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Abstract

We consider the problem of assessing the uncertainty of calibrated para-
meters in computable general equilibrium (CGE) models through the con-
struction of confidence sets (or intervals) for these parameters. We study
two different setups under which this can be done. The first one extends
ecarlier work from Abdelkhalek and Dufour (1998) and is based on a projec-
tion technique which allows the construction of confidence sets for calibrated
parameters from confidence sets on the free parameters of a (determinis-
tic) CGE model. We discuss in detail how this approach can be applied to
CES (Armington-type) function parameters frequently used in CGE models
and illustrate it on models of the Moroccan economy. The second method
allows one to extend the usual deterministic specification of CGE models
by adding stochastic disturbances to the equations of the model and then
to construct corresponding confidence sets for calibrated parameters using
simulation techniques. This method uses the classical concept of a pivotal
function for a parameter. We discuss in detail how this method can be ap-
plied to the calibrated parameters of a Cobb-Douglas production function.

Keywords: computable general equilibrium models, calibration, sensitiv-
ity analysis, confidence set, confidence interval, projection, Morocco.



Résumé

Nous considérons le probléme de la prise en compte de 'incertitude sur
les paramétres calibrés de modéles calculables d’équilibre général (MCEG) en
construisant des régions (ou des intervalles) de confiance pour ces parameétres.
Nous étudions en détail deux méthodes qui permettent de ce faire. La pre-
miére est une extension des travaux de Abdelkhalek et Dufour (1998) et
repose sur une technique de projection qui permet de construire des régions
de confiance pour les paramétres calibrés a partir de régions de confiance
pour les parameétres libres d'un MCEG déterministe. Nous discutons en
détail comment cette approche peut étre appliquée aux paramétres d’une
fonction CES (de type Armington) d’usage fréquent dans les MCEG et nous
I'illustrons sur des modéles de 1’économie marocaine. La seconde méthode
permet de dépasser le cadre déterministe usuel des MCEG en ajoutant des
perturbations aléatoires a certaines équations du modeéle pour construire des
régions de confiance pour les paramétres calibrés en utilisant des techniques
de simulation. Cette méthode utilise aussi le concept classique de fonction
pivotale d’un paramétre. Nous discutons en détail comment cette méthode
peut étre appliquée aux paramétres calibrés d’une fonction de production de
type Cobb-Douglas.

Mots clés: modeéles calculables d’équilibre général, calibration, région de
confiance, intervalle de confiance, projection, analyse de sensibilité, Maroc



1 Introduction

Computable general equilibrium (CGE) models have come into extensive use
for analyzing and simulating the effects of economic policy changes in de-
veloping and industrialized countries. Presentations and overviews of this
policy analysis tool may be found in Shoven & Whalley (1984, 1992), Manne
(1985), Devarajan, Lewis and Robinson (1986, 1994), Martens (1993), De-
caluwé and Martens (1988) as well as Gunning and Keyzer (1995). These
models are generally non-stochastic and strongly nonlinear. Results obtained
by simulating these models rely on several assumptions, pertaining both to
the behavior of agents and to the choice of exogenous variables (the “closure”
of the model). The nature and quality of the available data also affects the
results, whether base-year data in static models (the reference year in the
social-accounting matrix) or the stationary equilibrium in dynamic models.
The values assigned to the parameters of the behavioral functions, which
underlie the “calibration” of the model, are no less crucial. In fact, since the
work of Mansur and Whalley (1984) and even before, CGE model designers
have relied on calibration methods. These generally require a good deal less
time and effort than econometric estimation. Calibration relies on a largely
arbitrary distinction between “free parameters”, which can be obtained from
external sources or simply assigned on the basis of subjective judgements,
and “calibrated parameters” which are derived (“estimated”) from the for-
mer so as to reproduce the reference data (e.g. the base-year data). In these
methods there clearly exists a level of uncertainty attributable to the selec-
tion of free parameters for the model, since these contribute to the calibration
process.

The issue of the choice of values for the parameters of CGE models often
gives rise to a natural scepticism among those who need to build, analyze,
or use these models. In general, these values may be econometric estimates
drawn from other studies, figures based on international comparisons, or sim-
ply arbitrary values imputed with no supporting data. Flasticities available
in the literature are often contradictory and inconsistent. Frequently, they
are obtained using sectorial classifications different from those of the model,
and pertain to other time periods or even countries. The varying degrees
of uncertainty affecting these models transfers to the results of the simula-
tions [see Abdelkhalek and Dufour (1998)]. Since CGE models are rarely
estimated using econometric methods [except in the notable work of Jorgen-
son (1984) and his associates|, it is difficult to perform tests on the data or



build confidence regions for the calibrated parameters and the endogenous
variables of the model. Even if the general specification of the model is not
questioned, the credibility of the conclusions suffers from the uncertainty
associated with the reference-year data and with the choice of parameters.
As to this latter source of uncertainty, Mansur and Whalley (1984 | p. 100),
among others, emphasize the crucial nature of the latter step in the model
building process: “The choice of elasticity values critically affects results ob-
tained with these models”, and (p. 103) “The set of elasticity values used are
critical parameters in determining the general equilibrium impacts of policy
changes generated by these models.” Shoven and Whalley (1984) , in an
article summarizing the main studies realized up to 1984, recognize the key
role played by the selection of these parameters in determining economic pol-
icy simulations as well as the difficulties encountered by researchers during
calibration. They indicate that the method generally used is based upon an
arbitrary choice of a point estimate around which sensitivity analysis may be
performed. In particular, they write: “The procedure generally employed is
to choose a central case specification, around which sensitivity analysis can
be performed” [Shoven and Whalley (1984, pp. 1030-1031)].

Recognizing the seriousness of this problem, a number of authors have
proposed an assortment of approaches in order to translate parameter uncer-
tainty into a measure of uncertainty for the results of the simulations; see es-
pecially Pagan and Shannon (1985, 1987), Harrison (1986, 1989) , Bernheim,
Scholz and Shoven (1989), Harrison and Vinod (1992), Wigle (1986, 1991),
Harrison, Jones, Kimbell and Wigle (1993), DeVuyst and Preckel (1997) and
Dawkins (1997); for a more detailed description of most of these approaches,
see Abdelkhalek (1994) . These methods are fundamentally descriptive and
do not resort to a rigorous statistical framework. More recently, however, we
proposed a more systematic approach, permitting the construction of confi-
dence regions for the endogenous variables of CGE models in order to account
for free-parameter uncertainty; see Abdelkhalek and Dufour (1998) .

Calibration may be viewed as a two-stage estimation procedure by which,
starting from the values of the free parameters and the reference-year data,
values are assigned to the calibrated parameters. Like free parameters, these
may be interesting from an economic perspective. This method, widely used
in studies based on CGE models, has the advantage of being much less de-
manding than traditional econometric methods, both from the perspective
of data requirements and numerical procedures. However, this process has
received very little attention in the literature on CGE models. The only



theoretical work on the numerical specification, and particularly on the cali-
bration of CGE models, appears in Mansur and Whalley (1984). This work
was commented and completed by Lau [comment on Mansur and Whalley
(1984, pp. 127-135)]. The deterministic nature of these models has rarely
been criticized, and consequently the analysis and study of the calibrated
parameters has never been on the agenda of this literature.

In this paper we begin by formulating the problem of calibration in CGE
models, specifying two forms under which calibrated parameters appear in
them (Section 2). In the first form, they are only functions of the reference-
period data, while in the second one they also depend on the free parameters
of the model. Drawing on the work of Abdelkhalek and Dufour (1998) on
endogenous variables in CGFE models, we propose two statistical methods to
construct confidence regions for this type of parameter. The first (Section
3) is based on the concept of projection. It enables the model builder to
account for the uncertainty associated with calibrated parameters by con-
structing confidence regions for them using those of the free parameters. In
Sections 4 and 5, we illustrate this approach for the calibrated parameter of a
constant elasticity of substitution or transformation functions (the Arming-
ton form), frequently used in CGE models. In Sections 6 and 7, we attempt
to move beyond the deterministic framework typical of CGE models by allow-
ing stochastic disturbances to appear in some of the equations of the model.
We begin by discussing inference on the parameters of Cobb-Douglas type
production functions (Section 6), and then present a more general discus-
sion of the calibration of CGE models with equations containing disturbance
terms (Section 7). We conclude in Section 8.

2 Theoretical framework

In its most general form, a CGE model may be represented by a function M
such that:
Y =M(X,0,7) (2.1)

where Y is an m-dimensional vector of endogenous variables, M is a (gen-
erally nonlinear) function which may be analytically quite complicated but
remains computable, X is a vector of exogenous or economic policy variables,
[ 1s a p-dimensional vector of free parameters belonging to a subset € of R?,
and -y is a vector with k elements containing the parameters to be calibrated.



From a theoretical viewpoint, 3 and v are not fundamentally different.
However, they play very different roles in these models. While the elements
of § are parameters (e.g., elasticities) of the behavioral equations of the
model (utility/demand, production/supply, imports, exports, etc.), those of
v are generally scale or share parameters. The calibration procedure thus
consists of setting the vector of parameters v to ezactly reproduce the data
of a reference year, given a point estimate of the free parameters 3 of the
model. Thus, it is not surprising that the choice of these parameters has a
large influence on the simulation results.

More formally, consider the equation:

where Yy and X, are vectors of endogenous and exogenous variables respec-
tively for a given base year. We solve for 7y (assuming that the solution exists
and is unique):

v = H (Yo, Xo,0) = h (7). (2.3)

When an estimate [ of f is available, the vector v is estimated by replacing
(3 with its estimate in equations (2.3) and (2.2) . Furthermore, we can usually
decompose 7y into two subvectors 7y, and +,, where v, (of dimension k) is
independent of 3. We can then write

Y1 = h1 (Yo, Xo) - (2.4)

The second subvector 7, (of dimension ky = k — k) is, on the other hand, a
function of 3 as well as of Xy and Yj, hence

Vo =Dy (Yo, Xo, 8) = ha (B) . (2.5)

To the extent that the vector of exogenous variables (X) is known, and
bearing in mind that the deterministic nature of the model is not at issue,
we may simplify the notation and write the model in the compact form

Y=3(X,8)=9(9), (2.6)

where the functions § and g are defined for a given base year (after cali-
bration), while g also treats the vector X as given. This formalization and
qualifications on the calibrated parameters will prove to be very useful in the-
oretical developments and even indispensable for the numerical derivations
assoclated with some approaches presented in this paper.
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Generally, we will be interested in the effects of one or several economic
policies which modify the elements of the vector X. Solutions to the model
M, obtained for different values of exogenous variables X but a single esti-
mate value of # may be compared and incorporated into a decision-making
process. In principle, § must be estimated econometrically, and it is pos-
sible to associate measures of uncertainty (standard deviations, confidence
regions) with it. However, this type of information is generally ignored in
appraisals of the reliability of the results.

We also note that the difficulties associated with the calibration of CGE
models are not explicitly considered by usual methods for sensitivity analysis.
These methods only deal with the estimations of the vector 3, not . Notice
that, in CGE models, the dimension of the joint vector (3',+/ )/ may be very
large and econometric estimation difficult, if not impossible. In fact, the
number of parameters of a CGE model increases rapidly with the number
of sectors and consumers. Statistical data for high levels of disaggregation
are frequently not available. The number of parameters to estimate may
easily surpass the size of the sample. Thus, calibration may be viewed as an
estimation procedure for «. It is clear that this procedure only yields point
estimates and does not account for the uncertainty inherent in the estimation
of the free parameters 3, nor for that associated with the social-accounting
matrix for the reference year [see Byron (1978) and Dawkins (1997)].

3 Projection-based confidence sets

In this section, we develop an approach that allows us to evaluate the uncer-
tainty associated with the subvector of calibrated parameters, 7,, deriving
a confidence region from that of the vector of free parameters 3. As in Ab-
delkhalek and Dufour (1998), we assume that we have a confidence region C'
with level 1 — « for the parameter . In other words, C' is a subset of R? such
that

PlpeC]>1—-« (3.1)

where 0 < o < 1. Two different interpretations may be put forward for the set
C. First, we can assume that C' is a sampling (frequentist) confidence region
based on previous statistical studies and observations, i.e. C' = C'(Z) is a
random subset of R? generated by a sample Z such that the probability that
a given vector (3 is contained within C (7) is greater than or equal to 1 — .
Second, in other situations we may treat the parameter 3 as stochastic and



consider that § € C is a Bayesian confidence region for 3. The arguments
developed below are applicable under anyone of these two interpretations.
The region C' of R? may be discrete, compact, connected or continuous.

Let hy (C) represent the image of C' over a calibration function hy defined
in equation (2.5):

ha (C) = {, € R¥ : v, = hy (B,) for at least one 3, € C'} . (3.2)
Clearly, we have the implication:
BelC=hy(B)€h(C), (3.3)

hence

Ply,ehy (O)| > PleCl>1—q. (3.4)

We see that hy (C) is a conservative confidence region for 7y,, with level
greater than or equal to 1 — « [see Rao (1973, Section 7b.3, p. 473) or
Gouriéroux and Monfort (1989, volume 2, pp. 243-250)].! In particular,
when C' is a sampling confidence region for 3, we have:

Plhy(3) € hy (C)] > P[BeC]>1—a, VY3eQ. (3.5)

We can also obtain individual confidence intervals for the elements v, =

ha; (3) of the vector hy (8) = (ha1(3), ..., hax, (8))". In fact, since

ho (ﬂ) € hy (C) = [hQZ (ﬂ) € ho; (C), for 7 = 1, . ,k‘Q] , (36>
we have:
> Ply, € he (O)]
> 1—a,j=1,... k. (3.7)

Since the function hy is generally nonlinear, the set hy (C') may be difficult
to determine or visualize. In particular, it is not usually an interval or an

ellipse. Nonetheless, as shown in Abdelkhalek and Dufour (1998), relatively
simple forms may be derived from fairly weak assumptions on the function hy

IFor further examples of the projection technique in econometrics, see Dufour (1989,
1990, 1997), Dufour and Kiviet (1996, 1998 ), Dufour and Jasiak (1998), Kiviet and Dufour
(1997).



and on the set C representing the confidence region of 3.2 In fact, if we assume
that hy is continuous and that C' is compact in RP, the confidence region
hy (C) for v, is also compact in R*2, and the univariate confidence regions
for the elements of v, are compact in R. If he is continuous and C' is connected
in R?, the confidence region hy (C) for 7, is also connected in R*? and the
confidence regions for the elements of v, are connected in R, and thus take
the form of intervals. Finally, if hy is continuous and if C' is also continuous
(i.e. connected, closed and bounded) in R, then the confidence region hy (C')
for 7y, is also continuous in R* and the univariate confidence intervals are
continuous in R. In particular, in this case the individual confidence regions
ho; (C), i = 1,... kg, assume the shape of closed and bounded intervals:
hai (C) = [v%,7%:] , where v3; > —oc and 7y, < 400, i =1,... k.

In general, we can always construct simultaneous confidence intervals for
the different elements of hs (). We simply consider the extreme values:

hy; (C) = inf {hy; (8) : B € C}, hy; (C) = sup {hy; (B) : B € C} (3.8)

where —oo < 7k < 0o and —co < 75 < 0o, i =1,..., ko, . Since [hy; (B) €
hQZ‘(C), izl,...,kQ] = [hé'l(C) < h21<ﬂ) < hg(C), izl,...kQ],Wehave:

P [h3;(C) < 795 < hiy; (C)] P g (C) < ygs < hg (C) i =1, k]
Plyy € hoi (C),i=1,... k]

l—a,forj=1,... ko. (3.9)

AVARAVARLYS

It is thus sufficient to minimize and maximize each element of 7y, = hs (()
subject to the constraint 3 € C to obtain (simultaneous) level 1—« confidence
intervals for all of them.

Using these results we can construct confidence regions for the endogenous
variables of CGE models from the confidence regions of the two parameter
vectors (3 and 7y, (free, and calibrated dependent on the free) or simply from
those of the vector 8 of free parameters, having eliminated the calibrated
parameters depending on the free parameters while accounting for the un-
certainty associated with them. This result allows us to substantially simplify
the numerical procedures, especially when the dimension of vector 7, is large.
We illustrate the process of building these confidence regions of type v, (C)
with an example in the following sections.

2These assumptions on hy are typical in CGE models.



4 Calibrated parameters for CES and CET
functions

To illustrate the approach proposed above, we will now perform a detailed
analysis of the case of an Armington-type import function commonly used in
CGE models. This general form, which can be subject to various interpreta-
tions, is used to model sectorial production, exports, portfolio composition
(models with financial flows), etc. In other words, this example covers a large
number of cases of calibration in the presence of free parameters (elasticities)
in CGE models. This function is linearly homogenous in its arguments, the
number of which depends upon the model (inputs or factors of production,
origin of imports, markets for exports, substitutable financial assets). In our
example we have an import model in which a consumer derives utility from
consuming a composite good denoted (). This good is comprised of imported
goods M and domestic goods D). The consumer’s problem is to choose a
combination of quantities M and D) which minimizes overall expenditure,
given the two prices pys and pp and the level (). The Armington form of this
CES function is given by

1

Q=B[SM "+ (1-86D"] 7. (4.1)

To find a more direct interpretation, we let o = 1/(1 + p), i.e. p =
(1 —0)/0. Equation (4.1) may then be rewritten:

o—1

Q=8 [61\4”7’1 +(1-6) D"T’l} (4.2)
where B is a constant, 6§ a share parameter, and o a (constant) elasticity
of substitution between imported and domestic goods. In our terminology,
given the deterministic calibration procedures applied to this type of function
in CGE models [see Mansur and Whalley (1984)], B and § are calibrated
parameters while o (or p) is a free parameter estimated or borrowed from
outside the model, independent of the data from the social-accounting matrix
for the reference year. The first-order condition associated with this problem
is given by the equality between the price ratio for the two types of good and
the marginal rate of substitution between imported and domestic goods:

e [ M



or

Seleti] - () w

This method of modelling imports, examined in detail by de Melo and
Robinson (1989) and by Devarajan, Lewis and Robinson (1990), is exten-
sively used in CGE models.? This seems more realistic than the classic for-
mulation with perfect substitutability between goods. The CES function
is sufficiently tractable for the analytical derivations and the calibration of
parameters, despite the fact that it introduces a free parameter.

To calibrate the parameters of this type of function in CGE models dif-
ferent techniques have been used (estimates, literature reviews, international
comparisons, or arbitrary fixing) to assign a value (&) to the free parame-
ter — the elasticity of substitution (¢) in this case. This value is crucial
and constitutes the first step of the calibration process. From the first order
condition, [equation (4.4)], from the data for Qo, My and Dy, and from a
normalization assumption imposed on the base-year prices, we derive:*

() =15 (2)

yielding a unique estimate for é given by

SHES

Py (Mg
ppg \ Do

8:

— = ho1 (6) . (4.6)
PM Mo \°
L+ g (%)
Now it remains to calibrate the scale parameter B. From equation (4.2)
and from the base-year data, we find:

< _
-1

B =Q/ [6M0_1 +(1-8) DO_I} = Iy (6) . (4.7)

In equations (4.6) and (4.7) the essential role played by the free parameter
in determining the values of the other parameters appears clearly. From

3For a review of general equilibrium studies having used these forms, see Decaluwé and
Martens (1988).

4An assumption concerning the base-year prices is usually made in CGE models. All
prices, except those which include taxes or subsidies, are normalized to one for the base
year (i.e. are treated as indices).



this deterministic approach to calibration, we seek to construct confidence
intervals for the two calibrated parameters, 6 and B, given that of the free
parameter o. To achieve this we work, not with a point estimate for o, &,
but rather with a set estimate.

Moving from the definition for a continuous function of a confidence in-
terval C' C R for o given in expression (4.6) towards a subset hgy (C) C R,
we analytically illustrate the construction of what is to become a confidence
interval for 6. To simplify notation, we write:

1
N (o) = Mo <%> T Do () (4.8)
Pp, \ Do PDo
hence N( )
ag
S=nh = — 4.9
21 (U) 1—|—N(0) ( )

We now wish to examine the behavior of the function hgy, particularly
within the confidence interval C. From equation (4.9) we see that

d N (@)1+N(@)]-N()N(o) _ N'(o) (4.10)
do T+ N (@) [1+N ()
where
, dN  pug 1 Mo Mo :
SR T e v |1 G A

So it is clear that the sign of dé/do is the same as that of dN/do, i.e

o (2) = () o [ ()] <[ (2] a2

where sgn(z) = 1if x > 0, sgn(z) = —1 if z < 0,and sgn(z) =0 if z = 0.
If Dy > My, then (dé/do) > 0 and vice versa. This result, which we have
never encountered in the literature on CGE models, is quite surprising and,
depending on the context, it may have interesting economic interpretations.
We see that the function hg; is continuous and strictly monotonic. If we
assume that the confidence interval for o (C) is a closed bounded set of the
form [g,7], with level 1 — «, then one of the two intervals [hoy (@), hoy ()]
and [hy1 (7), ha1 (¢)] is a level 1 — « confidence interval for the calibrated

10



parameter 8.° In other words, one of the following implications must hold:

> 1—oz:>P((5€[h21(g),h21(5)])21—a, (413>
> 1—oz:>P((5€[h21(5),h21(g)])21—a (414>

In addition to the share parameter 6, a similar analysis may be performed
on the scale parameter B. This work is analytically not as simple as that on
8, but remains feasible numerically (see Section 5).

Since the calibration procedure is usually performed in a pre-defined or-
der, accounting for the uncertainty associated with the calibrated parameters
depending on the free parameters is tantamount to clearly specifying the con-
fidence regions for the free parameters of the model.

5 Application to CGE models of Morocco

In this section, we apply the projection method described in Section 3 to
the construction of confidence sets for the calibrated parameters (which de-
pend on [ree parameters) in the context of two different models for Morocco.
The first one is a submodel of a type 1-2-3 CGE model [Devarajan, Lewis
and Robinson (1990)] studied in Abdelkhalek (1994) and Abdelkhalek and
Dufour (1998). The second one is a submodel of a two-sector model (agricul-
ture and industry) used by Abdelkhalek and Martens (1996). Both models
include imported goods (M) and locally produced goods (D), which are ag-
gregated through an Armington-type CES function. The Moroccan reference
year data come from 1985 for the first model and from 1990 for the second
model. Calculations and optimizations were performed using the GAMS-
MINOS program [see Brooke and al. (1988)].°

Given the reference-year values (o, Mo, Do, pa, and pp, and a level
1 — « confidence region C' for the free parameter o, the confidence intervals
are obtained by minimizing and maximizing the values of the calibrated
parameters subject to the restriction that the free parameter remains in its
confidence region. Note the confidence set C for o may be truncated to only
contain values in a set Cy of economically admissible values; the resulting
smaller confidence set C'N Cp has the same level as the original set C' [see

5 A study by Reinert and Roland-Holst (1992) of 163 sectors of the U.S. economy reveals
that this elasticity o falls between 0.14 and 3.49.
5The program is supplied in Appendix B
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Abdelkhalek and Dufour (1998)]. The set C'N Cy to which o is restricted is
usually specified through a set of nonlinear inequalities. More precisely, we
solve the following problems:

(pasy /Py) (Mo/ Do)

1+ (paso/Ppo) (Mo/ Do)
subject to o € CNCy; (5.1)

minimize and maximize § = hgy (0)

Q=

a

o—1

o1 o1
minimize and maximize B = hgy (0) = Qo/ [6My + (1 —6) Dy°
subject to & = hg (o) and o€ CNCy. (5.2)

It is also useful to remember that the price of the imported goods is given
by the equation

PMy = Pumo(L + tm) Eo (5.3)

where p,mo 18 the international price of imports, t,, is the tariff on imports
and Fj i1s the nominal exchange rate, evaluated at the reference year.

The Moroccan data used in these simulations are summarized in Table 1,
while the confidence intervals for calibrated parameters 6 and B appear in Ta-
ble 2. For the one-sector model calibrated on the reference year 1985, we used
for the free parameter o the 95% confidence interval [0.7838, 2.0809], which
is based on the estimations presented in Abdelkhalek and Dufour (1998).
The results in Table 2 indicate that this interval on o gets translated into
the intervals [0.137, 0.361] and [1.568, 1.862] for 6 and B respectively. These
intervals show there is a non-negligible uncertainty on the calibrated para-
meters even though the confidence intervals remain remarkably tight and
informative. For the two-sector model (calibrated on 1990 data), we used
the wider interval [0.5, 4.5]. The latter was a subjectively determined, al-
though quite consistent with the range of values reported by Reinert and
Roland-Holst (1992) for similar elasticities. Not surprisingly, we find in this
case wider (although still informative) intervals for the sectorial parameters
6 and B associated with agriculture and industry: § € [0.004, 0.331] and B €
[1.010, 1.658] for the agricultural sector, § € [0.058, 0.458] and B € [1.470,
1.988] for the industrial sector.
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TABLE 1: Moroccan data used in the calibrations®

Variables SAM 1985 SAM 1990 | SAM 1990
Agriculture | Industry
Qo 252653 69589.32 317195.92
My 42806 4248 59327.9
Dy 209847 65341.32 257868.02
TAX My 9046.7 -391.79 10048.1
tm 0.211 -0.0922 0.16936
PDq 1 1 1
PW M, 1 1 1
Ey 1 1 1
PM, 1.211 0.9078 1.16936
o [0.7838, 2.0809] [0.5, 4.5] [0.5, 4.5]

*SAM: social accounting matrix. Data for Qp,Mp,Do, TAXMy,are in millions
of dirhams and were obtained from GREI (1992) for 1985 and from Ab-
delkhalek and Martens (1996) for 1990. The confidence intervals for o are
econometric estimates for 1985 from Abdelkhalek and Dufour (1998) | while
those for 1990 are subjectively determined although consistent with the elas-
ticity values reported by Reinert and Roland-Holst (1992).

TABLE 2: Confidence intervals for § and B

| Parameter || o | B |
Confidence bounds || Lower | Upper | Range | Lower | Upper | Range
1985 0.137 | 0.361 | 0.224 | 1.568 | 1.862 | 0.294
Agriculture 1990 0.004 | 0.331 | 0.327 | 1.010 | 1.658 | 0.648
Industry 1990 0.058 | 0.458 | 0.400 | 1.470 | 1.988 | 0.518
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6 Confidence regions based on equations with
disturbances

In this section, we present an approach for constructing confidence regions
for the calibrated parameters of the model, going beyond the deterministic
framework which is typical of CGE models. This method introduces random-
ness, and thus uncertainty, into some or all of the model equations used for
the deterministic calibration, in order to construct simultaneous confidence
regions for the calibrated parameters.

Before generalizing the proposed approach (Section 7), we shall discuss
the simple case of a Cobb-Douglas production function with constant returns
to scale for the factors labor and capital. Since primary inputs are required
in the production process, “production” is defined as value added. This type
of modelling and these functional forms are frequently used in CGE models
because of the simplicity, of the resulting expressions and calibration. The
general form of this type of production function in the presence of several
categories of the labor input and a single factor capital per sector is given

by:
X, =A]] Lnyfl’El‘”’l) . (6.1)
1

where X; is production (or value added) in sector i, A; is a scale parameter,
L;; is the quantity of the type [ labor used in sector ¢, K; is the quantity of
capital used in sector 7, and ¢, ; the elasticity of production of type ! labor in
sector 7. All of the following presentation may be derived from equation (6.1).
In order to simplify the notation, we shall ignore the index 7 representing the
sector and consider only one type of labor. Thus, production function (6.1)
assumes the following simpler form:

X = ALPKU9, (6.2)

In standard CGE models certain assumptions are made concerning the
structure of markets. These assumptions facilitate accounting for the be-
havior of agents, particularly of firms, in each sector of the economy. This
information is used to derive factor demands from profit maximization pro-
grams. Since our concern here is primarily econometric, we shall assume that
the sector is perfectly competitive. The first-order conditions are:

pX6=wl, (6.3)
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where p is the price of good X (or the price of the value added), and w is the
wage rate of labor. To calibrate the parameters of this type of function, model
builders only require reference data for the base year from a social-accounting
matrix. No information on the free parameters is required. The necessary
data for the reference year comprise: the sectorial value of production (or the
value added, ppXo) and the corresponding total wage bill (wgLp) . Equation
(6.3) then yields a unique estimate for ¢, based on a single observation (the
base year), owing to the deterministic nature of the model:

woLo
poXo

From this estimate for 6 and from equation (6.2), we can derive an estimate
7

8:

(6.4)

for the scale coeflicient of the production function (A) :

A= % : (6.5)
Ly Ko

Given the aforementioned assumptions, it is obvious that this calibration
procedure may be applied to production functions of this type for all sectors
and factors of production.

We now consider a production function (6.2) incorporating a stochas-
tic disturbance term — applicable to this example as well as similar ones.
The notion of introducing random shocks into some of the equations of a
CGE model (those used in the deterministic calibration) is not entirely new.
Mansur and Whalley (1984) proposed stochastic forms for CGE models which
allow the estimation of the parameters, provided there is a sufficient number
of observations. However, this is generally not possible (e.g. when the data
only pertains to a single base year). This is the case we are concerned with
here. Assume that the production function (6.2) and the first-order condition

(6.3) are stochastic, as follows:
X = ALPK(Deu (6.6)
pXé6 = wle", (6.7)

where (u,v) is a vector of random variables with a known distribution that
can be simulated. Two equations can be written for the base-year data:

Xo = ALKS Vet (6.8)

"Notice that we have again normalized the prices, allowing us to impute the value poXo
to the volume Xj.
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p0X06 = woL()@UO s (69>
where A and ¢ are the two unknown parameters. We then deduce:

woLo
§ = —2 0w 6.10
PoXo (6.10)

Xo
A = MT)U/ . (6.11>
olteg €7

The equations for the deterministic framework derived in (6.4) and (6.5) no
longer obtain, because they only hold true when the random errors u and
v are 1dentically zero. In the stochastic model these two equations yield
estimators for 6 and A respectively. Thus, by definition,

2 wo Lo

(50 — pOXO (612>
irrespective of A. Let
Xo
LK
In particular, for 8o we obtain:
. PN X
LYKy
From equations (6.11) and (6.14) we find
A LéK(lﬂs) wo
Ao _ Lofto € (6.15)

A

Lol )

or, equivalently,

which, upon taking logs, yields

In (Ao) CIn(A) = (80 - 5) In <%> tup. (6.17)

0
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Furthermore, from equations (6.10) and (6.12) we derive:

% _ % (6.18)

or

In () — In (80) = vp. (6.19)

From either equation (6.18) or (6.19) , we see that 30/6 or [ln (50) —In (6)}

are pivotal functions for the parameter 6. A pivotal function for 6 is any sto-
chastic function Z defined on the observations and on the parameter ¢ such
that the distribution of Z does not depend on 6 despite the fact that this pa-
rameter appears in the arguments.®* When we have a pivotal function which
can be inverted to isolate the parameter of interest, we can construct confi-
dence intervals for that parameter. This is the procedure we shall use here.
Given any known distribution of the vector (ug,vg), simulated confidence
intervals may be constructed for the parameters 6 and A or for functions of
these parameters. Notice that, unlike Mansur and Whalley (1984), we re-
quire neither that (ug,v9) be normally distributed nor ug, vo be independent.
However, by making these assumptions we benefit from significant practical
simplifications.

In the case we are about to examine, notice that 8o /6 only depends upon
vp (and not on ug). We can write

P(8ofs = ca) = P(e™2en) =a (6.20)

where « is a constant fixed a priori and ¢, is the corresponding critical value,
which can be derived from the theoretical or simulated distribution of vy.
Thus we have

P (80/5 < ca) —1-a, (6.21)

and

. wo L
I‘gz{éERzéo/égca}:{66]1%:%62 00} (6.22)
PoXo
is a level 1 — a confidence interval for the parameter 6.
Similarly, we can construct a confidence interval for the parameter A. In a
first instance, if we assume that 6 is known and that the unknown parameter

8See Gouriéroux and Monfort (1989, volume 2, p. 24), for example.
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is the scale parameter A, we can use equations (6.11) and (6.13) to derive:
e’ = Ag/A (6.23)

which, as before, yields a pivotal function for A and allows the construction
of a confidence interval for this parameter. Nonetheless, as ¢ is generally
unknown, this procedure may not be very useful. The two equations (6.16)
and (6.17) cannot yield a pivotal function for A. FEven if we use equations
(6.17) and (6.18) to eliminate 8, the ensuing expression

to = In (AO) —In (A) + 8 (" — 1) In (Ko/Lo) (6.24)

does not constitute a pivotal function for A.

When 6 is unknown it is thus difficult (if not impossible) to construct
a similar confidence interval for A. Nonetheless, it is possible to find a two-
dimensional pivotal function for the two-dimensional parameter (A, §) . Using
equations (6.17) and (6.19) we may write:

Cfu\ [ m (Ao) ~In(A) + (5 - 80) In (Ko/Lo)
W_<UO>_ 1n(5)—1n(80)

Since the distribution of the vector (ug, vg) is fixed and known by assumption,
we indeed have a pivotal function for the pair [In (A4) , 8] . Since the covariance

(6.25)

matrix, {2, of this vector is known, we can calculate the following statistic:
T (Uo, Uo) = W’QJW . (626>

By assumption, this distribution can be simulated. In particular, if we assume
that the distribution of vector (ug, vg) is multivariate normal, this distribution
will be x? (2) . Consequently, we can find the point ¢, such that

P[T (ug,v0) < o] =P [WQ'W <] =1-a, (6.27)

where « is a level fixed a priori. Finally, a level 1 — a confidence region for
the pair (A, 6) is given by

Tea ={(6,A) R WQ'W <o} . (6.28)

The procedure described in this Section for Cobb-Douglas production
functions covers a number of cases used in CGE models. Similar cases may
be dealt with using the same techniques to construct confidence regions for
all the calibrated parameters of a model.
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7 Confidence regions from equations with dis-
turbances: general approach

In this section, we generalize the approach based on simulations to construct
confidence regions, compatible with an underlying deterministic calibration,
for all the calibrated parameters of a CGE model. To accomplish this, we re-
vert to the first three equations describing the basic structure of the problem,
given in Section 2:

Y = M(X.8.7) . (7.1)
Yo = M<X07ﬂa’7)a (7-2>
v = H (Y, Xo,8)=h(s). (7.3)

To begin, assume that there are no free parameters in the model, i.e.
that all parameter values can be derived from the reference-year data (such
as a soclal-accounting matrix). We shall return to examine the case with free
parameters. Equations (7.1), (7.2) and (7.3) can thus be simplified to:

Y = M(X,y), (74
Yo = M(Xo,7), (7.5)
7= H(Y,X). (7.6)

Contrary to what is implied by the general formulation of the model as ex-
pressed above, the calibration process usually only uses some of the equations
of the model. Generally, these are the equations which specify the behavior
of agents, the corresponding first-order conditions, and sometimes certain
equilibrium conditions. The remaining equilibrium conditions, the account-
ing identities, and the definitions are not used in the calibration. For this
reason, and because it is the econometric aspect of calibration that we are
interested in, we may rewrite the calibration sub-system as

VE=5(X%7), (7.7)

hence

v =Hs (Y5, X5) (7.8)

where Yg® and X respectively represent the model’s subvectors of endoge-
nous and exogenous variables used for calibration. So far we have only been
working within the deterministic framework of CGE models.
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The stochastic extension to the model which we are about to consider
consists of associating additive error terms (for the demand functions) and
multiplicative error terms (for the production or similar functions) with the
system of equations in (7.7), as proposed by Mansur and Whalley (1984).
Let the relation in (7.7) include a vector of additive disturbances U :°

YS=8(X5 ) +U (7.9)

where U is a vector of random terms of the same dimension as Y, with
any distribution which is known and can be simulated. In particular, the
distribution of U need not be normal.!® With no loss of generality, we may
assume that the expectation of U is zero, and that the covariance is known
and equal to X. It is thus clear that the deterministic framework has been
abandoned, albeit within the context of calibration.

As in equation (7.5) , but now including the random term, we can write:

Yy =S (X5,7) + Uo (7.10)

where Uy has the same distribution as U. Like In the case of deterministic
calibration, we derive:

v = e (Y5 ~ U X5) (7.11)

Consequently, equation (7.8) no longer obtains. It is only true when Uy is a
vector of zeros. Thus, in this stochastic context the function Hg (YOS VXS )
yields an estimator 4, for v :

Yo = Hs (Y5, X§) . (7.12)
This, combined with the definition of this estimator (7.7) yields:
Yy =S5 (X5, 40) - (7.13)

The goal of this step in the proposed procedure is to derive the scalar
or vector relationships from equations (7.10) and (7.13) (possibly after per-
forming some algebraic transformations as required by certain equation struc-
tures), allowing us to solve for some or all of the elements of U (or for some

Letting this vector enter the equation multiplicatively does not affect our results (see
the formulation in Appendix A).

10The elements of U may be degenerate at zero if by their economic nature the equations
used in the deterministic calibration do not contain random disturbances.
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algebraic transformation of the vector U or its elements). Since the distribu-
tion of U is known, these transformations allow us to derive a pivotal function
for 7. Using equations (7.10) and (7.13) we easily find the following:

W (X3, %0,7) = S (X5, %) — S (X5, 7) =Us. (7.14)

Since the distribution of Uy is known (by assumption), the left-hand side of
expression (7.14) defines a pivotal function for the parameter . Moreover,
in a calibration system like the one defined in equations (7.7) and (7.8) the
number of calibrated parameters contained in <y (k in our case) is always
equal to the number of equations. In other words, k is the dimension of
v, Y9, and U. Lau, commenting on Mansur and Whalley (1984), makes a
similar remark. If ¥ is the covariance matrix of U, we may simulate the
pivotal function 7' (7y) as follows:

T(y) =W (X5:90:7) &7'W (X5, 50,7) = U'S'U. (7.15)
We find ¢, such that:
PIIr(7)<ca]=PUS U< o] =1-a. (7.16)
Finally, the confidence region we seek for v is defined as:
I={veR":T(y)<cu} . (7.17)

In practice, the appropriate critical point ¢, may not be analytically
computable. To obtain an exact confidence region, we may fall back on
Monte-Carlo tests [Dwass (1957), Barnard (1963) , Dufour and Kiviet (1996,
1998), Dufour (1995)]. By assumption, it is possible to generate N indepen-
dent and identically distributed representations, Uy, ..., Uy, of the vector U
using Monte-Carlo techniques and, by extension, N independent and identi-
cally distributed representations, T; = U/ 'U;, i = 1,..., N, of the pivotal
function, T (). Thus, the variables T'(v), Ti,..., Ty, are independent and
identically distributed.

Now consider:

FN@:)ﬁ[Zs@—m =Ly
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where s(z) = 1 if x > 0 and s(z) = 0 if z < 0. If we assume that the

distribution of T'(7) is continuous, we easily see that

I[(1—a)(N+1)
N+1 ’

where [[z] is the largest integer less than or equal to z. In particular, if

(1 — ) (N +1) is an integer, we have:
P{gnT(y)]<1l—a}=1-a, ac(0,1). (7.20)

Plin[T(y)]<1—a} = fora € (0,1), (7.19)

It follows that the set
LyN)={v:ian[T (M <1—a}, (7.21)

is a level 1 — « confidence region for ~.

So far we have assumed that the model contains calibrated, but not free,
parameters. Now we shall consider the case in which both parameter types
appear in the model. This amounts to combining a priori information on
the free parameters with the distributions of random variables in the model
to construct confidence intervals for the calibrated parameters. If we can
condition on a point estimate of the free parameters, we revert to the case
discussed earlier in this section since the conditioning eliminates the extrinsic
uncertainty. However, if the two sources of uncertainty are jointly accounted
for, the approach proposed for the case with no free parameter changes, but
not fundamentally. In fact, alongside the equations used in the deterministic
calibration, and which are now considered to contain disturbances which are
either additive or multiplicative, we now add not a point estimate of the
vector of free parameters nor a confidence region for this vector, but rather
an estimator with a distribution that is known a priori.*!

For example, consider the case of constant elasticity of substitution or
transformation functions, like the Armington function we examined in Sec-
tion 4. We let the function and its associated first-order condition contain
two multiplicative errors in the following manner:

QO = B [5M"T’1 +(1-6) D%} T en, (7.22)

v ()

'1Such hypotheses are often made in sensitivity analysis of CGE models [see, for exam-
ple, Harrison and Vinod (1992) and Dawkins (1997)].
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where u and v are random variables. The vector (u, v) need not have a normal
distribution, nor is it required that v and v be independent. Moreover, we
assume an a priori distribution for the estimator ¢ of the free parameter o.
If we have reasons to suspect that the distribution of this parameter is not
independent of the vector (u,v) , we need to consider the joint distribution of
(6,u,v), and its covariance matrix must be estimated before we can perform
simulations. It remains to find the pivotal function for 6 and B — not
a negligible task from an analytical perspective. The distribution of this
pivotal function will be related to that of the vector (6,u,v).

&8 Conclusion

In this paper we have formalized the concept of calibration in CGE models
and developed two statistical methods for constructing confidence intervals
for the calibrated parameters of these models. One is based on a projection
technique which allows the construction of confidence sets for calibrated pa-
rameters. It greatly facilitates the construction of confidence regions for the
endogenous variables of the model. After discussing numerical methods for
implementing the approach developed, the latter was illustrated on a CES
function (the Armington function) frequently used in CGE models. The
second method allows one to extend the usual deterministic specification of
CGE models by adding stochastic disturbances to the equations of the model
and then to construct corresponding confidence sets for calibrated parame-
ters using simulation techniques. This method uses the classical concept of
a pivotal function for a parameter. The general nature of this procedure
allows it to apply to several cases that frequently occur in CGE models. We
used a Cobb-Douglas production function to illustrate it. These two new
methods of statistical inference in CGE models go part way to solving one
of the most serious econometric problems associated with these models and
provide a way to manage the issue of uncertainty in the calibration of CGE
models.
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A Multiplicative disturbances

Generally in economics, equations are assigned multiplicative stochastic terms
to assure non-negativity of the endogenous variables. We use this assertion
in the proof. Let equation (7.7) contain multiplicative errors disturbances as
follows:

Y =US (X*,9) (A1)

or

VY =85(X5,y) U (A.2)

where U is a square diagonal matrix whose dimension equals the number
of elements of Y*. The distribution of the elements of U is known and can
be simulated, it does not need to be normal.’?> With no loss of generality,
we may assume that the expectation of the elements of U is unity, and the
known covariance matrix is denoted 3. Considering our comment on the
non-negativity of the endogenous variables, and thus of the random terms
associated with the equations, (A.1) may be written:

In (V) =In(U3) +In[S; (X*,7)], i=1,... .,k (A.3)

With this form, if the disturbance terms were additive the logarithmic
transformation would not be performed. With the appropriate changes in
variables we revert to the additive disturbances dealt with in the text.

12The elements of U may be degenerate at 1 if by their economic nature the equations
used in the deterministic calibration do not contain random disturbances.
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B GAMS-MINOS program for the applica-
tions

$TITLE PROJECTION METHOD APPLICATION
$TITLE ARMINGTON-TYPE CES FUNCTION
OPTION NLP = MINOS5;
* A MODEL OF TYPE 1-2-3 AND A TWO SECTOR MODEL
* PARAMETERS DECLARATION
* THE REFERENCE-YEAR VALUES FOR THE CALIBRATION
* (OBTAINED FROM MOROCCAN SAM 1985 AND 1990)

PARAMETERS

PDO PRICE OF DOMESTIC GOOD IN THE REFERENCE-YEAR

PWMO  INTERNATIONAL PRICE OF IMPORT IN THE REFERENCE-
YEAR

EO NOMINAL EXCHANGE RATE IN THE REFERENCE-YEAR
(FOR CONVERSION)

PMO DOMESTIC PRICE OF IMPORTED GOOD IN THE REFERENCE-
YEAR

QO DEMAND FOR THE COMPOSITE GOOD IN VOLUME IN
THE REFERENCE-YEAR

MO IMPORTS IN VOLUME IN THE REFERENCE-YEAR

DO INTERNAL DEMAND FOR DOMESTIC GOOD IN THE REFERENCE-
YEAR

TMO TARIFF ON IMPORTS IN THE REFERENCE-YEAR

TAXMO TAX ON IMPORTS IN THE REFERENCE-YEAR

VARTABLES

* IN THE PROJECTION APPROACH TO CONSTRUCT CONFIDENCE
SETS FOR THE CALIBRATED

* PARAMETERS, SIGMA, DELTA AND BM ARE VARIABLES

* THEY ARE A PARAMETER IN STANDARD CGE MODEL

SIGMA ELASTICITY OF SUBSTITUTION BETWEEN IMPORTED
AND DOMESTIC GOODS

BM SCALE PARAMETER IN THE CES FUNCTION.

DELTA SHARE PARAMETER IN THE CES FUNCTION

OoBJ OBJECT VARIABLE IN THE OPTIMIZATION PROGRAM

* DATA AND CALCULUS
SCALAR
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PDO /1/

EO /1/

PWMO /1/

$SONTEXT

* REFERENCE-YEAR DATA FOR 1985
DO /209847 /

MO /42806/

TAXMO  /9046.7/

$SOFFTEXT

$SONTEXT

* REFERENCE-YEAR DATA FOR THE AGRICULTURAL SECTOR 1990
DO /65341.32/

MO /4248.00/

TAXMO  /-391.79/

$SOFFTEXT

$SONTEXT

* REFERENCE-YEAR DATA FOR THE INDUSTRIAL SECTOR 1990
DO /257868.02/

MO /59327.9/

TAXMO  /10048.10/

$SOFFTEXT

QO = MO + DO;

TMO = TAXMO / MO;

PMO = PWMO*(1+TMO)*EO;

DISPLAY DO, MO, QO, PWMO, EO, PDO, PMO, TMO, TAXMO;

* INITIALIZATION OF VARIABLES

SONTEXT

* INITIALIZATION FOR ALL CASES EXCEPT MINIMIZING BM IN AGRI-
CULTURE

SIGMA.L = 1.432371;

BM.L = 1.826;

DELTA.L = 0.285;

OBJ.L = 1.43;

SOFTEXT

SONTEXT

*INITIALIZATION FOR MINIMIZING BM IN AGRICULTURE

SIGMA.L = 0.5;

BM.L = 1.001;

DELTA.L = 0.04;
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OBJ.L = 1.470;

SOFTEXT

* BOUNDS ON VARIABLES

SONTEXT

* FOR 1985

SIGMA.LO = 0.78381698;

SIGMA.UP = 2.080925014;

SOFFTEXT

SONTEXT

* FOR AGRICULTURAL AND INDUSTRIAL SECTOR IN 1990
SIGMA.LO = 0.5;

SIGMA.UP = 4.5;

*$OFFTEXT

* EQUATIONS FOR MINIMIZING AND MAXIMIZING DELTA AND BM
EQUATIONS

UPSIGEQ UPPER BOUND FOR SIGMA

LOSIGEQ LOWER BOUND FOR SIGMA
DELTAEQ CALCUL OF THE SHARE PARAMETER
BMEQ CALCUL OF THE SCALE PARAMETER
OBJEQ OBJECT FUNCTION

$ONTEXT

* FOR 1985

UPSIGEQ.. SIGMA =L= 2.080925014;

LOSIGEQ.. SIGMA =G= 0.783816986

SOFFTEXT

SONTEXT

* FOR AGRICULTURAL AND INDUSTRIAL SECTOR IN 1990
UPSIGEQ.. SIGMA =L= 4.5;

LOSIGEQ.. SIGMA =G= 0.5;

*$OFFTEXT

BMEQ.. QO =E= BM*(DELTA*MO**(-((1-SIGMA) /SIGMA) )+
(1-DELTA)*DO**(-((1-SIGMA) /SIGMA)))**(SIGMA / (SIGMA-

DELTAEQ.. MO =E=(((DELTA/(1-DELTA))**(SIGMA))*((PDO/PMO)**SIGMA)*

OBJEQ.. OBJ =E= DELTA;

OBJEQ.. OBJ =E= BM;

OPTIONS LIMROW = 0, LIMCOL = 0 ;
MODEL ARMIG /DELTAEQ, UPSIGEQ, LOSIGEQ, OBJEQ/;
MODEL ARMIG /DELTAEQ, BMEQ, UPSIGEQ, LOSIGEQ, OBJEQ/;
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SOLVE ARMIG USING NLP MAXIMIZING OBJ;
SOLVE ARMIG USING NLP MINIMIZING OBJ;
DISPLAY SIGMA.L, DELTA.L;

DISPLAY SIGMA.L, DELTA.L, BM.L;
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