

52 <COS6 — Tl%y
and = c+u, 62 =2 — cu+ 2.

The proof is presented in the appendix. In what follows we shall denote by MG Fig(u,v)
the approximation to the joint moment-generating function of the pair (X, H) obtained by

retaining terms that are of higher order than O(T~2). That is, we have:

sing
MGFgs(u,v) = exp(—r1/2) (cosé s ) (9)
Fi(u,v,¢)sinéd o Fy(u,v,¢)sind 5 F3(u,v,c)
><{1—|— 1T 5 + K 5T 5 c 1T cosé p .

The use of Gurland’s (1948) inversion theorem leads to the following approximation for
the distribution function Pr(7T(a — «) < 2):

1 1 o (MGFgs(iu,—i
FKS(Z):E—;/O ]M( G KSS”’ wz))du, (10)

IThe expansion presented below and it’s proof were contained in most parts in some draft notes, Knight
and Satchell (1990). We, nevertheless, present the full proof in the appendix since that draft contained some
technical errors (hence, a different expression) and was never published.

5



where IM(.) denotes the imaginary part of the argument®. We close by noting that the
specification o = exp(e/T) instead of & = 1 4 ¢/T is not innocuous. Use of the latter would

have given a slightly different expression for the joint moment-generating function.

3.2 The stochastic expansion

We consider now the stochastic expansion derived by Phillips (1987¢) and also studied by
Perron (1996). From the latter, we have:

T(@—a) £ Z(e,7)/K(e,7) + 0,(17) (11)
where
o) = [ T0IAWE) +o [ expler)di(r) — n/VET;
K(c,v) = /01 J2(r)dr + 2y /01 exp(cr)J.(r)dr.

Here, 1 is a N(0,1) random variable independent of the Weiner process W (r), J.(r) is the
Ornstein-Uhlenbeck process defined by J.(r) = fi exp(c(r — s))dW (s) and v = /T2, Here
we approximate the distribution of T(& — «) by the distribution of the random variable
Z(e,v)/K(e,7). The joint moment generating function of the pair (Z(c,v), K(c,v)) was
derived by Perron (1996) in a more general context and it is shown in the appendix that it

can be represented as:

o} AT 2¢

X eym{-%(rl ~\) [1 _exp(—)) ]}

cos 6 — %‘-siné

. -1/2 9 .
MGFpep(u,v) = exp(—ri/2) (cosé -7 Smé) exp { Y Mv%} (12)

where 6 and 71 are defined in Theorem 1 and A\* = —§%. The corresponding approximation
to the distribution function T(& — «) is obtained using the inversion formula (10) with

MG Fpep(u,v) instead of MG Fgg(u,v) in which case the distribution function is denoted
FPCB (Z)

2As in Knight and Satchell (1993), we can write the distribution function as Frgs(z) = 1/2
—(1/m)[FUNCDO(z) + (1/4T)FUNCD1(2) +(c*/AT)FUNCD2(z) — (k?/2T)FUNCD3(2)]. In practice,
the four functions, FUNCDi(z) are numerically integrated separately and the final value of the distribu-
tion function obtained using this relation. The values of these functions for a grid of 2’s are presented in
Vodounou (1997a). They are not reproduced here to conserve space.




The expansion (11) is not, strictly, a stochastic expansion to order O,(T ') since it

retains some terms that are O, (T 1). The expansion that keeps only terms that are of order

O, (Tﬁl/Q) is:

Z (c,7) . _
' X+ X T2 1. 1
Koy 0 =0 (1) 13
where

Xo = Hp/Ko, (14)

1 Hy
X, = —(H - K= 1
1 K0< K KO), (15)

with Hy = [l J.(r)dW (), Hy = & fjexp(cr)dW (r) — n/V/2, Ko = [3 J.(r)"dr, and
Ky = 2k fol exp (cr) J. (r) dr. However, obtaining the moment-generating function of the
variable Xo + X172 is more complex and we continue to work with the random variable
Z (¢,v) /K (¢,7) as the approximation. We will see later that excluding all terms that are

O,(T~ 1) would deteriorate the approximation.

3.3 Continuous time approximation

Consider a continuous time process y; defined by the following stochastic differential equa-
tion:

dy, = Oydt + 01dW(t) yo=roy t€[0,N] (16)
where 6 and ¢ are unknown parameters, b is a fixed constant and /N is the span of the data.

The stochastic process {y:} has the following discrete time , representation:
Yth = QpY—1)h + Ut Yo = KO t=1,..1T, (17>

where ug, ~ N (0, o3(exp(20h) —1)/20) and h is the sampling interval such that Th =
N (see, e.g., Bergstrom (1984), Phillips (1987a), and Perron (1991)) The autoregressive
coeflicient is «y = exp(0h). Hence, (17) is equivalent (up to a scale transformation) to
model (1) with ¢ = 0N.

Perron (1991) considered the distribution of the least-squares estimators of 0 and an

defined, respectively, by 0 = I ydy,/ [V a2dt and @y, = SO YanY—n | S y(Qtfl)h when
y: and yy, are generated by (16) et (17). He obtained the results:

N<§_8) gA<776)/B<776)7
T<ah_ah) :>A<776) /B (776)7 (18>
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the convergence result being obtained with N fixed and h converging to 0. The variables are

defined by:
1 1
Ale) = [ )aw )+ [ expler)aw (),
0 0
1 1
Blr,e) = [ J2)dr+ 2 [ expler)J(r)dr + 4 (exp(2) — 1) /2c,
0 0
with v = k/T"/? and ¢ = ON. Here, we consider approximating the distribution of T (& — )
by the distribution of the random variable A(v,c) /B (7y,¢) which we denote by Fpp(z).
Irom Perron (1991), we have
1 1 f MGFpp(iu, —i
Fpp(z) == — —/ M ( pelit, wz)) du,
0

2 U

where MG Fpp(u,v) is the joint moment generating function of the pair (A(y,¢), B(7,¢))
given by:

_ —1/2 2,2 ‘

sin 6 v (w4 v) sin 6
MGF = exp (—r1/2 6 :
R R o e R

where 62 = 20 — 2cu — ¢ and r; = ¢ + w.
4 Adequacy of the approximations

In this section, we discuss to what extent the different approximations described are good
approximations to the exact distribution of 7' (& — «) especially when the initial condition is
non-zero. To that extent, we need to numerically evaluate the distribution functions Fig(2),

Fpep(z) and Fpp(z). We start with some technical descriptions on how these are performed.

4.1 Numerical evaluation of the distribution functions

The evaluation of the approximate distribution functions at some point 2z requires the nu-
merical integration of the relevant functions. An important fact to note is that this involves

two special problems. The first is related to the presence of the square root of the complex

sin

5
integrand. One must therefore carefully assess which roots to select along the integration

-1
number (cos6 -7y ) . Using the principal root does not ensure the continuity of the

path to ensure continuity. The solution to this problem is explained in detailed in Perron
(1989).
The second difficulty is how to ensure a given desired precision given that the integrand

may show wide fluctuations and multiple crossings at zero. Here, we follow the suggestions
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of Knight and Satchell (1993). If the integrand shows large variations near zero but reduces
rapidly when evaluated at a higher number, the integral is computed over a range [e, V],
where € is some small number that we set at € = 1.0/ — 7 and the upper bound is such that
the absolute value of the integrand evaluated at this upper bound is less than ¢ (see also
Perron (1989, 1991) and Hisamatsu and Maekawa (1994)).

However, when the integrand shows oscillatory behavior that dissipates slowly, Knight
and Satchell (1993) suggest to integrate between the points at which the integrand crosses
the zero axis. Here, the upper bound of integration depends on the values of the successive
integrations. The method adopted is to stop whenever an integral between two points at
which the integrand crosses zero is less than 1.0F — 5.

Given the particular cases, the strategies discussed above are used to compute the distri-
bution functions Fs(2), Fpcp(z) and Fpp(z) for various values of ¢, k and 7. In all cases,
the distribution functions are evaluated at 50 equidistant points z over the range [—14,5].
We exclude the point z = —c since the integral is ill-defined in this case; we consider instead

the evaluation at some close neighbor.

4.2 The eflects of the initial condition on the distributions.

In this section, we consider the effect of variations in the initial condition on the finite
sample distribution and the three approximations considered. To obtain the finite sample
distribution, we used 30,000 replications of the statistic (3) when the model is generated by
(1). We consider three values of the non-centrality parameter ¢, namely ¢ = —5, 0 and 2
(covering the stationary, unit root and explosive cases). For the initial condition, we consider
the values v (= yo/T"?) = 0,.5,1.0 and 2.0.

The results are presented in Figures 1.a to 1.d for the case T' = 25. Consider first, Figure
1.a which presents the results for the exact distribution. We see that as the initial condition
increases the exact distribution gets more concentrated around zero and the tails of the
distributions, accordingly, get shorter. This concentration around zero is more pronounced
as ¢ increases.

Consider now the effects on the asymptotic approximations. An increase in the initial
condition has a similar effect on the continuous-time and Edgeworth approximations but the
effect is clearly different on the approximation given by the stochastic expansion. The vari-
ations in the continuous-time approximation mirrors closely those of the exact distribution.
On the other hand, when v > 1, the approximation provided by the Edgeworth expansion

deteriorates in the right tail and take values greater than one so that the approximation no



longer provides a proper distribution function. The variations, induced by changes in 7, on
the approximation provided by the stochastic expansion are very much different from those
of the exact distribution. For a fixed ¢, we note an increase in the left tail which becomes
considerable when v increases. The right tail decreases as <y increases but in a way different
from the finite sample distribution, especially when ¢ = 2.

The effect of a change in the non-centrality parameter ¢ on the exact and approximate
distributions are similar to those induced by changes in the initial condition. For a given
7y, these distribution (with the exception of the stochastic expansion) becomes more con-
centrated around zero as ¢ increases and this concentration becomes more important as 7y

1ncreases.

4.3 Adequacy of the approximations

The quality of the approximations depend on the values of the parameters ¢ and . To analyze
this issue we compare the various approximations to the exact distribution for 1" = 10, 25, 50
and 100 and for the same values of ¢ and 7y considered above. The results are presented in
Tables 1 to 4 and Iigure 2.a to 2.d. We consider in turn the case where v = 0 and the case

where 7y is non-zero.

4.3.1 Case with v =0

In the case where the initial condition is zero the continuous-time approximation is equivalent
to the standard asymptotic distribution without any correction factor. This is not the case
for the approximations based on the Edgeworth and the stochastic expansions which provide
finite sample correction factors. The adequacy of the usual asymptotic distribution in the
case of a zero initial condition was studied in detail in Perron (1989). He showed that it is
not particularly adequate when 1" = 10 or 25 and ¢ = —5 but that the adequacy increases
when ¢ increases. In particular, when T" = 25 and ¢ = —1, it is satisfactory in the right tail
and excellent overall when ¢ = 5 and " = 10. This study also showed that the usual limiting
distribution is satisfactory even with ¢ < 0 when T" reaches 50.

As seen in Figures 2, the Edgeworth expansion, unlike the stochastic expansion, provides
an improvement over the standard asymptotic (or continuous-time) distribution when T' =
10 or 25, especially in the locally stationary (¢ < 0) or integrated (¢ =0) cases. When
T = 10 and ¢ = —5, the stochastic expansion is a bad approximation (Table 4) while
the continuous-time and Edgeworth approximations are satisfactory in the right tail. The

Edgeworth expansion is the best approximation in the left tail. When T" = 25, the Edgeworth

10



approximation is excellent, the continuous time approximation is good in the right tail but
less so in the left and the stochastic expansion is less good overall. As ¢ increases while
remaining negative (e.g.,, ¢ = —2 and —1), the continuous-time and stochastic expansion
approximations remains satisfactory in the right tail but the Edgeworth expansion is best
overall, especially if T" = 25 (Figures 2(a,b,c)). Similar conclusions apply with a unit root
(¢ = 0). When the model is locally explosive (¢ > 0), the three approximations share the
common feature of being excellent for T = 25 and ¢ = 2 (Figure 2.d). However, for T' = 10,
the continuous-time and stochastic expansion approximations are not so good in the extreme

tails. But these shortcomings disappears when ¢ increases.

4.3.2 Case with v #0

When the initial condition is non-zero, the continuous-time approximation is, in general, the
better one. Indeed, when T" > 25 ~v fixed and ¢ < 0, the continuous-time approximation
is satisfactory, especially in the right tail (Figures 2(a,b)). Furthermore, the quality of this
approximation increases when ¢ increases. For example, when ¢ = 2 and v = 2 (Figure 2.d),
it is excellent for T' > 10. Similar conclusions apply when considering a fixed ¢ and varying
v; 1.e. a good approximation in the right tail and significant improvements in the left tail as
v increases. In particular, when T" = 50, the continuous-time approximation is excellent for
¢ =2 and any 7.

The Edgeworth and stochastic expansions offer a contrasting picture, especially when
v > 1 (for all T considered). Figures 2 show that as the initial condition increases, these
approximations seriously deteriorates. For moderate values (e.g., v = 0.5), the stochastic
expansion is still not a good approximation. On the other hand, the Fidgeworth expansion is
satisfactory in the right tail and seems to better capture the median of the exact distribution
when T = 10 or 25. When T increases (e.g., T = 50) with ¢ < 0, the continuous-time and
Edgeworth approximations are good in the right tail but somewhat lacking in the left. The
quality of the approximation increases as ¢ increases most notably for the continuous-time

approximation which is excellent when ¢ = —1 or ¢ > 0.

4.3.3 Some analytical explanations

It is instructive to consider the behavior of the various approximations in the case of a large
initial condition, i.e. a large value of v (which is here equivalent to a small-o approximation).

IFrom Perron (1991), we have that, when v is large, the continuous-time approximation

11



implies that
T(a— ) & N (0,2¢/7” (exp (20) = 1)) . (20)

This approximation is consistent with the main features of the finite sample distribution.
In particular, it implies that as <y increases the distribution of T'(& — &) becomes more
symmetric (due to the normality) and more concentrated around zero (since the variance
decreases). Also, the approximation (20) is consistent with the finite sample feature that
this concentration is more rapid (as 7y increases) the large ¢ is.

On the other hand, the stochastic expansion (11) yields the following approximation for
a large v:
T(6—a) % follexp(cr)dW(T) ‘

2 [y exp(cr)J.(r)dr

This implies that as v gets large the distribution of T'(& — &) becomes less influenced by

and, in the limit, invariant to it. As seen from the experimental results, this is not a feature
of the distribution of T'(& — «) in finite samples. If we had worked with the stochastic

expansion that excluded all terms of order O,(T '), i.e. considered the approximation
T(&—a)~ Xo+ X1 /TY?

with Xy and X; defined by (14) and (15), things would have been even worse. Indeed, the

large 7y or large k = yo/0 the approximation then becomes

—/{{/01 exp(cr)dW(r)/ /01 J.(r)*dr}

whose variance increases with an increase in the initial condition. This feature is opposite

that present in the finite sample distribution of T'(& — «).

5 Conclusion

To summarize our findings, the quality of the various approximations depends on the values
of ¢ and . When the initial condition is zero, the continuous-time approximation which
corresponds to the standard asymptotic distribution is excellent for ¢ > 0 as soon as T" = 25;
even with as low a sample size as I' = 10 when ¢ increases. In this case, the additional
corrections provided by the FEdgeworth and stochastic expansions are negligeable. However,
when ¢ < 0, the Fdgeworth expansion provides a significant improvement over the standard
asymptotic distribution, especially when 7" = 25. When the initial condition is non-zero,
the continuous-time approximation is clearly the better approximation and more so as 7y

1ncreases.

12



Mathematical Appendix

Proof of Theorem 1: To avoid on overburden on notation, we often omit to include
cach time terms like + O(T~%). Instead, we simply state the relation as an equality with
the implicit understanding that this equality holds up to a term that vanishes at some rate
and include only terms of orders that are relevant for the derivations.

We start with the expansion of the term D(T') given by equation (8). Since r and s are
the solutions to the equation % — px + ¢ = 0, we have:

s = <1—|—o¢2—|—2a%—2%> /2 (A1)

u 2 v 2\ 1/2
+ ((1—042)2—404(1—042)?—4(1—a2)——4(1+a2)——8a—+4—> /2

Since o = /7,
a=1+c/T+c*/(2T?%), (A.2)
and
a? =1+ 2¢/T +2¢%)T7. (A.3)
Substituting these expansions, we have:
c+u  Adceu—v
T K

—I—% KU — uc — 02/2) + (uv +ve — ue — 2uc? — 03) /T} i +O(T?),

r = 1+

and s the complex conjugate of r. Using the notation:

™ = c+u,
ry = clctu)—v=cr;—uv,
8§ = 2 —2cu—c?=c?— 2,

and the definition
r=a+ib=|r|cosf+ilr|sind,

we obtaln:

|r|cosf =1+ % + % +O(T?),

and

ﬁ {62/2 + (uv + ve — ulc — 2uc? — 03) /T} v +0(T7?)

|r|sinf =

T

6 27"17"2
= Z|1-

d

1/2 ,
o } +O(T ).

13



Using de Moivre’s formula, we deduce that :
T = |r|" cos(T0) +i |r|" sin(T0).

Note, from (8), that we can write D(T') as:

-7
D(T) = 2Re ( rT> :
r—T
where 7 is the complex conjugate of r. After some developments we can write

D(T) = ]T]T (cos (T0) + X sin (T0)) ,

where

X =(1—|r|cos®)/(|r|sin0).

We now consider the expansion of X and 6. We have:

T T T 27"17"2 > —1/2
X = = 1
s <T + T2> ( 8T

- 3 (0 55) (0 57)

1 T9
N 6[1+62T< +6)}+O< )
and
o (S 27"17"2 1/2 ™ T2
- ()30
o KT 8T TP
_ i(1_ﬂ)(1_ﬁ_7"_2)
T 8T T T2
o} T _
Hence,
cos(T0) = cos <6 — ﬁ((SQ + 7"2)> = cos b + ﬁ((SQ + 79) sin 6,
and -
sin(70) = sin <6 — ﬁ((SQ —|—7"2)> =sind — ﬁ(é + 19) cos b.
Since |r| = ((|r| cos 6)? + (|r|sin )2 ) 2, we also have:
/2
r re\2 & 27179 '
= |1+ 2 2y 2 (22
I l( +T+T2> +T2< 62T>]
/2
21 124 2ry + 62 !
= |1 it ary+ o
[ W ]
T 27"2—|—(52
— 14y
* T * 2772

14



It follows that

T 277

ry o 2y + 62 r?
= T = _
P l (T T T
2ry + 6% — 7"%)

2T
2ry + 6% — T%]

2ry + 67
]T]T = exp lTln(l—l—ﬁ—l— T2t )]

— exp(n) exp (

- e[+ 22

It remains to consider the expression cos(7T0) + X sin(7°0). Using the results above:

cos(T0) + X sin(T0) = cosb+ %(62 +79)sin 6

5 82T

Expanding this last expression leads to:

oT

A
cos(T0) + X sin(T0) = Ay — ﬁ +O(T™?%),
with
in §
A = cosd— Tlslg ,
sin 6

Ay = (7"2(7"% +6%) — 8 (8% + 7"2)) — r2(8% + 1) cos 6.

6
We finally get

D(T) = exp(r) l1 +27~2+—52—7~§] [Al - AQ}

2T &T
1
= exp(?"l) {Al — W <2A2 — 62141(27"2 + (52 — T%))} )

and we deduce that:

_ 1
D(T) % = A7 exp(—r1/2) {1 + T (242 — 62 Ay (2ry + 6 — rf))} .

Expanding this expression, we have:

sin & ~1/2
)

D(T)fl/2 = exp(—r1/2) (cos6 -7y

& &

2 | £2 82 2 | <2 2
X{1+<T1—|—6)<2T2 r16°)siné <T1+6)<2T2+6))C086}.

4782 (cos §—1r; M) 6 AT S (cos § — pysind

15
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We now consider the component of the moment-generating function involving vy = &

R (L P G =t
SER\r T T o ) PT S GIA

Substituting o and o by the approximations (A.2) and (A.3), we have:

2.2 2 2
o U o U e’ K K°Tq
— k24— — 2y 2=
exp(/{ KR = 5 ) exp( 2){ },

() 25 - () 252

supposing that

which 1s:

and

D(T—-1)/D(T) =1+h/T,
which is to be shown below. Hence, we have:

kZh
U=1+—
+2T+O( %).

To determine h, we first expand D(T — 1) as follows:

DT —1) = |r|" " (cos (T = 1)) + X sin ((T — 1)0))
r|" " [cos (T'0) 4 O sin (T'0) + X (sin (16) — 6 cos (T0))]
= " (1 = 0X) cos(TO) + (6 + X) sin(T6)} .
The expansions of (1 — 0X) and (6 + X) to order O(T!) are, respectively:

™
1-0X=1+—=
—I—T,

and

04X ="y (60 (4 8)).

Hence, we have:

iné
DT —1) = yryT*1{<cos5—7~fl§ )
L 82y 1 67) — (2 + 8% + M0 4 L cos6)
r6°(r — 7ro(r —
o 2" 5 e rerth
with
A3:<T162+T%<T2+62)).
We deduce that , ) .
D(T—l):1+ {46 | s1n6:1+£7
D(T) T(cosé—rl%) 6 T
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with

r? + 6° sin 6

h= (cosé—rl%) 6

Finally,
K2 (7"% + 62) sin &
2T (cos 6—1r Si’g‘s) 6

MGF (u,v) = (1 + ) D(T)~ 12,

Combining this result with (A.4) and rearranging yields the result stated in the Theorem.
Derivation of (12). From Perron (1996), the joint moment generating function of

(Z(c,7), K(c,7)) can be expressed as:

u? vk2 e —

1
MGFPCB<U,,U) = exp (E - TT) Mcw(“’uv)u (A5>

where

M., (u,v) = ¥ (u,v) exp {—% (u+ec—XN) {1 —exp(u+c—A) \Ilz(u,v)] } :
with
U, (u,v) = {2 exp(—(c + 1))/ [(A + u + c) exp(—A) + (A — u — ¢) exp(A)]} /2,
and
A= — (21}—20u—02).

To obtain the alternative representation, we start with the following identities: exp(—\) =
ch(X) — sh(X) and exp(A) = ch(A) 4+ sh(A) which define the hyperbolic functions ch(M) et
sh(X\). We can write:

(A+u+c)exp(—A) + (A —u — ¢) exp(N) = 2Ach(A) — 2rysh(N),

with 1 = ¢ + u and we deduce that:

(A+u+c)exp(—A) + (A —u— c¢)exp(})
27

sh(\)
A

=ch(\) —r

Using 6 = i\, we have 62 = —\? = 20 — 2cu — ¢® and

h(A in 6
shi ):cosé—rlslg )

ch(X\) —r
It is then easy to show that ¥.(u,v) can be written as:
- —1/2
U (u,v) = exp(—(c+u)/2) <cos6 5 sin (5) ,

17



and we deduce that

re ~1/2
M. (u,v) = exp(—r1/2) <cos6 5 sin (5)

o {21~ =)

cos b — %siné

The expression (12) is obtained combining this last result with (A.5).

18
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Table 1: Critical values of the exact distribution of 7 (& — «)

1% 2.5% 5% 10% 90% 95% 97.5% 99%

c=-5

v=0.0

T=10 -9.125  -7.658 -6.381 -4.964 2.330 2907 3475 4.254
T=25 -12.825 -10.228 -8.363 -6.396 2.395 3.000 3438 4.028
T=50 -14.671 -11.681 -9.442 -7.042 2431 3.001 3.455 3972
T=100 -15.758 -12.408 -9913 -7.344 2444 3.033 3478  3.992
v=10.5

T=10 -7.750 -6.555 -5.442 -4.225 2.065 2556 2.962 3.436
T=25 -10539 -8711 -7.123 -5.421 2.165 2722 3.143 3.578
T=50 -12.061 -9.530 -7.840 -5.935 2213 2772 3.206 3.646
T=100 -13.305 -10487 -8.314 -6.266 2.212 2777 3.193 3.614
v=1.0

T=10 -5.642 -4756 -3.941 -3.050 1.693 2079 2395 2713
T=25 -7407 -6.053 -5.002 -3.878 1.815 2260 2.610 2930
T=50 -8488 -6.930 -5.616 -4.228 1.862 2335 2.677 3.038
T=100 -8.969 -7.193 -5956 -4.464 1869 2341 2713 3.056
v=2.0

T=10 -3.282 -2708 -2.245 -1.727 1.167 1464 1.694 1.939
T=25 -4.048 -3308 -2.708 -2.099 1278 1594 1.869 2.152
T=50 -4462 -3.683 -3.031 -2317 1.323 1.656 1.943 2232
T=100 -4.696 -3.831 -3.117 -2.385 1.333 1.675 1956 2.251

c=0

v=0.0

T=10 -9915 -8.065 -6.594 -4907 1.171 1.633 2.111  2.777
T=125 -11.822 -9408 -7.397 -5.348 1.012 1408 1.788 2321
T=50 -12577 -9.926 -7.653 -5.523 0972 1337 1.678 2108
T=100 -13.364 -10.255 -7.928 -5.680 0.959 1.312 1.652 2.084
v=10.5

T=10 -7.892 -6.392 -5230 -3.897 0.864 1.188 1.508 1915
T=125 -9.589 -7578 -5897 -4347 0.791 1.098 1.372 1.765
T=50 -9.954 -7973 -6.128 -4.454 0.797 1.092 1.348 1.688
T=100 -10.457 -8.159 -6.417 -4.587 0.772 1.052 1313 1.608
v=1.0

T=10 -5.253 -4209 -3.364 -2.469 0.634 0.843 1.001 1.221
T=125 -5.892 -4.638 -3.677 -2.653 0.597 0793 0961 1.167
T=50 -6.557 -5.128 -3.995 -2.788 0.598 0.798 0.955 1.156
T=100 -6.629 -5.178 -4.063 -2.891 0583 0.777 0935 1.125
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Table 1 (cont’d) : Critical values of the exact distribution of 7 (& — «)

1% 2.5% 5% 10% 90% 95% 97.5% 99%
c=0
v=2.0
T=10 -2.433 -1.873 -1.462 -1.057 0430 0.549 0.648 0.758
T=125 -2589 -1996 -1.569 -1.102 0417 0.531 0.630 0.737
T=50 -2.715 -2.055 -1.582 -1.131 0416 0.534 0.629 0.738
T=100 -2.721 -2.107 -1.613 -1.151 0.411 0.527 0.617 0.718
c=2

v=0.0
T=10 -10.056 -7941 -6.168 -4.280 0.740 1.103 1.479 2.107
T=125 -11.216 -8.423 -6.308 -4.296 0.590 0.877 1.180 1.602
T=50 -11.766 -8.736 -6.527 -4.370 0.553 0.807 1.078 1.430
T=100 -11.740 -8.765 -6.551 -4.385 0.545 0.802 1.065 1.423
v=10.5
T=10 -7.598 -5.796 -4.461 -2.832 0459 0.655 0.867 1.163
T=125 -8423 -6.302 -4.686 -2.962 0406 0.583 0.770 1.054
T=50 -8.953 -6.493 -4.751 -3.016 0401 0.565 0.745 1.008
T=100 -9.207 -6.595 -4.801 -3.000 0.377 0.550 0.718 0.957
v=1.0
T=10 -4.359 -2564 -1.421 -0.788 0.290 0.386 0.481 0.611
T=25 -4306 -2.870 -1.617 -0.833 0.263 0.356 0.445 0.558
T=50 -4.703 -3.036 -1.676 -0.860 0.262 0.348 0.432 0.543
T=100 -5.037 -3.163 -1.735 -0.887 0.252 0.340 0418 0.526
v=2.0
T=10 -0.562 -0437 -0.338 -0.247 0.165 0.214 0.257 0.311
T=125 -0.585 -0432 -0.334 -0.241 0.154 0.200 0.237 0.288
T=50 -0.596 -0445 -0.335 -0.242 0.151 0.196 0.235 0.279
T=100 -0.597 -0.424 -0.325 -0.238 0.149 0.192 0.226 0.272
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Table 2: Critical values from the Edgeworth approximation

1% 2.5% 5% 10% 90% 95% 97.5% 99%

c=-5

v=0.0
T=10 -7.343 -6.709 -5.903 -4.751 2.276 2820 3.260 3.905
T=125 -11.838 -9.980 -8.263 -6.310 2.380 2.968 3.432 4.001
T=50 -14.244 -11.526 -9.316 -6.980 2.418 3.017 3.480 4.019
T=100 -15.515 -12.349 -9.881 -7.344 2437 3.040 3.503 4.027
v=10.5
T=10 -6.418 -5.930 -5.278 -4.302 2.103 2.562 2886 3.190
T=25 -9.066 -7.993 -6.820 -5.336 2.187 2.692 3.057 3414
T=50 -10.553 -9.010 -7.518 -5775 2.218 2738 3.113 3.481
T=100 -11.478 -9.600 -7.909 -6.016 2.233 2.761 3.141  3.513
v=1.0
T=10 -3.354 -3.194 -2948 -2511 1.735 2038 2214 2333
T=25 -4.182 -3.952 -3.612 -3.037 1.775 2104 2299 2433
T=50 -4.557 -4.289 -3.897 -3.255 1.790 2.129 2330 2.469
T=100 -4.819 -4.520 -4.091 -3.401 1.798 2.141 2346  2.488
v=2.0
T=10 -1.099 -1.055 -0.982 -0.839 1.123 1.249 1.314 1354
T=25 -1.188 -1.140 -1.063 -0.911 1.149 1.282 1.351 1.393
T=50 -1.220 -1.171 -1.091 -0.937 1.158 1.294 1.364  1.407
T=100 -1.236 -1.187 -1.106 -0.950 1.163 1.300 1.371 1.415
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Table 2 (cont’d): Critical values from the Edgeworth approximation

1% 2.5% 5% 10% 90% 95% 97.5% 99%

c=0.0

v=0.0

T=10 -9420 -7920 -6.500 -4.870 1.140 1570 1.980  2.430
T=25 -11.770 -9.320 -7.360 -5.350 1.010 1400 1.770  2.250
T=50 -12.710 -9.860 -7.690 -5.520 0970 1340 1.690 2.150
T=100 -13.210 -10.140 -7.860 -5.610 0.950 1.310 1.650  2.090
v=10.5

T=10 -6.597 -5.802 -4.904 -3.768 0.892 1249 1611 2124
T=25 -8.035 -6.742 -5501 -4.098 0.789 1.077r 1.337 1.678
T=50 -8.728 -7.145 -5740 -4.223 0.758 1.027 1.257 1.532
T=100 -9.130 -7.367 -5.868 -4.288 0.743 1.003 1.219  1.467

c=2

v=0.0

T=10 -9.034 -7.457 -5815 -4.046 0.702 1.014 1.342  1.800
T=125 -10.828 -8.247 -6.233 -4216 0.591 0865 1.152  1.561
T=50 -11.422 -8552 -6.392 -4278 0.555 0812 1.081 1.463
T=100 -11.734 -8.711 -6.474 -4.311 0537 0.785 1044 1.410
v=10.5

T=10 -6.034 -5.001 -3.924 -2617 0473 0712 0992 1.432
T=125 -6.883 -5460 -4.151 -2.678 0.387 0.549 0.718 0.969
T=50 -7.266 -5.646 -4.238 -2.701 0.364 0506 0.642 0.820
T=100 -7.484 -5.748 -4.283 -2713 0353 0486 0.609 0.757
v=1.0

T=10 -0.625 -0582 -0.520 -0424 0.205 0.244 0.267 0.281
T=25 -0.617 -0575 -0.515 -0421 0.187 0.223 0.242 0.255
T=50 -0.606 -0.565 -0.507 -0416 0.182 0.216 0235 0.247
T=100 -0.601 -0.561 -0.504 -0.413 0.179 0.213 0232 0.243
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Table 3: Critical values from the continuous-time approximation
1% 2.5% 5% 10% 90% 95% 97.5% 99%
c=-5
v=00 -16.738 -13.174 -10.463 -7.724 2456 3.064 3.524 4.034
0.5 -13.896 -10.983 -8.7550 -6.490 2.270 2826 3.241 3.679
1.0 -9.541 -7.610 -6.1140 -4.570 1.928 2.402 2.758 3.122
20 -4.874 -3.953 -3.221  -2441 1.384 1.736 2012 2.304
c=0.0
v=00 -13.692 -10.440 -8.038 -5.713 0.928 1.285 1.612 2.033
0.5 -10.957 -8.354 -6.432 -4571 0.764 1.048 1304 1.634
1.0 -6.848 -5.220 -4.020 -2.857 0.588 0.778 0.938 1.130
20 -2.739 -2.089 -1.609 -1.145 0.412 0.527 0.621 0.726
c=2
v=0.0 -12.056 -8.876 -6.559 -4.343 0.519 0.759 1.007 1.355
0.5 -9.255 -6.708 -4844 -3.021 0.376 0540 0.714 0.968
1.0 -4.876 -3.126 -1.740 -0.878 0.249 0.336 0418 0.529
2.0 -0.590 -0.431 -0.329 -0.237 0.147 0.190 0.227 0.271
Table 4: Critical values from the stochastic expansion
1% 2.5% 5% 10% 90% 95% 97.5% 99%
c=-5.0
v=0.0
T=10 -22.949 -18.030 -14.095 -9917 3588 4418 5174 6.213
T=25 -19.776 -15.286 -11.873 -8.476 2898 3.542 4045 4.638
T=50 -18.350 -14.233 -11.145 -8.078 2668 3.285 3.757 4.292
T=100 -17.559 -13.701 -10.797 -7.8906 2559 3.170 3.634 4.155
c=0.0
v=0.0
T=10 -15.740 -12.140 -8.780 -5.800 1.030 1.410 1780 2.270
T=25 -14.800 -11.070 -8.300 -5.750 0970 1.340 1680 2.140
T=50 -14.270 -10.730 -8.160 -5.730 0950 1.310 1.650 2.080
T=100 -14.000 -10.140 -8.100 -5.720 0940 1.300 1.630 2.060
c=2
v=0.0
T=10 -13.599 -9.257 -6.460 -4.136 0.541 0.796 1.068 1.459
T=25 -12.612 -9.013 -6.525 -4.262 0.528 0.773 1.031 1.397
T=50 -12.319 -8.942 -6.543 -4.303 0.524 0766 1.019 1.376
T=100 -12.188 -8.909 -6.551 -4.323 0.521 0.762 1.013 1.366
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condiion for different values of ¢

initial
Edgeworth expansion for T=25

1.b: Effect of the
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condition for different values of ¢

initial
Continuous time approximation for T=25

.Cc: Effect of the
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condition for different values of ¢

initial
Stochastic expansion for T=25

1.d: Effect of the
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