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RESUME

Nous caractérisons la solution d'un modele de lissage de la consommation avec
financement externe sujet a des contraintes d'engagement et épargne. Nous démontrons
gue, sous certaines conditions, I'épargne et le financement externe se complétent
parfaitement. Si le taux d'escompte est égal au taux d'intérét, on obtient en temps fini un
lissage parfait. Nous démontrons également que le lissage obtenu sur les marchés
financiers affecte l'investissement en capital physique. Lorsque le lissage est imparfait,

l'investissement est utilisé pour des fins de lissage.

Mots clés : épargne, consommation, partage de risque dynamique, non-engagement

ABSTRACT

We characterize the solution to a model of consumption smoothing using financing
under non-commitment and savings. We show that, under certain conditions, these two
different instruments complement each other perfectly. If the rate of time preference is
eqgual to the interest rate on savings, perfect smoothing can be achieved in finite time. We
also show that, when random revenues are generated by periodic investments in capital
through a concave production function, the level of smoothing achieved through financial
contracts can influence the productive investment efficiency. As long as financial contracts
cannot achieve perfect smoothing, productive investment will be used as a complementary

smoothing device.

Key words : savings, consumption, dynamic risk sharing, non-commitment



1 Introduction

Market incompleteness can explain why risk-averse agents cannot perfectly insure them-
selves against idiosyncratic risk. With complete markets, it is always possible to buy state-
contingent securities that ensure that consumption is perfectly insured and smoothed. Macro
and micro data show, however, that consumption is variable: the hypothesis that agents con-
sume their permanent income each period is rejected by the data. Agents cannot perfectly

insure themselves.

Liquidity constraints have been used to represent some form of market incompleteness.
They limit an agent’s access to credit, who can therefore not expect to smooth out all income
risk. These constraints seem empirically plausible. Many agents cannot borrow because
they cannot offer the creditor a significant collateral. Others can only borrow at a very high
interest rate. Models with a representative agent have used these constraints to explain the
empirical failure of the permanent-income hypothesis. Garcia, Lusardi and Ng (1995) show,
using micro data, that liquidity constraints represent the most plausible explanation of the
sensitivity of consumption to current income. Deaton (1991) has simulated consumption and

savings paths close to aggregate series using various liquidity-constraint models.

Liquidity constraints are only a “reduced-form” expression for market imperfections
that cause market incompleteness. These imperfections can be caused by informational
problems such as adverse selection and moral hazard. These informational asymmetries
limit the extent of trading with the consequence that all risks cannot be fully diversified
(Green, 1987; Thomas and Worrall, 1990). Informational asymmetries have also been used

to explain the empirical failure of the permanent-income hypothesis (Pischke, 1995).

Another source of market imperfections is the lack of commitment by the parties engaged
in a financial relationship. If the costs of enforcing a financial contract are high, agents may
elect to breach the contract rather than obey all its terms and conditions. Thomas and
Worrall (1988) have characterized the optimal risk-sharing labor contract where neither the
risk-neutral firm, nor the risk-averse worker could commit to the contract. They show that
the firm cannot generally fully smooth the worker’s wage. In all periods, the wage varies
depending on the last-period wage and the worker’s current productivity. In this context,
Gauthier, Poitevin and Gonzélez (1997) show that, if the agents can make a transfer before

the realization of the state of nature, the commitment problem is alleviated.



Building on the liquidity-constraint literature, our model seeks to endogenize this con-
straint. In the liquidity-constraint model of Schechtman (1976), we explicitly introduce the
possibility for the risk-averse agent to borrow from a risk-neutral financier. Such borrowing
is assumed to be subject to non-commitment. The assumption of non-commitment has the
following interpretation. The role of the financier is to provide financing to the risk-averse
agent when he experiences a negative shock to his income. A contract with full commit-
ment would require that the financier always make a loan to the risk-averse agent regardless
of the likelihood that he reimburses. Without commitment, the financier may refuse to
refinance the borrower if it is likely that the borrower never reimburses. Alternatively, non-
commitment on the part of the risk-averse agent can be interpreted as limited liability, that
is, the borrower cannot be forced into reimbursing a loan if his utility is higher when de-
faulting. The assumption of non-commitment implies that the risk-averse agent cannot fully

finance his consumption, and therefore, he cannot fully diversify his income risk with the
bank.

Borrowing under non-commitment can therefore be used to endogenize the liquidity con-
straint in the model of Schechtman. The first goal of the paper is then to characterize the
optimal consumption path in the liquidity-constraint model of Schechtman when market in-
completeness (the liquidity constraint) is endogenized by an assumption of non-commitment

on financing with a financier.

The second goal is to use this model to assess whether non-commitment in financial
markets can have an impact on the real decisions of the risk averse agent, namely, its invest-
ment decisions. Following Modigliani and Miller’s (1958) result on the irrelevance of financial
structure to real decisions, there has been a large literature seeking to explain how imperfec-
tions in financial markets can influence investment decisions. For example, Ambarish, John
and Williams (1987) show that informational asymmetries in financial markets can induce
firms to over- or under-invest in order to signal their value. We follow Sigouin (1997) in
introducing investment decisions in a dynamic model of financing under non-commitment.
As opposed to his analysis, however, we study the interaction between real and financial

investment as savings are also incorporated in the analysis.

The model is presented in the next section. Section 3 presents our main results on the
dynamics of financing and consumption. The impact of non-commitment in financing on
investment decisions is studied in Section 4. We discuss some of our assumptions in Section

5 to illustrate the robustness or sensitivity of our results to some key assumptions. The



conclusion follows.

2 The model

Agent 1 has a stochastic exogenous income y* which depends on the realization of the state
of nature s. There exists a time-independent discrete set of possible states S = {1,...,S}.
The time-independent probability of state s is p*, with S ,csp® = 1.1 We assume that
y' < ... < y%. Agent 1 is risk averse with preferences represented by a state- and time-
independent concave utility function w. This function is defined and bounded over the
interval [0,~]|. Formally, we assume that v/ > 0, v” < 0, and «/(0) = oco. Agent 1 has an

infinite-horizon life span.

Agent 1 has access to a savings account in which he can make deposits in every period.
His savings at the end of period ¢t — 1 is denoted by A;. Savings earn a time-independent
interest rate r per period. In any period, agent 1 can withdraw any savings he may have.
Agent 1 is, however, liquidity constrained in the sense that he cannot borrow at this rate .
This amounts to assuming that savings must be non negative at all time, that is, A4, > 0 for
all 1.

Agent 1 can, however, borrow from agent 2. Agent 2 is an infinitely-lived risk-neutral
financier with a linear utility function v(b) = b.> His endowment is e per period. Without
loss of generality, we assume that e = 0. Both agents discount the future by a common
factor 5 =1/(1 4 9). We also assume that r <.

There are gains from trade to be exploited by these two agents as agent 1 can hope to
transfer some of his income risk to the risk-neutral agent 2. The relationship between these
two agents is governed by a contract signed at date 1. This risk-sharing contract specifies
transfers from agent 1 to agent 2, and savings for agent 1 for all dates. Transfers and savings

can depend on the date ¢, the state s realized at that date, and more generally on the whole

IMost of our results hold if income follows a first-order Markov process. Additional details along these

lines are available from the authors upon request.
2Qur analysis is in a partial-equilibrium context. The assumption of risk neutrality for agent 2 means

that agent 2 is “big” compared to agent 1. For example, agent 2 may represent a large bank, while agent 1

represents a typical borrower.
3If r > &, the agent has a strong incentive to sacrifice its current consumption and save. Savings are no

more accumulated in a smoothing interest but for further consumption. It is of no interest in our context.



history of states prior to date ¢. Transfers can be either positive or negative, while savings
must remain non negative. Note that we implicitly assume that savings are verifiable and

can thus be controlled by the contract. We relax this assumption in Section 5.

Formally, denote by h: = (s1,...,s¢) the history of realizations of states of nature for
all periods through period ¢, and by Hy, the set of possible histories at date £. Denote by 7
agent 1’s consumption plan. A plan 7 is a set of functions m;, one for each period ¢, such
that m, : H; — R, x R with m(hi_1, s:) = (A7, bF"). For each period t, a plan 7 specifies
a level of savings A;;1 to start with in period ¢ + 1 and a contemporaneous transfer b; as a
function of the current state of nature and the history up to period ¢t. Denote by U;(m, ht)
and Vy(m, hy) the expected utility of agents 1 and 2 respectively from period ¢ on under

consumption plan 7.
Up(m, he) = u(el™) + B 522, B7u(cry s ")
Vilm, he) = B+ B X2, BB

where E; is the expectation operator conditional on the available information in period £, h;.

Consumption is determined by ¢f** = y* + (1 + r)AF™ — AT, — b7

Suppose that the two agents can commit to a long-term contract. The consumption of

agent 1 solves the following maximization problem:

max, Ui(m,s1) st Vi(m,s1) >V (1)
=y + (1 +7r)AT — AT =0 Yh,, VT >0 (2)
AT >0 Yh,, Y7 >0. (3)

where V' is the reservation utility of agent 2. It is easy to show that the optimal contract
yields a constant consumption to agent 1 in all states and all periods, and that savings
do not have to be used to support the optimal consumption path. A crucial assumption
for these results is that the two agents can fully commit to the transfers prescribed by the
contract. This may be an unreasonable assumption since, following a given history, an agent
may prefer to breach the contract rather than make the prescribed transfer. For example,
agent 2 may prefer not to refinance agent 1 in a low-income state when agent 2 expects not
to be fully reimbursed in the future. Alternatively, agent 1 may prefer to declare bankruptcy
rather than reimburse agent 2 when his debt becomes too large. If enforcement costs are
high, it is not possible to bind the agents to the contract in all circumstances. It is therefore

relevant to study the optimal contract in an environment where agents cannot commit.



The possibility of savings, as an outside opportunity for agent 1, is likely to affect the
solution to the non-commitment contracting problem. Before solving this problem, however,
it is helpful to characterize the solution to the simpler problem in which agent 1 can save
but cannot borrow from agent 2. It turns out that this problem represents the autarky

environment that agent 1 can attain if he rejects or breaches the contract.

In autarky, agent 1 seeks to maximize his lifetime utility by choosing his consumption
and savings in each period. At the beginning of period ¢, he has accumulated savings of
(14 7)A; and he receives an endowment of y°. These financial resources are then shared
between current consumption and future savings to satisfy his budget constraint: c¢; + A7, ;, =
y®+ (1+7)A;. The fact that agent 1 cannot borrow is represented by the liquidity constraint
Apy >0,

Formally, agent 1 chooses {¢;}{2; and {Af,,}2,, V s € S to solve the following Bellman
equation:?

9(Any®) = max uly® + (1+r)A — Az ) + FE.g(Az,y7). (4)

t+1—

The value function g(A:, y°) represents agent 1’s maximized expected utility at the begin-
ning of period ¢ given that he has savings of A; and state s has been realized. Under our
assumptions, g(., y*) is continuous, strictly increasing, strictly concave, and continuously dif-
ferentiable. Furthermore, the optimal saving and consumption policies can be described by

continuous functions a(A;, y°) = A, and c¢(A, y°) = ¢ =y — A, + (1 +1)A,.

First-order conditions and the envelope condition at period ¢ can be derived from pro-

gram (4) and the following equation obtains for all s in S:
u'(cf) = B+ r)Bau'(ch) + 1

where 7 is the multiplier on the liquidity constraint. This is the Euler equation determining

the optimal consumption smoothing, taking into account the liquidity constraint.

From the first-order and Euler conditions, it is possible to describe the dynamics of
consumption and savings. Savings a(A: y®) and consumption ¢(A, y®) are both increasing
in A;. A higher stock of savings means more resources at hand which are then shared

between current consumption and savings for the next period. It can be shown that for

4See Schechtman (1976) for formal proofs of most of the results that follow.



y® > y%, oA y®) > c(Any?) and g(Ay, y°) > g(As y?); consumption is then imperfectly
smoothed and utility varies across states of nature. Although agent 1 withdraws from his

savings account to finance consumption in bad states, consumption remains variable.

Imperfect smoothing through liquidity-constrained savings is described in the literature
on consumption /savings models. Schechtman (1976) shows that if the interest rate r is equal
to the discount rate d, consumption can only reach a stationary state in the limit, when the
savings stock tends to infinity. Deaton (1991) suggests that, when r < ¢, that is, when
savings are relatively costly, the consumer is reluctant to save, even in the good states of
nature; therefore, savings do not tend to infinity. In general, consumption will be equal
to the resources at hand (savings + income) as long as they are not higher than a certain
level. From that level up, the consumer starts to save, but the savings stock remains low.
Finally, whatever the interest rate, consumption smoothing is poorly realized. There are,
therefore, gains from trade to be realized in signing a risk-sharing contract with a financier.

This possibility is introduced in the next section.

3 The risk-sharing contract with non-commitment

We study the optimal risk-sharing contract when neither agent can commit itself to respect
the contract in any contingency. Each agent can decide to renege on the contract if the
payment to be made is greater than the future surplus it expects. To make sure no such
incentives are present, we introduce self-enforcing constraints into the contracting problem.
These constraints impose that, in each period, following any history, agents have no incentives

to renege on the contract.

We assume that, if an agent reneges on the contract, he gets his autarcic utility level
forever.® For agent 2, autarky means a zero income (and utility) forever. Agent 1 still
earns his stochastic income in autarky, and he can still partially smooth his consumption
with savings. In his case, autarky is represented by the solution to the savings model with
liquidity constraints characterized in the previous section. The value function g(A, y*) yields
the expected discounted utility of agent 1 if he breaches the contract having savings of A

and current income of y*. We assume that agent 2 can seize agent 1’s financial assets (his

®Asheim and Strand (1991) show that this punishment is renegotiation-proof in the repeated-game for-

mulation of a related model.



savings) if agent 1 breaches the contract. It is as if savings are put up as a collateral against
agent 1’s borrowing from agent 2. Agent 1’s autarcic life therefore starts with no savings.

Under these assumptions, self-enforcing constraints can be written as:

Z/{t(ﬂ-v (ht—h 3)) > g<07 ys) v (ht—h 3) € Ht7 v tv
Vt<7T, (ht—h S)) Z 0 A (ht—h S) € Ht, V¢

The optimal contract solves an optimization problem in ¢ = 1 which prescribes a con-
sumption plan m, that is, a sequence of savings and transfers for each date and possible
histories: {Af}h, b " }i=01,... A first property of the optimal contract is that it must be ef-
ficient starting in any period following any history. Suppose the contrary that the optimal
contract is not efficient in period ¢ following a given history. It would then be possible to
change transfers in period t 4 1 in such a way as to increase agent 2’s expected utility, while
maintaining constant that of agent 1. These new transfers would satisfy all self-enforcing
constraints since they increase agent 2’s utility, thus reducing his incentives to renege on the
contract. These new transfers would then increase agent 2’s expected utility in ¢ = 1, while
leaving that of agent 1 constant, thus implying that the original contract could not have
been optimal. Consequently, an optimal contract maximizes at each date ¢ the expected
utility of one agent subject to a participation constraint for the other agent and subject to

self-enforcing and liquidity constraints. For each date ¢, the program must then be:

max,: Us(mt, he) st Vi(at hy) > V7 (5)
U (' hy) > g(0,9°) Yh, VT >1 (6)

Vot h) >0 Vh,, V7>t (7)

G =y b (LEm) AT — AT =00 Vhy, V72t (8)

TS >0 Yhe, V7> 9)

where 7! is the continuation of consumption plan 7 following history h;. Denote by I'(h;)
the set of instruments that satisfy constraints (6)—(9). It represents the set of continuation
contracts from period ¢ on that are self-enforcing and for which savings are non-negative.
If there are gains from trade, I'(h:) is non-empty because at least one agent can have more
than autarky in each period. Furthermore, it is easy to show that I'(h;) is compact and

convex.®

5See Thomas and Worrall (1988) for a formal proof in a related model.



In (5), the parameter V;** is the minimum surplus that agent 1 must yield to agent 2
when state s; is realized in ¢. This surplus allowed to agent 2 is bounded by the existing
gains from trade in the contract. If V;® = 0, there exists a self-enforcing continuation in
t consisting of a sequence of zero transfers to agent 2. If V;** > 0, the surplus cannot be
greater than total gains from trade available in . Here, gains from trade increase with the
amount of savings. Since savings can be used as a collateral, agent 1 can borrow more if he
has savings than if he has not any. The maximum surplus to agent 2 is then denoted by
Vi(Ay). If there are gains from trade, then there exists a sequence of {b; },—t...o that yields
Vi(A;) to agent 2 and the autarky utility to agent 1. This sequence satisfies all constraints
to the problem.”

Following Spear and Srivastava (1987), in period ¢, the surplus to agent 2 can be given

7t sy
t

using a current transfer b and a future expected surplus V[j:l Solving the problem

therefore amounts to picking a current transfer b;* to agent 2, future surpluses to be conceded

to agent 2 next period contingent on next period realized state {V;{'}s,,,es, and a level of

St

savings A7, to start next period.

The compactness and convexity of I'(h;) imply that there exists a unique value function
which provides agent 1 with the maximum of U (7", k) in each period as a function of Ay, V,
and the state s realized in t. We denote this value function by f*(As, V). It represents the
Pareto frontier that can be reached in state s via a self-enforcing contract for given values of
savings and surplus to be conceded to agent 2. This value function can be used to maximize
agent 1’s expected future utility by an appropriate choice of Ai1 and {V3; }.es as a function

of A; and V;. The optimal contract then solves the following Bellman equation:®

(A V) = max uly’ + (Lt r)Ae = Az, = b)) + BE (A7, ViaL)

s
ALpb5 Vi

ste SHALL VAL 20(0y7) VzeS (10)
Vi, >0 Vze8 (11)

bi + AE Vi > VE (12)

i1 > 0. (13)

In period ¢, the solution prescribes optimal values for the current transfer b, savings A7,

"Thomas and Worrall (1988) show that the surplus V;* allowed to agent 2 in state of nature s in a self-

enforcing contract belongs to a compact interval [0, V¥]. In our case, this proof is valid for V;* € [0, V5(A;)].
&Denote by s, the realized state in £, and by z, the state in ¢ + 1.
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and future surpluses {V/7;}.es for period ¢ + 1. Constraints (10) and (11) represent the
self-enforcing constraints of agents 1 and 2 respectively. The constraint (12) ensures the

intertemporal consistency of the optimal solution.

3.1 The value functions

We now characterize the value functions f° that solve the Bellman equations presented

above.’

Proposition 1. For all s, the functions f*(A,V) are increasing in A, decreasing in V,

concave and continuously differentiable in (A, V).

An immediate implication of this proposition is that the maximization problem on
the right-hand side of the Bellman equation is a concave program. First-order conditions
are therefore sufficient to characterize the optimal solution. The variables 5p*07 and Bp*A7
represent the Lagrange multipliers of the self-enforcing constraints (10) and (11) respectively,
for all z € S. We denote by 97 the multiplier of constraint (12), and by p¢, the multiplier of
the liquidity constraint (13). First-order conditions with respect to A7, 4, bf and V%, for all

z, and the envelope conditions yield the following equations:

u'(c}) = BB (14 07)f3(AL 0, Vi) + ud (14)
u'(c}) = of (15)
L+ Af Vi) = =N =47 Vz€eS (16)
SalAn Ve) = (L+ () (17)
Jo(An VE) = =4 (18)

We use the envelope conditions (17) and (18) for period ¢ + 1 in every possible states z and
introduce them in (14), (15), and (16) to obtain:

u'(ep) = B+ r)E (L + 00w/ (cF ) + (19)
u'(c]) = (L+0))u' (cq) — A VzeS. (20)

Equation (19) is the Euler equation modified to take into account the liquidity constraint

and self-enforcing constraints of period ¢. It implicitly determines the optimal choice of

YAll proofs are relegated to the Appendix.
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savings for agent 1. Note that this equation does not depend on agent 2’s self-enforcing
constraints. Only agent 1’s constraints affect his choice of savings. Equation (20) implicitly
determines agent 1’s consumption smoothing through the choice of the current transfer b7
and the future surpluses to agent 2, V7 ;. The extent of consumption smoothing depends on
the set of self-enforcing constraints of both agents since these constraints limit the choice of
b; and V3.

Proposition 2. For all s € S, the function f5(A, V) can be written as:
[AAV) =hy* + (1 +1r)A=V),

where h is increasing and concave.

This proposition states that each value function f* can be rewritten as a function of a
single variable y*+ (1+7)A—V which represents agent 1’s net assets following the realization
of the current state of nature s. The term y®+ (1 +1)A is agent 1’s endowment of financial
assets (his savings) and income. The variable V' represents the surplus of agent 2, and can be
interpreted as the value of the debt agent 1 has contracted with agent 2. This property of the
value functions implies that the solution is unique only to the point of having a constant net
asset value y° + (1 + r)A — V. This property has been derived using the envelope conditions
(17) and (18) which can be rewritten, using condition (15), as: f5(A,V) = —(1+r)fs(A4,V)
for all (A, V) and all s in S. This is a differential equation whose solution must be the
functional form in the proposition. We give more intuition on this result below once the
optimal consumption has been characterized. Finally, the function h inherits the properties

of the functions f*, namely their monotonicity and concavity.

3.2 Optimal consumption and savings

In a self-enforcing contracting model without savings, Thomas and Worrall (1988) have
shown that, in each state, consumption is contained in a time-independent interval. For ex-
ample, in state s, period-t consumption, ¢f, belongs to the interval [¢®, ¢°]. These consumption
bounds are increasing with the state of nature s and are determined by the presence of the
self-enforcing constraints. The bound ¢° (¢*) is the maximum (minimum) consumption agent
1 can receive in state s. A higher (lower) consumption would necessitate a larger transfer by
agent 2 (1) which would violate his self-enforcing constraint in that state. Given these inter-

vals, the dynamics of consumption follow a simple rule. In period ¢ and state s, consumption

12



is equal to period-(t —1) consumption, ¢;_1, if ¢;—1 is included in the self-enforcing interval of
consumption [¢®, ¢°|. If not, ¢} is equal to the bound of the interval that is the closest to ¢;_;.
This means that the contract tries to smooth consumption as much as possible subject to
self-enforcing constraints. When all self-enforcing intervals have a non-empty intersection,
consumption can be perfectly smoothed in finite time. This is possible for a high enough

discount factor.

The introduction of savings in that model modifies the characterization of the optimal

consumption path. The first effect is on the self-enforcing consumption bounds.

Proposition 3. (i) In each period, the consumption of agent 1 is included in an interval of
the form cf € |c®, ¢*(A+)| where the lower bound ¢ is constant, and the upper bound ¢ (A)
s increasing in the amount of savings.

(i1) Consumption bounds are increasing in current income, y*, that is,

S(Ay) > & (Ay) for s>z

C
¢’ > for s>z,

The introduction of savings implies that the upper consumption bound of Thomas and
Worrall (1988) is now dependent on agent 1’s savings. In their model, this upper bound is
determined by agent 2’s self-enforcing constraint. When agent 1 has some savings, however,
he does not need to rely only on borrowing in order to increase his consumption as he can
now draw upon his savings. This effectively allows him to consume more. This is why the
upper bound on consumption depends positively on savings. The lower bound represents
a minimal consumption level for agent 1 and is determined by his autarky consumption.
Since, by assumption, agent 1 loses his savings if he breaches the contract, this lower bound

is independent of savings.

The combination of savings and borrowing through the contract has important effects

on the interaction of the self-enforcing constraints of agent 2 and the liquidity constraint.

Proposition 4. i) If r = §, the self-enforcing constraints of agent 2 and the liquidity con-
straint are not binding, that is, \f = u; =0 V2 € S and V1.

ii) If r < 0, either the liquidity constraint or at least one self-enforcing constraint of agent 2
must be binding, that is, >, p°A\f + pi > 0.

In the model without savings, the upper consumption bound is likely to be binding

when (1) there is a negative income shock, that is, when y;,1 < y;, and (2) agent 2 expects

13



a low future surplus from the relationship. In that case, agent 2 has low incentives to
refinance agent 1, and consequently, agent 2 makes a low transfer to agent 1 and consumption
decreases. In period ¢, agent 1 would like to reimburse agent 2 more than his accumulated
debt, that is, save through agent 2, so that agent 1 can consume more tomorrow if his
income drops. This is not possible since agent 2 cannot commit to refund the saved amount
next period. The non-commitment severely limits the possibility for agent 1 to smooth

consumption through lending to agent 2.

With savings, however, this need not be the case. Agent 1 can save today, and draw
upon his savings tomorrow to increase his consumption if he experiences a negative income
shock. The extent to which agent 1 relies on his savings account depends on the assumption

on the interest rate r.

Suppose first that » = ¢. Because the interest rate on savings is exactly equal to the dis-
count rate, accumulating savings is as profitable as lending to agent 2. Since the savings ac-
count is not subject to self-enforcing constraints, savings effectively increase the self-enforcing
upper bound on consumption to the point where it does not bind anymore. Therefore, the

introduction of a savings account relaxes all agent 2’s self-enforcing constraints.

The liquidity constraint is not binding because agent 1 can effectively save negative
amounts by borrowing from agent 2. There is, however, an upper bound on the amount
agent 1 can borrow. This amount is contingent on the amount of savings which act as a
collateral in case of default by agent 1. This borrowing constraint has real consequences
because the self-enforcing constraints of agent 1 can be binding, that is, in a high income
state, agent 1 may be tempted to not reimburse agent 2 and renege on the contract, even if
this means losing his savings. This effectively limits the amount agent 2 is willing to lend to
agent 1. But, as long as savings are pledged as collateral, agent 2 is always willing to lend

some positive amount to agent 1, and the liquidity constraint is therefore not binding.

Without a binding liquidity constraint and self-enforcing constraints for agent 2, our
model with savings has some similarities with that of Harris and Holmstréom (1982), where
agent 2 can fully commit to a long-term contract. We show below that the dynamics of

consumption are similar to the dynamics they derive in their model.

One interpretation of these results is that borrowing and saving become perfect comple-
ment since each financial instrument helps relaxing the constraint on the other instrument.

This perfect complementarity is not, however, as trivial as it may seem. These two instru-
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ments yield very different consumption paths when taken in isolation. When only savings
are considered, consumption becomes perfectly smoothed only in the limit when savings
tend to infinity. When agent 1 does not have access to a savings account (but can contract
with agent 2), consumption varies within the self-enforcing bounds of Thomas and Worrall
(1988). It may become perfectly smoothed or not depending on the discount factor. These
two different instruments complement each other in our model to the point of relaxing the

liquidity constraint and the self-enforcing constraints of agent 2.

The effect of savings is completely different, however, when r < §. In that case, because
the interest rate on savings is relatively low, agent 1 prefers to consume rather than save. In
fact, saving through agent 2 becomes less costly than saving through the savings account,
and agent 1 would like to borrow at rate r (save negative amounts) and then lend to agent 2
through the contract. This is not possible because of the liquidity constraint. Agent 1 then
minimizes his savings and tries to save the most possible through agent 2, until agent 2’s

self-enforcing constraints become binding,.

If the liquidity constraint is not binding, that is, if uf = 0, then it must be that at
least one self-enforcing constraint of agent 2 is binding, that is, E,A7 > 0. Hence, if agent 1
saves a part of its revenue, at least one self-enforcing constraint of agent 2 is binding. The
intuition is that, if agent 1 is not liquidity constrained, it must be the case that agent 1 has
no incentives in borrowing at rate r to save through agent 2. This can only be true when
at least one self-enforcing constraint of agent 2 is binding, thus making additional saving
through him impossible. Even though savings are relatively costly, agent 1 can still save if
(1) savings through agent 2 is impossible due to agent 2’s self-enforcing constraint and (2)
it is necessary for agent 1 to save in order to smooth consumption. In fact, agent 1 saves
as much as possible through agent 2 and then may use his savings account if required for

smoothing purposes.

If no self-enforcing constraint of agent 2 is binding, that is, if A = 0 for all z, it must
be that the liquidity constraint is binding, that is, u7 > 0. This means that when the self-
enforcing constraints of agent 2 are not binding, agent 1 holds no savings as he would, in

fact, like to borrow at rate ». We now turn to the characterization of optimal consumption.
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Using the results of Proposition 2, first-order conditions can be rewritten as:

u(ey) = BL+r)E(L+ 00 (" + (L+r)A7, = Vi) + g
u(e)) = (LHOON (" + (L+r)AL, = Vi) — A Vze$ (21)
u(c;) = Ny + (1+r)A = V).

The last condition implies that consumption is constant for a given level of net assets X; =
y* + (1 + r)A, — V2, that is, along an indifference curve of f*. There exists a function
describing consumption ¢ = C(y* + (1 + r)A; — V) where C(y* + (1 + 7)A;, — V) =
w [ (y° + (1+7)A; — V#)]. Consumption in period ¢ and state s is an increasing function
of the net asset value X7 =y° + (1 +r)A; — V.

Proposition 5. (i) For all states s and z realized in t and t + 1:

N= 00 = Gy o
07 >0 = ¢ = C >0
AL >0 = i = C(Af) <q.

(i1) All things equal, if y* > y*, then ¢ > cf.

When r < 4, the optimal contract bears some similarities to that of Thomas and Worrall
(1988).1° 1t is no longer optimal to relax the self-enforcing constraints of agent 2 and the
upper bound of consumption can be binding. Furthermore, if 3 is close enough to one, the
self-enforcing intervals have a non-empty intersection. It is then possible to have a stationary
consumption reached in finite time. In that case, savings become useless and A; = 0 for all
periods t. It is then only when 3 is not too large that savings can play a useful role. Savings
improve the possibility for smoothing as it allows to raise consumption in low-income states.
Savings are never enough, however, to maintain agent 1’s consumption when a self-enforcing
constraint of agent 2 binds in a subsequent period. Consumption can then decrease in time,
that is, ¢, < ¢f if A7 > 0. Since savings are relatively costly, it is possible that consumption
reaches the self-enforcing upper bound. Smoothing is achieved only imperfectly as agent 1
trades off improved smoothing possibilities and the high cost of savings. The main difference
with the model of Thomas and Worrall is that upper bounds on consumption are not constant

in time as they depend on the level of savings.

10When r = —1, our model collapses to theirs as savings generate no returns and thus become useless.
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When r = 4, consumption reaches a stationary state in a finite number of periods. First,
because A; = 0 for all z, consumption in period ¢ is equal to consumption in period ¢+1 unless
a self-enforcing constraint for agent 1 is binding in period ¢ + 1. In that case, consumption
in t 4+ 1 is higher than that in period ¢. Second, the minimum level of consumption that
satisfies agent 1’s self-enforcing constraint is increasing in the current income for given values
of savings and accumulated debt. Hence, a self-enforcing constraint can only be binding

following a positive income shock. This implies that consumption cannot decrease in time.

Proposition 6. Suppose that r = 9.

(i) If state s is realized in t, then agent 1’s self-enforcing constraint in that state cannot be
binding in subsequent periods. Formally, sy —=s = 0;,. =0 V7 >0.

(i1) If state S is realized in period t, then from t+1 on, no self-enforcing constraint for agent

1 is ever binding. Formally, s, =S = 0;,,=0Vs, VT >0.

Perfect consumption smoothing is then achieved in finite time, that is, following the
realization of state S. With a positive income shock, consumption increases and the required
level of net assets to support this higher consumption increases also. Once state S is realized,

consumption remains constant.

The level of consumption is closely related to the level of the value function as can be
seen in the first-order conditions (21). Consequently, following the realization of state S, the
value function h attains the same level in all states and all periods. Suppose that state S
is realized for the first time in period t. Then, h(y® + (1 + 7)A;"' — V,°) determines the

stationary level of A which, in turn, determines the stationary level of consumption.

In the subsequent periods following the realization of .S, the solution is unique in terms
of net assets of agent 1, that is, conditional on current income, savings and accumulated
debt are chosen to maintain a constant level of net assets X, for the function h. The
stationary solution is, however, not unique in terms of (A,V?*).cs. For a given X, in any
state, one can set A7, = A and V7, = V® for all 2 € S to obtain X7,;, = X; for all
z. In that case, h(y* + (1 + r)Au1 — V51) = h(y® + (1 + 7)An — V7,) implies that
Ve > Vi, for y® > y®. Hence, for a given level of savings A, at the beginning of period
¢t and maintained in period ¢ + 1, the values of V3, conditional on the income realized in
t + 1 are such that V}}, < --- < V;%,. Alternatively, any other combination such that
v+ (1 +mA -V =y + (1 +r)A;; — V7, for all z € S also maintains a constant level

for h, and thus yields a constant consumption. Note, however, that in all cases, it must be
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that debt is increasing in the states of nature, that is, V,;}; < --- < V;%,. Even though,
there exists an infinity of solution in (A,V), an interesting characterization is that which
sets A7 = A and V¥ = V* (increasing in s) for all s and ¢. This characterization implies that
savings do not need to tend to infinity to achieve perfect income smoothing as opposed to
models of savings with liquidity constraints where, if » = 9, savings must tend to infinity to

achieve an optimal smoothing of consumption.

4 The model with capital accumulation

In this section, we investigate whether non-commitment in financial contracting can distort
a firm’s investment policy or not. We therefore assume that the random revenue is no longer
exogenous, that is, agent 1 must invest a portion of its current revenue in order to generate
the next period revenue through a production function. In that case, the investment decision

influences both the expected income and the smoothing of consumption.

Denote by K (k:;s) the production function that gives the available amount of revenue
for period ¢ given k;, the stock of capital available at the beginning of period ¢, and s € S,
the realization of the state of nature in period t. We assume that the function K is strictly
increasing in k and s, and strictly concave in k, that is, K'(.;s) > 0, K”(.;s) < 0 for all s,
and K(k,s) > K(k,z) for all s > z. Capital depreciates at rate d per period. Agent 1’s

consumption can now be written as:
¢ =K(kys)+ (1—=d)ke + (1 +r)A — kKl — Al — b

In each period, agent 1 receives the product of its outstanding capital k;, the undepreciated
capital, and the savings from previous period. This income is shared between consumption
for the current period, capital and savings for the next period, and a contractual transfer to

agent 2.

We assume that, if agent 1 breaches the contract in one period, agent 2 can seize its
savings as well as its accumulated capital. Agent 1 is left with a minimum unseizable amount
of capital £ > 0 that can be interpreted as his human capital and a zero stock of savings.
Denote by G(A, k, s) the maximum utility level that agent 1 can obtain in autarky in state

s, when A and k are respectively the stocks of savings and capital accumulated at the end
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of the preceding period.!! Agent 1 then gets a maximum utility equal to G(0,k, s) if he
breaches the contract in state s. If agent 2 breaches the contract, he returns to his autarky
level of utility V' = 0.

The introduction of the production process does not transform the mathematical prop-
erty of the model: it can still be written as a Bellman equation. The capital stock k;
accumulated through period ¢ represents a third state variable. The Bellman equation can
be written as:

F5<At7k’t7‘/;s) j— Asm?g( U<K<kt,3)+<]~ —d)k’t‘l’ <1+T)At_kf+1 - §+1 _bf)‘l’
17710

b VAo

ﬁEzFZ< §+17 f+17 til)

s.t. FA(A3 0, ke, Vi) > G0k, 2) VzeS (22)
>0 V2es (23)

b+ BBV, >V (24)

A5, >0 (25)

¢ — (1—d)ky > 0. (26)

Constraint (26) is an irreversibility constraint on capital. It means that agent 1 cannot make
negative investment, that is, destroy some of its assets. The only way of reducing the capital
stock is to invest zero and let the capital depreciate. All other constraints can be interpreted

as previously.

It can be shown that the maximization problem on the right-hand side of the Bellman
equation is a concave program. First-order conditions are therefore necessary and sufficient
to the determination of the optimal solution. We still denote by #p*07, Bp*A;, ¥; and u;i
the Lagrange multipliers for the self-enforcing, intertemporal and liquidity constraints. The

multiplier for the irreversibility constraint (26) is denoted by ;. The first-order and envelope

HThe autarky problem can be represented as a Bellman equation:
G(Ap, ke, 8) =MaX{A, ) ko1 JEAA keys) WK (Bes 8)+ (1 —d)he +(147)Ar — Arpr —heg)+ BB G (Argr, big, 2),
where A(Ay, kt, s) is the feasible set defined by a liquidity constraint on A and a non-reversibility constraint

on k.
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conditions for the program in period ¢ are:

w'(c;) = BEL(L+ 09 FA(AL ke, Vi) + 1 (27)
w(cf) = BE.(L+ 07 F (Afy ks Vi) + (28)
u'(cf) =y (29)

Lt O FG (AL, B, Vi) = —AL —d) V2 eSS (30)
Fi(Ay ke, V) = (L + 1)/ (c) (31)
PR (A ke, Vi) = K (ke s) + 1 =du/(c) — (L—=d)n; (32)
Iy (Ag, ke, Vi) = =y (33)

As before, the envelope conditions (31) and (33) imply that:
F8<At, k’t, ‘/ts) — Hs<k’t, (1 + T)At - ‘/ts)

The introduction of the production process does not interfere with the complementarity be-
tween savings and contractual transfers in smoothing consumption. Savings and indebtness

are strongly related at the optimum.

To better understand the effects of non-commitment, it is useful to characterize the
first-best solution, that is, the solution to the full-commitment problem (where 07 = A\ =

for all z € §). In that case, consumption is constant across time and states of nature as
given by conditions (29), (30) and (33):'2

u(e) =17 = —F5(Ank, V)
— _F§<A§+17 kf+17 ‘/til) - warl - UI<C§+1)'

Substituting for ¢; = ¢f,; = ¢ in conditions (28) and (32) yields:

1 - ﬁ(EzK/<kf+1§ )+ =d)|u'(c) = n; — ﬁ(l_d)EzntZH-

If capital were reversible, then 7y = 0 for all ¢ and all s, and the efficient level of capital
would be k* such that E,K'(k*;z) + 1 —d = 1 + §. Here, however, capital is irreversible.
This implies that either the initial capital stock kg < k*, and then irreversibility is not a

12There is a slight abuse of notation in the following conditions as the (endogenous) value functions should

not have the same notation as in the non-commitment case.
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constraint and the first-best contract sets the capital stock at k* for the whole relationship,
or ko > k*, and the irreversibility constraint is binding, and the first-best contract prescribes
no investment until the earliest period t for which & < k*. In all subsequent periods, the
capital stock is at £*. In the full-commitment case, consumption is constant and the capital
stock is and remains at its first-best level £* as soon as the irreversibility constraint becomes

relaxed. We now go back to the non-commitment case.

First-order and envelope conditions for the self-enforcing contract give the following

equalities:
W(c;) = BL+r)E(L+07)u(ciy) + (34)
= BB+ 07) (K (k13 2) H1=d)u' (ciyq) +p — BL=d)E=(1 + 07 )n7,, - (35)
= E.(1+0)u'(cf, 1) — E.A7. (36)

Agent 1’s self-enforcing constraints multipliers 67 enter the condition for the capital level
k., in (35) through the irreversibility constraint for next period: ko — (1 — d)keyr > 0.
When the irreversibility constraint for tomorrow is binding, agent 1 would like to decrease its
capital today (k7,,) in order to relax it. But this is costly to do in states for which agent 1’s
self-enforcing constraints bind as decreasing capital reduces the available surplus tomorrow,

thus exacerbating the commitment problem in those states.

Proposition 7. i) Ifr = §, neither the liquidity constraint nor the self-enforcing constraints
of agent 2 are binding (117 = Ay = 0 for all z). The capital stock is the same as under full
commitment.

ii) If r < 0, at least one of agent 2’s self-enforcing constraints or the liquidity constraint
s binding. The capital stock is larger than k* when at least one of agent 2’s self-enforcing

constraints is binding.

When r = 4, capital accumulation does not interfere with consumption smoothing.
The savings account can complement perfectly borrowing from agent 2 in the achievement
of a perfectly smoothed consumption profile for agent 1. In that case, investment in pro-
ductive capital has no role to play in consumption smoothing, and investment follows the
full-commitment rule. In that case, imperfections in the financial environment play no role

in the productive investment decision.

When r < 4, however, the existence of a savings account is not sufficient to ensure

perfect consumption smoothing. Agent 1 is then left with some residual risk to bear. Any
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other decision variable can be used to reduce this risk. The capital stock then has a role to

play in smoothing consumption.

Suppose that, for tomorrow, some self-enforcing constraints for agent 2 are binding.
Agent 1 would like to save more today in order to relax these constraints tomorrow. When
r < 0, saving is costly and lending to agent 2 is restricted by the binding self-enforcing
constraints. In that case, tomorrow’s consumption can be increased by investing today more
than is efficient. Overinvestment is costly however, and there is a trade-off between savings
and overinvestment. First-order conditions say that, if there are positive savings in one
period (p = 0), then it must be the case that some agent 2’s self-enforcing constraints bind
(EX > 0). There is then overinvestment. Savings and overinvestment are jointly used in order
to partially relax the self-enforcing constraints of agent 2. So, when r < ¢, imperfections in

financial markets can distort the investment decision by inducing agent 1 in overinvesting.'®

5 Discussion

Our results depend on two key assumptions: (1) savings act as a collateral and (2) savings

are observable. We now discuss these two assumptions in turn.

We assume that savings act as a collateral since agent 1 loses them if he ever breaches
the contract. This implies that the value of debt can become arbitrarily large as long as
savings increase proportionately. If agent 1 could breach the contract and keep his savings,
the contract would have to limit the size of savings in order to ensure that agent 1 has
no incentives to breaching the contract and running away with his savings. In that case,
the self-enforcing constraints of agent 2 may become binding as agent 1 may have to save

through agent 2 to limit these incentives to breach the contract.

We also assume that the contract can control the amount of savings agent 1 accumulates,
that is, savings are verifiable. We show that, if savings are not verifiable, agent 1 has
incentives to deviate from the savings level prescribed by the contract in which savings are

verifiable. These savings implicitly satisfy the following condition:

u'(c;) = BL+r)E(L+ 00 (y + (L+ ) A7 = Vi) + ug.

13A similar result has been derived in Sigouin (1997) in a model without savings.
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To understand the incentives of agent 1 to deviate from the prescription of the optimal con-
tract with verifiable savings, consider the effect of a marginal reduction in savings, dA;,; <0,
on the expected utility of agent 1 at this optimal contract.!* Such deviation immediately
violates the self-enforcing constraints of agent 1 that were binding before the deviation, since
agent 1 now reduces the amount of resources to be available tomorrow by saving less and
consuming more today. In these binding states tomorrow, however, agent 1 does not lose
anything from decreasing his savings since he then breaches the contract to obtain the autar-
cic level of utility, which is equal to the level of utility he would have obtained had he not

reduced his savings and stayed in the contract. Denote
Z={zeS/hMy"+ (1 + )AL, — Vi) = 900,57},

the set of period t states for which the self-enforcing constraint of agent 1 is binding, that

is, for which 07 is positive. The net utility gain of changing the level of savings is then:

dUT = [=u/(c;) + B(1 + 1) Z PRy + (L)AL — VDAL,
wgZ
Using the first-order conditions for an optimal contract, it is easy to show that this expression
is positive. Agent 1 then has an incentive to save less than what is prescribed by the contract

since, by doing so, he does not support the full cost of reducing his saving in binding states.

The assumption that savings are verifiable is not innocuous. As long as agent 1 is
constrained in one state, he has incentives to reduce his savings. An optimal contract in
this environment would have to take such incentives into account by specifying lower levels
of savings. This would affect the ability of agent 1 to finance with agent 2 and, hence, his
smoothing of consumption. Solving for the optimal contract in that case is beyond the scope

of this paper.

6 Conclusion

The endogenization of the liquidity constraint in the model of Schechtman (1976) has signif-

icant effects on the optimal path of consumption. When the interest rate on savings is equal

MWe assume that savings can still serve as a collateral, which means that savings cannot be verified when
there is no default, but become verifiable if agent 1 defaults. Audits could reveal the amount of savings.

Auditing costs are irrelevant since default would never occur.
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to the discount rate on time preference, the liquidity constraint is completely relaxed, while
the financier’s commitment problem disappears. Consumption is increasing in time, and
perfect smoothing is achieved in finite time, as soon as the highest income state is reached.
When the savings rate is smaller than the rate of time preference, savings become relatively
costly. The risk-averse agent must therefore trade off accumulating costly savings to smooth

his consumption and not saving at all.

These results imply that it may be important to endogenize market imperfections in
models that seek to explain why agents are imperfectly insured against income risk. While
we have used a non-commitment assumption to do so, other assumptions would also be
plausible. For example, it would be interesting to assume that the financier cannot observe
the income of the risk-averse agent (as in Green, 1987; and Thomas and Worrall, 1990) to

see whether predictions are significantly different from those of Schechtman (1976).

We have so far interpreted our model as one where a risk-averse borrower (entrepreneur)
seeks financing from a risk-neutral financier and accumulates financial assets in a savings
account. Another interpretation would be that where agent 1 is a worker and agent 2 is a
firm. Savings can then be interpreted as a pension plan which is controlled by the contract
between the worker and the firm. With that interpretation, our model would predict that
pensions should not be transferable when the worker quits the firm as it acts as a collateral
to alleviate the worker’s commitment problem. Note, however, that we have no matching

problem which could make the breach of contract efficient.

Such models with non-commitment have also been used to explain sovereign debt fi-
nancing. In that case, savings would imply that countries could also invest in international
financial markets. Finally, Ligon, Thomas and Worrall (1997) discuss the possibility of sav-
ings in a risk-sharing self-enforcing contracting model of insurance of groups of individuals in
village economies. They do not, however, provide a characterization of consumption paths

with savings.
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APPENDIX

Proof of Proposition 1: The utility function u is increasing in A and so is the value function
f°. An increase in V shrinks the set of feasible contracts and, hence the maximum utility
agent 1 can obtain in the maximization program. The function f° is then decreasing in V.*°
The set of constraints (5), (6), (7), (8) and (9) is strictly convex and u is strictly concave and

continuously differentiable. It follows that f* is concave and differentiable in (A4, V). ([

Proof of Proposition 2: The envelope conditions (17) and (18) can be written: f§ + (1 +
r)f& = 0. This is a homogeneous linear differential equation for which the general solution is
FP(A V) =h*((1+r)A=V). Here f°(A, V) could be denoted f(y*, A, V') with f,=(y*, A, V) =
u'(cf) = —fv(y®, A, V), then by the same argument, f(y*, A,V) = ¢(A4,y* —V) and h*((1 +
rA—V)=h(y*+ (1 +r)A — V). The function h must verify the following conditions on
the derivatives of f*:

AV =0+r)M(y+(1+r)A-V)>0

oA V) ==y +1+rA-V)<0

LAV =0+ (v +(1+71)A-V) <0

fovA V) =0y + (1+rA-V)<0

v A V) =—-0+rh @+ (1+rA-V)>0
It follows that A’ > 0 and A" < 0. a
Proof of Proposition 3: (i) The surplus share given to agent 2 is bounded by the self-enforcing
constraints. V;# € [0, V*(A,)] with V*(A,) such that h(y® + (1 +1r)A, — V*(A)) = g(0, %),
hence, V*(A;) = y*+ (1+7)A:—h™g(0,4*)]. The upper bound on V;* is an increasing linear
function of A;. The bounds on agent 1’s consumption depend on the surplus given to agent
2 through the first order condition: «'(¢;) = b/ (y*+ (1 +7)A; —V;®). This gives the minimum
value for ¢f when V* = V*(A,) : ¢ =o' [ (y°+(L+r)A—V(A))] = v [W(h~[g(0,y*)])].
The maximum value for ¢ is found for V;* = 0: &(Ay) = o' [W(y° + (1 + 7)A4,)]. It is an
increasing function of A;.

(i) Tt is clear that & (A,) = o' [ (y° + (1 + 7)A,)] is an increasing function of y* because
w" and K are decreasing. Furthermore, as g(0,%°) > ¢(0,%7) and h™! is increasing, ¢ =
w” [ (h'[g(0,%°)])] is increasing in y°. O
Proof of Proposition 4: Conditions (19) et (20) entail (1 — B(1 + r))E.(1 + 0))u'(cf, ;) =
PN

15 A more detailed proof can be found in Thomas and Worrall’s (1988) Lemma 1.
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(i) If r = 0, that is, B(1 +7) = 1, then 3, p*A7 + pu = 0. Since the Lagrange multipliers are
all non-negative, it must be that: A} = u; =0Vz € S.
(#2) If r < 0, then >, p* A7 + pf > 0. At least one of the multipliers must be positive. O

Proof of Proposition 5: (i) Given the existence of a surplus in the contract, self-enforcing
constraints of both agents cannot bind together in the same state of nature. With A7 = 0,
condition (20) becomes u'(¢}) = (1 + 0)u/(c},1). With A7 > 0 (i.e. 67 = 0), condition (20)
becomes u'(cf) = u/(c},;) — A;. The concavity of the utility function u yields the result.

(#4) The following lemma helps proving the second part of the proposition.

Lemma 1. Ify® > y*, then it is not possible to have 07 > 0 and 07 = 0 together, nor \; =
and A; > 0.

Proof of Lemma 1: Suppose 0 > 0 and 0 = 0 with y* > y*. Then, f*(A;1, thl) =9(0,2) <

9(0,8) < f*(Ae1, Vi), and ¢y < ¢y by (2). Let (A7, {Vii5}ees) and (4 421 {Vt+2}we$)
be the optimal instruments for states s and z respectively. Then,

S (A, Vi) 1)+ BB (A7, ViRS)

= u(ciy

<ulciiy) + BEw (AL, Vi)
< ulcfyr) + ﬁwaw<AIt+27 Vt/f2)
= (A1, Vi)

which contradicts the inequality above.
Suppose A; > 0 and A] = 0 with y* > y*. Then, ¢;,; < ¢f;; by (i) and V7, > V5, = 0.

This means that
v (L +r) A = Vi <y + (L +1)Ana

Wy + (14 7r)Ae — Vi) > Ky + (L +1)Au)

u'(ciy1) > u'(cy),
which contradicts, by the concavity of u, that ¢,; <cf,;. O

Condition (20) gives (1 + 07)u/(c; 1) — A = v/ (cr) = (L + 070/ (cf 1) — Af.

a) If 07 = 0 and A = 0, Lemma 1 ensures that u'(c;;) = v'(cf,1) and, hence, ¢}, = ¢f,;.
b) If 7 > 0 and 07 > 0, = h(y*+(14+r)Au1—V71) =9(0, 2) <g(0, s)=h(y*+(1+7) A 1—V4)
and, hence, c¢f,; < ¢f,; because consumption is increasing in net wealth.

o) IfA; >0and Af >0= Vo = V3, =0, v+ 1 +7r)Ag >y + (1 +7r)Ay; and

VA S
Ciy1 < Ciyq-

d) If 0; > 0 and A; >0, or ; > 0 and A; > 0, then ¢}, <¢f,4. O
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Proof of Proposition 6: (i) Recall that for » = §, A7 = 0 for all ¢t and all z. Let X7 =
y® + (1 +7)A; — V2 be agent 1’s net assets. In period t, agent 1’s self-enforcing constraint
holds for state s and consumption is optimal, (a) h(X?) > ¢(0,y°) and (b) u/(c) = b (X?).
Suppose that 67, > 0 for 7 > 0. Then, (¢) M(X} 1) = 9(0,y°) and (d) v/ (¢} .41) =
R (X3, 41). Proposition (5) for 67, > 0 yields (e) ¢f, .11 > ciyr > ;. And,

(1) (2) and (¢) = h(X?) = h(XF\r11)

2): (b), (d) and (€) = H(X}) > H(X3,p0),

which is incompatible with the concavity of h.

(#2) This part of the proposition is derived from the preceding propositions. Lemma 4 involves
(0f =0 = 0; = 0) for all y* > y* and part (i) of this proposition (s; = s = 02 = 0) for
all 7 > t. O

Proof of Proposition 7: Conditions (34) and (36) give [1 — B(1 + r)|E.(1 + 0)u/ (i) =
B+ pi.

o [f r =0, then uf = A7 = 0 for all z. Conditions (35) and (36) then entail

B (L4 09)[1 — B (ke i2) + L — d)ul(cF,) = — B(L— DE.(1+ 6 .

If capital if reversible, n; = n7,; = 0 for all z and k;,; = &* for all ¢ and all s € S.

If capital is irreversible, n; — B(1 — d)E.(1 + 67 )ni,; cannot be negative because it would
imply that £f,; < k*; in that case, an increase in k7, ; today would increase 7;,;, make the
expression even more negative and, hence, the capital level even more sub-optimal. This is
a contradiction. If n; — (1 — d)E,(1 + 07 )n;,; > 0 the optimal contract prescribes k7, ; = ki
until the capital level returns to k£* through depreciation. From that level on, capital is at
first-best level for the rest of time.

o If r < ¢, then E, A7 + p7 > 0. Condition (35) and (36) give:

B (L4 09)[1 — AU (ke 32) + 1 — du(c5,0) = B 45— B — d)EL(L+ 6,

and condition (36) can be written as (1 4 07)u'(c}, ;) = u/(¢]) + Aj. Then,

B (1= B(K (ki 2) + 1 = )W (c}) + A7) = B AT+ — B(1 — )E(1+ 07)nm7y 4
W) B[l = BUK (k15 2) + 1 — d)]

=B+ = B(L = B (1 + 07)miq — B[l — B(K (B 452) + 1 = d)|A]

= = B(L = d)E (L + 07)m7, 1 + B B(K (ky 45 2) + 1 —d)A].

The right-hand term is positive each time there is a positive A7, which means that there is

over-investment each time there is a binding self-enforcing constraint for agent 2. O
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