
Université de Montréal

An Empirical Study of the Impact of two Antipatterns on Program
Comprehension

par

Marwen Abbes

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences

en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en informatique

Novembre, 2010

c©Marwen Abbes, 2010.



Université de Montréal

Faculté des arts et des sciences

Ce mémoire intitulé:

An Empirical Study of the Impact of two Antipatterns on Program
Comprehension

présenté par:

Marwen Abbes

a été évalué par un jury composé des personnes suivantes:

Bruno Dufour, président-rapporteur

Yann-Gaël Guéhéneuc, directeur de recherche

Giuliano Antoniol, codirecteur

John Mullins, membre du jury

Mémoire accepté le: . . . . . . . . . . . . . . . . . . . . . . . . . .



RÉSUMÉ

Les antipatrons sont de “mauvaises” solutions à des problèmes récurrents de conception

logicielle. Leur apparition est soit due à de mauvais choix lors de la phase de conception

soit à des altérations et des changements continus durant l’implantation des programmes.

Dans la littérature, il est généralement admis que les antipatrons rendent la compréhen-

sion des programmes plus difficile. Cependant, peu d’études empiriques ont été menées

pour vérifier l’impact des antipatrons sur la compréhension. Dans le cadre de ce travail

de maîtrise, nous avons conçu et mené trois expériences, avec 24 sujets chacune, dans le

but de recueillir des données sur la performance des sujets lors de tâches de compréhen-

sion et d’évaluer l’impact de l’existence de deux antipatrons, Blob et Spaghetti Code,

et de leurs combinaisons sur la compréhension des programmes. Nous avons mesuré les

performances des sujets en terme : (1) du TLX (NASA task load index) pour l’éffort ;

(2) du temps consacré à l’exécution des tâches ; et, (3) de leurs pourcentages de réponses

correctes. Les données recueillies montrent que la présence d’un antipatron ne diminue

pas sensiblement la performance des sujets alors que la combinaison de deux antipa-

trons les entrave de façon significative. Nous concluons que les développeurs peuvent

faire face à un seul antipatron, alors que la combinaison de plusieurs antipatrons devrait

être évitée, éventuellement par le biais de détection et de réusinage.

Mots clés: Antipatrons, Blob, Spaghetti Code, compréhension des programmes,

maintenance des programmes, étude empirique.



ABSTRACT

Antipatterns are “poor” solutions to recurring design problems which are conjec-

tured in the literature to make object-oriented systems harder to maintain. However,

little quantitative evidence exists to support this conjecture. We performed an empirical

study to investigate whether the occurrence of antipatterns does indeed affect the un-

derstandability of systems by developers during comprehension and maintenance tasks.

We designed and conducted three experiments, each with 24 subjects, to collect data

on the performance of these subjects on basic tasks related to program comprehension

and assess the impact of two antipatterns and their combinations: Blob and Spaghetti

Code. We measured the subjects’ performance with: (1) TLX (NASA task load index)

for their effort; (2) the time that they spent performing their tasks; and, (3) their percent-

ages of correct answers. The collected data shows that the occurrence of one antipattern

does not significantly decrease developers’ performance while the combination of two

antipatterns impedes developers significantly. We conclude that developers can cope

with one antipattern but that combinations thereof should be avoided possibly through

detection and refactorings.

Keywords: Antipatterns, Blob, Spaghetti Code, Program Comprehension, Pro-

gram Maintenance, Empirical Software Engineering.
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CHAPTER 1

INTRODUCTION: ANTIPATTERNS AND PROGRAM COMPREHENSION

AND MAINTENANCE

Context The object-oriented (OO) paradigm has witnessed remarkable growth and

adaptation within the industry. Since 1994 [22] it has been, first, widely used with C++,

which made it popular, then, more forceful and alluring with Java. There have been valu-

able benefits behind the use of OO analysis, design, coding and reusable components.

These benefits include, but are not limited to, better understandability, easier modifica-

tions, greater productivity, and simpler reuse. However, these benefits rely mainly on in-

tuition (experts’ opinions or individual developer’s experience) instead of being derived

from observations or experimental results. Intuition leads, mostly, to wrong deductions

[2]. Burgess made an interview with Basili [2] who explained: “companies have been

running on intuition, but in many of our experiments, we have shown that our intuition

about software is wrong”.

Empirical studies have not much been used to confirm the benefits of OO technology,

such as enhanced productivity and quality or even reusability. It is only recently that

researchers started to study this claim empirically. Research works have been performed

and reported in the literature to evaluate and assess the techniques used in OO technology

[8] [17]. Results obtained have demonstrated that OO techniques do not always bring the

benefits attributed to them. For example, corrective maintenance problems have revealed

a number of disadvantages concerning the performance of the OO technology [17].

Many explanations were suggested in the literature to clarify this lack of benefits.

Some researchers showed that OO notions (objects, polymorphism, inheritance, design

patterns, etc.) were not easy to acquire and use smoothly for developers new to OO

technologies [12]. Some others suggested that the manner of implementing OO systems

affects slightly their understandability. Also, antipatterns, see next paragraph for expla-

nation, deteriorate the quality of OO systems [1, 50] and are conjectured in the literature

to make OO systems harder to maintain. Therefore, OO benefits related to effectiveness
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and efficacy must be endowed with more empirical research studies.

In this thesis, we study the impact of antipatterns on program comprehension and

maintenance because the maintenance phase is considered the most costly phase of sys-

tem life cycle [17, 28] and because antipatterns may decrease the effectiveness and effi-

cacy of OO technologies.

Antipatterns In theory, antipatterns are “poor” solutions to recurring design prob-

lems; they are considered counterproductive programming practices and describe com-

mon pitfalls in object-oriented programming, e.g., Brown’s forty antipatterns [1]. The

apparition of antipatterns in OO systems is generally due to the lack of experience in

solving a particular problem, misapplied design patterns, or insufficient knowledge or

skills of the developers maintaining the system. Coplien [6] described an antipattern as

“something that looks like a good idea, but which back-fires badly when applied”.

In practice, antipatterns are related to code smells in the source code, resulting from

design problems in the implementation phase [14]. A typical example of antipattern is

the Blob, also called God Class. It is defined as a large class centralizing the behavior

of the major functionality of a part of a system. The Blob can be seen also as a com-

plex controller class manipulating small surrounding classes containing only data, called

data holders, i.e., data classes [1, 46]. These Blobs are generated from continuous mod-

ifications and additions to a software system. The main characteristics of a Blob class

are: a large size, a low cohesion, some method names recalling procedural program-

ming, and its association with data classes, which only provide fields and–or accessors

to their fields [30]. Another typical example of antipattern is the Spaghetti Code, which

is characteristic of procedural thinking in object-oriented programming. Spaghetti Code

classes have little structure, declare long methods with no parameters, and use global

variables; their names and their methods names may suggest procedural programming

[30]. They do not exploit and may prevent the use of object-orientation mechanisms:

polymorphism and inheritance.

Premise Antipatterns are conjectured in the literature to decrease the quality of sys-

tems. Yet, despite the many studies on antipatterns, summarised in Chapter 2, few stud-

ies have empirically investigated the impact of antipatterns on program comprehension.
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However, program comprehension is central to an effective software maintenance and

evolution [48]: a good understanding of the source code of a system is essential to al-

low the inspection, maintenance, reuse, and extension of a system. Therefore, a better

understanding of the factors affecting developers’ comprehension of source code is an

efficient and effective way to ease maintenance.

Goal We want to gather quantitative evidence on the relations between antipatterns

and program comprehension. In this thesis, we focus on system understandability, which

is the degree to which the source code of a system can be easily understood by developers

[23]. Gathering evidence on the relation between antipatterns and understandability is

one more step [41] towards (dis)proving the conjecture in the literature about antipatterns

and increasing our knowledge about the factors impacting program comprehension.

Study We perform three experiments: we study whether systems with the antipat-

tern Blob, first, and the Spaghetti Code, second, are more difficult to understand than

systems without any antipattern. Third, we study whether systems with both Blob and

Spaghetti Code are more difficult to understand than systems without any antipatterns.

Each experiment is performed with 24 subjects and on three different systems developed

in Java. The subjects are graduate students and professional developers with experience

in software development and maintenance. We ask the subjects to perform three different

program comprehension tasks covering three out of four categories of usual comprehen-

sion questions [39]. We measure the subjects’ performance with: (1) TLX (NASA task

load index) for their effort; (2) the time that they spent performing their tasks; and, (3)

their percentages of correct answers.

Results Collected data shows that the occurrence of one antipattern in the source

code of a system does not significantly reduce its understandability when compared to a

source code without any antipattern. However, the combination of two antipatterns im-

pact negatively significantly subjects’ comprehension; hinting that developers can cope

with antipatterns in isolation but that combinations thereof should be avoided during

development and maintenance.

Parts of the results presented in this work have been accepted for publication in the

15th European Conference on Software Maintenance and Reengineering (CSMR 2011).
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Relevance Understanding the impact of antipatterns on program comprehension, es-

pecially the understandability of systems, is important from the points of view of both

researchers and practitioners. For researchers, our results bring further evidence to sup-

port the conjecture in the literature on the negative impact of antipatterns on the quality

of systems. For practitioners, our results provide concrete evidence that they should pay

attention to systems with a high number of classes participating in antipatterns, because

these antipatterns would reduce their systems understandability and, consequently, in-

crease their systems’ aging [34]. Our results also support a posterior the removal of

antipatterns as early as possible from systems and, therefore, the importance and useful-

ness of antipatterns detection techniques.

Organization Chapter 2 relates our study with previous work. Chapter 3 describes

the definition and design of our empirical study. Chapter 4 presents the study results

while Chapter 5 discusses them and threats to their validity. Finally, Chapter 6 concludes

with future work.



CHAPTER 2

RELATEDWORK

This chapter summarises previous works on the impact of antipatterns and on their

relation to program comprehension. We also highlight some experiments similar to ours.

In particular, we introduce two experiments by Deligiannis et al. [19, 20] and Du Bois

et al. [10] in details and compare their work with ours.

2.1 Antipatterns and Quality

Several papers feature various aspects of program comprehension and maintenance

but only few of them deal, in particular, with program comprehension and antipatterns.

Webster’s "Pitfalls of Object Oriented Development" [50] was the first book (1995) to

study in depth quality-assurance problems. He examined antipatterns with reference to

the field of OO programming.

Brown [1] described forty antipatterns, including the Blob and Spaghetti Code. He de-

fined antipatterns as bad practices when solving design problems, related mainly to the

abilities and proficiency of the developer(s) implementing the solutions. Antipatterns

are mainly due to the developers’ lack of experience in solving a particular problem,

insufficient knowledge or skills, and–or misapplied design patterns. He conjectured that

antipatterns decrease the quality of systems and, hence, make program comprehension

and maintenance more complex. However, he did not supply any quantitative evidence

to uphold his conjecture.

In the book Refactoring [14], Fowler proposes twenty two code smells and refactorings

to improve the design of existing code, indicating where to apply them and how. William

and Mika [26, 49] presented several classifications for code smells. Riel’s "Object-

Oriented Design Heuristics" [37] suggested more than sixty heuristics to manually assess

the quality of OO systems and help developers create enhanced object-oriented systems

by improving the design and implementation.
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These books give detailed descriptions of code smells, antipatterns, and commonly

known heuristics related to academic and industrial context. They bring quantitative

and anecdotal evidence of the impact of antipatterns on program comprehension.

2.2 Antipatterns and Detection

Many approaches for the specification and detection of code smells and antipatterns

have been proposed in the literature. These approaches are based on: (1) inspection

techniques performed manually [44]; (2) metrics and heuristics [27, 31, 33]; (3) rules

and thresholds on different metrics or Bayesian belief networks [42]; (4) visualisation

techniques, especially when dealing with complex software systems [9, 40]; (5) fully

automatic techniques with automatic detection of the smells and use visualisation tech-

niques to show the results [24, 45].

These previous works significantly contributed to the understanding and study of an-

tipatterns, as described in the next section. In this work, we detect antipatterns, to locate

and remove them in the systems that we study, using our antipattern detection technique,

DEX, which stems from our DECOR method [30]. We choose DECOR because it has a

recall of 100% and an average precision greater than 60%.

2.3 Antipatterns and Software Evolution and Maintenance

Several works have studied the impact of antipatterns on code evolution phenomena.

They suggest decreased reusability, expandability, and understandability of code with

code smells and antipatterns.

Vaucher et al. [46] studied, in two different systems (through their different versions), the

evolution of Blobs. They tracked the occurrences of this antipattern: when they are in-

troduced, when they are removed or modified, and their prevalence. They observed that

Blobs are, in few cases, created by design as the best solution to a particular problem,

for example when the problem is not readily divisible. In such cases, the Blob should

not be considered a bad practice. They also described how to detect automatically the

“Blobiness” of classes and how to differentiate between Blobs created by design, not
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considered as a bad practice, and those created randomly or by accident, considered as

bad solutions.

The corrective maintenance of a large business system was examined by Vokac [47] for

three years. He evaluated the difference between fault rates of the classes that contributed

to design patterns (opposite to antipatterns) with those of other classes. He observed that

there were dissimilarities between participating classes, which were less fault-prone, and

other classes. His work inspired many studies of the impact of antipatterns on software

quality in the use of logistic regression for calculating and interpreting the correlations.

One of these studies was performed by Khomh et al. [41] in which the authors studied

two different systems, Azureus and Eclipse, and evaluated the impact of classes with

poor code quality on change-frequency and the specific impact of certain code smells.

The authors demonstrated that classes containing code-smells and antipatterns are more

prone to change, implying more maintenance efforts, except in clear situations.

Chatzigeorgiou and Manakos [4] studied the various versions of two open-source sys-

tems, tracking the changes of Long Method, Feature Envy, and State Checking. They

concluded that a big part of these smells were a result of inserting new methods in the

system. They also located persisting smells in systems. Adaptive maintenance could

implicitly remove these smells rather than performing refactoring activities.

The historical data of Lucene and Xerces was also evaluated during many years by Ol-

brich et al. [32]. They focused on Blob classes and classes affected by Shotgun Surgery

and observed that these classes are more change-prone than other classes.

Thus, the authors concluded that Blobs impact program comprehension and mainte-

nance. We performed quantitative analysis on Blobs, but instead of using change fre-

quency or fault-proneness, we measure their impact on developers’ performance during

comprehension and maintenance tasks.
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2.4 Antipatterns and Understandability

2.4.1 Impact of Blobs on Maintainability

The impact of Blob on maintainability has been probed by Deligiannis et al. [19, 20]

who conducted controlled experiments on two systems, in which twenty undergraduate

students participated. They were the first to perform a quantitative study considering

the relation between antipatterns and program comprehension and maintenance. The

authors explored the influence of the presence of the Blob in OO systems on both under-

standability and maintainability. They compared two developed designs A and B. Blobs

were injected in a functionally relevant part of Design B. Figure 2.1 shows these two

designs: Design A was the “good” version: consistent with properties for well-designed

classes; while Design B was the “bad” one, designed according to Design A modified

to construct a central class into the system controlling the majority of the surrounding

classes by centralising their functionalities.

Results have shown that Design B, containing the Blob, has lower system understanding

and maintenance than Design A. This difference is acknowledged by both qualitative

and quantitative evidence. The qualitative evidence has revealed that it was easier for

the subjects to understand and alter Design A in terms of information analysed from

the questionnaire. Completeness, correctness, and consistency of the created solutions

were also affected by the differentiation in Design B. Thus, OO design structures are

influenced by “bad” design in terms of understandability and maintainability and, hence,

could be changed to improve poorer designs which are hard to maintain during the con-

tinuous growth of design over the time. Such design, also, reduces possibilities of reuse:

an important feature of OO technology.

In particular, results show that Blob classes impact the evolution of design structures

and the subjects’ use of inheritance because Design B has considerably impacted the

way participants apply the inheritance mechanism.

Deligiannis et al. concluded that heuristics and principles should be respected and ap-

plied by developers because the maintainability and evolution of OO systems depends

on the good practices and design. However, they did not assess the impact of Blobs on
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the ease of their subjects to understand the systems directly and the subjects’ ability to

perform successful comprehension tasks on these systems.

2.4.2 Blob Decomposition and Comprehensibility

Class decomposition is defined as one of the key actions in object-oriented software

development. It is mainly used to improve code readability, decrease complexity, and

enhance maintainability. The idea is that the entities used in the problem domain will

be decomposed and–or merged into classes and relationships among them [5]. Class

decomposition is supported by modeling techniques [21, 25], modeling notations such

as UML [36], design patterns [15, 35], and analysis patterns [13].

As Blobs are conjectured in the literature to make OO systems harder to understand and

maintain, Du Bois et al. [10] dedicated a research work to study how the decomposition

of a Blob employing recognised refactoring methods could impact the understandability

of the related code part. They restructured a software system using a small number of

refactoring. They divided the functionalities of a single Blob and shared them among re-

lated classes. Then, the understandability of the decompositions was evaluated by M.Sc.

computer science students performing controlled maintenance tasks.

The experimental results confirmed that there is no need for huge amount of reengi-

neering efforts to reach improvements in terms of understandability. Experiments have

demonstrated that the optimal class decomposition with respect to understandability is

supported by the specific education of the person implementing the comprehension task.

Hence, when performing restructuring, many factors should be taken into consideration

such as the capabilities of the people maintaining the system and using methods of orga-

nization chosen by people sustaining it to adapt the organization of the software system.

Du Bois et al. found that the decomposition of a Blob into a number of collaborat-

ing classes, using well-known refactorings, impacts the understandability of the relevant

code part: students had more difficulties understanding the original Blob than other de-

compositions. However, their study did not reveal any objective notion of “optimal com-

prehensibility”: the authors did not conclude with an objective criterion for measuring

the comprehensibility.
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2.5 Summary

These previous works attracted the attention of researchers to study the impact of

code smells and antipatterns on software development and maintenance activities. The

work of Brown [1] helped us to understand antipatterns in relation with software quality

and the work of Fowler [14] was the basis for us to perform our refactorings properly.

We studied the detection techniques and chose DEX because it has a recall of 100%

and an average precision greater than 60% [30]. Then we discussed some experiments

[10, 19, 20], and were inspired by the work of Khomh et al. [41] and Olbrich et al. [32]

but instead of using change frequency or fault-proneness, we measure the impact of two

antipatterns on developers’ performance during comprehension and maintenance tasks.

Our design allows to assess their impact on the ease of our subjects to understand the sys-

tems directly, and measure the comprehensibility objectively, which were not assessed

before. We build on these previous works and propose three experiments assessing the

impact of the Blob and Spaghetti Code on the understandability of systems. Our results

bring further evidence to support the conjecture in the literature on the negative impact

of antipatterns on the quality of systems.
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Figure 2.1: (a) Design A (heuristic compliant), (b) Design B (heuristic non-compliant),

taken from [20].



CHAPTER 3

EXPERIMENTAL DESIGN

We perform three experiments to assess the comprehension of source code by sub-

jects in the presence of two antipatterns. Experiment 1 deals with the Blob, Experiment

2 deals with the Spaghetti Code, and Experiment 3 deals with both antipatterns. In each

experiment, we assign two systems to each subject: one containing one occurrence of

one (or both) antipattern(s) and one without any occurrence. We then measure and com-

pare the subjects’ performances for both systems. We follow Wohlin et al.’s template

[51] to describe the experimental design of Experiment 1, giving particulars of the other

two experiments when appropriate.

3.1 Research Question

Our research questions stem from our goal of understanding the impact of antipat-

terns on program comprehension and is: “what is the impact of an occurrence of the Blob

antipattern (respectively of the Spaghetti Code antipattern and of the two antipatterns)

on understandability?”

3.1.1 Hypotheses

When designing our experiment, our first reflection was to formulate our hypothesis

properly as this guide us to a good design. According to our goal, we want to assess

the following null hypothesis when subjects perform comprehension tasks with source

code:

• H0Blob: There is no statistically significant difference between the subjects’ average

performance when executing comprehension tasks on the source code of systems

containing one occurrence of the antipattern Blob and their average performance

with source code without any antipattern.
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We have two identical null hypotheses H0SpaghettiCode and H0Blob+SpaghettiCode for the other

antipattern and for the combination of one occurrence of each antipattern.

If we reject the previous null hypotheses, then we explain the rejection either as:

• Either E1Blob: the subjects’ average performance is better when executing compre-

hension tasks on systems containing no occurrence of the Blob;

• Or E2Blob: the subjects’ average performance is better when executing comprehen-

sion tasks on systems containing one occurrence of the Blob;

and similarly for the Spaghetti Code and the combination of the two antipatterns (E1SpaghettiCode ,

E2SpaghettiCode , E1Blob+SpaghettiCode , and E2Blob+SpaghettiCode).

We choose one explanation by comparing the subjects’s average performance: E1Blob

if the average of developers’ performance is better with systems containing no occur-

rence of the Blob, else E2Blob . We thus conclude on the impact of antipattern on under-

standability within the limits of the threats to the validity of our experiments in Section

5.3.

3.2 Objects

We choose three systems for each experiment, all developed in Java, and briefly

described in Table 3.1. We performed each experiment on 3 systems, because one system

could be intrinsically easier/more complex to understand.

For Experiment 1, we use YAMM (Yet Another Mail Manager): an email client

previously used in a similar study by Du Bois et al. [10]; JVerFileSystem: a system to

model and analyse the content of version control systems, like CVS or SVN [43]; and,

Aura: a tool implementing a hybrid approach to generate rules to upgrade a system when

its underlying framework evolves [52].

For Experiment 2 and 3, we use GanttProject1: a cross-platform desktop tool for

project scheduling and management; JFreeChart2: a chart library for Java to generate

1http://ganttproject.biz/index.php
2http://www.jfree.org/jfreechart/
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Experiments Systems # of Classes # of SLOCs Release dates

YAMM 0.9.1 64 11,272 1999

1 JVerFileSystem 167 38,480 2008

AURA 95 10,629 2008

GanttProject 2.0.6 527 68,545 2008

2 and 3 JFreeChart 1.0.13 989 302,844 2009

Xerces 2.7.0 740 233,331 2008

Table 3.1: Object systems

various kinds of charts, such as pie, bar, or time series charts; and, Xerces3: a parser

to analyze XML documents written according to XML 1.1. It implements a number of

standard API for XML parsing, including DOM, SAX, and SAX2.

We chose these systems because they are typical examples of systems having contin-

uously evolved on periods of time of different lengths. Hence, the occurrences of Blob

and Spaghetti Code in these systems are not coincidence but are realistic. We use our

antipattern detection technique, DEX, which stems from our DECOR method [29, 30]

to ensure that each system has at least one occurrence of the Blob and–or the Spaghetti

Code antipattern. We validate the detected occurrences manually. We select randomly

a subset of the system classes, collaborating in a specific functionality, in which a Blob

and–or Spaghetti Code class plays a central role, i.e., the Blob class and its surrounding

classes form a consistent whole. For example, in JFreeChart, we use the source code

of the classes responsible for editing and displaying the properties of a plot. Then, we

refactor [14] each subset of each system to remove all other occurrences of (other) an-

tipatterns to reduce possible bias by other antipatterns, while keeping the system compi-

lable and functional. (In the course of the refactorings, we have removed and introduced

new classes, hence YAMM with one occurrence of the Blob has 65 classes, see Table

4.2, while its original version has 64 classes, see Table 3.1.)

Therefore, for Experiment 1, we obtain three subsets of the three systems, each con-

taining one and only one occurrence of a Blob class. For Experiment 2, each subset

contains only one occurrence of the Spaghetti Code. For Experiment 3, each subset

contains one occurrence and only one occurrence of both antipatterns.

We finally refactor each subset of the systems to obtain new subsets in which no

3http://xerces.apache.org/
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occurrence of the antipatterns exist. We use these subsets as base line to compare the

subjects’ performance and test our null hypothesis.

3.3 Independent Variables

The independent variable in Experiment 1 is the presence of the occurrence of the

Blob antipattern, which is a Boolean value stating whether there is such an occurrence

or not. It is the value of this independent variable that should influence the subjects’ per-

formances. In Experiment 2 the independent variable is the presence of one occurrence

of the Spaghetti Code while in Experiment 3 it is the presence of one occurrence of the

Blob and Spaghetti Code antipattern.

3.4 Dependent Variables

Figure 3.1: TLX: Weights.

The dependent variables measure the subjects’ performance, in terms of effort, time

spent, and percentage of correct answers. We measure the subjects’ effort using the

NASA Task Load Index (TLX) [16]. The TLX assesses the subjective workload of sub-
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jects. It is a multi-dimensional measure that provides an overall workload index based

on a weighted average of ratings on six sub-scales: mental demands, physical demands,

temporal demands, own performance, effort, and frustration, explained in Figure 3.4.

Figure 3.2: TLX: Ratings.

NASA provides a computer program to collect both weights and ratings on the six

previously-mentioned factors. Each subject must, first, calculate the weights: 15 com-

binations are to be answered, as there are six factors to compare two by two, by select-

ing, for each couple, which factor contributes the most to the workload, see Figure 3.1.

Weights are saved in a file with extension .wgt. Then, the subject must collect the ratings

on these six scales, see Figure 3.2, by specifying how much the tasks for a given system

were demanding for each of the factors. The subject must drag a cursor to the desired lo-

cation. Ratings are saved in a file with the extension .rte. We combine manually weights

and ratings provided by the subjects, by processing the data in the .wgt and .rte files, into
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an overall weighted workload index by multiplying ratings to their respective weights;

the sum of the weighted ratings divided by fifteen (sum of the weights) represents the

effort [18].

We measure the time using a timer developed in Java, see Figure 3.3, that the subjects

must start before performing their comprehension tasks to answer the questions and stop

when done.

Figure 3.3: Timer.

We compute the percentage of correct answers for each question by dividing the

number of correct elements found by the subject by the total number of correct elements

they should have found. For example, for a question on the references to a given object,

if there are ten references but the subject find only four, the percentage would be forty.

3.5 Mitigating Variables

We retain three mitigating variables possibly impacting the measures of the depen-

dent variables:

• Subject’s knowledge level in Java.

• Subject’s knowledge level of Eclipse.

• Subject’s knowledge level in software engineering.

We assess the subjects’ levels using a post-mortem questionnaire administered to

subjects at the end of their participation to our study to avoid any bias, because some

questions pertain to antipatterns. This questionnaire uses Likert scales for each of the
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mitigating variables and also include open questions about antipatterns, refactorings, and

so on.

3.6 Subjects

Each experiment was performed by 24 anonymous subjects, S1 to S24. Some sub-

jects were enrolled in the M.Sc. and Ph.D. programs in computer and software engi-

neering in École Polytechnique de Montréal or in computer science in Université de

Montréal. Others were professionals working for software companies in the Montréal

area, recruited through the authors’ industrial contacts. All subjects were volunteers and

could withdraw at any time, for any reason.

3.7 Questions

Choosing the best appropriate questions to our experiment is one of the most im-

portant tasks in the set-up phase. Questions should allow the user to respond within a

short time (1 to 5 minutes per question). We used comprehension questions to elicit

comprehension tasks and collect data on the subjects’ performances.

We consider questions in three of the four categories of questions regularly asked

and answered by developers [39]: (1) finding a focus point in some subset of the classes

and interfaces of some source code, relevant to a comprehension task; (2) focusing on

a particular class believed to be related to some task and on directly-related classes; (3)

understanding a number of classes and their relations in some subset of the source code;

and, (4) understanding the relations between different subsets of the source code. Each

category contains several questions of the same type [39].

We choose questions only in the first three categories, because the last category per-

tains to different subsets of the source code and, in our experiments, we focus only on

one subset containing the occurrence(s) of the antipattern(s). In each chosen category,

we select the two most relevant questions through votes among three experts (one profes-

sor, one Ph.D. student and one M.Sc. student), which were validated by a fourth one (a

professor). Selecting two questions in each category allow us to have, for each subject,
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a different question from the same category on the system with and without antipattern,

hence reducing the possibility of a learning bias for the second system.

The six questions are the followings. The text in bold is a placeholder that we re-

place by appropriate behaviors, concepts, elements, methods, and types depending on

the systems on which the subjects were performing their tasks.

• Category 1: Finding focus points:

– Question 1: Where is the code involved in the implementation of this behav-

ior?

– Question 2: Which type represents this domain concept or this UI element

or action?

• Category 2: Expanding focus points:

– Question 1: Where is this method called or this type referenced?

– Question 2: What data can we access from this object?

• Category 3: Understanding a subset:

– Question 1: How are these types or objects related?

– Question 2: What is the behavior that these types provide together and how

is it distributed over these types?

We have studied our systems and we have adapted the questions to each of them con-

sidering the part of the code where the antipattern(s) exist(s). For example, with AURA,

we replace “this behavior” in Question 1, Category 1, by “differentiating callees” and

the question reads: “Where is the code involved in the implementation of differentiat-

ing callees?”. Table 3.3 shows the distribution of the questions for each version of the

systems for all subjects.
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With Antipattern(s) Without Antipattern(s)

System 1 S3,S7,S9,S11,S12,S18,S21,S24 S1,S5,S8,S10,S15,S16,S20,S22

System 2 S1,S2,S6,S14,S15,S17,S20,S22 S4,S7,S9,S11,S13,S18,S19,S23

System 3 S4,S5,S8,S10,S13,S16,S19,S23 S2,S3,S6,S12,S14,S17,S21,S24

Table 3.2: Experimental design

3.8 Design

Our design is a 2×3 factorial design [51], presented in Table 3.2. We have three

different systems, each with two possibilities: containing or not the occurrence(s) of the

antipattern(s). Hence, six combinations are possible. For each combination, we prepare

a set of comprehension questions, which together form a treatment. We have six different

groups of subjects, each one affected to each one treatment. Treatments distribution is

described in Table 3.3.

This design is a between-subject design [11] with a set of different groups of sub-

jects, which allows us to avoid repetition by using a different group of subjects for each

treatment. We take care of the groups to ensure their homogeneity and avoid bias in

the results, for example we ensure that no group entirely contains male or female sub-

jects. The use of balanced groups simplifies and enhances the statistical analysis of the

collected data [51].

3.9 Procedure

We obtained the agreement from the Ethical Review Board of Université de Montréal

to perform and publish this study. The collected data is anonymous. The subjects could

leave any experiment at any time, for any reason, and without penalty of any kind. No

subject left the study or took more than 45 minutes to perform the experiment. The

subjects knew that they would perform comprehension tasks, but did know neither the

goal of the experiment nor whether the system that they were studying contained or not

antipatterns. We informed them of the goal of the study after collecting their data, before

they finished the experiment.

We use Eclipse as a workspace for everyone, so their knowledge of Eclipse could

impact some answers and the time performing some tasks, hence we have prepared a
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short tutorial, provided in Appendix IV, to ensure they have the same basis.

For each experiment, we prepare an Eclipse workspace packaging the target classes,

on which the subjects must perform their comprehension tasks to answer the selected

questions. The workspace contains compilable and functional subsets. Thus we pre-

vented compilation errors, which could have disturbed the subjects, by including in the

workspace both: (1) the source code of the selected subset of each system and (2) a Java

jar containing the rest of the code required to compile and run the subset of the system.

The package also included the TLX dll and program files as well as scripts to launch

automatically the clock to time the subjects, open the workspace using Eclipse, run the

TLX program, and package and send the results anonymously in repository. It also in-

cludes the brief tutorial on the use of Eclipse, a brief explanation about the system at

hand, and the post-mortem questionnaire. We conduct the experiments in the same lab,

with the same computer and software environments to avoid any kind of environmental

bias. No subjects know the systems on which they perform comprehension tasks, thus

we eliminate the mitigating variable relative to the subject’s knowledge of the system.

For each subject, we give the following materials to perform the experiment:

• Two different systems called System 1 and System 2, one containing antipattern(s)

and one without.

• A computer stopwatch for timing the duration of subjects’ answers.

• The TLX program.

• Five scripts to launch automatically the experiment.

• Four printed documents:

– The first document, "Experiment Instructions", describes the experiment and

provides all the instructions to perform it properly.

– The second document, "Questions for System 1", contains a short description

of System 1 and three comprehension questions.
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– The third document, "Questions for System 2", contains a short description

of System 2 and three other comprehension questions.

– The fourth document, "Feedback", collects the subject’s impressions and

feedback about the experiment as well as the subjects’ levels (in Java, Eclipse,

and software engineering).

We prepared two different versions of each document, French and English, for the partic-

ipants to choose the one that makes them feel at ease when following the instructions and

tutorials to realize the experiment. We provide a copy of each document, as an example,

in the Appendixes I, II, III and IV.

3.10 Analysis Method

We use the (non-parametric) Mann-Whitney test to compare two sets of dependent

variables and assess whether their difference is statistically significant. The two sets are

the subjects’ data collected when they answer the comprehension questions on the sys-

tem with antipattern(s) and without. For example, we compute the Mann-Whitney test

to compare the set of times measured for each subject on the system with antipattern(s)

with the set of times measured for each subject on the system without antipattern(s).

Non-parametric tests do not require any assumption on the underlying distributions.

We also test the hypothesis with the (parametric) t-test. Other than testing the hy-

pothesis, performing the t-test is of practical interest to estimate the magnitude of the

differences, for example in the time spent by subjects on systems with and without an-

tipattern(s): we use the Cohen d effect size [38], which indicates the magnitude of the

effect of a treatment on the dependent variables. The effect size is considered small for

0.2≤ d < 0.5, medium for 0.5≤ d < 0.8 and large for d ≥ 0.8. For independent samples

and un-paired analysis, as in our study, it is defined as the difference between the means

(M1 and M2), divided by the pooled standard deviation (σ =
√

(σ2
1 +σ2

2 )/2) of both

sets: d = (M1−M2)/σ .

We use Analysis Of Variance (ANOVA) to test if the means of the subjects’ groups

are identical. ANOVA generalizes the t-test to more than two groups. We use ANOVA
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to assess the dependence between the six sets of dependent variables, as we have six

different groups affected to the different treatments. We investigate if there is significant

difference between groups for each of our dependent variables. For example, we com-

pute ANOVA to compare the efforts of the six different groups and assess whether there

is statistical significant difference due to the treatments.
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Figure 3.4: Rating scale definition, taken from [18].
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S1
System 2 without AP Q1 Q4 Q5

System 1 with AP Q2 Q3 Q6

S2
System 2 without AP Q1 Q4 Q5

System 3 with AP Q2 Q3 Q6

S3
System 3 with AP Q2 Q3 Q6

System 1 without AP Q1 Q4 Q5

S4
System 2 with AP Q1 Q4 Q5

System 3 without AP Q2 Q3 Q6

S5
System 1 with AP Q1 Q4 Q5

System 3 without AP Q2 Q3 Q6

S6
System 3 with AP Q1 Q4 Q5

System 2 without AP Q2 Q3 Q6

S7
System 1 without AP Q1 Q4 Q5

System 2 with AP Q2 Q3 Q6

S8
System 1 with AP Q2 Q3 Q6

System 3 without AP Q1 Q4 Q5

S9
System 1 without AP Q2 Q3 Q6

System 2 with AP Q1 Q4 Q5

S10
System 3 without AP Q1 Q4 Q5

System 1 with AP Q2 Q3 Q6

S11
System 2 with AP Q1 Q4 Q5

System 1 without AP Q2 Q3 Q6

S12
System 1 without AP Q1 Q4 Q5

System 3 with AP Q2 Q3 Q6

S13
System 2 with AP Q2 Q3 Q6

System 3 without AP Q1 Q4 Q5

S14
System 2 without AP Q2 Q3 Q6

System 3 with AP Q1 Q4 Q5

S15
System 1 with AP Q1 Q4 Q5

System 2 without AP Q2 Q3 Q6

S16
System 3 without AP Q2 Q3 Q6

System 1 with AP Q1 Q4 Q5

S17
System 3 with AP Q2 Q3 Q6

System 2 without AP Q1 Q4 Q5

S18
System 1 without AP Q1 Q4 Q5

System 2 with AP Q2 Q3 Q6

S19
System 3 without AP Q1 Q4 Q5

System 2 with AP Q2 Q3 Q6

S20
System 2 without AP Q2 Q3 Q6

System 1 with AP Q1 Q4 Q5

S21
System 3 with AP Q1 Q4 Q5

System 1 without AP Q2 Q3 Q6

S22
System 1 with AP Q2 Q3 Q6

System 2 without AP Q1 Q4 Q5

S23
System 3 without AP Q2 Q3 Q6

System 2 with AP Q1 Q4 Q5

S24
System 3 with AP Q1 Q4 Q5

System 1 without AP Q2 Q3 Q6

Table 3.3: Treatment distribution
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RESULTS

4.1 Descriptive Statistics

We now describe the collected data and present the results of our measured depen-

dent variables as well as explain our hypotheses. Table 4.2 summarises the averages of

collected data. It presents, for all the systems, the average of each dependent variable:

efforts, times, and percentages of correct answers. For example, for Experiment 1 and

System 1, the subjects took on average 261 seconds to answer one comprehension ques-

tion on the subset of the source code containing one occurrence of the Blob while they

took on average 149 seconds to answer the other question in the same category on the

system without antipattern.

For Experiment 1, including one occurrence of the Blob, and Experiment 3, including

both antipatterns Blob and Spaghetti Code, collected data show that the means of the

three dependent variables, between systems with the antipattern(s) and systems without,

show meaningful and consistent differences, in particular in Experiment 3. We notice

that systems with antipatterns are more time consuming, need more effort, and lead

subjects to answer less correctly. The subjects’ performances for their comprehension

tasks are better when the system does not contain any antipattern. For Experiment 2,

including one occurrence of the Spaghetti Code, results show varying differences with

no directly-explainable reasons. For example, for Xerces, in average, subjects took less

time and effort performing comprehension tasks in the subset of the source code without

Spaghetti Code than in the subset with this antipattern, while in GanttProject, we observe

the opposite difference.

4.2 Hypothesis Testing

Table 4.1 reports the p-values obtained by comparing the differences between the

data collected for each experiment. We use the Mann-Whitney test to compare our de-
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pendent variables between the systems with and without antipattern(s) and the ANOVA

test to compare data between the different groups assigned to the different treatments.

For Experiment 1, systems with one occurrence of the Blob seem to be more time

consuming, to need more effort, and to lead to more incorrect answers, but there is no

statistically significant differences between the subjects’ efforts, times, and percentages

of correct answers when comparing systems with and without the Blob antipattern, as

shown by high p-values in Table 4.1: we cannot reject H0Blob and approve either expla-

nations E1Blob or E2Blob .

For Experiment 2, p-values are also high and, for some systems, we observe better

performances when subjects performed their comprehension tasks on systems with one

occurrence of the Spaghetti Code. Again, we cannot reject H0SpaghettiCode and approve

either explanations E1SpaghettiCode or E2SpaghettiCode .

We explain the lack of statistically significant difference, in Experiment 1 and 2, by

the fact that one antipattern, in a system of about 75 classes, is not enough to impede

the subjects’ comprehension of the system. Figure 4.1 illustrates these results: it shows

that the shapes of the two curves (one representing the system with antipatterns, blue

solid lines, and one without, red dash lines) for each dependent variable (effort, time,

and percentage of correct answers) are almost the same in the two first columns (repre-

senting Experiment 1 and 2), which show that all subjects are performing approximately

similarly on both systems and are not disturbed by one antipattern.

For Experiment 3, results show statistically significant differences between subjects’

efforts, times, and percentages of correct answers between source code with and with-

out the combination of Blob and Spaghetti Code, as shown in Table 4.1. Figure 4.1

illustrates the statistical differences of the dependent variables: (1) the subjects’ efforts

are higher in the system with the combination of antipatterns; (2) the times spent by

the subjects to perform the comprehension tasks are higher; and, (3) the percentages of

correct answers are lower. Moreover, Cohen’s d effect size values are large (1.45 in aver-

age). Therefore, a combination of the Blob and Spaghetti Code antipatterns has a strong

impact on subjects’ efforts, times, and percentages of correct answers. We thus can re-

ject H0Blob+SpaghettiCode . A possible explanation is that the occurrences of both antipatterns
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(Blob and Spaghetti Code) impedes the subjects’ comprehension of the system. We thus

approve E1Blob+SpaghettiCode .
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Figure 4.1: Graphical representations of the collected data
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CHAPTER 5

DISCUSSIONS

5.1 Results

The results of Experiment 1 presented in Table 4.2 show an increase in subjects’

average time and effort on systems with Blob and a decrease in their average percent-

age of correct answers. Therefore, systems with an occurrence of the Blob seem to be

more time consuming, to need more effort, and to lead to more incorrect answers. These

results confirm the finding by Du Bois et al. [10] that students have more difficulties

comprehending Blob classes than other classes. However, we did not find a statistically

significant difference. Nevertheless, the results of ANOVA suggest a significant differ-

ence in the amount of times spent by subjects between the systems with and without the

Blob.

Experiment 2 reveals no significant difference between subject’s efforts, times, and

percentages of correct answers on systems with and without the Spaghetti Code. Surpris-

ingly, subjects appear to perform better on JFreeChart and GanttProject, when there is

an occurrence of the Spaghetti Code. Future work includes explaining this observation.

Experiment 3, which studies the combination of the two antipatterns Spaghetti Code

and Blob, shows strong statistically significant differences between subjects’ efforts,

times, and percentages of correct answers. ANOVA results confirm that these differ-

ences are significant across our six groups of subjects, in Table 3.2. Moreover, Cohen’s

d effect size values of the magnitude of the relation between, on the one hand, the pres-

ence of the Blob and Spaghetti Code antipattern and, on the other hand, these differences

in efforts, times, and percentages of correct answers are large; suggesting the strong rela-

tion. Subjects spent more time and effort on systems with the combination of antipatterns

and their percentages of correct answers is significantly lower.

In future work, we will investigate whether this statistically significant difference is

due to the density of antipatterns in the system and–or to the occurrences of specific
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antipatterns together.

5.2 Impact of the Mitigating Variables

We investigated if the three mitigating variables: Java knowledge, Eclipse knowl-

edge, and software engineering knowledge, impacted our results. We set 5 levels, using

Likert scales, corresponding to the subjects’ respective levels (bad, neutral, good, excel-

lent, expert).

Table 5.1 presents some descriptive statistics of the data collected for these three

mitigating variables. As the groups are non-equivalent in terms of size, we used Mann-

Whitney Test, which deals with the problem of un-equal sample sizes [53]. We found

no significant differences between the different levels; p-values are high, expressing a

null influence of the levels of the subjects on the data, the systems too did not affect our

results.

We performed an ANOVA test to assess the impact of the mitigating variables on the

three measured variables (time, effort, and % of correct answers), which shows that the

mitigating variables do not impact our results, as shown by the high p-values in Table

5.1. The lack of impact of these mitigating variables is consistent with previous findings

[3], in which the authors assessed the impact of some subjects’ knowledge on design

patterns on the understandability of various representations of software systems.

5.3 Threats to Validity

Some threats limit the validity of our study. We now discuss these threats and how

we alleviate or accept them following common guidelines provided in [51].

5.3.1 Construct Validity

Construct validity threats concern the relation between theory and observations. In

this study, they could be due to measurement errors. We use times and percentages

of correct answer to measure the subjects’ performances. These measures are objective,

even if small variations due to external factors, such as fatigue, could impact their values.
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We also use the TLX to measure the subjects’ effort. The TLX is by its very nature

subjective and, thus, it is possible that our subjects provided us with particular effort

values.

Construct validity threats could also be due to a mistaken relation between antipat-

terns and program comprehension. We believe that this threat is mitigated by the facts

that many authors discussed this relation, that this relation seems rational, and that the

results of our analysis tend to show that, indeed, antipatterns impact program compre-

hension.

5.3.2 Internal Validity

We identify four threats to the internal validity of our study: learning, selection,

instrumentation, and diffusion.

5.3.2.1 Learning

Learning threats do not affect our study for a specific experiment because we used

a between-subject design. A between-subject design uses different groups of subjects,

to whom different treatments are assigned. We also took care to randomize the subjects

to avoid bias (e.g., gender bias). Each subject performed comprehension tasks on two

different systems with different questions for each system. However, the same subjects

performed Experiment 1 and Experiment 3. The learning effect is minimal because

Experiment 3 was performed 5 months after Experiment 1 and used different systems

and different questions.

5.3.2.2 Selection

Selection threats could impact our study due to the natural difference among the

subjects’ abilities. We tried to mitigate this threat by asking only volunteers, therefore

with a clear willingness to participate. We also studied the possible impact of their levels

of knowledge in Java, of Eclipse, and in Software engineering, through three mitigating

variables without obtaining any statistically significant results.
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5.3.2.3 Instrumentation

Instrumentation threats were minimized by using objective measures like times and

percentages of correct answers. We observed some subjectivity in measuring the sub-

jects’ effort via TLX because, for instance, one subject 100% effort could correspond

to another’s 50% of effort. However, this subjectivity illustrates the concrete feeling of

effort of the subjects.

5.3.2.4 Diffusion

Diffusion threats do not impact our study because we asked subjects not to talk about

the study among themselves and the systems and questions among experiments were

different. However, it is possible that a few subjects exchanged some information.

5.3.3 Conclusion Validity

Conclusion validity threats concern the relation between the treatment and the out-

come. We paid attention not to violate assumptions of the performed statistical tests.

Also, we mainly used non-parametric tests that do not require to make assumption about

the data set distribution.

5.3.4 Reliability Validity

Reliability validity threats concern the possibility of replicating this study. We at-

tempted to provide all the necessary details to replicate our study. The systems, ques-

tionnaires, and raw data to compute the statistics are on-line1.

5.3.5 External Validity

We performed our study on six different real systems belonging to different domains

and with different sizes, see Table 3.1. Our design, i.e., providing only on average

75 classes of each system to each subject, is reasonable because, in real maintenance

1 http://www.ptidej.net/downloads/experiments/csmr11a/
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projects, developers perform their tasks on small parts of whole systems and probably

would limit themselves as much as possible to avoid getting “lost” in large code base.

Moreover, we performed our study with 72 subjects (24 for each experiment). However,

we cannot assert that our results can be generalised to other Java systems, systems in

other programming languages, and to other subjects; future work includes replicating

this study in other contexts, with other subjects, other questions, other antipatterns, and

other systems.



CHAPTER 6

CONCLUSION

Antipatterns are conjectured in the literature to negatively impact the quality of sys-

tems. We performed three experiments to gather quantitative evidences on the relations

between antipatterns and program comprehension.

We studied whether systems with the antipattern Blob, first, and the Spaghetti Code,

second, are more difficult to understand than systems without any antipattern. Third,

we studied whether systems with both the Blob and Spaghetti Code antipatterns are

more difficult to understand than systems without any antipatterns. Each experiment

was performed with 24 subjects and on three different Java systems.

We measured the subjects’ performance with: (1) the NASA task load index for their

efforts; (2) the times that they spent performing their tasks; and, (3) their percentages of

correct answers.

Our experiment was carefully designed to take into account the benefits of the pre-

vious experiments and at the same time bypass their disadvantages. Our design allows

to assess the impact of antipatterns on the ease of our subjects to understand the systems

directly, and measure the comprehensibility objectively (time and % of correct answers).

Moreover experiments went through rigorous process of managing as we tried at our

best to avoid any bias and discussed strictly the possible mitigating variable.

Collected data showed that the occurrence of one antipattern in the source code of

a system does not significantly make its comprehension harder for subjects when com-

pared to a source code without any antipattern. However, the combination of these two

antipatterns impacted negatively and significantly the system understandability; hint-

ing that developers can cope with antipatterns in isolation but that combinations thereof

should be avoided, possibly through detection and refactorings. This relation was never

studied before.

For researchers, our results bring further evidence to support the conjecture in the

literature on the negative impact of antipatterns on the quality of systems. For practi-
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tioners, our results provide concrete evidence that they should pay attention to systems

with a high number of classes participating in antipatterns, because these antipatterns

would reduce their systems understandability. Consequently, developers and quality as-

surance personnel should be wary with growing numbers of antipatterns in their systems

as they could increase the risks of the systems aging and also the introduction of faults.

Indeed, D’Ambros et al. [7] found that an increase in the number of antipatterns in a

system is likely to generate faults.

Future work includes investigating whether these statistically significant differences

are due to the density of antipatterns in the system and–or to the occurrences of specific

antipatterns together. We also plan to replicate this study in other contexts, with other

subjects, other questions, other antipatterns, and other systems.
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Appendix I

Experiment Instructions
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Experiment procedure 

 
Subject number: 23 

 

Experiment Description: 

For this experiment, you will be timed performing some maintenance tasks on some 

object-oriented systems. We have designed this experiment to be as short and simple as 

possible. It should not take more than 1 hour. 

The information we gain from this experiment is totally anonymous. You can leave the 

experiment at any time for any reason without penalty of any kind. 

Read, first, the entire document without doing the instructions of the experiment, then 

call Marwen. Finally read again and follow the instructions. 

For this experiment you have: 

� Two diffrent systems called System1 and System2 

� A stopwatch for timing the duration of your answers. 

� Three printed documents : 

• The first, "Questions for System1" contains a short description of 

System1 and three comprehension questions which you will answer by 

timing each response. 

• The second, "Questions for System2" contains a short description of 

System2 and three comprehension questions which you will answer by 

timing each response. 

• The third, "Feedback", is a questionnaire to collect your impression 

about the experiment for it will enable us to better interpret the 

collected data. 

� A program TLX: « NASA Task Load Index » to measure the workload (effort 

during the experiment) into six scales: mental demands, physical demands, 

temporal demands, personal performance, effort and frustration. (A small 

appendix provides a definition of each factor on page 8).  
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1st step : Connecting to your linux machine:  

Login as : Username : dropper 

Password : 4Marwen8 

N.B. Do not forget to unlock the num pad. 

2nd Step : Download the files:  

� You will find a script "downloadExperiment.sh" on the Desktop directory. 

� Double click it to start downloading the files needed for the realization of the 

experiment. 

� Choose « Run in Terminal ». 

� A small window will appear indicating that you must specify a number, type 

23, then press "Enter" to confirm. 

� Use this password « sp33vp60 ». 

� While downloading, open the pdf "Eclipse Tutorial" under Desktop. It is a 

small tutorial on Eclipse with examples to ensure that all participants have a 

common knowledge base to search for answers. 

3rd  step : answer the questions for System1 : 

� Start with system.1. Run the script by typing in a terminal (right click of the 

mouse, open terminal) the following command: "/tmp/exp/s23/system1.sh" 

� Eclipse will run the workspace containing the code of System1. 

� In the package explorer, right click button on the project and then click 

"Refresh". 

� Take the printed document called "Questions for System1", each page contains 

a question and a space to write your answer. 

� You must answer the questions one by one, do not go to question number two 

before finishing the first or the third before finishing the second. 

� For answers, we encourage you to focus, there is no time limit for answering, 

however answering quickly and mostly accurately as possible would be better. 

� Whenever you start a question, take your time to make sure you understood it 

(if any call me). 

� Run the timer by typing in the terminal "/tmp/exp/s23/chronometre.sh". 
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� Indicate in the boxes your number, respectively, type 23 for the subject 

number, and System1 for the System box. 

� Read the first question. 

� For each question: 

• Start the timer by pressing "Start" when you begin looking for the 

answer (by browsing the source code in Eclipse). 

 
• When you think you have found the right answer, press "Stop" to stop 

the stopwatch. 

• Save time spent on this task by pressing "Save time for question X". 

• Write your answer in the space provided on the printed document 

"Questions for System1. 

4th step : calculate the workload for system1: 

� Run the script by typing in the terminal '/tmp/exp/s23/TLX.sh. 

� A window will appear, choose the button "Weights". 

� Another interface will appear, change the box "The current Weights file is:" by 

typing "System1" 

� Do not change any other field. 

� Press the "Continue" button and then "Begin". 

� Select which factor that, in your opinion, contributes most to workload by 

checking the correct answer (you have 6 factors to compare two by two, so 15 

combinations), see the appendix on page 8 for a description of these factors. 

� Once the 15 combinations completed, a button "Return to start" appears, do not 

click on it but return to the interface "NASA-TLX" and press "Exit". 

� Restart the script by typing "/tmp/exp/s23/TLX.sh. 

� Choose the button "Ratings" this time. 

� Change the box in front of "The current file is Ratings:" typing "System1". 
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� Do not change any other field. 

� Press « Continue ». 

� A window containing scales for each factor will appear. 

� Specify how much the tasks for the System1 was demanding for each of the 

factors by dragging the cursor to the desired location. 

� N.B: All scales are graded from "low" to "high" except for performance, it is 

graded (inverse) from "good" to "bad", beware! 

� Once finished place your cursor in the right place for all factors, you can click 

now on "Do not Click!" button "To save the data. 

� Click on "Exit" to terminate the program. 

� You're done for System1. 

� Close all windows. 

� For the steps 5 and 6 (following), you will have to perform the same instructions 

in steps 3 and 4, but for System2 (replacing the word System1 by System2). 

5th  step : answer the questions for System1 : 

� Run the script by typing in a terminal (right click of the mouse, open terminal) 

the following command: "/tmp/exp/s23/system2.sh" 

� Eclipse will run the workspace containing the code of System2. 

� In the package explorer, right click button on the project and then click 

"Refresh". 

� Take the printed document called "Questions for System2", each page contains 

a question and a space to write your answer. 

� You must answer the questions one by one, do not go to question number two 

before finishing the first or the third before finishing the second. 

� For answers, we encourage you to focus, there is no time limit for answering, 

however answering quickly and mostly accurately as possible would be better. 

� Whenever you start a question, take your time to make sure you understood it 

(if any call me). 

� Run the timer by typing in the terminal "/tmp/exp/s23/chronometre.sh". 

� Indicate in the boxes your number, respectively, type 23 for the subject 

number, and System2 for the System box. 
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� Read the first question. 

� For each question: 

• Start the timer by pressing "Start" when you begin looking for the 

answer (by browsing the source code in Eclipse). 

 
• When you think you have found the right answer, press "Stop" to stop 

the stopwatch. 

• Save time spent on this task by pressing "Save time for question X". 

• Write your answer in the space provided on the printed document 

"Questions for System2". 

6th step : calculate the workload for system1: 

� Run the script by typing in the terminal '/tmp/exp/s23/TLX.sh. 

� A window will appear, choose the button "Weights". 

� Another interface will appear, change the box "The current Weights file is:" by 

typing "System2" 

� Do not change any other field. 

� Press the "Continue" button and then "Begin". 

� Select which factor that, in your opinion, contributes most to workload by 

checking the correct answer (you have 6 factors to compare two by two, so 15 

combinations), see the appendix on page 8 for a description of these factors. 

� Once the 15 combinations completed, a button "Return to start" appears, do not 

click on it but return to the interface "NASA-TLX" and press "Exit". 

� Restart the script TLX by typing "/tmp/exp/s23/TLX.sh. 

� Choose the button "Ratings" this time. 

� Change the box in front of "The current file is Ratings:" typing "System2". 

� Do not change any other field. 

� Press « Continue ». 
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� A window containing scales for each factor will appear. 

� Specify how much the tasks for the System1 was demanding for each of the 

factors by dragging the cursor to the desired location. 

� N.B: All scales are graded from "low" to "high" except for performance, it is 

graded (inverse) from "good" to "bad", beware! 

� Once finished place your cursor in the right place for all factors, you can click 

now on "Do not Click!" button "To save the data. 

� Click on "Exit" to terminate the program. 

7th  step : Upload data and feedback : 

� Upload your work by typing in the terminal '/tmp/exp/s23/upload.sh, you have 

to provide the following password "sp33vp60". 

� Finally, to better interpret the results, please answer the questions in the printed 

document "Feedback". 

 

 

 

 

 

 

 

Thank you for your collaboration 
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Annexe : 

 
 

RATING SCALE DEFINITIONS 

   

Title Endpoints Descriptions 

   

MENTAL DEMAND Low/High How much mental and perceptual activity was 
required (e.g., thinking, deciding, calculating, 
remembering, looking, searching, etc.)?  Was the 
task easy or demanding, simple or complex, 
exacting or forgiving? 

PHYSICAL  

DEMAND 

Low/High How much physical activity was required (e.g., 
pushing, pulling, turning, controlling, activating, 
etc.)?  Was the task easy or demanding, slow or 
brisk, slack or strenuous, restful or laborious? 

TEMPORAL  

DEMAND 

Low/High How much time pressure did you feel due to the 
rate or pace at which the tasks or task elements 
occurred?  Was the pace slow and leisurely or rapid 
and frantic? 

EFFORT Low/High How hard did you have to work (mentally and 
physically) to accomplish your level of 
performance? 

PERFORMANCE Good/Poor How successful do you think you were in 
accomplishing the goals of the task set by the 
experimenter (or yourself)?  How satisfied were 
you with your performance in accomplishing these 
goals? 

FRUSTRATION  

LEVEL 

Low/High How insecure, discouraged, irritated, stressed and 
annoyed versus secure, gratified, content, relaxed 
and complacent did you feel during the task? 

 

 



Appendix II

Example of given questions for the system Aura



System: Aura 
Aura is a tool that automatically generates the rules to upgrade a program, which 

uses an old version of a framework, to its new version. 

Before generating the rules, Aura needs to detect the differences between the 

methods called by the same methods in the old and the new version of the framework. As 

illustrated in the figure below, for both of two versions of a framework we have the same 

method f() that calls a() and b() in the old version, and that calls c() and d() in the new 

one. Aura must detect the differences between two versions of f() by detecting the 

differences between the methods they call (callees). 

 
There are two types of upgrading rules,: one is “method call rule” representing that a 

method in the old version of the framework will be replaced by a method in the new 

version; The other one is “type rule” representing that a type in the old version of the 

framework will be replaced by a type in the new version. 

Questions: 

Question1: What is the type (class) that represents "method call rule"? 

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………… 



Question2: What data can we access from an object of the type MethodCallRuleType? 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………… 

  



Question3: what is the behaviour that MethodCallRuleType, ReplacementMethodType , 

and MethodType provide together? 

1. Generate (create) an intermediate model (An intermediate model represents the data 

site and operations to generate changing rules between versions of framework)  

2. Present (store) an intermediate model              

3. Generate (create) the method call rules (A method call rule represents the changing 

rules that define by which methods, in the new version of the framework, will be 

replaced the respective methods in the old version)            

4. Present (store) the method call rules              



Appendix III

Post-mortem Questionnaire



Expérience en Génie logiciel 

 

 
Question 1: Do you know what an empirical study is? If yes, give a brief definition. 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………… 

Question 2: Do you know what an anti-pattern is? If yes, give a brief definition. Give an 

example. 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………… 

Question 3: Have you any idea about what does refactoring mean? Give a brief 

definition. 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………… 

Question 4: How do you rate your skills and knowledge in software engineering? (Check 

the box that best describes your level) 

bad   neutral   good  excellent  expert  

Question 5: How do you rate your level in Java? 

bad   neutral   good  excellent  expert  

Question 6: How do you rate your level in Eclipse? 

bad   neutral   good  excellent  expert  

  



Question 7: How did you find the information provided in the procedure? (you can tick 

several boxes) 

Not too much  correct  too much  simple   complex  

 

Question 8: What was the impact of the density of information provided during the 

procedure on your performance in accomplishing the requested tasks? (negative? 

positive? required much concentration? correct? etc.) 

Please, if any, feel free to write your notices. 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………………………. 

………………………………………………………………………………………………

……………………………………………………………………………………………… 

 



Appendix IV

Eclipse tutorial



Eclipse Tutorial 

 
To answer the given comprehension questions, you need to parse the code and search 

for different types, methods and classes in the project. 

This is a brief tutorial explaining how to search, find a reference, open the hierarchy, 

reach the declaration of a function or type etc. 

1. Searching for an element corresponding to a specific pattern: 

 
To access this menu, select the Java search tab in the search menu of Eclipse, 

or simply press simultaneously Ctrl+H. This will bring up the search window, 

which has a series of tabs, you can choose any other tab according to what 

you are looking for. Enter a search string, select, in the Search For, if you are 

looking for a type, method, field, etc. and hit search. The search results will 

be displayed at the bottom of the screen. Double clicking on the results listed 

will focus the editor on that instance of the search string. It is possible to use 



the wildcard * to replace a any string, for example, if you are looking for a 

string containing the word “verfsfile”, just write *verfsfile* in the search 

string field; This will search all the strings that start by any string, contains 

essentially the word “verfsfile” and finish by any string. Similarly, “?” 

replaces any character. You can also specify if you are looking for the 

declaration only, or all references of the searched string, etc, in the field Limit 

To. In the field Search In choose sources to limit the search to the source files 

only. 

2. Reach the declaration of a given element : 

Select the desired element (method, field, class, etc.) then right click on it and 

choose « Open Declaration », or simply press F3. 

3. Open type hierarchy : 

Displays the hierarchy of a type. Select the desired type or class, then right 

click on it and choose « Open Type Hierarchy », or simply press F4. 

4. Find references in the project : 

Allows to search, in the whole project, all references related to an element. 

Just select the desired element (method, field, class, etc.) then right click on it 

and choose « References » then « Project ». 

5. Outline of a class : 

Displays the outline of a class by showing its different fields and methods. 

Select the desired class or object then right click on it and choose « Show In » 

then « Outline ». 


