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ABSTRACT

In the context of multivariate regression (MLR) and seemingly unrelated re-
gressions (SURE) models it is well known that commonly employed asymptotic
test criteria are seriously biased towards overrejection. In this paper, we propose
finite and large sample likelihood based test procedures for possibly non-linear
hypotheses on the coefficients of MLR and SURE systems. Two complementary
approaches are described. First, we derive general nuisance-parameter free bounds
on the distribution of standard likelihood ratio criteria. Even though it may be
difficult to compute these bounds analytically, they can easily be obtained by
simulation, in such a way that the resulting bounds test has the desired level in
finite samples. Second, we propose Monte Carlo tests which can be run whenever
the bounds are not conclusive. These include, in particular, quasi-likelihood ratio
criteria based on non-maximum-likelihood estimators (which may be simpler to
compute). Ilustrative Monte Carlo experiments show that: (i) the bounds are
sufficiently tight to yield conclusive results in a large proportion of cases, and (ii)
the randomized procedures correct all the usual size distortions in such contexts.
We also present an extension of standard tests of uniform linear hypotheses in
MLR contexts to non-Gaussian error distributions; in fact, the normality assump-
tion is not necessary for most of the results we obtain. The procedures proposed
are finally applied to test restrictions on a factor demand model.

Key words: multivariate linear regression; seemingly unrelated regressions; Monte
Carlo test; bounds test; nonlinear hypothesis; finite sample test; exact test; boot-
strap; capital asset pricing model (CAPM); factor demand; cost function.



RESUME

Il est bien connu que les critéres de test asymptotiques usuels dans le contexte
des modeles de régression multivariés (MLR) et des régressions empilées (SURE)
tendent & rejeter trop souvent par rapport & leur niveau nominal. Dans ce texte,
nous proposons des procédures de type quotient de vraisemblance pour des hy-
potheéses possiblement non linéaires sur les coefficients de modéles MLR et SURE.
Nous décrivons deux approches complémentaires. Premiérement, nous obtenons
des bornes libres de parameétres de nuisance sur la distribution des statistiques
de quotient de vraisemblance. Méme si ces bornes se prétent difficilement & une
évaluation par des méthodes analytiques, on peut les approximer aisément par
simulation et utiliser I’approximation simulée d’une fagon telle que le niveau du
test fondé sur la borne soit controlé peu importe la taille d’échantillon. Deuxiéme-
ment, nous proposons des tests de Monte Carlo qui peuvent s’appliquer lorsque le
test & borne n’est pas concluant. Ces derniers incluent notamment des procédures
de type quasi-quotient de vraisemblance fondées sur des estimateurs plus faciles &
calculer que les estimateurs du maximum de vraisemblance. Nous présentons des
résultats d’expériences de Monte Carlo montrant que: (i) les bornes sont suffisam-
ment serrées pour produire des résultats concluants dans une grande majorité des
cas, et (ii) les procédures de tests de Monte Carlo corrigent les problémes de taille
de test dans de tels contextes. Nous présentons aussi une extension des tests stan-
dards d’hypothéses uniformes linéaires dans le contexte des modeles MLR au cas
d’erreurs non-gaussiennes. De fait, ’hypothése de normalité des erreurs n’est pas
nécessaire pour la plupart des résultats que nous obtenons. Nous présentons un
application des techniques proposées afin de tester des restrictions sur un modele
de demande de facteurs de production.

Mots-clefs: modele de régression multivarié; régressions empilées (SURE); test
de Monte Carlo; test a bornes; hypothése non linéaire; test & distance finie; test
exact; bootstrap; modele de prix d’actifs financiers (CAPM); demande de facteurs;
fonction de cofit.
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1 Introduction

Testing the validity of restrictions on the coefficients of a multivariate linear regres-
sion (MLR) model is a common issue which arises in statistics and econometrics.
Extensive discussion of this problem can be found in the statistics literature on
multivariate analysis of variance (MANOVA) and the econometric literature on
seemingly unrelated regressions (SURE). The MLR model can be viewed as a spe-
cial case of the SURE model where the regressor matrices for the different equations
are the same. Conversely, the SURE specification may be viewed as a special case
of the MLR model constrained by various exclusion restrictions on the different
equations.

In the MLR framework, several finite sample procedures have been proposed
for testing linear restrictions. These include, in particular, tests based on the like-
lihood ratio criterion [Wilks (1932), Bartlett (1947)], the Lawley-Hotelling trace
criterion [Lawley (1938), Bartlett (1939), Hotelling (1947, 1951)], the Bartlett-
Nanda-Pillai trace criterion [Bartlett (1939), Nanda (1950), Pillai (1955)] and the
maximum root criterion [Roy (1953)]. The literature concerning the moments,
Laplace transforms and exact densities of these statistics is vast; see, for example,
Rao (1973, Chapter 8), Anderson (1984, chapters 8 and 13) and Kariya (1985).
Yet the use of these methods is limited to very specific problems: tests of uniform
mized linear hypotheses [Berndt and Savin (1977)]. Examples of uniform mized
linear constraints include: (i) the case where the same transformations of the re-
gression coefficients are set to given values, within or across equations, and (ii)
the hypothesis that a single parameter equals zero. Further, in most instances,
exact distributional results are difficult to exploit and approximate distributions
are suggested. Thus far less restrictive testing problems have not apparently been
considered from a finite sample perspective, with perhaps the notable exception
of the Hashimoto and Ohtani’s (1990) exact test for general linear restrictions.
This procedure is similar to Jayatissa’s (1977) test for equality of regression coeffi-
cients in two linear regressions with unequal error variances. However, the authors
recognize that, similarly with Jayatissa’s procedure, this test involves complicated
computations and has low power. Further, the test relies on a non-unique decom-
position of the OLS residuals. These observations suggest that this test has limited
practical interest.

In connection with the SURE model introduced by Zellner (1962), the standard
literature on hypothesis tests is asymptotic; see, for example, Srivastava and Giles
(1987). Very few analytical finite sample results are available. A rare exception is
provided by Harvey and Phillips (1982, Section 3) who derived independence tests
between the disturbances of an equation and those of the other equations of a SURE
model. The tests involve conventional F-statistics and are based on the residuals
obtained from regressing each dependent variable on all independent variables
of the system. Of course this problem is a very specific one. In a different vein,



Phillips (1985) derived the exact distribution of a two-stage SURE estimator using
a fractional matrix calculus. However, the analytical expressions obtained are very
complex and, more importantly, involve unknown nuisance parameters, namely the
elements of the error covariance matrix. The latter fact makes the application of
Phillips’ distributional results to practical hypothesis testing problematic.

Asymptotic Wald, Lagrange multiplier and likelihood ratio tests are avail-
able and commonly employed in econometric applications of the MLR model; see
for example, Berndt and Savin (1977), Evans and Savin (1982), Breusch (1979),
Gouriéroux, Monfort and Renault (1993, 1995) and Stewart (1995, 1997). It has
been shown however that in finite samples, these asymptotic criteria are seriously
biased towards overrejection when the number of equations relative to the sample
size is moderate to large. Well known examples include Laitinen (1978), Meisner
(1979), Bera, Byron and Jarque (1981) and Theil and Fiebig (1985) in the context
of homogeneity and symmetry testing in demand systems. Further evidence is re-
ported in relation to multivariate tests of the CAPM; see for example Stambaugh
(1982), Jobson and Korkie (1982), Amsler and Schmidt (1985) and MacKinlay
(1987). These and other references are discussed in Stewart (1997).

It is clear that standard asymptotic approximations are quite unsatisfactory in
this context. Attempts to improve those include, in particular: (i) Bartlett-type
corrections, and (ii) bootstrap methods. Bartlett corrections involve rescaling the
test statistic by a suitable constant obtained such that the mean of the scaled
statistic equals that of the approximating distribution to a given order [Bartlett
(1937), Lawley (1956), Rothenberg (1984), Barndorff-Nielsen and Blaesild (1986)].
Formulae explicitly directed towards systems of equations are given in Attfield
(1995). Overall, the correction factors require cumulants and joint cumulants of
first and second order derivatives of the log likelihood function, and, outside a small
class of problems, are complicated to implement. Furthermore, simulation studies
[e.g. Ohtani and Toyoda (1985), Frydenberg and Jensen (1989), Hollas (1991),
Rocke (1989), Wong (1989, 1991) and Gonzalo and Pitarakis (1994)] suggest that
in many instances Bartlett adjustments do not work well. A simpler correction
factor is proposed by Italianer (1985), but the procedure is rather heuristic and
has little theoretical background.

The use of bootstrap methods for MLR and SURE models has been discussed
by several authors, e.g. Williams (1986), Rocke (1989), Rayner (19904, 1990b),
Eakin, McMillen and Buono (1990), Affleck-Graves and McDonald (1990), Martin
(1990), Atkinson and Wilson (1992) and Rilstone and Veall (1996). Although long
recognized as a proper alternative to standard asymptotic theory, the bootstrap
only has an asymptotic justification when the null distribution of the test statistic
involves nuisance parameters, hence the finite sample validity of resulting inference
remains to be established. This point should be born in mind while interpreting

results on the usefulness of the bootstrap. For general discussion of bootstrap
methods, the reader may consult Hall (1992), Efron and Tibshirani (1993) and



Shao and Tu (1995); about some econometric applications see Jeong and Maddala
(1993), Vinod (1993) and Davidson and MacKinnon (1996 a, 1996b). In a different
vein, randomized tests have been suggested in the MLR literature for a number of
special test problems and are referred to under the name of Monte Carlo tests; see
Theil, Shonkwiler and Taylor (1985), Theil, Taylor and Shonkwiler (1986), Taylor,
Shonkwiler and Theil (1986) and Theil and Fiebig (1985). However, these authors
do not supply a distributional theory, either exact or asymptotic.

In this paper, we propose finite sample likelihood based tests for possibly non-
linear hypotheses on the coefficients of seemingly unrelated regressions. We discuss
two approaches that can be applied on their own or sequentially, namely: (i) a
conservative bounds test, and (ii) Monte Carlo tests. Practical implementation
of both procedures is simple. The methods we propose are best motivated by
the propositions in Dufour (1997) relating to likelihood based inference in MLR
settings: using an argument similar to the one in Dufour (1989) for a univariate
regression, it is shown that likelihood ratio (LR) statistics have null distributions
which are boundedly pivotal, i.e. which admit nuisance-parameter-free bounds.
Even though it may be difficult to compute analytically these bounds, they can
easily be obtained by simulation. Here, we will apply this result in the context
of MLR and SURE systems. The implications for hypothesis testing are two-fold.
First, the finite sample bounds on the LR criterion easily yield conservative tests.
Second, bootstrap techniques can lead to tests with correct levels.

To be more specific, we give at this point a preliminary discussion of the pro-
posed conservative bound with regards to SURE systems. First, we reconsider the
testing problem within the framework of an appropriate MLR model, namely the
MLR setup of which the model on hand is a restricted form. Secondly, we intro-
duce, in the relevant MLR framework, a uniform linear hypothesis that is a special
case of the general restrictions in the null. The intuition behind this suggestion
follows from the fact that exact nuisance-parameter free critical values for the LR
criterion are available when the null is uniform linear within a MLR. Indeed, it
turns out that the LR criterion for testing the suggested uniform linear hypothesis
conveniently bounds the LR statistic for testing the general constraints.

In addition, we propose alternative Monte Carlo tests [see Dwass (1957), Bar-
nard (1963), Jockel (1986) or Dufour (1995)] that can be run whenever the bounds
tests are not conclusive. We consider: (i) an asymptotically valid procedure that
may be interpreted as a parametric bootstrap, and (ii) a method which is exact
for any sample size, following Dufour (1995). While the normality assumption un-
derlies the motivation for the statistics we consider, this is not necessary for most
of the results obtained. In fact, we discuss an extension of standard tests of uni-
form linear hypotheses in MLR contexts to non-Gaussian distributions. Further,
in situations where maximum likelihood (ML) methods may be computationally
expensive, we introduce LR-type test criteria based on non-ML estimators. In
particular, we consider two-stage statistics or estimators at any step of the process



by which the likelihood is maximized iteratively. We emphasize that Monte Carlo
and bounds tests should be viewed as complementary rather than alternative pro-
cedures.

The paper is organized as follows. Section 2 develops the notation and de-
finitions. Section 3 discusses the known distributional results pertaining to the
test criteria in the context of the MLR model and provides an extension of stan-
dard tests of uniform linear hypothesis to non-Gaussian distributions. Section 4
presents test statistics for general linear hypotheses in the MLR model and estab-
lishes bounds on the significance points for these statistics. We also discuss how
to apply the results to non-linear and inequality restrictions. The generalization
to the SURE model is discussed in Section 5. Simulation results are reported in
Section 6. Section 7 illustrates the procedures proposed by applying them to test
restrictions on a factor demand model, and Section 8 concludes.

2 Framework

In this section, we introduce the models and notations to be used in the paper.
The first model we consider is the MLR model. Then, we focus our attention
on the SURE model, which can be viewed as a special case of the MLR model
obtained by imposing different exclusion restrictions on the different equations of
a MLR model.

2.1 The multivariate linear regression model

The MLR model can be expressed as follows:

Y =XB+U (2.1)

where Y = [V}, ..., Y}] is an nx p matrix of observations on p dependent variables,
X is an n X k full-column rank matrix of fixed regressors, B = [3{, ... , ﬁp] isa

k x p matrix of unknown coefficients and U = [Uy, ... , Up] = [ffl, oo, Uy isan
n X p matrix of random disturbances with covariance matrix ¥ where det (¥) # 0.
We also assume that the rows U/, i = 1, ... , n, of U satisfy the following
distributional assumption:

Uy=JW;,i=1, ..., n, (2.2)

where the vector w = vee(Wy, ... , Wy) has a known distribution and J is an
unknown, non-singular matrix; for further reference, let W = [Wq, ... , W,] =
UG, where G = J— 1. In particular, this condition will be satisfied when

2.4.d.

W " N(0, L), i=1, ..., n, (2.3)



in which case the covariance matrix of Us is J.J' = (G'G) L. An alternative repre-
sentation of the model is

y= (I, ® X)b+u (2.4)

where y = vec(Y'), b =wec(B), and u = vec(U). The least squares estimate of B
is

B=(X'X)"'X'Y (2.5)
and the corresponding residual matrix is
U=Y -XB=MY =MU (2.6)

where M = I — X (X’X) ! X'. In this model, it is well known that under (2.3) the
maximum likelihood estimators (MLE) of the parameters reduce to Band 3 =
U'v /n. Thus the maximum of the likelihood function (MLF') over the unrestricted
parameter space is

max L=- %ln(%r) — % ln<’§’> —%. (2.7)

To derive the distribution of the relevant test statistics, we shall exploit the
following decomposition of the sum of squared error (SSE) matrix U'U :

U0 = UMU=G1Uc) MUa) (@Y
= GWMW (G (2.8)
where the matrix W = UG has a distribution that does not involve nuisance

parameters.

2.2 The seemingly unrelated regressions model

Let us now consider the following p equation regression model:
Yi=Xi8,+U;,i=1, ... , p, (2.9)

where X; is a n x k; full-column rank matrix of fixed regressors and Uy, Uy, ... ,U,
satisfy the same distributional assumptions as in (2.2) - (2.3). This system is known
as the SURE model. Let

v X, 0 - 0 B Uy
e I R S R IR I IR
Y, 0 0 - X, B, U,

Then an alternative compact representation of the model is

y=X"B+u. (2.10)



In this case, 8 is k* x 1 with &* = >°¥_ k;. The likelihood function associated
with (2.10) is:

Ly = ~"wEn) - S () - 5 - XO T @ L)y - X8)  (21)

which is usually maximized using iterative numerical procedures.
To develop finite sample tests for the SURE model, we will find useful to expli-

cate the relation between SURE and MLR models. Let X;, i =1, ..., p, denote
the explanatory variables excluded from the i-th equation. Further, define Z as any
full column rank n X k matrix which spans the same space as (X1, Xo, ..., X,
and J;, J; selection matrices such that Z7J;, = X;, ZJ, = X;, +=1, ..., p. Then
(2.9) may be written as
with the restriction ,

- - =/ -/

8= Be .., By =0. (2.13)
To simplify notation, we will rewrite the latter model as

y=(,®Z)B+u (2.14)
~ ~ ~ ~7 1! ~

where 8 = ﬁ/l, ﬁ;, e ﬁ;} , and 3, is a k£ x 1 vector which includes all the

elements of 5, and BZ (though possibly not in the same order).

3 Uniform linear hypotheses in the multivariate linear
model

In this section, we shall review known finite sample distributional results pertaining
to various criteria for testing a general linear hypothesis in the context of the MLR
model (2.1), and provide some extensions that will allow analogous tests to be
performed in a large set of models with Gaussian or non-Gaussian errors, provided
the latter have a distribution which is specified up to the unknown matrix J. Finite
sample procedures are available only for the case where the constraints take the
special uniform linear (UL) form

Hy: RBC =D (3.1)

where R is a known r X k matrix of rank r < &, C'is a known p X ¢ matrix of rank
c < p,and D is a known r X ¢ matrix. We will first study the problem of testing

HOliRﬁizéi,izl, vy Py



which corresponds to C' = I,. In this context, the most commonly used criteria
are: the likelihood ratio (LR) criterion [Wilks (1932), Bartlett (1947)], the Lawley-
Hotelling (LH) trace criterion [Lawley (1938), Bartlett (1939), Hotelling (1947,
1951)], the Bartlett-Nanda-Pillai (BNP) trace criterion [Bartlett (1939), Nanda
(1950), Pillai (1955)], and the maximum Root (MR) criterion [Roy (1953)]. All

these test criteria are functions of the roots mq, mg, ... , m, of the equation
U'U —mUU| =0 (3.2)

where UjlUp and U'U are respectively the constrained and unconstrained SSE ma-
trices. For convenience, the roots are reordered so that m; > ... > m,. In
particular, we have:

p
LR=-nln(L), L=|0'U|/|U0o| = [ [ ma : (3.3)
=1

LH = 2(1 —myg)/m; ; (3.4)

BNP = zp:(l —m;) ; (3.5)
i—1
MR = lrglagj(l —m;)/m; . (3.6)

Note that the criteria LH and BNP can be interpreted as Wald and Lagrange
multiplier test statistics, respectively. For details of the relationship, see Berndt
and Savin (1977), Breusch (1979) or Stewart (1995).

In Section 2, we saw that U'U can be expressed as U'U = G- "W/ MW (G 1Y
which depends on 3 only through (. Similarly, ff(’)ffo can be expressed as

Ul = G'W' MW (G~ (3.7)

where My = I — X(X'X) }(X'X — R(R(X'X) 1R)™ R) (X’X) 1X’. These
observations yield the following basic result which allows one to derive finite sample
tests based on the above criteria.

Theorem 1 Under (2.1), (2.2) and Hy, the vector (my, me, ... , my) of the
roots of (3.2) is distributed like the vector of the corresponding roots of

(W MW —mW MW | =0 (3.8)

where M is defined as in (2.6), My as in (3.7), W = UG’ with G = J~ ', and the
roots are put in descending order in both cases.



PROOF: From (2.8) and (3.7), we have:

U'U =G "W MW(GY,
Uop = G 'W' MW (G 1Y

Consequently, the determinantal equation (3.2) can be expressed as
|GTTWMW(GYY —mG W MW(G) | =0,

hence

|G W MW —mW MW | (G| =0

and
W MW —mW'MyW|=0.

Since the vector w = vec(W; , ..., Wy) has a completely specified distribution,
the roots of equation (3.8) have distributions which does not involve X. Q.E.D.

The above result entails that the joint distribution of (my, ... , my) does not
depend on nuisance parameters. Hence the test criteria obtained as functions of the
roots are pivotal under the null and have a completely specified distribution under
the assumption (2.2). Although Theorem 1 is not explicitly stated by Anderson
(1984) or Rao (1973), it can be obtained easily by looking at their demonstrations.
Since an explicit proof of Theorem 1 is not apparently available, we supply one
above. On the basis of this theorem, the distribution of the Wilks’ L criterion can
be readily established.

Corollary 2 Under the assumptions of Theorem 1, Wilks’ L statistic for testing
Hoy is distributed like the product of the roots of W' MW —mW’ MyW| = 0.

It may be useful, for simulation purposes, to restate Corollary 2 as follows.

Corollary 3 Under the assumptions of Theorem 1, Wilks’ L statistic for testing
Hoy is distributed like |W MW| / |W' MW | .

Note that the above characterization of the exact distribution does not require the
normality assumption. Eventually, when the normality hypothesis (2.3) holds, the
distribution of the Wilks criterion, as stated in Theorem 4 below, is well known
[see Anderson (1984)].

Theorem 4 Under (2.1), (2.2), (2.3) and Hy1, Wilks' L statistic for testing Hoy is
distributed like the product of p independent beta variables with parameters (%(n —
rxy —p+i), %), 1=1, ..., p, where rx is the rank of the regressor matriz and r

is the rank of the matriz R.

For non-Gaussian errors [i.e. when W; follows a known distribution which dif-
fers from the N(0, I,,) distribution], the null distribution of Wilks’ statistic cannot
be assessed analytically. However, the above results can be used to obtain random-
ized or Monte Carlo tests that are applicable given the distributional assumption



(2.2). Such procedures were originally suggested by Dwass (1957) and Barnard
(1963). In the following, we briefly outline the methodology involved as it applies
to the present context; for a more detailed discussion, see Dufour (1995), Dufour
and Kiviet (1996, 1998), Kiviet and Dufour (1997), and Dufour, Farhat, Gardiol
and Khalaf (1998).

Let Ty denote the observed test statistic T', where T is the adopted test cri-
terion, for instance LR, as defined in (3.3). By Monte Carlo methods and for a
given number N of replications, generate 7, j =1, ... , /N independent realiza-
tions of the statistic in question, under the null hypothesis. While the level of the
test is controlled irrespective of the number of replications, the statistic typically
performs better in terms of power the larger the number of replications. Rank

T;, 7=0, ..., N in non-decreasing order and obtain the MC p-value pn (7o )
where R
N NGN<$) +1
= — 3.9
vle) = =ML (3.9
with
A _ 1N |1, ifze A
Gva) = S foy (=0, @ ={ ¢ 1254 - Gw)

Then the test’s critical region corresponds to
]/9\N<T0) <a,0<a<l. (311)

Under the assumptions of Theorems 1 or 4, the latter critical region is provably
exact.

We now turn to the general UL hypothesis (3.1). In this case, the constrained
MLE may simply be obtained by maximizing the likelihood associated with

Y,=XB, +U, (3.12)

where Y., = YC, B. = BC and U, = UC with covariance C'¥.C, subject to RB. =
D. The resulting Wilks test statistic will satisfy the assumptions of Theorems 1
or 4. This extends the results established above to the general UL case.

For certain values of r and ¢ and normal errors, the null distribution of the
Wilks criterion reduces to the F' distribution. For instance, if min(r, ¢) < 2, then

o — 22\ 1 —LY7
< - > [/ F(rc, pr —2)) (3.13)
where
p:n—k(r—c+1)7/\:rc—2
2 4
and

7_{ (22 —4)/(r2+c2-5) ,if P +32-5>0

1 , otherwise



Further, the special case » = 1 leads to the Hotelling’s 72 criterion which is a
monotonic function of L. If » > 2 and ¢ > 2 , then the distributional result
(3.13) holds asymptotically [Rao (1973, Chapter 8)]. Stewart (1997) provides an
extensive discussion of these special F tests; see also Shukur and Edgerton (1994).

In Section 6, we report simulations on Monte Carlo tests based on the above
finite sample theory. For a proof of Theorem 4 and a review of asymptotic results
pertaining to the criteria (3.3) - (3.6), the reader may consult Anderson (1984,
Chapter 8) or Rao (1973, Chapter 8). Finally, recall that not all linear hypotheses
can be expressed as in Hg; we discuss other linear hypotheses in the following
section.

4 General hypotheses in the multivariate linear model
In the context of (2.4) consider the general hypothesis
Hy : R*b € A (4.1)

where R* is a ¢* x (pk) matrix of rank ¢*, and Ag is a non-empty subset of R7*.
This characterization of the hypothesis includes cross-equation linear restrictions
and allows for non-linear and inequality constraints. The relevant LR statistic is:

LR=nlIn(A*), A*=|Sul/|S (4.2)

where 5\301 and 3 are the MLE of ¥ imposing and ignoring Hgi. The null distribu-
tion of LR is nuisance parameter dependent [see Breusch (1980) in connection with
the general linear case]. Here we show that LR is a boundedly pivotal statistic un-
der the null hypothesis, i.e. its distribution can be bounded in a non-trivial way by
a nuisance-parameter-free function. To do this, we shall extend the methodology
proposed in Dufour (1989) in the context of single equation linear models.

Consider the MLR model (2.4) and let L(Hj2) denote the unrestricted MLF.
In the Gaussian model, L(H;2) is expressed by (2.7). Further, suppose we can find
another set of UL restrictions Hpsg : RBC = D such that Hps C Hyi. Now define
L(Hyi), i =1, 2, to be the MLF under Hy;. Given assumption (2.3),

) 2B =1, 2, (4.3)

n n =
L(Ho;) = — 7pln(27r) -2 1n(’zo,- 2,

where f]og is the MLE under Hgo. Then it is straightforward to see that
L(Hpe) < L(Hop1) < L(Hy2) . (4.4)
Using (4.3) and (4.4), we see that

A* <A (4.5)



where R R
AL = Xoal/|X] - (4.6)

It follows that P[A* > z] < P[A* > z|, Vx, where P[A¥ > z] is nuisance-
parameter free and may be obtained in finite samples as shown in Section 3. Under
(2.3) the null distribution of A} involves the product of p independent beta variables
with degrees of freedom that depend on the sample size, the number of restrictions
and the number of parameters involved in these restrictions. The null distribution
of A* may thus be easily obtained by simulation. Let ¥, (-) be such that

Pl¥(vyvg,v3) > ¥y(vy,v9,03)] =a,0<a<1, (4.7)

where U(vy,v9,v3) is distributed like the product of the inverse of vy independent
beta variables with parameters (3(vy —ve +4), ©), i =1, ... , vo. Then (4.7)
may be rewritten as

PIA* > W, (n—k, p, @] Sa,0<a <, (4.8)

where ¢ = min(r, ¢), r = rank(R), ¢ = rank(C). Consequently, the critical value
Q. defined by

Qa = \Ija<n - k7 b, @ (49)
is conservative at level a . Of course, one should seek the smallest critical bound

possible. This would mean expressing R so that ¢ is as small as possible. We
proceed next to state our main conclusion for the Gaussian model.

Theorem 5 Consider the MLR model (2.4) with (2.2) and (2.3). Let A* be the
statistic defined by (4.2) for testing R*b € Ay where R* is a ¢* X k with rank ¢*
and Ag is a non-empty subset of R¥*. Further, consider restrictions of the form
RBC = D that satisfy R*b € Ag. Then, under the null hypothesis, for all 0 < a <
1, P[A* > Uy(n —k,p,q)] < a, where § = min(r,c), r = rank(f?,), ¢ = rank(C)
and W, () is defined by (4.7).

At this point, it is worth noting that normality [hypothesis (2.3)] by no way
constitutes a necessary assumption in this case. Indeed, the critical values of the
bounding statistic may still be determined by simulation under the general assump-
tion (2.2). For further reference, we call the MC test based on the conservative
bound a BMC test. Inequality (4.5) follows from the properties of least squares
estimation irrespective of the density function. For the sake of generality, we now
restate our main result for model (2.4) given the distributional assumption (2.2).

Theorem 6 Consider the MLR model (2.4) with (2.2). Let A* be the Wilks statis-
tic defined by (4.2) for testing R*b € Ag where R* is a ¢* Xk full column rank matriz
and Ng is a non-empty subset of RT" . Further, consider restrictions of the form
RBC = D that satisfy R*b € Ao with § = min(r,c), r = rank(R), ¢ = rank(C).
Let A} be the Wilks criterion for testing the latter restrictions. Then under the
null hypothesis, P[A* > X\i(a)] < a, for all 0 < o < 1, where A\}(a) is determined
such that P[A} > N\ (a)] = a.
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Clearly, the above results hold when the hypothesis is linear of the form
R*b = 6p. In addition, the fact that the null distribution of the LR statistic can
be bounded (in a non trivial way) as in Theorems 5 and 6 implies that MC test
techniques may be used to obtain valid inference based on the statistic in (4.2)
when the bounds test is not conclusive. In Section 3, we described the MC test
procedure in the context of pivotal statistics. Dufour (1995) discusses extensions
of MC tests in the presence of nuisance parameters. We now briefly outline the
underlying methodology.

Consider a test statistic 1" for testing an hypothesis Hy, and suppose the null
distribution of I" depends on an unknown parameter vector 8. From the observed
data, compute: (i) the test statistic Tp, and (ii) a restricted consistent estimator

0,, of 8 [i.c., an estimator 6,, of 6 estimator such that the data generating process
-0 -0

associated with 0 = 0, satisfies Hp, and 0, %> 0 as n — oo under Hp). Using

-0

f,,, generate N simulated samples and, from them, N simulated values of the

test statistic. Then compute ﬁN(T()]/Q\Z), where py(x|0) refers to py(x) based on

realizations of T generated given 6 = 0 and py(x) is defined in (3.9). A MC test
may be based on the critical region

Pn(Tolfy) <a,a<0<1.

For further reference, we denote the latter procedure a local Monte Carlo (LMC)
test. Dufour (1995) gives general conditions under which LMC tests have the
correct level asymptotically (as n — 00), i.e., under Hp,

Jim { Plow(Toff,) < a] = Plon(Tol6) < o]} = 0. (4.10)
In particular, these conditions are usually met whenever the test criterion involved
is asymptotically pivotal. To obtain an exact critical region, the MC p-value ought
to be maximized with respect to the intervening parameters. Specifically, Dufour
(1995) demonstrates that the test (henceforth denoted maximized Monte Carlo
(MMC) test) based on the critical region

sup [pn(T0]0)] < «
g € Mo

where My is the nuisance parameter space under the null is exact at level a.

The LMC test procedure is closely related to a parametric bootstrap, with
however a fundamental difference. Whereas bootstrap tests are valid as N — o0,
the number of simulated samples used in MC tests is explicitly taken into account.
Further the LMC p-value may be viewed as exact in a liberal sense, i.e. if the
LMC fails to reject, we can be sure that the exact test involving the maximum
p-value is not significant at level &. We emphasize the fact that the MMC test can
be implemented in complementarity with the above defined bounds tests. Indeed,
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if the BMC test rejects the null then the MMC test is most certainly significant.
These issues will be further studied in Section 6, in the context of a Monte Carlo
experiment. We next employ a well known example from the finance literature to
illustrate how the above results may be used.

A fundamental problem in financial economics involves testing the efficiency of
a candidate benchmark portfolio. Let Ry, Ry, 7=1, ... , p, k=1, ..., K be
security returns for period ¢, ¢ =1, ... ,T". The hypothesis of interest is that some
portfolio of the K security subset is efficient with respect to the total set of p + K
securities. If it is assumed that a riskless asset Rp exists, then efficiency can be
tested using the following multivariate regression:

K
rjt:aj—l—Zﬁjkrkt—l—ejt,j:l, ., p,t=1,....,T, (4.11)
E—1

where 7j; = Rt — Rp¢, Tre = Ryt — Rp¢. The hypothesis of efficiency implies that
the intercepts a; are jointly equal to zero, i.e.
a;j=0,j=1, ..., p. (4.12)
A well known example of (4.11) is the capital asset pricing model (CAPM)
Rjy — Rpy = o + Bi(Rye — Rpe) + €50, =1, ... ,p,t=1, ..., T,

where Rj;; are the returns on the market benchmark. Gibbons, Ross and Shanken
(1989, GRS) show that a transformation of the LR criterion to test (4.12) has an
exact I’ distribution given normality of asset returns. MacKinlay (1987) proposes
a similar statistic in the context of a single beta CAPM. Specifically, GRS suggest
the following test statistic:

Ta'S1a
=27 (4.13)
14+7AIF
where & is the vector of intercept OLS estimates, S = #i is the unbiased
estimator of ¥, ¥ = (71, ... , Tk)' is the vector of time series means for r; =
(r1it, ..., rke), and A is the sample covariance matrix for r,. Under (4.12), @
has the Hotelling T?(p, T — K — 1) distribution or alternatively,
Q' - K —p)
—— =~ F(p, T — K —p). 4.14

Let A, denote the statistic defined by (4.2) in this context. It can be shown [see,
for example Stewart (1997)] that A. is related to the GRS criterion as follows:

Q

Ap—1=—7FX |
¢ T—K—1

(4.15)
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The econometric analysis is more complicated when the zero beta intercept is
unknown and must be inferred using the return data [see, for example Gibbons
(1982)]. In this case, the excess-return MLR becomes

Riyp—y=o;+Y Bu(Ry—y) +ep,i=1,...,p,t=1,...,T, (416)

where ~ is the unknown zero-beta intercept. Under the hypothesis of mean-
variance efficiency, there exists a scalar v such that the vector of a; is equal to
zero. This implies the following non-linearly restricted form of the basic MLR for
the returns:

K

Rip=a;+Y BuRrm+ei, j=1,...,p,t=1,...,T, (4.17)
k=1

with
K
k=1

Suppose that we wish to test (4.18) and let A* denote the associated statistic
from (4.2). Exact tests for this specific problem have been studied by Shanken
(1986) and more recently by Stewart (1997). In what follows, we show that the
exact procedures in question may be obtained as an application of our general
methodology. Shanken (1986) employs the statistic Q(5), where, in the context of
(4.16),

Qy) =

13(1)5 1a()
14+ (R -y ) A YR —yig)

7 = ARGMINQ(v) , &(7) =@ —(tp - Bik)

a is the vector of intercept estimates, ﬁ is the (p, K) matrix of OLS estimates, 3
is the unbiased estimate of ¥, R = (Rl7 ..., Rg) is the vector of time series
means for iy = (th, e RKt) A is the sample covariance matrix for R; and
¢y denotes a vector of J 1’s. Shanken shows that: (i) the LR statistic for testing
(4.18) is a transformation of Q(7), (ii) 7 is the constrained MLE of ~, and (iii)
the null distribution of Q(5) may be bounded by the Hotelling T?(N, T — K — 1)
distribution. Turning to our proposed bound on the statistic A*, we suggest to
consider the statistic A, associated with the special case of (4.18) where v is any
known constant. By (4.13), (4.15) and using (4.5), this naturally leads to the use
of conservative critical points involving the F(p, T — K — N) distribution. This is
the same result as the one obtained by Shanken (1986) and Stewart (1997).
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5 Hypothesis testing in seemingly unrelated regres-
sions

This section considers testing hypotheses about the parameters of the SURE
model. Indeed, the results for the MLR model provide interesting applications
for systems inference in SURE model. We consider the problem of testing in the
context of model (2.10) a general hypothesis of the form

Holo*ﬁEAS (51)

where C* is a full row-rank v§ x k&* matrix, Af is a non-empty subset of R¥. In
terms of the MLR model (2.14) which includes (2.10) as a special case, Hy may be
stated as

Hoy : CB e Ay (5.2)

where C'is a full row-rank vg X (pk) matrix, Ag is a non-empty subset of R*® and C
is expressed so that it incorporates the SURE restrictions (2.13). The associated
LR statistic is ~ ~

LR:nln(A) s A= ’201’/’211’ (53)

where 3, and 31 are the MLE imposing (5.2) and (2.13). For the purpose of
deriving the conservative bound, we also consider

LR =nlIn(A*), A*=|%]/|%) (5.4)

where 3 is the unrestricted MLE. As it stands, testing Ho; based on (5.4 ) is exactly
the type of problem discussed in Section 4. Indeed, consider a UL hypothesis Hgo
such that Hge € Hp; and the associated statistic

AL = [Zoal/E] (5.5)

where 202 is the MLE under Hps. As established in Section 3, the exact null
distribution of A} is nuisance-parameter-free and may easily be simulated. Con-
formably with the notation in Section 4, let L(Hy;), i = 1, 2 be the MLF under
Hy;. Further, let L(Hy;), i = 1, 2 refer to the MLF under (2.13) and the unre-
stricted maximum, respectively. Hence, the following inequality holds under the
distributional assumption (2.3):

L(Hpe) < L(Ho1) < L(Hi1) < L(Hi2). (5.6)
Consequently, it is straightforward to see that
A <A <AL (5.7)

The critical bound may accordingly be obtained from the null distribution of A}
as described in Section 4. To facilitate the analysis, we shall, in the following,
provide an illustrative example.
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Example 1 Three equations SURE model
In the following SURE model with Gaussian errors,

Yi = Byp+8uXa+U,
Yo = [+ B20X2+Uz,
Y3 = [s0+ 033X3+Us, (5.8)

consider testing
Ho : 811 = By = B33 - (5.9)
In the framework of the corresponding MLR model

i = B0+ 811 Xa + B9 X + 813 X5 + Un
Yo = oo+ B X1+ 899 Xa + B93X3 + Us
Y3 = B30+ 031 X1 + B39Xo + 853 X3 + Us (5.10)

Hy is equivalent to the joint hypothesis Hj : 811 = B9g = B33 and 819 = [13 =
891 = 893 = P31 = B39 = 0. In order to use the above results on the conservative
bound, we need to construct a set of UL restrictions in the sense of Section 3 that
satisfy the hypothesis in question. It is easy to see that the constraints setting
the coeflicients 3;;, i, j=1,..., 3 to specific values meet this purpose. All that
remains is to calculate Wilks’ statistic conforming with (5.3) and use the critical
value defined by Theorems 5 - 6 as a conservative cut-off point.

In the next section, we examine the performance of LMC and BMC tests in
SURE contexts given linear and non-linear restrictions. In the linear case, we also
consider LMC tests based on standard Wald-type criteria and several alternative
statistics justified on the basis of computational cost as opposed to those relying
on full maximum likelihood estimation.

6 Simulation study

This section reports an investigation, by simulation, of the performance of the var-
ious proposed statistics in the context of MLR and SURE models. We considered
the following designs.
D1. MLR system, within-equation UL constraints
Model: YZ-j:ozj—l—Zizlﬁijik ,i=1, ..., n, j=1, .., p;
Hg:Zizlﬁjk:(), i=1, .., p;
p=>5,7,8; n=20,25,40,50,100.
D2. MLR system, cross-equation UL constraints
Model: (2.1) ;
Hp: (3.1);
p=11,12,13; k=12,13; r=12,13; ¢=11,12,13.
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D3. MLR system, cross-equation constraints
Model: YZ-j:ozj—l—Zizlﬁijik ,i=1, .., n, j= 1 A
Ho:B8;;=011,7=2, ..., pand B;;, =0, ?ék =1, ...,p;
p=3,5; n=25.

D4. SURE system, cross-equation constraints
Model: Yi; =a; + 8, X5, 1=1, ..., n,j=1, ..., p;
HO:ﬁjj:ﬁll7j:27 ey P
p=3,5; n=25.

D5. MLR system, non-linear constraints

Model: Yij =a; +3,X;, i=1, .., n,j=1, .., p;
Ho:oa;=~(1-0;),j=1, .., p,yunknown;
p=40; n=60.

D6. SURE system, non-linear constraints
Model: Y;; = a; ‘l—ﬁlelZ‘“—/@jQXQij ,i=1, .., n,3=1, ..., p;
Ho: B84 =784,3=1, .., p, v unknown;
p=7T;n=25.

For each model, the regressors were independently drawn (once) from a normal dis-
tribution; the errors were independently generated as i.i.d. N(0,%) with ¥ = GG’
and the elements of G drawn (once) from a normal distribution. The coeflicients for
all experiments are reported in Table 1. The statistics examined are the relevant
LR criteria defined by (3.3), (4.2), (5.3) and (5.4). The subscripts asy, BMC, LMC
and MMC refer respectively to the standard asymptotic tests, the MC bounds
tests, the local MC test and the mazimized MC; because of the computational
cost involved, the latter was only applied in the context of D3 and D4 with p =3
and N = 19. For each test statistic, the LM C randomized procedure is based on
simulations that use a restricted estimator similar to the estimator(s) involved in
the corresponding test statistic: a restricted ML (or quasi-ML) estimator for LR
or Wald-type tests based on ML (quasi-ML) estimators, restricted feasible GLS
estimators for tests on GLS estimators. In D1 we have also considered the Bartlett-
corrected LR test [ Attfield (1995, Section 3.3)] which we denote LR,. In D2 the
asymptotic F' test (3.13) was also assessed. In D4 we have studied, in addition to
the standard LR criteria, the x? and F Wald tests and Wald-type criteria based
on feasible generalized least squares (FGLS) estimates. Specifically, we considered
the statistic suggested in Srivastava and Giles (1987, Chapter 10):

~\/ , -1 , -1 ~
(cB) [C* (X7 (s o ) x7) C*] (cB)
-(3)
(y = X0y (S @ In)(y — X*0)
where C* is the selection matrix implied by the null, v; = np — k*, and S and
G are the feasible generalized least squares parameter estimates. Under the null
hypothesis, vy, has a x?(v}) asymptotic distribution. Theil (1971, Chapter 6)
suggests that the F(v§,v1) distribution better captures the statistics finite sample

(6.1)

*
Yo
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distribution. Yet this claim is not supported by either analytical or simulation
evidence. Maximum likelihood estimators may be substituted for 3 and S in the
formulae for the Wald criterion. For further reference, the latter asymptotic tests
and their MC counterparts are denoted W-MLE;, W-GLS;, j € {x?, F'} and W-
MLE o, W-GLSy o respectively. We also introduced the following quasi-LR
(QLR) statistics:

QLR() = nIn(Ag) , Agy = [£6°| /29| (6.2)

where f](()] ) and 20 denote the constrained and unconstrained iterative estimators
of ¥ and the superscript j refers to the number of iterations involved. Though
we did not analytically establish the asymptotic distribution of the latter criteria,
we assessed their asymptotic significance using the x? reference distribution for
the usual LR statistic. We append the subscript LMC' to the notation for the
QLR test to refer to the corresponding LMC test. Further, criteria inspired by
those suggested in Theil et al. (1985) were also studied. For the model with three
equations, we considered:

pz1 = |B11 — Baal + 1892 — Baal
pzo = 811 — Basl + 1822 — Baal
fzz = |81y — Baol + 1811 — B3

In the five-equations case, the following were selected among the many possible
choices:

ps1 = 811 — Baal + 822 — Bas| + 1833 — Baal + 18as — Bss|
fisy = |B22 = B33l + 1833 — Baal + 18aa — Bos| + 1855 — Bual
fis3 = |83 — Baal + 844 — Bss| + 855 — Bual + 1811 — Baal
fisa = |Ba4 = Bss| + 1855 — Bual + 1811 — Baal + By — Baal
fiss = |85 — Bual + 811 — Baa| + B2 — Bazl + 1833 — Badl

The results are summarized in Tables 2 to 10. We report the empirical frequencies
of type I errors, based on a nominal size of 5% and 1000 replications. In addition,
the power of the tests in (D1, n = 25, p = 8), D3 and D4 were investigated by sim-
ulating the model with the same parameter values except for 3,;. For the purpose
of power comparisons, the sizes of the asymptotic tests were locally corrected, i.e.
an independent simulation was conducted for the same parameter choices as the
initial experiment to determine empirical 5% cut-off points. Of course, such cor-
rected tests only constitute theoretical benchmarks and are not feasible in practice.
The MC tests were applied with 19 and 99 replications and restricted estimates
were used to generate the simulated samples. All the experiments were conducted
using Gauss-386i VM version 3.1. Our results show the following.
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TABLE 1. COEFFICIENTS FOR THE SIMULATION EXPERIMENTS

(1, i=1, ... v/ B
L ﬁkj_{‘z j=1Ip/2]+1, .., p k=1 el
ewla 12, =1, ... I[p/2
ﬁpg —Zkzlﬁkgv J=1, .., p, ﬁOJ _{ 1.8, j:I[p/Q]—I-l sy D
2. R, B,C drawn (once) as NID(0,1)
[1.2 .8 —-11 1.9 -2
1.2 .8 —-1.1 1 0 0 0 0
d 0 0 0 10 0 0
S Bera= o 1 o c Bera= 10 0 1 0 o
0 0 .1 0 0 0 d 0
0o 00 0 .1 |
7
4. Bapgy=(12 1 8 1 —11 .1)
/
Bepgy=(12 1 8 1 —-11 .1 19 1 —2 .1)
5. v=.009 and 8;, j=1, ..., p, drawn (once) as N1D(0,.16)
6. v =.009 and a;, B;, j=1, .., p, drawn (once) as NID(0,.16)

TABLE 2. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D1

Sample size 5 equations 7 equations 8 equations
LRy LR, LRyc | LRysy LR, LRyc | LRy, LR, LRuyc
20 295 100 .050 D99 250 042 760 404
25 A74 075 045 384 145 036 492 190
40 130 066 .052 191 068 045 230 .087
50 097 058  .049 138 066 041 191 073
100 070 .052  .050 078 .051 049 096 .052

.051
045
.049
.054
.053

TABLE 3. TEST POWERS: EXPERIMENT D1
H() . ﬁll =.1
811 .2 4 .8 1.0 1.4
LRy 055 176 822 965 1.0

LRye (N=19) | .054 .165 .688 .881 .991
LRy (N=99) | .056 .173 .799 .950 .999
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TABLE 4. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D2

( P k7 T C) LRaSy FRAO LRMC ( P k7 Ty C) LRasy FRAO LRMC

asy asy

13,12, 12, 13 1.00  .198 047 | 12, 12,12, 12 1.00 .114  .048
11,12,12,11  1.00  .096  .054 | 12,13,13,12 1.00  .225  .038

TABLE 5. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D3

3 equations 5 equations
LRy LRiyc LRpyce LRymo | LRy LRpyce  LRpuce
122 .055 .036 .036 .310 .044 .029

TABLE 6. POWER OF VARIOUS TESTS: EXPERIMENT D3. Hp: 8y =.1

19 replications | 99 replications

3 equations
811 3 ) 7 9 1.0 | .3 ) 7 9 1.0
LRy 140 0 .522 918 995 1.0 | .140 522 918 995 1.0
LRrye | 137 468 849 987 991 | .135 .539 .912 995 1.0
LRyye | 095 404 799 963 987 | .099 441 861 .986 .999
LRpye | 095 404 799 963 987 | .099 441 861 .986 .999
5 equations
811 3 ) 7 9 1.1 | .3 ) 7 9 1.1
LRy 128 515 904 995 1.0 | .128 515 .904 995 1.0
LRiye | 138 467 937 967 1.0 |.137 .537 .904 .994 1.0
LRpye | 120 427 792 958 .995 | .110 .484 877 .990 1.0

TABLE 7. EMPIRICAL LEVELS OF VARIOUS TESTS: EXPERIMENT D4

Asymptotic tests MC tests

Test 3EQ | BEQ Test 3EQ | 5EQ | Test | 3EQ | BEQ

W —GLS,» | .061 | 130 | W —GLSpyme | 049 | 047 | pgy | .058 -
W —MLE,» | 124 | 254 | W — MLEpyc | 047 | 049 | puge | .051 -

W —GLSp | .052 | 121 | LRy yc 047 | 043 | pgs | 055 | -

W — MLEp | 111 | .242 | LRyimic 038 sy | - | .027
LRqs, 094 | 143 | LRY,,,0 036 sy | - | .026
QLR 068 | .077 | LRgumo 036 | 029 | s | - | .025
QLR 088 | 131 | QLR@) pae | 045 | 052 | psq | - | .01
QLR 094 | 143 | QLR pae | 048 | 052 | s | - | .025

QLRi) e | 047 | 044
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TABLE 8. POWER OF THE BOUNDS TESTS. EXPERIMENT D4

3 equations 5 equations
811 3 D 7 9 1 3 D 7 9 1.0
py | 065 383 791 .963 987 | .082 .416 .792 .958 .995
po | 171 324 171 .034 .013 | .249 .497 207 .042 .005
ps | .030 .021 .008 0.00 0.00]|.038 .011 0.00 0.00 0.00
pg | 734 272 030 .003 0.00|.631 .076 .001 0.00 0.00
py | 077 434 858 986 .999 | .075 474 877 .990 1.0
po | 204 372 127 .014 .001 | .256 .439 .122 .010 0.00
ps | .022 .007 .003 0.00 0.00]|.035 .010 0.00 0.00 0.00
pg | 697 187 012 0.00 0.00 | .634 .077 .001 0.00 0.00

Note: pq is the empirical probability that LRy and LRpyo reject, po measures
the probability that LRga;c fails to reject and LRy ;¢ rejects, ps measures the
probability that LRgy ¢ rejects and LR ¢ fails to reject and py is the empirical
probability that both tests fail to reject.

TABLE 9. POWER OF VARIOUS TESTS: EXPERIMENT D4, 3 EQUATIONS

19 replications

99 replications

81, 3 5 7 9 10| 3 5 7 9 10
W — GLSqs, | .192 647 939 993 999 | .192 647 939 993 .999
W — MLE,, |.264 787 984 1.0 1.0 |.264 .787 984 1.0 1.0
LRqs, 281 806 .985 1.0 1.0 |.281 806 .985 1.0 1.0
W —GLSppe | 185 579 884 974 986 | .202 640 .934 .990 .998
W — MLEpyc | 225 704 958 .997 1.00 | .260 .774 .985 1.00 1.00
LRnc 236 707 .962 997 1.00 | .262 .779 .985 1.00 1.00
QLR 227 689 950 993 988 | .256 .762 .977 .997 .999
QLR 238 709 961 997 1.00 | .259 776 .986 1.00 1.00
QLR 236 707 .962 997 1.00 | .262 .776 .985 1.00 1.00
LR, v 095 404 799 963 987 | .099 441 .861 .986 .999
LRy v 054 3838 804 978 .993 | - - - - -
LRpnc 095 404 799 963 987 | .099 441 .861 .986 .999
i, 076 108 .148 216 .259 | .064 .108 .165 .219 .268
i35 197 552 869 974 992 | 210 641 .935 .995 .998
i3 093 183 .307 432 489 | .088 .184 .328 503 .601
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TABLE 10. POWER OF VARIOUS TESTS: EXPERIMENT D4, 5 EQUATIONS

19 replications 99 replications

81, 3 5 7 9 11| 3 5 7 9 11

W — GLSqqy 2200 703 961 994 999 | 200 703 .961 994 .999
W — GLSqqy 317 918 1.0 1.0 1.0 |.317 918 1.0 1.0 1.0
LRy 331 913 999 1.0 1.0 |.331 913 999 1.0 1.0
W —GLSpye | 162 619 918 982 998 | .186 .684 .946 .990 .999
W — GLSpye | 2656 832 991 999 1.00 | .297 903 1.0 1.00 1.00

LRyyvco 286 .841 999 999 1.00 | .328 908 .998 1.00 1.00
QLR ) 265 806 971 998 1.00 | .316 .864 .983 .999 1.00
QLR 200 849 988 998 1.00 | .334 900 .997 1.00 1.00
QLR ) 287 842 991 999 1.00 | .331 .908 .997 1.00 1.00
LRpyce 1200 427 792 958 995 | (110 484 877 .990 1.00
js 029 034 038 .041 .048].032 .036 .039 .041 .044
1N 031 .036 .039 .042 .045].031 .034 .038 .040 .041
I 042 085 154 2568 359 | .035 .077 .152 241 .397
Hsa 023 071 159 289 456 | .025 .067 .175 .302 512
s 031 .050 .071 .118 .170 | .033 .056 .092 128 .180

6.1 MLR model with uniform linear hypothesis

Experiment D1 yields three main conclusions. First, it is evident from Table 2 that
the LR, tests overreject substantially. As emphasized in Section 2, this problem
is indeed well documented. Second, the Bartlett correction, though providing some
improvement, fails in larger systems. In this regard, it is worth noting that Attfield
(1995) had conducted a similar Monte Carlo study to demonstrate the effectiveness
of Bartlett adjustments in this framework; however, the example analyzed was
restricted to a two-equations model. Finally, the M tests achieve perfect size
control and have good power (see Table 3) even with N as low as 19. With
N =99, we do not observe any significant power loss for tests having comparable
size, although the power study focuses on the eight-equations model with just 25
observations. This experiment may be viewed as an illustration of homogeneity
tests in demand systems.

Experiment D2 was designed to investigate the accuracy of the asymptotic I
test (3.13) where r > 2 and ¢ > 2. From the results in Table 4, we can see that LR
test based on the asymptotic y? critical value is severely oversized; the asymptotic
F test performs better but size correction is still needed. The size of the M C' test
corresponds closely to 5%. As shown in Section 3, M C tests in the context of D1
and D2 are provably exact.
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6.2 DMLR model with cross-equation restrictions

Tables 5 - 6 summarize our findings in this case. A striking observation is that
the conservative bound provides conclusive results in a large proportion of cases.
Further, the LRpyec and LRypc test yield equivalent decisions for all cases
examined. LMC tests provide substantial improvement over conventional asymp-
totics: the randomized procedure corrects test sizes with no substantial power loss.
Increasing the number of equations does not have a great effect on the relative per-
formance of the methods proposed. An interesting experiment that bears on this
problem is reported in Cribari-Neto and Zarkos (1997) in connection with MLR-
based bootstrap tests for homogeneity and symmetry of demand. These authors
find that the standard bootstrap achieves size control at the expense of important
power losses.

6.3 Monte Carlo evidence: SURE with linear restrictions

Two Gaussian SURE models, modelled after Example 1, were used for experiment
D4. Systems involving three and five equations were considered to which we will
refer as the 3EQ and the 5EQ models. Our results show the following (see Tables
7-10):

1. The asymptotic criteria have an upward bias in size; as can be seen in Table
7, rejection of the null is repeatedly many times more than what it should be.
The bias clearly worsens in the 5EQ example. Across the cases examined, the
Wald-type statistics have larger sizes when based on their asymptotic x? critical
values. Although the [ approximation seems to correct the problem in the 3EQ
model, it clearly fails to do so in the BEQ case.

2. The BMC test was found to be well behaved. Power gains are possible in
other test problems where a tighter critical bound is available. Indeed, we have
observed reasonable power even if we have experimented with the worst scenario,
in the sense that bounding test statistics correspond to a null hypothesis which
fixes the values of all regression coefficients (except the intercept). Furthermore, as
in experiment D3, we found that the BMC and the MMC tests based on LR* yield
equivalent decisions for all cases examined; the MMC test based on LR performs
marginally better. This illustrates the value of the conservative bounds test as
a tool to be used in conjunction with LMC test methods and not necessarily as
an alternative to those methods. As emphasized earlier, the bounds procedure
is computationally inexpensive and exact. In addition, whenever the bounds test
rejects, inference may be made without further appeal to randomized tests.

3. There is no indication of overrejection for all LM C' tests considered. While
the critical values used, conditional on the particular choice of consistent estimator
for the error covariance matrix, are only asymptotically justified, the procedure
was remarkably effective in correcting the bias. Whether this conclusion would
carry to quite larger systems is indeed an open question. In this regard, note that
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available simulation evidence on the SURE model, specifically the experiment in
Rocke (1989) on large systems is limited to three-equations at best.

4. The LMC tests performed noticeably well in terms of power in all instances,
even when the number of replications was as low as 19. We emphasize that the
size-corrected asymptotic tests are unavailable in practical testing situations since
the local correction it entails requires > to be known. The statistic with the best
power properties across the alternatives examined was the randomized LR.

5. While they did exhibit adequate sizes, the statistics inspired by Theil et al.
(1985) did not fare well in terms of power. For the 3EQ model, the performance
was dramatically poor for piss and piss but less so in the case of pi3q. Even then, as
compared to the randomized LR, the performance is less than satisfactory.

6. Simulation evidence does not favor the randomized usual LR tests over
those based on A(;) typically involving fewer iterations, although we are uncertain
as to the asymptotic equivalence of both procedures. This observation has an
important bearing on empirical practice. The simplicity of the method based A
on has much to recommend it for larger models in which statistics requiring full
MLE may be quite expensive to randomize.

6.4 Nonlinear hypotheses

Experiment D5 was modeled after the MLR system (4.11) under the null hypothesis
(4.12). We considered 40 equations with 60 observations following the empirical
example analyzed in Stewart (1997). To derive the LR statistic, the constrained
MLE was numerically computed according to Shanken (1986). As was the case with
linear hypotheses, the asymptotic tests severely overreject. Indeed, the observed
size of the asymptotic test was 89.5%. In contrast, the LMC and BMC tests show
empirical type I error rates (.047 and .038) compatible with their nominal 5%
level. We observed similar results in the context of the non-linear SURE model
D6. In this case, we considered a seven equations system with 25 observations.
The observed empirical sizes of the LR statistics were 12.5% whereas the levels of
the bounds test (2.6%) is adequate.

7 Empirical illustration

In this section, we present an empirical application that illustrates the results
presented in this paper. We consider testing restrictions on the parameters of a
generalized Leontief cost function. We use the data from Berndt and Wood (1975)
and the factor demand system from Berndt (1991, pp. 460-462). The model im-
poses constant returns to scale and linear homogeneity in prices, and includes four
inputs: capital (K), labor (L), energy (F) and non-energy intermediate materials
(M). If we denote the output by Y and the input prices P;, j = K, L, E, M, the
stochastic cost minimizing input-output KLEM equations are:
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£ =dgk +dxr (Pr/Px)Y? + dxp (Pe/Pr)"? + dicar (Pur ) P)Y? + exc
L =dy, +dik (PK/PL)1/2 +dre (PE/PL)1/2 +dry (PM/PL)1/2 +er
L =dgp +dpxk (PK/PE)1/2 +dgr (PL/PE)1/2 +denm (PM/PE)1/2 +ep

Y =dyn + duk (Prc/Pui)' " + darr (Po) Pu)? + duie (Pe/Pu)' " + en

where the error terms ex, e, eg, epr satisfy the distributional assumptions (2.3).
We focus on testing the symmetry restrictions entailed by microeconomic theory,
i.e.
dxr =drk, drxm = duk
Hoy : dxp =dpk, dim =dmr
dip =dpr, dem = dup

as well as a subset of these constraints
Hy : dpy =dup, div =duk

Conforming with the procedures described above, we reconsider the testing prob-
lem in the context of the MLR model of which the KLEM system is a restricted
form. The latter model’s individual equations include the 32 price ratios (P;/ Pj)l/ 2,
1,7 =K, L, E, M, as regressors. The unrestricted MLE SURE estimates using the
data provided in Berndt (1991) on the manufacturing US. sector 1947-71 are given
below (with asymptotic standard errors in parentheses):

=080+ Q808 P/ 0™+ 548 (/0™ G (/i
=~ SIS S (P P 208 (P P+ 04 (P o)
* = 0403 — o111 (Pi/Pp)"? - 0048 (P/Pp)'” + 0150 (Pur /Pg)'?
¥ = TA0L — 0542 (Pye/ Pan)'/? = 1374 (P/Par) ' + 0399 (P / Par)

For both hypotheses, we obtain the FGLS and MLE Wald statistics (6.1), the
LR and LR* criteria as defined in (5.3) and (5.4) and the QLR statistics (6.2).
In the case of the Wald and QLR test, we obtain the asymptotic x? and LMC
p-values using 19 and 99 simulated samples. The exact BMC and MMC p-values
are also obtained for the LR criteria. The bounding statistic LR, = nlIn(A¥),
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corresponds the UL hypothesis that sets all the coefficients of the MLR model
(except the intercepts) to specific values. As emphasized in Section 5, the BMC
procedure based on LR* yields tighter bounds [see inequality (5.7)]. The results
are summarized below.

It is evident that the symmetry hypothesis Hy is rejected using all asymptotic
and exact tests. In the case of Hyo, all tests against the unconstrained SURE
specification are not significant. However, the asymptotic x2 and LMC tests LR*
are significant at the 5% level. Although the bounds p-value is > .05, the MMC
test is significant at the 5% level, even with 19 simulated samples. It is worth
noting that the QLR and the LR LMC tests yield equivalent decisions for both
testing problems. Moreover, all MC tests based on 19 and 99 replications also
yield similar decisions.

8 Conclusion

In this paper we have shown that the LR test on the coefficients of the MLR model
is boundedly pivotal under the null hypothesis. The bounds we have derived for
general, possibly non-linear hypotheses are exact in finite samples and may easily
be implemented by simulation. In view of this, we have combined the bounds and
Monte Carlo test approaches to provide p-values for test statistics that are more
accurate than those based on asymptotic approximations. The basic results were
stated in terms of arbitrary hypotheses in MLR contexts. We have also focused on
special cases, namely uniform and general linear hypotheses, and have extended
the methodology to the SURE framework. We have reported the results of an
extensive Monte Carlo experiment that covered uniform linear, cross-equation and
non-linear restrictions in MLR and SURE models. The feasibility of the test
strategy was also illustrated with an empirical application. We have found that
standard asymptotic tests exhibit serious errors in level, particularly in larger
systems; usual size correction techniques (e.g. the Bartlett adjustment) may fail.
In contrast, the various tests we have proposed displayed excellent size and power
properties.
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TABLE 11A: CROSS-EQUATION SYMMETRY TESTS

dxr, =drg, dxym = dyk, dxe = dpk,
dpy = dyr, die = dgr, depy = due

H01:{

LR LR | QLR) | QLR | QLR Wé%é d I/I]\g%]lgd
Statistic 176.5682 74.159  75.5645  75.140  74.911 239.597 238.777
Asymptotic p-value .000 .000 .000 .000 .000 .000 .000
Reps | MC p-value
19 BMC .05 .70 - - - - -
99 .01 .67 - - - - -
19 MMC .05 05 - - - - -
99 .01 .01 - - - - -
19 LMC .05 .05 .05 .05 .05 .05 .05
99 .01 .01 .01 .01 .01 .01 .01

Note: Under Hyy, LR* ~5 x

asy

2(42) while the other statistics have asymptotic x2(6)

distributions. The LR* statistic tests the symmetry restrictions (6 constraints)
jointly with the SURE exclusion restrictions (36 constraints)  a total of 42 re-

strictions _ against the unrestricted MLR model. Reps stands for replications.

TABLE 11B: CROSS-EQUATION SYMMETRY TESTS (PARTIAL)

Hop: dpy =dye, dxv = duk

LR LR | QLR | QLRyy | QLR) Wé%éd M]\g%%d
Statistic 102.574 15179 15180  .15179  .15179  .1283 .1279
Asymptotic p-value .000 927 927 927 927 937 938
Reps | MC p-value
19 BMC 15 1.0 - - - - -
99 A7 1.0 - - - - -
19 MMC .05 1.0 - - - - -
99 .05 1.0 - - - - -
19 LMC .05 .90 90 90 90 90 90
99 .04 .94 .94 94 .94 94 94

Note: Under Hgo, LR* ~7 x

asy

2(38) while the other statistics have asymptotic y?(2)

distributions. LR* tests a subset of symmetry restrictions (2 constraints) jointly
with the SURE exclusion restrictions (36 constraints) 38 restrictions in all _
against the unrestricted MLR model.
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