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ABSTRACT

We propose finite sample tests and confidence sets for models with unobserved and generated
regressors as well as various models estimated by instrumental variables methods. The validity of
the procedures is unaffected by the presence of identification problems or “weak instruments”, so
no detection of such problems is required. We study two distinct approaches for various models
considered by Pagan (1984). The first one is an instrument substitution method which generalizes
an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although re-
lated) problems, while the second one is based on splitting the sample. The instrument substitution
method uses the instruments directly, instead of generated regressors, in order to test hypotheses
about the “structural parameters” of interest and build confidence sets. The second approach relies
on “generated regressors”, which allows a gain in degrees of freedom, and a sample split technique.
For inference about general possibly nonlinear transformations of model parameters, projection
techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian er-
rors and strictly exogenous regressors. We show that the various tests and confidence sets proposed
are (locally) “asymptotically valid” under much weaker assumptions. The properties of the tests
proposed are examined in simulation experiments. In general, they outperform the usual asymp-
totic inference methods in terms of both reliability and power. Finally, the techniques suggested are
applied to a model of Tobin’s ¢ and to a model of academic performance.

Key words. simultaneous equations; structural model; instrumental variables; weak instruments;
generated regressor; Anderson-Rubin method; pivotal function; sample-split; exact test; confidence
region; projection techniques; Tobin’s ¢; academic performance.

JEL classification numbers: C1, C12, C3, C5, E22, 12, J24.



RESUME

Nous proposons des tests et régions de confiance exactes pour des modéles comportant des
variables inobservées ou des régresseurs estimés de méme que pour divers modeles estimés par la
méthode des variables instrumentales. La validité des procédures proposées n’est pas influencée par
la présence de problémes d’identification ou d’instruments faibles, de sorte que la détection de tels
problémes n’est pas requise pour les appliquer. De facon plus spécifique, nous étudions deux ap-
proches différentes pour divers modéles considérés par Pagan (1984). La premiére est une méthode
de substitution d’instruments qui généralise des techniques proposées par Anderson et Rubin (1949)
et Fuller (1984) pour des problémes différents, tandis que la seconde méthode est fondée sur une
subdivision de I’échantillon. La méthode de substitution d’instruments utilise directement les in-
struments disponibles, plutdt que des régresseurs estimés, afin de tester des hypothéses et construire
des régions de confiance sur les “paramétres structuraux” du modele. La seconde méthode s’appuie
sur des régresseurs estimés, ce qui permet un gain de degrés de liberté, ainsi que sur une technique
de subdivision de I’échantillon. Pour faire de I’inférence sur des transformation générales, pos-
siblement non-linéaires, des parameétres du modele, nous proposons I’utilisation de techniques de
projection. Nous fournissons une théorie distributionnelle exacte sous une hypothéese de normalité
des perturbations et de régresseurs strictement exogénes. Nous montrons que les tests et régions
de confiance ainsi obtenus sont aussi (localement) “asymptotiquement valides” sous des hypothéses
distributionnelles beaucoup plus faibles. Nous étudions les propriétés des tests proposés dans le
cadre d’une expérience de simulation. En général, celles-ci sont plus fiables et ont une meilleure
puissance que les techniques traditionnelles. Finalement, les techniques proposées sont appliquées
a un modele du ¢ de Tobin et a un modéle de performance scolaire.

M ots-clefs: équations simultanées; modele structurel; variables instrumentales; instruments faibles;
régresseur estimé; méthode d’Anderson-Rubin; fonction pivotale; subdivision d’échantillon; in-
férence a distance finie; test exact; région de confiance; techniques de projection; ¢ de Tobin; per-
formance scolaire.

Classification JEL: C1, C12, C3, C5, E22, 12, J24.
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1. Introduction

A frequent problem in econometrics and statistics consists in making inferences on models which
contain unobserved explanatory variables, such as expectational or latent variables and variables
observed with error; see, for example, Barro (1977), Pagan (1984, 1986) and the survey of Oxley
and McAleer (1993). A common solution to such problems is based on using instrumental variables
to replace the unobserved variables by proxies obtained from auxiliary regressions (generated re-
gressors). It is also well known that using such regressors raises difficulties for making tests and
confidence sets, and it is usually proposed to replace ordinary least squares (OLS) standard errors
by instrumental variables (V) based standard errors; see Pagan (1984, 1986) and Murphy and Topel
(1985). In any case, all the methods proposed to deal with such problems only have an asymptotic
justification, which means that the resulting tests and confidence sets can be extremely unreliable
in finite samples. In particular, such difficulties occur in situations involving “weak instruments”,
a problem which has received considerable attention recently; see, for example, Nelson and Startz
(1990a, 1990b), Buse (1992), Maddala and Jeong (1992), Bound, Jaeger, and Baker (1993, 1995),
Angrist and Krueger (1995), Hall, Rudebusch, and Wilcox (1996), Dufour (1997), Shea (1997),
Staiger and Stock (1997) and Wang and Zivot (1998) and Zivot, Startz, and Nelson (1998) [for
some early results relevant to the same issue, see also Nagar (1959), Richardson (1968) and Sawa
(1969)].

In this paper, we treat these issues from a finite sample perspective and we propose finite sample
tests and confidence sets for models with unobserved and generated regressors. We also consider a
number of related problems in the more general context of linear simultaneous equations. To get re-
liable tests and confidence sets, we emphasize the derivation of truly pivotal (or boundedly pivotal)
statistics, as opposed to statistics which are only asymptotically pivotal; for a general discussion of
the importance of such statistics for inference, see Dufour (1997). We study two distinct approaches
for various models considered by Pagan (1984). The first one is an instrument substitution method
which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987, Section
1.4) for different (although related) problems, while the second one is based on splitting the sample.
The instrument substitution method uses the instruments directly, instead of generated regressors,
in order to test hypotheses and build confidence sets about “structural parameters”. The second
approach relies on “generated regressors”, allowing a gain in degrees of freedom, and a sample
split technique. Depending on the problem considered, we derive either exact similar tests (and
confidence sets) or conservative procedures. The hypotheses for which we obtain similar tests (and
correspondingly similar confidence sets) include: (a) hypotheses which set the value of the unob-
served (expected) variable coefficient vector [as in Anderson and Rubin (1949) and Fuller (1987)];
(b) analogous restrictions taken jointly with general linear constraints on the coefficients of the (ob-
served) exogenous variables in the equation of interest; and (c) hypothesis about the coefficients
of “surprise” variables when such variables are included in the equation. Tests for these hypothe-
ses are based on Fisher-type statistics, but the confidence sets typically involve nonlinear (although
quite tractable) inequalities. For example, when only one unobserved variable (or endogenous ex-
planatory variable) appears in the model, the confidence interval for the associated coefficient can
be computed easily on finding the roots of a quadratic polynomial. Note that Anderson-Rubin-type



methods have not previously been suggested in the context of the general Pagan (1984) setup. The
general setup we consider here includes as special cases the ones studied by Pagan (1984), Fuller
(1987) and Zivot, Startz, and Nelson (1998), allowing for structural equations which include more
than one endogenous “explanatory” variable as well as exogenous variables, so the hypotheses of
type (a) we consider and the associated confidence sets are in fact more general than those con-
sidered by Fuller (1987, Section 1.4) and Zivot, Startz, and Nelson (1998). In particular, for the
case where the structural equation studied includes one endogenous explanatory variable, we ex-
tend the range of cases where close-form quadratic confidence intervals [similar to those described
by Fuller (1987), Dufour (1997), and Zivot, Startz, and Nelson (1998)] are available. Further, prob-
lems such as those described in (b) and (c) above have not apparently been considered at all from
this perspective in the earlier literature.

In the case of the instrument substitution method, the tests and confidence sets so obtained can be
interpreted as likelihood ratio (LR) procedures (based on appropriately chosen reduced form alter-
natives), or equivalently as profile likelihood techniques [for further discussion of such techniques,
see Bates and Watts (1988, Chapter 6), Meeker and Escobar (1995) and Chen and Jennrich (1996)].
The exact distributional theory is obtained under the assumptions of Gaussian errors and strictly
exogenous regressors, which ensures that we have well-defined testable models. Although we stress
here applications to models with unobserved regressors, the extensions of Anderson—-Rubin (AR)
procedures that we discuss are also of interest for inference in various structural models which are
estimated by instrumental variable methods (e.g., simultaneous equations models). Furthermore, we
observe that the tests and confidence sets proposed are (locally) “asymptotically valid” under much
weaker distributional assumptions (which may involve non-Gaussian errors and weakly exogenous
instruments).

It is important to note that the confidence sets obtained by the methods described above, unlike
Wald-type confidence sets, are unbounded with non-zero probability. As emphasized from a general
perspective in Dufour (1997), this is a necessary property of any valid confidence set for a parameter
that may not be identifiable on some subset of the parameter space. As a result, confidence proce-
dures that do not have this property have true level zero, and the sizes of the corresponding tests
(like Wald-type tests) must deviate arbitrarily from their nominal levels. It is easy to see that such
difficulties occur in models with unobserved regressors, models with generated regressors, simulta-
neous equations models, and different types of the error-in-variables models. In the context of the
first type of model, we present below simulation evidence that strikingly illustrates these difficul-
ties. In particular, our simulation results indicate that tests based on instrument substitution methods
have good power properties with respect to Wald-type tests, a feature previously pointed out for the
AR tests by Maddala (1974) in a comparative study for simultaneous equations [on the power of
AR tests, see also Revankar and Mallela (1972)]. Furthermore, we find that generated regressors
sample-split tests perform better when the generated regressors are obtained from a relatively small
fraction of the sample (e.g., 10% of the sample) while the rest of the sample is used for the main
regression (in which generated regressors are used).

An apparent shortcoming of the similar procedures proposed above, and probably one of the
reasons why AR tests have not become widely used, is the fact that they are restricted to testing
hypotheses which specify the values of the coefficients of all the endogenous (or unobserved) ex-



planatory variables, excluding the possibility of considering a subset of coefficients (e.g., individual
coefficients). We show that inference on individual parameters or subvectors of coefficients is how-
ever feasible by applying a projection technique analogous to the ones used in Dufour (1989, 1990),
Dufour and Kiviet (1996, 1998) and Kiviet and Dufour (1997). We also show that such techniques
may be used for inference on general possibly nonlinear transformations of the parameter vector of
interest.

The plan of the paper is as follows. In Section 2, we describe the main model which may con-
tain several unobserved variables (analogous to the “anticipated” parts of those variables), and we
introduce the instrument substitution method for this basic model with various tests and confidence
sets for the coefficients of the unobserved variables. In Section 3, we propose the sample split
method for the same model with again the corresponding tests and confidence sets. In Section 4, we
study the problem of testing joint hypotheses about the coefficients of the unobserved variables and
various linear restrictions on the coefficients of other (observed) regressors in the model. Section
5 extends these results to a model which also contains error terms of the unobserved variables (the
“unanticipated” parts of these variables). In Section 6, we consider the problem of making inference
about general nonlinear transformations of model coefficients. Then, in Section 7, we discuss the
“asymptotic validity” of the proposed procedures under weaker distributional assumptions. Sec-
tion 8 presents the results of simulation experiments in which the performance of our methods is
compared with some widely used asymptotic procedures. Section 9 presents applications of the
proposed methods to a model of Tobin’s ¢ and to an economic model of educational performance.
The latter explains the relationship between students’ academic performance, their personal char-
acteristics and some socio-economic factors. The first example illustrates inference in presence of
good instruments, while in the second example only poor instruments are available. As expected,
confidence intervals for Tobin’s ¢ based on the Wald-type procedures largely coincide with those
resulting from our methods. On the contrary, large discrepancies arise between the confidence in-
tervals obtained from the asymptotic and the exact inference methods when poor instruments are
used. We conclude in Section 10.

2. Exact inference by instrument substitution

In this section, we develop finite sample inference methods based on instrument substitution meth-
ods for models with unobserved and generated regressors. We first derive general formulae for the
test statistics and then discuss the corresponding confidence sets. We consider the following basic
setup which includes as special cases Models 1 and 2 studied by Pagan (1984):

(2.2) y=2:.0+Xv+e,

(2.2) Z,=WB+U,, Z=2.+V,

where y isa T x 1 vector of observations on a dependent variable, Z, is a T' x GG matrix of unobserved
variables, X is a T x K matrix of exogenous explanatory variables in the structural model, Z is
a T x G matrix of observed variables, W is a T' x ¢ matrix of variables related to Z,., while



e=(er,...,er), Ug = [u)y,...,up/ and V,, = [v},,...,v,p) are T x 1 and T' x G matrices
of disturbances. The matrices of unknown coefficients J, ~, and B have dimensions respectively
G x 1, K x 1 and ¢ x G. In order to handle common variables in both equations (2.1) and (2.2),
like for example the constant term, we allow for the presence of common columns in the matrices
W and X. In the setup of Pagan (1984), U.. is assumed to be identically zero (U, = 0), e; and v,
are uncorrelated [E(e;v.:) = 0], and the exogenous regressors X are excluded from the “structural”
equation (2.1). In some cases below, we will need to reinstate some of the latter assumptions.

The finite sample approach we adopt in this paper requires additional assumptions, especially on
the distributional properties of the error term. Since (2.2) entails Z = W B+V where V = U, +V,,
we will suppose the following conditions are satisfied:

(2.3) X and W are independent of e and V, ;
(2.4) rank (X) =K, 1< rank(W)=¢gq<T, G>1, 1<K+G<T;
(25) (e, ol) N[O, 2], t=1,....T;

(2.6) det(£2) > 0.

If K =0, X issimply dropped from equation (2.1). Note that no assumption on the distribution of
U, is required. Assumptions (2.3) — (2.6) can be relaxed if they are replaced by assumptions on the
asymptotic behavior of the variables as " — oo. Results on the asymptotic “validity” of the various
procedures proposed in this paper are presented in Section 7.

Let us now consider the null hypothesis:

(2.7) Hy:6=24.

The instrument substitution method is based on replacing the unobserved variable by a set of instru-
ments. First, we substitute (2.2) into (2.1):

(2.8) y=(Z-V)d+Xy+e=25+ Xv+ (e —V,d).
Then subtracting Zd, on both sides of (2.8), we get:
(2.9) y—Zbp=WDB(—0dg)+Xy+u

where u = e — V.09 + U.(d — o). Now suppose that W and X have K, columns in common
(0 < Ky < q) while the other columns of X are linearly independent of WW:

(2.10) W =[Wyi, Xo], X =[X1, Xa], rank[Wy, X1, Xo]=q1 +K <T

where W1, X7 and Xy are T' x ¢1, T x K7 and T' x K5 matrices, respectively (K = K7 + Ko,



q = q1 + K3). We can then rewrite (2.9) as
(2.11) y— Zdg =W + Xy, +u

where 01, = B1(0 — 00), Yax = Y2 + B2(0 — o), 7. = (7}, 75,), Biisa K; x G matrix (i = 1,
2)and B = [Bf, By’

It is easy to see that model (2.11) under Hj satisfies all the assumptions of the classical linear
model. Furthermore, since 1. = 0 when § = §,, we can test Hy by a standard F'-test of the null
hypothesis

(212) HO* : (51* =0.

This F'-statistic has the form

(y — Zdo)' P(M(X)W1) (y — Zdo)/q1

(2.13) F(60; W1) = (y — Z6o) M (W1, X]) (y — Z60)/(T — q1 — K)

where P(A) = A(A’A)~tA" and M(A) = Iy — P(A) for any full column rank matrix A. When
6 = &g, we have F(50; Wl) ~ F(ql, T—q —K), so that F(50; Wl) > F(a; q, T —q1 —K) is
a critical region with level « for testing § = d¢, where P[F(dg; W1) < F(o; 1, T —q1 — K)] =
1 — «. The essential ingredient of the test is the fact that ¢; > 1, i.e. some instruments must be
excluded from X in (2.1). On the other hand, the usual order condition for “identification” (¢; > G)
is not necessary for applying this procedure. In other words, it is possible to test certain hypotheses
about § even if the latter vector is not completely identifiable. It is then straightforward to see that
the set

(2.14) Cs(e) = {80 : F(30; W1) < Fla; a1, T — g1 — K)}

is a confidence set with level 1 — « for the coefficient . The tests based on the statistic £'(dg; 1)
and the above confidence set generalize the procedures described by Fuller (1987, pp. 16-17), for
a model with one unobserved variable (G = 1), X limited to a constant variable (KX = 1) and two
instruments (¢ = 2, including a constant), and by Zivot, Startz, and Nelson (1998) for a model with
one unobserved variable (G = 1), no exogenous variables and an arbitrary number of instruments
(¢=1).

Consider now the case where Z isa 7' x 1 vector and X is a7 x K matrix. In this case, the
confidence set (2.14) for testing Hy : 6 = ¢ has the following general form:

(y — Z50)lA1 (y — Zfso) 120} }

(2.15) Cs(a) = {50 : x -2 < F,

(y — Zdo)' A2(y — Zdo) ¢

where F,, = F(os 1, T — ¢ — K) and vo = T — qu — K and the matrices A; =
P(M(X)Wy), Ay = M([Wi, X]). Since (v2/q1) only takes positive values, the inequality in
(2.15) is equivalent to the quadratic inequality:

(2.16) adt +bsg +¢c¢ <0



TABLE 1
CONFIDENCE SETS BASED ON THE QUADRATIC INEQUALITY ad% +bdg+c¢c<0

A>0 A<O0
(real roots) (complex roots)
a>0 [01+, 024 Empty
a<0 (=00, d14] U [d24, 00) (—00, 4+00)
a=20 b>0 (—oo, —%]
b<0 [f% , oo)
b=0, ¢>0 Empty
b=0, ¢<0 (=00, +00)

wherea = Z'CZ, b= —2y'CZ, c = y'Cy, C = A} — Ga Az and G, = (q1/v2) F,. Again, the
above quadratic confidence intervals may be viewed as generalizations of the quadratic confidence
intervals described by Fuller (1987, page 55) and Zivot, Startz, and Nelson (1998).1

In empirical work, some problems may arise due to the high dimensions of the matrices M (X)
and M ([W1, X]). A simple way to avoid this difficulty consists in using vectors of residuals from
appropriate OLS regressions. Consider the coefficient « = Z'CZ. We may replace it by the
expression Z' A1 Z — G Z' A3 Z and then rewrite both terms as follows:

ZAZ = (Z'M(X)) (MCOW) (M)W (M(X)W1)]~ (M)W (M(X)Z),
Z'AsZ = Z'M([Wh, X))Z = [M([W1, X)) Z)[M (W1, X])Z].

In the above expressions, M (X)Z is the vector of residuals obtained by regressing Z on X,
M (X)W, is the vector of residuals from the regression of 1W; on X, and finally M ([W;, X])Z
is a vector of residuals from the regression of Z on X and 1W;. We can proceed in the same way
to compute the two other coefficients of the quadratic inequality (2.16). This will require only two
additional regressions: y on X, and ¢ on both X and Wj.

It is easy to see that the confidence set (2.16) is determined by the roots of the second order
polynomial in (2.16). The shape of this confidence set depends on the signs of a and A = b? — 4ac.
All possible options are summarized in Table 1 where §;, denotes the smaller root and by ds, the
larger root of the polynomial (when both roots are real).

Note that the confidence set C5(«) may be empty or unbounded with a non-zero probability.
Since the reduced form for y can be written

(2.17) y = Wim + Xim2 + Xomas + vy

where m; = Bid, ma1 = 7y, T2 = 79 + Bay and vy, = e + U,d, we see that the condition
w1 = B1d may be interpreted as an overidentifying restriction. Jointly with § = 4, this condition

! We proposed this generalization independently of Zivot, Startz, and Nelson (1998); see Dufour and Jasiak (1993).
For further discussion of quadratic confidence intervals, see also Fieller (1954) and Dufour (1997, Section 5.1).



entails the hypothesis Ho, : B1(d — dg) = 0 which is tested by the statistic F'(do; W1). Thus an
empty confidence set means the condition B;(6 — dp) = 0 is rejected for any value of §, and so
indicates that the overidentifying restrictions entailed by the structural model (2.1) - (2.2) are not
supported by the data, i.e. the specification is rejected. However, if the model is correctly specified,
the probability of obtaining an empty confidence set is not greater than «.. On the other hand, the
possibility of an unbounded confidence set is a necessary characteristic of any valid confidence
set in the present context, because the structural parameter § may not be identifiable [see Dufour
(1997)]. Unbounded confidence sets are most likely to occur when § is not identified or close
to being unidentified, for then all values of ¢ are almost observationally equivalent. Indeed an
unbounded confidence set obtains when a < 0 or (equivalently) when F'(II; = 0) < F,, where
F(II; = 0) is the F-statistic for testing I7; = 0 in the regression

(2.18) Z =Wy I, + XII + vy .

In other words, the confidence interval (2.15) is unbounded if and only if the coefficients of the
exogenous regressors in Wy [which is excluded from the structural equation (2.1)] are not signifi-
cantly related to 7 at level « : i.e., W7 can be interpreted as a matrix of “weak instruments” for Z.
In contrast, Wald-type confidence sets for ¢ are typically bounded with probability one, so their true
level must be zero. Note finally that an unbounded confidence set can be informative: e.g., the set
(—00, 614] U [d24, 00) may exclude economically important values of § (6 = 0 for example).

3. Inferencewith generated regressors

Test statistics similar to those of the previous section may alternatively be obtained from linear re-
gressions with generated regressors. To obtain finite sample inferences in such contexts, we propose
to compute adjusted values from an independent sample. In particular, this can be done by applying
a sample split technique.

Consider again the model described by (2.1) to (2.6). In (2.9), a natural thing to do would
consist in replacing W B by W B, where B is an estimator of B. Take B = (W'W)~1W’Z, the
least squares estimate of B based on (2.2). Then we have:

(3.1) y—Z8g=WDB(S —80) + Xy +[u+W(B—B)(0—060)] = Zo« + X7y + us

where 8o, = 6 — dp and u, = e — Vi.8g + [Us + W (B — B)](6 — 8o). Again, the null hypothesis
0 = §p may be tested by testing Ho, 00« = 0 in model (3.1). Here the standard F statistic for Hy.
is obtained by replacing W7 by Z in (2.13), i.e.

(y — Zoo)'P(M(X)Z) (y — Zb0)/G .
(y — Z60)M([Z, X)) (y — Z60) /(T — G — K) '

(32) F(60; Z) =

if K =0 [no X matrix in (2.1)], we conventionally set M/ (X) = I and [Z, X]| = Z. However, to



get a null distribution for F'(do; ) we will need further assumptions. For example, in addition to
the assumptions (2.1) to (2.6), suppose, as in Pagan (1984), that

(3.3) eand V = U, + V, are independent.

In this case, when § = 6y = 0, Z and w, are independent and, conditional on Z, model (3.1) satisfies
all the assumptions of the classical linear model (with probability 1). Thus the null distribution of
the statistic F(0; Z) for testing 6o = 0 is F(G, T — G — K). Unfortunately, this property does not
extend to the more general statistic F'(dg; Z) where §y # 0 because Z and w, are not independent
in this case. A similar observation (in an asymptotic context) was made by Pagan (1984).

To deal with more general hypotheses, suppose now that an estimate B of B such that

(3.4) B is independent of e and V,
is available, and replace Z = W B by Z = W B in (3.1). We then get
(3.5) Y — 280 = Z80x + X7 + Uss

where w,., = e — Vido + [Usx + W(B — B)] (6 — 6). Under the assumptions (2.1) — (2.6) with
0 = &g and conditional on Z (or B), model (3.5) satisfies all the assumptions of the classical linear
model and the usual F-statistic for testing dg. = 0,

(y = Z80) P(M(X)Z)(y — Z80)/G
(y = Z80) M([Z, X])(y = Z60)/(T = G = K)

(3.6) F(80; Z) =

where the usual notation has been adopted, follows an F'(G, T'—G — K) distribution. Consequently,
the critical region F'(60; Z) > F(o; G, T — G — K) has size a. Note that condition (3.3) is not
needed for this result to hold. Furthermore

(3.7) Cs(a) = {0p: F(dp; Z) < F(o; G, T — G — K)}

is a confidence set for § with size 1 — . For scalar § (G = 1), this confidence set takes a form
similar to the one in (2.15), except that A, = P(M(X)Z) and Ay = M([Z, X]).

A practical problem here consists in finding the independent estimate 3. Under the assumptions
(2.1) - (2.6), this can be done easily by splitting the sample. Let T = T} + 15, where T} >
G J: K an/d T/g > q, a/nd Wr/ite:/y = (yzl)/, yEQ))i X = (X(’}) 7 Xéz,))/’ /Z — (Zf1)v 222)-)/7 W =
(W(l), W(Q)) e = (e, 6(2)) V=WV V*(Q)) and (U*(l), U}f@)) , Where the m_atrlces Y(i)s
Xiys Zay, Wy s ey > Vi) and Uy ;) have T; rows (i = 1, 2). Consider now the equation

(3.8) Y1) — Z1y00 = Z1y00x + X(1y7 + (1)

where Z,y = WyB, B = Wiy Wizy)™ 1W(2)Z(2) is obtained from the second sample, and
Uy = €1y — Vaydo + [Usay + Wy (B — B)](6 — dp). Clearly B is independent of e(1) and
V.(1), S0 the statistic F(do; Z(l)) based on equation (3.8) follows a F'(G, 11 — K — G) distribution



when § = Jy.

A sample split technique has also been suggested by Angrist and Krueger (1995) to build a new
IV estimator, called Split Sample Instrumental Variables (SSIV) estimator. Its advantage over the
traditional 1V method is that SSIV yields an estimate biased toward zero, rather than toward the
probability limit of the OLS estimator in finite sample if the instruments are weak. Angrist and
Krueger show that an unbiased estimate of the relevant bias can be calculated and, consequently, an
asymptotically unbiased estimator (USSIV) can be derived. In their approach, Angrist and Krueger
rely on splitting the sample in half, i.e, setting T}, = 15 = % when T is even. However, in our setup,
different choices for 77 and Ty are clearly possible. Alternatively, one could select at random the
observations assigned to the vectors y(;) and y 2. As we will show later (see Section 8) the number
of observations retained for the first and the second subsample have a direct impact on the power
of the test. In particular, it appears that one can get a more powerful test once we use a relatively
small number of observations for computing the adjusted values and keep more observations for
the estimation of the structural model. This point is illustrated below by simulation experiments.
Finally, it is of interest to observe that sample splitting techniques can be used in conjunction with
the Boole-Bonferroni inequality to obtain finite-sample inference procedures in other contexts, such
as seemingly unrelated regressions and models with moving average errors; for further discussion,
the reader may consult Dufour and Torres (1998).

4. Joint testson ¢ and v

The instrument substitution and sample split methods described above can easily be adapted to test
hypotheses on the coefficients of both the latent variables and the exogenous regressors. In this
section, we derive F-type tests for general linear restrictions on the coefficient vector. Consider
again model (2.1) — (2.6), which after substituting the term (Z — V) for the latent variable yields
the following equation:

4.1) y=(Z-V)d+Xy+e=25+ Xv+ (e —V,d).

We first consider a hypothesis which fixes simultaneously § and an arbitrary set of linear transfor-
mations of ~:
Hy: 6 =6 and Rl’y = V10

where R; isar; x K fixed matrix such that 1 <rank(R;) = r; < K. The matrix R can be viewed
as a submatrix of a K x K matrix R = [R}, R},]’ where det(R) # 0, so that we can write

Ry Rl’}/ Vi
4.2 Ry = = = .
(4.2) Y [RQ ]7 {Rﬂ Vo
Let Xp = XR™! = [Xg,, Xg,] Where Xg, and X, are T'xry and T x 7o matrices (ro = K —r1).

Then we can rewrite (4.1) as

(4.3) y=206+ Xp,vi+ Xg,va+ (e — Vid).



Subtracting Zdy and X i, 109 on both sides, we get

(4.4) y—Zdy— Xrvio = [WiB1+ X2B3] (6 — 6o) + Xg, (¥1 — v10)
+ Xp,v2 + [e — Vido + Ui(0 — dp)] .

Suppose now that W and X have K» columns in common (with 0 < Ko < ¢), while the other
columns of X are linearly independent of W as in (2.10). Since X = [X;, X3] = XgrR =
XR1R1 + XR2R2 , We can write X = [Xl, XQ] = [XRlRll + XRzRgl, XRIR12 + XRQRQQ} R
where Ry = [Ri1, Ri2], Ra = [Ro1, Reo] and R;j isar; x K; matrix (¢, j = 1, 2). Then replace
X5 by XR1R12 + XR2R22 in (4.4):

(4.5) Yy — Zdo — Xr,vio = Wil + Xp, 77 + Xpy7s tu

where §7 = 31(5 — 50), ’}/){ = R1232(5 — 50) + (1/1 — Vl(]), ’y; = R2232(5 — (50) 4 v9, and
u = e — Vidp + U(d — dp). Consequently, we can test Hy by testing Hj) : 67 = 0, ~} = 0,in
(4.5), which leads to the statistic:

y (00, v10)' P(M(XR,)Wr,) y (50, 10)/(q1 + 1)}
y (60, v10)' M ([W1, X])y (60, v10)/(T —q1 — K)}

where y (09, v10) =y — Z0o — Xg,vi0 and Wg, = [Wi, Xg,]; ifro =0, weset M (Xg,) = Ir. .
Under Hy, F(6o, v1i0; Wi, Xr,) ~ F(q1 + 71, T —q — K) and we reject Hy at level «
when F(do, vio; Wi, Xg,) > F(o; ¢1 + 71, T — 1 — K). Correspondingly, {(d5, },)" :
F (b0, vi0; Wi, Xgr,) < F(a; ¢1 + 11, T — q1 — K)} is a confidence set with level 1 — « for §
and v; = Ry7;.

Suppose now we employ the procedure with generated regressors using an estimator B inde-
pendent of w and V. We can then proceed in the following way. Setting Z = WBand V = Z — Z,
we have:

(46) F((;o, V105 Wl, XR1) = }

(47) y—Zéo—XRll/m:2(59{+X31V’{+X32ug+u**

where 67 =6 — 6o, vf = vy — v and Ue = e — Vido + [Us + W (B — B)](6 — &o). In this case
we will simply test the hypothesis Hy : 07 = 0, v = 0. The F statistic for H, takes the form:

y (80, v10)' P(M(Xg,)Zr,) y (80, v10)/(G +11)}
(80, v10)' M ([Z, X])y (80, v10)/(T — G — K)}

where y(éo, VlO) =Yy — Zbog — XR1V107 and ZRl = [Z, XRl]- Under Hy, F(50, V10; Z, XR1) ~
F(G 4+ r,, T — G — K). The corresponding critical region with level « is given by
F (8o, vi0; Z, Xg,) > F(a; G+ 11, T —G —r1), and the confidence set at level 1 — « is
thus {(5), v) : F(d0, v10; Z, Xg,) < Flo; G+7, T —G — K}.

(48) F((SO, V105 Z, XRl) = {{
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5. Inferencewith asurprisevariable

In many economic models we encounter so-called “surprise” terms among the explanatory variables.
These reflect the differences between the expected values of latent variables and their realizations.
In this section we study a model which contains the unanticipated part of Z [Pagan (1984, model
4)] as an additional regressor beside the latent variable, namely:

(5.1) y=20+Z—-Z)yv+XpB+e=20+Viy+ XB+e—-V,d,

(5.2) Z=7,+V,=WB+ (U, +V,)=WB+V,

where the general assumptions (2.3) — (2.6) still hold. The term (Z — Z.) represents the unantici-
pated part of Z. This setup raises more difficult problems especially for inference on ~. Nevertheless
we point out here that the procedures described in the preceding sections for inference on ¢ and ~
remain applicable essentially without modification, and we show that similar procedures can be
obtained as well for inference on ~ provided we make the additional assumption (3.3).

Consider first the problem of testing the hypothesis Hy : § = d§g. Applying the same procedure
as before, we get the equation:

(5.3) y— Z8g = WB(S — §o) + XB 4 Viy + (e — Vidy)

hence, assuming that W and X have K> columns in common,

(54) y—Zéy=W1Bi(6 — o)+ X181+ Xof5+ e+ Vi(y —do) = Widi + XB, +u
where 81, = B1(d — dg), 85 = B9+ Ba2(d — do), B, = (B, 35') and u = e + Vi (y — dg). Then

we can test § = &g by using the F'-statistic for 619 = 0:

(y = Z60)' P(M(X)W1) (y = Zdo) /a1

(5.5) F(60; W) = (y — Z6o) M[X(W1)] (y — Z60) /(T — 1 — K)

When 6 = g, F'(do; W1) ~ F(q1, T — q1 — K). It follows that F'(6o; W1) > F(a; q — Ko, T —
q1 — K) is a critical region with level « for testing § = do while {d¢ : F(do; W1) < F(o; u, T —
q1 — K)} is a confidence set with level 1 — « for §. Thus, the procedure developed for the case
where no surprise variable is present applies without change. If generated regressors are used, we
can write:

(5.6) y— Z8o=WDB(S —8o) + XB+ e+ Vi(y —80) + V(6 — o).
Replacing W B by Z = W B, where B is an estimator independent of e and V, we get

(5.7) y—Z0g =26, +XB+u

11



where 6, = 6 — 8o, u = e + Vi(y — do) + V(0 — 6p) and V = Z — Z. Here the hypothesis
5 = o entails H}, : 6, = 0. The F-statistic F'(6o; Z) defined in (3.6) follows an F(G, T — G — K)
distribution when § = §y. Consequently, the tests and confidence set procedures based on F'(J; Z )
apply in the same way. Similarly, it is easy to see that the joint inference procedures described in
Section 4 also apply without change.

Let us now consider the problem of testing an hypothesis on the coefficient of the surprise term,
i.e. Hyp: v = 7. Inthis case, it appears more difficult to obtain a finite-sample test under the
assumptions (2.1) — (2.6). So we will assume that the following conditions, which are similar to

assumptions made by Pagan (1984), hold:

(5.8) a)U, =0; b)eandV are independent.

Then we can write:

(5.9) y=2.0+Z—-Z)yv+XpB+e=2Zyv+Wi0] + X0, +e.
Subtracting Z~, on both sides yields

(5.10) Yy—Zyg =27, + Wi+ X0, +e

where ~, = v — 7. We can thus test v = v, by testing v, = 0 in (5.10), using

(y = Z7)' P(M (W, X])Z) (y — Z7)/G

(5.11) F(vyp; 2) = (y — Zyo)M(W1, Z, X)) (y — Z7) /(T —G —q1 — K)

When~ = v, F(vp; Z2) ~ F(G, T-G—qi—K)sothat F(yy; Z) > F(a; G, T-G—q1 — K)
is a critical region with level a for v = ~, and

(5.12) {v: F(v; 2) < Flos G, T—G—q1 — K)}

is a confidence set with level 1 — « for . When + is a scalar, this confidence set can be written as:

(Y= 27)D(y — Zv)  ve }
513) {% W= Z ) Bly—Zy) s Fe

wherevy =G =1vy=T—-G—q — K, D = P(M([W1, X)), E=M([W1, Z, X]). Since
the ratio v5 /11 always takes positive values, the confidence set is obtained by finding the values
7, that satisfy the inequality ay3 + by, + ¢ < 0, wherea = Z'LZ , b = —2Z'Ly, ¢ = y'Ly,
L=D-H,Fand H, = (v1/v2)F,. Finally it is straightforward to see that the problem of testing
a joint hypothesis of the type Hy : v = 7y, R18 = 10 can be treated by methods similar to the
ones presented in Section 4.

12



6. Inferenceon general parameter transformations

The finite sample tests presented in this paper are based on extensions of Anderson—Rubin statistics.
An apparent limitation of Anderson—-Rubin type tests comes from the fact that they are designed for
hypothesis fixing the complete vector of the endogenous (or unobserved) regressor coefficients.
In this section, we propose a solution to this problem which is based on applying a projection
technique. Even more generally, we study inference on general nonlinear transformations of § in
(2.1), or more generally of (¢, v/})" where v, = Ry~ is a linear transformation of ~, and we propose
finite sample tests of general restrictions on subvectors of ¢ or (&', /;)’. For a similar approach, see
Dufour (1989, 1990) and Dufour and Kiviet (1998).

Letd = §or0 = (&', })’ depending on the case of interest. In the previous sections, we derived
confidence sets for # which take the general form

(6.1) Co(a) = {00 : F(0o) < Fu}

where F'(y) is a test statistic for 6 = 6, and F,, is a critical value such that P[0 € Cyp(a)] > 1 — .
If 6 = 0y, we have

(6.2) Ploo € Co(a)] 21 —a, Py ¢ Co(a)] < .
Consider a (possibly nonlinear) transformation n = f(#) of 6. Then it is easy to see that
(6.3) Cy(a) = {ng : ny = f(0) forsome 6§ € Cy(c) }

is a confidence set for  with level at least 1 — o, i.e.

(6.4) Plpe Cy(a)] = Pl € Cop(a)] 2 1 —a,
hence
(6.5) Ply ¢ Cyla)] < a.

Thus, by rejecting Hy : n = ny when g ¢ C,)(c), we get a test of level «. Further

(6.6) no & Cy(a) & ny # f(bo) , V0o € Cy(a)

so that the condition n, ¢ C,(c) can be verified by minimizing F'(6) over the set f~*(n,) = {6 :
f(8o) = ny} and checking whether the infimum is greater than F,.

When n = f(6) is a scalar, it is easy to obtain a confidence interval for » by considering
variables n; = inf{n, : ny € Cy(a)} and ny; = sup{n, : ny € Cy(c)} obtained by minimizing
and maximizing 7, subject to the restriction n, € C, (). Itis then easy to see that

(6.7) Pl <n<nyl=PneCyla)] >1-a

so that [n;, ny7] is a confidence interval with level 1 — « for 7. Further, if such confidence intervals
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are built for several parametric functions, say n, = f;(#), ¢ = 1, ..., m, from the same confidence
set Cyp(«), the resulting confidence intervals [n;;,n,;], @ = 1, ..., m, are simultaneous at level
1 — «, in the sense that the corresponding m—dimensional confidence box contains the true vector
(71, -y m,,) With probability (at least) 1 — «a; for further discussion of simultaneous confidence
sets, see Miller (1981), Savin (1984) and Dufour (1989). When a set of confidence intervals are not
simultaneous, we will call them “marginal intervals”.

Consider the special case where § = § = (61, 65)" and n = &1, i.e. i is an element of 6. Then
the confidence set C,,(«) takes the form:

(6.8) Cp(a) = Cs, () = {010 : (610,95)" € Cs(cv), for some d2}.
Consequently we must have:
(6.9) P61 € Cs5, ()] > 1 —a, Pld1o ¢ Cs,(a)] < .

Further if we consider the random variables 6% = inf{810 : 610 € Cs, ()} and ¥ = sup{d10 : d10
€ Cs,(a)} obtained by minimizing and maximizing d;¢ subject to the restriction §1p € Cs, (@),
[6F,6Y] is a confidence interval with level 1 —  for §. The test which rejects Hy : 61 = 619 when
d10 ¢ Cs, (a) has level not greater than «. Furthermore,

(6.10) 510 ¢ Cs, () & F (010, 83)') > Fa, V02.

Condition (6.10) can be checked by minimizing the F’ (( " 5’2)’) statistic with respect to J- and
comparing the minimal value with F,. The hypothesis 6; = d1¢ is rejected if the infimum of
F (0%, 65)") is greater than Fy,. In practice, the minimizations and maximizations required by the
above procedures can be performed easily through standard numerical techniques.

Finally, it is worthwhile noting that, even though the simultaneous confidence set Cy(«) for 6
may be interpreted as a confidence set based on inverting LR-type tests for § = 6, or as a profile
likelihood confidence set [see Meeker and Escobar (1995) or Chen and Jennrich (1996)], projection-
based confidence sets, such as C,,(«), are not (strictly speaking) LR confidence sets.

7. Asymptotic validity

In this section we show that the finite sample inference methods described above remain valid under
weaker assumptions provided the number of observations is sufficiently large. Consider again the
model described by (2.1) — (2.6) and (2.10), which yields the following equations:

(7.1) y=240+Xvy+u,
(72) Z =W1B1+ X2Bys+ V|

where v = e — V4. If we are prepared to accept a procedure which is only asymptotically “valid”,
we can relax the finite-sample assumptions (2.3) — (2.6) since the normality of error terms and their
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independence are no longer necessary. To do this, let us focus on the statistic F'(d¢; 1) defined in
(2.13). Then, under general regularity conditions, we can show:
a) under the null hypothesis § = §q the F-statistic in (2.13),

y — Z6o) M(X)Wi WM (X)W1]"'WIM(X) (y — Zdo) /¢
(y — Zéo) M([X, Wh]) (y — Z00)/(T — q1 — K) ’

(7.3) F(do; Wh) = (

follows a x2, /q1 distribution asymptotically (as 7' — oc);
b) under the fixed alternative § = §;, provided B;(d; — dg) # 0, the value of (2.13) tends to get
infinitely large as 7" increases, i.e. the test based on F'(do; W) is consistent.

Assume that the following limits hold jointly:

vu W'V V'V
(74) <T7 Ta T> - (0’12” ZuVa ZjV) 9
X'xX X'WwW, W!'W,
(7.5) ( T T L } 1) - (Yxx, Xxwi, Zwiwn)
(7.6) (T 2 X', T2 W, T"2X'V, T"TW]V) = & = (Sxu, Pwru, Pxv, iy

where — and = denote respectively convergence in probability and convergence in distribution as
T — oo, and the joint distribution of the random variables in & is multinormal with the covariance
matrix of (@', Py,,) given by

E:V[ Dxy ] _ [ ?Txx oXxw,
Pw,u oXwix  Zwiw

where Xy, = X7, x and det(X) # 0. We know from equation (2.11) that
Yy — Z50 = WlBl((S — (50) + X’)/* +u.
Under the null hypothesis 6 = do, the numerator of F'(do; W) is equal to

N =o' M(X)Wi[W{M X)W *W/ M (X )u/q
= /(I — PYWi[W{(I — P)W1]"'W{(I - P)u/q

= [ s Wi - Py [E Wi PyWa] ! [T R W - Pl

where P = P(X) = X(X’X)~'X’. Under the assumptions (7.4) to (7.6), we have the following
convergence:

TEW((I =Py = T 3Wu— ($W(X) ($X'X)"" (T 5 x")

_ 1
= Py x = Pwiw — 2wix Y x Pxu
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where

Vidw,x] = VI®wi] + Zwix Sk VI®xu] Zxx Exw,
1 )
_ E[@Wlu @/Xu] 2}91( 2xw, — XYw,x EXX E[@Xu @{/Vlu]
= Ywiwy — Ywix Yxx Yxw

and
FWII=PIW = 2WWa— R WX (FXX) T (FXW)
— Ywiwy — 2wix Yxx Yxwy-
Consequently

_ —1
N = @iy (Bwaws — Znx Exx Dvwn) T Pwaix/a ~ (@) /a

This means that we can define the confidence intervals as the sets of points &, for which the statis-
tic (7.3) fails to reject, using the asymptotic xgl /q1 critical values or the somewhat stronger (and
probably more accurate) critical values of the Fisher distribution. Furthermore, it is easy to see that,
both under the null and the alternative, the denominator D converges to aﬁ as T — oo:;

D =4M([X, Wi])u/T

_ _ u’[X,Wl]{[X,Wl]’:[FX,Wl]}*l[X,Wl]u - Ug‘

U
T
Consider now a fixed alternative § = §;. When § = 41, we have

N = [W1B1(01 — o) + u] M (X)W [W{ M (X)W1 "' W] M (X) [W1B1(61 — 8o) + u]/q1
= T [(WIMOW)BL(61 — 80) + WM (X)) [WEE0WA]
X T~ [(W{M(X)W1) By (81 — 8o) + W{M(X)w)] /1.
The behavior of the variable N depends on the convergence limits of the terms on the right-hand

side of the last equation. It means that we can find the limit of N by showing the convergence of
the individual components. The major building block of the expression for IV is

T WM (X)W By (51— 80) + W{M(X)u] = 7% (ML) g5, 5y)
+ T = WM(X)u.

As we have shown, T‘%W{M(X)u converges in distribution to a random variable @y, | x and the
term 7> w B (01 — d9) diverges in probability as 7" gets large. Consequently, under a

fixed alternative, the whole expression goes to infinity, and the test is consistent. It is easy to prove
similar asymptotic results for the other tests proposed in this paper.

16



8. Monte Carlo study

In this section, we present the results of a small Monte Carlo experiment comparing the perfor-
mance of the exact tests proposed above with other available (asymptotically justified) procedures,
especially Wald-type procedures.

A total number of one thousand realizations of an elementary version of the model (2.1)—(2.2),
equivalent to Model 1 discussed by Pagan (1984), were simulated for a sample of size T' = 100. In
this particular specification, only one latent variable Z is present. The error termsin e and V' (where
e and V' are vectors of length 100) are independent with N (0, 1) distributions. We allow for the
presence of only one instrumental variable 17 in the simulated model, which was also independently
drawn (once) from a N (0, 1) distribution. Following Pagan’s original specification, there is no
constant term or any exogenous variables included.

The explanatory power of the instrumental variable W depends on the value of the parameter
B. Hence, we let B take the following values: 0, 0.05, 0.1, 0.5 and 1. When B is close or equal to
zero, W has little or no explanatory power, i.e. W is a bad instrument for the latent variable Z. For
each value of B we consider five null hypotheses:

Hy:0=69, fordop=0,1,5, 10and50,
each one being tested against four alternative hypotheses of the form
H1:(5:51, for51:60+p*1(60).

The alternative H; is constructed by adding an increment to the value of 6o where p* =0, 0.5, 1, 2
and 4, and I(dp) = 1 for 69 = 0, and I(dg) = dp otherwise.

Table 2 summarizes the results. In the first 3 columns, we report the values of B, §y and
the alternative §;. When the entries in columns Il and Il are equal, we have 6o = d1, and the
corresponding row reports the levels of the tests. The next three columns (IV, V and VI) show
the performance of the Wald-type IV-based test [as proposed by Pagan (1984)], which consists in
correcting the understated standard errors of a two stage procedure by replacing them by a 2SLS
standard error. We report the corresponding results in column IV [asymptotic (As.)]. In cases where
the level of Pagan’s test exceeds 5%, we consider two correction methods. The first method is
based on the critical value of the test at the 5% level for specific values of g and B in each row
of the table [locally size-corrected tests; column V (C.L.)]. The critical value is obtained from an
independent simulation with 1000 realizations of the model. Another independent simulation allows
us to compute the critical value at 5% level in an extreme case when the instrumental variable is
very bad, i.e. by supposing B = 0 also for each value of §¢ [globally size-corrected tests; column
VI (C.G.)]. This turns out to yield larger critical values and is thus closer to the theoretically correct
critical value to be used here (on the assumption that B is actually unknown). In column VII, we
present the power of the exact test based on the instrument substitution method. In the following
four columns (V111 to XI) we show the performance of the exact test based on splitting the sample,
where the numbers of observations used to estimate the structural equation are, respectively, 25, 50,
75 and 90 over 100 observations. Finally, we report the level and power of a naive two-stage test as
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well as the results of a test obtained by replacing the latent variable Z, in the structural equation by
the observed value Z.

Let us first discuss the reliability of the asymptotic procedures. The level of the IV test proposed
by Pagan exceeds 5% essentially always when the parameter B is less then 0.5, sometimes by very
wide margins. The tests based on the two-stage procedure or replacing the latent variable by the
vector of observed values are both extremely unreliable no matter the value of the parameter B.
The performance of Pagan’s test improves once we move to higher values of the parameter B, i.e.
when the quality of the instrument increases. The improvement is observed both in terms of level
and power. It is however important to note that Pagan’s test has, in general, the same or less power
than the exact tests. The only exception is the sample split test reported in column VIII, where only
25 observations were retained to estimate the structural equation. For B higher then 0.5, the two
other asymptotic tests are still performing worse then the other tests. They are indeed extremely
unreliable. In the same range of B, the exact tests behave very well. They show the best power
properties compared to the asymptotically based procedures and in general outperform the other
tests.

9. Empirical illustrations

In this section, we present empirical results on inference in two distinct economic models with latent
regressors. The first example is based on Tobin’s marginal ¢ model of investment [Tobin (1969)],
with fixed assets used as the instrumental variable for ¢. The second model stems from educational
economics and relates students’ academic achievements to a number of personal characteristics and
other socioeconomic variables. Among the personal characteristics, we encounter a variable defined
as “self-esteem” which is viewed as an imperfect measure of a latent variable and is instrumented
by measures of the prestige of parents’ professional occupation. The first example is one where we
have good instruments, while the opposite holds for the second example.

Consider first Tobin’s marginal ¢ model of investment [Tobin (1969)]. Investment of an indi-
vidual firm is defined as an increasing function of the shadow value of capital, equal to the present
discounted value of expected marginal profits. In Tobin’s original setup, investment behavior of all
firms is similar and no difference arises from the degree of availability of external financing. In fact,
investment behavior varies across firms and is determined to a large extent by financial constraints
some firms are facing in the presence of asymmetric information. For those firms, external financ-
ing may either be too costly or not provided for other reasons. Thus investment depends heavily on
the firm’s own source of financing, namely the cash flow. To account for differences in investment
behavior implied by financial constraints, several authors [Abel (1979), Hayashi (1982, 1985), Abel
and Blanchard (1986), Abel and Eberly (1993)] introduced the cash flow as an additional regressor
to Tobin’s ¢ model. It can be argued that another explanatory variable controlling the profitability of
investment is also required. For this reason, one can argue that the firm’s income has to be included
in the investment regression as well. The model is thus

(9.1) Ii = 70+ 0Q; +711CF; + 7R + ¢
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TABLE 2
SIMULATION STUDY OF TEST PERFORMANCE FOR A MODEL WITH UNOBSERVED REGRESSORS

Parameter values Rejection frequencies
B do 01 Wald-type IS Split-sample 2S | OLS
As. | CL. | CG. 25 50 75 90

I I Il V| V | VI | Vil| VIl IX X | X X X
0.00 0.0 00| 01 . . 51| 51| 61| 52| 54| 51
0.00 0.0 05| 0.0 . . 47| 51| 44| 41| 39| 47
0.00 0.0 10| 0.0 : . 56| 48| 55| 57| 54| 56
0.00 0.0 20| 0.0 . . 42| 45| 45| 38| 45| 42
0.00 0.0 40| 0.0 : : 52| 53| 59| 43| 50| 52

0.00 1.0 10| 73] 51| 51| 50| 46| 49| 48| 52| 157 | 47
0.00 1.0 15| 68| 55| 55| 44| 48| 44| 54| 61157 | 6.8
0.00 1.0 20| 76| 59| 59| 50| 43| 48| 48| 51|179| 65
0.00 1.0 30| 86| 66| 66| 63| 50| 49| 50| 58|199| 70
0.00 1.0 50| 66| 49| 49| 44| 43| 46| 55| 46181 | 51

0.00 5.0 50541 | 55| 55| 51| 55| 42| 52| 49| 705 69.3
0.00 5.0 75528 | 54| 54| 49| 61| 49| 51| 46697 | 690
000 50 100|565 | 57| 57| 48| 45| 61| 50| 48| 717 | 715
000 50 150|507 | 46| 46| 48| 45| 43| 45| 3.8|66.6 | 67.0
000 50 250|527 | 52| 52| 46| 45| 46| 56| 50| 67.8 | 68.8

0.00 100 100|690 45| 45| 49| 53| 60| 49| 51845 | 850
0.00 100 150|684 | 57| 57| 59| 47| 50| 56| 45|843 | 839
000 100 200|686 | 50| 50| 57| 43| 49| 47| 52 |846 | 843
0.00 100 300|702 | 49| 49| 45| 54| 52| 50| 52|854 | 844
0.00 100 500|687 | 53| 53| 48| 42| 51| 56| 50836 | 83.1

0.00 500 500|865| 64| 64| 54| 44| 50| 51| 541|969 | 965
0.00 500 750|852 67| 67| 62| 39| 50| 66| 6.7|951 | 96.1
0.00 500 1000|874 | 52| 52| 46| 65| 50| 45| 55|98 | 964
0.00 50.0 1500|858 | 65| 65| 58| 50| 53| 59| 59971 971
0.00 500 2500|867 | 68| 68| 59| 48| 60| 62| 58 |971 | 973

005 0.0 00| 00 : : 48| 50| 36| 36| 53| 438
0.05 0.0 05| 0.2 : : 49| 51| 55| 48| 52| 49
005 0.0 1.0| 0.0 : : 74| 54| 57| 62| 76| 74
005 0.0 20| 03 : - | 166 | 87| 117|147 | 157 | 16.6
005 0.0 40| 1.0 . - | 47.8 | 164 | 26.9 | 38.1 | 44.0 | 47.8
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TABLE 2 (continued)

005 1.0 10| 69 52 56| 47| 48 44 48 55| 169 79
005 1.0 15| 60 46 47| 54| 60 60 54 52| 169 75
005 1.0 20| 47 39 39| 53| 57 46 51 52| 181 76
005 1.0 30| 40 27 27| 99| 63 74 84 105| 253 74
005 1.0 50| 26 21 21|270| 90 149 232 254 | 511 56

005 5.0 50338 46 16| 46| 58 53 52 48| 717 727
005 5.0 751210 23 02| 63| 48 46 53 60| 69.7 714
005 50 100|124 04 01| 87| 48 56 76 85| 719 699
005 50 150| 51 01 00148 | 61 86 11.7 132 | 812 66.9
005 50 250| 39 00 00471153 262 391 430 | 936 590

005 100 100|349 76 02| 63| 66 63 64 65| 848 840
005 100 150|229 13 00| 64| 44 58 58 59| 8.8 789
005 100 200|141 06 00| 86| 51 61 67 76| 889 790
005 100 300| 51 00 00|145| 6.7 104 133 139 | 900 742
005 100 500| 44 01 00|525|186 301 408 49.1| 975 62.2

0.05 500 500|327 51 00| 47| 47 60 52 45| 975 920
005 500 750|212 17 00| 64| 45 49 53 62| 969 892
0.05 500 1000|143 06 00| 85| 58 70 72 73| 977 86.5
005 500 1500| 64 03 00176 | 7.0 111 151 158 | 970 7938
0.05 500 2500| 32 00 00513 ]|160 283 387 46.1| 99.8 653

0.10 0.0 00| 00 . : 48| 42 49 45 50 4.8
0.10 0.0 05| 0.2 . : 82| 68 71 69 74 8.2
0.10 0.0 10| 01 : - 1158 71 89 139 135| 158
0.10 0.0 20| 24 . - 14941169 293 40.7 46.0| 494
0.10 0.0 40| 88 . -1 971 | 477 789 932 959 | 97.1

010 1.0 10| 73 44 56| 47| 53 51 45 47| 152 140
010 1.0 15| 44 29 38| 66| 44 56 63 62| 198 16.2
010 1.0 20| 30 19 23|106| 66 73 95 100| 258 143
010 1.0 30| 09 07 09283 | 93 187 238 26.6| 495 109
010 1.0 50| 06 03 05|801|264 494 661 741| 924 7.4

0.10 5.0 50174 46 06| 52| 52 47 48 54| 715 789
0.10 5.0 75| 58 11 00| 72| 60 64 74 75| 737 744
010 50 100| 23 02 00|165| 79 111 140 16.0| 816 730
010 50 150| 10 00 0.0 |505 | 154 272 387 457 | 948 652
010 50 250| 04 00 0.0 |97.0|455 76.6 89.4 950 | 100.0 46.9
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TABLE 2 (continued)

0.10 100 100|171 56 0.0 4.7 4.6 4.7 6.0 57| 846 86.0
0.10 100 150| 60 15 0.0 7.0 6.4 7.0 8.0 6.7 850 848
0.10 100 200| 27 01 00| 141 65 104 113 132 | 90.7 794
0.10 100 300| 08 00 00| 519 | 180 288 409 479 | 978 689
0.10 100 500| 05 01 00| 95| 495 776 916 941 | 100.0 493

0.10 500 500|198 48 0.0 59 4.5 51 51 48 | 97.0 896
0.10 500 750| 65 08 0.0 7.7 5.5 5.7 6.6 66| 974 86.1
0.10 500 1000| 35 05 00| 177 94 123 157 173 | 97.7 822
0.10 500 1500| 09 00 00| 459 | 164 277 395 435 | 996 731
0.10 500 2500| 08 00 00| 972 | 489 785 940 956 |100.0 49.7

050 0.0 00| 27 . : 4.6 5.4 4.3 4.8 4.4 4.6
050 0.0 0.5 | 60.3 . : 67.7 | 241 418 550 63.8| 67.7
050 0.0 1.0 | 98.8 . : 99.9 | 687 928 991 996 | 999
050 0.0 2.0 | 99.6 : - | 100.0 | 984 100.0 100.0 100.0 | 100.0
050 0.0 4.0 | 99.0 . - | 100.0 | 100.0 100.0 100.0 100.0 | 100.0

050 1.0 10| 53 48 42 5.0 4.7 5.1 4.9 46| 176 984
050 1.0 15| 85 52 26| 414 | 155 244 324 393 | 644 928
050 1.0 20| 680 581 474 | 934 | 397 686 843 906 /| 984 626
050 1.0 301|987 982 9775|1000 | 903 99.8 100.0 100.0 | 100.0 1.7
050 1.0 501998 99.7 99.6 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 0.1

050 5.0 50| 74 56 00 5.1 4.2 5.0 44 53| 69.6 100.0
050 5.0 75| 97 17 00| 666 | 184 394 545 616 | 97.7 999
050 50 100|926 691 00| 99.7| 639 905 979 994 | 1000 99.2
050 50 150991 979 0.0 100.0| 98.8 100.0 100.0 100.0 | 100.0 54
050 50 250{996 991 0.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0 0.1

050 100 100| 69 52 00 51 55 52 4.2 56| 835 1000
050 100 150| 86 10 00| 679 | 217 399 554 620 99.6 99.7
050 100 200|921 742 00| 99.7| 666 932 987 998 | 1000 99.1
050 100 30.0|995 99.0 0.0 100.0 | 99.4 100.0 100.0 100.0 | 100.0 5.6
050 100 50.0{995 991 0.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0 0.0

050 500 500| 83 6.7 0.0 4.6 3.9 45 44 45| 96.3 1000
050 500 750| 89 37 00| 698| 218 391 561 647 | 999 1000
050 50.0 1000|943 888 00| 996 | 632 923 985 995 |100.0 994
0.50 50.0 150.0 988 983 0.0 100.0| 994 100.0 100.0 100.0 | 100.0 52
0.50 50.0 250.0 {995 990 0.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0 0.3
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TABLE 2 (continued)

1.00 0.0 0.0 5.1 : . 5.6 4.9 5.0 5.6 5.8 5.6
1.00 0.0 05| 995 : : 995 | 649 912 985 992 | 995
1.00 0.0 1.0 | 100.0 : - 1100.0 | 99.2 100.0 100.0 100.0 | 100.0
1.00 0.0 2.0 | 100.0 : - | 100.0 | 100.0 100.0 100.0 100.0 | 100.0
1.00 0.0 4.0 | 100.0 : -1 100.0 | 100.0 100.0 100.0 100.0 | 100.0

1.00 1.0 1.0 6.8 7.2 3.8 6.3 5.4 7.0 6.9 6.8 | 179 99.7
1.00 1.0 15| 879 892 822 | 933 | 395 683 847 901 | 981 337
100 1.0 2.0 | 100.0 100.0 100.0 | 100.0 | 899 99.8 100.0 100.0 | 100.0 0.7
1.00 1.0 3.0 | 100.0 100.0 100.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 57.3
100 1.0 5.0 | 100.0 100.0 100.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 98.1

1.00 5.0 5.0 4.8 4.4 0.0 4.1 55 44 4.7 48 | 67.2 1000
1.00 5.0 75| 988 983 00| 996 | 625 915 980 994 | 100.0 67.6
1.00 5.0 10.0 | 100.0 100.0 0.0 | 100.0 | 99.0 100.0 100.0 100.0 | 100.0 1.3
1.00 5.0 15.0 | 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0  65.9
1.00 5.0 25.0 | 100.0 100.0 7.3 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 98.3

1.00 10.0 10.0 5.1 4.4 0.0 6.0 6.2 58 6.9 6.3 | 853 100.0
1.00 100 150 | 988 985 00| 996 | 631 911 977 994 | 1000 695
1.00 10.0 20.0 | 100.0 100.0 0.0 | 100.0 | 99.0 100.0 100.0 100.0 | 100.0 0.6
1.00 10.0 30.0 | 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 66.5
1.00 10.0 50.0 | 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0  99.2

1.00 50.0 50.0 5.2 5.0 0.0 5.5 5.5 5.3 5.2 6.9 | 96.8 100.0
1.00 50.0 75.0| 99.0 98.7 00| 999 | 658 914 983 99.3| 1000 68.1
1.00 50.0 100.0 | 100.0 100.0 0.0 | 100.0 | 98.8 100.0 100.0 100.0 | 100.0 0.6
1.00 50.0 150.0 | 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0 67.0
1.00 50.0 250.0 | 100.0 100.0 0.0 | 100.0 | 100.0 100.0 100.0 100.0 | 100.0  99.0

Notes:

I:  value of parameter B; VIII: sample split test using 25 observations

Il:  null hypothesis; for the structural equation;

Il alternative hypothesis; IX: sample split using 50 observations;

IV: Pagan’s test; X:  sample split using 75 observations;

V. Pagan’s test locally size-corrected XI:  sample split using 90 observations;
(B known); XII:  two-stage test (255);

VI. Pagan’s test globally size-corrected  XIlII: test with latent variable replaced by
(B =0); observed vector (OLS).

VII: instrument substitution test (1.5);
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where I; denotes the investment expenses of an individual firm ¢, C'F; and R; its cash flow and
income respectively, while Q; is Tobin’s ¢ measured by equity plus debt and approximated empir-
ically by adding data on current debt, long term debt, deferred taxes and credit, minority interest
and equity less inventory; § and v = (o, 71, 72) are fixed coefficients to be estimated. Given the
compound character of ;, which is constructed from several indexes, fixed assets are used as an
explanatory variable for @); in the regression which completes the model:

(9.2) Qi = Bo + B1F; + ;.

For the purpose of building finite-sample confidence intervals following the instrument substitution
method, the latter equation may be replaced (without any change to the results) by the more general
equation (called below the “full instrumental regression”):

(9.3) Qi = By + B1F; + B3CF; + By Ri + v; .

Our empirical work is based on “Stock Guide Database” containing data on companies listed
at the Toronto and Montreal stock exchange markets between 1987 and 1991. The records consist
of observations on economic variables describing the firms’ size and performance, like fixed capital
stock, income, cash flow, stock market price, etc. All data on the individual companies have previ-
ously been extracted from their annual, interim and other reports. We retained a subsample of 9285
firms whose stocks were traded on the Toronto and Montreal stock exchange markets in 1991.

Since we are interested in comparing our inference methods to the widely used Wald-type tests,
we first consider the approach suggested by Pagan (1984). Since usual estimators of coefficient
variances obtained from the OLS estimation of equation (9.1) with Q; replaced by Q; are inconsis-
tent [for a proof, see Pagan (1984)], Pagan proposed to use standard two-stage least squares (2SLS)
methods, which yield in the present context (under appropriate regularity conditions) asymptotically
valid standard errors and hypothesis tests. For the 2SLS estimation of model (9.1)-(9.2), the de-
pendent variable I; is first regressed on all the exogenous variables of the system, i.e., the constant,
CF;, R; and F;, where F; is the identifying instrument for Q;, and then the fitted values Q, are
substituted for @; in the second stage regression.

The results are summarized in Tables 3A, while the instrumental OLS regressions appear in 3B.
From the latter, we see that the identifying instrument for @ is strongly significant and so appears
to be a “good” instrument. Table 3C presents 95% (marginal) confidence intervals for Tobin’s ¢
parameter based on various methods, as well as projection-based simultaneous confidence intervals
for the coefficients of equation (9.1). The three first intervals are obtained from, respectively, 2SLS,
two-stage and augmented two-stage methods by adding or subtracting 1.96 times the standard error
to/from the estimated parameter value.? Below we report the exact confidence intervals (instrument
substitution and sample split) based on the solution of quadratic equations as described in Sections
2 and 3. Recall that the precision of the confidence intervals depends, in the case of the sample
split method, on the number of observations retained for the estimation of the structural equation.

2 The augmented two-stage method uses all the available instruments to compute the generated regressors (full in-
strumental regression), rather than the restricted instrumental equation (9.2). As with the two-stage method, OLS-based
coefficient standard errors obtained in this way are inconsistent; see Pagan (1984) for further discussion.
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TABLE 3

TOBIN’S Q MODEL _ N = 9285

A) 2SLS estimators of investment equation (9.1)

Dependent variable: INVESTMENT (/)

Explanatory  Estimated Standard ¢ statistic p-value
variable coefficient error
Constant 0.0409 0.0064 6.341 0.0000
Q 0.0052 0.0013 3.879 0.0001
CF 0.8576 0.0278 30.754  0.0000
R 0.0002 0.0020 0.109 0.9134
B) Instrumental OLS regressions _ Dependent variable:
Full instrumental regression Equation (9.2)
Regressor | Estimated  Stand. t p-value | Estimated Stand. t p-value
coefficient  error coefficient  error
Constant 0.6689  0.0919 7.271  0.0000 1.0853  0.1418 7.650 0.0000
F -2.7523  0.0527 -52.195 0.0000 2.4063  0.0400 60.100 0.0000
CF 21.2102 0.3188 66.517 0.0000
R 1.2273  0.0291 42.111 0.0000

C) Confidence intervals

Marginal confidence intervals for §

Projection-based simultaneous confidence

intervals (instrument substitution)

Method Interval Coefficient Interval
2SLS [0.0026 , 0.0078] Yo [0.0257 , 0.0564]
Augmented two-stage [0.0025 , 0.0079] ) [0.0037, 0.0072]
Two-stage [—0.0091 , —0.0029] o [0.7986 , 0.9366]
Instrument substitution [0.0025 , 0.0078] Yo [0.0033 , 0.0042]

Sample split 50%
Sample split 75%
Sample split 90%

[0.0000 , 0.0073]
[0.0017 , 0.0077]
0.0023 , 0.0078]
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We thus show the results for, respectively, 50%, 75% and 90% of the entire sample (selected ran-
domly). The simultaneous confidence intervals for the elements of the vector 6 = (v, d,71,72)’
are obtained by first building a simultaneous confidence set Cy(«), with level 1 — a = 0.95 for 6
according to the instrument substitution method described in Section 4 and then by both minimizing
and maximizing each coefficient subject to the restriction 6 € Cy(«) [see Section 6]. The program
used to perform these constrained optimizations is the subroutine NCONF from the IMSL math-
ematical library. The corresponding four-dimensional confidence box has level 95% (or possibly
more), i.e. we have simultaneous confidence intervals (at level 95%).

From these results, we see that all the confidence intervals for §, except for the two-stage interval
(which is not asymptotically valid), are quite close to each other. Among the finite-sample intervals,
the ones based on the instrument substitution and the 90% sample split method appear to be the most
precise. It is also worthwhile noting that the projection-based simultaneous confidence intervals all
appear to be quite short. This shows that the latter method works well in the present context and can
be implemented easily.

Let us now consider another example where, on the contrary, important discrepancies arise
between the intervals based on the asymptotic and the exact inference methods. Montmarquette
and Mahseredjian [Montmarquette and Mahseredjian (1989), Montmarquette, Houle, Crespo, and
Mahseredjian (1989)] studied students’ academic achievements as a function of personal and so-
cioeconomic explanatory variables. Students’ school results in French and mathematics are mea-
sured by the grade, taking values on the interval 0 — 100. The grade variable is assumed to depend
on personal characteristics, such as age, intellectual ability (IQ) observed in kindergarten and “self-
esteem” measured on an adapted children self-esteem scale ranging from 0 to 40. Other explanatory
variables include parents’ income, father’s and mother’s education measured in number of years of
schooling, the number of siblings, student’s absenteeism, his own education and experience as well
as the class size. We examine the significance of self-esteem, which is viewed as an imperfectly
measured latent variable to explain the first grader’s achievements in mathematics. The self esteem
of younger children was measured by a French adaptation of the McDaniel-Piers scale. Noting the
measurement scale may not be equally well adjusted to the age of all students and due to the high
degree of arbitrariness in the choice of this criterion, the latter was instrumented by Blishen indices
reflecting the prestige of father’s and mother’s professional occupations in order to take account of
eventual mismeasurement.

The data stem from a 1981-1982 survey of first graders attending Montreal francophone public
elementary schools. The sample consists of 603 observations on students’ achievements in mathe-
matics. The model considered is:

(9.4) LMAT; = By +dSE; + 6,1Q; + B3 L; + B3 FE; + 84 ME; + 35 SN;
+ /86 A+ 57 ABP; + ﬂg EX; + ﬁgEDi + 510 ABS; + ﬂll CS;+e;

where (for each individual i) LMAT = ¢n(grade/(100 — grade)), SE = ¢n(self esteem test re-
sult/(40 — self esteem test result)), IQ is a measure of intelligence (observed in kindergarten), I is
parents’ income, FE and ME are father’s and mother’s years of schooling, SN denotes the sibling’s
number, A is the age of the student, ABP is a measure of teacher’s absenteeism, EX indicates the
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years of student’s work experience, ED measures his education in years, ABS is student’s absen-
teeism and CS denotes the class size. Finally, the instrumental regression is:

(95) SE; = Yo + V1 FP; + Yo MP; + v;

where FP and MP correspond to the prestige of the father and mother’s profession expressed in
terms of Blishen indices. We consider also the more general instrumental regression which includes
all the explanatory variables on the right-hand side of (9.4) except SE. The 2SLS estimates and
projection-based simultaneous confidence are reported in Table 4A while the results of the instru-
mental regressions appear in Table 4B.

Standard (bounded) Wald-type confidence intervals are of course entailed by the 2SLS estima-
tion. For o however, the instrument substitution method yields the confidence interval defined by
the inequality: —31.9536 62 — 84.7320 5o — 850.9727 < 0. Since the roots of this second order
polynomial are complex and a < 0, this confidence interval actually covers the whole real line.
Indeed, from the full instrumental regression and using ¢-tests as well as the relevant F'-test (Table
4B), we see that the coefficients of FP and MP are not significantly different from zero, i.e. the
latter appear to be poor instruments. So the fact that we get here an unbounded confidence interval
for § is expected in the light of the remarks at the end of Section 2. The projection-based confidence
intervals (Table 4A) yield the same message for §, although it is of interest to note that the intervals
for the other coefficients of the model can be quite short despite the fact that § may be difficult to
identify. As in the case of multicollinearity problems in linear regressions, inference about some
coefficients of a model remains feasible even if the certain parameters are not identifiable.

10. Conclusions

The inference methods presented in this paper are applicable to a variety of models, such as re-
gressions with unobserved explanatory variables or structural models which can be estimated by
instrumental variable methods (e.g., simultaneous equations models). They may be considered as
extensions of Anderson-Rubin procedures where the major improvement consists of providing tests
of hypotheses on subsets or elements of the parameter vector. This is accomplished via a projection
technique allowing for inference on general possibly nonlinear transformations of the parameter
vector of interest. We emphasized that our test statistics, being pivotal or at least boundedly pivotal
functions, yield valid confidence sets which are unbounded with a non-zero probability. The un-
boundedness of confidence sets is of particular importance when the instruments are poor and the
parameter of interest is not identifiable or close to being unidentified. Accordingly, a valid confi-
dence set should cover the entire set of real numbers since all values are observationally equivalent
[see Dufour (1997) and Gleser and Hwang (1987)]. Our empirical results indicate that inference
methods based on Wald-type statistics are unreliable in the presence of poor instruments since such
methods typically yield bounded confidence sets with probability one. The results in this paper
thus underscore another shortcoming of Wald-type procedures which is quite distinct from other
problematic properties, such as non-invariance to reparameterizations [see Dagenais and Dufour
(1991)].
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TABLE 4
MATHEMATICS ACHIEVEMENT MODEL _ N = 603

2SLS estimators of achievement equation (9.4) Projection-based
Dependent variable: LMAT 95% confidence intervals
Explanatory Estimated Standard ¢ statistic p-value | (instrument substitution)
variable coefficient error
Constant -4.1557 0.9959 -4.173  0.0000 [-4.8601 , -3.7411]
SE 0.2316 0.3813 0.607 0.5438 (—o0, +00)
IQ 0.0067 0.0015 4.203 0.0000 [0.006600 , 0.006724]
I 0.0002 0.3175 0.008 0.9939 [-0.09123, 0.10490]
FE 0.0015 0.0089 0.172 0.8636 [-0.00914 , 0.01889]
ME 0.0393 0.0117 3.342 0.0009 [0.02868 , 0.05762]
SN -0.0008 0.0294 -0.029  0.9767 [-0.1546 , 0.1891]
A 0.0144 0.0070 2.050 0.0408 [0.01272,0.01877]
ABP -0.0008 0.0005 -1.425  0.1548 | [-0.003778,0.000865]
EX -0.0056 0.0039 -1.420  0.1561 [-0.01307, 0.00333]
ED -0.0007 0.0206 -0.035  0.9718 [-0.0123, 0.2196]
ABS -0.0001 0.0002 -0.520  0.6033 | [-0.0001764 , 0.0000786]
CS -0.0184 0.0093 -1.964  0.0500 [-0.03003 , -0.009790]
Marginal 95% quadratic confidence interval for § (—00, +00)
Instrumental OLS regressions _ Dependent variable: SE
Full instrumental regression Equation (9.5)
Regressor | Estimated Stand. t p-value | Estimated Stand. t p-value
coefficient error coefficient  error
Constant -1.2572 1.0511 -1.1960 0.232 0.8117  0.1188 6.830 0.0000
FP 0.5405 0.3180  1.7000  0.090 05120  0.2625 1.951 0.0516
FM 0.3994 0.3327  1.2004  0.230 0.6170  0.2811 2.194 0.0286
1Q 0.003822 0.000611 6.2593  0.000
I 0.02860 0.03161 0.9049 0.366 F-statistic for significance of FP and
FE -0.01352  0.01136 -1.1899 0.235 FM in full instrumental regression:
ME -0.004028 0.01517 -0.2655 0.791 | F'(2,589) = 2.654 (p-value = 0.078)
SN -0.01439  0.03325 -0.4326 0.665
A 0.003216 0.008161 0.3941 0.694
ABP 0.000698 0.000577 1.2108 0.226
EX -0.002644 0.004466 -0.5920 0.554
ED -0.02936  0.02080 -1.4117 0.159
ABS 0.000426 0.000194 2.1926  0.029
CS 0.01148 0.009595 1.1966 0.232
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In general, non-identifiability of parameters results either from low quality instruments or, more
fundamentally, from a poor model specification. A valid test yielding an unbounded confidence
set becomes thus a relevant indicator of problems involving the econometric setup. The power
properties of exact and Wald-type tests were compared in a simulation-based experiment. The test
performances were examined by simulations on a simple model with varying levels of instrument
quality and the extent to which the null hypotheses differ from the true parameter value. We found
that the tests proposed in this paper were preferable to more usual 1V-based Wald-type methods from
the points of view of level control and power. This seems to occur despite the fact that AR-type pro-
cedures involve “projections onto a high-dimensional subspace which could result in reduced power
and thus wide confidence regions” [Staiger and Stock (1997, p. 570)]. However, it is important to
remember that size-correcting Wald-type procedures requires one to use huge critical values that
can easily destroy power. Wald-type procedures can be made useful only at the cost introducing im-
portant and complex restrictions on the parameter space that one is not generally prepare to impose;
for further discussion of these difficulties, see Dufour (1997, Section 6).

It is important to note that although the simulations were performed under the normality as-
sumption, our tests yield valid inferences in more general cases involving non-Gaussian errors and
weakly exogenous instruments. This result has a theoretical justification and is also confirmed by
our empirical examples. Since the inference methods we propose are as well computationally easy
to perform, they can be considered as a reliable and a powerful alternative to more usual Wald-type
procedures.
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