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ABSTRACT

In the literature on tests of normality, much concern has been expressed over the problems
associated with residual-based procedures. Indeed, the specialized tables of critical points
which are needed to perform the tests have been derived for the location-scale model;
hence reliance on available significance points in the context of regression models may cause
size distortions. We propose a general solution to the problem of controlling the size of
normality tests for the disturbances of standard linear regressions, which is based on using
the technique of Monte Carlo tests. We study procedures based on 11 well known test
statistics: the Kolmogorov-Smirnov, Anderson-Darling, Cramér-von Mises, Shapiro-Wilk,
Jarque-Bera and D’Agostino criteria and variants of these. Evidence from a simulation
study is reported showing that usual critical values lead to severe size problems (over-
rejections or under-rejections). In contrast, we show that Monte Carlo tests achieve perfect
size control for any design matrix and have good power.

Keywords: Normality test; Linear regression; Exact test; Monte Carlo test; Bootstrap;
Kolmogorov-Smirnov; Anderson-Darling; Cramér-von Mises; Shapiro-Wilk; Jarque-Bera;
D’Agostino.

RESUME

Dans la littérature sur les tests de normalité, on s’est souvent préoccupé des difficultés asso-
ciées a I'application de tels tests sur des résidus de régression. En effet, les tables usuelles de
points critiques sont obtenues pour des modeles simples oti n’interviennent qu’un parametre
de localisation et un paramétre d’échelle; par conséquent, I'utilisation de ces points critiques
dans le contexte d’un modele de régression peut conduire & des distorsions de niveau. Nous
proposons une solution générale au probléme du contréle du niveau des tests de normal-
ité des résidus de régressions linéaires standards. Celle-ci consiste a utiliser la technique
des tests de Monte Carlo. Nous étudions des procédures basées sur 11 statistiques de test
bien connues: & savoir les critéres de Kolmogorov-Smirnov, Anderson-Darling, Cramér-
von Mises, Shapiro-Wilk, Jarque-Bera et D’Agostino, et des variantes de ce ceux-ci. Nous
présentons les résultats d'une simulation qui montre que les points critiques usuels peuvent
conduire a de séveres problémes de contréle de niveau, tandis que la technique des tests de
Monte Carlo contréle parfaitement le niveau des tests peu importe la forme de la matrice

des régresseurs et sans perte de puissance notable

Mots-clefs: test de normalité; régression linéaire; test exact; test de Monte Carlo; Boot-
strap; Kolmogorov-Smirnov; Anderson-Darling; Cramér-von Mises; Shapiro-Wilk; Jarque-
Bera; D’ Agostino.
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1 Introduction

The problem of testing normality is fundamental in both theoretical and empirical research.
Indeed, the validity of parametric statistical inference procedures in finite samples (in the
sense that their size is controlled) depends crucially on the underlying distributional assump-
tions. Consequently, there has been extensive focus on whether hypothesized distributions
are compatible with the data. Tests of normality are particularly prevalent since the as-
sumption of normality is quite often made in statistical analysis, e.¢. in econometric studies.
In this respect, the reviews by Mardia (1980), D’Agostino and Stephens (1986, chapter 9)
and Baringhaus et al. (1989) report nearly 40 different normality tests. For illustrative
examples, see Fama (1976), Lee (1982), Bera et al. (1984), Harris (1986), Afflecks-Graves
and McDonald (1989), Hall (1990), Richardson and Smith (1993), among others.

This paper will emphasize procedures applicable in the linear regression framework. We
specifically address the problem of obtaining valid tests of disturbance normality based
on several statistics already proposed in the literature. Eleven of the leading statistics
are considered: (i) Kolmogorov-Smirnov, (ii) Anderson-Darling, (iii) Cramér-von Mises,
(iv) Shapiro-Wilk, (v) Shapiro-Francia, (vi) Weisberg-Bingham, (vii) D’Agostino, (viii) Fil-
liben, and (ix) Jarque-Bera; for a survey and references, see D’Agostino and Stephens
(1986). These well known tests have non-standard null distributions. Thus tables of ap-
proximate critical points are provided for reference in practical applications. Since most
tables are derived from Monte Carlo calculations according to the location-scale model with
independent and identically distributed (4.i.d.) observations, the problem of adequate use
in regression contexts has long been recognized.

It was shown by Pierce and Kopecky (1979) that standard tests of normality (which
account for an unknown mean and variance) are asymptotically valid when computed from
regression residuals. These authors studied essentially the convergence of the empirical
process of residuals. In location-scale contexts, the asymptotics of empirical processes and
associated tests are well understood; see, for example, Durbin (1973a, b), Stephens (1976)
and Pollard (1984). With respect to the regression model, Pierce and Kopecky have proved
that the limiting process is the same for least squares residuals case as for i.i.d. obser-
vations. Consequently, statistics based on the sample process of residuals have the same
asymptotic null distribution as in the location-scale model. Related findings were obtained
independently by Loynes (1980) and Mukantseva (1977); see also Meester and Lockhart
(1988) for a discussion of the case of designs with many blocks. These conclusions are based
on finite dimensional asymptotics. In contrast, Mammen (1996) reconsidered the limiting
behavior of tests of fit and the underlying processes allowing the dimension of the model to
increase with the sample size. This author showed that in such a setting, residuals-based
goodness-of-fit (GOF) procedures may break down in the following sense: even if the null
hypothesis is true, standard tests tend to reject with high probability. Further recent re-
sults on empirical processes and associated tests in more general econometric models are
available in Andrews (1988a-b, 1994).

The finite sample performance of regression-based normality tests has also received at-
tention in the literature. From Monte Carlo experiments, Huang and Bolch (1974) and
White and MacDonald (1980) concluded that computation of normality tests from residu-



als does not invalidate them. Yet Pierce and Gray (1982) and Weisberg (1980) have pointed
out difficulties with the representativeness of this result and recommend the use of consider-
able caution in practical applications. These authors emphasize that reported Monte Carlo
results depend crucially on specific experimental settings. The number of regressors, the
sample size and the design matrix can all affect the validity of residual-based tests, in the
sense that size distortions are quite likely [see the comments on the multiple regression case
in D’Agostino and Stephens (1986, section 9.6)]. Similar concerns about size control are
expressed by Poirier, Tello and Zin (1986), Jarque and Bera (1987), Pfaffenberger and Diel-
man (1991) and Anderson (1994). Indeed, to obtain a valid power study, Pfaffenberger and
Dielman derive size-corrected significance points from independent simulations pertaining
to the particular regressor data sets considered.

Given the above, it seems clear that for the regression model, commonly tabulated
critical points of standard normality tests can be quite misleading and should be improved.
In this paper, we reemphasize this fact and propose to use the technique of Monte Carlo
(MC) tests [Dwass (1957), Barnard (1963), Birnbaum (1974), Jckel (1986), Dufour (1995),
Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997)] in order to obtain finite sample
p-values. In particular, we implement the procedures in Dufour (1995) relating to test
statistics that are not necessarily continuous. This technique allows one to obtain exact
(randomized) tests, in the sense that the probability of a type I error is known, whenever
the null distribution of a test statistic does not depend on unknown parameters and can
be simulated. Further, very small numbers of replications of the test statistics are required
for that purpose. On observing that all standard normality test statistics are pivotal when
applied to regression residuals, we suggest that MC testing provides an attractive alternative
to usual asymptotic approximations. Indeed, the latter become irrelevant. Further, the
proposed techniques can be extended easily to test other distributions (besides the normal),
but we shall not stress this possibility here.

These finite sample properties hold whenever the regressor matrix is fixed or is random
but independent of the disturbance vector (strict exogeneity). In the latter case, the results
obtain through conditioning upon the regressor matrix. Fven though this setup extends
considerably earlier finite sample results in the area of testing normality (which are largely
limited to testing the normality of i.i.d. observations), it is clear our regression model
excludes many econometric setups, such as models with lagged dependent variables (dy-
namic models), weakly exogenous regressors or non i.i.d. disturbances (heteroskedasticity,
serial correlation). However, it is worthwhile noting that the simulation-based procedure
proposed here yield “asymptotically valid” tests whenever the test criterion used has a
nuisance-parameter-free null distribution under a class of data generating processes which
includes the (more restricted) ones considered here. For a related discussion, the reader
may consult Dufour and Kiviet (1998).

MC tests are closely related to the parametric bootstrap, with however a fundamental
difference. Whereas bootstrap tests are on the whole asymptotic (as the number of simulated
samples goes to infinity), MC test methods yield provably exact tests, in the sense that
the number of replications used is explicitly taken into account. Bootstrap methods have
recently been suggested for GOF problems; see, for example, Stute et al. (1993) and Henze
(1996). These authors present the bootstrap as an alternative asymptotic approach to treat



empirical processes with estimated parameters. Monte Carlo studies were carried out for
various parametric models with the conclusions that bootstrap Kolmogorov-Smirnov and
Cramér-von Mises tests achieve level control. Although Stute et al. examined normality
tests in the location-scale context as a special case, the problem has not apparently been
considered from a finite sample perspective. Several authors have also advocated the use of
the bootstrap for different (although related) specification tests in non-linear contexts; see,
for example, Andrews (1997), Beran and Miller (1989) and Linton and Gozalo (1997). For
further discussion of bootstrap methods, the reader may consult Efron (1982), Efron and
Tibshirani (1993), Hall (1992), Jeong and Maddala (1993), Vinod (1993) and Shao and Tu
(1995).

We also investigate the size and power of suggested tests in a Monte Carlo study across
six error distributions. We consider several choices for the sample size, the number of regres-
sors and the design matrix. In addition, we examine the effect on power of increasing the
number of MC replications. The results show that MC tests overcome usual size problems
and achieve good power, even with small numbers of MC replications.

The paper is organized as follows. In Section 2, we set notation and review the test
statistics under consideration. In Section 3, we discuss the pivotal character of the test
statistics and present the MC test procedure. Section 4 reports the results of the simulation
experiment. We conclude in Section 5.

2 Model and test statistics

We consider normality tests in the context of the linear regression model:

(2.1) Y =XB+u,

where Y = (y1, ..., yn)/ is a vector of observations on the dependent variable, X is the
matrix of n observations on k regressors,  is a vector of unknown coefficients and w is an
n-dimensional vector of 4.i.d. disturbances; further, X is fixed or independent of u. The
problem is to test

(2.2) Ho: f(u)=¢(;0,0), 0 >0,

where f (u) is the unknown probability density function (pdf) and ¢(u; i, o) is the normal
pdf with mean ;& and standard deviation o. The assumption that » has mean zero is not
restrictive when X includes a constant term ¢, = (1, ..., 1)’. When X = ¢, the above
regression model reduces to the location-scale model. In this context, we shall consider
normality tests based on the least-squares residual vector

(2.3) i=y— X8 = Mxu,

where 3 = (X’X)le’y and My =1, —X(X’X)le’. Let Ty < Uop < ... < Uy, denote
the order statistics of the residuals, and

n

n
(2.4) f=m-k"1) 62=n"1 Zﬁ?n
i—1

mn )
=1



The tests we shall study can be grouped into three categories: empirical distribution function
(EDF) tests, moment tests and correlation tests.

2.1 EDF tests

EDF tests are based on a measure of discrepancy between the empirical and hypothesized
distributions. The most familiar EDF tests are: the Kolmogorov-Smirnov (KS) test [Kol-
mogorov (1933), Smirnov (1939)], the Cramér-von Mises (VM) test [Cramér (1928)] and
the Anderson-Darling (AD) test [Anderson and Darling (1954)]. The finite sample distri-
butions of the AD and VM statistics are quite complicated but an asymptotic theory is
available. For the KS statistic, the exact and limiting distributions are non-standard and
even asymptotic points must be estimated; this fact was first observed by Lilliefors (1967)
who gave significance points by Monte Carlo calculations. To improve performance in finite
samples, Stephens (1974) has proposed to modify the EDF statistics through multiplication
by an appropriate correction factor; this author supplies adjustment formulas and approx-
imate critical points for use with modified criteria. Revised significance points are also
available in D’Agostino and Stephens (1986, table 4.7). As pointed out above these pertain
to the location-scale model.
The statistics are defined as follows:

(2.5) KS=max (D", D7),
where Dt = max<;<p, [(i/n) — 2] and D™ = maxi<;<n [2; — (1 — 1)/n],
(2.6) VM = Z % — (20— 1)/2n) 4+ (1/12n) ,
n
(2.7) AD=-n—-n"'> (2 —1)[InZ +In(l = Zny14)],
i—1
where z; = ®(Uin/s), ¢ = 1, ..., n, and ®(.) denotes the cumulative N(0,1) distribu-

tion function. In this article, we study both standard and modified (following Stephens)
statistics; the modified statistics will be denoted K S,, V My and AD;.

2.2 DMoment tests

Moment tests derive from the recognition that the third and fourth moments of the N(0, 1)
distribution are equal to 0 and 3 respectively. Hence deviations from normality may be
assessed using the sample moments, i.e. the coefficients of skewness (Sk) and kurtosis

(Ku):
(2.8) Sk=n" 12173/ 3/2 Ku=n" 12/\4//\2

The literature on the null distributions of these statistics and their joint density is vast.
Although very few finite sample results are known, asymptotic theory is well developed



and tables have been available for some time [see D’Agostino and Stephens (1986, chapter
6)]. The skewness and kurtosis tests may be implemented as two distinct tests. Procedures
involving Sk and Ku jointly are also in common use. One popular example is the Jarque-
Bera (JB) test [Jarque and Bera (1980, 1987)] based on a Lagrange multiplier criterion:

1

1 2
(2.9) JB = n|=(5k)° + o

(Ku —3)

As pointed out by Jarque and Bera (1987, p. 165), their method was independently sug-
gested by Bowman and Shenton (1975) as an omnibus procedure combining Sk and Ku in
one test statistic. Jarque and Bera have shown that the test derives from the LM principle
in the context of the Pearson family of probability density functions. Under the null and
appropriate regularity conditions, the JB statistic is asymptotically distributed as x? (2).
As is typically the case with the various normality tests, the exact distribution is intractable.
We have also considered moment tests where o2 is replaced by s2, which we denote Sk,
Kug and J By respectively.

2.3 Correlation tests

Correlation tests are based on the ratio of two estimates of scale obtained from order sta-
tistics: a weighted least squares estimate given that the population is normally distributed
and the unbiased estimate of scale for any population, i.e. the sample variance. The
weights originally proposed for the Shapiro-Wilk (SW) test [Shapiro and Wilk (1965)] are
the optimal weights in the sense of GLS estimation and are difficult to compute:

_ OO atn)? __ v
(2.10) SW = CENERE a=(a, ..., an) = V)i
where ¢ = (1, ..., ¢) and V are respectively the vector of expected values and the

covariance matrix of standard normal order statistics. Shapiro and Wilk (1965) supply
a table of weights and significance points for location-scale models with n < 50; these
are reproduced in D’Agostino and Stephens (1986, Tables 5.4 and 5.5). For large samples,
Shapiro and Francia (1972) suggest to ignore the covariance term in the formulae for deriving
the weights; in other words, the Shapiro-Francia (SF') test treats the ordered observations
as if they were independent:

d

O T _
(2.11) SF = V= b = o

(n—k)s?
The SF statistic may also be interpreted as the correlation coeflicient between ¢ and the
order statistics of the residuals. Shapiro and Francia supplied the weights and significance
points for location-scale models with n < 100; D’Agostino and Stephens (1986, Table 5.2)
provides the critical values of n(1 — SF) for location-scale models with n < 1000. Royston

(1982a, 1982b, 1982¢) has also published algorithms for computing the distribution of the
SW statistic, but these only apply to simple location-scale models.



D’ Agostino (1971) proposed to consider a linear combination of the ordered observations
that does not require a table of weights. The D’Agostino (D) statistic may be computed as
follows:

D iy Uinli — (n+1)/2]
2.12 D ===
( ) n3/2 [(n — k)s?|1/2
D’Agostino (1971, 1972) provide significance points for location-scale models with n. < 2000;
these are reproduced in D’Agostino and Stephens (1986, Table 9.7). Several other modified

SF statistics have been suggested. We consider the Weisberg-Bingham (W B) test [Weisberg
and Bingham (1975)] and the Filliben (F'B) test [Filliben (1975)]. The W B statistic derives

from the SF statistic substituting the following for c:

a1 =B L
(2.13) c;=® [m],z—l, ey n,

where &1 refers to the inverse of the standard normal cumulative distribution function.
The critical values of the test are those of the SF test. The F'B criterion may be viewed
as the correlation coefficient between the ordered residuals and the order statistics medians
from the standard normal distribution. Filliben produced weights and critical points for
the location-scale model with n < 100.

3 Monte Carlo tests for normality

All of the existing tables of critical points described above were generally derived from
Monte Carlo simulations following the 4.i.d. location-scale model. As an alternative to
these, we shall employ the technique of MC tests. To provide necessary background, we first
discuss relevant invariance properties of the statistics considered. The MC test procedure
is described next.

3.1 Pivotal property of standardized residuals

From (2.5) - (2.12), we see that all the test statistics can be computed from the standardized
residual vector @/s. Using (2.3), we can write:

17 MXu

Mxw
N A Ve > X
G - T e

(w/MXw)l/Q

(3.14) a/s= ~ (n— k)2

where the components of w = u/o are i.i.d. N(0,1) when u ~ N(0,021I,), so that @/s
follows a nuisance-parameter free distribution. The distribution of the scaled vector /s
depends on the (known) regressor matrix X, but not on the regression parameters 8 and o.
When X is fixed, this entails that @/s follows a nuisance-parameter free distribution. When
X is viewed as random but remains independent of u, the marginal distribution of %/s may
depend on the parameters of the distribution of X, but its conditional distribution given
X only depends on X. Consequently, in both situations, residual-based test statistics are
location and scale invariant, and their exact null distributions can be simulated easily.



3.2 DMonte Carlo test procedure

Let T be a real-valued test statistic such that a null hypothesis of interest Hp [e.g., model
(2.1) with u ~ N(0,021I,,)] is rejected when T is large (i.c., when T > ¢, where the constant c
depends on the level of the test), and suppose T is pivotal. In other words, given a statistical
model (€2, A, P) where Q is a sample space, A is a o—algebra of subsets of  and P is a
family of probability measures on A which include the set Py C P of measures compatible
with Hyp, we assume 7' = T'(w) is a mapping from 2 to R (7" : Q — R) such that the survival
function G(z) = P[T > z] = P[{w € Q : T(w) > z}], or equivalently the distribution
function F(z) = P[T < x|, is the same for all P € Py (so that the critical region 7' > ¢ is
similar). Note the function G : R — [0, 1] does not depend on w and must be viewed as
fixed (hence independent of any random variable defined on €2) in the present context. Then
G(c) = a is the size of the critical region T' > ¢. Further for any .A—measurable random
variable Ty = Tp(wo), wo € €2, the transformed random variable G(Tp) = G[To(wo)], wo € £,
satisfies P[G(Tp) < a] = a, where P[G(Tp) < z] = P{wo € Q : G[T(wo)] < z}] for any
x € R. Note the random variable G/(Tp) can be interpreted as the conditional probability
P[T > To|Tp] when T and Tp are i.i.d. (defined on the appropriate product measure space)
each with the survival function G(z); further, if Tp the test statistic computed from data (a
random variable) and 7y the observed value of Tp based on specific realized data [taken as
given (fixed)|, G(7o) = P[T > To|To = To] is the “realized” p-value of the test statistic Tp.

Now suppose we can generate N independent realizations 77, ..., T, from which we
can compute an empirical p-value function:

_ .. NGy(z)+1
(3.15) () =—7
where
-~ 1 & 1, z€ A
(3.16) Gv(a) = 5 3= T (T~ ). uw={§ 151

The associated MC critical region is a randomized critical region defined as
(3.17) pn(To) < a

where pn(Tp) may be interpreted as an estimate of G(7p). When the distribution of Ty is
continuous, we have:

Ia(N +1)]

, Jor 0<a<1,
N+1

(3.18) Ppn(To) < a] =
where I[x] denotes the largest integer less than or equal to z; see Dufour (1995), Dufour
and Kiviet (1996, 1998) or Kiviet and Dufour (1997). Given Tp = 7o, the quantity pn (7o)
may be interpreted as a (randomized) “realized” p-value associated with Tp. Thus if N is
chosen such that o(N + 1) is an integer, the critical region (3.17) has the same size as the
critical region G(Tp) < a. The MC test so obtained is theoretically exact, irrespective of
the number N of replications used.



The above procedure is closely related to a parametric bootstrap, with however a funda-
mental difference. Bootstrap tests are, in general, provably valid for N — co. In contrast,
we see from (3.18) that NV is explicitly taken into consideration in establishing the validity
of MC tests. Although the value of N has no incidence on size control, it may have an
impact on power which typically increases with N.

Note that (3.18) holds for tests based on statistics with continuous distributions. In
the case of the KS criterion, ties have non-zero probability. Nevertheless, the technique of
MC tests can be adapted for discrete distributions by appeal to the following randomized
tie-breaking procedure [see Dufour (1995)].

Draw N + 1 uniformly distributed variates Wy, Wy, ..., Wy, independently of T} and
arrange the pairs (7}, W;) following the lexicographic order:

(319) (Tl, Wz) > (Tj7 WJ) =4 [TZ > Tj or (Tl = Tj and W; > WJ)] .
Then, proceed as in the continuous case and compute

(3.20) pn(z) = % :

where
~ 1 & 1 &
(321) Gn(r)=1- & ; Loeoy(@ =T) + ; Loy (T — ) 1jo,00) (Wi — Wo).

The resulting critical region py(Tp) < « has the same level as the region G(Tp) < a, again
provided a(N 4+ 1) is an integer. More precisely,

. ITa(N+1
Plpn(To) < o) < Pln(r) < of = LA o g ca st
If T()7 Tl, en TN are all distinct, ﬁN<T0) = ]/9\N<T0)

The procedures discussed in this section can be readily extended to other GOF hy-
potheses. Indeed, the central properties we have exploited here are the following: (i) the
standardized error vector has a known null distribution, and (ii) the test statistics depend
only on the empirical distribution function of residuals. These properties are preserved for:
(i) all error distribution functions which are completely specified up to a scale parameter,
and (ii) any relevant GOF criterion based on the empirical process of residuals. The latter
generalization allows for a natural class of GOF statistics, although others may be worth
consideration. Of course, the choice of which statistic to employ depends on the specific
hypothesis at hand.

4 Simulation experiment

The simulation experiment was performed as follows. The model used was (2.1). For
each disturbance distribution, the tests were applied to the residual vector, obtained as
u = Myu. Hence, there was no need to specify the coeflicients vector 3. The matrix X



included a constant term, a set of k1 dummy variables and a set of independent standard
normal variates. Formally,

: : Iy

(422) X=lmi Xyt X } KXo = [ 0(;—k1,k1) ]

where 0(; ;) denotes an (i, 7) matrix of zeros, X (2) includes k—Fkq —1 regressors drawn as i.7.d.
standard normal. Sample sizes of n = 25, 50, 100 (and 300 in certain cases) were used, k
was set as the largest integer less than or equal to /n and k1 =0, 2, 4, ..., k—1. We have
also examined the cases where (1) X = ¢, i.e. the location-scale model, and (i) X includes
a constant term and k — 1 regressors drawn from a Cauchy distribution. As mentioned
earlier, the regressors here are treated as fixed across replications, which excludes many
cases of interest in econometrics such as lagged dependent variables (dynamic models).

The disturbances were generated from several distributions: standard normal, Cauchy,
lognormal, beta(2,3), gamma(2,1) (denoted N, C, LN, B, I respectively) and Student #(5).
We assessed the performance of all the tests reviewed above at the nominal size of 5%. With
the exception of the D test, all were treated as one-sided tests; the relevant critical points
for the standard tests are given in Table 1.2. Tables 2 - 5 report the rejection percentages
among 10000 replications.

The MC procedures illustrated in Tables 2 - 4 are based on 99 simulated samples (79
in the case of the D statistic). We have also examined the effect on power of increasing
the number of simulated samples. Results for these experiments are presented in Table 5,
where N = 19, 29, ..., 99, 199, ..., 499. For the D statistic, N was set to 39,79,199
and 399. More complete results (with graphs) are available in a technical report [Dufour,
Farhat, Gardiol and Khalaf (1997)]. Our conclusions may be summarized as follows.

4.1 Test size
4.1.1 The location-scale model

For the simple location-scale model, all the tests except the JB procedure control size
reasonably well (see Table 2). The EDF, the SW and the D tests appear adequate. While
the SF, WB and FB tests tend to overreject, the distortions are not severe. However,
the JB test underrejects substantially. The sizes of all MC tests correspond closely to the
nominal value of 5%.

4.1.2 The regression model

From the results in Table 3, we can see that the test performances in the regression context
can be much worse than for the location-scale model. Although the tests appear adequate
when the explanatory variables are generated as standard normal, the sizes of all tests vary
substantially from the nominal 5% for all other designs, irrespective of the sample size. More
specifically, (i) the EDF tests consistently overreject and the modified versions overreject
by the same magnitude, (ii) the correlation tests overreject but to a lesser extent, (iii) the
moment tests based on s are severely undersized and, (iv) the moment tests based on &
underreject when the number of dummy variables relative to normal regressors is small and



Table 1.1: List of abbreviations

Notation | Test Reference
KS Kolmogorov-Smirnov | Equation (2.5)
KS, Modified KS D’Agostino and Stephens (1986, table 4.7)
VM Cramer-von Mises Equation (2.6)
VMs Modified VM D’Agostino and Stephens (1986, table 4.7)
AD Anderson-Darling Equation (2.7)
ADs Modified AD D’Agostino and Stephens (1986, table 4.7)
JB Jarque-Bera Equation (2.9) and (2.4)
J By, Jarque-Bera (using s2) | Equations (2.9) and (2.4)
SW Shapiro-Wilk Equation (2.10)
SF Shapiro-Francia Equation (2.11)
WB Weisberg-Bingham Equations (2.11) and (2.13)
D D’ Agostino Equation (2.12)
FB Filliben Filliben (1975)
Table 1.2: Critical points for standard normality tests
Test Reference Sample size
25 50 100 300
KS | Lilliefors (1967) 173 .886/\/n
VM | D’Agostino & Stephens (1986), Table (4.10) | .12125 | .1225 | .125 | .126
AD | D’Agostino & Stephens (1986), Table (4.10) | .71625 | .7285 | .742 | .752
KSs | D’Agostino & Stephens (1986), Table (4.7) .895
V M | D’Agostino & Stephens (1986), Table (4.7) 126
ADg | D’Agostino & Stephens (1986), Table (4.7) 752
SF D’Agostino & Stephens (1986), Table (5.2) [ 1.99 [ 2.31 [ 2.56 | 2.67
W B | D’Agostino & Stephens (1986), Table (5.2) [ 1.99 2.31 256  2.67
SW | D’Agostino & Stephens (1986), Table (5.5) | .918 947 | NA NA
D D’Agostino & Stephens (1986), Table (9.7) | -2.97 -2.74 | -2.54 | -2.316
74 1.06 [ 1.31 | 1.528
FB [ Tiliben (1975) 58 | 977 | 987 | NA

Note: In the following tables, asterisks indicate the highest computed power achieved in each
column. The modified EDF statistics K.Ss, VM, and AD, are monotonic transformations
of the original criteria K.S, VM and AD respectively, and so yield the same MC p-values.
The results for tests based on standard critical values may not be reported in a few cases
(like SW and F'B in Table 3) because the required critical values have not apparently been
tabulated for the regression design considered.
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Table 2: Empirical size and power of normality tests; i.i.d. observations

Standard Tests MC Tests
N B C r In ¢ N B C r Ln t
n=25 KS 53 7.2 902 396 985 148 |52 7.3 90.0 385 98.4 14.6
KSs |52 70 905 393 985 14752 7.3 90.0 385 98.4 14.6
VM |56 87 936 51.6 99.7 186 |51 &3 93.0 494 99.6 17.2
VM, |52 81 933 504 997 179 |51 &3 93.0 494 99.6 17.2
AD 56 9.1 93.7 57.5 999 202 |52 86 93.0 548 99.8 19.2
AD, |51 83 934 558 999 19452 86 93.0 54.8 99.8 19.2
JB 29 09 895 37.8 959 21252 21 91.4 478 97.5  26.3*
JBr | 1.8 04 872 316 941 174 |52 3.0 91.0 51.2 98.2 2b5.6
SW |52 84 922 642 100 21.1 |54 87 92.0 63.3* 99.9* 21.3
SF 58 51 940 61.5 999 265 |52 46 93.7 583 99.8  2b.5
WB |57 51 940 61.5 999 264 |53 4.7 93.7 584 99.8 25.1
D 54 7.1 934 331 973 224 |52 7.0 92.6  30.7 96.5  21.3
FB 53 44 940 594 999 26.1 |52 4.3 93.8* 57.7 99.8 254
n=50 KS 46 11.5 994 680 100 205149 11.7 99.3 67.7 100*  20.8
KS, |48 120 994 691 100 21.2 149 11.7 993 67.7 100*  20.8
VM |54 155 997 837 100 278 |50 14.7 99.7 &1.8 100*  26.8
VM, |51 149 997 830 100 27250 14.7 99.7 &1.8 100*  26.8
AD 53 181 99.7 &9.1 100 31.0(50 169 997 876 100 *  29.8
AD, | 5.0 172 997 885 100 302 (50 169 99.7 &7.6 100*  29.8
JB 3.7 08 995 76.0 100 394 |48 3.0 99.5 798 99 41.8
JBr |27 05 994 727 100 36.1 |49 49 99.5 829 100*  41.0
SW 143 26.2 994 948 100 264 | 5.0 27.8 994 948 100 27.2
SF 51 10.3 998 91.9 100 41.3 (50 10.0 99.8 90.9 99 40.5
WB |51 101 998 91.8 100 41550 9.9 99.8* 90.8 100*  40.5
D 53 13.7 99.8 56.4 100 39.0 (52 131 997 536 100*  36.9
FB 56 9.9 998 91.9 100 434 |50 &8 99.7 90.0 100  41.1
n=100 KS5 50 235 100 954 100 33548 227 100* 945 100*  31.9
KS, 149 232 100 952 100 331 |48 227 100 945 100*  31.9
VM |48 320 100 99.1 100 428 (49 31.4 100* 99.0 100*  42.1
VM, |49 323 100 99.1 100 43.1(49 314 100* 99.0 100*  42.1
AD 50 40.7 100 99.8 100 48.1 (4.8 39.1* 100* 99.7 100*  47.1
AD, |49 400 100 99.8 100 479 (48 39.1* 100* 99.7 100*  47.1
JB 3.9 47 100 99.1 100 628 |50 126 100* 986 100*  63.8
Ku 3.2 7.3 951 66.6 100 626 |52 204 100* 69.2 100*  ©65.7*
JBr |34 52 100 990 100 60249 19.2 100* 99.1 100*  62.9
SF 46 33.3 100 999 100 61.7]48 326 100* 99.9* 100* 61.4
WB |47 324 100 999 100 622 |48 31.4 100* 99.9* 100* ©61.6
D 51 29.0 100 &2.5 100 62952 263 100* 798 100*  60.5
FB 49 29.1 100 999 100 63.1]48 280 100 99.9* 100 62.1
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Table 3: Empirical size of normality tests based on regression residuals

n=25 k=6 n=2>50, k=28
Standard tests MC tests Standard tests MC tests
k1 0 2 4 0 2 4 0 2 4 6 0 2 4 6
KS 52 116 286 (52 53 5253 7.9 157 294 (52 50 51 5.0
K&, |50 114 28252 53 52|55 81 16.3 30.1 |52 50 51 5.0
VM |68 127 28352 52 50|74 105 189 339 (51 50 49 49
VM, |64 120 27152 52 5069 99 179 32551 50 49 49
AD 6.4 105 22052 52 53|72 95 159 26952 50 48 48
AD, | 57 97 207|152 52 53|67 89 149 25752 50 48 48
SF 57 84 14653 52 5052 65 92 13750 53 52 48
SW |51 62 102|555 53 52|42 4.1 50 69 [49 50 50 48
WB |57 84 14554 52 50|52 65 92 13850 53 52 48
D 50 6.6 114 |50 53 51|51 57 76 12450 51 48 52
FB 52 7.9 13954 51 5.1 |57 73 103 153 |51 53 52 47
JB 29 48 67 |52 52 4839 51 64 84 |50 51 50 47
JB; |01 02 04 (51 50 51103 05 08 1.0 [48 51 49 5.0
n =100,k =11
Standard tests MC tests
k1 0 2 4 6 8 10 0 2 4 6 8 10
KS 56 80 13.3 20.1 326 476 (47 50 50 47 47 5.0
KS, |55 7.9 131 197 322 47247 50 50 47 47 5.0
VM |74 96 150 21.8 331 488 (49 48 48 49 48 5.0
VM, |76 97 151 222 334 49349 48 48 49 48 5.0
AD 7.8 9.8 135 189 279 399 (48 47 50 49 47 49
AD, |76 95 132 185 27.6 394 (48 47 50 49 47 49
SF 48 51 66 86 11.2 154 |50 45 49 50 46 4.8
WB |49 52 68 88 114 15750 45 49 50 47 49
D 51 53 63 79 108 15453 48 51 51 49 5.1
FB 49 53 70 90 119 162 |50 45 49 51 47 438
JB 41 47 58 7.1 89 102 |48 48 48 49 49 5.1
JBy |21 16 15 14 1.3 15 |52 47 50 50 48 47
n =300,k =17 Cauchy regressors
Standard tests Standard tests: (n,k) =
k1 0 2 4 6 8 10 12 14 16 (25,6) (50,8) (100,11) (300,17)
KS 6.7 81 99 127 166 21.8 279 352 439 10.9 11.3 11.1 10.7
K&, |62 76 93 120 159 208 266 340 427|107 11.8 10.8 10.1
VM |70 83 103 129 16.1 205 269 335 423 14.8 15.3 14.7 12.5
VM, |70 89 104 13.0 16.2 206 27.1 336 424 13.8 14.5 14.5 12.5
AD 74 85 99 120 145 179 224 280 344|129 13.6 14.4 12.5
AD, | 7.5 7.1 100 121 146 181 225 282 346 11.9 12.9 14.2 12.6
SF 6.3 73 72 83 &4 101 11.8 135 16.2] 10.3 9.1 7.9 8.8
SW | - - - - - - - - - 7.3 5.0 - -
WB |64 51 75 85 86 104 12.1 138 16.6 | 10.3 9.2 8.2 9.1
D 46 53 52 57 67 76 92 108 13283 7.5 7.5 6.5
FB - - - - - - - - - 9.9 10.2 8.5 -
JB 45 51 55 58 65 71 82 88 98 |61 7.3 7.8 7.6
JB, |80 71 60 53 49 45 41 38 37 |03 0.8 1.5 5.1
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Table 4: Empirical power of MC normality tests based on regression residuals

B C r Ln t B C r Ln t

KS | n=2545 743 226 798 127 |n=25[36 808 246 841 149
VM | k=6 |42 81.0 286 874 152 (k=6 |29 8.6 284 91.0 181
AD |k =01]45 827 317 893 166 |k =233 874 333 929 195
SF 3.8 837 349 90.7 186 3.0 871 375 940 210
SW 6.0 80.1 358 90.7 154 4.8 853 42.1* 951* 19.0
wWhB 3.8 837 349 90.7 185 3.0 871 376 940 210
D 53 81.3 199 814 153 64 840 214 842 162
B 3.6  84.0* 344 90.6 188 29 87.3* 370 938 212
JB 25 835 323 888 199* 21 852 340 90.2 216
J By, 98 694 204 803 98 98 761 324 91.0 136
KS | n=25|40 866 277 909 145

VM | k=6 |21 915 267 946 20.1

AD | k=422 091.8 330 966 21.6

SF 24 915 405 97.7 236

SW 3.6  91.0 464 987 222

wWhB 24 915 405 97.7 236

D 7.5 884 223 888 179

B 22 916 399 976 236

JB 1.9 879 368 93.0 234

J By, 9.0 827 435 978 181

KS | n=50]62 969 472 99.0 204 |n=50[45 977 476 99.2 216
VM | k= 59 986 596 998 261 | k= 3.9 989 394 998 287
AD | k=067 988 659 998 289 [k =246 99.1 671 999 314
SF 59 987 715 99.9¢ 331 4.8 99.0 738 999 348
SW 152 970 732 99.9* 216 15.0 981 785* 99.9 251
wWhB 59 987 T1.3  99.9% 332 4.7 99.0 738 999 348
D 88 986 391 988 291 10.0 989 406 999 30.1
B 5.3  988* T0.7 99.9% 33.7 4.3  99.1* 73.0 999 351
JB 21 986 641 99.7 350 1.7 987 655 99.8 358
J By, 183 954 59.9 995 199 19.2 96.6 69.1 988 23.3
KS | n=50|45 982 489 99.6 208 [n=50(52 989 528 998 20.0
VM | k=8 |28 993 562 998 312 (k=8 |21 996 538 1000 324
AD | k=435 994* 658 999 340 [k =6 |26 99.7* 649 100* 36.1
SF 3.6 994 759 99.9 380 28 996 775 100* 406
SW 12.8 989  83.1* 100* 298 11.9 994 87.3* 100 334
wWhB 3.5 993 757 99.9 381 27 996 773 100* 406
D 10.8 99.2  40.3 99.3 31.3 13.1 994 409 99.5 329
B 3.1 994 749 99.9 384 26 996 764 100* 408
JB 1.4 989 659 99.8 382 1.1 991 66.6 99.8 40.0
J By, 186 974 773 999 279 17.3 983 828 100 324
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Table 4 (continued)

B C I In 1 B C I In 1
KS | n=100|9.7 100* 80.6 100* 33.1 [ n=100]|7.4 100*  80.2 100* 34.0
VM | k=11 |98 100*  91.1 100* 438 (k=11 | 7.2 100*  90.8 100* 46.1
AD | k=0 125 100" 94.6 100* 483 | k1 =2 10.0  100* 94.6 100" 50.7
SF 16.0  100* 97.2 100* 52.7 14.0 100 97.5 100* 554
wWhB 154 100 97.2 100 529 135 100 975 100" 55.5
D 17.1 100 66.6 100* 50.7 19.5 100 67.2 100" 51.9
B 13.6 100 96.9 100" 53.9 12.0  100* 97.2 100" 56.0
JB 6.7 100*  94.1 100" 55.3 4.6 100*  93.9 100* 57.0
J By, 42.1*  99.9 93.8 100 32.9 45.1* 99.9 958 100" 36.2
KS | n=100| 6.8 100*  80.2 100* 33.2 | n=100| 6.7 100* 80.4 100* 31.3
VM | k=11 |5.0 100*  90.1 100* 480 | k=11 | 3.7 100* 88.5 100* 48.9
AD | k=4 |72 100" 94.6 100* 526 | k1 =6 5.5 100*  94.3 100" 53.9
SF 11.7  100* 97.8 100" 57.6 9.9 100*  98.0 100* 59.1
wWhB 11.3  100* 97.8 100" 57.8 9.6 100*  98.0 100* 59.3
D 21.0 100 679 100" 52.8 22.7 100 67.7 100" 54.2
B 9.8 100* 97.6 100* 58.3 8.3 100*  97.7 100* 59.3
JB 3.0 100*  93.8 100 584 2.0 100*  93.5 100* 59.7
J By, 46.8* 99.9 97.5 100" 39.7 48.4* 100" 98.2 100 43.1

overreject otherwise. In contrast, all MC tests achieve perfect size control for all sample
sizes.

An interesting experiment that bears on this problem is reported in Weisberg (1980).
Weisberg had pointed out that in the context of normality tests, Monte Carlo results based
on data sets where all explanatory variables are drawn from the uniform or standard normal
distribution are not representative and that size problems may occur. He demonstrated
this with a specific data set for the SW test with n = 20. The analysis here extends
this observation in two important ways. First, we show that problems can occur for all
conventional tests. Second, the design matrices we consider involve samples as large as
100 and 300 and are quite likely to be encountered in econometric practice. An intuitive
explanation for the effect of dummy variables on test size is the following. Residuals based
on normal regressors may mimic an i.7.d. series if k£ is small enough, relative to n. The
appended indicator variables cause k; residuals to be zero, and these should be excluded
from the test procedure (but are not). This provides a simple example where standard
distributional theory fails, while our approach works without any difficulty. Regressors
drawn form a Cauchy distribution (see Table 3) provide another although less extreme
example of such situations. Note finally that in Table 3 the level does not appear to be
better controlled as the sample size increases. This is simply due to the fact that, in this
experiment, the number of regressors increases with sample size.
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4.2 Test Power
4.2.1 The location-scale model

It is evident from Table 2 that MC tests correct for size and achieve good power. Overall, we
do not observe any significant power loss for tests having comparable size. When interpreting
the power of the correlation tests, keep in mind that the standard SF, W B and the F'B
tests are slightly oversized. Note also that the modified EDF (i.e., size corrected following
Stephens (1974)) and the MC tests demonstrate similar power for all sample sizes across
all the distributions examined. Most important is the effect of the MC procedure on the
moment tests. Indeed, the effective power of the J B tests improves appreciably for n < 100.
This is expected since the standard JB test is severely undersized.

The powers of the MC tests are broadly in the following order. The SW (when feasible)
and the S F approximations are among the most powerful against practically all alternatives.
The W B seems a sensible choice for it does not rely on any table of weights. However, for
n = 25, the SF, WB and FB are biased in the case of the beta distribution. Although
the D test typically shows less power than the other tests in its class, it is not biased in
small samples, unlike the SF-type counterparts. The AD outperforms all EDF statistics,
compares favorably to the moment tests and has no bias problems. While it is biased
against the beta distribution for n = 25, the JB almost achieves maximum power against
the Cauchy, lognormal and Student ¢(5) distribution; it is outperformed by the AD statistic
in the case of the I distribution when n < 50. As expected, all MC tests have very good
power when the errors follow the Cauchy and the lognormal distribution even in small
samples. Finally, from Table 5, we observe that the number of replications beyond 99 has
no significant effect on the power of MC tests.

4.2.2 The regression model

From the results in Table 4, it can be seen that the performance of the regression-based
tests can be greatly affected by the design matrix especially for samples of size less than
100. However, it appears that the design matrix has little effect on the ranking of the tests.
Furthermore, the results on relative power across tests seem to agree with our findings
regarding the location-scale model. In general, the SW-type criteria appear to be the
best available; the D statistic is on the whole less powerful than these but is consistently
unbiased. The most powerful EDF statistic is the AD); it performs well in comparison to the
correlation statistics except perhaps in the I'(2, 1) case. The JB-type tests based on either
s or o compare favorably to the correlation tests. However, there is no clear indication as
to which estimate of ¢ should be used in practice. The MLE-based JB criterion performs
better against the Cauchy, lognormal and the ¢(5) alternatives, while JBj, appears better
for other distributions and is consistently unbiased. For the beta(2,3) alternative, the JB
criterion is severely biased for all samples sizes, yet JBj, performs best in comparison to all
tests.
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Table 5: The effect of the number of Monte Carlo replications on power

Location-Scale model, n = 25

MC reps. | 19 39 59 79 99 199 299 399 499

B (72 73 74 v4 (73 73 72 72 T2

C | 881 893 89.8 90.0 905 90.5 90.5 90.6 90.6
34.0 369 374 382|385 387 39.0 39.2 392
96.8 97.9 981 983|984 985 985 98.6 985
136 144 145 146 | 146 148 147 147 148

KS

St~
3

82 82 83 82 |83 83 82 84 84

91.7 926 93.0 93.0]93.0 932 932 933 933
447 476 484 491|494 498 489 50.1 50.1
99.1 995 995 99.6 | 99.6 99.7 99.7 99.7 99.7
6.3 171 171 173|172 174 178 17.8 177

VM

3

87 85 87 86 |86 87 86 8T 87

91.8 925 93.0 931930 934 933 934 934
499 529 54.0 547|548 555 558 56.0 559
99.5 99.8 99.8 998 [ 99.8 99.8 999 99.9 99.9
178 188 19.0 19.2 (192 195 19.6 19.7 19.7

AD

3

50 49 47 47 |46 45 46 46 47

92.3 933 935 936|937 937 938 93.8 938
52.9 559 573 5B57.9|583 595 59.5 59.7 598
99.4 99.7 99.8 998 199.9 99.9 999 999 99.9
23.0 243 247 249|251 253 255 257 257

SF

3

50 49 47 47 |47 46 46 46 47

924 932 935 936|937 937 938 93.8 938
53.0 56.0 574 5B80 |5384 595 595 59.8 599
99.4 99.7 99.8 998 199.8 99.9 999 999 99.9
229 242 246 249|251 253 254 256 257

wWhB

- 6.7 - 70 |- 6.9 - 71 -
- 91.7 - 926 | - 93.0 - 93.2 -
- 294 - 30.7 | - 32.2 - 32.3 -
95.6 - 96.5 | - 97.0 - 97.2 -
- 20.3 - 21.3 | - 219 - 22.2 -

3

4.7 45 44 44 |43 42 42 42 43

925 934 936 9371938 938 939 93.8 939
52.2 554 56.4 5B57.1|57.7 584 585 B 58I
99.3 99.7 99.8 998 199.8 99.9 998 99.9 99.9
23.3 247 250 251|254 256 259 260 26.1

B

3

3.1 25 22 22 121 19 19 20 20

89.2 90.8 91.2 914|914 916 91.7 91.7 91.7
43.2 456 46.6 474|478 485 486 48.6 488
943 96.3 971 973|975 979 979 980 98.0
23.8 251 258 261|263 266 265 268 26.7

JB

3

45 38 32 31 (30 26 26 26 25

88.8 90.3 90.7 90.8|91.0 91.3 91.3 91.3 914
455 488 50.0 50.6 [ 51.2 52.0 522 524 524
949 97.0 977 98.0]982 987 988 988 99.0
228 242 250 254256 260 260 262 26.1

de“hﬂQUd“hﬂQU:J“hﬂQm“gﬂQm“hﬂQm“hﬂQm“hﬂQm

J By,

S~
3
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5 Conclusion

In this paper, we have proposed simulation-based procedures to derive exact p-values for
several well-known normality tests in linear regression models. Most conventional test
procedures were derived in location-scale contexts yet remain asymptotically valid when
computed from regression residuals. Here, we have exploited the fact that standard test
criteria are pivotal under the null, which allows one to apply the technique of MC tests. The
feasibility of the approach suggested was illustrated through a simulation experiment. The
results show that asymptotic normality tests are indeed highly unreliable; in contrast MC
tests achieve perfect size control and have good power. It is important to emphasize that
MC test procedures are not, with modern computer facilities, computationally expensive.

The above findings mean that tables of critical points are no longer required to imple-
ment normality tests. Much of the theoretical work in this context has focused on deriving
these tables; the reason is clearly the intractable nature of the relevant null distributions.
Here we showed that the technique of MC tests easily solves this problem and yields much
more reliable procedures.
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