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RESUME

Dans un récent papier, Bai et Perron (1998) ont considéré les problemes
théoriques reliés a la distribution des estimateurs et tests statistiques dans le modele
linéaire avec changements structurels multiples. Dans ce papier, nous regardons les
problémes pratiques pour les applications empiriques des procédures. En premier, nous
regardons le probléme d'estimation des dates de rupture et présentons un algorithme
efficace pour obtenir les minimums globaux des sommes des résidus carrés. Cet
algorithme est basé sur le principe de la programmation dynamique et nécessite au plus
des opérations de moindres carrés d'ordre O(T ?) pour tout nombre de ruptures.
Deuxiemement, nous considérons le probleme de construire des intervalles de confiance
pour les dates de rupture sous plusieurs hypotheses de structure des données et d'erreurs
entre segments. Troisiemement, nous considérons le probléme de tester la présence de
changements structurels sous des conditions tres générales sur les donnés et les erreurs.
Quatriemement, nous étudions l'estimation du nombre de ruptures. Nous présentons les
résultats de simulations sur le comportement des estimateurs et des tests en échantillons
finis. Finalement, nous offrons quelques applications empiriques pour illustrer ['utilité des
procédures. Toutes les méthodes présentées sont exécutées a l'aide d'un programme
GAUSS disponible sur demande pour utilisation académique seulement.

Mots clés: programmation dynamique, changement structurel partiel, tests
d'hypotheses, régimes multiples, ruptures, sélection de modele, modéle de
régression

ABSTRACT

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the
limiting distribution of estimators and test statistics in the linear model with multiple
structural changes. In this companion paper, we consider practical issues for the empirical
applications of the procedures. We first address the problem of estimation of the break
dates and present an efficient algorithm to obtain global minimizers of the sum of squared
residuals. This algorithm is based on the principle of dynamic programming and requires
at most least-squares operations of order O(T ?) for any number of breaks. Our method
can be applied to both pure and partial structural-change models. Secondly, we consider
the problem of forming confidence intervals for the break dates under various hypotheses
about the structure of the data and the errors across segments. Third, we address the
issue of testing for structural changes under very general conditions on the data and the
errors. Fourth, we address the issue of estimating the number of breaks. We present
simulation results pertaining to the behavior of the estimators and tests in finite samples.
Finally, a few empirical applications are presented to illustrate the usefulness of the
procedures. All methods discussed are implemented in a GAUSS program available upon
request for non-profit academic use.

Key words : dynamic programming, partial structural change, hypothesis testing, multiple
regimes, breaks, model selection, regression model



1 Introduction.

Both the statistics and econometrics literature contain a vast amount of work on issues related
to structural change, most of it specifically designed for the case of a single change'. The
econometric literature has witnessed recently an upsurge of interest in extending procedures
to various models with an unknown change point, thereby offering serious alternatives to the
CUSUM test of Brown, Durbin and Evans (1975).

With respect to the problem of testing for structural change, recent contributions include
the comprehensive treatment of Andrews (1993) who considers sup Wald, Likelihood Ratio
and Lagrange Multiplier tests. Weighted versions of these tests satisfying some asymptotic
optimality criterion are discussed in Andrews and Ploberger (1994). Recent studies also
consider econometric models with trending regressors, unit root, cointegrated variables and
serial correlation?. Methods allowing the investigator to be agnostic about the presence or
absence of integrated variables are presented in Perron (1991) and Vogelsang (1997). The
issue of structural change has also received a lot of attention in the recent debate on unit
root versus structural change in the trend function of a univariate time series®. Yet, all these
recent developments consider only the case of a single structural change.

Issues about the distributional properties of the parameter estimates, in particular those
of the break dates, have received somewhat less attention despite their importance. The
work of Bai (1994,1997a) contains general results concerning the asymptotic distribution of
the estimated break date when a single break occurs, in particular the fact that the estimated
break fraction converges to its true value at rate 7.

However, the problem of multiple structural changes has received considerably less atten-
tion. Recent developments include Andrews, Lee and Ploberger (1996) who consider optimal
tests in the linear model with known variance. Garcia and Perron (1996) study the sup Wald

test for two changes in a dynamic time series!. Liu, Wu and Zidek (1997) considered multiple

LFor surveys, see Krishnaiah and Miao (1988), Zacks (1983) and Deshayes and Picard (1986). A compre-
hensive treatment of asymptotic results related to structural change can be found in Csoérgé and Horvédth
(1997).

2See, among others, Christiano (1992), Chu and White (1992), Kim and Sigmund (1989) and Perron
(1991) (trending regressors), Kramer, Ploberger and Alt (1988) (serial correlation), Bai, Lumsdaine and
Stock (1998) and Hansen (1992) (models with integrated variables).

3See Perron (1989, 1994, 1997a), Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992),
Perron and Vogelsang (1992) and Gregory and Hansen (1996).

4Some contributions include Fu and Curnow (1990) who discuss maximum likelihood estimation of multi-
ple shifts in a somewhat restrictive binomial model. Yao (1988) considers estimating the number of breaks in
the mean of a sequence of normal random variables based on the BIC criterion. Yao and Au (1989) treat the
estimation of multiple mean breaks in a sequence of random variables and consider estimating the number of



structural changes in a linear model estimated by least-squares and proposed an information
criterion for the selection of the number of changes. Independently, Bai and Perron (1998)
considered a similar problem in a more general framework. That paper also addressed the
important problem of testing for multiple structural changes: a sup Wald type tests for the
null hypothesis of no change versus an alternative hypothesis containing an arbitrary number
of changes and a procedure that allows one to test the null hypothesis of, say, ¢ changes,
versus the alternative hypothesis of £ 4+ 1 changes. The latter is particularly useful in that
it allows a specific to general modeling strategy to consistently determine the appropriate
number of changes present.

The present study is basically a companion paper to Bai and Perron (1998) pertaining
to the empirical implementations of their theoretical results. We first address the problem
of the estimation of the break dates and present an efficient algorithm to obtain global
minimizers of the sum of squared residuals. This algorithm is based on the principle of
dynamic programming and requires at most least-squares operations of order O(T?) for any
number of breaks. Our method can be applied to both pure and partial structural change
models. We also consider the problem of forming confidence intervals for the break dates
under various hypotheses about the structure of the data and errors across segments. In
particular, we may allow the data and errors to have different distributions across segments
or impose a common structure. The issue of testing for structural changes is also considered
under very general conditions on the data and the errors. Here, also we discuss how the tests
can be constructed allow different serial correlation in the errors, different distribution for
the data and the errors across segments or imposing a common structure. We also address
the issue of estimating the number of breaks. To that effect, we discuss methods based
on information criteria and a method based on a sequential testing procedure as suggested
in Bai and Perron (1998). We present simulation results pertaining to the behavior of the
estimators and tests in finite sample. Finally, a few empirical applications are presented
to illustrate the usefulness of the procedures. All methods discussed are implemented in a
GAUSS program available upon request.

There are many practical advantages arising from the estimation and inference of models
with structural changes. To mention a few, we first note that it allows the identification

of events that may have fostered the structural changes. For example, an approach often

breaks using the BIC criterion. Yin (1988) uses the moving-window nonparametric technique to estimate the
breaks in a sequence of random variables. Also, Feder (1975) considers estimating the joint points of poly-
nomial type segmented regressions (non-discrete shifts). In the unit root versus breaks literature, relevant
contributions include Lumsdaine and Papell (1997) and Morimune and Nakagawa (1997).



used to examine the effectiveness of policy changes involves dummy variable regressions
and inference on the corresponding regression coefficient. An alternative is to compare the
estimated break date with the effective date of a policy change (or policy implementation).
Another potentially useful aspect is in the field of forecasting. Indeed, if many regimes
are present in a given sample, using the most recent regime may lead to better forecasts.
Willard, Guinnane and Rosen (1996) provide an interesting application. They study how,
during the Civil War period, the market responded to various events and compare the relative
importance of these events to the accounts of traditional historians. Their basic structure is
to find sudden changes in the level of the Greenback value in Gold. The problem is essentially
one of multiple structural changes in mean allowing for serial correlation. They, however, rely
on sequential single structural change methods. Our estimation method provides a solution
to their problem.

The rest of this paper is structured as follows. Section 2 presents the model, the main
assumptions and the estimator. Section 3 discusses in detail an algorithm, based on the
principle of dynamic programming, that allows to estimate efficiently models with many
structural changes. Section 4 discusses the construction of confidence intervals for the various
parameters, in particular the break dates. Section 5 present the tests for multiple structural
changes and section 6 methods to estimate the number of breaks. Section 7 presents the
results of simulations analyzing the adequacy of the asymptotic approximations in finite
samples, the size and power of the various tests and the relative merits of several methods to
estimate the number of structural changes. Empirical applications are presented in Section

8. Some concluding remarks are contained in Section 9.

2 The Model and Estimators.
We consider the following multiple linear regression with m breaks (m + 1 regimes):

Yo = B+ 26 tu, t=1,.T,
Yo = $;ﬂ+zl/t62+ut7 t:T1+17“‘7T27
(1)

vy = 04+ 20mi1 +u, t=T,+1.,T.

In this model, ¥ is the observed dependent variable at time ¢; z; (p X 1) and z (¢ x 1)
are vectors of covariates and 3 and é; (j = 1,...,m + 1) are the corresponding vectors of

coeflicients; u; is the disturbance at time t. The indices (11, ..., 7)), or the break points, are



explicitly treated as unknown. The purpose is to estimate the unknown regression coefficients
together with the break points when 7' observations on (v, x4, 2;) are available. Note that
this is a partial structural change model in the sense that the parameter vector § is not
subject to shifts and is effectively estimated using the entire sample. When p = 0, we obtain
a pure structural change model where all the coeflicients are subject to change.

To proceed, it is convenient to introduce some terminologies. First, we call an m-partition
(or simply a partition) of the integers (1, ...,7T), an m-tuple vector of integers (17, ..., T),) such
that 1 < Ty <. T,, <T. Second, define the block-diagonal matrix Z = diag(Z1, ..., Zm1)
with Z; = (27,_,41, ..., 21,)’ where we use the convention that Ty = 1 and T,,,1 = T. The ma-
trix 7 is said to diagonally partition Z = (21, ..., 2r)" at (11, ..., Tr,). Using these definitions,

the multiple linear regression system (1) may be expressed in matrix form as
Y =XB+7Z6+U,

where Y = (y1, .., yr), X = (z1,...,x7), U = (uy,...,ur), § = (8,85, ....60.,1), and 7 is the
matrix which diagonally partitions Z at (T4, ..., T;,). We denote the true value of a parameter
with a 0 superscript. In particular, §° = (6(1)/, - (52;“)’ and (TP, ..., T?) are used to denote,
respectively, the true values of the parameters 6 and the true break points. The matrix 7
is the one which diagonally partitions Z at (77, ...,T2). Hence, the data-generating process

1s assumed to be

Y = X3+ 76" + UL (2)
The goal is to estimate the unknown coefficients (ﬂo,é(l), ...,(5?n+1,T10, e, TR, assuming
6? + 6?+1 (1 <i < m). The method of estimation considered is that based on the least-

squares principle. For each m-partition (77,...,T},), the associated least-squares estimates

of # and ¢, are obtained by minimizing the sum of squared residuals

m+1 T

(V- XB-T8Y(Y ~Xp-T8) =S > l—alf—

i=1 t=T;_1+1

Let 8({T;}) and 6({T}}) denote the resulting estimates based on the given m-partition
(11, ...,T,,) denoted {T;}. Substituting these estimates in the objective function and de-

noting the resulting sum of squared residuals as Sp(77, ..., T;,), the estimated break points

(Tl, s Tm) are such that

(Th ceey Tm) = argminThm,TmST(Tl, ceey Tm); (3>



where the minimization is taken over all partitions (74, ...,T,,) such that T; — T; 1 > ¢ 5,
Thus the break-point estimators are global minimizers of the objective function. Finally, the
regression parameter estimates are obtained using the associated least-squares estimates at
the estimated m-partition {TJ}, le. §= B({T]}), b= 5({73}) Since, the break points are
discrete parameters and can only take a finite number of values, they can be estimated by
a grid search. This method becomes rapidly computationally excessive when m > 2. Fortu-
nately, there exists a very efficient method, based on the principle of dynamic programming,
which permits obtaining global minimizers using a number of sum of squared residuals (cor-
responding to the different possible partitions) that is of order O(7T?) for any m > 2. This
method is discussed in detail in Section 3.

A central result derived in Bai and Perron (1998) concerns the convergence of the break
fractions 5\1 = TZ /T and the rate of convergence. The results obtained show not only that 5\1
converges to its true value A{ but that it does so at the fast rate T, i.e. T(S\Z —A)) = 0,(1)
for all 4. It is important, however, to note that this rate T’ convergence pertains to the
estimated break fractions 5\1 and not to the break dates TZ themselves. For the latter, the
result shows that with a probability arbitrarily close to 1, the distance between T, and T?
is, in large samples, bounded by a constant independent of the sample size.

This convergence result is obtained under a very general set of assumptions allowing a
wide variety of models. It, however, precludes integrated variables (with an autoregressive
unit root) but permits trending regressors; for example with a trend of the form ¢, = a +
b(t/T). The assumptions concerning the nature of the errors in relation to the regressors
{z, 2} are of two kinds. First, when no lagged dependent variables is allowed in {zy, z;}. In
this case, the conditions on the residuals are quite general and allow substantial correlation
and heteroskedasticity. The second case allows lagged dependent variables as regressors but
then, of course, no serial correlation is permitted in the errors {u;}. In both cases, the
assumptions are general enough to allow different distributions for both the regressors and
the errors in each segment.

The possibility of the two cases described above is potentially quite useful in dynamic
models when the parameters associated with the lagged dependent variables are not subject
to structural change. In this case, the investigator can take these dynamic effects into account
cither in a direct parametric fashion (e.g. introducing lagged dependent variables so as to

have uncorrelated residuals) or using an indirect nonparametric approach (e.g. leaving the

°Tt is possible to relax the constraint that a segment be at least of length ¢ making use of generalized
inverses. We, however, have not considered this extension in the algorithm presented in Section 3.



dynamics in the disturbances and applying a nonparametric correction for proper asymptotic
inference). This trade-off can be useful to distinguish gradual from sudden changes the same
way a distinction is made between innovational and additive outliers. Consider, for example,
the case of a change in mean for a correlated series. When specifying 2, = {1} and z; = {0},
all the dynamics is contained in the error term and does not affect the impact of the change
in mean on the level of the series. The change is, hence, abrupt. However, when specifying
2z = {1} and x; = {lags of y}, a change in the coeflicient associated with the constant z
is related to a change in the level of 1, that varies for the periods following the break. This
change depends on the autoregressive dynamics and takes effect gradually towards a limit

value.

3 Method to Compute Global Minimizers.

In this section, we discuss an algorithm based on the principle of dynamic programming
that allows the computation of estimates of the break points as global minimizers of the
sum of squared residuals®. This method permits the computation of the estimates using
at most least-squares operations of order O(T?) for any number of structural changes m,
unlike a standard grid search procedure which would require least squares operations of
order O(T™). The basis of the method, for specialized cases, is not new and has been in
the statistics literature, see Guthery (1974), Bellman and Roth (1969) and Fisher (1958).
Nevertheless, it seems to have been forgotten, at least in the econometrics literature, and
a thorough description appears useful. The original method works only for pure structural
change models; we propose a scheme that allows estimating more general partial structural

change models.

3.1 The Triangular Matrix of Sums of Squared Residuals.

The basic idea of the approach becomes fairly intuitive once it is realized that, with a sample
of size T, the total number of possible segments is at most T(T + 1)/2 and is therefore of
order O(T?). This is presented in Figure 1 for the special case with T' = 25 and m = 2 where
the vertical axis represents the initial date of a segment and the horizontal axis the ending
date. Each entry represents an estimated sum of squared residuals corresponding to the
associated segment. The global sum of squared residuals for any m-partition (77, ..., Ty,) and

for any value of m must necessarily be a particular linear combination of these T'(T 4+ 1)/2

50f course, there is no need for the assumptions stated earlier to hold to apply the algorithm discussed
in this section since they only pertain to the asymptotic distributions of the estimates.

6



sums of squared residuals. The estimates of the break dates, the m-partition (Tl, ...,Tm),
correspond to this linear combination with a minimal value. The dynamic programming
algorithm can be seen as an efficient way to compare possible combinations of these sums
of squared residuals (corresponding to different m-partitions) to achieve a minimum global
sum of squared residuals.

Before discussing this algorithm, it is useful to note that, in practice, less than T(T +
1)/2 segments are permissible. First, some minimum distance between each break may be
imposed, as is done in the construction of the tests discussed in Section 5. Let this minimum
distance be denoted by h, i.e. each segment contains at least h observations. Note that
h < q is possible in which case the sum of squared residuals is zero; for simplicity we suppose
without loss of generality that A > ¢ 7. This implies a reduction in the number of segments
to be considered of (h — 1)T — (h — 2)(h — 1)/2 (see Figure 1).

Other reductions in the total number of segments to consider are possible. Indeed, the
largest segment must still be short enough to allow m other segments before or after. For
example, when the segment starts at a date between 1 and h, the maximal length of this
segment is 7' — hm when m breaks are allowed (i.e., m + 1 regimes). This allows a further
reduction in the total number of segments considered of h?m(m+1)/2. Hence all the relevant
information can be obtained from the examination of the sums of squared residuals associated
with

T(T+1)/2—(h—=1)T+ (h—2)(h—1)/2 — B’m(m +1)/2

segments. We therefore need to evaluate the sum of squared residuals associated with seg-

ments having the following starting and ending dates:

starting date ending date
i=th+1,..,(0+1)h j=h+i—-1,...T—(m—-0Oh({=1.,m—1)

i=hm+1,..T—h+1 j=h+i—1,..,T.

3.2 The Case of a Pure Structural Change Model.

To begin, we consider the case of a pure structural change model, i.e. with p = 0 with the

regression model described by:

Y =76+, (4)

TOften, the investigator can choose this minimal length without reference to ¢, for example to minimize
the potential effect of outliers or for the required trimming in the construction of the tests.



where we recall that Z is a block diagonal matrix with the different blocks corresponding to
the regimes specified by the m-partition (77, ...,7,,) and § = (8},...,8,,,1). In such a case,
the computation of the estimates 6 , g and Sp(Th, ..., Ty,) can be done applying OLS segment
by segments without constraints among them.

In this case, the computation of the triangular matrix of sums of squared residuals can
be achieved using standard updating formulae to calculate recursive residuals. Indeed, all
the relevant information can be calculated from T'— him + 1 sets of recursive residuals. Let
v(i,7) be the recursive residual at time j obtained using a sample that starts at date i,
and let SSR(i, ) be the sum of squared residuals obtained by applying least-squares to a
segment that starts at date 7 and ends at date j. We have the following recursive relation

(e.g., Brown, Durbin and Evans (1975)):
SSR(i,§) = SSR(i,j — 1) +v(i, j)*.

All the relevant information is contained in the values SSR(i, j) for the combinations (i, j)

indicated above. Note that the number of matrix inversions needed is simply of an order

O(T).

3.3 The Dynamic Programming Algorithm.

Once the sums of squared residuals of the relevant segments have been computed and stored,
a dynamic programming approach can be used to evaluate which partition achieves a global
minimization of the overall sum of squared residuals. This method essentially proceeds via a
sequential examination of optimal one-break (or two segments) partitions. Let SSR({T}})
denote the sum of squared residuals associated with the optimal partition containing r breaks
using the first n observations. The optimal partition can be obtained solving the following
recursive problem:

SSR({Tmr}) = min  [SSR{Tm 1,}) + SSR(j +1,T)]. (5)

mh<j<T—h

It is instructive to write (5) in the following way:



SSR({Tyr}) =
mingp< <7 n[SSR(G1 + 1, T)+
Min (- 1yn<p<i—n[SSR(Jo + 1, ji)+
min(m,Q)thgng,h[SSR(jg +1,55)+

mMing<;,, <jm_1-w[SSE(L, jm) + SSR(Jm + 1, jm-1)]...]]]

Looking at the last displayed minimization problem, we see that the procedure starts by
evaluating the optimal one-break partition for all sub-samples that allow a possible break
ranging from observations h to T'—mh. Hence, the first step is to store a set of T—(m+1)h+1
optimal one break partitions along with their associated sum of squared residuals. Fach of the
optimal partitions correspond to subsamples ending at dates ranging from 2h to T'— (m—1)h.

Consider now the next step which proceeds in a search for optimal partitions with two
breaks. Such partitions have ending dates ranging from 3h to T'— (m — 2)h. For each of
these possible ending dates, the procedure looks which one-break partition (saved earlier)
can be inserted to achieve a minimal sum of squared residual. The outcome is a set of
T — (m+ 1)h + 1 optimal two breaks (or three segments) partitions. The method continues
sequentially until a set of T"— (m 4 1)h + 1 optimal (m — 1) breaks partitions are obtained
with ending dates ranging from (m — 1)h to T"— 2h. The final step is to see which of these
optimal (m — 1) breaks partitions yields an overall minimal sum of squared residuals when
combined with an additional segment. The method can therefore be viewed as a sequential
updating of T'— (m+1)h+1 segments into optimal one, two and up to m—1 breaks partitions
(or into two, three and up to m sub-segments); the last step simply creating a single optimal
m breaks (or m + 1 segments) partition.

It is important to note that, in practice, this method is very fast using samples of the
usual sizes. Indeed, the major component of the computation cost is the construction of the
triangular matrix of sums of squared residuals for all possible segments. The search for the
optimal m-partition represents a marginal addition to the total computing time. This means
that it is only marginally longer to obtain global minimizers with five or ten breaks as it is

with two.



3.4 The Case of a Partial Structural Change Model.

This dynamic programming method to obtain global minimizers of the sum of squared resid-
uals cannot be applied directly to the case of a partial structural change model (p > 0).
This is basically due to the fact that we cannot concentrate out the parameters 3 without
knowing the appropriate partition, i.e. the estimate of § associated with a global minimiza-
tion depend on the optimal partition which we are trying to obtain. Unlike for the pure
structural change model for which we can write the regression model in the form (4), each
element of the triangular matrix of sums of squared residuals depends on the final optimal
m-partition that we search. However, a simple iterative procedure is possible.

The recursive procedure can be described as follows. Let 0 = (6,74,...,T,,), we can
write the sum of squared residuals as a function of the vectors 5 and 0, i.e. SSR(3,0). As
discussed in Sargan (1964), we can minimize SSR(3,0) in an iterative fashion as follows.
First minimize with respect to 6 keeping (3 fixed and then minimize with respect to 3
keeping 6 fixed, and iterate. Each iteration assures a decrease in the objective function. The
convergence properties of this scheme are discussed in Sargan (1964). Of course, convergence
to the global minimum is not guaranteed and a proper choice of the initial value of 3 might
be important to avoid a local minimum.

We discuss the details of this method in our context with a slight modification that
permits a very rapid convergence. Note that the first step, minimizing with respect to 6
keeping (3 fixed, amounts to applying the dynamic programming algorithm discussed above
with v, — 2,0 as the dependent variable. Since (3 is fixed this is, indeed, a step involving
a pure structural change model. Let 0 = (6", {T*}) be the associated estimate from this
first stage (with {T*} = (T7,...,T%)). The application of Sargan’s method suggest that the
second step be a simple linear regression with y; — 2,67 being the dependent variable for ¢ in
regime j (j = 1,...,m+ 1), the regimes being defined by the partition {7*}.

Important efficiency gains can be obtained making a slight modification to the second
step. The idea is to only keep {7T™} fixed and to maximize again with respect to § and 3
simultaneously. Hence, 6 is updated at each of the two steps. The reason why this leads to
important efficiency gains can be explained as follows. In general, the values {1} obtained
at the first iteration will be quite close to the value {T} that correspond to the global
minimum (unless the initial value of 3 is very far from its true value 3°). Intuitively this is
so because a misspecification in the initial value of 3 has little effect on the estimates {T*},
since the latter depend mostly on the changes in the coeflicient § (associated with the z

variables) across regimes. Consider a second step which applies an OLS regression of the

10



form

Y =XB+Z6+U,

with Z°, the diagonal partition of Z at the m-partition {1*} = (17, ..., T%). If the values
{T*} are equal to the values {1’} corresponding to the global minimum, the estimates of
[ and 6 from this second step are then automatically those that correspond to the global
minimum. Experiments with real and simulated data showed that, in the majority of case
a single iteration is sufficient. In a few cases two are necessary but it was difficult to find
examples where three were needed.

To highlight the contrast between the two methods, consider what happens if ¢ is not

re-updated in the second step. This step becomes a simple O LS regression of the form:
Y -7 =XB+U.

Note that even if {1} is equal to {T'}, corresponding to the global minimum, the estimate of
[ will not necessarily be close to B (the value at the global minimum) unless, of course, 6* is
already close to § at the first iteration (which can only happen with a very small probability).
There is, therefore, a need to do additional iterations and experiments on real an simulated
data have shown that the number of iterations necessary to achieve the global minimum can
be very high, even in simple models.
The convergence criterion adopted is that the change in the objective function Sp(T7, ..., T},)

be smaller than some arbitrary . Using the iterative method suggested, it is possible to
specify € = 0 because of the discrete nature of the variables (71, ...,T,,). Indeed, in most

of the experiments performed, the minimum was attained after the first iteration and the

second one only verified that there was effectively no change in the objective function.

3.5 The Choice of the Initial Value for j.

The efliciency of the method proposed above to achieve a global minimum (by opposition to a
local minimum) depends on an appropriate choice of the initial value of the vector (3 to start
the iteration. We suggest the following procedure. First apply the dynamic programming
algorithm treating all coefficients as subject to change, i.e. treat the model as one of pure

structural change. To be precise, write this pure structural change model as

Y = $;61,1+Zé62,1+ut, tzl,...7T17
Y = 37;61,24‘2462,24‘”1&, t:Tl‘I—l,...,TQ,

11



Y = $;61,m+1 + Zé621m+1 + Uy, t = Tm + 1, ,T

The application of the dynamic programming algorithm to this model gives estimates (6%, 8555
j=1,...m+1)and (T}, ..., T%). To obtain an initial value of the vector 3, we only need to

use the following O LS regression:
Y - 7%= X3+,

where Z* is the diagonal partition of Z at the m-partition (1'¢, ..., 7%) and &5 = (651565 m11)
are the estimates of 6y = (691, ...,09.m1). The estimate so obtained, say 4* is used to ini-
tialize the iteration procedure.

Using this method to choose the initial value of § is justified on the grounds that the
estimates Aj of the break fractions )\? are convergent at rate 1" even when some coefficients
do not change across regimes. All that is needed is that at least one coeflicient changes
at every break date. Hence, the estimate 3 obtained is asymptotically equivalent to the
estimate B associated with the global minimum. This permits reaching the global minimum
in very few iterations and greatly reduces the risk of reaching a local minimum. Indeed, this
later problem did not occur in any of the experiments that we tried.

It may be the case that using this method to initialize the vector 3 is difficult to implement
in practice; for example, when the dimension p of the vector # and/or the number m of
changes are large. In such cases, one can always use some fixed initial values. Here, however,
the problem of convergence towards a local minimum becomes more important and care

should be used by applying some sensitivity analyses.

3.6 Various Extensions.

3.6.1 Threshold Models.

The algorithm described above can easily be adapted to estimate threshold models of the

following general form:

y = B+ 50 +u, v <71y,
Yy = T+ 26 +uy, Ty < < Ty,

(6)
v = 04 20mi1 tug, T < v

Again, y; is the observed dependent variable at time ¢; z; (p X 1) and z; (g x 1) are vectors

of covariates and (3 and é; (j = 1,...,m + 1) are the corresponding vectors of coefficients;
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u; 1s the disturbance at time ¢. Here, the functional form of the regression depends on the
value of some variable v;. This variable can be an element of the vectors x; or z; but need
not. There are m threshold points (74, T, ..., Ts) which are unknown and, hence, m + 1
regimes. The purpose is to estimate the unknown regression coefficients together with the
threshold points when T observations on (v, ¢, z;) are available. This is a partial threshold
model in the sense that the parameter vector  is not subject to shifts and is effectively
estimated using the entire sample. When p = 0, we obtain a pure threshold model where all
the coefficients are subject to change.

To describe the estimation method, let v = (vq,...,v7) and v* = (v, ...,04,) be the
sorted version of v such that v, < vy, < ... < yg,.. The indices (¢, ...,17) are a T-partition
of the time indices (1,...,7). Now, for i = 1,...,m, let t1; be the time index such that
vy, < 7y for all j such that ¢; < iy, and vy, > 74 for all j such that ¢{; > {7,. The m-partition
(t1y,...,tr, ) is the partition that corresponds to the time indices of the sorted vector v*

when the variables v;; reach each of the m thresholds. We can write the model (6) using all

variables sorted according to the partition (tr,, ..., tr, ). Then, we have, for j =1,...,7T :
Y, = x;]ﬂ + Z£j51 +ug, G <1; <ip,
Yo, = Ty B+ 2,00ty by <tj <lp,
(7)
Y, = a:éjﬂ + zéjémﬂ 4wy, tp, < t; <tp.

This model is in the form of a partial structural change model that we have considered.
One can obtain consistent estimates of the parameters (3,067,065, ..., 6, 1, tr,  tr, ) using the
dynamic programming algorithm. Let the estimate of the partition be denoted by (fThmem);

the estimates of the thresholds are then recovered as 7; = vy, for j=1,...,m.
J

3.6.2 Detection of Outliers.

The dynamic programming algorithm can also be very useful in the detection of single or
multiple outliers in a given series. Here, the strategy is to use h = 1 as the minimal length
of a segment, ¢ = 1 with z; = {1}, a constant, and p = 0. To detect multiple outliers, the
maximal value of permissible breaks can be set to a large number. Of course, the relevant

distribution theory needs to be evaluated to provide the required critical values.
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3.6.3 Models with Multicolinarity.

It is possible to apply the dynamic programming algorithm even in the presence of models
with multicolinearity.. This could occur, for example, when one wants to impose a given
structural change a priori and search for additional changes without imposing a trimming
with respect to the change imposed. In this case, it is still possible to construct the triangular
matrix of sums of squared residuals using an algorithm to compute recursive residuals based
on generalized inverses. The appropriate updating formulae, based on the Moore-Penrose

generalized inverse, are presented in Albert (1972).

4 Constructing Confidence Intervals.

Fven though the estimated break dates T; do not converge to T?, the fact that the quantities
M converge at the fast rate of T' is enough to guarantee that the estimation of the break dates
has no effect on the limiting distribution of the other parameters of the model. This permits

to recover, for these estimates, the standard VT asymptotic normality. More precisely, let

0 = (ﬁ,(%) and 0° = (3°,6"), then
VT(H —0°) % NO,V eV 1)
with

V o= pimT W W
& = plim7 W i’
0 = BUU,

and where W' = diag(W?,...,W2 ) is the diagonal partition, at (17,...,77), of W =
(wy,...,wr) with w, = (z},2;). Note that when the errors are serially uncorrelated and
homoskedastic we have ® = 02V and the asymptotic covariance matrix reduces to o2V !,
which can be consistently estimated using a consistent estimate of 02. When serial correlation
and /or heteroskedasticity is present, a consistent estimate of ® can be constructed along the
lines of Andrews (1991). In all cases where covariance matrix robust to heteroskedasticity
and serial correlation are needed, we use Andrews’s (1991) data dependent method with the
Quadratic Spectral kernel and an AR(1) approximation to select the bandwidth. We also
use the pre-whitening device as suggested in Andrews and Monahan (1992). Note that the
correction for possible serial correlation can be made assuming identical distributions across

segments or allowing the distributions of both the regressors and the errors to differ.
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To get an asymptotic distribution for the break dates, the strategy considered is to
adopt an asymptotic framework where the magnitudes of the shifts converge to zero as the
sample size increases. The resulting limiting distribution is then independent of the specific
distribution of the pair {z;, u;}. To describe the relevant distributional result, we need to

define some notations. For i = 1,....;m, and ATY =T2 —T? |, let

0 0
Ai - 6i+1 - 61‘7
Ty

Qi = pllm(AT?)il Z E<thz/t)7

__70
=T | +1

0

i i

TO
Q = plim(AT?) ! Z Z E(zzumuy).

_70 _70
r=T, +1t=T;" | +1

In the case where the data are non-trending, we have, under various assumptions® stated in

Bai and Perron (1998), the following limiting distribution of the break dates:

(ALQ:A;)?

(AIUA,) (Tz —T% = argmax VO (s), (i=1,...,m), 8)
where
@ ‘
VO (s) = W7 (=s) ’8’/2 Tfs <0, 9
\/gi<¢i,2/¢i,1)w2 (s) —&lsl/2, if s >0,
and

Si = A;QiJrlAi/A;QiAi;
¢71 = AN /AQA,,
¢?,2 = A;QHIAZ‘/A;QHI A;.

Also, Wl(i)(s) and WQ(i)(s) are independent standard Weiner processes defined on [0, 00),
starting at the origin when s = 0. These processes are also independent across i.
The cumulative distribution function of argmaxsv(i)(s) is derived in Bai (1997a) and all

that is needed to compute the relevant critical values are estimates of A;, @);, and ;. These

#The important ones are as follows: the magnitude of the shifts decreases at a suitable rate as the sample

size increases, a functional central limit theorem holds for the partial sums of the variables {ztut}, also
. T° AT? . . . .
plim(AT?) 1 thTlOHj_l i) E(z2;) = sQ; is assumed to exist with @; a fixed matrix. The latter precludes
i1

trending regressors.

15



are given by

A = i1 — 6

T
Qi = (AT)™" > oz,
t=T;_1+1

and an estimate of ; can be constructed using the covariance matrix estimator of An-
drews (1991) applied to the vector {zu:} and using data over segment i only. We use the
Quadratic Spectral kernel with an AR(1) approximation for each element of the vector {z:t }
to construct the optimal bandwidth.

In practice, one may want to impose some constraints on this general framework related to
the distribution of the errors and regressors across segments. For ease of reference, especially
with the simulation results presented later, we shall adopt the following notation. We denote
by cor-u = 1 the case where the errors are allowed to be correlated and by cor-u = 0 the
case where no correction for serial correlation is made. Similarly, het_z = 1 denotes the
case where the regressors are allowed to have heterogenous distributions across segments
and by het_z = 0 the case where the distributions are assumed to be homogenous across
segments. Finally, het_u = 1 permits heterogenous variances of the residuals across segments
and het_u = 0 imposes the same variance throughout. We have the following cases when

adding restrictions:

e The regressors z; are identically distributed across segments (cor_u = 1, het_z = 0,
heteu = 1). Then Q; = Q;;1 = @ which can consistently be estimated by Q =
T-tST | %2, In this case, the limiting result states that

<AA;CA2AA) (T T?) = arg max V(Z)( )
QA
with &, = 1.

e The errors are identically distributed across segments (cor_u = 1, het_z = 1, het_u = 0).
Then Q; = Q;;1 = Q which can consistently be estimated using Andrews’s (1991)

estimator applied to the variable {zi;} using data over the whole sample.

e The errors and the data are identically distributed across segments (cor_u = 1, het_z =
0, het-u = 0). Here, we have {; = 1, and ¢; ; = ¢; , and the limiting distribution reduces
to o

(AjQA)? 0
1Y (T, — T:>armaXW() s|/2},
a1 T8 = argmpe WO(s) — s 2)
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which has a density function symmetric about the origin.

e The errors are serially uncorrelated (cor_u = 0, het_z = 1, het_u = 1). In this case Q; =

O'?QZ- and ¢31 = ¢32 = 0? which can be estimated using (3 (AT) Zt oo ﬁf

The confidence intervals can then be constructed from the approximation

(A’Qz

Uz

Z) (T T9) = arg max ,V®(s). (10)

e The errors are serially uncorrelated and the regressors are identically distributed across
segments (cor_u = 0, het_z = 0, hetu = 1). Here ¢}, = ¢7, = 07 and &, = 1. The
confidence intervals can then be constructed from the approximation

(A’QA )

Uz

(T — T0) = argmaX{W(Z)( ) —|s]/2}. (11)

e The errors are serially uncorrelated and identically distributed across segments (cor_u =
0, het_z = 1, het_u = 0). The approximation is the same as (10) with G2 ="T"1 ST a?

instead of 2.

e The errors are serially uncorrelated and both the data and the errors are identically
distributed across segments (cor_u = 0, het_z = 0, het_u = 0). The approximation is

the same as (11) with 6” instead of 67

All the cases discussed above are allowed as options in the accompanying computer
program. Since the break dates are integer valued, we consider confidence intervals that
are likewise integer-valued by using the highest smaller integer for the lower bound and the

smallest higher integer for the upper bound.

4.1 The Case with Trending Regressors.

The asymptotic theory discussed above is valid for the case where the data are non-trending.
However, simple modifications can be applied to deal with the case of trending regressors.

Suppose that we have regressor z; of the form

= [91(t/T), ... gq(t/T)],
with ¢;(¢/T) having bounded derivatives on [0,1]. For example, in the case of a polynomial

trend function, g;(t/T) = (t/T)". Then, (see Bai (1997a))
Ag(gGayA [ W(=s) —sl/2. its <0,
v 1/’i+1/1/’iW2(i)(8) —1s|/2, if s> 0,
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where g(A) = [g1(T3/T), ..., go(T3/T)] and

ST
1/)1-:plim(ATiO)*1 Z Z E(u,yuy).

_0 __0
r=TY | +1t=T2 | +1

If the errors have the same distribution across segments, we have

=1 fj< <j VB g (WO(s) — [sl/2}

where f,,(0) is (27 times) the spectral density function of u; at {requency zero which can be
consistently estimated using standard kernel methods. If w, is uncorrelated, f,(0) is replaced
by 02 = plim T ! Zthl FE(u?) which can be estimated by Gt =171 Zthl u?

5 Test Statistics for Multiple Breaks.

5.1 A Test of no break versus a fixed number of breaks.

We consider the sup I type test of no structural break (m = 0) versus the alternative
hypothesis that there are m = k breaks. Let (17,...,T)) be a partition such that T; = [T'A]
(i =1,...,k). Let R be the conventional matrix such that (R6) = (& — 8,,..., 6, — 81q).
Define

1 (T —(k+1qg— N N .
Fi O i) = g () e (v ) 1 (12)

where V(é) is an estimate of the variance covariance matrix of 8 that is robust to serial

correlation and heteroskedasticity; i.e. a consistent estimate of
V(8) = plimT(Z MxZ)\Z MxQMxZ(Z MxZ)~*. (13)

The statistic F7} is simply the conventional F-statistic for testing 61 = -+ = 041 against
8; # ;11 for some i given the partition (771,...,Tx). The supF type test statistic is then
defined as

supFr(k;q) = sup  FR(\, ., M q),

where

Ac={( M, M)A — ) 260 26,0 <1 —¢f

for some arbitrary positive number ¢. In this general case, allowing for serial correlation in
the errors, the supF7.(k; ¢) may be rather cumbersome to compute. However, one can obtain

a much simpler, yet asymptotically equivalent, version by using the estimates of the break
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dates obtained from the global minimization of the sum of squared residuals. Denote, these
estimates by A = TZ/T for i =1,..., k, the test is then

supFr(k; q) = FT(S\L s j\k; q)

where 5\1, - Ay, are the arguments that maximizes the following F-statistic:
1 (T—(k+1)g— . ~ .
oo i) = = (=R D2 e sy ey s,
T kq
and .,
~ ZMxZ .,
V() = (22

the covariance matrix of assuming spherical errors. Maximizing this F-statistic is equiv-
alent to minimizing the global sum of squared residuals. This procedure is asymptotically
equivalent since the break dates are consistent even in the presence of serial correlation. The
asymptotic distribution still depends on the specification of the set A, via the imposition of
the minimal length h of a segment. Hence, ¢ = h/T.

Various versions of the tests can be obtained depending on the assumptions made with
respect to the distribution of the data and the errors across segments. These variations relates

to different specifications in the construction of the estimate of the limiting covariance matrix

~

V(6) given by (13).
In the case of a partial structural change model (p # 0), we consider only three specifi-

catlons.

e Allowing for serial correlation, different distributions for the data across segments and
the same distribution for the errors across segments (cor_u =1, het_z = 1, het_u = 0).

The estimate 1s then

— —. -1 — —
o ZMxZ\ . (ZMxZ
Vi) =|———| Kr|—F7F—

0= ()

where K7 is the HAC estimator of the (m+1)q vector {2, } where 2} are the elements

of the matrix MxZ. Again, we use the method suggested by Andrews (1991). Note

that in the construction of K7 there is an implicit assumption that the distribution of

the data is the same across segments since it is based on using {2;4;} over the whole

sample. For reasons, discussed below we do not impose this constraint in the matrix

7/MX7/T. Hence, we label this case with het_z = 1.
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e Serially uncorrelated errors, different variances of the errors and the distributions of

the data across segments (cor_u = 0, het_z = 1, het-u = 1). The estimate is

7(6) = ZMZ\ T (ZMZ\
N T T T ’
where X
m-+1 T
T = Z (3? Z 2z
=1 t=T;_1+1
67 =(AT) ' ST, L afand 2 = (4, .., 27) with 2* = My Z.

e Serially uncorrelated errors, different distributions for the data across segments and

the same distribution for the errors across segments (cor_u = 0, het_z = 1, het_u = 0).

— — —1
. 7 MxZ
§) = o? [ 2222
V(6) 0( T )

In this case,

. . . ~9 _ ~
which can be estimated using 6° = T~ L | 42,

In the case of a pure structural change model, we consider more possible specifications

on how to estimate the relevant asymptotic covariance matrix given by
V(&) = pliimT(Z Z)\Z0Z(Z 7).
They are the following.

e No serial correlation, different distributions for the data and identical distribution for

the errors across segments (cor_u = 0, het_z = 1, hetzu = 0). In this base case, the

V(é) =62 (?) 7

e No serial correlation in the errors, different variances of the errors and different dis-

estimate 1s

tributions of the data across segments (cor_u = 0, het_z = 1, hetzu = 1). In this

case,

V(8) = diag(62V (61), ..., 62 1V (6mra)),

where V(&) is the covariance matrix of the estimate é; using only data from segment
i and 67 = (ATi)fl Z?;T . @?. These are simply the OLS estimates obtained using
data from each segment separately.
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e Serial correlation in the errors, different distributions for the data and the errors across
segments (cor-u = 1, het_z = 1, hetu = 1). Here, we make use of the fact that
the errors in different segments are asymptotically independent. Hence, the limiting

variance is given by

~

V(6) = diag(V(6), ... V(bmi1)),

where, for i =1,...,m + 1,
V(6;) = pim(AT)(Z.2,) ' 210, 2:( 2 7).

This can be consistently estimated, segment by segment, with a HAC estimator of b;

using only data from segment 1.

e Scrial correlation in the errors, same distribution for the errors across segments (cor_u =

1, het_z =1, het_u = 0). In this case the limiting covariance matrix is
V(6) = pimT(ZZ) " (Ao (ZQ0))NZ 7).

This can be consistently estimated using A o= TZ/T and a HAC estimator based
on the pair {z,} constructed using the full sample. Note that, here also, we have
an implicit assumption that the regressors z; have the same distribution across seg-
ments since the consistent estimate of plim Z'Q7/T is constructed using the full sam-
ple. For reasons, discussed below we do not impose that restriction when evaluating
plim7/7/ T. That is, we still use 7/7/T instead of an estimate of (A @ Q) obtained
using Q = T ST | 22, based on the full sample.

In the construction of the tests we do not consider imposing the restriction that the
distribution of the regressors z; be the same across segments even if they are (except as they
enter in the construction of a HAC estimate involving the pair {z4,}). This might at first
sight seem surprising since imposing a valid restriction should lead to more precise estimate.
This is, however, not the case. Consider the case with no serial correlation in the errors and
the same distribution for the errors across segments (cor_u = 0, het-u = 0). Imposing the

restriction het_z = 0, leads to the following asymptotic covariance matrix

V@) =c(AoQ) ™,
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where Q) = limp_, o, T ! Zthl E(z:z,) and (using the convention that \g = 0 and A,,;1 = 1)

A1 — Ao
Ay — Ay

)\m+1 - )\m

Note that a consistent estimate can be obtained using Q =71 Zthl 224, G2=T"1 Zle u?
and A constructed using A = TZ/T (# = 1,...,m). Suppose that the z’s are exogenous and
the errors have the same variance across segments. Then, for a given partition (71, ..., T),

the exact variance of the estimated coefficients & is
. 77
V(o) =02 | ==

=0 ()

Using the asymptotic version V(é) = 0?(A ® Q)~! may imply an inaccurate approximation

-1

to the exact distribution. This would occur especially if small segments are allowed in which
case the exact moment matrix of the regressors may deviate substantially from its full sample
analog.

The same problem occurs in the case with no serial correlation in the errors and different
variance for the residuals across segments (cor_u = 0, het_u = 1). Imposing het_z = 0 gives

the limiting variance

V(o) =Mo"

where
O_%<)\1 — )\0)
A* _ U%()\Q — )\1) 7
O_%n+1<)‘m+1 — Am)
which can be consistently estimated using Q, No=T, /T and 62 = (ATi)fl ZQT?H . Uz,

Again, in finite samples, imposing the constraint that Z!7;/ (ATZ) be approximated by Q
over all segments may imply a poor approximation in finite samples. We have found, in
these two cases, that imposing a common distribution for the regressors across segments
leads to tests with worse properties even when the data indeed have an invariant distribution.
These distortions becomes less important, however, when the sample size is large and /or the

trimming € is large.
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All the specifications discussed above (even the cases where het_z = 0 is imposed, which
are, however, not recommended) are provided as options in the computer program. The
relevant asymptotic distribution has been derived in Bai and Perron (1998) and critical
values were provided for a trimming € = .05 and values of k from 1 to 9 and values of ¢ from
1 to 10. As the simulation experiments will show, a trimming as small as 5% of the total
sample can lead to tests with substantial size distortions when allowing different variances of
the errors across segments or when serial correlation is permitted. This is because one is then
trying to estimate various quantities using very few observations; for example, if 7" = 100
and € = .05, one ends up estimating, for some segments, quantities like the variance of the
residuals using only 5 observations. Similarly, with serial correlation a HAC estimator would
need to be applied to very short samples. The estimates are then highly imprecise and the
tests accordingly show size distortions. When allowing different variances across segments
or serial correlation a higher value of ¢ should be used.

Hence, the case (corou = 0, het_z = 1, het_u = 0) should be considered the base case in
which the tests can be constructed using an arbitrary small trimming e. For all other cases,
care should be exercised in the choice of ¢ and larger values should be considered. For that
purpose, we supplement the critical values tabulated in Bai and Perron (1998) with similar
ones for ¢ = .10, .15, .20 and .25. The results are presented in Table 1 (note that the critical
values are scaled by ¢ for proper comparison). Note that when ¢ = .10 the maximum number
of break considered is 8 since allowing 9 breaks impose the estimates to be exactly A = 1,
Dy = 2 up to Xg = .9. For similar reasons, the maximum number of breaks allowed is 5
when € = .15, 3 when € = .20 and 2 when € = .25.

Note that the asymptotic theory for these tests, derived in Bai and Perron (1998), is valid
only for the case of non-trending data. The case with trending data, discussed in Bai (1997¢),
yields different asymptotic distributions. However, the asymptotic distributions in the two
cases are fairly similar, especially in the tail where critical values are obtained. Hence, one
can salely use the critical values provided here and in Bai and Perron (1998) even in the case
where some data are trending. We have verified, using simulations, that the size distortions

are minor.

5.2 A double maximum test.

Often, an investigator wishes not to pre-specify a particular number of breaks to make infer-
ence. To allow this Bai and Perron (1998) have introduced two tests of the null hypothesis

of no structural break against an unknown number of breaks given some upper bound M.
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These are called the double maximum tests. The first is an equal weighted version defined
by
UDmax F}(M,q) = max sup  FR(Ar, e Ams ).

1SmEM (3, Am)€EA.

We use the asymptotically equivalent version

UDmax Fr(M,q) = max Fr(A, ..., Amiq),

T 1Zmem
where S\j = Tj/T (7 = 1,..,m) are the estimates of the break points obtained using the
global minimization of the sum of squared residuals.

The second test applies weights to the individuals tests such that the marginal p-values
are equal across values of m. This implies weights that depend on ¢ and the significance
level of the test, say . To be more precise, let ¢(q, o, m) be the asymptotic critical value
of the test sup(,, 5, yea. Fr(M, ..., Am; q) for a significance level . The weights are then

defined as a; = 1 and for m > 1 as a,, = ¢(q, @, 1)/e(q, ¢, m). This version is denoted

. (g, 1) .
WD max I'7.(M,q) = max —————= su Fr(A, o, Ams Q). 14
T< q) l<m<M C<q7 «, m) ()\1,...,)\5)61\E T< ! q) ( >

Again, we use the asymptotically equivalent version

c(q,a,1) . .

WD max Frr(M,q) = max Fr(A, o, Am; Q).

lsmsM C<q7 «, m)

Note that, unlike the UD max Fr(M, q) test, the value of the W D max Fr(M,q) depends
on the significance level chosen since the weights themselves depend on .. Critical values were
provided for M =5 and € = 0.05. This should be sufficient for most empirical applications.
In any event, the critical values vary little for choices of the upper bound M larger than 5.

For the same reasons as discussed above, we supplement these sets of critical values with the

corresponding ones for ¢ = .10 (M =5), .15 (M =5), .20 (M = 3) and .25 (M = 2).

5.3 A test of ¢ versus ¢+ 1 breaks.

Bai and Perron (1998) proposed a test for ¢ versus £ + 1 breaks. This test is labelled
sup Fr(€+1|¢). The method amounts to the application of (¢+1) tests of the null hypothesis
of no structural change versus the alternative hypothesis of a single change. The test is
applied to each segment containing the observations T, 1 toT; (1 =1,...,041). The estimates
T; need not be the global minimizers of the sum of squared residuals, all that is required is

that the break fractions S\Z = TZ /T converge to their true value at rate T. We conclude for

24



a rejection in favor of a model with (¢ + 1) breaks if the overall minimal value of the sum
of squared residuals (over all segments where an additional break is included) is sufficiently
smaller than the sum of squared residuals from the £ breaks model. The break date thus
selected is the one associated with this overall minimum.

Asymptotic critical values were provided by Bai and Perron (1998) for a trimming of
5% for q ranging from 1 to 10, and we here present additional critical values for trimming
values € of .10, .15, .20 and .25. Note that, unlike for the supF,(k;q) test, we do not need
to impose similar restrictions on the number of breaks for different values of the trimming e.
However, considering more than trunc[l/¢] — 2 breaks (with trunc|-] meaning the smallest
greater integer) implies changing ¢ as one progresses through the sequential procedure. For
example, one could use a trimming € = .05 and find 6 breaks in the first half of the sample,
then switch to a trimming of € = .20 to test for a 7th break®.

Of course, all the same options are available as for the previous tests concerning the
potential specifications of the nature of the distributions for the errors and the data across

segments. These options are also provided in the computer program.

6 Estimating the number of breaks.

A common procedure to select the dimension of a model is to consider an information
criterion. Yao (1988) suggests the use of the Bayesian Information Criterion (BI(C') defined

as

BIC(m) = Iné*(m) 4 p*In(T)/T,

where p* = (m + 1)q +m + p, and 6*(m) = T*IST(TL . Tm) He showed that the number
of breaks can be consistently estimated (at least for normal sequence of random variables
with shifts in mean). An alternative proposed by Tiu, Wu and Zidek (1994) is a modified

Schwarz’ criterion that takes the form:
LW Z(m) = In(Sp(Ty, ..., 1) /(T — p*)) + (p* /T)co(In(T)) %+,

They suggest using 6p = 0.1 and ¢o = 0.299. Perron (1997) presented a simulation study of
the behavior of the these two information criteria and of the AIC in the context of estimating
the number of changes in the trend function of a series in the presence of serial correlation.

The results first showed the AIC to perform very badly and, hence, this criterion will not

®The accompanying computer program does not incorporate the possibility of such switch and, hence, in
this case the same constraints as for the supF;(k;¢) test on the maximum number of breaks apply.
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be considered any further. The BIC' and LW Z perform reasonably well when no serial
correlation in the errors is present but imply choosing a number of breaks much higher than
the true value when serial correlation is present. When no serial correlation is present in
the errors but a lagged dependent variable is present, the BIC performs badly when the
coeflicient on the lagged dependent variable is large (and more so as it approaches unity).
In such cases, the LW Z performs better under the null of no break but underestimate the
number of breaks when some are present.

The method suggested by Bai and Perron (1998) is based on the sequential application
of the sup Frr(£+ 1|¢) test. The procedure to estimate the number of breaks is the following.
Start by estimating a model with a small number of breaks that are thought to be necessary
(or start with no break). Then perform parameter-constancy tests for each subsamples
(those obtained by cutting off at the estimated breaks), adding a break to a subsample
associated with a rejection with the test sup Frr(€+ 1]¢). This process is repeated increasing
¢ sequentially until the test sup Frp(€+1|¢) fails to reject the null hypothesis of no additional
structural changes. The limiting distribution of the test is the same when using global
minimizers for the estimates of the break dates or sequential one-at-a-time estimates since
both imply break fractions that converge at rate T' (see Bai (1997b)). The final number of
breaks is thus equal to the number of rejections obtained with the parameter constancy tests

plus the number of breaks used in the initial round.

7 Simulation Experiments.

In this section, we present the results of simulation experiments to analyze the size and
power of the tests, the coverage rates of the confidence intervals for the break dates and the
adequacy of the various methods to select the number of structural changes. A wide variety
of data generating processes are considered allowing different variances for the residuals and
different distributions for the regressors across segments as well as serial correlation. We

concentrate on the case of a pure structural change (p = 0).

7.1 The case with no break.

We start with the case where the data generating processes exhibit no structural change and,
hence, analyze the size of the tests and how well the methods to select the number of break
points actually select none. Throughout {e;} denotes a sequence of i.i.d. N(0,1) random

variables, {¥;} is a sequence of i.i.d. N(1,1) random variables uncorrelated with {e;}. We
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use sample sizes of T' = 120 and T" = 240. The values of the trimming € and the maximum
number of breaks (M) considered are: ¢ = .05 and M =5, ¢ = .10 and M =5, ¢ = .15 and
M=5e=.20and M =3, € =.25 and M = 2. In all cases, 2,000 replications are used.

The data generating processes and the corresponding regressors used are:

e DGP-1: y, = ¢, and z, = {1} (¢ = 1);

DGP-2: Y = \Ijt + e and Zt = {1, \Ijt} (q = 2),

DGP-3: y, = 0.5y, 1+ ¢, and 2z, = {1,y 1} (¢ = 2).

DGP-4: y; = v, with vy = 0.5v, 1 +¢; and 2z, = {1} (¢ =1);

DGP-5: y, = v, with vy = ¢, 4+ 0.5¢; 1 and 2z = {1} (¢ = 1);
e DGP-6: y, = v with v, = e, — 0.3¢,-1 and 2z, = {1} (¢ = 1);

The DGP-1 with 7.i.d. data is a base case to assess the basic properties of the tests and
methods to select the number of breaks. It is useful to assess the effect of allowing different
variances of the errors across segments and /or serial correlation when these features are not
present. The DGP-2 is a variation which includes an exogenous regressor. DGP-3 is one
where serial correlation is taken into account parametrically. DGPs 4 to 6 are used to assess
the effect of serial correlation in the errors and how well the corrections for its presence leads
to tests with adequate sizes.

The results are presented in Table 3. Consider first, the base case represented by DGP-1
where the series is white noise. With the specification cor_u = 0 and het-u = 0 all tests have
the right size for any value of the trimming . As expected, the sequential procedure chooses
no break around 95% of the time. The BIC between 94% and 98 % (depending on ¢) and
the LW Z 100% of the time. When different variances of the residuals are allowed across
segments, we see substantial size distortions when the trimming € is small. These, however,
disappear when £ reaches .15 or .20. The sequential procedure is somewhat biased when
£ = .05 but this bias disappears quickly as soon as ¢ reaches .10. Similar size distortions
occur when allowing serial correlation in the errors (cor-u = 1). These are somewhat more
severe 1if, in addition, different variances are allowed. When het_u = 0, the sequential
procedure shows no size distortion at any values of . However, if het_u = 1, the sequential
procedure is adequate only if ¢ is at least .15.

A similar picture emerges for DGP-2 where a random regressors is included. If cor_u =

het-u = 0, all tests have the right size. However, allowing for either different variances
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and /or serial correlation in the residuals induces substantial size distortions unless ¢ is large.
When no serial correlation is allowed, the procedures have the right size if ¢ is at least .15;
when serial correlation is allowed a larger value is needed.

The results for DGP-3, which is an AR(1), shows that if one is testing against a large
number of breaks (or using the W D max test) there are some distortions even if cor_u =
hetu = 0 when ¢ is small. The sequential procedure remains, however, adequate for any
values of e. If different variances are allowed substantial size distortions occur unless ¢ is at
least .20.

The DGPs 4 to 6 are cases where serial correlation is present in the residuals. As expected,
if corou = 0, all procedures show substantial size distortions (with positive correlation the
tests are liberal and with negative correlation they are conservative). It is therefore important
to correct for serial correlation. This, however, can be done adequately only if a large
trimming is used, .15 or .20 depending on the cases. An interesting feature, however, is
that the sequential procedure works very well for any values of € when the variances are
constrained to be the same (hetou = 0). In particular, it performs much better than the
information criterion BIC (and also LW Z in the case of positive AR errors).

In summary, if no serial correlation is present and allowed for, all procedures work well
for any values of the trimming £ when the specification cor-u = het-u = 0 is used. If serial
correlation is present a larger value of the trimming is needed when constructing the tests
using the specification cor_u = 1. This is also the case if different variances are allowed
across segments. Also, the results show the sequential procedure to perform quite well for
any values of the trimming provided one is correcting for serial correlation when needed and

not correcting for it when it is not needed.

7.2 The case with one break.
The basic data generating process considered is (Case 1):
ye = py+7Ye+ e, if t <[0.57],

Yo = Mg+ ’}/2\111& + €4, ift> [05T],

where ¥, ~ i.i.d N(1,1) and e; ~ i.i.d N(0,1) and both are uncorrelated. Since, no serial
correlation is present in the errors and no change in the distribution of the data or the errors
is allowed, we use the specification cor_u = het-u = 0 and £ = .05. For the tests, we use

het_z = 1 and to construct the confidence intervals on the break dates, we use het_z = 0.
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We consider three types of shifts: a) a change in intercept only (v, = v, = 1), b) a change
in slope only (i = p15 = 0), and ¢) a simultanecous change in slope and intercept.

We also consider a variation without the regressor U} with errors that are serially corre-
lated:

e Case 2: v, = v, =0, and ¢; replaced by v, = 0.5v, 1 4 ¢;. Here z, = {1}.

In this second case, we use the specifications cor_-u = 1, het_u = 0 and £ = .20. Again,
for the tests, we use het_z = 1 and to construct the confidence intervals on the break dates,
we use het_z = 0. The experiments are performed for T'= 120 and T' = 240 and again 2,000
replications are used.

The results are presented in Table 4. Row (a) presents a case with a small change in
intercept only. Here the power of the test is rather low and the coverage rate of the break
date is imprecise. We shall use this base case to investigate what increases power. There are,
nevertheless, some features of interest. First, the power of the sup F'(k) test is decreasing
as k increases (more so as k reaches 5; not shown). However, both D max tests have power
as high as the case with k = 1 (which gives the highest power). Also, of the three methods
to select the number of breaks, the sequential methods works best. The criterion LW 7 is
quite inaccurate since it chooses no break 98% of the times. Row (b) considers the same
specifications but doubling the sample size to 240. The power of the tests increases, the
sequential method selects 1 break more often and the coverage rate is better but not to a
great extent. For comparisons, row (c¢) keeps T = 120 but doubles the size of the shift in
intercept. Here power increases a lot, the sequential procedure chooses m = 1 95% of the
time and the exact coverage rate is close to the nominal 95%. Hence, we can conclude that
what is important is not the size of the sample but the size of the break.

Row (d) presents the case of a mild change in slope. Again, the power of the supF(k)
decreases as k increases but the D max tests have as high power as the sup F(1) test. Also,
the sequential procedure is best to select the correct value m = 1 while the LW Z is very
inaccurate. Row (e) considers merging the small shifts in intercept and slope. We see that
the simultaneous occurrence of two shifts at the same dates increases considerably the power
of the tests and the precision of the selected number of breaks, as well as the coverage rate
of the break date (much more than an increase in sample size). Rows (e) and (f) consider a
larger change in slope only and larger simultaneous changes, respectively. Here, the power
of the tests is one. In such cases, the coverage rates are accurate and all methods select the

correct number of breaks accurately.
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Rows (h) to (k) consider case 2 of a change in mean with serially correlated errors. We
see that the presence of serial correlation decreases the power of the test substantially. Here,
for a given shift, doubling the sample size induces a negligible increase in power and in the
accuracy of the selection methods or coverage rates. Nevertheless, the coverage rates are
quite accurate which shows that the non-parametric correction for the presence of serial

correlation seems to be effective.

7.3 The case with two breaks.

For Case 1, the basic structure is similar except that now the data generating process is:

Yo = m+m¥te, 1<t <[T/3]
b = T, T3] <0< 23]
v = ps+ 7307 + e, 2T/3] <t <T,

where
Uy ~ iid N(gl, 1), Hl<t< [T/S],
Uy ~ iid N(Q, 1), if [T/S] <t< [2T/3],
Uy ~ iid N(gg, 1), if [2T/3] <t<T,
and

e ~ iidN(0,07), ifl<t<[T/3],
e, ~ iidN(0,03), if [T/3] <t <[2T/3],
e; ~ iidN(0,03), 2T/ <t<T.

For Case 2, we have only changes in mean with serially correlated errors. That is
wo= mtw,  if1<t<[T/3),
o= v, E[T/3) <t < 213,
Yo = o+ vy, i [2T/3] <t <T,

where v, = 0.5v,_1 + €.

We first consider Case 1 where the data and errors are identically distributed across

segments, that is 0% = 0% = 0% and ¢; = ¢9 = ¢3. Results are first presented in Table 5
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for cases where the shifts involve either only the intercept (rows (a) to (h)) or in the slope
(rows (j) to (0)). In all cases T' = 120, T} = 40, T, = 80, ¢ = .05, cor_u = 0, het_u = 0,
and het_z = 1 for the construction of the tests and het_z = 0 for the construction of the
confidence intervals for the break dates.

We start with a case where the detection of the number of breaks is notoriously difficult.
Here, the intercept increases by some value at 17 = 40 and goes back to its original value
at To = 80. Row (a) considers the case where this change is .5. The power is, indeed, very
low and all methods basically select no break. The case where the change is 1 (row (b))
is very instructive about the usefulness of the D max tests and the sup F'(¢ + 1|¢) test to
determine the number of breaks. Here the power of the sup F'(1) test is very low and, hence,
the sequential procedure selects 2 breaks only 31% of the time. However, the U D max and
W D max tests have high power (82% and 88%, respectively). The sup(2|1) test also has
high power (73%). Hence, a useful strategy is to fist decide that some break is present based
on the D max test. Then look at the sup F(£+1|¢) to see if more than one is present. In the
example of row (b) this would lead to selecting 2 breaks 64% of the time. Another example
of the usefulness of this strategy is presented in row (k). Here there is a change in slope
from 1 to 2 then back to 1. The sequential procedure chooses 2 breaks only 69% of the
time. However, the strategy discussed above would lead to select 2 breaks almost 100% of
the times since the D max tests have 99% power and the supl'(2|1) has 98% power. The
empirical usefulness of this strategy will be illustrated in the next section.

The other cases of Table 5 show various configurations for changes in intercept or slope.
The results can be summarized as follows. First, intercept changes of the form p, = 0,
fo =1, ps = 2 (increasing steps) are also difficult cases where most procedures fail to select
two breaks (the same is true for slope changes of the same form). In general, when the
magnitude of the change is small (or difficult to identify) the coverage rates for the break
dates are too small (e.g. rows (a,b,j,l,0)). If the changes are very large (e.g., row (h) or row
(f, second break)) they are too wide. However, in most cases where the number of breaks is
well identified the coverage rates are adequate.

Table 6 first considers Case 1 with simultaneous changes in intercept and slope. Row (a)
shows that very little gain in power or accuracy of the coverage rates is gained when two
shifts that are very difficult to identify individually occur simultaneously. However, rows (b)
and (c) shows that important gains can be obtained in other cases (in particular compare
row (b) of Table 6 with row (c) of Table 5).

The other parts of Table 6 consider Case 2 with intercept shifts and serially correlated
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errors. Here, we use the specifications cor_u = 1. Rows (d) to (k) consider the difficult cases
where the mean return to its old value at the second break. Here power is low when the
change i1s .5 and even 1. Hence, serial correlation induces a loss in power. Surprisingly, the
coverage rates are adequate (though sometimes too wide) and we conclude that the non-
parametric correction for the presence of serial correlation works well. Also, we see that for
given changes in mean, an increase in the sample size has little effect on power. When the
change in mean is larger, say 2 or 4 (see rows (h) to (k)) the power of the sup F'(1) test is
low but the power of the supF'(2) and sup F'(2|1) tests are high. Hence, a model selection
strategy based on these statistic would conclude basically 100% of the times that 2 breaks
are present.

Tables 7.a and 7.b consider cases where the distribution of the errors and the data are
heterogenous across segments. The goal is to see if applying the required corrections lead to
tests, model selections and coverage rates that are better. Table 7.a considers data generated
by the two breaks model with v; = 1,7, = 1.5,v3 = 1.5 and p; = 0, gy = 1.5, 43 = .5. Table
7.a considers data generated by the two breaks model with v, = 1,7, = 1.5,73 = 2 and

py = 0,5 = 5,43 = 1. In all cases, 07 = 02 = 1, ¢; = ¢3 = 1 and we vary o3 and
Go. To ensure tests with adequate sizes, we set ¢ = .15 for the cases in Table 7.a and we
consider € = .20 for the cases in Table 7.b. We compare the properties of the procedures

using the uncorrected versions (het_z = 1 and het_u = 0 in the construction of the tests,
het_z = het_u = 0 in the construction of the confidence intervals) and the corrected versions
(het—z = hetu = 1 in the construction of the tests and in the construction of the confidence
intervals). The relevant columns are the sup F'(2|1) test, the probabilities of selecting 2
breaks and the coverage rates of the break dates (note that for the selection procedures
based on the BIC and LW Z, only the uncorrected version is presented since these methods
cannot be modified to account for heterogeneity across segments).

The results show that important gains in the power of the tests can be obtained when
allowing for different distribution of the errors across segments. In almost all cases, the power
of the sup(2|1) test is higher when corrected. For example, in Table 7.b when the variance
of the errors is four times higher in the middle segment (and the mean of the regressors is
also 4 times higher) and 7" = 120 (row(g)), the power of the uncorrected version is .53 while
it 1s .78 when allowing for different variances. This also translates into a higher probability
of selecting two breaks, 76% instead of 52% making the sequential procedure more adequate
to select the number of breaks than the BIC. Even stronger comparisons obtain with the

second case presented in Table 7.b. For example, in row (g) we see an increase in the power
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of the sup F'(2|1) test and the probability of choosing 2 breaks rising from 22% to 60%. The
results also show that correcting for heterogeneity in the data improves the coverage rates

of the confidence intervals of the break dates.

7.4 Summary and Practical Recommendations.

The simulations have shown the tests, model selection procedures and the construction of
the confidence intervals for the break dates to be useful tools to analyze models with multiple
breaks. However, care must be taken when using particular versions. We make the following

recommendations.

e First, ensure that the specifications are such that the size of the tests are adequate
under the hypothesis of no break. If serial correlation and/or heterogeneity in the
data or errors across segments are not allowed in the estimated regression model (and
not present in the DGP), using any value of the trimming = will lead to tests with
adequate sizes. However, if such features are allowed, a higher trimming is needed.
The simulations show that, with a sample of T' = 120, £ = .15 should be enough for
heterogeneity in the errors or the data. If serial correlation is allowed, ¢ = .20 may be

needed. These could possibly be reduced if quite larger sample sizes are available.

e Overall, selecting the break point using the BIC works well when breaks are present
but less so under the null hypothesis, especially if serial correlation is present. The
method based on the LW Z criterion works better under the null hypothesis (even with
serial correlation) by imposing a higher penalty. However, this higher penalty translates
into a very bad performance when breaks are present. Also, model selection procedures
based on information criteria cannot take into account potential heterogeneity across
segments unlike the sequential method. Overall, the sequential procedure works best

in selecting the number of breaks.

e There are many instances where the performance of the sequential procedure can be
improved. A useful strategy is to look at the UD max or W D max tests to see if at
least a break is present. Then the number of breaks can be decided based upon an

examination of the sup F'(¢ + 1]¢) statistics.

e The coverage rates for the break dates are adequate unless the break is either too small
(so small as not to be detected by the tests) or too big. This is, from a practical point

of view, however, an encouraging result. The confidence intervals are inadequate (in
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that they miss the true break value too often) exactly in those cases where it would
be quite difficult to conclude that a break is present (in which case they would not be
used anyway). When the breaks are very large the confidence intervals do contain the
true values but are quite wide leading to a conservative assessment of the accuracy of
the estimates. It was found that correcting for heterogeneity in the data and/or errors
across segments yields improvements over a more straightforward uncorrected interval.

Correcting for serial correlation also does lead to substantial improvements.

8 Empirical Applications.

In this section, we discuss two empirical applications of the procedures presented in this
paper. The first analyzes the U.S. ex-post real interest rate series considered by Garcia and
Perron (1996). The second reevaluates some findings of Alogoskoufis and Smith (1991) who
analyze the issue of changes in the persistence of inflation and the corresponding shifts in an

expectations-augmented Phillips curve resulting from such changes in persistence.

8.1 The U.S Ex-Post Real Interest Rate.

Garcia and Perron (1996) considered the time series properties of the U.S. Ex-Post real
interest rate (constructed from the three-month treasury bill rate deflated by the CPI in-
flation rate taken from the Citibase data base). The data are quarterly and the sample is
1961:1-1986:3. Figure 2 presents a graph of the series. The issue of interest is the presence
of structural changes in the mean of the series. To that effect we apply our procedure with
only a constant as regressor (i.e. z; = {1}) and take into account potential serial correlation
via non-parametric adjustments. In the implementation of the procedure, we allowed up to
5 breaks and we used a trimming € = 0.15 which corresponds to each segment having at
least 15 observations. We use the specifications cor_u = 1, hetvar = 1 and het_z = 1. The
results are presented in Table &.

The first issue to be considered is the determination of the number of breaks. Here the
sup Fr(k) tests are all significant for k between 1 and 5. So at least one break is present. The
sup Fr(2|1) test takes value 34.31 and is therefore highly significant. The Fr(3|2) test has
value 14.32 which is also significant at the 5% level. The sequential procedure (using a 5%
significance level ! selects 3 breaks while the BIC and the modified Schwarz criterion of Liu,

Wu and Zidek (1997) select two breaks. Given the documented facts that the information

WThe results are the same with a 10% or 2.5% significance level but changes if a 1% significance level is
used. In the latter case, only two breaks are selected.
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criteria are biased downward and that the sequential procedure and the Fr(¢ + |¢) perform
better in this case, we conclude in favor of the presence of three breaks.

Of direct interest are the estimates obtained under global minimization. The break dates
are estimated at 1966:4, 1972:3 and 1980:3. The first date has a rather large confidence
interval (between 1964:4 and 1969:3 at the 95% significance level). The other break dates
are, however, precisely estimated since the 95% confidence intervals cover only a few quarters
before and after. The differences in the estimated means over each segment are significant
and point to a decrease of 0.95% in 1966:3, another decrease of 2.67% in late 1972 and a
large increase of 7.44% in late 1980. These results contrasts with those of Garcia and Perron
(1996) who found only two breaks. This points to the fact that our procedure may be more
powerful than the regime switching method they used. In particular, the difference in results

is largely due to the fact that allowance is made for different error structures across segments.

8.2 Changes in the Persistence of Inflation and the Phillips Curve.

Alogoskoufis and Smith (1991) consider the following version of an expectations-augmented
Phillips curve:
Aw = oy + @ B(Apy| Ly 1) + asAug + aqus 1 + &,

where w; is the log of nominal wages, p; is the log of the Consumer Price Index, and u; is

the unemployment rate. They posit that inflation is an AR(1) so that
E(Ap| L 1) = 61+ 62Aps 1. (15)
Hence, upon substitution, the Phillips curve is:
Awg =71 + VApe1 + Y3hup + Yyur 1 + &, (16)

where v, = a161 and v, = q96y. Here, a parameter of importance is 69 which is interpreted
as measuring the persistence of inflation. Using post-war annual data from the United
Kingdom and the United States, Alogoskoufis and Smith (1991) argue that the process
describing inflation exhibits a one-time structural change from 1967 to 1968, whereby the
autoregressive parameter 0y is significantly higher in the second period. This is interpreted as
evidence that the abandonment of the Bretton Woods system relaxed the discipline imposed
by the gold standard and created higher persistence in inflation. They also argue that the
parameter 7, in the Phillips curve equation (16) exhibit a similar increase at the same time,

thereby lending support to the empirical significance of the Lucas critique.
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Using the methods presented in this paper, we reevaluate Alogoskoufis and Smith’s (1991)

11 Consider first the structural

claim using post-war annual data for the United Kingdom
stability of the AR(1) representation of inflation whose series is depicted in Figure 3. When
applying a one break model (not reported), we indeed find the same results, namely a
structural change in 1967 with 65 increasing from .274 to .739 while §; remains constant.
The estimate of the break is, however, imprecisely estimated with a 95% confidence interval
covering the period 1961 — 1973. More importantly, the sup Fr(1) test is not significant
at any conventional level indicating that the data do not support a one break model. A
feature of substantial importance is that a look at the graph of the inflation series suggests
different variability in different periods. To that effect, we have investigated the stability of
the inflation process allowing different variances for the residuals across segments. Details of
the estimation results are contained in Table 9. Again, the sup Frr(1) test is not significant
at any conventional level, but the sup Frr(2) test is, however, significant at the 5% level and
the sup Frr(2|1) test is significant at the 10% level. The sup Fir(¢+ 1|¢) test is not significant
for any ¢ > 2. Since the sup Fr(1) test is not significant, it is not surprising that the
sequential procedure selects zero break; the BIC and LW Z also select zero break. However,
the sup Fr(2), the U Dmax, the W Dmax and the sup Frr(2|1) tests being all significant, the
results, overall, suggest a model with two breaks.

Nevertheless, the estimates of a two breaks model reveal a similar picture as that sug-
gested by Alogoskoufis and Smith (1991). The first break date is the same as in the one
break model, namely 1967 which is linked to the end of the Bretton Woods system. The
second break is located in 1975. The coeflicient estimates point to the importance of shifts
in the persistence of inflation. Indeed, the coefficient d, varies from .274 to 1.34 in 1967. It
is, however, back to .684 after 1975 suggesting that the effect of the abandonment of the
Bretton Woods system was short lasting.

Since, there indeed appears to be structural changes in the inflation process, it is of
interest to see if the Phillips curve equation underwent similar changes in accordance with
the Lucas critique. Here, the setup involves a partial structural change model since changes
in the inflation process should only affect the coefficients v, and 7, with no effect on the
coeflicients 7, and ~y,. The results are presented in Table 10. The evidence points strongly
to a two breaks model with exactly the same break dates as for the inflation process (1967

and 1975). The sup Fr(k) tests are significant for all k£ and the sup Fr(2|1) test is also

' The data are the same as in Alogoskoufis and Smith (1991) and were kindly provided by George Alo-
goskoufis. We refer the reader to their paper for details on the definition and source of each series.
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significant. The sequential method, the BIC and the LW Z all select 2 as the number of
breaks. Finally, the UD max and W D max tests are also highly significant. Furthermore,
the coeflicient v, (associated with the lagged inflation) move in the same direction as the
persistence of inflation; in particular there is a substantial increase in this coefficient in 1967
from .094 to 1.23 (following a change in persistence from .274 to 1.34). In 1975, v, shows a
substantial decrease in agreement with the decrease in the persistence of inflation. Overall,
the results confirm the conclusions of Alogoskoufis and Smith (1991) about how this system

provides support for the Lucas critique.

9 Conclusions.

This paper has presented a comprehensive treatment of practical issues arising in the analysis
of models with multiple structural changes. Of considerable interest is a dynamic program-
ming algorithm which make possible efficient computations of the estimates of the break
points as global minimizers of the sum of squared residuals. This algorithm can also serve as
the basis for a procedure to estimate partial structural change models, threshold models and
to detect outliers. We have also discussed methods to construct confidence intervals for the
break dates, test statistics and model selection procedures. These were shown to be useful
using simulated data and empirical applications. All procedures discussed are available as

options in a GAUSS program available on request for non-profit academic purposes.
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Table 1.a: Asymptotic Critical Values of the Multiple Break Test for ¢ = .10.
The Entries are Quantiles x such that P(sup F , < z/q) = a.

Number of Breaks, &

q o 1 2 3 4 5 6 7 8 UDmax W Dmaz
1 90 742 693 6.09 544 485 432 383 322 B8.05 8.63
95 910 792 684 603 537 480 423 358 9.52 10.39
975 1056 890 755  6.64 588 522 461 390 10.83 12.06
.99 13.00 10.14 842 731 648 574 505 4.28 12.07 14.53
2 .90 10.37 943 848 768 702 6.37 577 4.98 10.86 11.71
.95 12.25 1058 9.29 837 762 690 621 541 12.59 13.66
975 13.86 11.63 10.14 9.05 817 740 6.63 5.73 14.15 15.33
.99 16.19 1290 11.12 9.87 884 8.01 7.18  6.18 16.19 17.80
3 .90 12,77 11.61 1053 9.69 894 8.21 749 657  13.26 14.14
95 14.60 1282 11.46 1041 959 880 801 7.03 14.85 16.07
975 16.55 13,90 12.35 11.12 10.19 9.28 843 740 16.64 18.04
.99 18.72 15.38 13.38 11.97 1093 994 899 7.85 18.75 20.42
4 .90 14.81 13.56 1236 11.43 10.61 9.86 9.04 8.01 15.23 16.27
.95 16.76 14.72 13.30 12.25 11.29 1042 9.58  8.46 17.00 18.38
975 18.62 1588 14.22 1296 11.94 11.05 10.06 8.93 18.75 20.30
99 2075 1724 1530 13.93 1278 11.67 10.64 9.47  20.75 22.35
5 .90 16.65 15.32 14.06 13.10 1220 1140 10.54 9.40 17.06 18.14
.95 18.68 16.50 15.07 13.93 13.00 12.10 11.16 9.96 18.91 20.30
975 2059 1771 16.02 14.68 13.67 1271 11.68 10.42 20.68 22.22
99 2312 1893 1691 15.61 14.42 13.31 12.30 11.00 23.16 24.81
6 .90 18.65 17.01 15.75 14.70 13.78 1292 11.98 10.80 19.06 20.22
95 2076 1832 16.81 15.67 14.65 13.68 12.63 11.34 21.01 22.55
975 23.05 19.69 17.82 16.47 1531 1424 13.20 11.89 23.25 24.66
99 2550 21.15 19.04 17.48 16.19 1511 13.88 12,55 25.55 27.28
7 .90 2034 1871 17.26 16.19 1526 14.35 13.40 12.13 20.76 22.03
95 22,62 20.04 1845 17.19 16.14 15.11 14.09 1271 22.80 24.34
975 24.65 21.34 1941 18.13 16.90 1584 14.67 13.25 24.75 26.47
99 27,19 2297 20.68 19.14 17.81 16.59 1543 13.92 27.23 28.87
8 90 2201 2032 1890 17.75 16.79 1582 14.80 13.45 22.42 23.71
95 2434 21.69 20.01 1874 17.66 16.65 15.54 14.07 24.56 26.10
975 26.50 2298 2095 19.69 18.52 17.35 16.15 14.67 26.54 28.24
99 20.01 2451 2240 20.68 1941 18.08 16.83 15.30 29.01 30.62
9 90 2379 21.88 2043 19.28 18.22 1724 16.19 14.77 24.24 25.66
95 26.20 2336 21.63 20.32 19.19 18.09 16.89 1540 26.48 27.99
975 28.25 2473 22.68 21.29 20.01 1876 17.56 16.00 28.33 30.02
99 30.81 26.30 23.95 2233 20.88 1956 18.35 16.79 30.81 32.74
10 90 2529 2333 21.89 20.71 19.63 1859 17.50 16.00 25.64 27.05
95 2764 2487 2311 21.79 2058 1947 18.29 16.70 27.82 29.46
975 29.80 26.37  24.27 2271 21.42 2021 18.94 17.33 29.90 31.58
99 32.80 2824 25.63 23.83 2232 21.04 19.73 18.10 32.82 34.51




Table 1.b: Asymptotic Critical Values of the Multiple Break Test for ¢ = .15.
The Entries are Quantiles x such that P(sup F , < z/q) = a.

Number of Breaks, &

q « 1 2 3 4 5 UDmax W Dmax
1 090 704 628 521 441 347 746 8.20
95 858 7.22 596 499 391 8.88 9.91

975 1018 814  6.72 551 434 10.39 11.67
99 1229 936 760 6.19 4091 12.37 13.83
2 90 981 863 754 651 527 10.16 11.15
95 1147 975 836 719 585 11.70 12.81
975 1296 1075 9.15 781  6.38 13.18 14.58
99 1537 1215 10.27 865 7.00 1541 17.01
3 .90 1208 1075 951 829 690 1240 13.58
95 1398 1199 10.39 9.05 7.46 14.23 15.59
975 1576 13.13 11.23 9.72  8.03 15.87 17.41
99 1826 1445 1216 1056 B8.71 18.26 19.86
4 90 1426 12,60 11.21 997 837  14.58 15.88
95 1619 1377 1217 1079  9.09 16.37 17.83
975 1813 1499 13.06 11.55 9.66 18.24 19.82
99 2023 1655 14.26 1242 1053 20.39 21.95
5 .90 16.14 1437 1290 11.50 9.79 16.49 17.80
95 1823 1562 1393 1238 10.52 18.42 19.96
975 1995 1692 1498 1325 11.21 20.10 21.76
99 2240 1837 16.16 1425 1214 2249 24.50
6 .90 1797 16.02 14.45 13.00 11.19 18.23 19.66
95 2008 17.37 1558 1390 11.94 20.30 21.86
975 2215 18.62 16.50 14.68 12.63 22.27 23.97
99 2445 2006 17.57 1573 1344 24.55 26.68
7 .90 1970 1767 16.04 14.55 12,59 20.00 21.46
95 21.87 1898 17.23 1555 13.40 22.04 23.81
975 2420 2040 1825 1641 14.18 24.26 26.10
99 2671 2187 1942 1744 1502 26.75 28.76
8 .90 2141 1916 1747 1588 13.89 21.70 23.31
95 2370 20.62 18.69 1696 14.77 23.87 25.63
975 2577 2197 19.71 1791 1552  25.88 27.80
99 2851 2358 2096 19.00 16.56 28.51 30.40
9 90 23.06 2082 19.07 1738 1523 23.38 24.99
95 2565 2235 20.18 1840 16.11 25.81 27.53
975 2769 23.68 21.28 19.29 16.88 27.78 29.78
99 3062 2532 2272 2038 17.87 30.62 32,71
10 .90 24.65 2226 2042 18.73 16.54 24.90 26.62
95 27.03 2380 21.62 1979 1744 27.23 29.06
975 2927 2499 2274 2081 18.26 29.36 31.47
99 3216 2682 2441 2209 19.27 3217 34.25




Table 1.c: Asymptotic Critical Values of the Multiple Break Test for ¢ = .20 and .25.
The Entries are Quantiles x such that P(sup F , < z/q) = a.

€=.20 Number of Breaks, & €=.25 Number of Breaks, &

q « 1 2 3 UDmax WDmax ¢ « 1 2 UDmax W Dmax

1 90 672 559 437 6.96 7.67 1 .9 635 4.88 6.55 7.09
95 822 653 508 843 9.27 95 7.86  5.80 8.01 8.69
975 977 749 573 9.94 10.93 975 9.32 6.69 9.37 10.24
99 1194 877 658 1202 13.16 99 11.44 7.92 11.50 12.27
90 937 791 643  9.66 10.46 2 .90 896 7.06 9.16 9.80
95 1098 898 7.3  11.16 12.15 95 10.55  8.17 10.67 11.49
975 12,59 10.00 7.92  12.68 13.87 975 1221 9.16 12.25 13.02
99 1492 11.30 895  14.92 16.52 99 14.34  10.30 14.34 15.41
90  11.59 993 821 11.84 12.79 3 .90 11.17 9.01 11.31 12.01
95 1347 11.09 9.12  13.66 14.73 95 13.04 10.16 13.15 13.99
975 15.28 12.25 991  15.31 16.65 975 14.66 11.22 14.67 15.64
99  17.60 13.40 1091 17.60 18.89 99 17.08 1255 17.08 18.03
90 13.72 11.70 990 13.94 15.05 4 .90 1322 10.74 13.36 14.16
95 15.67 1294 10.78 15.79 17.04 95 1519 11.91 15.28 16.13
975 17.67 14.11 11.66 17.73 19.12 975 17.04 13.00 17.13 18.17
99 19.82 15.74 12.99 19.90 21.27 99 19.22 1465 19.22 20.34
90 1551 13.46 11.50 15.74 16.80 5 .90 1498 12.39 15.12 15.93
95 17.66 14.69 1245 17.76 19.11 95 1712 13.65 17.14 18.11
975 19.51  15.96 1349 19.59 20.84 975 1896 14.86 18.97 19.92
99 21.75  17.21 14.60 21.75 23.39 99 21.51 16.18 21.51 22.39
90 17.39 15.056 1291 17.62 18.76 6 .90 16.77 13.96 16.94 17.92
95 1955 16.35 1391 19.69 21.04 95 1897 15.38 19.10 20.02
975 21.47 17.66 14.97 21.56 23.09 975 2093 16.53 20.97 22.08
99 2380 19.25 16.29 23.80 25.17 99 2312 18.10 23.12 24.27
90 19.11 16.67 14.46 19.30 20.56 7 .90 18.45 15.53 18.60 19.61
95 21.33 18.14 1555 21.46 22.76 95 20.75  16.97 20.84 21.81
975 2336 19.41 16.56 23.40 25.03 975 2285 18.25 22.89 24.38
99 26.16 21.03 17.81 26.16 27.71 99 25.67 19.91 25.67 26.77
90 20.86 18.16 15.88 21.09 22.45 8 .90 2015 1691 20.30 21.38
95 2319 19.58 17.10 23.28 24.68 95 2256 18.43 22.62 23.60
975 25.26  20.94 18.03 25.31 26.91 975 24.56  19.68 24.61 25.76
99 2771 2271 19.37  27.71 29.30 99 2710 21.41 27.12 28.29
90 2238 19.71 1730 2255 24.00 9 .90 21.69 1842 21.81 22.81
95 2491 21.23 1858 25.04 26.40 95 2418 19.93 24.28 25.40
975 26.96 22.69 1951 27.02 28.54 975 26.31  21.38 26.38 27.55
99 29.67 24.43 20.74 29.67 31.67 99 2012 23.23 29.12 30.57
90 2395 21.13 18.65 24.17 25.60 10 .90 2329 19.84 23.43 24.43
95 26.38  22.62 1991 26.51 28.02 95 2577 21.34 25.80 27.01
975 28.62 24.04 20.96 28.67 30.31 975 27.80 22.79 27.91 29.13

99 3138 25.73 2234 31.40 32.99 99 30.86 2451 30.87 32.20




Table 2.a: Asymptotic Critical Values of the Sequential Test Fip(¢+ 1|¢) for ¢ = .10.

l
q « 0 1 2 3 4 5 6 7 8 9
1 90 742 9.05  9.97 10.49 1091 11.29 11.86 1226 12.57 12.84

95 910 1055 11.36 12.35 1297 1345 13.88 14.12 1445 14.51
975 1056 1237 1346 14.13 1451 14.88 15.37 1547 15.62 15.79
.99 13.00 14.51 1544 15.73 16.39 16.60 16.78 16.90 16.99 17.04
2 .90 1037 1219 1320 13.79 1437 14.68 15.07 1542 1581 16.09
.95 12.25 13.83 14.73 1546 16.13 16.55 16.82 17.07 17.34 17.58
975 13.86 1551 16.55 17.07 17.58 17.98 18.19 1855 1892 19.02
.99 16.19 17.58 18.31 18.98 19.63 20.09 20.30 20.87 2097 21.13
3 .90 1277 1454 1564 1646 1694 1735 17.68 1793 1835 18.55
.95 14.60 16.53 17.43 17.98 1861 19.02 19.25 19.61 19.94 20.35
975 16.55 1799 19.06 19.65 20.35 21.40 21.57 21.76 22.07 22.53
.99 18.72 2035 21.60 2235 2296 2337 2353 23.71 2379 23.84
4 90 1481 16.70 17.84 1851 19.13 19.50 19.93 20.15 2046 20.67
.95 16.76 18.56 19.53 20.24 2072 21.13 21.55 21.83 22.08 22.40
975 18.62 2030 21.18 21.86 2240 2283 2342 23.63 23.77 24.14
99 2075 2240 2355 24.13 2454 2496 25.11 2550 2556 25.58
5 .90 16.65 18.61 19.74 2046 21.04 21.56 21.96 2246 2272 2296
.95 18.68 20.57 21.60 22,55 23.00 23.63 24.13 2448 2482 25.14
975 20.59 2257 23.66 2450 2514 2546 25.77 2587 26.02 26.34
99 2312 2514 2579 26.32 26.60 2696 27.39 2751 27.75 27.75
6 .90 18.65 20.63 2203 2290 2357 2408 2438 2473 2510 25.29
95 2076 23.01 2414 2477 2548 2589 26.25 2677 2696 27.14
975 23.05 2479 2591 26.80 27.14 2742 27.85 2810 2855 28.89
99 2550 2714 2792 2875 2944 30.12 30.18 30.29 30.52 30.64
7 .90 2034 2255 2384 2459 2497 2548 26.18 26.48 26.86 26.97
95 22,62 24.64 2557 2654 2704 2751 28.14 2844 2874 28.87
975 24.65 2656 27.53 28.51 2887 29.08 29.43 29.85 30.35 30.68
99 2719 2887 2951 3043 31.38 3256 32.62 3287 3290 33.25
8 .90 22,01 2424 2549 2631 2698 2755 2792 2816 28.64 28.89
95 2434 2642 27.66 28.25 2899 2934 29.86 30.29 30.50 30.68
975 26.50 2829 2936 30.34 30.68 31.82 32.42 32.64 32.82 33.08
99 29.01 30.68 3252 32.86 33.27 34.10 34.26 34.38 3457 34.72
9 90 2379 2614 2734 2816 2883 2933 29.86 30.23 3046 30.74
95 2620 2823 2944 30.31 3077 31.35 31.91 32,60 32.71 32.86
975 28.25 3031 3141 32,60 3286 33.39 33.79 34.00 3435 34.75
99 30.81 3286 33.92 34.60 3507 3566 37.08 3712 37.22 37.23
10 .90 2529 2759 2875 29.71 3035 3099 3141 31.82 3225 3261
95 2764 2978 31.02 31.90 3271 3332 33.95 3429 3452 34.81
975 29.80 3190 33.34 34.31 3481 35.65 36.23 36.36 36.65 36.72
99 32,80 34.81 36.32 36.65 37.15 3820 38.60 3870 3880 39.09




Table 2.b: Asymptotic Critical Values of the Sequential Test Fp(¢+ 1|() for ¢ = .15.

l
q « 0 1 2 3 4 5 6 7 8 9
1 90 704 851 941 10.04 1058 11.03 11.43 11.75 12.01 12.20

95 858 1013 11.14 11.83 1225 12.66 13.08 13.35 13.75 13.89
975 10.18 11.86 12.66 13.40 13.89 14.32 14.73 14.89 1522 15.29
.99 12.29  13.89 14.80 15.28 1576 16.27 16.63 16.77 16.81 17.01
2 .90 981 11.40 1229 1290 13.47 1398 14.36 14.70 15.11 15.28
.95 11.47 1295 14.03 14.85 15.29 15.80 16.16 16.44 16.77 16.84
975 12,96 1492 1581 16.51 16.84 17.18 17.61 17.84 1832 18.76
.99 15.37 16.84 17.72 18.67 19.17 1946 19.74 19.93 20.12 20.53
3 .90 12,08 1391 1496 15.68 16.35 16.81 17.24 1751 17.87 18.12
.95 13.98 1572 16.83 17.61 1814 18.74 19.09 1941 19.68 19.77
975 1576 1770 1887 19.42 19.77 2045 20.57 20.82 21.51 22.00
.99 18.26 19.77 20.75 21.98 2246 22.69 2293 23.11 23.12 23.15
4 90 1426 16.11 17.31 18.00 1845 1884 19.22 19.61 19.92 20.07
.95 16.19 1811 18.93 19.64 20.19 2054 21.21 2142 21.72 21.97
975 18.13  19.70 20.66 21.46 21.97 2252 2279 2282 23.03 23.13
99 2023 2197 2280 23.06 23.76 2455 24.85 2511 2553 25.57
5 .90 16.14 1814 19.10 19.84 2050 2096 21.42 21.68 21.95 22.28
.95 18.23 1991 2099 21.71 2237 2277 23.15 2342 24.04 24.42
975 19.95  21.72 2281 2347 2442 2483 2528 2559 2598 26.29
99 2240 2442 2553 26.17 2653 26.77 26.96 27.10 2735 27.37
6 .90 1797 20.01 21.16 22.08 2264 2302 2335 2370 2410 24.37
95 20.08 2211 23.04 2377 2443 2475 24.96 2522 2561 25.93
975 22,15 2379 2476 2522 2593 26.58 26.99 2711 2740 27.76
99 2445 2593 27.09 27.56 2820 29.61 29.62 3027 3045 30.56
7 .90 1970 21.79 2287 24.06 24.68 2510 25.66 2597 26.29 26.50
95 21.87 2417 2513 26.03 26.65 27.06 27.37 2790 28.18 28.36
975 24.20 26.03 27.06 2791 2836 2872 29.17 2943 29.66 30.00
99 2671 2836 2930 29.86 30.52 3089 30.95 31.03 31.11 31.17
8 .90 2141 2362 2474 2563 26.39 26.73 27.29 2756 28.06 28.46
95 2370 2575 26.81 27.65 2848 2880 29.08 29.30 29.50 29.69
975 28677 2772 2880 29.33  29.69 30.02 30.46 30.74 3090 31.07
99 28,51 29.69 30.65 31.03 31.87 3242 32.67 33.00 33.11 33.45
9 90 23.06 2554 2668 27.60 2825 2879 29.19 2952 2994 3043
95 25,65 27.66 2891 29.67 3052 3096 31.48 31.77 31.94 32.33
975 27.69 29.67 31.00 31.78 3233 33.06 33.51 33.68 34.16 34.58
99 30.62 3233 3351 3428 3494 3571 36.03 36.34 3648 36.49
10 .90 2465 2692 2826 29.18 29.88 3040 30.90 3140 31.75 32.03
95 27.03 2924 3045 31.45 3212 3250 32.84 33.12 33.22 33.85
975 29.27 3147 3254 33.15 3385 3432 3445 3476 3494 35.15
99 32,16 33.85 3458 35.14 36.15 36.76 36.92 3737 37.87 37.96




Table 2.c: Asymptotic Critical Values of the Sequential Test Fr(¢+ 1]{) for € = .20.

l
q « 0 1 2 3 4 5 6 7 8 9
1 90 672 813  9.07  9.66 10.17 1059 10.95 11.28 11.64 11.89

95 822 971 10.66 11.34 11.93 1230 12,68 1292 13.21 13.61
975 977 11.34 1231 1299 13.61 13.87 14.25 14.37 14.73 14.86
.99 11.94 13.61 14.31 14.80 15.26 15.76 15.87 16.23 16.33 16.63
2 90 937 1092 1190 1250 1289 13.38 13.84 14.15 1441 14.66
.95 10.98 1255 1346 14.22 1478 1537 15.81 16.13 16.44 16.69
975 1259 14.22 1539 16.14 16.69 17.00 17.18 1753 17.65 17.83
.99 14.92  16.69 1741 17.72 1827 19.06 19.17 19.23 1954 19.74
3 .90 11.59 1343 1443 15.16 1572 16.24 16.69 16.95 17.32 17.42
.95 13.47 1525 16.36 17.08 17.51 18.08 18.44 1889 19.01 19.35
975 1528 17.08 1810 1891 19.35 19.70 20.00 20.21 20.53 20.72
.99 17.60 19.35 20.02 20.64 21.23 21.98 22,19 2254 2290 2293
4 .90 13.72 1559 16.67 17.53 18.17 1852 1884 19.12 1943 19.67
.95 15.67 17.61 1854 19.21 19.80 20.22 20.53 21.06 21.31 21.55
975 17.67 19.22 2025 21.19 21.55 21.88 22.18 2252 2277 22.82
.99 19.82  21.55 2227 2280 23.06 23.76 23.97 2455 24.78 24.85
5 .90 1551 1759 1876 19.43 20.02 2053 2091 21.21 2159 21.70
.95 17.66 19.50 20.63 21.40 21.72 2219 2272 23.01 2324 23.67
975 19.51 2142 2228 23.04 23.67 2420 2447 2479 2494 2528
99 2175 23.67 2460 25.18 2576 26.29 26.42 2653 26.65 26.67
6 .90 17.39 19.49 20.65 21.37 22.07 2257 2290 2312 2338 23.63
.95 19.55 2144 2264 23.19 2375 2428 2446 24.75 2496 25.02
975 2147 2321 2428 2476 2502 2570 26.07 2643 26.73 26.95
99 23.80 25.02 26.24 2677 2727 2776 28.12 2848 2856 238.80
7 .90 19.11 21.24 2242 2320 2413 2468 25.00 2531 2576 26.03
95 21.33 2331 2475 2538 26.10 2647 26.87 27.15 2737 27.74
975 2336 2547 2647 2720 2774 2821 2840 28.63 29.09 29.29
99 26.16 2774 2850 29.17 29.66 30.52 30.66 30.89 3093 30.95
8 .90 2086 23.09 2430 25.14 2576 2627 2659 27.06 2741 27.58
95 2319 2523 2639 27.19 27.63 28.09 28.49 2870 28.83 29.02
975 25.26 2719 2810 28.70 29.02 2941 29.62 2991 30.11 30.46
99 2771 29.02 2971 30.20 30.78 31.03 31.80 3242 3242 3247
9 .90 2238 2480 26.10 2688 27.47 28.05 2840 28.79 29.16 29.51
95 2491 2692 2810 28.93 29.64 3029 30.87 31.09 31.39 31.67
975 26.96 2898 3034 31.13 31.67 31.89 32.26 3284 33.14 3351
99 29.67 31.67 3252 33.28 3381 3481 3522 3554 3571 36.03
10 .90 2395 2633 2750 28,50 29.13 29,52 30.07 3043 3087 31.17
95 26.38 2856 29.62 3048 31.23 31.96 32.20 3238 32.72 32.90
975 28.62 3050 31.97 32.39 3290 33.20 33.90 34.33 3453 34.76
99 31.38 3290 34.12 34.68 3500 36.15 36.76 36.92 37.14 37.37




Table 2.d: Asymptotic Critical Values of the Sequential Test Fp(¢+ 1|¢) for ¢ = .25.

l
q « 0 1 2 3 4 5 6 7 8 9
1 90 635 779 870 922 971 10.06 1045 10.89 11.16 11.30

95 786 929 1012 1093 11.37 11.82 1220 12.65 12.79 13.09
975 932 1094 11.86 12.66 13.09 1351 13.85 14.16 14.37 14.70
.99 11.44 13.09 14.02 14.63 14.89 1529 15.76 16.13 16.17 16.23
2 90 896 1050 1147 1213 1256 1294 13.29 13.76 14.03 14.22
.95 10.55 1219 1297 13.84 14.32 1492 15.28 1548 1587 16.34
975 1221 1385 1494 1548 16.34 16.55 16.80 16.82 17.06 17.34
.99 14.34 16.34 16.81 17.18 17.61 17.83 17.85 1832 18.67 19.06
3 .90 11.17 1296 13.96 14.58 15.13 1554 1593 16.47 16.79 16.96
.95 13.04 14.65 15.60 16.51 17.08 17.39 17.76 18.08 18.32 18.72
975 14.66 1656 1740 18.12 1872 19.01 19.40 19.73 20.02 20.50
.99 17.08 1872 19.58 2045 2072 21.27 21.98 2246 2254 2257
4 .90 1322 15.16 16.14 16.94 17.52 1797 1834 18.67 18.84 19.04
.95 15.19 17.00 18.10 18.72 19.14 19.63 20.10 20.50 20.98 21.23
975 17.04 1873 19.64 20.52 21.23 21.71 21.95 2224 2256 22.79
.99 19.22 21.23 22.07 22.61 2289 2317 23.77 2397 2455 24.78
5 .90 1498 1698 18.12 1887 19.47 1990 2047 2074 21.00 21.44
.95 17.12 1894 20.02 20.81 2145 21.72 2210 22,69 2298 23.15
975 18.96 20.83 21.75 22.69 23.15 23.82 2420 2443 2477 24.83
99 2151 2315 2436 24.82 2518 2576 2598 2642 2643 26.53
6 .90 1677 18.88 20.03 20.83 21.41 21.83 2228 2258 2283 23.04
.95 18.97 20.89 21.92 22,66 23.09 2342 23.96 24.28 2446 24.75
975 2093 2270 2349 2435 2475 25.02 2558 2583 26.30 26.68
99 2312 2475 2573 26.58 2699 2744 2756 28.00 28.12 28.56
7 .90 1845 20.69 21.81 2273 2349 2419 24.60 24.87 25.08 25.60
95 2075 2278 2424 2493 2566 26.03 26.28 2656 2687 27.21
975 22.85 2493 26.05 26.66 2721 27.75 2799 2836 28.61 29.09
99 25.67 2721 2821 28.80 2943 29.86 30.38 3055 30.71 30.89
8 .90 20.15 2251 2356 2442 2511 2561 2595 2643 2659 26.90
95 2256 2454 2571 2650 27.01 2751 2774 28.09 2848 28.70
975 2456 2651 27.52 2810 2870 29.01 29.46 29.69 29.93 30.11
99 2710 2870 29.53 30.02 3074 31.01 31.80 3242 3242 3247
9 90 21.69 24.08 2545 26.19 26.79 2733 27.78 2823 2854 28.99
95 2418 26.28 2742 28.27  29.03 29.67 30.34 30.79 3093 31.13
975 26.31 2828 29.67 30.81 31.13 31.73 32.26 3284 33.14 33.28
99 29.12 31.13 3252 33.25 33.62 34.65 34.81 3522 3554 3571
10 .90 2329 2572 2697 27.69 2855 29.13 29.48 29.90 30.30 30.75
95 2877 2775 2918 30.02 30.83 31.40 31.92 3220 3238 32.72
975 27.80 3007 3140 3220 3272 33.00 33.20 34.02 3437 34.68
99 30.86 3272 3354 3458 3494 3558 36.15 3691 3692 37.14




Table 3: Size of the tests and probabilities of selecting breaks

DGP-1 | DGP-2 DGP-3
€ 05 10 15 20 25 05 .10 .15 .20 25(.05 .10 .15 .20 .25
cor-u =0,het_u=0
sup F'(1) 05 04 05 04 0405 04 05 05 .05].06 .06 .07 .05 .06
sup F'(2) 05 05 05 04 04|04 04 .04 05 .05].06 .07 .08 .07 .06
sup F'(3) .05 .05 .04 .03 05 .05 .04 .05 .09 .09 .08 .07
sup F'(4) .06 .05 .04 07 06 .04 A2 11 .08
sup F'(5) .06 .05 .04 .08 .07 .03 A5 11 .07
UDMAX .05 .05 .06
WDMAX .06 .06 .10
Sequa— Prlm=0] | .95 96 .95 .96 96| .95 .96 .95 .95 .95|.95 95 .94 95 .94
Sequa — Prm=1] | .05 .04 .05 .04 .04(.05 .04 .05 .05 .05|.05 .05 .06 .05 .06
Sequa — Prfm=2] | .00 .00 .00 .00 .00|.00 .00 .00 .00 .00|.00 .00 .00 .00 .00
corou=0,hetu=1
sup F'(1) 0 06 06 05 04].16 08 .07 .06 .05|.18 .10 .10 .07 .07
sup F'(2) 24 11 08 06 06| .35 .14 .09 .06 .06 | .40 .22 .14 .10 .08
sup F'(3) 24 .11 .07 .05 A2 17 .08 .07 49 .26 .14 .11
sup F'(4) 29 11 .07 A48 .19 .08 59 29 15
sup F'(5) B 12 .06 b3 18 .07 .65 .30 .13
UDMAX 27 46 .51
WDMAX .33 b7 .66
Sequa — Prlm=0] | .90 94 94 95 96| .85 .92 .93 94 .95|.82 90 .90 .93 .93
Sequa — Prfm=1] | .09 .06 .06 .05 .04 .14 .08 .07 .06 .05|.16 .09 .09 .07 .07
Sequa — Prm=2] | .01 .00 .00 .00 .00|.01 .00 .00 .00 .00|.02 .01 .01 .00 .00
coru=1,hetau=0
sup F'(1) .06 .06 .06 .05 05].15 .11 .10 .09 .09
sup F'(2) 08 08 .07 06 06|.33 .21 .15 .12 .11
sup F'(3) A1 .10 .08 .05 45 30 20 .14
sup F'(4) A5 12 .08 b9 37 22
sup F'(5) 21 14 .07 a1 44 21
UDMAX .08 46
WDMAX 14 .66
Sequa— Prfm=20] | .94 95 .94 .95 95|.85 .89 .90 .91 .91
Sequa — Prlm=1] | .06 .05 .06 .05 .05(.13 .10 .10 .09 .09
Sequa — Prlm=2] | .00 .00 .00 .00 .00|.02 .01 .00 .00 .00
corau=1,hetu=1
sup F'(1) A2 .08 .07 05 05 .25 .14 .11 .10 .08
sup F'(2) 29 14 10 07 O7 | BH4 31 .19 13 .10
sup F'(3) B2 15 .10 .07 65 .39 22 .15
sup F'(4) B7 .16 .09 75 44 .25
sup F'(5) 39 .16 .09 81 48 .24
UDMAX .36 T
WDMAX 43 .86
Sequa — Prlm=20] | .88 .92 .93 .95 95 (.75 .86 .89 .90 .92
Sequa — Prfm=1] | .11 .08 .07 .05 .05 .21 .13 .11 .10 .08
Sequa — Prm=2] | .01 .00 .00 .00 .00(.04 .01 .00 .00 .00
BIC — Prim =0] 94 96 97 98 98| 97 98 .99 99 99| 97 .98 98 .98 .99
BIC — Prim =1] 04 03 03 02 02].03 .02 .01 .01 01).03 .02 .02 .02 .01
BIC — Prim =2] .02 01 .00 0O 00|.00 00 .00 .00 .0O|.00 .00 .00 .00 .00
LWZ — Prim = 0] 10 10 10 10 10}10 10 10 10 10|10 10 10 10 1.0
LWZ — Prim =1] .00 .00 .00 0O 00|.00 0O .00 .00 .0O|.00 .00 .00 .00 .00
LWZ — Prim = 2] .00 .00 .00 0O 00|.00 0O .00 .00 .0O|.00 .00 .00 .00 .00




Table 3 (cont’d): Size of the tests and probabilities of selecting breaks

DGP-4 | DGP-5 DGP-6
€ 05 10 15 20 25 05 .10 .15 .20 25(.05 .10 .15 .20 .25
cor-u =0,het.u=0
sup F'(1) b3 50 47 45 42 25 25 24 21 .20 .00 .00 .00 .00 .00
sup F'(2) 84 76 67 60 52| 42 38 .34 28 24| .00 .00 .00 .00 .00
sup F'(3) 090 84 71 .62 b2 45 38 .29 .00 .00 .00 .00
sup F'(4) 94 87 .73 .61 .50 .39 .00 .00 .00
sup F'(5) 96 88 .70 67 .52 .35 .00 .00 .00
UDMAX .83 .39 .00
WDMAX .93 .55 .00
Sequa — Prlm=0] | 48 50 .53 .55 58 (.75 .75 76 .79 80|10 1.0 1.0 1.0 1.0
Sequa — Prfm=1] | .30 .31 .29 .33 34(.19 .20 .21 .19 .18|.00 .00 .00 .00 .00
Sequa — Prlm=2] | .15 .14 .15 .11 .09|.05 .05 .03 .02 .02|.00 .00 .00 .00 .00
coru=0hetu=1
sup F'(1) 62 55 50 46 43| .36 30 .27 22 20| .01 .00 .00 .00 .00
sup F'(2) 93 83 71 62 55| .70 52 41 32 27| .04 .00 .00 .00 .00
sup F'(3) 96 89 76 .64 7758 44 .32 .02 .00 .00 .00
sup F'(4) 97 91 .79 84 63 .46 .03 .00 .00
sup F'(5) 98 93 .75 87 .64 .43 .02 .00 .00
UDMAX .96 7 .04
WDMAX .99 .85 .04
Sequa — Prlm=0] | .38 45 50 .54 57 |.64 .70 .73 .78 80 |.99 1.0 1.0 1.0 1.0
Sequa— Prfm=1] | .29 .31 .30 .33 34 (.25 .23 .23 .19 .19|.01 .00 .00 .00 .00
Sequa — Prlm=2] | .20 .16 .16 .12 .09|.09 .06 .04 .03 .01|.00 .00 .00 .00 .00
coru=1,hetau=0
sup F'(1) 07 08 .07 07 08].10 09 .10 .09 .08].03 .03 .03 .03 .03
sup F'(2) A2 .13 .12 10 .10 .16 .16 .14 .12 11| .05 .04 .04 .03 .03
sup F'(3) 22 19 16 .11 25 .22 17 .13 07 .06 .05 .03
sup F'(4) 34 .26 .18 38 .28 .19 10 .08 .05
sup F'(5) 46 .31 .16 A7 32 17 d4 .09 .04
UDMAX A7 .19 .04
WDMAX .35 .35 .09
Sequa — Prlm=20] | .93 93 .92 .93 92| .90 .91 .91 .92 .91 |.97 97 .97 97 .97
Sequa — Prm=1] | .06 .07r .07 .07 .08(.10 .08 .09 .08 .09|.03 .03 .03 .03 .03
Sequa — Prm=2] | .01 .00 .01 .00 .00|.00 .01 .00 .00 .00|.00 .00 .00 .00 .00
corou=1,hetu=1
sup F'(1) 20 .15 .11 08 09].20 .13 .11 .09 .08|.04 .02 .02 .02 .02
sup F'(2) bS5 034 23 14 1250 28 18 .12 10| .11 .04 .03 .02 .02
sup F'(3) 64 41 25 15 bH6 31 20 .13 09 .03 .02 .02
sup F'(4) 276 A7 27 65 35 .21 10 .02 .02
sup F'(5) .82 .50 .27 71 .37 .19 10 .02 .02
UDMAX .76 .63 12
WDMAX .89 72 14
Sequa — Prlm=0] | .80 .86 .89 .92 91 (.80 .87 .89 .91 .92|.96 .98 .98 .98 .98
Sequa — Prfm=1] | .17 .13 .10 .08 .09 (.17 .12 .11 .09 .08|.04 .02 .02 .02 .02
Sequa— Prm=2] | .03 .01 .01 .00 .00|.03 .01 .00 .00 .00|.00 .00 .00 .00 .00
BIC — Prim =0] A8 32 46 56 64| 61 71 .76 84 87|10 10 1.0 1.0 1.0
BIC — Prim =1] A2 20 22 26 26| .13 .14 .16 .12 .11 |.00 .00 .00 .00 .00
BIC — Prim =2] 22 24 24 15 10| .15 12 .07 04 .02 |.00 .00 .00 .00 .00
LWZ — Prim = 0] 82 8 87 90 91197 98 98 99 99|10 10 1.0 1.0 1.0
LWZ — Prim =1] 11 .10 .10 .08 08].03 .02 .02 .01 .01|.00 .00 .00 .00 .00
LWZ — Prim = 2] .06 .04 03 01 01].00 00 .00 .00 .0O0|.00 .00 .00 .00 .00




‘0 = 7719Y S[RAIDIUI 9DUDPYUOD 9} FUIDNIISUOD UM PUR | = Z~19Y

‘

1591 0} SUIONIISUOD USYA\ () = 77J9Y SOSed [[8 U] ; PION

ove = .L
0¢ =2
96" €0° 8L 8I' ¢& TI.L° €0 <0 6L 6T 00" €0 €L GL 1% [ ="n".409 r=alfg= ¢ (™
0¢T = L
0¢ =2
¥6- ¥O €L ¢¢ <¢¢ 0L S0 €00 99 <CF 00 O 09 <¢9 8Y I =n"109 [=aig=" ¢ (I
ove = .L
0¢ =2
g6 100 <¢¢ €L 61" TI¢ 8¢ 000 6¢ 1L 00" €0 V¢ <S¢ oC T=nuoo g == ¢
0¢T = L
0¢ =2
96° €0 6¢ 89" 8T Ly ¢& 10" ¥¢ gL 00" V0 v¥¢ Vv¢ ST [=nu0o ¢ =%g=M ¢ (u
0¢T = L
T=‘g="1 ¢qgoy =23
96" 00" OT 00 €0 L6~ 000 ¥O° 96 00 OT OT ¢« 70 0T OT1T OT 0 = 1409 g=%%1=u" T (®
0¢T = L
o=°¢l=n ¢y =:3
€6° 00" 86 <¢O° €0 L6° 000 ¥O© 96 000 OT OT ¢« 70 0T OT1T OT 0 ="n"409 g=%%1=u T U
0¢T = L
¢=ul'g="1 ¢or=:2
¥6- 000 ¢8&8 8" €O 9 100 ¥O° 96 000 OT OT ¢ ¥0° 86 66 OT 0=mnu00 c¢T=3%%T=MW [C
0¢T = L
o=°¢l=n ¢y =:3
€8 00" €I" 18 €0 89 8 <0 LL T L. 8L 100 €0° 99" 69 6L 0=mnu00 ¢T=3%T=H T (p
0¢T = L
T=dl'o=" ¢ =2
€6 000 ¥9 9¢ €0 ¢ <O VOO G6 IO 66° 66 O ¥O 960 16T 66 0 = 1400 r=e=1u T 0
ove = .L
¢=ul'g="1 ¢or=:2
08 00" 10" 66° 00 €F L9 10 99 7¥& Q9 99 100 ¢0° 09 €9 99 0 = 1409 r=e=1u T (g
0¢T = L
¢=ul'g="1 ¢or=:2
V.. 00" 20 86" <¢O° <¢& 99" <¢O ¥ LS T TF 100 €0 ¥E <C€ €V 0 ="n409 = =u T (e
wee| el 1] ol el 1] ol el 1] olml| n delile| e[ z[ 1] suoneoymedg soufey | ese)
opey ZM1 ord enbog xewq | (|1 +9)q dus (). dns
98RIOA0)) syealq 3 SUI1I9[as JO AI[IqRqol] (woryoeloa jo Aypiqeqoad) s1s97,

‘T = W ueyMm UOII9[as eadq pue s9s99 oY} Jo Jomod : o[qel,



‘0 = %2732y 9sn
oM nwwuﬂmﬂu Jealdq 94} JO Ss[eAIOJUL 92UPUUOI 217 JO UOIIONIISUO0D 9] I0] pu® T = Z719Y ISIL 9M nwuwwu 9(1 JO UOor1onIjsuos ayl} .HOVMH (9JON]

OHmi”miH:\\

18 ¢ ¢0 8 000 OFy L9 000 68 69 000 OT OT VO 0T 01 01 ¢—=8‘¢c=%T=WU (o
O e mi e Ni _= S\\

4 ¢6 ¥9 9 000 ¥6© <¢O° 00 88 €0° 000 OT OT ¢0° 60 0T OT OT g=tlg=a'1=" (w
O e mi e Ni _= S\\

89 89" 000 9. ¥¢ €I° 9’ T0° €T° e’ 000 66 OT ¢« ¥I' OT OT 0T c=8gr=8"T=1 (T
O e mi e Ni _= S\\

€6 ¢6° 8¢ IO 19 € T0 20 69 10 €& 66" 66 ¥O© 86" OT OT LL c=ir=8=1 (%
O e mi e Ni _= ﬂi

99 9° 000 000 OT 91" 80 9L 100 ¥I° 8L 09 OF €0° 8¢ ¢ 6V <l gr=o‘g=8l=1 (f
I—=¢f‘g=a1‘g= T

66 86~ 0T 000 00" 96 00 00 S 000 000 OT OT 0 0T OT 0T 0T T=8=3=1U (y
c=¢r‘y=¢8rd‘g=11

96 88" G¢ ¢, 000 08 4I" 00" L4 LT" 000 OT OT 90° €8 0T OT OT T=8=3=1U (5
g=¢1'T—=¢en‘g=1r

66 88 6¢ T 000 ¢8 €' 000 ¢8 ¥I° 000 OT OT G0° 98 OT OT 0T T=8=3=1U (
I—=¢1‘T=a‘g= T

96 68 Te 190 <0 €8 €I' 000 ¢8 ¥I° 000 OT OT voo 98 0T OT OT T=8=a=1U (p
z=¢'y=¢8d‘g=11

98 88" ¥O° 96° 00" 6% 8¢ 00 V& ¥V 000 OT OT €0° 99 OT OT 0T r=8=a=" 0
T=‘g=¢1 =11

ay 18 ¢0° 000 86 <9 GO T€ TI€ 80 69 88 ¥ €0° €L 68 68 IV T=8=a=1 (q
m.HNQ\\NOHmiHﬂi

6V I¢" 00 00" OT %O 90" 06" <O TT° A8 S¢° 8T 100 IT° 9¢ €& €T T=8=8=1" (e
¢# | # [ el 1] o el 1] o] e 1] o[ m][ n ce[1le] ¢l el 1 Sonen

| %c6 | oreq ZMT DId enbog xew (7 | ([T +7)g dus (%) dus
98RIOA0)) syealIq 3 SUIID9[as Jo AI[Iqeqol] (uoryoelorn jo Aypiqeqoad) 1597,

10 =171y ‘0 =402 ‘60" = 3 ‘0gT = I ‘T 2s8D

7 = W U9yMm UOII9[as eadq pue s9s99 oY} Jo JomoJ :g o[qel,



") = #719Y S[RAIDJUL SOUSPYUO0D S} SUONIISUOD USYM PUR T = 2712y ‘$380} o[} SUIPONIISUOD USYA\ () = N712Y SOsed [[e UJ | 9j0N

ove = .L
0¢ =2
01 66° OT 00 00 OT 00 00 €< 00 ¥ 000 0T OT OT €% I = n.109 y==al‘g=*%l="h ¢ O
0¢T = L
0¢ =2
66 01T OT 000 00 OT 00 00 90 00 V6 000 0T OT OT 90 [ =409 y==an‘g=*8l="hl ¢ (I
ove = .L
0¢ =2
86° 66° OT 00 00" L6 00 00 L9° 00 c¢ 000 0T OT OT 89 T =400 g="ol'g="%81="M ¢
0¢T = L
0¢ =2
16° 6" 96 100 ¢0° S6° 000 00 T& €0 <L 00" 68 W6 86 GT [ =400 g="ol'g="¢81="M1 ¢ (U
ove = .L
0¢ =2
G6° 6" 000 900 ¥6° ¥I° S¢ 69 000 80 <6 00 2¢O 80O 80 8O [ =409 T=2atg="¢8f="1 ¢ (3
0¢T = L
0¢ =2
86° 26" 10" 80 06~ SI° 9¢ 99 00 10 €6 100 €0 T1II" Or° L0 I = n.109 T=2atg="¢8f="1 ¢ U
ove = .L
0¢ =2
86° 86" <¢0° €0° <6 8& 9" 9 10" 100 <6 00" 60" LT" G¢ 80 [ =400 ¢ =wlfg=*8l=1l ¢
0¢T = L
0¢ =2
86 66° TO° 8O" 06" ST° 9¢° 99° 00" 20" €6 100 €0 11" Oor° 20 I ="n".109 ¢c=wlfp="81=1 ¢ (p
0¢T = L
g=¢tr=0l'g="  ¢p =2
a8 €6 8¢ ¢L° 000 6L LT° 000 8L 61" 000 OT OT OO ¢8 01 0T OT1 0 = 409 I=slg=2el1=MW T 0
ove = .L
g=ulr=8l'g="  ¢p =2
g6 66 88 ¢I' 000 S 000 000 68 000 000 OT OT G0 0T OT 0T 0T o=nuoo g=sl¢gr=2elT=MW T (@
0¢T = L
g=t‘g=¢1=N1 ¢y =:3
i 9" 00" 00" OT €0 90 06" <¢O0° O 88 G& LT 100 80" ¥¢ T1¢° ¢T o=nuoo T=8'¢c=eT=WU T (e
e# | 1# el 1] o el 1] of 2] 1] ol m[ a delte| e[ z[ 1] suoneoywedg soufey | ese)
| %26 | oreu ZMT DId enbog xew (7 | (9|1 +9).g dus (). dns
o8RIoA0)) syealIq 3 SUIID9[as Jo A[Iqeqol] (uoryoalor jo Aypiqeqord) sysaf,

(p,yu0d) g = w USYM UOI)IS[4S eadq pUR §)sa] 919 JO JomoJ :9 9[qe],



‘STRAIOIUT DUIPYUOD
oY1) Pue 1597 ST JO UOIIDNIISUOD 9] I0] T = N~2Y PuUe | = 2~79Y e[} SUBSUI PIIIDII0 ) "S[RAIDIUL DUSPYUOD [} JO UOIIINIISUOD
oY} UL ) = N7P2Y ‘() = #7192y PUE $)50) OY} JO UOIIDNIJSUOD OYY UL () = N7J2Y PUR T = £~y SUISH SUBOUL PO)OOIIOIU() | DJON

96 16° 96" <0 00 ¢ 8 0T 0T OT Po92a.LI00 T=8Fp=u87=10
I=foy=¢%o1=}0

66 88 ¥¢ 9L 000 L8 60" 000 06 8O0 00 ¢ ¢6 0T 0T 01 pajoaliooun ove =12 (u

€6 98 9. ¢¢ 00 ¥o© 8. 0T OT 0T Po92a.LI00 T=8p=87=05
I=foy=¢%o1=}0

€6 08 60 I8 OI' 8¢ L& 000 <9 L¥ OO0 €0 €9 0T OT OT pajoaliooun 0cr=1 (3

96 ¢6 60 ¢0 00 ¢ 66 0T OT OT Po92a.LI00 T=87=u7=105
I=fop=C%o‘1=10

V6 16° S¥ 99 000 ¥6 €0 00 96 €0 00 ¢ 60 0T 0T 01 pajoaliooun ove=u0 @

V6 98 VA CANV () ¢ 9. 0T 0T OT1 Po92a.LI00 T=8F7=u"7=105
I=foy=¢%o1=}0

¢6 ¥ ¥¢ L9 600 €L ¢¢ 000 89 08 00 €0 0L 0T 0T OT pajoaliooun ocr=.u0

L6 ¢6 86" 00 00 100 0T OT OT OT Po92a.LI00 T=8Fp=u87=10
1=fog=¢to'1=}0

L6 A8 9¢ ¥ 000 26° 100 000 86 100 OO0 100 66° 0T OT OT pajoaliooun ove=.1 (p

96 88 L8 T 00° ¢ 68 0T 0T OT1 Po92a.LI00 T=8p=87=05
1=fog=¢to'1=}0

V6 I8 €& <L 100 L 0¢ 00 LI ¢¢ 0O ¢ 8L 0T 0T O1 pajoaliooun oct=.u0 (

86 €6 66° 00 00 100 0T OT OT OT Po92a.LI00 T=87=u7=105
1=fo¢g=C%o1=10

86 ¥6© I8 61" 000 8 00" 00" 66° 00 OO0 100 0T OT OT OT pajoaliooun ove=1 (a

96 68 ¢6° 900 00 100 ¥6° 0T OT OT Po92a.LI00 T=8F7=u"7=105
1=fog=¢to'1=}0

96° 06 ¢v LS 10" 68 80 00 68 60 00 ¢0° 96~ 0T OT OT pajaaliooun 0cI=.1 (e

e# | el 1]l ol el 1] o]l 2] 1] o delte] €] @] 1] swonesymods son[e)

| %g6 | @veq ZMT DI enbog Ot + 7)1 dns (%).1 dus
98RIOA0)) syealq 3 SUIIS[es Jo A[Iqeqold (uoryoeloa jo Aypiqeqoid) s1s97,

¢c—=%l'gc=08‘g=T pue g = 8L¢’T = ‘T = W M | ase))
‘CTT = 3 ‘0 = M L09 SJUSUITIS SSOIR BIRD PUR SIOLID 9] 10J SUOTINLIISIP JUSIPI(T

7 = W USaYm UOI}I3[aS Yealq pue §9s99 oy} Jo omoJ :e's o[qel,



‘STRAIOIUT DUIPYUOD
oY1) Pue 1597 ST JO UOIIDNIISUOD 9] I0] T = N~2Y PuUe | = 2~79Y e[} SUBSUI PIIIDII0 ) "S[RAIDIUL DUSPYUOD [} JO UOIIINIISUOD
oY} UL ) = N7P2Y ‘() = #7192y PUE $)50) OY} JO UOIIDNIJSUOD OYY UL () = N7J2Y PUR T = £~y SUISH SUBOUL PO)OOIIOIU() | DJON

16° 16° 96" <0 00 100 86 0T OT OT PRID2LIOT T=8Fp=u87=10
I=foy=¢%o1=}0

68 88 €0 L6 000 L. € 000 I8 Q" 00 000 ¢8 0T 0T 0T pojoa.LIoou) ove=.u0 (U

06 06’ 09" OoF 00 ¢ 09 01T 0T 01 PRID2LIOT T=8p=87=05
I=foy=¢%o1=}0

8 ¥8 100 €6 90" 8¢ TI.L° 000 ¢¢ 8L 00 100 ¢¢ 0T 0T OT pojoa.LIoou) ocr=.u0 (3

€6 ¢6 06~ 60 00 000 T6° OT OT OT PRID2LIOT T=87=u7=105
I=fop=C%o‘1=10

16° ¢6° 90 6 000 e’ SI° 00 L® €I" 00 00" 18 OT OT 0T pojoa.LIoou) ove=u0 @

¢6 ¢6 oy 09 00 ¢ 0oy 01T 0T 01 PRID2LIOT T=8F7=u"7=105
I=foy=¢%o1=}0

16° 06 10" T16° 80 ¢& 89 000 8& ¢l 00 000 8 0T 0T 0T pojoa.LIoou) ocr=.u0

¢6 €6 86" 10" 00 000 66° OT OT OT PRID2LIOT T=8Fp=u87=10
1=fog=¢to'1=}0

68 88 TI¢ 69 000 L6° €00 000 86 <O 00 000 66° OT OT OT pojoa.LIoou) ove=.u0 (P

16° 06’ 6. T¢ 00 000 6. 0T OT OT PRID2LIOT T=8p=87=05
1=fog=¢to'1=}0

a8 €8 ¢0° ¢ 000 190 6¢ 000 €9 L& 00 000 ¢9° 0T 0T 0T poja.LIodun oct=.u0 (»

V6 v6 86" 00 00 000 0T OT OT 0T PRID2LIOT T=87=u7=105
1=fo¢g=C%o1=10

V6 v6 ¥< 9% 000 66° TO0° 00" 86 100 OO0 000 0T OT OT 0T pojoa.LIoou) ove=.u0 (4

06 16° LL ¢ 00 00" L. OT OT OT PRID2LIOT T=8F7=u"7=105
1=fog=¢to'1=}0

16° ¢6 60 16 10" ¢L 8 00 €L LZ 00 00" €L 0T 0T 0T PoIoa.LIooU ) 0cr=.ug (e

e# | el 1]l ol el 1] o]l 2] 1] o delte] €] @] 1] swonesymods son[e)

| %g6 | @veq ZMT DI enbog Ot + 7)1 dns (%).1 dus
98RIOA0)) syealq 3 SUIIS[es Jo A[Iqeqold (uoryoeloa jo Aypiqeqoid) s1s97,

T=¢‘c=%‘g=T pue g =8‘¢c'T = ‘T = TL yum | ose))
‘07 = 30 = N409 ‘SJUDWFIS Ss0I0e BIRD PUR SIOLID 1) J0J SUOTINLISIP JUSIYI(]

7 = W u9aym UOII9[as Yealdq pue s)s99 oy} Jo Jomod :q'L 9[qel,



Table 8: Empirical Results: U.S. Ex-Post Real Interest Rate
(1961:1-1986:3)

Specifications
2z = {1} g=1 p=20 h =15 M=5
Tests'
SupFr(1l) SupFr(2) Suplr(3) SupFr(4) SupFr(5) UDmax W Dmax
59.42* 44.17* 33.96* 24.94* 18.46* 59.42* 59.42*
SupF(2|1) supF(3]2) supF'(4]2)
34.31" 14.32* 0.03
Number of Breaks Selected?
Sequential 3
LWZ 2
BIC 2
Estimates with Three Breaks®
& 8y 83 b4 T T T
1.82 0.87 -1.80 5.64 66:4 72:3 80:3
(.19) (.16) (.51) (.59) (64:4-69:3) (70:2-72:4) (79:4-81:1)

I The supFTU{:) tests and the reported standard errors and confidence in-
tervals allow for the possibility of serial correlation in the disturbances. The
heteroskedasticity and autocorrelation consistent covariance matrix is con-
structed following Andrews (1991) and Andrews and Monahan (1992) using
a quadratic kernel with automatic bandwidth selection based on an AR(1)
approximation. The residuals are pre-whitened using a VAR(1).

2 We use a 5% size for the sequential test supfr (ﬁ +1 M)

3 In parentheses are the standard errors (robust to serial correlation) for 6;
(i =1,...,4) and the 95% confidence intervals for 77 and 5.

4 A * indicates significance at the 5% level.



Table 9: Empirical Results: U.K. CPI Inflation Rate 1947-1987

Specifications
z={Lye1} qg=2 p=0 h=8 M=3
het_.u =1 Tests e =.20
SupFr(1) SupFr(2) SupFr(3) SupFr(2|]1) SupFr(3]2)
8.50 9.88¢ 6.74° 10.22° 1.25
UD max WD max(10%) W Dmax(5%)
9.88° 11.71° 12.08
Number of Breaks Selected
Sequential Procedure 0
LWZ 0
BIC 0
Parameter Estimates with Two Breaks
611 61,2 613 Ty Ty
.024 0.00 018 1967 1975
(.008) (.020) (.016) (1964-1968) (1969-1981)
2.1 b2, 6.3
274 1.34 .684
(.200) (.250) (.136)

¢ and ° denote a statistic significant at the 5% and 10% level, respectively.



Table 10: Empirical Results: Phillips Curve Equation

Specifications
v = {Aw} g=2 p=2 2={1LAp 1} x={Au,ui 1}
het_u =20 e=.10 h=4 M=5
Tests ¢=.10
SupFr(1) SupFr(2) SupFr(3) SupFr(4)
22.84¢ 25.77¢ 20.76¢ 17.19¢
SupFr(2/1) SupFr(3|2) SupFr(4]3) UDmazx W D max(1%)
24.39¢ 4.98 4.98 25.77¢ 32.34¢
Number of Breaks Selected
Sequential Procedure 2
LWZ 2
BIC 2
Parameter Estimates with Two Breaks
Y1 V1,2 1,3 T Ty
.066 .062 181 1967 1975
(.012) (.019) (.054) (1965-1968) (1973-1976)
V2,1 V2,2 V2,3
.094 1.23 .015
(.240) (.205) (.257)
V3 V4
-.141 =877
(.581) (.373)

¢ denotes a statistic significant at the 1% level.



Figure 1. Example of the triangular matrix of sums of squared residuals with T'= 25, h = 5 and m = 2
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Notes:

The column number indicates the initial date of a segment while the horizontal number indicates the terminal date. Fo

example, the entry (4,10) indicate a segment that starts at date 4 and ends at date 10, hence having 7 observations.

x? indicates a segment not considered since otherwise there would be no place for 3 segments of length 5.

% indicates a segment not considered since it must be at least of length 5,

A e indicates an admissible segment.
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