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RÉSUMÉ

Soit (M,ω) une variété symplectique. Nous construisons une version de l’éclate-

ment et de la contraction symplectique, que nous définissons relative à une sous-variété

lagrangienne L ⊂ M . En outre, si M admet une involution anti-symplectique φ, et que

nous éclatons une configuration suffisament symmetrique des plongements de boules,

nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement

M̃ . Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes

réeles L = Fix(φ), qui détermine quand la topologie de L change losqu’on contracte une

courbe exceptionnelle C dans M . Finalement, on utilise ces constructions afin d’étudier

le packing relatif dans (CP 2,RP 2).

Mots clés : Symplectique, quatre-variétés, sous-variété lagrangienne, packing,

packing relatif, involution anti-symplectique, variété réelle.



ABSTRACT

Given a symplectic manifold (M,ω) and a Lagrangian submanifold L, we construct

versions of the symplectic blow-up and blow-down which are defined relative to L. Fur-

thermore, if M admits an anti-symplectic involution φ, i.e. a diffeomorphism such that

φ2 = Id and φ∗ω = −ω, and we blow-up an appropriately symmetric configuration

of symplectic balls, then we show that there exists an antisymplectic involution on the

blow-up M̃ as well. We derive a homological condition for real Lagrangian surfaces

L = Fix(φ) which determines when the topology of L changes after a blow down, and

we then use these constructions to study the real packing numbers for real Lagrangian

submanifolds in (CP 2,RP 2).

Keywords: Symplectic, four-manifold, Lagrangian submanifold, packing, rela-

tive packing, anti-symplectic involution, real manifold.
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CHAPTER 1

INTRODUCTION

The blow-up and blow-down constructions are important techniques in complex geome-

try, leading to methods for resolving singularities as well as classification schemes based

on birational equivalence. In the symplectic category, the notion of blowing up a point

or submanifold has also been defined and studied from various points of view, as the

in papers by Guillemin and Sternberg [14], Lerman [20], and McDuff and Polterovich

[23]. When combined with the theory of J-holomorphic curves, the blow-up and blow-

down have yielded a great deal of information on symplectic manifolds, notably in pack-

ing problems [3, 23], in the classification of rational and ruled symplectic 4-manifolds

[17, 18, 21], and in the study of the topology of the space of symplectic embeddings of

balls, as, for example, in [1, 19, 28]. In this note, we study relative and real versions of

the symplectic blow-up and blow-down, in order to apply them to questions regarding

the topology of Lagrangian submanifolds. The relative blow-up takes the pair (M,L)

and a set of ball embeddings ψ :
∐k

j=1(B2n
j (1 + 2ε), λ2

jω0, BR,j(1 + 2ε)) → (M,ω)

and obtains another pair (M̃, L̃), and a symplectic form ω̃, in which the balls have been

replaced by copies of the tautological disk bundle over CP n−1, and L̃ is Lagrangian in

(M̃, ω̃). The blow-down is the reverse procedure. The real blow-up and blow-down are

similar constructions which also respect a so-called real structure on the manifolds.

As a first application, we study the packing problem in real symplectic manifolds.

The relative and mixed packing problems were first introduced by Barraud and Cornea

in [2], and upper bounds for the relative embedding of one ball on the Clifford torus in
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CP n was given by Biran and Cornea in [4] using Pearl Homology. Buhovsky [6] further

showed that the upper bound given for the Clifford torus is sharp. Schlenk, in [30],

directly constructed relative packings of k ≤ 6 balls in (CP 2,RP 2) through a detailed

analysis of the moment map. A related construction for packing CP 2 for k = 7, 8

balls has been done by Wieck [31]. In Chapter 4, we construct relative embeddings

using J-holomorphic techniques, following the general line of argument in [23] and

[3]. Our results extend those of McDuff and Polterovich [23] to the real setting. Our

packing method depends on the presence of a real structure φ for which L = Fix(φ),

and because of this, we do not recover the lower bounds on the Clifford Torus considered

by Buhovsky [6]. We believe, nonetheless, that our methods do can be used to extend

the results of Biran [3] for k ≥ 9 balls, but we postpone the treatment of this case to a

future paper.

1.1 Setting and Notation

We now give several definitions and set notation for all that follows.

Definition 1.1. Let (M2n, ω) be a symplectic manifold. We say that a submanifold L is

Lagrangian if dim L = n and ω|TL = 0.

Definition 1.2. 1. We letLn denote the tautological complex line bundle over CP n−1,

and let Rn be the real tautological line bundle over RP n−1, i.e. Ln = {(z, l) ∈
Cn × CP n−1|z ∈ l} and Rn = {(x, l) ∈ Rn × RP n−1|x ∈ l}. We will suppress

the dimension n when it is clear from the context.

2. π : L → Cn and θ : L → CP n−1 denote the canonical projections.
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3. L(r) andR(r) denote the canonical disk bundles over CP n−1 and RP n−1, respec-

tively, of radius r.

4. For each κ, λ > 0, we define a closed two-form ρ(κ, λ) on L(r) by

ρ(κ, λ) = κ2π∗ω0 + λ2θ∗σ,

where ω0 is the standard form on Cn, and σ is the standard Kähler form on CP n−1

normalized so that
´

CPn−1 σ = 1.

5. Let c̃ : L → L be the map c̃(z, l) = (z̄, l̄), i.e. the restriction to L of the complex

conjugation map on Cn × CP n−1.

In addition, the manifolds we treat in our applications will have an additional struc-

ture, as defined by

Definition 1.3. Let (M,ω) be a symplectic manifold. A symplectic anti-involution, or

real structure, is a diffeomorphism φ : M → M such that φ2 = Id and φ∗ω = −ω.

We refer to a symplectic manifold equipped with a real structure as a real symplectic

manifold, or simply as a real manifold, if the symplectic form is understood.

Remark 1.4. Note that Fix(φ) is a Lagrangian.

Definition 1.5. Let (M,ω, φ) and (M
′
, ω
′
, φ
′
) be real symplectic manifolds. We say

that an embedding ψ : (M
′
, ω
′
, φ
′
) → (M,ω, φ) is a real symplectic embedding if

φ ◦ ψ = ψ ◦ φ′ and ψ∗ω = ω
′ .

Lemma 1.6. Let (M,ω0) be a symplectic manifold, and let (N,ω1, φ) be a real symplec-

tic manifold with symplectic form ω1 and real structure φ. Suppose that there exists a
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symplectic embedding ψ : (M,ω0)→ (N,ω1) such that Im(φ ◦ ψ) = Im(ψ). Then there

exists an anti-symplectic involution c on M such that φ ◦ ψ = ψ ◦ c.

Proof. Define c := ψ−1◦φ◦ψ. Then φ◦ψ = ψ◦c and c∗ω0 = ψ∗φ∗(ψ−1)∗ψ∗ω1 = −ω0,

so φ is an anti-symplectic involution on M .

With the notation in Definition 1.2, we have

Corollary 1.7. c̃∗ρ(κ, λ) = −ρ(κ, λ), andR = Fix(c̃).

Proof. Let c : Cn → Cn and c̄ : CP n−1 → CP n−1 denote complex conjugation on

Cn and CP n−1, respectively. Then by the definition of c̃, c̃(z, l) = (c(x), c̄(l)). Since

Rn = Fix(c) and RP n−1 = Fix(c̄),R = Fix(c̃).

Now let (v0, w0), (v1, w1) ∈ T(z,l)L ⊂ TzCn ⊕ TlCP n−1. Then

c̃∗ρ(κ, λ)((v0, w0), (v1, w1)) = c̃∗π∗κ2ω0((v0, w0), (v1, w1)) +

c̃∗θ∗λ2σ((v0, w0), (v1, w1))

= κ2ω0(π∗c̃∗((v0, w0), (v1, w1))) +

λ2σ(θ∗c̃∗((v0, w0), (v1, w1)))

= κ2ω0(c∗v0, c∗v1) + λ2σ(c̄∗w0, c̄∗w1)

= ω0(v0, v1)− λ2σ(w0, w1)

= −ρ(κ, λ)((v0, w0), (v1, w1)),

which completes the proof.

In order to put a symplectic form on the blow-up of a manifold M , we will need to

consider the relative embeddings of symplectic manifolds, defined below.
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Definition 1.8. Let (M,ω,L) and (M
′
, ω
′
, L
′
) be symplectic manifolds with Lagrangians

L and L′ , respectively. We say that a map ψ : (M
′
, ω
′
, L
′
) → (M,ω,L) is a relative

symplectic embedding when ψ is a symplectic embedding, ψ∗ω = ω
′ , and ψ−1(L) = L

′ .

We will be primarily concerned with the following example.

Example 1.9. Let (M2n, ω, L) be a symplectic manifold with LagrangianL. Let (B(λ), ω0)

be the ball of radius λ in Cn with the standard symplectic structure ω0, and let BR(λ) de-

note the ball of radius λ in Rn ⊂ Cn. Then a symplectic embedding ψ : (B2n(λ), ω0) ↪→
(M2n, ω) is a relative symplectic embedding iff ψ−1(L) = BR(λ).

Remark 1.10. Note that in Definition 1.8, we have ψ−1(L) = L
′ , and not ψ(L

′
) ⊆ L.

This is an important distinction, as shown by the following example. Let C denote an

embedding of S1 into C1, and let

Λ := {λ ∈ R|∃ a relative embedding ψ : (B2(1), λ2ω0, BR(1)) ↪→ (C1, ω0, C)}.

and Λsup := sup Λ. Then for any λ ∈ Λ, λ2π ≤ 2A, where A is the area inside C ⊂ C2.

Therefore Λsup ≤
√

2A
π
. If, however, we only require that ψ(BR(1)) ⊆ C, then Λ is not

bounded above.

Definition 1.11. Let ψ :
∐k

i=1(Bi(r), ω0, BR,i(r)) ↪→ (M,ω,L) be a symplectic em-

bedding, and let ψi := ψ|Bi . If p of the ψi’s are relative embeddings, and for the other

q = k−p of the ψi’s, we have Im(ψi)∩L = ∅, then we call ψ a (p, q)-mixed embedding.
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1.2 Anti-Symplectic Involutions and Compatible Almost Complex Structures

Our constructions will use auxiliary almost complex structures which satisfy certain

additional properties. In this section, we give the necessary definitions, and prove the

existence of the complex structures that we need.

Definition 1.12. Let (M,ω) be a symplectic manifold. Then an almost complex struc-

ture J tames ω or is ω-tame if ω(·, J ·) > 0.

Definition 1.13. Let (M,ω) be a symplectic manifold. Then an almost complex struc-

ture J is compatible with ω or is ω-compatible if J tames ω, and if, in addition, ω(J ·, J ·) =

ω(·, ·).

Definition 1.14. Let (M,ω) be a symplectic manifold, let L ⊂ M be a Lagrangian

submanifold, and let p be a point in L ⊂ M . We say that J is relatively integrable

at p if there is a holomorphic chart U ⊂ M , α : U → Cn centered at p such that

α−1(Rn) = U ∩ L.

Definition 1.15. Let (M,ω, φ) be a real symplectic manifold with real structure φ. Let L

denote Fix(φ), and let p be a point in L. We say that J is symmetrically integrable at p

if there is a holomorphic chart U ⊂M , α : U → Cn centered at p such that α◦φ = c◦α.

We first prove the existence of almost complex structures J on a real symplectic

manifold (M,ω, φ) which tame ω and satisfy Jφ∗ = −φ∗J . Our discussion follows the

methods in Cannas da Silva [8] and McDuff and Salamon [25].

Definition 1.16. Given a symplectic form ω and an ω-compatible almost complex struc-

ture J , we denote by gJ : V × V → R the bilinear form defined by

gJ(v, w) = ω(v, Jw). (1.2.1)
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Lemma 1.17. Let (V, ω,Φ) be a real symplectic vector space, i.e. a vector space V with

a closed, non-degenerate, skew-symmetric bilinear form ω and linear map Φ such that

Φ2 = I and Φ∗ω = −ω. Let JΦ(V, ω) be the space of ω-compatible almost complex

structures on V with ΦJ = −JΦ, and letMetΦ(V ) denote the space of positive definite

bilinear forms g such that Φ∗g = g. Then there exists a 1-1 map r : MetΦ(V ) →
JΦ(V, ω) such that r(gJ) = J .

The proof follows [8].

Proof. Let g ∈ MetΦ(V ) and define the automorphism A : V → V by ω(v, w) =

g(Av,w). Then ω(v, w) = −ω(w, v) implies that g(Av,w) = −g(v, Aw), and therefore

that A∗ = −A. Let A = QJ be the polar decomposition of A. Then Q is the unique

square root of A∗A which is g-self-adjoint and g-positive-definite. We claim that Jg :=

Q−1A is a complex structure compatible with ω. First, note that A commutes with Q,

and therefore J2
g = Q−1AQ−1A = −Id, so Jg is an almost complex structure. To see

that it is orthogonal, we have

ω(Jgv, Jgw) = g(AQ−1Av,Q−1Aw)

= g(−A2Q−2v,Q−1A∗Q−1Aw)

= g(Av,w) = ω(v, w).

Also, ω(v, Jgv) = g(Av,Q−1Av) = g(v, A∗Q−1Av) = g(v,Q−1A∗Av) > 0, since both

Q and A∗A are positive definite. Therefore Jg is compatible with ω.

Define Jg := r(g) = Q−1A. Note that for an ω-compatible J , we have

r(gJ) = r(ω(·, J ·)) = J,
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since, in this case, J = A and Q = Id.

To see that ΦJg = −JgΦ, we have first that −g(Av,w) = Φ∗ω(v, w), and therefore

−g(Av,w) = ω(Φv,Φw) = g(AΦv,Φw) = g(ΦAΦv, w),

and therefore ΦAΦ = −A. Now note that ΦA∗AΦ = −ΦA2Φ = ΦAΦA = −A2 =

A∗A. Therefore ΦQΦ = Q as well, and JgΦ = Q−1AΦ = −Q−1ΦA = −ΦQ−1A =

−ΦJg, as desired.

Corollary 1.18. Let (M,ω, φ) be a real symplectic manifold. Let Jφ(V, ω) denote the

space of ω-compatible almost complex structures on V with φ∗J = −Jφ∗, and let

Metφ(M) denote the space of positive definite bilinear forms g such that φ∗g = g.

Then there exists a 1-1 map r :Metφ(M)→ Jφ(V, ω) such that r(gJ) = J .

Proof. Let g be a φ-invariant Riemannian metric on M . Since the polar decomposition

is canonical, the desired almost complex structure J is given by constructing Jx as in

Lemma 1.17 for each x ∈M .

Remark 1.19. In particular, this corollary shows that, for a real symplectic manifold

(M,ω, φ), there exists an ω-compatible (and therefore tame) almost complex structure

J with φ∗J = −Jφ∗.

Remark 1.20. Note that if ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε)) → (M,ω,L) is a relative

or real symplectic embedding, then the above constructions imply that there exists an ω-

tame (compatible) almost complex structure J which equals ψ∗iψ−1
∗ on a neighborhood

of ψ(0), and therefore J is symmectrically or relatively integrable at ψ(0) if ψ is a real

or relative embedding, respecively. If, in addition, M has a real structure φ and ψ is a
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real symplectic embedding, then J also may be taken to satisfy φ∗Jφ∗ = −J . Similarly,

if ψ̃ : (L(1 + 2ε), ρ(1, δ),R(1 + 2ε)) → (M̃, ω̃, L̃) is a real or relative embedding,

then there exists an ω̃-tame almost complex structure J̃ such that J̃ = ψ̃∗ĩψ̃
−1
∗ in a

neighborhood of L(0).

1.3 Main Results

We now state our main theorems, using the notation in Section 1.1. Theorems 1.21

and 1.22 are proved in Chapter 2.

Theorem 1.21 (Blow-up). 1. Let (M,ω) be a symplectic manifold and let L ⊂ M

be a Lagrangian submanfiold. Suppose that for some small ε > 0 there is a (p, q)-

mixed symplectic embedding

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε)) ↪→ (M,ω,L),

and let P ⊂M be the set P := {ψj(0)}kj=1.

Then there exists a symplectic manifold (M̃, ω̃), a Lagrangian submanifold L̃ ⊂
M̃ , and an onto map Π : M̃ →M such that the following is satisfied:

(a) Π is a diffeomorphism on Π−1(M\P ),

(b) Π−1(ψj(0)) ∼= CP n−1,

(c) Π(L̃) = L, and

(d) ω̃ is in the cohomology class

[ω̃] = [Π∗ω] +
k∑
j=1

λ2
jej,
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where the ej are the Poincaré duals of the exceptional classesEj = [Π−1(ψj(0))].

2. If, in addition, M admits an anti-symplectic involution φ which satisfies

(a) Fix(φ) = L,

(b) Im(φ ◦ ψ) = Im(ψ),

(c) Im(φ ◦ ψj) ∩ Im(ψj) = ∅ if Im(ψj) ∩ L = ∅, and

(d) ψj ◦ c = φ ◦ ψj if Im(ψj) ∩ L 6= ∅,

then M̃ admits an anti-symplectic involution φ̃ such that Fix(φ̃) = L̃ and φ ◦Π =

Π ◦ φ̃.

Theorem 1.22 (Blow-down). 1. Let (M̃, ω̃) be a symplectic manifold with Lagrangian

L̃. Suppose there is a (p, q)-mixed symplectic embedding

ψ̃ :
k∐
j=1

(Lj(rj), ρj(δj, λj),Rj(rj)) ↪→ (M̃, ω̃, L̃)

such that ψ−1(L̃) =
∐p

j=1Rj(rj). Let Cj ⊂ M̃ denote ψ̃j(L(0)), and let C =

∪jCj .

Then there exists a symplectic manifold (M,ω), a (p, q)-mixed symplectic embed-

ding

ψ :
k∐
j=1

(B(1 + 2ε), λjω0, BR(1 + 2ε))→ (M,ω,L), (1.3.1)

a Lagrangian submanifold L ⊂ M , and an onto map Π : M̃ → M such that the

following is satisfied:

(a) Π is a diffeomorphism on M̃\C,
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(b) Π(Cj) = pj ∈M , where pj is a point,

(c) Π(L̃) = L, and

(d) ω satisfies

[ω̃]− [Π∗ω] ∈ E ,

where E is the linear vector space generated by e1, . . . , ek, the Poincaré duals

of the exceptional classes Ej = [ψ̃j(0)].

2. Suppose, in addition, M̃ admits an anti-symplectic involution φ̃ which satisfies

(a) Fix(φ̃) = L̃,

(b) Im(ψ̃) = Im(φ̃ ◦ ψ̃),

(c) Im(φ̃ ◦ ψ̃i) ∩ Im(ψ̃i) = ∅ if Im(ψi) ∩ L = ∅, and

(d) ψ̃i ◦ c̃ = φ̃ ◦ ψ̃i if Im(ψ̃i) ∩ L̃ 6= ∅.

Then (M,ω) admits an anti-symplectic involution φ such that φ ◦ Π = Π ◦ φ̃.

The idea of the relative blow-up construction is the same as blowing up in the purely

symplectic case: we remove the interior of a ball from bothM and CP n
(the bar indicat-

ing that the orientation is reversed), and we glue them along their boundaries, ensuring

that the symplectic form ω̃ of the blow up M̃ acts appropriately. The difference in the

relative case is that the real parts of the balls removed from M and CP n are constrained

to intersect the Lagrangians L and RP n, and the gluing proceedes so that the bound-

ary of the (n-dimensional) ball removed from L is then glued to the boundary of the

corresponding hole in RP n, resulting in a new Lagrangian L#RP n ∼= L̃ ⊂ M̃ in the

blow-up. The blow-down is the reverse process. We make these operations precise in

Chapter 2.
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In four-dimensional complex geometry and symplectic topology, it is extremely use-

ful to know that one can blow down a symplectic manifold M along a J-holomorphic

sphere C when [C] · [C] = −1. In complex geometry this is the so-called Castelnuovo-

Enriques criterion (see, for example, [13], p.476). Unfortunately, it is a difficult problem

in general to derive a similar condition to detect when an arbitrary two-dimensional La-

grangian in a symplectic 4-manifold may be blown down along a curve whose normal

bundle in TL is diffeomorphic to the normal bundle of RP 1 in T (RP 2). However, for

Lagrangian submanifolds which are the fixed point set of an anti-symplectic involution φ

on a symplectic 4-manifold M , we have the following result, which we prove in Chapter

3.

We now give the following definition.

Definition 1.23. We call E ∈ H2(M4; Z) an exceptional class if E · E = −1. If

u : Σ ↪→M4 is an embedding of the surface Σ, and u∗[Σ] = E, then we say that u(Σ) is

an exceptional curve.

Theorem 1.24. Let (M,ω, φ) be a real symplectic manifold with L := Fix(φ), and let J

be an almost complex structure on M which tames ω and which satisfies φ∗Jφ∗ = −J .

Suppose C is an exceptional J-holomorphic curve in a homology class E ∈ H2(M ; Z)

such that E · E = −1 and φ∗E = −E. Then there exists a real symplectic manifold

(M̌, ω̌, φ̌) and an onto map Π : M → M̌ that satisfies

1. Π is a diffeomorphism on M\C,

2. Π(C) = p ∈ M̌ , where p is a point,

3. Π ◦ φ = φ̌ ◦ Π, and
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4. ω̌ satisfies

[ω]− [Π∗ω̌] ∈ E ,

where E is the linear vector space generated by e, the Poincaré dual of the excep-

tional class E = [Π−1(p)].

As an application of the above theorems, we have the following theorem on the real

packing numbers for (CP 2,RP 2), defined below.

Definition 1.25. Let (M,ω) be a symplectic manifold with Lagrangian submanifold

L ⊂M . We call the number

pL,k := sup
ψ

Vol
(∐k

i=1(B(λ), ω0, BR(λ))
)

Vol(M)

the k-th relative packing number for (M,L), where the sup is taken over all relative

symplectic embeddings

ψ :
k∐
i=1

(B(λ), ω0, BR(λ))→ (M,ω,L).

If M is a real manifold with real structure φ, Fix(φ) = L, and the sup is taken over

all real embeddings of k balls, then pL,k is called the k-th real packing number. If the

supremum is taken over all symplectic embeddings of k balls into M , then we denote

the number pk and we call it the k-th packing number of M .

Theorem 1.26. For the pair (CP 2,RP 2) with the standard symplectic form and real

structure, the relative packing numbers pRP 2,k for k ≤ 8 balls are equal to the packing

numbers for CP 2.



CHAPTER 2

CONSTRUCTING THE RELATIVE AND REAL BLOW-UP AND

BLOW-DOWN

We now construct the blow-up and blow-down of a symplectic manifold (M,ω) relative

to a Lagrangian submanifold L or a real structure φ. The general strategy is to perform

a complex blow-up or blow-down locally and then define a symplectic form for the

resulting manifold. In each case, we first discuss the local models for the symplectic

forms in these constructions, and we then construct the global blow up and blow down

given a mixed, relative or real symplectic embedding

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε)) ↪→ (M,ω,L), or

ψ̃ :
k∐
j=1

(Lj(1 + 2ε), ρ(δ, λ),Rj) ↪→ (M̃, ω̃, L̃)

and the local models.

The proofs of the lemmas used in these constructions are collected in Section 2.3.

2.1 Blow-up

In this section, we prove Theorem 1.21, which we restate here for the convenience

of the reader.

Theorem (Theorem 1.21). 1. Let (M,ω) be a symplectic manifold and let L ⊂ M

be a Lagrangian submanfiold. Suppose that for some small ε > 0 there is a (p, q)-
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mixed symplectic embedding

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε)) ↪→ (M,ω,L),

and let P ⊂M be the set P := {ψj(0)}kj=1.

Then there exists a symplectic manifold (M̃, ω̃), a Lagrangian submanifold L̃ ⊂
M̃ , and an onto map Π : M̃ →M such that the following is satisfied:

(a) Π is a diffeomorphism on Π−1(M\P ),

(b) Π−1(ψj(0)) ∼= CP n−1,

(c) Π(L̃) = L, and

(d) ω̃ is in the cohomology class

[ω̃] = [Π∗ω] +
k∑
j=1

λ2
jej,

where the ej are the Poincaré duals of the exceptional classesEj = [Π−1(ψj(0))].

2. If, in addition, M admits an anti-symplectic involution φ which satisfies

(a) Fix(φ) = L,

(b) Im(φ ◦ ψ) = Im(ψ),

(c) Im(φ ◦ ψj) ∩ Im(ψj) = ∅ if Im(ψj) ∩ L = ∅, and

(d) ψj ◦ c = φ ◦ ψj if Im(ψj) ∩ L 6= ∅,

then M̃ admits an anti-symplectic involution φ̃ such that Fix(φ̃) = L̃ and φ ◦Π =

Π ◦ φ̃.
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The construction proceeds as follows. We first construct a family of symplectic forms

τ̃(ε, λ) on L by pulling back the standard form ω0 on R2n by a family of specially con-

structed maps from L → R2n. We arrange, in particular, that the submanifold R ⊂ L is

a Lagrangian for the forms τ̃(ε, λ). We then consider a relative symplectic and holomor-

phic embedding ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε), i)→ (M,ω,L, J), and we construct

the blow-up manifold (M̃, L̃) by removing the ball and gluing in (L(1 + 2ε),R(1 + 2ε))

along the boundary. Finally, we use the local forms τ̃(ε, λ) created on L in the first

step to construct the global symplectic form ω̃ on the blow-up M̃ . For a real manifold

M , we also construct a real structure on the blow up M̃ . We then show that, given a

relative symplectic embedding, and in view of some appropriate (and non-restrictive)

assumptions on the almost complex structures, we may find a holomorphic embedding

of a smaller ball which is compatible with L (or a real structure φ), and we use this to

remove the assumption of holomorphicity on the embeddings.

In the following proposition, we construct the forms τ̃(ε, λ). Note that points 1, 2,

and 3 were proved in Proposition 5.1.A of McDuff and Polterovich [23].

Proposition 2.1. Using the notation in Section 1.1, for every ε, λ > 0 there exists a

symplectic form τ̃(ε, λ) on L such that the following holds:

1. τ̃(ε, λ) = π∗(λ2ω0) on L − L(1 + ε)

2. τ̃(ε, λ) = ρ(1, λ) on L(δ) for some δ > 0

3. τ̃(ε, λ) is compatible with ĩ, the canonical integrable complex structure on L.

4. c̃∗τ̃(ε, λ) = −τ̃(ε, λ), where c̃ denotes complex conjugation on L.

5. τ̃(ε, λ)|R = 0
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The proof of this proposition will be based on the following lemmas, which we state

here and prove in section 2.3. We begin with a definition.

Definition 2.2. We say that f : Cn → Cn is a radial function if f(z) = α(|z|)z for some

real-valued function α : R → [0,∞). We say that a radial function f is monotone if

|z0| ≤ |z1| =⇒ |f(z0)| ≤ |f(z1)|.

Lemma 2.3. Let h : R2n → R be the function h(x) =
(

1 + λ2

|x|2

)1/2

and ω0 be the

standard symplectic form on R2n. Let H : R2n\{0} → R2n\B(λ) be the mapping given

by H(x) = h(x)x. Then π∗H∗ω = ρ(1, λ) on L\{(0, l)|l ∈ CP n−1}.

Lemma 2.4. Let (M,ω) be a symplectic manifold. Then ω is a Kähler form iff ω is

compatible with an integrable almost complex structure J .

Lemma 2.5. Let ω be a Kähler form on Cn, and suppose f : Cn\{0} → Cn\{0} is a

monotone radial function. Then f ∗ω is a Kähler form.

Proof of Proposition 2.1. For each λ > 0, let hλ : R2n\{0} → R be given by hλ(x) =(
1 + λ2

|x|2

)1/2

, and let δ > 0 satisfy δ2 < λ2ε/2. For x ∈ B(δ), we therefore have

|hλ(x)x|2 = |x|2 + λ2 ≤ δ2 + λ2 < λ2(ε/2 + 1). Now define F : R2n\{0} → R2n by

F (x) =



hλ(x)x, |x| < δ

(β(|x|)hλ( δx|x|) δx|x| + (1− β(|x|))λ (1+ε)x
|x| , δ ≤ |x| ≤ 1 + ε

λx, 1 + ε ≤ |x|

where β(t) is a bump function which is 1 for t ≤ δ and 0 for t ≥ 1 + ε. We define the

form τ̃(ε, λ) by τ̃(ε, λ) = π∗F ∗ω0 on L\π−1(0). We start with a preparatory lemma.

Lemma 2.6. The function F defined above is a monotone radial function.
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Proof. First, we note that F is radial by definition, and that

|F (z)| =



(|z|2 + λ2)1/2 |z| ≤ δ

β(|z|)(δ2 + λ2)1/2 + (1− β(|z|)λ(1 + ε)) δ < |z| < 1 + ε

λ|z| 1 + ε < |z|.

It follows immediately that, if z1, z2 ∈ B(δ) or |z1|, |z2| > 1+ε, then |z1| ≤ |z2| =⇒
|F (z1)| ≤ |F (z2)|. Now suppose z1, z2 ∈ B(1 + ε)\B(δ) with |z1| ≤ |z2|. Then

|F (z2)| − |F (z1)| = β(|z2|)(δ2 + λ2)1/2 + (1− β(|z2|)λ(1 + ε)−

β(|z1|)(δ2 + λ2)1/2 − (1− β(|z1|)λ(1 + ε)

= (β(|z2|)− β(|z1|))(δ2 + λ2)1/2 +

(β(|z1|)− β(|z2|))λ(1 + ε).

We now recall that, by assumption, β(|z1|) > β(|z2|) and

δ2 + λ2 < λ2(1 + ε/2) < λ2(1 + 2ε+ ε2) = λ2(1 + ε)2,

from which it follows that (δ2 + λ2)
1
2 < λ(1 + ε), and therefore |F (z2)| − |F (z1)| > 0,

as desired.

Furthermore, we have, for any t ∈ (0, 1)

(δ2 + λ2)
1
2 ≤ β(t)(δ2 + λ2)1/2 + (1− β(t))λ(1 + ε) ≤ λ(1 + ε)

from which it follows that F is monotone on all of R2n.



19

We now return to the proof of Proposition 2.1.

By Lemma 2.3, π∗F ∗ω0 = ρ(1, λ) = τ̃(ε, λ) on L(δ)\L(0). Since ρ(1, λ) is a

symplectic form on all of L(δ), we may extend τ̃(ε, λ) to all of L by assigning τ̃(ε, λ) :=

ρ(1, λ) on L(0) = π−1(0). Now note that this form satisfies condition 1 and 2 in the

proposition by Lemma 2.3 and the definition of F .

To see that τ̃(ε, λ) is symplectic, we note that F is a diffeomorphism from R2n\{0} to

its image, and therefore π∗F ∗(ωn0 ) = τ̃(ε, λ)n is a volume form on L\π−1(0). Therefore,

τ̃(ε, λ) is non-degenerate on L\π−1(0). That τ̃ is closed on L\π−1(0) is seen by

dτ̃(ε, λ) = dπ∗F ∗ω0

= π∗F ∗dω0

= 0.

On π−1(0), we have that τ̃ = ρ(1, λ), which is non-degenerate, and since dτ̃ = dρ(1, λ) =

0, it is closed as well. Therefore τ̃ is symplectic on all of L.

To prove 3, we let ĩ and i represent the standard almost complex structures on L and

Cn, respectively. Since π is the complex blow-down map, we have that i∗ ◦ π∗ = π∗ ◦ ĩ∗.
Therefore, for v 6= 0, (x, l) ∈ L(r)\L(0), we have,

τ̃(ε, λ)(̃iv, v) = π∗F ∗ω0(̃iv, v)

= F ∗ω0(π∗ĩv, π∗v)

= F ∗ω0(iπ∗v, π∗v)

> 0,
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where the last inequality follows because, by Lemma 2.5, F ∗ω0 is Kähler, so by Lemma

2.4, F ∗ω0 is compatible with i.

On π−1(0), τ̃ = ρ(1, λ), and therefore, for v 6= 0, we have

τ̃(ε, λ)(v, ĩv) = π∗ω0(v, ĩv) + λ2θ∗σ(v, ĩv)

= ω0(π∗v, π∗ĩv) + λ2σ(θ∗v, θ∗ĩv)

= ω0(π∗v, iπ∗v) + λ2σ(θ∗v, iθ∗v)

> 0

because ω0 and σ are compatible with i. We conclude that ĩ is a τ̃ -tame complex struc-

ture. To see that τ̃ is compatible with ĩ, we compute

τ̃(ε, λ)(̃iv, ĩw) = π∗F ∗ω0(̃iv, ĩw)

= F ∗ω0(π∗ĩv, π∗ĩw)

= F ∗ω0(iπ∗v, iπ∗w)

= F ∗ω0(π∗v, π∗w)

= τ̃(v, w).

Here, again, the fourth equality follows because, by Lemma 2.5, F ∗ω0 is Kähler, so by

Lemma 2.4, F ∗ω0 is compatible with i.
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Again, on π−1(0), τ̃(ε, λ) = ρ(1, λ), and therefore

τ̃(ε, λ)(̃iv, ĩw) = π∗ω0(̃iv, ĩw) + θ∗σ(̃iv, ĩw)

= ω0(π∗ĩv, π∗ĩw) + λ2σ(θ∗ĩv, θ∗ĩw)

= ω0(iπ∗v, iπ∗w) + λ2σ(iθ∗v, iθ∗w)

= ω0(π∗v, π∗w) + λ2σ(θ∗v, θ∗w)

= π∗ω0(v, w) + λ2θ∗σ(v, w)

= τ̃(ε, λ)(v, w),

since ω0 and σ are compatible with i. Therefore τ̃(ε, λ) is compatible with i.

We now show item 4. We first note that, by the definitions of π, c, and c̃, c◦π = π◦ c̃.
Since, by definition, F (z) = α(|z|)z for a real function α : R→ R, we have

c ◦ F (z) = c ◦ (α(|z|)z) = α(|z|)z = α(|z|)z = F (z) = F ◦ c(z),

so F commutes with c. Furthermore,

c̃∗τ̃ = c̃∗π∗F ∗ω0 = π∗c∗F ∗ω0 = π∗F ∗c∗ω0 = −π∗F ∗ω0 = −τ̃ ,

which proves item 4. It follows that, since Fix(c̃) = R(r),R(r) is a Lagrangian in L(r),

proving item 5. This completes the proof.

In the next proposition, we construct the global relative blow-up of a manifoldM us-

ing a relative symplectic and holomorphic embedding of the ball (B(1+2ε), λ2ω0, BR(1+

2ε)) with the standard complex structure i. The use of holomorphic embeddings here
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gives us extra control over the complex structure in the blow-up, which we will be useful

in our applications.

Proposition 2.7. Let (M,ω) be a symplectic manifold with Lagrangian L, and let J be

an ω-tame (compatible) almost complex structure. Suppose that for λ > 0 and some

small ε > 0, there is a relative symplectic and holomorphic embedding

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, BR,j(1 + 2ε), i) ↪→ (M,ω,L, J).

Then there exists a symplectic manifold (M̃, ω̃) with Lagrangian L̃ ⊂ M̃ , an ω̃-tame

(compatible) almost complex structure J̃ , and an onto map Π : M̃ →M such that

1. Π is a diffeomorphism on Π−1(M\ ∪kj=1 ψj(0)),

2. For all j ∈ {1, . . . , k},Π−1(ψj(0)) ∼= CP n−1,

3. Π(L̃) = L, and

4. ω̃ is in the cohomology class

[ω̃] = [Π∗ω] +
k∑
j=1

λ2
jej,

where the ej are the Poincaré duals of the exceptional classes Ej = [Π−1(ψj(0))].

Remark 2.8. Note that the Ei in the theorem above are the classes represented by the

exceptional curves added in the blow-up.

Proof. First, we consider the case when k = 1. Consider the map π : (L(1 + 2ε),R(1 +

2ε), ĩ)→ (B(1 + 2ε), BR(1 + 2ε), i) from Definition 1.2, where ĩ and i are the standard
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complex structures on L and Cn, respectively. Observing that π gives a diffeomorphism

between the boundaries (∂B(1 + 2ε), ∂BR(1 + 2ε)) and (∂L(1 + 2ε), ∂R(1 + 2ε)),

we let π∂ denote the restriction of π to ∂L(1 + 2ε), and we define M̃ to be M̃ :=

M\ψ((B(1+2ε), BR(1+2ε))∪ψ◦π∂ (L(1+2ε), R(1+2ε)). This operation is summarized

in the diagram below, with δ = 1 + 2ε.

(L(δ),R(δ))

π

��

� � ψ̃ // (M̃, L̃)

Π
��

(B(δ), BR(δ)) � �

ψ
// (M,L)

(2.1.1)

where ψ and ψ̃ are embeddings, and where the map Π : (M̃, L̃)→ (M,L) is defined by

Π(x) =


x, x /∈ Im ψ̃

ψ ◦ π ◦ ψ̃−1(x) x ∈ Im ψ̃

making the diagram commutative. Note that only ψ is a symplectomorphism a priori.

We now define a symplectic form on M̃ . Recall that ψ∗ω = λ2ω0 by hypothesis. We

assign a symplectic form to M̃ by:

ω̃ =


Π∗ω on M̃\ψ̃(L(1 + ε))

(ψ̃−1)∗τ̃(ε, λ) on ψ̃(L(1 + 2ε))

(2.1.2)

We check that ω̃ is well-defined on L(1 + 2ε) − L(1 + ε). By Proposition 2.1 and the
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definition of ω̃ and Π, on L(1 + 2ε)− L(1 + ε) we have

Π∗ω = (ψ̃−1)∗π∗ψ∗ω

= λ2(ψ̃−1)∗π∗ω0

= (ψ̃−1)∗τ̃(ε, λ),

so ω̃ is well defined.

We define the almost complex structure J̃ on M̃ by

J̃ =


ψ̃∗ĩψ̃

−1
∗ on Im(ψ̃)

Π−1
∗ JΠ∗ on M̃\Im(ψ̃)

Note that since π and ψ are holomorphic diffeomorphisms near the boundary of their

respective domains, Π−1
∗ JΠ∗ = ψ̃∗ĩψ̃

−1
∗ on ψ̃(1+2ε)\ψ̃(1+ ε), and so J̃ is well defined.

To see that ω̃ tames (is compatible with) J̃ , we first note that Π is holomorphic for

x ∈ M̃ −L(1 + ε), and we recall that ω̃ = Π∗ω on this region. Therefore, if ω tames J ,

then for v, w ∈ TxM , ω̃(v, J̃v) = λ2ω(Π∗v,Π∗J̃v) = λ2ω(Π∗v, JΠ∗v) > 0, so ω̃ tames

J̃ on this region. If, in addition, ω is compatible with J , we have,

ω̃(J̃v, J̃w) = Π∗ω(J̃v, J̃w)

= ω(Π∗J̃v,Π∗J̃w)

= ω(JΠ∗v, JΠ∗w)

= ω(Π∗v,Π∗w)

= Π∗ω(v, w)
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as desired.

For x ∈ L(1 + ε), we have that ω̃ = (ψ̃−1)∗τ̃ . Since τ̃ is compatible with ĩ, the

canonical complex structure on L, and ψ̃ is holomorphic, then ω̃ is compatible with J̃

on this region. Therefore, if ω tames (is compatible with) J on M , then ω̃ tames (is

compatible with) J̃ on all of M̃ .

Blowing up more than one point is done as above for each ball in the disjoint product

ψ :
∐k

j=1(Bj(r), ω0, BR,j(r)) ↪→ (M,ω,L). That ω̃ is in the desired cohomology class

follows immediately from this construction.

Remark 2.9. When we want to emphasize the embedding ψ, we will refer to the sym-

plectic blow up constructed as above as the blow-up of M relative to ψ.

In the following proposition we construct a real structure on the blow-up M̃ given a

real symplectic manifold M and a suitably symmetric embedding ψ of a disjoint union

of balls into M .

Proposition 2.10. Let (M,ω, φ) be a real symplectic manifold, let J be an ω-tame (com-

patible) almost complex structure on M which satisfies φ∗Jφ∗ = −J , and let

ψ :
k∐
j=1

(Bj(1 + 2ε), λ2
jω0, i) ↪→ (M,ω, J)

be a symplectic and holomorphic embedding. Suppose φ and ψ satisfy

1. Im(φ ◦ ψ) = Im(ψ),

2. Im(φ ◦ ψj) ∩ Im(ψj) = ∅ if Im(ψj) ∩ L = ∅, and

3. ψj ◦ c = φ ◦ ψj if Im(ψj) ∩ L 6= ∅.
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Then there exists a real symplectic manifold (M̃, ω̃, φ̃) and an onto map Π : M̃ →M

which satisfies

1. Π is a diffeomorphism on Π−1(M\ ∪j ψj(0)),

2. Π−1(ψj(0)) ∼= CP n−1,

3. Π ◦ φ̃ = φ ◦ Π, and

4. ω̃ is in the cohomology class

[ω̃] = [Π∗ω]−
k∑
j=1

λ2
jej,

where the ej are the Poincaré duals of the exceptional classesEj = [Π−1(ψj(0))] ∈
H2(M̃ ; Z).

Furthermore, the real structure φ̃ and the almost complex structure J̃ in the blow-up M̃

satisfy φ̃∗J̃ = −J̃ φ̃∗, and for every j with ψj ◦ c = φ ◦ ψj , we have φ∗Ej = −Ej ∈
H2(M̃ ; Z).

Remark 2.11. As we will see in the proof, in the case where there are balls which are

embedded off of the Lagrangian, the blow-up is not constructed relative to ψ, but relative

to another symplectic, holomorphic embedding with the same image. The ball embed-

dings whose image intersects the Lagrangian are left untouched, and those which take

pairs of balls to M\L are changed to commute with φ and the standard real structure on

R2n.

In order to prove this proposition, we use the following lemmas. In the first lemma,

we construct the blow-up given a real embedding ψ on one ball such that ψ ◦ c = φ ◦ ψ.
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In the second, we construct the simultaneous blow-up of an embedding ψ of two balls

B1 and B2 such that Im(φ ◦ ψ(B1)) = Im(ψ(B2).

Lemma 2.12. Let (M,ω, φ) be a real symplectic manifold, let J be an ω-tame (compat-

ible) almost complex structure on M which satisfies φ∗Jφ∗ = −J . Suppose

ψ : (B(1 + 2ε), λ2ω0, i) ↪→ (M,ω, J)

is a symplectic and holomorphic embedding such that ψ ◦ c = φ ◦ψ. Then there exists a

symplectic manifold (M̃, ω̃) that admits an anti-symplectic involution φ̃ such that Π and

ω̃ satisfy the conclusions of Proposition 2.7.

Furthermore, the real structure φ̃ in the blow-up M̃ satisfies φ̃∗J̃ = −J̃ φ̃∗, and

φ̃∗[Π
−1(ψ(0))] = −[Π−1(ψ(0))] ∈ H2(M̃ ; Z).

Proof. We first note that ψ is a relative embedding, since ψ−1(Fix(φ)) = Fix(c) =

BR(1 + 2ε). Now construct the blow-up (M̃, ω̃) of (M,ω) relative to ψ as in Proposition

2.7. Denote by c̃ the complex conjugation map on L and recall that we have π ◦ c̃(z, l) =

c◦π(z, l), since z ∈ l⇐⇒ z ∈ l and 0 = 0. Given ε, λ > 0, let τ̃(ε, λ) be the symplectic

form on L constructed in Proposition 2.1, and recall that c̃∗τ̃(ε, λ) = −τ̃(ε, λ). We now

define a map φ̃ : M̃ → M̃ by

φ̃(x) =


Π−1 ◦ φ ◦ Π(x), x ∈ M̃\ψ̃(L(1 + ε))

ψ̃ ◦ c̃ ◦ ψ̃−1(x), x ∈ ψ̃(L(1 + 2ε)).

By the commutativity of Figure 2.1.1, and the equivariance of ψ we have, for x ∈ L(1 +
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2ε)\L(1 + ε),

ψ̃ ◦ c̃ ◦ ψ̃−1(x) = ψ̃ ◦ π−1 ◦ c ◦ π ◦ ψ̃−1(x)

= Π−1 ◦ ψ ◦ c ◦ ψ−1 ◦ Π(x)

= Π−1 ◦ ψ ◦ ψ−1 ◦ φ ◦ Π(x)

= Π−1 ◦ φ ◦ Π(x).

Therefore φ̃ is well-defined and a diffeomorphism. That φ̃ is an anti-symplectic involu-

tion follows from the fact that Π−1 ◦φ◦Π and ψ̃ ◦ c̃◦ ψ̃−1 are anti-symplectic involutions

on their respective domains.

To see the last statement in the proposition, for x ∈ M̃\ψ̃(L(1 + ε)), we compute

φ̃∗J̃ = Π−1
∗ φ∗Π∗J̃

= Π−1
∗ φ∗JΠ∗

= −Π−1
∗ Jφ∗Π∗

= −J̃Π−1
∗ φ∗Π∗

= −J̃ φ̃.
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For x ∈ ψ̃(L(1 + 2ε)), we have

φ̃∗J̃ = ψ̃∗c̃∗ψ̃
−1
∗ J̃

= ψ̃∗c̃∗ĩψ̃
−1

= −ψ̃∗ĩc̃∗ψ̃−1

= −J̃ ψ̃∗c̃∗ψ̃−1

= −J̃ φ̃,

as desired.

Let E = ψ̃(L(0)). To see that φ̃∗E = −E, we note that c̃(L(0)) = L(0), and that c̃

reverses orientation. This completes the proof.

Lemma 2.13. Let (M,ω, φ) be a real symplectic manifold, let J be an ω-tame (compat-

ible) almost complex structure. Suppose

γ :
2∐
i=1

(Bi(1 + 2ε), λ2ω0, i)→ (M,ω, J)

is a symplectic and holomorphic embedding such that Im(φ◦γ1) = Im(γ2). Then there

exists a real symplectic manifold (M̃, ω̃) with real structure φ̃, an ω̃-tame (compatible)

almost complex structure, and an onto map Π : M̃ →M which satisfies the conclusions

of Proposition 2.7.

Furthermore, the real structure φ̃ and the almost complex structure J̃ in the blow-up

M̃ satisfy φ̃∗J̃ = −J̃ φ̃∗.
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Proof. Define a map ψ : Π2
i=1(Bi(1 + 2ε), λ2ω0, i)→ (M,ω, J) by

ψ(x) =


γ(x) x ∈ B1

φ ◦ γ ◦ c ◦ ι(x) x ∈ B2

where ι : Π2
i=1Bi → Π2

i=1Bi is the map given by ι(x ∈ Bi) = x ∈ Bi+1 mod 2. We

note that, since c and φ are anti-holomorphic and γ is holomorphic, ψ is holomorphic,

and, similarly, since c and φ and anti-symplectic, and γ is symplectic, ψ is symplectic

as well. Furthermore, γ, c, φ, and ι are all 1-1, and we conclude that ψ is a symplectic,

holomorphic embedding. Now observe that c ◦ ι is an antisymplectic involution on

Π2
i=1Bi, Im(ψ) = Im(γ) by definition, and that ψ ◦ c ◦ ι = φ ◦ ψ, so that ψ is a real

embedding for the real structures c◦ι and φ. We now construct the blow up ofM relative

to ψ as in McDuff and Polterovich [23] (which is as in the relative blow-up without the

Lagrangian).

On
∐2

i=1 Li, we put the anti-symplectic involution c̃ ◦ ι̃, where c̃ is complex conju-

gation on L, and, as above, ι̃ :
∐2

i=1 Li →
∐2

i=1 Li is given by ι̃((z, l) ∈ Li) = (z, l) ∈
Li+1 mod 2. Recall that π ◦ c̃(z, l) = c ◦ π(z, l), since z ∈ l ⇐⇒ z ∈ l and 0 = 0, and

note that, by definition of ι and ι̃, we also have π ◦ c̃ ◦ ι̃(z, l) = c ◦ ι ◦ π(z, l).

Given ε, λ > 0, we define ν(ε, λ) to be the symplectic form on
∐2

i=1 Li(1 + 2ε),

such that the restriction on each Li is given by ν(ε, λ)|Li := τ̃(ε, λ), where τ̃(ε, λ) is the

symplectic form on L constructed in Proposition 2.1.



31

Now define a map φ̃ : M̃ → M̃ by

φ̃(x) =


Π−1 ◦ φ ◦ Π(x), x ∈ M̃\ψ̃ (∐2

i=1 L(1 + ε)
)

ψ̃ ◦ c̃ ◦ ι̃ ◦ ψ̃−1(x), x ∈ ψ̃ (∐2
i=1 L(1 + 2ε)

)
,

where ψ̃ is the embedding of
∐2

i=1 L(1+2ε) as in Figure 2.1.1. By the commutativity

of Figure 2.1.1, we have, for x ∈ L(1 + 2ε)\L(1 + ε)

ψ̃ ◦ c̃ ◦ ι̃ ◦ ψ̃−1(x) = ψ̃ ◦ π−1 ◦ c ◦ ι ◦ π ◦ ψ̃−1(x)

= Π−1 ◦ ψ ◦ c ◦ ι ◦ ψ−1 ◦ Π(x)

= Π−1 ◦ ψ ◦ ψ−1 ◦ φ ◦ Π(x)

= Π−1 ◦ φ ◦ Π(x).

Therefore φ̃ is well-defined and a diffeomorphism. That φ̃ is an anti-symplectic invo-

lution follows from the fact that Π−1 ◦ φ ◦ Π and ψ̃ ◦ c̃ ◦ ι̃ ◦ ψ̃−1 are anti-symplectic

involutions on their respective domains.

To see the last statement in the proposition, for x ∈ M̃\ψ̃(L(1 + ε)), we compute

φ̃∗J̃ = Π−1
∗ φ∗Π∗J̃

= Π−1
∗ φ∗JΠ∗

= −Π−1
∗ Jφ∗Π∗

= −J̃Π−1
∗ φ∗Π∗

= −J̃ φ̃∗.
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For x ∈ ψ̃(L(1 + 2ε)), we have

φ̃∗J̃ = ψ̃∗c̃∗ι̃∗ψ̃
−1
∗ J̃

= ψ̃∗c̃∗ι̃∗ĩψ̃
−1
∗

= −ψ̃∗ĩc̃∗ι̃∗ψ̃−1
∗

= −J̃ ψ̃∗c̃∗ι̃∗ψ̃−1
∗

= −J̃ φ̃∗,

as desired.

Proof of Proposition 2.10. For each γi with Im(γi) ∩ L 6= ∅ we construct the blow up

using Lemma 2.12. For each γi such that Im(γi) ∩ Fix(φ) = ∅, we first recall that, by

hypothesis, Im(γi) ∩ Im(φ ◦ γi) = ∅. Since Im(φ ◦ γ) = Im(γ), then there is a γi′

with Im(φ ◦ γi) = Im(γi′ ). We blow-up the pair γi,γi′ using Lemma 2.13. The result

follows.

We now remove the hypothesis that our ball embeddings are holomorphic. To do this,

we start with a relative or real symplectic ball embedding, and then adjust it so that a

small region around the center is also holomorphic, which we may do under appropriate

assumptions on an almost complex structure that tames the symplectic form. We then

create a family of symplectic forms ωt on the blow-up such that the original one tames

(or is compatible with) the almost complex structure J̃ on the blow-up, and the last one is

in the cohomology class corresponding to the ball embedding. This is the same strategy

as that of McDuff and Polterovich [23], and the following proposition and its proof are

variants of Proposition 2.1.C in [23], which we modify to keep track of the Lagrangians
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L and L̃ throughout the process.

Proposition 2.14. 1. Let ψ : (B(1+2ε), λ2ω0, BR(1+2ε))→ (M,ω,L) be a relative

symplectic embedding. Suppose that J is an almost complex structure onM which

tames (is compatible with) ω and which is relatively integrable at ψ(0).

Then there exists a manifold M̃ with a submanifold L̃, a family of symplectic

forms ω̃t, t ∈ [0, 1] on M̃ , an almost complex structure J̃ on M̃ , and an onto map

Π : M̃ →M such that ω̃0 tames (is compatible with) J̃ , L̃ is a Lagrangian for all

the ω̃t, Π(L̃) = L, and ω̃1 satisfies

[ω̃1] = [Π∗ω]− λ2e,

where e is the Poincare dual of the class [Π−1(ψ(0))] ∈ H2(M ; Z).

2. Suppose, furthermore, M is a real symplectic manifold with real structure φ,

Fix(φ) = L, J satisfies φ∗Jφ∗ = −J , and ψ ◦ c = φ ◦ ψ. Then there exists a

family of real structures φ̃t on M̃ such that φ̃∗t ω̃t = −ω̃t, (φ̃t)∗J̃(φ̃t)∗ = −J̃ .

The proof depends on the following proposition, which is an adaptation of Proposi-

tion 5.5.A in McDuff and Polterovich [23], and which we prove in section 2.3.

Proposition 2.15. 1. Let (M,ω) be a symplectic manifold and let L ⊂ M be a La-

grangian submanifold. Let

ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω,L)

be a relative symplectic embedding, and let J be an almost complex structure on

M which tames ω and is relatively integrable at ψ(0) ∈ L.
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Then, for every compact subset K ⊂M\ψ(0) there exists a number δ
′ ∈ (0, 1), a

symplectic form ω
′

on M isotopic to ω, and a relative symplectic embedding

ψ
′
: (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω

′
, L)

with the following properties:

(a) ψ
′|B(δ′) is holomorphic

(b) ω′ tames J and coincides with ω on K

(c) L is a Lagrangian for ω′

2. In addition to the above, suppose that M is a real symplectic manifold with real

structure φ, Fix(φ) = L, J satisfies φ∗Jφ∗ = −J , J is symmetrically integrable

around ψ(0), and φ ◦ ψ = ψ ◦ c.

Then we can construct the map ψ
′

and the symplectic form ω
′

on M to satisfy

the conclusions above, and so that φ is a real structure for ω
′

and ψ
′

satisfies

φ ◦ ψ′ = ψ
′ ◦ c.

Proof of Proposition 2.14. By Proposition 2.15, we may assume that ψ is holomorphic

on B(δ) for some δ > 0. Let St : B(λ+ ε)→ B(λ+ ε) be defined by:

St(x) = β(t)x+ (1− β(t))
[
λ(1 + γ)δ−1α(|x|) + (1− α(|x|))]x,

where β(t) is a bump function with β(t) = 1 for t ≤ 0 and β(t) = 0 for t ≥ 1, and α(t)

is a bump function with α(t) = 1 for t ≤ δ and α(t) = 0 for t ≥ 1 − λ for some small

λ > 0. We wish to show that St has the following properties:
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1. S0 = Id

2. St is equal to the identity near ∂B(λ+ ε)

3. S∗t ω0 = µ(t)ω0, where µ(t) : R→ R and µ(1) = λ2(1+γ)2δ−2 on B(δ) for some

γ > 0.

4. BR(λ+ ε) is a Lagrangian for S∗t ω0

The first three items above follow directly from the definitions of St, α and β. We check

item 4. Let c denote complex conjugation. Then St ◦ c = c ◦ St, and therefore c∗S∗t ω0 =

S∗t c
∗ω0 = −S∗t ω0, so BR is a Lagrangian for all t.

Now let Ft : M → M be the extension of ψ ◦ St ◦ ψ−1 : Im(ψ) ⊂ M → M by the

identity map, and set ωt = F ∗t ω. Now let

νt(z) = ψ

(
δ

1 + γ
z

)
:

(
B(1 + γ),

δ2

(1 + γ)2
µ(t)ω0

)
→ (M,ωt).

Then since ψ is a relative embedding, ν is a relative holomorphic embedding, and

since ν∗t ωt = δ2

(1+γ)2
µ(t)ω0, it is also symplectic. Now take the forms ω̃t obtained by

blowing up the family ωt by the embeddings νt. We claim that ω̃t verifies the conclusion

of the theorem. By definition, ν0 is a symplectic and holomorphic map into M , so by

Proposition 2.7, ω̃0 is compatible with J̃ . Since F1 is isotopic to the identity, we see that

[ω1] = [ω], from which it follows that [Π∗ω̃1] = [Π∗ω̃]. ω̃1 is therefore in the desired

cohomology class, and the first part of the theorem is proved.

If M has a real structure φ, and ψ satisfies the hypotheses in the latter half of the

theorem, then by 2.10, blowing up the forms νt, we create a family of involutions φ̃t on

M̃ such that φ̃∗t ω̃t = −ω̃t and (φ̃t)∗J̃(φ̃t)∗ = −J̃ , finishing the proof of the proposition.
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We now prove Theorem 1.21.

Proof of Theorem 1.21. By Remark 1.20, there exists an almost complex structure onM

which is relatively integrable in a neighborhood of the points ψj(0). Then by Proposition

2.14, there exists a manifold M̃ with submanifold L̃ and a family of symplectic forms

ω̃t on the M̃ such that L̃ is a Lagrangian for all ω̃t, and which satisfies [ω̃t] = [Π∗ω] −∑q
k=1 λ

2
kek, where the ek are the Poincaré duals of the exceptional spheres Ck added in

the blow-up.

If, in addition, M has a real structure φ and Im(ψ) = Im(φ ◦ ψ), then, by Remark

1.20, J may be chosen so that it is symmetrically integrable around the points ψj(0) and

φ∗Jφ∗ = −J . Therefore, by Proposition 2.14, there exists a family of maps φ̃t on the

blow-up such that φ̃∗t ω̃t = −ω̃t, and this proves the theorem.

2.2 Blow-down

We now construct the blow-down of a symplectic manifold (M̃, ω̃, L̃). In particular,

we will prove Theorem 1.22, stated again below.

Theorem (Theorem 1.22). 1. Let (M̃, ω̃) be a symplectic manifold with Lagrangian

L̃. Suppose there is a (p, q)-mixed symplectic embedding

ψ̃ :
k∐
j=1

(Lj(rj), ρj(δj, λj),Rj(rj)) ↪→ (M̃, ω̃, L̃)

such that ψ−1(L̃) =
∐p

j=1Rj(rj). Let Cj ⊂ M̃ denote ψ̃j(L(0)), and let C =

∪jCj .
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Then there exists a symplectic manifold (M,ω), a (p, q)-mixed symplectic embed-

ding

ψ :
k∐
j=1

(B(1 + 2ε), λjω0, BR(1 + 2ε))→ (M,ω,L), (2.2.1)

a Lagrangian submanifold L ⊂ M , and an onto map Π : M̃ → M such that the

following is satisfied:

(a) Π is a diffeomorphism on M̃\C,

(b) Π(Cj) = pj ∈M , where pj is a point,

(c) Π(L̃) = L, and

(d) ω satisfies

[ω̃]− [Π∗ω] ∈ E ,

where E is the linear vector space generated by e1, . . . , ek, the Poincaré duals

of the exceptional classes Ej = [ψ̃j(0)].

2. Suppose, in addition, M̃ admits an anti-symplectic involution φ̃ which satisfies

(a) Fix(φ̃) = L̃,

(b) Im(ψ̃) = Im(φ̃ ◦ ψ̃),

(c) Im(φ̃ ◦ ψ̃i) ∩ Im(ψ̃i) = ∅ if Im(ψi) ∩ L = ∅, and

(d) ψ̃i ◦ c̃ = φ̃ ◦ ψ̃i if Im(ψ̃i) ∩ L̃ 6= ∅.

Then (M,ω) admits an anti-symplectic involution φ such that φ ◦ Π = Π ◦ φ̃.

In parallel to the blow-up construction, we begin by constructing a family of forms

on Cn from the forms ρ(δ, λ), which we will then use to construct the global form in the

blow-down. The following proposition is adapted from Proposition 5.1.B in [23].
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Proposition 2.16. For every ε, δ, λ > 0, there exists a Kähler form τ = τ(ε, δ, λ) on Cn

such that the following holds:

1. π∗(τ) = ρ(δ, λ) on L − L(1 + ε)

2. τ = λ2ω0 on B(1) ⊂ Cn

3. τ is compatible with i.

4. c∗τ = −τ , where c denotes complex conjugation on Cn.

5. Rn is a Lagrangian for τ .

Proof. Note first that ρ(δ, λ) = δ2ρ(1, ν) for ν = λ/δ. Let hλ(z) =

(
1 +

(
λ
|z|

)2
)1/2

.

Let β(t) be a bump function which is 1 for t ≤ 1 and 0 for t ≥ 1 + ε. Then we define

the map G : Cn → Cn by

G(z) =



νz for |z| ≤ 1

νβ(|z|) z
|z| + (1− β(|z|))hν

(
(1+ε)z
|z| )

)
(1+ε)z
|z| for 1 < |z| < 1 + ε

hν(z)z for |z| ≥ 1 + ε

and we define the form τ = δ2G∗ω0. We claim that τ satisfies the properties in the

proposition. The first property follows from Lemma 2.3, then second from the definitions

of τ andG for |z| ≤ 1, and the third follows from Lemmas 2.4 and 2.5 and the fact thatG

is a monotone radial function. To see the fourth point, note thatG(z) = α(|z|)z for some

real-valued function α : R → R. This implies that c ◦ G = G ◦ c, where c is complex

conjugation on Cn, and therefore c∗δ2G∗ω0 = δ2G∗c∗ω0 = −δ2G∗ω0, as desired. This,

in turn, proves the fifth point as well, and completes the proof.
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In parallel to the blow-up construction, we split the blow-down into two parts, the

relative blow-down, in which we consider only a Lagrangian, and we do not consider a

real structure, and the real blow-down. We now construct the relative blow-down.

Proposition 2.17. Let (M̃, ω̃) be a symplectic manifold with Lagrangian L̃, and let J̃

be an ω̃-tame (compatible) almost complex structure. Suppose there is a (p, q)-mixed

holomorphic and symplectic embedding

ψ :
k∐
j=1

(Lj(rj), ρj(δj, λj),Rj(rj), i) ↪→ (M̃, ω̃, L̃, J̃)

such that

ψ−1(L) =

p∐
j=1

Rj(rj).

Then the conclusions of the first part of Theorem 1.22 are satisfied.

Proof. We consider the case when (p, q) = (1, 0). Let ψ̃ : (L(1 + 2ε0), ρ(δ, λ),R(1 +

2ε0)) → (M̃, ω̃, L̃) be a relative symplectic embedding such that ψ̃∗ω̃ = ρ(δ, λ). We

then perform a local complex blow down in L(1 + 2ε), and we define the manifold M

by

M := M̃\ψ̃(L(1 + 2ε)) ∪ψ̃◦π−1|∂L(1+2ε) B(1 + 2ε)

after which, as in the blow-up, we arrive at the commutative diagram

(L(1 + 2ε),R(1 + 2ε))

π

��

� � ψ̃ // (M̃, L̃)

Π
��

(B(1 + 2ε), BR(1 + 2ε)) � �

ψ
// (M,L)

(2.2.2)
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where Π is defined by

Π(x) =


x x ∈ M̃\ψ̃(L(1 + 2ε))

ψ ◦ π ◦ (ψ̃−1) x ∈ ψ̃(L(1 + 2ε)).

We now define the following form on M :

ω =


(Π−1)∗ω̃ on M\ψ(B(1 + ε))

(ψ−1)∗τ(ε, δ, λ) on ψ(B(1 + 2ε)).

We check that the definition of ω agrees on ψ(B(1 + 2ε))\ψ(B(1 + ε)). On this region,

we have

ω = (ψ−1)∗τ(ε, δ, λ)

= (ψ−1)∗(π−1)∗ρ(1, λ)

= (ψ−1)∗π∗ψ̃∗ω̃

= (Π−1)∗ω̃,

so ω is well defined. Furthermore, we claim that ω is a symplectic form. Too see this,

note that Π is a diffeomorphism on Π−1(M\ψ(B(1 + ε))), so ωn is a volume form on

M\ψ(B(1 + ε)), and ω is therefore non-degenerate there. It is closed by definition. For

ψ(B(1+2ε)), we first note that by Proposition 2.16, τ is Kähler, and therefore symplectic

on R2n. Since ψ−1 is a diffeomorphism on B(1 + 2ε), ω is non-degenerate here as well,

and closed by definition.
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We define the almost complex structure J on M by

J =


ψ∗iψ

−1
∗ on Im(ψ)

Π∗J̃Π−1
∗ on M\Im(ψ)

Note that since π and ψ are holomorphic diffeomorphisms near the boundary of their

respective domains, ψ∗iψ−1
∗ = Π∗J̃Π−1

∗ on ψ(1+2ε)\ψ(1+ ε), and so J is well defined.

To see that ω tames (is compatible with) J , we first note that Π is holomorphic and a

diffeomorphism for x ∈ M̃−L(1+ ε), and we recall that ω = (Π−1)∗ω̃ on M\B(1+ ε).

Therefore, if ω̃ tames J , then for v, w ∈ TΠ(x)M , ω(v, Jv) = ω̃(Π−1
∗ v,Π

−1
∗ J̃v) =

ω̃(Π−1
∗ v, JΠ−1

∗ v) > 0, so ω tames J on M\ψ(B(1 + ε). If, in addition, ω̃ is compatible

with J̃ , then on M\B(1 + ε), we have

ω(Jv, Jw) = (Π−1)∗ω̃(Jv, Jw)

= ω̃(Π−1
∗ Jv,Π

−1
∗ Jw)

= ω̃(J̃Π−1
∗ v, J̃Π−1

∗ w)

= ω̃(Π−1
∗ v,Π

−1
∗ w)

= (Π−1)∗ω̃(v, w)

as desired.

For x ∈ L(1 + ε), we have that ω = (ψ−1)∗τ . Since τ is compatible with i, the

canonical complex structure on B(1 + 2ε), and ψ is holomorphic (tautologically, by the

definition of J), then ω is compatible with J on this region. Therefore, if ω̃ tames (is

compatible with) J̃ on M̃ , then ω tames (is compatible with) J on M .
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The condition on the cohomology class of ω follows immediately from the construc-

tion. This completes the proof of the proposition.

We now construct the real blow-down for a real symplectic manifold M̃ .

Proposition 2.18. Let (M̃, ω̃, φ̃) be a real symplectic manifold and let L̃ = Fix(φ̃). Let

J̃ be an ω̃-tame (compatible) almost complex structure on M̃ . Suppose that

ψ̃ :
k∐
j=1

(Lj(rj), ρj(δj, λj),Rj(rj), i) ↪→ (M̃, ω̃, L̃, J̃)

is a symplectic and holomorphic embedding such that

1. ψ−1(L̃) =
∐k

j=1Rj(rj),

2. Im(ψ̃) = Im(φ̃ ◦ ψ̃),

3. Im(φ̃ ◦ ψ̃i) ∩ Im(ψ̃i) = ∅ if Im(ψi) ∩ L = ∅, and

4. ψ̃i ◦ c̃ = φ̃ ◦ ψ̃i if Im(ψ̃i) ∩ L̃ 6= ∅.

Then the conclusions of the second part of Theorem 1.22 are satisfied.

As in the blow-up, we prove this in two parts. The first is the following.

Lemma 2.19. Let (M̃, ω̃, φ̃) be a real symplectic manifold and let L̃ = Fix(φ̃). Let

J̃ be an ω̃-tame (compatible) almost complex structure on M̃ , and suppose that ψ̃ :

(L(r), ρ(δ, λ),R(r)) ↪→ (M̃, ω̃, L̃) is a symplectic embedding such that ψ̃ ◦ c = φ̃ ◦ ψ̃.

Then the blow-down (M,ω,L) admits an anti-symplectic involution φ and an almost

complex structure J such that Fix(φ) = L and φ∗Jφ∗ = −J .
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Proof. Construct the blow-down (M,ω) as in Proposition 2.17. Now define a map φ by

φ(x) =


Π ◦ φ̃ ◦ Π−1 x ∈M\ψ(B(1 + ε))

ψ ◦ c ◦ ψ−1(x) x ∈ ψ(B(1 + 2ε))

,

Note that, for x ∈ ψ(B(1 + 2ε)−B(1 + ε)),

ψ ◦ c ◦ ψ−1(x) = ψ ◦ π ◦ c̃ ◦ π−1 ◦ ψ−1(x)

= Π ◦ ψ̃ ◦ c̃ ◦ ψ̃−1 ◦ Π−1(x)

= Π ◦ φ̃ ◦ Π−1(x),

so the map φ is well-defined and a diffeomorphism. Furthermore, φ2 = Id by definition.

To see that φ∗ω = −ω, we have, for x ∈M\ψ(B(1 + 2ε)),

φ∗ωx = φ∗(Π−1)∗ω̃x

= (Π−1)∗φ̃∗ω̃x

= −(Π−1)ω̃x

= −ωx,
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and for x ∈ ψ(B(1 + 2ε)), we have

φ∗ωx = (ψ−1)∗c∗ψ∗(ψ−1)∗τ(ε, δ, λ)

= (ψ−1)∗c∗τ(ε, δ, λ)

= −(ψ−1)∗τ(ε, δ, λ)

= −ωx,

We now check that φ∗Jφ∗ = −J . For x ∈M\ψ(B(1 + ε)), we compute

φ∗J = Π∗φ̃∗Π
−1
∗ J

= Π∗φ̃∗J̃Π−1
∗

= −Π∗J̃ φ̃∗Π
−1
∗

= −JΠ−1
∗ φ∗Π∗

= −Jφ∗.

For x ∈ ψ(B(1 + 2ε)), we have

φ∗J = ψ∗c∗ψ
−1
∗ J

= ψ∗c∗iψ
−1
∗

= −ψ∗ic∗ψ−1
∗

= −Jψ∗c∗ψ−1
∗

= −Jφ∗,

which completes the proof.



45

Lemma 2.20. Let (M̃, ω̃, φ̃) be a real symplectic manifold and let L̃ = Fix(φ̃). Suppose

that γ̃ :
∐2

j=1(Lj(rj), ρj(δj, λj),R(r)) ↪→ (M̃, ω̃, L̃) is a symplectic embedding such

that ψ−1(L̃) = ∅ and Im(φ̃ ◦ γ̃1) = Im(γ̃2). Then the blow-down (M,ω) admits an

anti-symplectic involution φ.

Proof. Since Im(φ̃ ◦ γ̃1) = Im(γ̃2), we can replace γ with an embedding

ψ̃ :
2∐
j=1

(Lj(rj), ρj(δj, λj),R(r)) ↪→ (M̃, ω̃, L̃)

defined by

ψ̃ =


γ̃1(x) x ∈ L1

φ̃ ◦ γ̃1 ◦ c̃ ◦ ι̃(x) x ∈ L2,

where ι̃ :
∐2

j=1 Lj →
∐2

j=1 Lj is given by ι̃(x ∈ Lj) = x ∈ Lj+1 mod 2. Note that c̃ ◦ ι̃
is a real structure on

∐2
j=1 Lj which makes ψ̃ a real map. The proof now follows exactly

the proof of Lemma 2.19, with c̃ ◦ ι̃ in place of c̃.

Proof of Proposition 2.18. For each ψ̃j with Im(ψ̃j) ∩ L 6= ∅, we construct the blow-

down as in 2.19. The rest of the maps come in pairs by assumption, and for each pair,

we construct the blow-down as in 2.20. The Proposition follows.

Theorem 1.22 now follows easily from the above propositions. We finish the proof

here.

Proof of Theorem 1.22. First, by Remark 1.20, there is an ε′ > 0, ε′ < ε, and an ω̃-tame

almost complex structure J̃ such that J̃ is integrable on ψi(L(1 + 2ε′)) and which makes

ψi|(Li(1+2ε′) holomorphic. Define N :=
∐k

i=1 Li(1 + 2ε
′
). If M is not a real manifold,

then we use Proposition 2.17 to blow down M̃ using the map ψ|N . For a real manifold
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M̃ and a real embedding ψ̃, the theorem then follows from Proposition 2.18, again using

the restriction ψ|N . This completes the proof.

Remark 2.21. We should note that the forms obtained in the local models, i.e. Proposi-

tions 2.1 and 2.16 are not the same as the forms constructed, respectively, from blowing

up Cn at 0 and blowing down L along the exceptional divisor using Theorems 1.21 and

1.22. Constructing the genuine blow-up and blow-down forms, even of Cn and L, still

requires an auxiliary symplectic embedding of either B(r) or L(r), and these are absent

from the form constructions of τ and τ̃ in Propositions 2.1 and 2.16. Because of this, we

still use the constructions of Theorems 1.21 and 1.22, even in these cases.

2.3 Lemmata

In this section we prove the lemmas used in Sections 2.1 and 2.2 above. We first

prove Lemma 2.3, which we restate here. This lemma is proved in Guillemin and Stern-

berg [14] by different methods.

Lemma (Lemma 2.3). Let h : R2n → R be the function h(x) =
(

1 + λ2

|x|2

)1/2

and ω0 be

the standard symplectic form on R2n. Let H : R2n\{0} → R2n\B(λ) be the mapping

given by H(x) = h(x)x. Then π∗H∗ω = ρ(1, λ) on L\{(0, l)|l ∈ CP n−1}.

Proof of Lemma 2.3. We recall from Definition 1.2 that for each κ, λ > 0, the closed

two-form ρ(κ, λ) on L(r) is defined by

ρ(κ, λ) = κ2π∗ω0 + λ2θ∗σ.

Now note that at a point x ∈ R2n, the differential form
∑

i dxi∧dyi(v, w) = ω0(v, w) =
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vtAw, where

A =

 0 −I
I 0

 .

Therefore, H∗ω0(v, w) = ω0(H∗v,H∗w) = vtH t
∗AH∗w. Calculating the i, j-th entry of

H∗, we have

(H∗)ij =

(
1 +

λ2

|x|2
)−1/2

xixj
|x|4 +

(
1 +

λ2

|x|2
)1/2

δij.

Now let α =
(

1 + λ2

|x|2

)1/2

and B = 1
|x|4

(
(xixj)ij

)
. Then H∗ = αI + 1

α
B, and

ω0(H∗v,H∗w) = ω0((αI +
1

α
B)v, (αI +

1

α
B)w)

= α2ω0(v, w) + ω0(v,Bw) + ω0(Bv,w) +
1

α2
ω0(Bv,Bw).

We first claim that ω0(B·, B·) = 0. To see this, note that B is a symmetric matrix,

and therefore Bt = B. We write

B =

 C D

D E

 ,

where C,D, and E are n× n matrices, and C and E are symmetric. With this notation,

BtAB =

 C D

D E


 0 −I

I 0


 C D

D E


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=

 C D

D E


 −D −E

C D

 =

 0 D2 − CE
CE −D2 0

 .

However, Dij = Bi,j+n = Bj+n,i, and Cij = Bij , Eij = Bi+n,j+n, and therefore

|x|8(D2)ij =
∑
k

DikDkj =
∑
k

Bi,k+nBk,j+n =
∑
k

xixk+nxkxj+n

|x|8(CE)ij =
∑
k

CikEkj =
∑
k

BikBk+n,j+n =
∑
k

xixkxk+nxj+n

which implies that D2 − CE = 0.

Let {ei, fi}ni=1 ∈ R2n be the standard basis in R2n, and let zdz and zdz denote∑n
i=1 zidzi and

∑n
i−1 zidzi, where zi = xi + ixi+n, i ∈ {1, . . . , n}. Then

|x|4ω0(ei, Bej) + ω0(Bei, ej) = xixj+n − xjxi+n = −izdz ∧ zdz(ei, ej),

ω0(ei, Bfj) + ω0(Bei, fj) = −xixj − xi+nxj+n = −izdz ∧ zdz(ei, fj),

ω0(fi, Bej) + ω0(Bfi, ej) = xixj + xi+nxj+n = −izdz ∧ zdz(fi, ej), and

ω0(fi, Bfj) + ω0(Bfi, fj) = −xixj+n + xjxi+n = −izdz ∧ zdz(fi, fj).

Note that here we understand ei ∈ Rn ⊂ Cn, and fi = iei ∈ iRn ⊂ Cn. Therefore

H∗ω0 = ω0 − i
(
λ2dz∧dz
|x|2 + λ2zdz∧zdz

|z|4

)
, so π∗H∗ω0 = π∗ω0 + λ2θ∗σ by Section 4 of

Guillemin and Sternberg [14]. This completes the proof.

We now use this lemma to prove the following proposition.

Proposition 2.22. For each κ, λ > 0, ρ(κ, λ) is a symplectic form on L.

Proof. Let Ω = ωn0 denote the volume form on R2n, and let H be defined as in the proof

of Lemma 2.3. SinceH ◦π is diffeomorphism on L∗ := L\{(0, z)|z ∈ CP n−1}, π∗H∗Ω
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is a volume form on L, and therefore ρ(1, λ) is non-degenerate for any λ > 0. Since

ρ(κ, λ) = δ2ρ(1, λ/κ), this implies that ρ(κ, λ) is non-degenerate for κ, λ > 0 as well.

Since both ω0 and σ are closed, ρ(κ, λ) is closed as well on L∗.
Now let (0, l) ∈ L(0). Then T(0,l)L ≡ TlCP 1 ⊕ T0C. Taking v ∈ TlCP 1. Then

ρ(κ, λ)(v, iv) = λ2θ∗σ(v, iv) = σ(v, iv) > 0. Similarly, for v ∈ T0C, ρ(κ, λ)(v, iv) =

π∗ω0(v, iv) > 0, and therefore ρ(κ, λ) is non-degenerate onL(0). Since ρ(κ, λ) is closed

as well, the form is symplectic as desired.

We now give the proof of Lemma 2.4, which we restate below.

Lemma (Lemma 2.4). Let (M,ω) be a symplectic manifold. Then ω is a Kähler form iff

ω is compatible with an integrable almost complex structure J .

Proof of Lemma 2.4. First, assume that ω is compatible with J . We must show that

iω∈Ω2(M) ⊗ C is the imaginary part of a Hermitian metric. For each x ∈ M , define

gx(v, w) := ωx(Jv, w). Since ω is compatible with J , g is a Riemannian metric on M .

Now let Hx(v, w) := gx(v, w) + iωx(v, w). Then

Hx(Jv, w) = gx(Jv, w) + iω(Jv, w)

= ωx(J
2v, w) + ig(v, w)

= −ωx(v, w) + ig(w, v)

= i(gx(v, w) + iω(v, w))

= iHx(v, w)
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We also have

Hx(v, Jw) = g(v, Jw) + iω(v, Jw)

= g(Jw, v)− iω(Jw, v)

= ω(J2w, v)− ig(w, v)

= −ω(w, v)− ig(v, w)

= ω(v, w)− ig(v, w)

= −iHx(v, w)

= iHx(v, w)

It follows from the linearity of ωx and gx that H is complex linear in the first variable

and complex anti-linear in the second. It only remains to show thatH is positive definite.

If v ∈ Rn, then

H(v, v) = H(v, v) = g(v, v) + i · 0 > 0

We now assume v = Jw for some w ∈ Rn. Then

H(v, v) = H(Jw, Jw) = iiH(w,w) = H(w,w) > 0,

and H is therefore a Hermitian metric with iω as its imaginary part. Since ω is closed,

H is a Kähler metric, and ω is its Kähler form.

Now suppose that ω is a Kähler form of the Kähler metricH(v, w). We wish to show
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that ω is compatible with J . First, note that ω = Im(H) = −i
2

(H −H), and

ω(Jv, Jw) =
−i
2

(H(Jv, Jw)−H(Jv, Jw))

=
−i
2

(H(v, w)−H(v, w))

= ω(v, w)

Next, for any v 6= 0 we have

ω(Jv, v) =
−i
2

(H(Jv, v)−H(Jv, v))

=
−i
2

(iH(v, v)− iH(v, v))

=
1

2
(H(v, v) +H(v, v))

= Re(H(v, v)) > 0

as desired. Therefore ω is compatible with J .

We now prove Lemma 2.5, which we restate here. First recall from Definition 2.2

that f : Cn → Cn is a monotone radial function if f(z) = α(|z|)z for some real-valued

function α : R→ [0,∞), and if |z0| ≤ |z1| =⇒ |f(z0)| ≤ |f(z1)|.

Lemma (Lemma 2.5). Let ω be a Kähler form on Cn, and suppose f : Cn\{0} →
Cn\{0} is a monotone radial function. Then f ∗ω is a Kähler form.

Proof of Lemma 2.5. By Lemma 2.4, we must show that f ∗ω is compatible with i, the

standard almost complex structure for Cn. Let z ∈ Cn v, w ∈ TzCn ∼= Cn. We denote

by zv the vector in TzCn with coordinates identical to z ∈ Cn. Because ω tames i,

the subspace Tz(Czv) ∼= Span{zv, izv} is symplectic, and therefore TzCn ∼= Tz(Czv)⊕
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(Tz(Czv))ω, where (Tz(Czv))ω denotes the symplectic complement of Tz(Czv). We now

write v and w as v = x0 + α0z
v + β0iz

v, w = x1 + α1z
v + β1iz

v, where αi, βi ∈ R,

and xi ∈ (Tz(Czv))ω. Since f is radial, we have that it is of the form f = f0(|z|)zv.
Therefore, df(z)(xn + αnz

v + iβnz
v) = xn + g(|z|)αzv + βizv. Furthermore, since

the norm of f is non-decreasing, g is a non-negative real valued function of one real

variable. Therefore

df(z)(i(xn + αnz
v + iβnz

v)) = df(z)(ixn + iαnz
v − βnzv)

= ixn + iαnz
v − g(|z|)βnzv.

Computing f ∗ω(iv, v), we see that

f ∗ω(iv, v) = ω(f∗iv, f∗v)

= ω(ix0 + iα0z
v − g(|z|)β0z

v, x+ α0z
v + ig(|z|)β0z

v)

= ω(ix0, x0) + ω(i(α0 + ig(|z|)β0)zv, (α0 + ig(|z|)β0)zv)

+ ω(i(α0 + ig(|z|)β0)zv, x0) + ω(ix0, (α0 + g(|z|)β0)zv)

> 0.

The last two terms on the right are equal to zero because x0 ∈ Span{zv, izv}ω, and the

first two terms are greater then zero because ω(i·, ·) is a Riemannian metric.
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Similarly, computing f ∗ω(iv, iw), we have

f ∗ω(iv, iw) = ω(f∗iv, f∗iw)

= ω(f∗i(x0 + α0z + β0iz), f∗i(x1 + α1z + β1iz))

= ω(ix0 + α0iz − β0g(|z|)z, ix1 + α1iz − β1g(|z|)z)

= ω(ix0, ix1) + ω(i(α0 + iβ0g(|z|))z, i(α1 + iβ1g(|z|))z)

+ω(ix, i(α1 + iβ1g(|z|))z) + ω(i(α0 + iβ0g(|z|))z, ix)

= ω(ix0, ix1) + ω(i(α0 + iβ0g(|z|))z, i(α1 + iβ1g(|z|))z)

= ω(x0, x1) + ω((α0 + iβ0g(|z|))z, (α1 + iβ1g(|z|))z)

= ω(x0,x1) + ω(α0z, β1g(|z|)iz) + ω(β0g(|z|)1iz, α1z)

= ω(x0, x1) + α0β1g(|z|)ω(z, iz) + α1β0ω(iz, z)

= ω(x0, x1) + g(|z|)(α0β1 − α1β0)ω(z, iz).

The fifth and sixth equalities in the above calculation follow from the fact that x, ix ∈
(Span{z, iz})ω and because ω tames i by hypothesis. On the other hand, we have
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f ∗ω(v, w) = ω(f∗v, f∗w)

= ω(f∗(x0 + α0z + β0iz), f∗(x1 + α1z + β1iz))

= ω(x0 + α0g(|z|)z + β0iz, x1 + α1g(|z|)z + iβ1z)

= ω(x0, x1) + ω((α0g(|z|) + iβ0)z, (α1g(|z|) + iβ1)z)

+ ω(x, (α1g(|z|) + iβ1)z) + ω((α0g(|z|) + iβ0)z, x)

= ω(x0, x1) + ω((α0g(|z|) + iβ0)z, (α1g(|z|) + iβ1)z)

= ω(x0, x1) + ω(α0g(|z|)z, β1iz) + ω(β0iz, α1g(|z|)z)

= ω(x0, x1) + α0β1g(|z|)ω(z, iz) + α1β0g(|z|)ω(iz, z)

= ω(x0, x1) + g(|z|)(α0β1 − α1β0)ω(z, iz)

= f ∗ω(iv, iw)

as desired.

Lemma 2.23. Let (M,ω) be a symplectic manifold, and let J be an almost complex

structure tamed by ω. Suppose there exists an anti-holomorphic involution φ (a map

φ : M → M such that φ2 = Id and φ∗Jφ∗ = −J). Then the 2-form ω = 1
2
(ω − φ∗ω)

has the properties

1. ω is symplectic

2. φ∗ω = −ω

3. ω tames J
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Proof. Since ω tames J , we have that

ω =
1

2
(ω(v, Jv)− ω(φ∗v, φ∗Jv)) =

1

2
(ω(v, Jv) + ω(φ∗v, Jφ∗v) > 0,

and therefore ω tames J . It follows that ω is non-degenerate. Furthermore, dω = 1
2
d(ω−

φ∗ω)) = 0, so ω is closed, and therefore symplectic.

2.4 Invariant Symplectic Neighborhoods and the Moser Stability Theorem in Real

Symplectic Manifolds

In this section we present a version of the Symplectic Neighborhood Theorem adapted

to leave invariant the fixed-point set of a real symplectic manifold (M,ω, φ). We will

use this below to establish real packing results in (CP 2,RP 2). We closely follow the

presentation of the analogous theorems for symplectic manifolds with no real structure

in McDuff and Salamon [25].

We begin with a definition.

Definition 2.24. Let M be a smooth manifold and let G be a compact Lie group which

acts smoothly on M . We say that a vector field X on M is equivariant with respect to G

(or G-equivariant) if ∀x ∈M, g ∈ G, we have X(gx) = g∗X(x).

We now quote the following standard result in equivariant dynamics, which we quote

from Ortega and Ratiu [27] (Proposition 3.3.2(i))

Proposition 2.25. Let M be a smooth manifold, A a subgroup of the group of diffeo-

morphisms of M . Let U be an A-invariant open subset of M , and X an A-equivariant

vector field defined on U . Then, the domain of definition Dom(Ft) ⊂ U of the flow Ft of

X is A-invariant and Ft is itself A-equivariant.
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Lemma 2.26. Let (M,ω, φ) be a real symplectic manifold with Fix(φ) = L, and sup-

pose ωt, t ∈ [0, 1] is a smooth family of symplectic forms with ω0 = ω and φ∗ωt = −ωt.
Suppose, furthermore, that there exists a family of one-forms σt with d

dt
ωt = dσt and

φ∗σt = −σt. Then there exists a family of diffeomorphisms αt : M →M such that

α∗tωt = ω0, (2.4.1)

αt(L) ⊆ L, (2.4.2)

αt ◦ φ = φ ◦ αt. (2.4.3)

Proof. We first note that, since the ωt are non-degenerate, there exists a unique vector

field Xt which satisfies

σt + ι(Xt)ωt = 0. (2.4.4)

. Given such a vector field Xt, let αt be the solutions of

d

dt
αt = Xt ◦ αt, (2.4.5)

α0 = Id. (2.4.6)

We now note that, because ωt is closed, dωt = 0, and d
dt
ωt = dσt, Equation 2.4.4 implies

that

0 = α∗t

(
d

dt
ωt + ι(Xt)dωt + dι(Xt)ωt

)
=

d

dt
α∗tωt.

If Xt is φ-equivariant, then by 2.25 the flow αt will be φ-equivariant as well. To see
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that Xt is φ-equivariant, we first remark that

φ∗(σt + ι(Xt)ωt) = 0,

= φ∗σt + φ∗ι(Xt)ωt

= −σt + φ∗ι(Xt)ωt,

which implies that φ∗ι(Xt)ωt = σt = −ι(Xt)ωt. Therefore, for all v ∈ TqM ,

ωt(φ(q);Xt(φ(q)), φ∗v) = −ωt(q;Xt(q), v).

However, −ωt(q;Xt(q), v) = ωt(φ(q);φ∗Xt(q), φ∗v), so

ωt(φ(q);Xt(φ(q)), φ∗v) = ωt(φ(q);φ∗Xt(q), φ∗v).

Since this is true for all v ∈ TqM , φ∗ is an isomorphism, and ωt is non-degenerate, this

implies that φ∗Xt(q) = Xt(φ(q)), and therefore the vector field Xt is φ-equivariant.

Furthermore,for v ∈ TqL, v 6= 0, we have that σt(q; v) = −σt(q;φ∗v) = 0, so

ω(q;Xt, v) = 0, which implies thatXt ∈ TqL ⊂ TqM . Since this is true for all t ∈ [0, 1],

the diffeomorphisms αt determined by equation 2.4.5 satisfy the constraints in equation

2.4.2 as required.

Lemma 2.27. Let M be a 2n-dimensional smooth manifold, and let φ : M → M be a

diffeomorphism with φ2 = Id. Let L = Fix(φ), and suppose Q ⊂ M is a φ-invariant

submanifold. Suppose that ω0, ω1 ∈ Ω2(M) are closed two forms with φ∗ωi = −ωi and

such that, at every point q ∈ Q, ω0|TqM = ω1|TqM and the ωi are non-degenerate on

TqM . Then there exist neighborhoods N0,N1 of Q and a diffeomorphism α : N0 → N1
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which satisfies

1. α|Q = Id,

2. α∗ω1 = ω0,

3. α(N0 ∩ L) ⊂ L,

4. α ◦ φ = φ ◦ α.

Proof. We may assume that Q∩L 6= ∅, since, if this was not the case, we could just take

theNi small enough so thatNi∩L = ∅ and invoke the ordinary symplectic neighborhood

theorem.

We first show that there exists a 1-form σ ∈ Ω1(N0) such that

σ|TQM = 0 = σ|TL, (2.4.7)

φ∗σ = −σ, (2.4.8)

dσ = ω1 − ω0. (2.4.9)

To prove this, we endow M with a φ-invariant Riemannian metric, and consider the

restriction of the exponential map to the normal bundle TQ⊥. Since Q is φ-invariant,

TQ is φ∗ invariant inside TM , and, therefore, since φ∗ is an isomorphism from TxM

to Tφ(x)M , TQ⊥ is φ∗-invariant as well. Now, for a real number ε > 0, consider the

neighborhood of the zero section of TQ⊥

Vε = {(q, v) ∈ TM |q ∈ Q, v ∈ TqQ⊥, |v| < ε}.

Define the set Uε := (Vε∪φ(Vε)). Then Uε is φ-invariant, and for ε sufficiently small, the
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restriction of the exponential map to Uε is a diffeomorphism from Uε to a neighborhood

N1 of Q. By a standard result in equivariant differential topology (Lemma 3.12, to be

proven in Section 3.1), exp is equivariant as well. Now define ψt : Uε → N1, 0 < t < 1,

by ψt(exp(q, v)) = exp(q, tv). For t > 0, ψt is a diffeomorphism onto its image. At

t = 0, Im(ψ) ⊆ Q, at t = 1, ψ1 = Id, and ψt|Q = Id for all t ∈ [0, 1]. Since exp is

equivariant, we also have ψt ◦ φ(exp(q, v)) = ψt(exp(c(q), φ∗v)) = exp(φ(q), tφ∗v) =

φ ◦ exp(q, tv) = φ ◦ ψt, so φ and ψt commute.

Let τ = ω1 − ω0. Then ψ∗0τ = 0 and ψ∗1τ = τ , and since ψt is an equivariant

diffeomorphism, we may define a φ-equivariant vector field for t > 0 by Xt = ( ∂
∂t
ψt) ◦

ψ−1
t . Note that Xt becomes singular at t = 0. Nonetheless, we have

d

dt
ψ∗t τ = ψ∗tLXtτ = d(ψ∗t ι(Xt)τ).

Let σt = ψ∗t ι(Xt)τ . Therefore, d
dt
ψ∗t τ = dσt, and, by the definition of Xt, σt is equal to

σt(q; v) = τ(ψt(q);
d

dt
ψt(q), dψt(q)v).

Since σt vanishes on Q for all t, we may define σ0 = 0, making σt a smooth family for

t ∈ [0, 1]. In addition, we have that

τ = ψ∗1τ − ψ∗0τ =

ˆ 1

0

d

dt
ψ∗t τ dt = dσ,

where σ =
´ 1

0
σtdt. It also follows from the equivariance of ψt that (q, v) ∈ TL, σt = 0

for all t ∈ [0, 1]. To see this, note that for (q, v) ∈ TL, dψt(q)v ∈ TqL, and since

ψt(q) ∈ L for all t, then d
dt
ψt(q) ∈ Tψt(q)L as well, making σt(q; v) vanish by definition
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of τ , because L is Lagrangian for ω0 and ω1. To see that φ∗σt = −σt, we compute

φ∗σt(v) = φ∗τ(ψt(q);
d

dt
ψt(q), dψt(q)·)(v)

= ω1(ψt ◦ φ(q);
d

dt
ψt(φ(q)), dψt ◦ dφ(q)v)

−ω0(ψt ◦ φ(q);
d

dt
ψt(φ(q)), dψt ◦ dφ(q)v)

= ω1(φ ◦ ψt(q); d
dt
φ ◦ ψt(q), dφ ◦ dψt(q)v)

−ω0(φ ◦ ψt(q); d
dt
φ ◦ ψt(q), dφ ◦ dψt(q)v)

= (ω1(φ ◦ ψt(q); dφ d
dt
ψt(q), dφ ◦ dψt(q)v)

−ω0(φ ◦ ψt(q); dφ d
dt
ψt(q), dφ ◦ dψt(q) · v))

= −τ(ψt(q);
d

dt
ψt(q), dψt(q)v)

= −σt(v).

Therefore, φ∗ω =
´ 1

0
φ∗σt dt = −ω. We have now created the desired 1-form.

Now consider the family of two-forms on N0 given by ωt = ω0 + t(ω1 − ω0) =

ω0 + tdσ, t ∈ [0, 1], and note that φ∗ωt = −ωt and d
dt
ωt = dσ. The result now follows

from Lemma 2.26.

Theorem 2.28. For j = 0, 1 let (Mj, ωj, cj) be real symplectic manifolds with compact

cj-invariant symplectic submanifolds Qj . Suppose that there is an equivariant symplec-

tic isomorphism Φ : νQ0 → νQ2 of the symplectic normal bundles to Q0 and Q1 such

that the restriction of Φ to the zero section is the symplectomorphism ψ : (Q0, ω0) →
(Q1, ω1). Then there exist cj-invariant neighborhoods Nj of the Qj such that ψ extends

to an equivariant symplectomorphism ψ
′

: (N0, ω0, c0)→ (N1, ω1, c1), and dψ
′

induces

Φ on νQ0 .
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Proof. We first show that ψ extends to an equivariant diffeomorphism ψ1 : N (Q0) →
N (Q1) that induces the map Φ on νQ0 . By Lemma 3.12, we may take the maps expi on

TMi to be equivariant with respect to ci. Define the map ψ1 = exp1 ◦Φ ◦ exp−1
0 , and

consider the forms ω0 and ω′1 = (ψ1)∗ω1 onN (Q0). Note that, by construction, they are

non-degenerate and they correspond on TQ0M0. By Lemma 2.27, there is an equivariant

diffeomorphism ψ of N (Q0) such that ψ
∗
ω
′
1 = ω0. The composition ψ′ = ψ1 ◦ ψ is the

desired map.

Proposition 2.29. Let (M,ω, φ) be a real symplectic manifold with real locus L :=

Fix(φ). Let x ∈ L. Then there exists a symplectic equivariant map from a neighborhood

U of 0 in (R2n, ω0, c) to a neighborhood V of x ∈M .

In order to prove this proposition, we will need the following lemma.

Lemma 2.30. Let Φ : R2n → R2n be a linear map such that Fix(Φ) = Rn (seen as the

real part of Cn), Φ2 = Id and Φ∗ω0(v, w) = −ω0(v, w) for all v, w ∈ R2n. Then there

exists a linear symplectic isomorphism Ψ : R2n → R2n such that ΨΦ = c∗Ψ, where c is

the standard anti-symplectic involution on R2n.

Proof. We first consider the case n = 1. (We do this to demonstrate the construc-

tion. The proof does not proceed by induction.) Let v ∈ Fix(Ψ) = Fix(c∗) such that

ω0(v, iv) = 1, where i is the standard complex structure on R2. Then R2 = Span{v, iv}.
Let w be an eigenvector of Ψ with eigenvalue −1. Let β := ω0(v, w). Now note that

{v, iv} and {v, w} are bases for R2. We define the map Ψ : R2 → R2 to be the ma-

trix sending v 7→ v and w 7→ (0, ω0(v, w)), where the coordinates are the standard
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(x, y) = (v, iv) coordinates on R2. Then, for two vectors av + bw, cv + dw, we have

ω0(av + bw, cv + dw) = ω0(av, dw) + ω0(bw, cv)

= (ad− bc)β.

On the other hand,

ω0(Ψ(av + bw),Ψ(cv + dw)) = ω0(av + β · biv, cv + β · div)

= (ad− bc)β.

Since the constants a, b, c, d ∈ R were arbitrary, we see that Ψ is a linear symplectomor-

phism.

Now consider Φ : R2n → R2n, a linear anti-symplectic involution with Fix(Φ) =

Rn. Let ei, i ∈ {1, . . . , 2n} denote the standard basis in R2n, and consider the stan-

dard coordinates (x1, . . . , xn, y1, . . . , yn) in R2n. Take a basis (v1, . . . , vn) of the −1

eigenspace of Φ, and define the map Ψ : R2n → R2n to be the unique linear map send-

ing ei 7→ ei, and vi 7→ (0, . . . , 0, ω0(e1, vi), . . . , ω0(en, vi)), where there are n leading

zeros in the coordinate (i.e. the −1 eigenspace of Φ is sent to the −1 eigensapce of c∗).

We now show that Ψ is a symplectomorphism. First note that for i ∈ {1, . . . , n} we

have ω0(ei, ej) = 0 = Φ∗ω0(ei, ej). Furthermore, we see that

−ω0(vi, vj) = Φ∗ω0(vi, vj) = ω0(Φvi,Φvj) = ω0(vi, vj),
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which implies that ω0(vi, vj) = 0 = Φ∗ω(vi, vj). Now note that

Φ∗ω0(ei, vj) = ω0(ei, vj)ω0(ei, ei) = ω0(ei, vj),

as desired. Since ΨΦ = Φc∗, the proof of the lemma is complete.

Proof of 2.29. We first consider a φ-invariant chart (U, α), α : U ⊂ M → R2n centered

at the point p ∈ L which sends L → Rn ⊂ Cn. We now consider the real structure

Φ := α ◦ φ ◦ α−1 on Im(α). By Lemma 2.30, there is a linear symplectic isomorphism

Ψ : R2n → R2n such that Φ∗Ψ = c∗Ψ at the point 0. Now apply Theorem 2.28 to the

point 0 ∈ R2n.

We now prove a real version of the Moser stability theorem.

Proposition 2.31. Let M be a closed manifold, and suppose that ωt is a family of co-

homologous symplectic forms on M with anti-symplectic involution φ, i.e. such that

φ∗ωt = −ωt. Then there is a family of diffeomorphisms ψt such that φ ◦ ψt = ψt ◦ φ,

ψ0 = id, and ψ∗tω = ωt.

Proof. We must show that there is a smooth family of one forms σt such that

dσt =
d

dt
ωt (2.4.10)

and φ∗σt = −σt.
The proof of Moser stability theorem (Theorem 3.17 in [25]) shows that there exists

a smooth family of one forms τt satisfying (2.4.10). Let σt = 1
2
(τt − φ∗τt). Then

dσt = 1
2
( d
dt
ωt − φ∗ ddtωt) = 1

2
( d
dt
ωt − d

dt
φ∗ωt) = d

dt
ωt. Applying Lemma 2.26, we arrive

at the desired result.
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2.5 Locally holomorphic maps

In this section we show that, given a relative or real symplectic embedding ψ :

(B(1), λ2ω0, BR(1)) → (M,ω,L) and an almost complex structure on M which sat-

isfies some additional conditions, we may find a form ω
′ on M isotopic to ω, and a

relative symplectic embedding ψ′ : (B(1), λ2ω0, BR(1)) → (M,ω
′
, L) with the same

image as ψ but which is holomorphic near the origin. We state the main proposition of

this section here.

Proposition (Proposition 2.15). 1. Let (M,ω) be a symplectic manifold and let L ⊂
M be a Lagrangian submanifold. Let

ψ : (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω,L)

be a relative symplectic embedding, and let J be an almost complex structure on

M which tames ω and is relatively integrable at ψ(0) ∈ L.

Then, for every compact subset K ⊂M\ψ(0) there exists a number δ
′ ∈ (0, 1), a

symplectic form ω
′

on M isotopic to ω, and a relative symplectic embedding

ψ
′
: (B(1 + 2ε), λ2ω0, BR(1 + 2ε))→ (M,ω

′
, L)

with the following properties:

(a) ψ
′|B(δ′) is holomorphic

(b) ω′ tames J and coincides with ω on K

(c) L is a Lagrangian for ω′
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2. In addition to the above, suppose that M is a real symplectic manifold with real

structure φ, Fix(φ) = L, J satisfies φ∗Jφ∗ = −J , J is symmetrically integrable

around ψ(0), and φ ◦ ψ = ψ ◦ c.

Then we can construct the map ψ
′

and the symplectic form ω
′

on M to satisfy

the conclusions above, and so that φ is a real structure for ω
′

and ψ
′

satisfies

φ ◦ ψ′ = ψ
′ ◦ c.

In the proof we will use the following lemma, which is a modification of Proposition

5.5.B in McDuff and Polterovich [23].

Lemma 2.32. Let ω be a symplectic form on B(1) which tames the standard complex

strcutre i and satisfies c∗ω = −ω for the standard real structure c. Then there exists a

family of symplectic forms on B(1), say Ωt, t ∈ [0, 1] with the following properties:

1. Ω0 = ω

2. Ωt coincides with ω near the boundary of the ball;

3. Ωt tames i;

4. Ω1 is i-standard near 0, i.e. it is Kähler, and the associated metric is flat.

5. c∗Ωt = −Ωt, and, in particular, BR(1) is a Lagrangian for Ωt.

Proof. We divide the proof into three steps.

Step 1. We claim that for every κ > 1 and every 1 > ε > 0, there exists a Kähler

form, say τκ onB(1) which is equal to κ2ω0 inB(ε/2κ) and coincides with ε2ω0 near the

boundary, where ω0 is the standard symplectic form on B(1). Indeed, take the monotone
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map h defined by h(z) = (κ/ε)z for z ∈ B(ε/2κ) and h is equal to the identity map

near the boundary. Then the form τκ = h∗(ε2ω) is Kähler by Lemma 2.5.

Step 2. Let ρ be a bump function on R2n which is radial, equal to 1 near the origin,

and vanishes for |z| > 1 − δ, for some δ > 0. Let ω0 be the standard symplectic form

on R2n. Choose ε > 0 so that ω − ε2ω0 tames i, and set ρκ(z) = ρ(2(κ/ε)z). Finally,

denote by β a primitive of ω so that ω = dβ. Now consider the family of forms

ω
′

t(κ) = ω + t(τκ − ε2ω0 − d(ρκβ)).

We claim that ω′t(κ) satisfies the first four properties provided κ is sufficiently large.

We note that ω′t(κ) coincides with ω near the boundary for all t, and near the origin

ω
′
1(κ) is equal to (κ2 − ε2)ω0, and is therefore J-standard there. Moreover, ρk = 0

outside B(2ε/κ), and therefore ω′t(κ) = ω − t(ε2ω0 + τκ) there. By assumption on ε,

ω− tε2ω0 tames i on this region, and since τk is Kähler and t ≤ 1, ωt′(κ) tames i as well.

We now check that ω′t(κ) tames i inside B(ε/2κ). On this region

ω
′

t(κ) = t(κ2 − ε2)ω0 + (1− tρκ)ω − 2t(κ/ε)dρ ∧ β.

Since B(ε/2κ) is compact, the sphere bundle

S = {(x, ξ)|x ∈ B, |ξ| = 1} ⊂ TR2n

is compact, and therefore the function dρκ ∧ β(ξ, iξ) has a maximum, say α, on S. For

any ξ ∈ TxB(1),

dρκ ∧ β(ξ, iξ) = |ξ|2dρκ ∧ β
(
ξ

|ξ| , i
ξ

|ξ|
)
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and therefore the maximum of dρk ∧ β(ξ, iξ) on Sa = {(x, ξ)|x ∈ B, |ξ| = a} ⊂ TR2n

is |ξ|2α. We conclude that ω′t(κ)(ξ, iξ) > ((κ2−ε2−α(κ/ε))|ξ|2t. Since the quantity on

the right is positive for sufficiently large κ, ω′t(κ) tames i if we choose κ large enough.

It follows, additionally, that ω′t(κ) is symplectic for every t.

Step 3. We see from the above that the family of symplectic forms ω′t(κ) satisfies

the first four properties, but does not necessarily respect the real structure. By Lemma

2.23, however, since ω′t(κ) tames i and c∗ic∗ = −i, the forms Ωt = 1
2
(ω
′
t(κ)− c∗ω′t(κ))

are symplectic, and satisfy the last property. We check that it satisfies the first three

properties as well. Ω tames i by Lemma 2.23, and, since ω′t(κ) = t(κ2 − ε2)ω0 near

the origin, Ωt(κ) = ω
′
t(κ) near the origin, and is therefore i-standard on the same region

as ω′t(κ). Furthermore, since ω′1(κ) coincides with ω near the boundary of the ball and

c∗ω = −ω, then Ω1 = ω
′
1(κ) = ω near the boundary of the ball as well. Thus Ωt(κ)

satisfies the conclusion of the lemma for κ sufficiently large. Furthermore, since Ω0 =

ω0 = ω, this completes the proof.

Proof of Proposition 2.15. The goal of the proof is to find a diffeomorphism H : M →
M supported in a neighborhood of ψ(0) and which is C1-close to the identity, and then

define a new form ω
′ by (H−1)∗ω and a new embedding ψ

′
:= H ◦ ψ. The proof

proceeds in three steps. First, we perturb the form ω in a neighborhood of ψ(0) so

that the new form is J-standard close to ψ(0). Second, we find a symplectomorphism

s : B(1 + 2ε) → B(1 + 2ε) with support near ψ(0) such that s ◦ ψ is J-holomorphic

at the point 0 ∈ B(1 + 2ε). Third, we use a symmetric, holomorphic chart around ψ(0)

to find a diffeomorphism H : M → M which gives (H−1)∗ω and H ◦ ψ the desired

properties.

We first assume thatM is a real symplectic manifold with real structure φ, J satisfies
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φ∗Jφ∗ = −J , and ψ ◦ c = φ ◦ ψ.

Step 1. Let (V, γ), γ : V ⊂M → Cn be a symmetric, holomorphic chart centered at

ψ(0) which exists because J is symmetrically integrable around ψ(0). LetW ⊂ γ(V ) be

a small ball centered at 0 inside γ(V ), and let ω′ = (γ−1)∗ω. By Lemma 2.32, (γ−1)∗ω

is isotopic to a form ω which is i-standard near 0 and coincides with (γ−1)∗ω near the

boundary of W . Therefore, by Proposition 2.31, there is a c-equivariant diffeomorphism

f : W → W which fixes 0 and is the identity near the boundary of W such that ω =

f ∗(γ−1)∗ω. We pull back f to γ−1(W ) by defining F := γ−1 ◦ f ◦ γ, and we extend

F to an equivariant diffeomorphism F
′ on M by defining it to be the identity outside

γ−1(W ). We now consider the form Ω = (F
′
)∗ω, which is now J-standard near ψ(0).

We replace the embedding ψ by ψ′ := (F
′
)−1 ◦ ψ, which is a symplectic embedding for

Ω.

Step 2. Consider the almost complex structure j = (ψ
′
)−1
∗ Jψ

′
∗ on B(1 + 2ε). By

the above paragraph, we see that we may choose a chart (U, γ
′
), γ′ : U → Cn of ψ′(0)

which is symplectic, holomorphic, and symmetric. Therefore, A = ((ψ
′
)−1)∗(γ)

′
∗(0) is

a symplectic linear map from R2n → R2n such that Ai = jA and Ac = cA. We note that

the composition ψ′ ◦A is therefore equivariant and that it satisfies ψ′∗◦A∗◦i = J ◦ψ′∗◦A∗
at 0. For the remainder of the proof, we let α := ψ

′ ◦ A.

Step 3.We now wish to find a differentiable map H : M →M such that

1. H ◦ α : (B(1 + 2ε), i)→ (M,J) is holomorphic on a small neighborhood of 0,

2. The support of H is a subset of Im(α) ∩Kc

3. H is C1 close to the identity,

4. Im(H ◦ α) = Im(α),
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5. H ◦ φ = φ ◦H .

Let W ⊂ U ∩ Kc ∩ Im(α) be φ-invariant, and consider the map H ′ := γ
′ ◦ α−1|W :

W ∩Im(α)→M . ThenH ′ ◦φ = φ◦H ′ , H ′ ◦α = γ
′ , and thereforeH ′ is holomorphic,

symplectic, and symmetric on U . We also have

H
′

∗(ψ(0)) = γ
′

∗α
−1
∗ (ψ(0))

= γ
′

∗A
−1
∗ (ψ

′
)−1
∗ (ψ(0))

= γ
′

∗γ
−1
∗ ψ

′

∗(ψ
′
)−1
∗ (ψ(0))

= Id.

We define H := H
′ on a small neighborhood C ⊂ W , and we extend H to an

equivariant diffeomorphism of M with support on Kc = M − K. In addition, since

H ◦ α(0) = α(0) and H∗(0) = Id, by choosing C sufficiently small, we may restrict

the support of H so that H is C1 close to the identity. Now suppose (x, ξ) ∈ TM is

satisfies ωx(ξ, Jξ) > 0. Therefore we have that, for any ε > 0, we may choose an

H such that |ωx(ξ, Jξ) − H∗ωx(ξ, Jξ)| < ε. Since Im(α) is compact, Ωx(ξ, Jξ) has

a minimum strictly greater than 0 for x ∈ Im(α), |ξ| = 1, so we may choose ε <

infx∈Im(α),|ξ|=1 Ωx(ξ, Jξ) and H so that |ωx(ξ, Jξ) − H∗ωx(ξ, Jξ)| < ε, and therefore

H∗ωx(ξ, Jξ) > 0, for all ξ 6= 0. For such an H , then, H∗ω tames J .

Also, with such an H and t ∈ [0, 1], the forms Ωt = tω + (1 − t)H∗ω, tame J and

are therefore nondegenerate. Since they are clearly closed, the Ωt are symplectic, and

therefore H∗ω is isotopic to ω. Define ω′ := H∗ω, and abusing notation, take ψ′ to be

H−1 ◦ ψ′ , making ψ′ symplectic for ω′. This completes the proof of point 2.

For the first part of the theorem, we note that, since J is relatively integrable, there
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is a chart (V, γ) around ψ(0) such that γ(L) ⊂ Rn. If we use this chart in the place of

(V, γ) above and follow the same reasoning as above, the result follows.



CHAPTER 3

TOPOLOGICAL CRITERION FOR THE REAL BLOW-DOWN

We begin by reviewing some results in equivariant differential topology which we will

use in the proof of Theorem 1.24.

3.1 Equivariant Differential Topology

Definition 3.1. Let M be a C∞ manifold, and G be a compact Lie group. If Φ : G ×
M → M is a smooth action of G, then we call Φ a G-action on M , and if M admits

such a G-action, we call M a G-manifold.

Lemma 3.2. Let G be a finite group, and let M be a finite-dimensional G-manifold.

Then there exists a G-invariant Riemannian metric g on M .

Proof. Since M is a finite dimensional manifold, there exists a Riemannian metric g on

M . For h ∈ G, we define h∗g by g(dh·, dh·). Let g̃ := 1
|G|
∑

h∈G h
∗g. Then for each

point x ∈ M and vectors v, w ∈ TxM , we have g̃(v, w) =
∑

h∈G h
∗g(v, w). Therefore,

for any element k ∈ G, we have

k∗g̃ = g̃(dk·, dk·) =
∑
h∈G

g(dh ◦ dk·, dh ◦ dk·) =
∑
h′∈G

g(dh
′·, dh′ ·) = g̃(·, ·).

Remark 3.3. In fact, Lemma 3.2 is true for compact Lie groups as well. The averaging

in the proof in that case is accomplished by integration with respect to the Haar measure.

See Bredon [5] for details.
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Lemma 3.4. Let G be a compact Lie group, and let M be a topological G-space. Then

the fixed point set of G, MG, is a closet set.

Proof. Let ∆ ⊂ M ×M be the diagonal in M ×M , and let Γ(g) : M → M ×M be

the graph of the action of an element g ∈ G, so Γ(g)(m) = (m, g(m)). We note that

Fix(g) = Γ(g)−1(∆). Since ∆ is closed in M ×M and Γ(g) is continuous, we have that

(Γ(g))−1(∆) is closed in M . Fix(G) = ∩g∈GFix(g) by definition, so Fix(G) is closed in

M as well.

We now state the main theorem of this section.

Theorem 3.5. Let M be a G-manifold with G finite. If A is a closed G-invariant sub-

manifold of M , then A has an open G-invariant tubular neighborhood in M.

Our first application of this theorem is the following.

Proposition 3.6. Let G be a compact Lie group, and let M be a G-manifold. Then the

fixed point set of G, MG, is a smooth closed submanifold of G.

Proof. First, if MG = ∅, then it is a closed submanifold of M and we are done. We

now assume that MG is non-empty. By Lemma 3.4, MG is closed, and we now show

that it is a submanifold without boundary. Let x ∈ MG. Note that for x ∈ Fix(G),

{dg}g∈G gives a linear G-action on TxM induced from the action of G on M , and that

TxM
G is therefore a linear subspace of TxM . Let Dx(r) be an open ball of radius r in

TxM , and note that it is therefore also a disk bundle in Tx{x}⊥. By Theorem 3.5, for

small enough r we may define a G-equivariant tubular neighborhood f : Dx(r) → M ,

such that f(x, 0) = x. Therefore, f−1 : f(D(x)) → TxM defines a chart of M . The
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equivariance of f implies that

f−1(f(D(x)) ∩MG) = f−1(f(D(x))) ∩ TxMG,

and therefore

f−1|f(D(x))∩MGf(D(x)) ∩MG → TxM
G

is a chart of MG, and therefore MG is a submanifold of M . Furthermore, since TxMG

is a linear subspace of TxM , C := D(x) ∩ TxMG is open in TxMG, and therefore f(C)

contains no point on the boundary of MG. In particular, x /∈ ∂MG. Since x ∈ MG is

arbitrary, we see that MG does not have a boundary.

For the proof of Theorem 3.5, we follow the presentations given in Bredon [5] and

Kawakubo [16]. We begin with several lemmas. First, we recall some results from

general topology. For the following two lemmas, we follow Munkres [26].

Lemma 3.7. If X is a paracompact regular space, then X is normal.

Proof. Let A be a closed subset of X , and let B be a closed set of X disjoint from A.

Then because X is regular, for each b ∈ B we may choose an open set Ub whose closure

Ūb is disjoint from A. Cover X by the open sets Ub and the open set X − B. Call this

covering B. Since X is paracompact, we may take a locally finite open refinement C
of B covering X . Now let D be the subcollection of C consisting of every element that

intersects B. Then D covers B. Furthermore, if D ∈ D, then D ⊂ Ub for some b ∈ B,

and since Ūb is disjoint from A, then D̄ is disjoint from A as well. Let

V =
⋃
D∈D

D.
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Then V is an open set in X containing B. We claim that

V̄ =
⋃
D∈D

D̄.

To see this, take x ∈ V̄ , and, since D is locally finite, there is a neighborhood U of x

that intersects only finitely many sets of D, say D1, . . . , Dk. If x ∈ W := U − ∪ki=1D̄i,

then W is an open neighborhood of X which does not intersect V̄ , which contradicts the

assumption that x ∈ V̄ . Therefore, x ∈ ⋃D∈D D̄. Since V̄ contains B and is disjoint

from A, X is normal.

Lemma 3.8. Suppose X is a regular paracompact space, and let {Ui}i∈I be an open

covering of X , with I as its index set, then there exists a locally finite open covering

{Vi}i∈I such that V̄i ⊂ Ui.

Proof. Because X is regular, so around each point x in X we may choose an open

neighborhood V ′x 3 x such that V̄ ′x ⊂ Ui. X is paracompact, so there exists a locally

finite refinement of {V ′x}x∈X , which we denote {V ′j }j∈J , where J is an index set. We

then define a function f : J → I by choosing, for each j ∈ J, an element f(j) ∈ I such

that V̄ ′j ⊂ Uf(j). We define the set

Vi :=
⋃

{j|f(j)=i}

V
′

j .

Then
⋃
i∈I Vi =

⋃
j∈J V

′
j = X, so {Vi}i∈I is a covering of X , and V̄i =

⋃
{j|f(j)=i} V̄j ⊂

Ui as desired.

We now give two more general topological results. The proofs follow those found in

Bredon [5].
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Lemma 3.9. Let X and Y be metric spaces and let f : X → Y be onto, and a local

homeomorphism, i.e. such that each x ∈ X has an open neighborhood mapped homeo-

morphically onto an open set in Y . Suppose that f is one-to-one on a subspace A ⊂ X ,

so that f−1(f(A)) = A. Then A has an open neighborhood U on which f is homeomor-

phic to f(U). Furthermore, if f is a local diffeomorphism, then U is diffeomorphic to

f(U).

Proof. Let B := f(A) ⊂ Y . Since f is onto and a local homeomorphism, for each

y ∈ B there is an x ∈ X with f(x) = y, and f maps some neighborhood Ux of x

homeomorphically to a neighborhood Uy of y, so a continuous inverse can be defined on

Uy. Denote this inverse by gy. Let {Uy}y∈Y be a covering of Y by such neighborhoods.

Since Y is paracompact, we can find a locally finite refinement {Uyα} and maps gyα :

Uyα → X such that fgα is the identity on Uyα . By Lemma 3.8, we know that there exists

a locally finite open covering {Vyα} of Y such that V̄yα ⊂ Uyα . Let W denote the set of

points y ∈ Y such that if y ∈ V̄yα∩V̄yβ then gyα(y) = gyβ(y). We will show thatB ⊂ W .

LetB = f(A), choose y ∈ B, and suppose y ∈ V̄yα∩V̄yβ . Then y = fgyα(y) = fgyβ(y),

and since f−1(B) = A, we have that gyα(y), gyβ(y) ∈ A. Furthermore, since f |A is one-

to-one, fgyα(y) = fgyβ(y) =⇒ gyα(y) = gyβ(y). ThereforeB ⊂ W , and, in particular,

W is non-empty.

We now show that W is open. Let y ∈ W and suppose that g(y) = x, so that

f(x) = y. Let N be an open neighborhood of x on which f is one-to-one. Since {Vyα}
is locally finite, we may suppose that y ∈ V̄yα1

∩ · · · ∩ V̄yαk but that y /∈ V̄β for β /∈
{α1, . . . , αk} and that there is an open neighborhood M of y not touching any of the

V̄β . In addition, since gαi(y) = x, we may take M to be so small that gαi(M) ⊂ N .

Now, if z ∈ M and gαi(z) 6= gαj(z), then, since f is one-to-one on N , we have that
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z = fgαi(z) 6= fgαj(z) = z, a contradiction. Therefore, M ⊂ W and W is open, as

desired.

Since g = gα on each open set Vα and gα is an open map, we have that g is an open

map, and therefore g(W ) is an open set containing A. Also, f is one-to-one on g(W )

since fg = 1W . Therefore, since f is also open it is a homeomorphism from g(W )→ W

with inverse g, and the lemma is proved for f a local homeomorphism.

To see that if f is a local diffeomorphism, then f(U) is diffeomorphic to U , note that

the maps gα may be taken to be diffeomorphisms on the Uα, making g a diffeomorphism

as well.

Lemma 3.10 (Dowker, see Dugundji [11], p. 170). Let Y be a paracompact space.

Assume that g and H are lower- and upper-semicontinuous real-valued functions, re-

spectively, such that H(y) < g(y) for all y ∈ Y . Then there exists a continuous function

φ : Y → R such that H(y) < φ(y) < g(y) for each y ∈ Y .

Proof. For each rational r, let Ur = {y|H(y) < r} ∪ {y|g(y) > r}. Since H and

g are upper and lower-semicontinuous, respectively, Ur is open. For each y ∈ Y , since

H(y) < g(y) there exists a rational number r′ such thatH(y) < r
′
< g(y), and therefore

the Ur form an open covering of Y . Since Y is paracompact we may take a partition of

unity subordinate to Ur, which we denote κr. We claim that the desired continuous

function is

φ(y) =
∑
r

r · κr(y).

Since κr is a partition of unity, this sum is finite for every y, and therefore φ is continuous.

Let y ∈ Y be fixed, and let {κr1 , . . . , κrn} be the functions of the partition whose support

contains y. Then y ∈ ∩ni=1Uri , so H(y) < ri < g(y) for all i ∈ 1, ..., n. Therefore
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H(y) = H(y)
∑n

i=1 κri(y) <
∑
ri · κri(y) = φ(y) < g(y)

∑n
i=1 κri(y) = g(y), as

desired.

Corollary 3.11. If Y is a Ck-manifold, then φ in 3.10 may be taken to be Ck as well.

The following two lemmas are standard results that we recall for completeness. Our

presentation follows that in Bredon [5] and Kawakubo [16].

Lemma 3.12. Let G be a compact Lie group, let M be a finite dimensional G-manifold

and let g be a G-invariant Riemannian metric. Then the associated exp map is G-

equivariant.

Proof. Since g is G-invariant, the action on M of an element h ∈ G sends geodesics to

geodesics and preserves their length. Therefore for h ◦ exp(v) = h ◦ l0(1), where l0(t)

is a geodesic with l′0(0) = v. On the other hand, exp(h∗v) = l1(1), where l′1(0) is the

unique geodesic with l′1 = h∗v. But (h ◦ l0)
′
(0) = h∗v, and therefore h ◦ l0 = l1, so exp

is equivariant.

Lemma 3.13. The differential of the exp map exp∗ : Tx(TM) = Th ⊕ Tv = TxM ⊕
TxM → TxM is given by exp∗(u, v) = u+ v, where Tv is the tangent space of the fiber

TxM at 0 and Th is the tangent space of the zero section of M at x.

Proof. Suppose v0 ∈ Tv. Then, identifying Tv and T0(TxM) ∼= TxM , we may see v0

as an element of TxM as well. Suppose l : (−ε, ε) → M is a geodesic tangent to v0 at

x, and define a sooth curve v(t) in TxM by v(t) = tv0. Then exp∗(v0) = d
dt
exp(tv0) =

d
dt
l(t) = v0, and therefore exp∗ |Tv = Id.

Furthermore, since Th = TxM and is parallel to M , and since exp is the identity on

M , we have that exp∗ is the identity on Th. The lemma follows immediately.
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We now complete the proof of the existence of a G-invariant tubular neighborhood.

Proof of Theorem 3.5. By Lemma 3.2, there exists a Riemannian metric g on M such

that G acts on M isometrically. Thus the normal bundle N(A) is the perpendicular

complement of TA in TM |A with respect to the metric g. The exponential map is

defined on an open invariant neighborhood U of A in N(A), and exp : U → M is

equivariant by Lemma 3.12. For a ∈ A, Lemma 3.13 implies that the differential of exp

restricted to N(A),

exp∗ : Ta (N(A)) = NaA⊕ TaA = TaM → TaM

is onto. Thus, by the inverse function theorem, around every point a of A there is a

neighborhood Ua ⊂ N(A) such that exp has an inverse on Ua. Let V = ∪a∈AUa. That

is, exp : V → M is an immersion and a local diffeomorphism such that exp−1(A) = A.

Furthermore, since exp is an immersion on V , a local diffeomorphism, and the identity

on A, it follows from Lemma 3.9 that there is a smaller invariant neighborhood W ⊂ U

of A in N(A) on which exp is an embedding.

We now construct an equivariant map from all of N(A) to W . Let ι : Bn−k(r; a) ↪→
Na(A) be the inclusion, where n = dimM and k = dimA. Define the function f :

A→ R by

f(a) := sup{r|ι(B(r; a)) ⊂ W}.

Since W is G-invariant, f(ga) = f(a) for all a ∈ A and g ∈ G, and we claim that

f is a lower semicontinuous, positive function. To see that it is lower-semicontinuous,

we need to show that for each b ∈ R, the set Ub := {x ∈ A|f(x) > b} is open.

Fix b ∈ R. If Ub = ∅, then it is open, so we now assume that Ub 6= ∅. Suppose
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that a ∈ Ub and consider a chart of N(A) centered at a ∈ A, say Ua. Since N(A)

is a vector bundle, Ua ∼= Va × Rn−k, where n and k are the dimensions of M and

A, respectively. Let Db ⊂ N(A) denote the closed disc bundle of radius b in N(A).

Then the complement Dc
b is open, and, since Ub is non-empty, we see that the open set

W ∩ Ua ∩ Dc
b is also nonempty. Since the projection π1 : Va × Rn−k → Va is an open

map, π1(W ∩Ua∩Dc
b) is open, and it is a subset of Ub by the definition of Dc

b. Therefore

f is lower semicontinuous, as claimed. By Lemma 3.10, there is a smooth function h on

A with 0 < h(a) < f(a). We then define a smooth function k : A→ R by

k(a) =
1

|G|
∑
g∈G

h(ga)

Then 0 < k(a) < 1
|G|
∑

g∈G f(ga) = |G| · 1
|G|f(a) = f(a). Now define ψ : N(A) →

N(A) by

ψ(v) =
k(π(v))

(1+ < v, v >)1/2
v,

where π is the projection N(A) → A. Then ψ(gv) = gψ(v), and ψ is an equivariant

diffeomorphism onto its image, which we claim to be the open set {v ∈ N(A)| ‖v‖ <
k(π(v))}. To see this, we compute the norm

‖ψ(v)‖ = k(π(v))
‖v‖

(1 + ‖v‖2)1/2
< k(π(v))

and note that for any v ∈ N(A) such that ‖v‖ < k(π(v)),

ψ

(
1

(k(π(v))2 − ‖v‖2)
1
2

v

)
=

k(π(v)) · (k(π(v))2 − ‖v‖2)
1
2

k(π(v))

v

(k(π(v))2 − ‖v‖2)
1
2

= v
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Thus Im ψ ⊂ W and φ = exp ◦ ψ : N(A) → M is a G-equivariant map, making

Im(φ) an open invariant tubular neighborhood of A.

3.2 Proof of the Blow-down Criterion

In this section, we prove Theorem 1.24, which we restate for convenience.

Theorem (Theorem 1.24). Let (M,ω, φ) be a real symplectic manifold withL := Fix(φ),

and let J be an almost complex structure on M which tames ω and which satisfies

φ∗Jφ∗ = −J . Suppose C is an exceptional J-holomorphic curve in a homology class

E ∈ H2(M ; Z) such that E ·E = −1 and φ∗E = −E. Then there exists a real symplec-

tic manifold (M̌, ω̌, φ̌) and an onto map Π : M → M̌ that satisfies

1. Π is a diffeomorphism on M\C,

2. Π(C) = p ∈ M̌ , where p is a point,

3. Π ◦ φ = φ̌ ◦ Π, and

4. ω̌ satisfies

[ω]− [Π∗ω̌] ∈ E ,

where E is the linear vector space generated by e, the Poincaré dual of the excep-

tional class E = [Π−1(p)].

We begin by recalling a version of the adjunction inequality, as given in McDuff [22].

Theorem 3.14. Let (M,J) be an almost complex 4-manifold and A ∈ H2(M ; Z) be

a homology class that is represented by a somewhere injective (closed) J-holomorphic
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curve u : Σ→M . Then

g ≤ 1 +
1

2
(A · A− c1(A)),

with equality iff u is an embedding, where g is the genus of Σ.

We recall Definition 1.23 from Chapter 1.

Definition. We call E ∈ H2(M4; Z) an exceptional class if E ·E = −1. If u : Σ ↪→M4

is an embedding of the surface Σ, and u∗[Σ] = E, then we say that u(Σ) is an exceptional

curve.

We next recall a standard result in algebraic topology

Lemma 3.15. Let M be a 4-manifold, and let Σ ↪→M be a 2-dimensional submanifold

ofM in classH ∈ H2(M ; Z). ThenH ·H = c1(N(Σ)), whereN(Σ) denotes the normal

bundle of Σ in M .

Proof. Note that c1 is the top-dimensional Chern class for Σ, and therefore c1(N(Σ)) =

e(N(Σ)), where e is the Euler class. However, the Euler class of the bundle equals the

self-intersection number of a transverse section of the bundle with the zero-section, and

this number equals the intersection number H ·H .

Remark 3.16. We first recall from McDuff and Salamon [24], Proposition 2.5.1 that a

simple J-holomorphic curve is somewhere injective. Now consider an exceptional class

E ∈ H2(M ; Z) in a symplectic four-manifold M4 which is represented by a simple J-

holomorphic sphere u : S2 →M . Then by Lemma 3.15, c1(E) = c1(TS2)⊕c1(NS2) =

2−1 = 1, where we use NS2 to denote the normal bundle of u in M . We therefore have

0 = g ≤ 1− 1 = 0, and so u is an embedding.
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Remark 3.17. Let (M,ω, φ) be a real symplectic manifold with an almost complex struc-

ture J which tames ω and satisfies φ∗Jφ∗ = −J . Let u : Σ → M be a closed J-

holomorphic curve, and suppose it is an embedding whose image is invariant under u.

Then Σ inherits the symplectic form u∗ω and the anti-symplectic involution u−1 ◦ φ ◦ u.

Proposition 3.18. Let (S2, ω) be endowed with an anti-symplectic involution φ. If

Fix(φ) 6= ∅, then the fixed point set of φ is a circle.

Proof. Let G = Z2 with smooth actions on M given by the functions {Id, φ}. From

Proposition 3.6 we see that Fix(G) = Fix(φ) is a closed submanifold of S2. Denote

this submanifold by K. Now suppose p ∈ K, and let v, w ∈ TpK. Then ω(v, w) =

φ∗ω(v, w) = −ω(v, w) = 0, and so the fixed point set is an isotropic submanifold of

S2. We claim that L is one-dimensional. To see this, we first note that the dimension

must be ≤ 1 since Fix(φ) is isotropic. Now suppose that L is zero dimensional. Since

φ2 = Id, if K is zero-dimensional, the eigenvalues of dφ(x) : TxM → TxM for x ∈ L
are all −1. Hence dφ(x) = −Id, and hence φ∗ωx = ωx, a contradiction. Therefore

K cannot be zero-dimensional, and must be one dimensional. Fix(φ) is therefore equal

to a closed Lagrangian submanifold of S2 and is therefore diffeomorphic to a union

of non-intersecting circles. This union is compact, and therefore finite, since Fix(φ) is

topologically closed and S2 is compact.

Suppose there is more than one circle in Fix(φ), say α1, ..., αk. Now choose two

circles, which we denote γ1 and γ2. S2 therefore decomposes as S2 = D1 ∪ C ∪ D2,

where the Di are the non-intersecting disks bounded by the γi, and C is the closed

cylinder between the discs. Now consider φ(D1). Since φ is a diffeomorphism, it must

send D1 onto a disc bounded by γ1, i.e. either D1 or C ∪D2.

Now suppose φ(D1) = C ∪ D2. Then there is a point x ∈ D1 such that φ(x) ∈



83

γ2 ⇒ φ2(x) ∈ γ2 * D1, which contradicts the assumption that φ2 = Id. Therefore,

φ(D1) = D1.

Since there are only a finite number of total circles in Fix(φ), we may choose γ1 so

that D1 ∩ Fix(φ) = γ1, i.e. so there are no fixed points in the interior of D1. Note that

for any x ∈ γ1, one of the eigenvalues of dφ(x) is −1. Therefore, there are points in a

collar neighborhood of γ1 in D1 which are sent by φ to a collar neighborhood of γ1 in

D2 ∪ C. However, this contradicts that φ(D1) = D1, and concludes the proof.

Corollary 3.19. Let (M,ω, φ) be a real symplectic manifold, and let L := Fix(φ). Let J

be an almost complex structure on M such that φ∗Jφ∗ = −J , and let E ∈ H2(M ; Z) be

an exceptional class with φ∗E = −E. Suppose u : Σ → M is a simple J-holomorphic

curve that represents E. Then u(Σ) ∩ L is diffeomorphic to a circle.

Proof. By Theorem 3.14 and Remark 3.16, u is an embedding. Note, too, that φ ◦ u ◦ c
is another simple J-holomorphic embedding that represents E, and its image is equal to

Im(φ ◦ u). Suppose now that Im(u) 6= Im(φ ◦ u). Let c denote complex conjugation on

Σ = S2. Because both maps u and φ ◦ u ◦ c are J-holomorphic, their intersections are

at most countable, and since [Im(φ ◦ u ◦ c)] = [Im(u)] = E ∈ H2(M ; Z), positivity of

intersections in dimension 4 (e.g. Theorem E.1.4 in McDuff and Salamon [24]) implies

that 0 ≤ |{Im u} ∩ {Im φ ◦ u ◦ c}| ≤ E · E = −1, which is a contradiction. Therefore,

Im(u) = Im(φ ◦ u). By Remark 3.17, u(Σ) inherits a real structure from M , and it

follows from Proposition 3.18 that the fixed point set of φ restricted to u(Σ) is a circle.

Since Fix(φ) = L ⊂M , it follows that u(Σ) ∩ L is diffeomorphic to a circle.

Lemma 3.20. There is a natural isomorphism between the oriented Lagrangian sub-

spaces of R2n and the quotient space U(n)/SO(n).
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Proof. We recall from McDuff and Salamon [25] that the unitary matrix U = X + iY

given by a unitary Lagrangian frame is determined by the Lagrangian subspace Λ up

to right multiplication by a matrix in O(n). Similarly, given an orientation o(Λ) of

Λ, we see that U is determined by (Λ, o(Λ)) up to right multiplication by a matrix in

SO(n).

Lemma 3.21. Let u : (D, ∂D) → (M,L) be a J-holomorphic disk with boundary on

a Lagrangian L. Suppose the Maslov index of u, µ(u), satisfies µ(u) mod 2 = 1. Then

TL|∂D is a non-trivial bundle.

Proof. Consider the commutative diagram

π1(SO(n))
i

//

0
��

π1(O(n))

0
��

π1(U(n)) ∼=
//

��

π1(U(n)) ∼= Z

��
π1(U(n)/SO(n)) α

//

��

π1(U(n)/O(n)) ∼= Z
β

��
0 //

��

Z2

��
0 // 0

Note that the vertical exact sequences in the diagram are taken from the respective homo-

topy long exact sequences. Note that it follows from the diagram that the map β is onto,

and therefore that the map α is multiplication by 2. Identifying the Maslov class of a loop

γ of Lagrangians with [γ] ∈ π1(U(n)/O(n)), we see that the Maslov class of any loop

γ of oriented Lagrangians is even. Now consider a trivialization Φ : u∗TM → D × Cn.

If TL|∂D is trivial, then the loop of Lagrangians Λ ◦ Φ|∂D → U(n)/O(n) is a loop of
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oriented Lagrangians, and therefore µ(u) is even. This concludes the proof.

Lemma 3.22. Let (M,ω, φ) be a four-dimensional real symplectic manifold with real

structure φ. Denote the fixed point set of φ by L, and let E ∈ H2(M ; Z) be a homology

class such that E · E = −1. Suppose u : (CP 1, σ, i) → (M,ω, J) is a J-holomorphic

embedding such that u∗[CP 1] = E, and such that the intersection Im(u) ∩ L ∼= S1.

Then the intersection of TL with the normal bundle of Im(u), i.e. TL ∩ ν(Im(u)), is

nontrivial.

Proof. We note that c1(u∗TM) = 2 − 1 = 1, and that the Maslov number of u =

2c1(E) = 2. Let u1, u2 : D2 → M denote the two disks which make up u. We claim

that the Maslov index of each disc must be 1. First, recall that µ(u1) + µ(u2) = µ(u)

by the properties of the Maslov index. Second, the involution φ : M → M induces

a diffeomorphism from Im(u1) to Im(u2), and φ∗ : TM → TM is a vector bundle

isomorphism from u∗1TM to u∗2TM . Again, the properties of the Maslov index (see

Theorem C.3.5 in McDuff and Salamon [24]) imply that µ(u1) = µ(u2), and this implies

that possibilities other than (1, 1) for the Maslov indices of the two discs may not occur.

It follows that that the bundle TS1L = TS1 ⊕ νL(S1) is non-trivial by Lemma 3.21,

where νTL(S1) denotes the part of the normal bundle of S1 which lies in TL. Since TS1

is trivial, then νL(S1) cannot be, and the lemma is proved.

Lemma 3.23. Let M be a four-dimensional real symplectic manifold with real structure

φ. Denote the fixed point set of φ by L, and let E ∈ H2(M ; Z) be a homology class such

that E ·E = −1 and φ∗E = −E. Suppose, furthermore, that there exists an embedding

of the surface Σ, i : Σ→M , with i∗[Σ] = E. Then E · L = 1 mod 2.

Proof. First, we perturb i so that i(Σ) ∩ L and i(Σ) ∩ φ ◦ i(Σ) are generic. Let p ∈
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i(Σ) ∩ φ ◦ i(Σ), p /∈ L. Then φ(p) ∈ i(Σ) ∩ φ ◦ i(Σ), φ(p) /∈ L, and, in particular, p

and φ(p) do not affect the value of either E ·E mod 2 or E ·L mod 2. Suppose now that

E ·L = 0 mod 2. Then there exist an even number of points in the intersection i(Σ)∩L,
and, combined with the above, this implies that there are an even number of points in

i(Σ)∩φ ◦ i(Σ). However, i∗[Σ] ·φ∗i∗[Σ] = 1 mod 2, which is a contradiction. Therefore

E · L = 1 mod 2.

We recall a version of the Riemann Mapping Theorem from [29] (see also [7]).

Theorem 3.24. Let D denote the unit disk in C, let Ω be a simply connected domain in

C, (Ω 6= C), and assume that the boundary ∂Ω is locally connected. Then there is a

holomorphic isomorphism f : D → Ω that extends to a continuous map from D̄ → Ω̄.

Moreover, if ∂Ω is a Jordan curve, then f extends to a homeomorphism from D̄ to Ω̄.

We now prove Theorem 1.24.

Proof of Theorem 1.24. Let u : Σ→M be the J-holomorphic curve whose image is C.

By hypothesis, [C] · [C] = −1 so Lemma 3.23 implies that C ∩ L 6= ∅. By Corollary

3.19, C intersects L in a circle, whose preimage we denote S. Let D1 and D2 be the

two open discs in C with boundary S. Note that, for each x ∈ D1, φ(x) ∈ D2. Now let

H1 and H2 denote the two hemispheres of CP 1 with boundary RP 1. By Theorem 3.24

there exists a holomorphic map α : D1 → H1 which extends to a homeomorphism from

D̄1 to H̄1. Now define a map α̃ : C → CP 1 by

α̃(x) =


α(x) if x ∈ D̄1

c ◦ α(φ(x)) if x ∈ D2,

(3.2.1)
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where c denotes complex conjugation on CP 1. We claim that α̃ is holomorphic on all of

CP 1. First, choose a holomorhpic chart γ1 : W ⊂ C → C centered at a point x ∈ RP 1

which sends U ∩ RP 1 to R. Let γ2 : V ⊂ CP 1 → C be a holomorphic chart centered

at α̃(x) ∈ V , and note that α̃ is holomorphic iff γ2 ◦ α̃ ◦ γ−1
1 is holomorphic for any pair

of charts. To prove that this is the case, we appeal to Morera’s theroem, which we recall

below, as stated in Conway [9], following the proof of the Schwartz Reflection Principle.

Theorem 3.25 (Morera’s Theorem). Let U be a region in C and let f : U → C be a

continuous function such that
´
T
f = 0 for every triangular path T in U . Then f is

analytic in U .

To apply this theorem, we need to show that for each triangular path T ⊂ U ,
´
T
f =

0. Denote γ−1
1 (U) by U , let U+ = U ∩ {z|Im(z) > 0}, U0 = {z|Im(z) = 0},

U− = {z|Im(z) < 0}, and f := γ2 ◦ α̃ ◦ γ−1 : U → C. Choose a triangular path T

in U . We see that
´
T
f = 0 iff

´
P
f = 0 for any triangular or quadrilateral path P in

U+ ∪U0 and U− ∪U0. Furthermore, if P ⊂ U±, then
´
P
f = 0, since f is holomorphic

on U± by definition. We therefore let T be the triangle with vertices [a, b, c], where the

edge [b, c] is contained in the real axis. The same argument applies for a quadrilateral

path. Let ∆ denote the union of the path T and its interior. f is continuous on U+ ∪ U0

by construction, and therefore it is uniformly continuous on ∆. Therefore, for any ε > 0

there exists a δ > 0 such that |z− z′| < δ =⇒ |f(z)− f(z
′
)| < ε. Now choose a small

ε > 0, and a δ > 0 such that 0 < δ < ε and |z − z′| < δ =⇒ |f(z)− f(z
′
)| < ε. Pick

points α and β on the line segments [a, b] and [a, c], respectively, so that |c− α| < δ and

|b − β| < δ. Let T ′ and Q be the paths T ′ = [α, β, a, α] and Q = [α, c, b, β, α] as in

Figure 3.1 below. Then
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U ⊂ C a

c b

α β

R

T
T

′

Q

Figure 3.1

ˆ
T

f =

ˆ
T ′
f +

ˆ
Q

f.

However, since T ′ and its interior are contained in U+, f is holomorphic there, and

therefore
´
T ′
f = 0.

We now approximate
´
Q
f . First, note that, for t ∈ [0, 1],

|[tβ + (1− t)α]− [tb+ (1− t)c]| < δ

and therefore

|f(tβ + (1− t)α)− f(tb+ (1− t)c)| < ε.

Now let M = max {|f(z)| | z ∈ ∆}, and let l = the length of the perimeter of T . Then

∣∣∣∣ˆ
[α,c]

f

∣∣∣∣ ≤M |c− α| ≤Mδ∣∣∣∣ˆ
[β,b]

f

∣∣∣∣ ≤M |b− β| ≤Mδ,
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and

∣∣∣∣ˆ
[b,c]

f +

ˆ
[β,α]

f

∣∣∣∣ =

∣∣∣∣(b− c)ˆ 1

0

f(tb+ (1− t)c)dt− (β − α)

ˆ 1

0

f(tβ + (1− t)α)dt

∣∣∣∣
≤ |b− c|

∣∣∣∣ˆ 1

0

f(tb+ (1− t)c)− f(tβ + (1− t)α)

∣∣∣∣
+|(b− c)− (β − α)|

∣∣∣∣ˆ 1

0

f(tβ + (1− t)α)dt

∣∣∣∣
≤ ε|b− c|+M |(b− β) + (c− α)|

≤ εl + 2Mδ.

Therefore, ∣∣∣∣ˆ
T

f

∣∣∣∣ ≤ εl + 4Mδ.

Since ε is arbitrary, and we may choose δ < ε, it follows that
´
T
f = 0, and therefore f

is holomorphic. From this we conclude that α̃ is holomorphic as well.

We have now shown the existence of a holomorphic map α̃ that verifies φ◦ α̃◦ c = α̃

and Im(α̃) = Im(u). Now let S = C ∩ L.

We now remark that the cohomology class [α̃∗ω] ∈ H2(L(0)) is determined by

the integral
´

CP 1 α̃
∗ω, where here we understand CP 1 = L(0). Therefore, for λ2 :=

´
CP 1 α̃

∗ω, the form ρ(1, λ) is in the same cohomology class. By Proposition 2.31, there

exists a diffeomorphism β0 : L(0)→ L(0) such that β∗0 α̃
∗ω = ρ(1, λ). Let γ0 := α̃ ◦β0.

Now, by Lemma 3.22 the normal bundle of S in TL is non-trivial. Consider the

bundles γ∗0(ν(C)) and ν(L(0)), where ν(·) denotes the normal bundle of the submanifold

in question. Since the Chern class of C is 2, the Maslov index of the two disks D1 and

D2 in C with boundary on L is 1, and the restriction of ν(C) to L is non-trivial, then

by Therem C.3.7 in McDuff and Salamon [24], there is a (complex) isomorphism Φ
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between the bundles γ∗0(ν(D1), TL ∩ ν(D1)) and ν(L(0)+,R(0)), where L(0)± denote

the upper and lower hemispheres of L(0), respectively.

Now note that φ̃∗Φc̃∗ gives an isomorphism of α̃∗(ν(D2), TL∩ν(D2)) and ν(L(0)−,R(0)),

and therefore the map

Ψ =


Φ (x, v) ∈ ν(L(0)+)

φ̃∗Φc̃∗ (x, v) ∈ ν(L(0)−)

is a complex equivariant isomorphism from ν(L(0))→ α∗ν(C).

Furthermore, since Ψ is a complex bundle isomorphism, it is symplectic as well.

It therefore follows from Proposition 2.28, that for some δ > 0, we can find a Z2-

equivariant map βλ : L(δ)→M such that β∗λω = ρ(1, λ) which restricts to the symplec-

tomorphism γ0 : L(0) → C ⊂ M . We may now construct the blow-down by theorem

1.22 using the equivariant symplectic map β : L(δ)→M .



CHAPTER 4

APPLICATIONS TO REAL PACKING

We now apply our constructions above to the problem of packing k ≤ 8 balls into RP 2

in CP 2, adapting the techniques in McDuff and Polterovich [23] to our setting. That is,

we wish to know the quantity

pL,k = supψ,r
Vol ψ

(∐k
i=1Bi(r)

)
Vol M

,

where ψ :
∐k

i=1Bi(r) ↪→ CP 2 is a symplectic embedding such that the preimage

ψ−1(L) =
∐k

i=1Bi,R(r). We first treat the case (CP 2,RP 2, φ) with the canonical real

structure φ, where RP n = Fix(φ). In particular, we will prove Theorem 1.26, restated

below.

Theorem (Theorem 1.26). For the pair (CP 2,RP 2) with the standard symplectic form

and real structure, the relative packing numbers pRP 2,k for k ≤ 8 balls are equal to the

packing numbers for CP 2.

The packing numbers are given in Table 4.1 below.

k 1 2 3 4 5 6 7 8

pRP 2,k 1 1
2

3
4

1 4
5

24
25

63
64

288
289

Table 4.1: pRP 2,k(CP 2) = pk(CP 2)

The following proposition is an adaptation of Proposition 2.1.C in McDuff and Polterovich

[23] to real symplectic manifolds.
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Proposition 4.1. Let (M,ω, φ) be a real symplectic manifold, and let J be an ω-tame

almost complex structure which is symmetrically integrable around a set of k points

I = {p1, . . . , pk} ⊂ L, where L = Fix(φ). Suppose that for some set of real numbers

κq > 0, q ∈ {1, . . . , k}, there exists a real symplectic and holomorphic embedding

ψ =
k∐
q=1

ψq :
∐

(B(1 + 2εq), BR(1 + 2ε), κ2
qω0, i, c)→ (M,L, ω, J, φ)

such that ψq(0) = pq. Let Π : M̃ → M denote the real symplectic blow-up of (M,L)

relative to ψ, and let J̃ , ω̃, and φ̃ be the complex, symplectic, and real structures, re-

spectively, on M̃ constructed from J , ω, and φ by blowing-up M . Let Cq, q ∈ {1, ..., k}
denote the exceptional curves Π−1(ψq(0)) added in the blow-up, and let eq ∈ H2(M ; Z)

denote the Poincaré duals of the homology classes [Cq] ∈ H2(M ; Z).

Suppose, furthermore, that there exists a smooth family of symplectic forms ω̃t on M̃

such that

1. ω̃0 = ω̃ is obtained by a real blow up relative to the embedding ψ.

2. ω̃0 tames J̃ ,

3. For all q ∈ {1, ..., k}, ω̃t|Cq , the restriction of ω̃ to the exceptional divisors {Cq}kq=1

added in the blow-up, tames J̃ |Cq ,

4. φ∗ω̃t = −ω̃t, so that L̃ = Π−1(L) is Lagrangian for each of the forms ω̃t, and

5. [ω̃t] = [Π∗ω]−∑k
i=1 λ

2
i (t)eq for positive constants λq(t), 0 ≤ t ≤ 1.

Then (M,L, ω, φ) admits a real symplectic embedding of k disjoint standard sym-

plectic balls of radii λq(1), q ∈ {1, ..., k}.
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Proof. Since M̃ is the real symplectic and holomorphic blow-up at k real points of

(M,L, J, φ, ω), then, according to the construction in the proof of Proposition 2.10,

there exists a real symplectic and holomorphic embedding

ψ̃ =
k∐
q=1

ψ̃q :
∐

(L(1 + 2εq),R(1 + 2ε), ρ(1, κq), i, c̃)→ (M̃k, L̃, ω̃0, J, φ̃)

We will show that for each q there exists a family of equivariant diffeomorphisms

gt : M̃ → M̃, t ∈ [0, 1] with the following properties:

1. g0 = Id

2. There exists a δ ∈ R, 0 < δ < 1 + 2ε, such that, for all t, ψ̃∗qg
∗
t ω̃t = ρ(1, λq(t)) on

L(δ)

3. gt ◦ φ̃ = φ̃ ◦ gt, gt(Im(ψ̃)) = Im(ψ̃), and gt(ψ̃q(L(0)) = ψ̃q(L(0)).

To see this, first note that the λi(t) satisfy the equation
´
L(0)

ψ̃∗q ω̃t = λi(t)
2
´
L(0)

σ =

λi(t)
2, so ψ̃∗q ω̃t is in the same cohomology class on L(0) as ρ(1, λq(t)). Then since both

of these forms tame ĩ on L(0), the forms sρ(1, λq(t)) + (1− s)ψ̃∗q ω̃t are non-degenerate

for all s ∈ [0, 1]. Therefore, by Proposition 2.31, for each t, there exists an equivariant

symplectomorphism Fq,t : (L(0), ρ(1, λ(t)))→ (L(0), ψ̃∗ω̃t) such that c̃◦Fq,t = Fq,t ◦ c̃
and F ∗q,tψ̃

∗ω̃t = ρ(1, λq(t)) on L(0). Since ω̃t and ρ(1, λq(t)) form smooth families of

forms, the Fq,t must also be smooth with respect to t as well.

We extend the Fq,t to an isomorphism of the normal bundle ν of L(0) in L(1+2ε) by

defining fq,t : ν → ν by fq,t(z, v) = (Fq,t(z), v). Since the restriction of both ρ(1, λ(t))

and ρ(1, κq) = ψ̃∗q ω̃ to the fiber νz is ω0, this isomorphism is both equivariant and sym-

plectic. Then, by Theorem 2.28, Fq,t extends to an equivariant symplectomorphism Gq,t
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of a neighborhoodN0,t of L(0) in (L(1 + 2ε), ρ(1, λ(t)) to a neighborhoodN1,t of L(0)

in (L(1 + 2ε), ψ̃∗ω̃t). Let δq ∈ R, 0 < δq < 1 + 2ε be such that L(δq) ⊂ N0,t and

for all t ∈ [0, 1]. Note now that the Gq,t|L(δq) also form a smooth family of maps with

respect to t. Extend Gq,t to a smooth family of equivariant differentiable maps from

L(1 + 2ε)→ L(1 + 2ε) which is the identity in a neighborhood of the boundary.

Define gq,t = ψ̃q ◦ Gq,t ◦ ψ̃−1, extend the gq,t to all of M̃ by the identity outside

ψ̃
(∐k

q=1 L(1 + 2ε)
)

, and denote the extension by gt. Then ψ̃∗g∗t ω̃t = ρ(1, λq(t)) on

L(δq), making ψ̃ a symplectomorphism with respect to the forms g∗t ω̃ for all t.

Now let δ = min{δq}kq=1, and let (M,ωt) be the blow-down of (M̃, g∗t ω̃t) using

the symplectic and holomorphic embedding ψ̃|‘k
q=1 Lq(δ)

. Note that by Theorem 1.22,

each form of the family ωt is cohomologous to ω0. Also, ω0 tames J and [ω0] = [ω],

and therefore all the forms ωt and sω0 + (1 − s)ω, t, s ∈ [0, 1], are symplectic and

in the same cohomology class. Furthermore, note that d
dt
ωt is supported on a finite

union of balls, and is therefore exact. Therefore, by Proposition 2.31 and Lemma 2.27,

there exists a family of equivariant diffeomorphisms Hr : M → M , r ∈ [0, 1], such

that H0 = Id and H∗1ω = ω1. Since (M,ω1) admits a real symplectic embedding of∐k
q=1(B(1 + 2ε), λqωst), where ωst here is the standard symplectic form on B(1 + 2ε),

this completes the proof.

The following corollary is an easy consequence.

Corollary 4.2. Let (M,ω, φ) be a real symplectic manifold with almost complex struc-

ture J which tames ω and is symmetrically integrable around the points {p1, . . . , pk}.
Let (M̃, ω̃0, φ̃) be a real manifold obtained by blowing up a real symplectic and holo-

morphic embedding ψ of balls of radii κ > 0, κ small, and let J̃ be the almost complex
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structure created in the blow-up.

Now suppose that there exists a symplectic form ω̃ on M̃ such that ω̃ tames the almost

complex structure J̃ on M̃ . Suppose furthermore that

[ω̃] = [Π∗ω]−
k∑
i=1

πλ2
i ei.

Then (M,L, ω) admits a relative symplectic embedding of k disjoint standard sym-

plectic balls of radii λ1, ..., λk.

Proof. By Proposition 2.10, the blow-up ω̃0 relative to ψ tames J̃ , and therefore the

forms ωs := ω̃0 + (1 − s)ω̃ tame J̃ as well, so the family of forms ωs satisfies the

hypothesis of Proposition 4.1. The conclusion follows.

We now use all of the above facts to derive relative packing inequalities for (CP 2,RP 2).

Let M̃I denote a complex surface obtained from CP 2 by blowing-up at a φ-invariant set

of k points. Let {A,E1, ..., Ek} be the standard basis inH2(M̃I ; Z), and let {a, e1, ..., ek}
be the Poincaré-dual basis in H2(M̃I ; R).

Remark 4.3. Since a relative packing is also an absolute packing, the following upper

bound on the packing numbers follows immediately from the absolute case in McDuff

and Polterovich [23].

Suppose that (M,ω,L) admits a symplectic packing by k standard balls of radii

λ1, ..., λk. Then for every exceptional class bA −∑k
q=1mqEq we have the inequality∑k

q=1 mqλ
2
q < b.

We will now investigate lower bounds for the relative packing numbers of (CP 2,RP 2).

In particular, we prove the following.
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Theorem 4.4. Let M̃I be the real blow up at a φ-invariant set of k points of (CP 2,RP 2).

Let k ≤ 8, and suppose the real numbers {λ1, ..., λk} have the properties that

1.
∑k

q=1 λ
4
q < 1, and

2. For every homology class [C] = bA −∑k
q=1 mqEq which admits a real rational

exceptional holomorphic curve,

k∑
q=1

mqλ
2
q < b.

Then (CP 2,RP 2) admits a real packing by k balls of radii λ1, ..., λk.

Given this theorem, the main theorem of this section follows easily, as we see here.

Proof of Theorem 1.26. Any real numbers λ1, ..., λk that satisfy the conditions in The-

orem 4.4 also satisfy the conditions in Theorem 1.3.E of [23] and vice versa, since the

conditions on the λi are identical in both theorems. Therefore, the packing numbers are

the same in the real and absolute cases, as claimed.

In order to prove Theorem 4.4, we will appeal to the form of the Nakai-Moishezon

criterion found in Friedman and Morgan [12] (Chapter II, Proposition 3.4). In order to

be able to use this result, we need the following definitions and proposition.

Definition 4.5. We call a simply connected algebraic varietyX good if for some smooth

elliptic curve F , the divisor classes KX and F satisfy KX = −F . We call X generic if,

in addition, it does not contain a holomorphic sphere C with C · C = −2.

We now give the following definition of general position, following Demazure [10].
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Definition 4.6. Given a manifold M and a collection of points Σ = {z1, ..., zk}, 1 ≤
k ≤ 8, we say Σ is in general position if k < 3 or k ≥ 3 and there does not exist

1. A holomorphic line C which passes through any three points of Σ,

2. A conic which passes through any six points of Σ, or

3. A cubic which passes through any seven points of Σ with a double point at the

eighth.

The following result now follows directly from Theorem 1 in Demazure [10] and the

proof of Lemma 2.6 in [12], Chapter 1:

Theorem 4.7. The blow up of CP 2 at the set of points Σ = {x1, ..., xk} is good and

generic iff |Σ| ≤ 8 and Σ is in general position.

The next proposition shows that there are ’many’ such good sets of points in RP 2.

Proposition 4.8. For each k ≤ 8, the set of collections Σ of k distinct points in general

position in RP 2 is dense in the set of collections of k points in RP 2.

To prove this, we will use the following lemma.

Lemma 4.9. Let Σ be a set of k ≤ 8 distinct points of RP 2 which contains a subset

of k − 1 points in general position. Then there is a sequence Σi of k points in general

position which approaches Σ.

We begin with a definition,

Definition 4.10. We define the quadratic transformation centered at {[1, 0, 0], [0, 1, 0], [0, 0, 1]} ⊂
CP 2 to be the birational transformation given by the function f(x0, x1, x2) = (x1x2, x0x2, x0x1)
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for (x0, x1, x2) ∈ CP 2 with no two coordinates equal to 0. A quadratic transformation

centered at P1, P2, P3 ∈ CP 2 to be the composition of the function f with a projective

change of coordinates taking three non-collinear points P1, P2, P3 to {[1, 0, 0], [0, 1, 0], [0, 0, 1]}.

Proof of Lemma 4.9. First we note that the projective change of coordinates that sends

P1, P2, P3 ∈ RP 2 to [1, 0, 0], [0, 1, 0], [0, 0, 1] ∈ RP 2 leaves the Lagrangian RP 2 invari-

ant. Next, from the formula in the definition, we see that the quadratic transformation

centered at [1, 0, 0], [0, 1, 0], [0, 0, 1] also sends RP 2 to itself, and therefore, quadratic

transformations centered at points P1, P2, P3 in RP 2 preserve RP 2. Next, from Exer-

cises 4.3 and 4.13(a) in Hartshorne [15], a set of points Σ is in general position iff, after

any finite sequence of quadratic transformations centered at points in Σ, no three points

in Σ are on the same line.

By hypothesis, Σ contains a subset Σ0 of k − 1 points in general position. Let {x}
denote Σ\Σ0. For each n ∈ N, there are a finite number, say N , of sequences of n

quadratic transformations centered at points in Σ0. Consider now a particular sequence

of n quadratic transformations, call it α. Let Cα denote the union of complex lines

which pass through α(Σ0). Then CP 2\Cα is open and dense in CP 2, and, since RP 2

is totally real and each curve in Cα is holomorphic, Cα ∩ RP 2 contains no open set

of RP 2, and therefore its complement, say Lα, is open and dense in RP 2. Since α is

an isomorphism on the complement of Cα and αn preserves RP 2, the inverse image

α−1(Lα) is open and dense in RP 2. Now let {αi}Ni=1 be the collection of sequences of n

quadratic transformations. Then α−1
i (Lαi) is open and dense for every i, and therefore

∆n := ∩Ni=1α
−1
i (Lαi) is open and dense in RP 2. It follows that the intersection L :=

∩∞n=1∆n is dense in RP 2. We may therefore choose a sequence of points {xi}∞i=1 ∈
L which approaches {x}. By construction, for each i there is no finite sequence of
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quadratic transformations centered at any three points in Σ0 ∪ {xi} which sends three

points of Σ0 ∪ {xi} to a line. Therefore the sequence of collections of points Σ0 ∪ {xi}
satisfies the conclusions of the theorem.

Proof of Proposition 4.8. Let k ∈ {1, . . . , 8}. We consider a set Σ of k distinct points in

RP 2 which is not in general position, and we will construct a sequence Σi of collections

of k distinct points of RP 2 in general position which approaches Σ. First, choose a

subset of Σ which is in general position, and call it ∆. By definition of general position,

∆ must contain at least 2 points. Now choose a point x ∈ Σ such that ∆∪{x} is no longer

in general position. Then, by 4.9, there is a sequence of sets, say ∆i1 , which approaches

∆ ∪ {x}. If ∆ ∪ {x} = Σ, then we are done. If not, choose another point {x2} ∈ Σ.

Then, for each ∆i1 , i1 ∈ N, Lemma 4.9 gives us a sequence ∆(i1,i2) of collections of

points in general position which approach ∆i1 ∪ {x2}. Note that, by construction, the

sequence ∆(i,i), i ∈ N approaches ∆∪{x}∪{x2}, and each collection ∆(i,i) is in general

position. Abusing notation, we refer to this new sequence ∆(i,i) as ∆i. Continuing in

this way until ∆ ∪ {x} ∪ ...{xm} = Σ, we see that the collections of 1 ≤ k ≤ 8 points

of RP 2 in general position are dense in the set of all collections.

Theorem 4.11. Let M be a good, generic complex surface. Let ρ ∈ H2(M ; R) be a

cohomology class on the complex surfaceM , and supposeM is endowed with a complex

real structure φ (i.e. φ∗i = −iφ∗ for the standard almost complex structure i). Then ρ

is represented by a Kähler form κ with real structure φ if φ∗ρ = −ρ, ρ2 > 0, and

〈ρ, [C]〉 > 0 for all complex exceptional curves and on the anti-canonical divisor.

Proof. By Theorem 3.4, Chapter II in Friedman and Morgan [12], ρ is represented by a

Kähler form iff ρ2 > 0 and 〈ρ, [C]〉 > 0 for all complex exceptional curves and on the
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anti-canonical divisor. Let κ̂ be such a Kähler form. By Lemma 2.4, we have that κ̂ is

compatible with i, and therefore by Lemma 2.23, κ = 1
2
(κ̂ − φ∗κ̂) is also a symplectic

form which is compatible with i, and is therefore Kähler. Since [κ] = [κ̂] = ρ, κ is our

desired form.

We now give the proof of Theorem 4.4.

Proof of 4.4. By Proposition 4.8, given k generic points of L for k ≤ 8, if M̃ = M̃I is

the blow-up of (CP 2,RP 2) at these points, then M̃I is good and generic. By Theorem

4.11, if ρ is a cohomology class on a complex surface M , then it is represented by a

Kähler form compatible with the real structure φ iff φ∗ρ = −ρ, ρ2 > 0, and 〈ρ, [C]〉 > 0

for all complex exceptional curves C and on the anticanonical divisor.

Therefore, given a cohomology class ρ = α −∑λ2
i ei ∈ H2(M ; R), where φ∗α =

−α, φ∗ei = −ei we wish to show that ρ(C) > 0 on exceptional divisors and on the

anti-canonical divisor. In particular, we have to verify the following:

1. 〈ρ, [C]〉 > 0 for every rational exceptional curve C on M̃I

2. ρ · ρ > 0

3. ρ · c1 > 0, where c1 = 3a−∑k
q=1 eq is the first Chern class of M̃I .

The first two inequalities are just reformulations of the hypotheses of the theorem.

To see the third, note first that the maximum of the function f(x1, ..., xk) = (
∑
xi)

2 on

the region {x|∑x2
i ≤ 1} is obtained when the xi’s are all equal. Let λmax be this value
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of x. Therefore

(
k∑
i=1

λ2
i

)2

≤
(

k∑
i=1

λ2
max

)2

= (kλ2
max)

2 = k
k∑
i=1

λ4
max ≤ k · 1,

where the last inequality follows from the assumption that ρ · ρ = 1 −∑λ4
i > 0. We

now remark that

ρ · c1 = 3−
k∑
i=1

λ2
i > 0 ⇐⇒ 9 >

(
k∑
i=1

λ2
i

)2

.

Therefore, since 9 > k ≥ (
∑k

i=1 λ
2
i )

2, the third inequality is satisfied. Furthermore,

when the ei are the Poincaré duals of Ei, the classes of a real blow up, then φ∗ei = −ei,
and we have φ∗ρ = φ∗α −∑i λ

2
iφ
∗ei = −ρ. Therefore ρ is represented by a Kähler

form with real structure φ, as desired.

We have the packing by balls of radii λ1, ..., λk by Corollary 4.2, blowing down the

curves which represent the classes Ei with respect to this new Kähler form ρ.
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