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RESUME

Dans le présent article, on propose un cadre stochastique général et un modele
d’évaluation d’actifs financiers a I'équilibre qui mettent en évidence les roles respectifs de
I'élasticité de substitution intertemporelle et de I'aversion pour le risque dans le prix de
marché des options. Nous précisons en particulier les conditions statistiques sous
lesquelles les formules d'évaluation d'options dépendent ou non explicitement des
paramétres de préférence, en particulier quand ces parameétres ne sont pas cachés dans
les prix de I'actif sous-jacent et d’'une obligation, comme c’est le cas dans les modeles
standards de Black et Scholes (BS) ou de Hull et White (HW). Plusieurs effets de
causalité instantanée, du type effet de levier, expliquent I'occurrence non redondante des
parametres de préférence dans les prix d’'options. On prouve aussi que les modeles
d’évaluation d’'actifs financiers les plus classiques (CAPM pour les actions, BS ou HW ou
les prix d’options ne font pas apparaitre les parametres de préférence) sont fondés sur les
mémes hypothéses stochastiques (typiquement [I'absence deffet de levier),
indépendamment des valeurs des paramétres de préférence. Méme si notre formule
générale d’évaluation d’options dépend dans certains cas explicitement des parametres
de préférence, on n'oublie pas que la formule BS est dominante a la fois comme modele
théorique de référence et comme instrument de gestion. Une autre contribution de I'article
est la validation théorique de ce role de référence. Ainsi, dans la mesure ou on accepte
une propriété essentielle des prix d’options, a savoir leur homogénéité de degré un par
rapport au couple formé par le prix de l'actif sous-jacent et le prix d’exercice, on peut
montrer que les hypothéses statistiques nécessaires et suffisantes pour 'homogénéité
donnent a I'équilibre des prix d’options qui conservent I'essentiel de la forme fonctionnelle
de BS. Cette forme fonctionnelle nous permet de mettre en évidence certaines propriétés
importantes du « sourire » de volatilité, c’est-a-dire de la représentation graphique des
volatilités implicites de BS en fonction de la position de I'option par rapport a la monnaie.
On montre d’abord que I'asymétrie de ce sourire est équivalente a une forme particuliere
d’asymétrie de la mesure de martingale équivalente. Enfin, cette asymétrie correspond
précisément au cas ou il existerait soit une prime sur un risque instantané de taux
d’intérét, soit un effet de levier généralisé, soit les deux, en d’autres termes lorsque la
formule d’évaluation d’options dépend explicitement des parametres de préférence. En
conclusion, le message principal pour la gestion d’options résultant de notre analyse est
gue I'évidence d’'une asymétrie dans le sourire de volatilité signale 'importance de la prise
en compte des parametres de préférence dans les formules d’évaluation d’options.

Mots clés : causalité, chaines de Markov cachées, utilité non séparable, évaluation
d’options par modele d’équilibre, utilité récursive, volatilité implicite de Black-
Scholes, sourire de volatilité



ABSTRACT

This paper develops a general stochastic framework and an equilibrium asset
pricing model that make clear how attitudes towards intertemporal substitution and risk
matter for option pricing. In particular, we show under which statistical conditions option
pricing formulas are not preference-free, in other words, when preferences are not hidden
in the stock and bond prices as they are in the standard Black and Scholes (BS) or Hull
and White (HW) pricing formulas. The dependence of option prices on preference
parameters comes from several instantaneous causality effects such as the so-called
leverage effect. We also emphasize that the most standard asset pricing models (CAPM
for the stock and BS or HW preference-free option pricing) are valid under the same
stochastic setting (typically the absence of leverage effect), regardless of preference
parameter values. Even though we propose a general non-preference-free option pricing
formula, we always keep in mind that the BS formula is dominant both as a theoretical
reference model and as a tool for practitioners. Another contribution of the paper is to
characterize why the BS formula is such a benchmark. We show that, as soon as we are
ready to accept a basic property of option prices, namely their homogeneity of degree one
with respect to the pair formed by the underlying stock price and the strike price, the
necessary statistical hypotheses for homogeneity provide BS-shaped option prices in
equilibrium.  This BS-shaped option-pricing formula allows us to derive interesting
characterizations of the volatility smile, that is, the pattern of BS implicit volatilities as a
function of the option moneyness. First, the asymmetry of the smile is shown to be
equivalent to a particular form of asymmetry of the equivalent martingale measure.
Second, this asymmetry appears precisely when there is either a premium on an
instantaneous interest rate risk or on a generalized leverage effect or both, in other words,
whenever the option pricing formula is not preference-free. Therefore, the main
conclusion of our analysis for practitioners should be that an asymmetric smile is indicative
of the relevance of preference parameters to price options.

Key words : causality, hidden Markov chains, non-separable utility, equilibrium option
pricing, recursive utility, Black-Scholes implicit volatility, smile effect



1 Introduction

Since two fundamental characteristics of an option are its maturity date and the
underlying asset on which it is written, the price of such a security will naturally
be affected by the value of time as well as the price of risk associated with the
asset in question. Therefore, it is not surprising that in a complete market setting,
such a security can be duplicated by a portfolio of bonds and stocks. In general
however, when options are not redundant securities, the respective roles of time and
risk in its valuation are less obvious. A main contribution of this paper is to provide
a general stochastic framework and an equilibrium asset pricing model that make
clear how attitudes towards intertemporal substitution and risk matter for option
pricing. In particular, we show under which statistical conditions option pricing
formulas are not preference-free, in other words when preferences are not hidden
in stock and bond prices as they are in option pricing formulas such as the Black
and Scholes (1973) formula (hereafter BS formula). Moreover, thanks to a recursive
utility framework (Epstein and Zin [1989]), we succeed in disentangling the respective
roles of discounting, risk aversion and intertemporal substitution in the option pricing
formula.

The dependence of option prices on preference parameters comes from two main
effects. First, while it is commonly known that forward interest rates are not just
expected values of future spot rates, due to a time-varying risk premium, we stress
that this premium also enters in the option price in such a way that preference
parameters are not fully hidden in the market price of long-term bonds. This effect
is due to an instantaneous causality relationship between aggregate consumption
and state variables which enter into the interest rate risk. It is worth noting that
preferences enter into this premium not only through discounting and risk aversion,
but also through the elasticity of intertemporal substitution. Second, preferences
also matter for option pricing because of a generalized leverage effect, that is not
only the instantaneous causality relationship between state variables which enter into
the stochastic volatility process of the stock price and the stock price process itself
but also a stochastic correlation between the stock returns and the market portfolio
returns. In our framework, this effect can be separated from the previous one. While
the instantaneous interest rate risk premium involves all preference characteristics

(discounting, risk aversion and intertemporal substitution), the risk premium related



to the leverage effect only involves the risk aversion parameter. Additionally, this
effect is purely due to risk (in the spirit of CAPM) and vanishes if the stock has a
zero beta with respect to the market. In this last case, the volatility risk is perhaps
compensated but the compensation does not imply an additional role for preference
parameters in option prices. On the other hand, a beta stock pricing conformable
to a standard CAPM is obtained as soon as the above instantaneous causality or
stochastic correlation effects disappear. This leads us to emphasize that the most
standard asset pricing models (CAPM for the stock, preference-free option pricing
such as in Black and Scholes (1973) or Hull and White (1987) models) are valid
under the same stochastic setting regardless of the parameter values of the utility
function. This provides a statistical foundation to CAPM pricing in a recursive
utility framework regardless of particular preference configurations. In Epstein and
Zin (1991), CAPM pricing was obtained only with a logarithmic utility or an infinite
elasticity of intertemporal substitution.

The stochastic framework we consider is not chosen for theoretical convenience
but justified from a practical point of view. Indeed, we always keep in mind that
the BS formula is dominant both as a theoretical reference model and as a tool for
practitioners for pricing and hedging European options. Another contribution of the
paper is to characterize why the BS formula is such a benchmark. We show that,
as soon as we are ready to accept a basic property of option prices, namely their
homogeneity of degree one with respect to the pair formed by the underlying stock
price and the strike price (see Merton (1973)), we obtain an option pricing formula
that keeps the main functional shape of the usual BS formula. This robustness of the
BS formula is ensured via homogeneity by our stochastic framework and equilibrium
asset pricing model taken together. We show that the homogeneity requirement
implies the stochastic framework which in turn provides BS-shaped option prices.
We therefore provide a rationalization of the vast literature that enriches the BS
model to improve its usefulness for practitioners.

Since implicit volatility, the volatility that equates the BS option valuation for-
mula to the observed option price, has become the standard method of quoting op-
tion prices! and a risk management tool, many empirical studies have investigated

the properties of such implicit volatilities. For example, some studies have addressed

1See Bates (1996).



the effect of time-to-maturity or strike price on BS implicit volatilities, the so-called
smile effect and its increasing amplitude when time to maturity decreases?. There-
fore, the volatility smile appears as a useful characterization of option pricing and
hedging biases for practical applications. It has been proven by Renault and Touzi
(1996) that the standard Hull and White (1987) stochastic volatility model offers a
rationalization of a symmetric smile®. We extend this result by providing the first
theoretical characterization of asymmetric smiles, which are often observed in prac-
tice. First, the asymmetry of the smile is shown to be equivalent to a particular
form of asymmetry of the pricing density. Second, this asymmetry appears precisely
when there is either a premium on interest rate risk or on a generalized leverage
effect or both, in other words whenever the option pricing formula is not preference-
free. Therefore, the main conclusion of our analysis for practitioners should be that
an asymmetric smile is indicative of the relevance of preference parameters to price
options. Conversely, standard preference-free option pricing and CAPM-like stock
pricing are allowed whenever symmetric smiles are produced.

Our approach is in contrast with purely descriptive nonparametric statistical tech-
niques involving either functional estimation or implied binomial trees which can fit
any shape of the smile*. Contrary to our model, these techniques imply a determin-
istic relationship between the instantaneous volatility of the stock price and its level,
which means that they are not compatible with a homogeneous option pricing for-
mula. By our statistical and equilibrium model assumptions, we are able to reproduce
asymmetric smiles with a BS-type homogeneous option price.

For practical applications in terms of option pricing and hedging, the fact that the

general functional shape of the BS formula is mainly preserved as long as homogeneity

2See, for example, Day and Lewis (1992), Engle and Mustafa (1992), and Jorion (1995). However,
as explained clearly in Melino (1994), a shortcoming of the implicit estimation methodology is its
internal inconsistency since it produces estimates of volatility that can vary considerably from day
to day while the variance is originally assumed constant.

3 A symmetric smile is obtained as soon as the option price can be characterized as an expectation
of a BS formula with respect to an heterogeneity factor. In particular, this is the case in Merton’s
(1976) model where the underlying stock returns contain along with the usual Brownian process a
jump process. The option pricing formula keeps “most of the attractive features of the original BS
formula in that it does not depend on investors’ preferences or knowledge of the expected return on
the underlying stock” (see Renault (1996) for a survey).

1See Gouriéroux, Monfort and Tenreiro (1994), Ait-Sahalia, Bickel and Stocker (1994), Bossaerts
and Hillion (1995) for functional estimation and Dupire (1994), Rubinstein (1994), for implied
binomial trees.



is maintained validates the usual practice of using the BS formula and its Hull and
White extension as a benchmark, even though the presence of various kinds of leverage
effects makes preference-free option pricing strictly invalid. Our generalized option
pricing formula offers a variety of directions in which the BS formula can be misspeci-
fied and which could be of interest for practitioners. For example, the computation of
implicit preference parameters, irrespective of their theoretical interpretation, should
cause little more inconvenience than estimating an implicit volatility and may prove
as useful to correctly appraise biases in preference-free option pricing. Moreover, as
far as preference-free option pricing and associated symmetric volatility smiles are
maintained hypotheses, our results provide a theoretical support to some extensions
of the BS formula which replace the standard normal cumulative distribution function
by alternative distribution functions (including asymmetric ones).

Rubinstein (1976) and Brennan (1979) use a consumption-based representative
agent framework to price options. Amin and Ng (1993) extend this framework to a
joint process for consumption growth and stock returns which captures both interest
rate and volatility risks. As special cases of our general option pricing formula, we
obtain the formula derived by Amin and Ng (1993) and a fortiori all the other pricing
formulas that were nested in the latter®: of course the BS formula, but also the Hull-
White (1987) and Bailey-Stulz (1989) stochastic volatility option pricing formulas
and the Merton (1973), Turnbull-Milne (1991), and Amin-Jarrow (1992) stochastic
interest rate option pricing formulas for equity options.

Two papers have used preferences that disentangle risk aversion from intertem-
poral substitution in the context of option pricing. Detemple (1990) uses the ordinal
certainty equivalence hypothesis proposed by Selden (1978) in a two-period econ-
omy and shows that time preferences play a distinctive and significant role in pricing
options. For example, option prices change with the expected return on the stock
and may decrease when the risk of the stock return increases. Ma (1993) extends
the stochastic differential utility concept in Duffie and Epstein (1992) to a mixed

Poisson-Brownian information structure and derives a closed-form pricing formula

5We adopt a more structural approach than in Amin and Ng (1993) since we specify the dynamics
of economic fundamentals (consumption and dividends) and stock returns are therefore determined
in equilibrium. On the other hand, we do not incorporate as in Amin and Ng (1993) the effect on
the option price of a systematic jump in the underlying asset price process, following Merton (1976)
and Naik and Lee (1990). This extension could easily be accomodated in our framework.



for European call options written on aggregate equity under Kreps-Porteus prefer-
ences.

The rest of the paper is organized as follows. In section 2, we address the key
issue of homogeneity. We provide a characterization of the set of risk neutral dy-
namics which are consistent with homogeneity of option prices. The homogeneity
property can be characterized in terms of non-causality in the Granger sense. We
use this characterization in section 3 to set up our equilibrium model and derive the
structural statistical framework which bears out the homogeneity of option prices in
equilibrium. The corresponding pricing probability measure, that is the way to go
from the data generating process to the risk neutral world is characterized in section
4: the respective role of the three preference parameters is outlined. We are then able
to derive our general option pricing formula and to characterize the array of other
pricing models which are nested in this general one. Section 5 provides a theoretical
characterization of the symmetry property of the smile both in terms of the symmetry
of the pricing density and leverage and stochastic correlation effects in equilibrium.
We further provide some guidelines for a practical use of this option pricing model. In
particular, we stress how homogeneity allows one to use the volatility smile to char-
acterize option pricing biases, and how to incorporate into smile studies a calibrated
value of preference parameters. Section 6 concludes with a reference to statistical
evidence on the importance of option prices to disentangle in estimation risk aversion

and intertemporal substitution.

2 Homogeneity of Option Prices and State Variables

The theory for pricing contingent claims in the absence of arbitrage introduces a
pricing probability measure Q; under which the price 7m; at time t of any contingent
claim is the discounted expectation of its terminal payoff. In the case of a European

call option maturing at time T with a strike price K, it is given by:

= B(t,T)E; (St — K)*', (1)

where E¥ denotes the expectation operator with respect to Q;, B(t,T) is the price at
time t of a pure discount bond maturing at T, and St is the price of the underlying

asset (stock) at T. Of course, Q; is generally different from the data generating



process P, of {S,}. Existence and unicity of Q; were studied by several authors since
the seminal paper of Harrison and Kreps (1979)°.

It is then natural to hope that the option price 7, inherits (at time t) the convex-
ity property with respect to the underlying asset price of its terminal payoff. Indeed,
since the economic function of options is fulfilled precisely because of this convexity,
this led Merton (1973) to claim that “convexity is usually assumed to be a property
which always holds for warrants”. It appears to hold empirically (see Broadie et al.,
1995), and it is also consistent with the alleged destabilizing effect of dynamic trad-
ing (portfolio insurance) strategies, since convexity means that the derivative of the
option price with respect to the underlying asset price (the delta ratio) is an increas-
ing function of this asset price. Bergman, Grundy and Wiener (1996) have recently
established that whenever the underlying asset follows a diffusion whose volatility
depends only on time and the concurrent stock price, then a call price is always in-
creasing and convex in the stock price. However, when volatility is stochastic, a call
price can be a decreasing concave function of the stock price over some range. To
avoid such a “perverse local concavity”, Merton (1973) proposes to ensure convexity
through the property of homogeneity of degree one of the option price m; with respect
to the pair (S, K). Moreover, he noticed that homogeneity will not obtain if the
distribution of returns depends on the level of the stock price. Since, as recalled in
proposition 1 below, there is a fundamental bijective relationship between an option
pricing function m(.) and the pricing probability measure Q;(.)?, we choose to impose
the homogeneity property through the pricing probability measure Q, as shown in

proposition 2.

Proposition 1. The pricing function 7,(.) and the pricing probability measure Qy(.)
are linked by the following bijective relationship (for a given S ):

Qi(.) — m(Si, K) = B(t, T)E;[(Sr — K)'],

1 8 Tt

St
() — Q: [E > k‘} = _ma_f((StuK)u

5The theory of complete markets is beyond the scope of this paper where we are only interested
in the existence of a pricing probability measure (); which is well-defined and given to us, whether it
is unique or not. This statistical viewpoint was for instance illustrated by Sims (1984), Christensen
(1992), and Clément, Gouriéroux, and Monfort (1993).

"See Huang and Litzenberger (1988, sections 5.19 and 6.13) for foundations and Ait-Sahalia and
Lo (1996) for a recent application.



_K
where k = 5
Proof: See Appendix 1.

Of course, S; is known at time t and the pricing probability measure Q; describes
equivalently the probability distribution of the future asset price Sy or of the return
“Z—::. Proposition 1 shows how the pricing probability measure is characterized trough
its probability distribution function by the derivative of the option price 7; with re-
spect to the strike price K. Therefore, the previous homogeneity property can be

expressed as a simple condition on the pricing probability measure.

Proposition 2. The option pricing function m(.) is (i) homogeneous of degree one
with respect to (Sy, K) if and only if (ii) the pricing probability measure @Q; does not
depend on S;.

Proof: See Appendix 1.

To understand proposition 2, it may help to see (; as the conditional probability
distribution of a process of interest defined on a probability space (Q, A, Q) given
the available information I; at time t. Whereas Merton (1973) showed that serial
independence of asset returns for the data generating process is a sufficient condition
for homogeneity, Proposition 2 establishes that a necessary and sufficient condition for
homogeneity is the conditional independence (under Q) between future returns and
the current price, given the currently available information (other than the current
price).

It should be stressed that conditional independence neither implies nor is implied
by marginal independence. The property defined by proposition 2 must be understood
as a noncausality relationship in the Granger sense from the current price to future
returns (for a given informational setting) and not as an independence property.

To see the full generality of this noncausality property, we will illustrate it in the
modern finance framework where asset prices evolve as diffusion processes under the

pricing probability measure Q:

5,

< = r(t)dt + o(dW* (1), (2)



where W*(1) is a standard Wiener process under Q and r(t) and o(t) are the two
state variables of interest: o(t) is the instantaneous volatility process and r(t) can
be seen as an instantaneous interest rate process, since, under Q, the risk is not
compensated.® In this framework, we can assume without loss of generality that

available information at time t is described by the o—field:
Iy = Vri[r(7), 0(7), W(T)]. (3)

In Proposition 3, we will specify which assumptions are needed to ensure the above
property of Granger noncausality in order to define later a structural statistical model

to price options in an equilibrium setting.

Proposition 3. A necessary and sufficient condition for Granger noncausality from
St to future returns %,T > t 1s ensured by the conjunction of the two following
assumptions®.

Assumption Al: (o(7),7(7))rse L (W) co|r(7),0(7), 7 <,

T

Assumption A2: (AW2),y L (dWE)r<ilr (L), 0(.),

T

where r(.) and o(.) refer to the whole sample path of the processes r and o.

Assumption Al states that the price process S does not Granger cause the state
variable processes r and o (see Comte and Renault (1996) and Florens and Fougere
(1996) for a precise definition of Granger noncausality in continuous time). Assump-
tion Al is quite natural in the context of state variables which are usually seen as
being exogenous. We do not assume however a strong exogeneity property, i.e. 7
and o are not necessarily independent of W* in order to allow for the presence of
leverage effects. As a matter of fact, if 7 and o were independent of W*, A2 would
be automatically satisfied.

To understand Proposition 3 in the general case, let us define: X = (dW?), <, Y =
(AW2)rst, Z1 = (r(7),0(7))r<t and Zy = (r(7),0(7))r>¢.The required noncausality

property from past prices to future returns can then be written:

8The variables r(t) and o(t) are called "state variables” in a loose sense since we are not assuming
here that the (r,0) process is Markovian.

9As usual, the differential notation (dWTS )r>¢ 15 a slight abuse of notation to characterize the
o—field corresponding to the future increments of W2.



X L (Y, Zy)| 7. (4)

By a well-known property of conditional independence (see e.g. Florens and
Mouchart (1982)), condition (4) is equivalent to the conjunction of X 1L Z|7Z; (i.e.
Al) and X LY, |(Z1,Zs) (i.e. Ay). This establishes Proposition 3.

To illustrate the empirical content of these assumptions, we can characterize them
in the framework of a Markovian process (S, 7, o) defined by the diffusion equations!®:
%Stt r(t)dt + o(t)dW*(t),
dr(t) = a(t)dt + B(t)dW" (1),
do(t) = ~(t)dt + 6(t)dW (1),

3

dWw=(t) 1 parlt) pso(t)
Var | dWr(@t) | = | ps(t) 1 pee(t) | dt, (5)
dWe(t) Pso(t)  pro(t) 1
where (1), 5(t),v(t),6(t), psr(t), pso (t), prs(t) are deterministic functions of S;,r(t),
o(t)!'. We can then establish the following proposition!?

Proposition 4.
(i) Assumption (A1) is equivalent to the following assumption (A1)’.

(A1) The processes «, 3,7, 6, pse are deterministic functions of the processes r

and o :
a(t) = alr(t),a (b)),
B(t) = Blr(t),o(t)],
Y(t) =~lr(t), (b)),
6(t) = é[r(t),o(t)],
Pro(t) = prolr(t), a(t)]

(ii) If assumption (A1)’ holds, Assumption (A2) is equivalent to the following
assumption (A2)’.

0We implicitly assume that the considered system of stochastic differential equations satisfy the
usual regularity conditions(Lipschitz, growth, etc.) that ensure existence and unicity of a solution.

11 All these functions could be made dependent upon other state variables. In this case, (5,7, 0)
would no longer be Markovian and should be embedded in a higher dimensional Markovian process
of state variables. This generalization would not present any added difficulty.

2The equivalence results stated in Proposition 4 are valid under minor regularity assumptions
which are not explicited here. In particular, Florens and Fougere (1996, p.1205) point out that
implicitly some o-fields are assumed “measurably separated”.



(A2)’ The processes pg and ps, are deterministic functions of the processes r and

Proof: See Appendix 1.

In other words, leverage effects (p,, # 0) and cross-correlations between the stock
price and the interest rate (ps, # 0) are allowed provided that they do not depend
on the level of the stock price. More generally, propositions 2, 3 and 4 prove that
a necessary and sufficient condition for the fundamental homogeneity property of
option prices is that the underlying asset price process is of the “stochastic volatility
” type, i.e. that it obeys the assumed noncausality relationship from the price process
S to the state variables o and 7.

This characterization of homogeneity is more general than the sufficient condition
proposed by Merton (1973), not only since we replace the independence requirement
by a more specific noncausality assumption, but also since it is stated in terms of
the pricing probability measure rather than the DGP. Indeed, we do not preclude a
possible dependence of the risk premiums on the stock price S, which could violate
assumption (A1)’ for the DGP.

The framework of proposition 4 differs in a fundamental way from the endogenous
volatility paradigm where the volatility process o(t) is viewed as a deterministic
function of S;. Endogenous volatility models, also called “implied tree models” by
Duffie (1995), have recently gained in popularity (see Dupire (1994), Hobson and
Rogers (1994), and Rubinstein (1994)). It should be emphasized that these models
are tantamount to losing the fundamental homogeneity property of option prices and
by the same token the independence of the Black-Scholes implicit volatility from the
stock price level. One may deplore that this homogeneity requirement seems to be
inconsistent with usual discrete-time statistical models like ARCH-type models. The
issues of BS implicit volatility and ARCH option pricing will be discussed in more
detail in sections 4 and 5 below.

Our next task is to set up an equilibrium model which will provide the foundations

for the stochastic differential equations written in (5). These equations are usually

10



justified theoretically by an absence of arbitrage argument. The no-arbitrage models
need some assessment of the appropriate pricing of systematic volatility and interest
rate risk. Often they assume that the risk is non-systematic and has a zero price or
impose an ad-hoc functional form on the risk premium. In addition to giving equilib-
rium foundations to the stochastic differential equations, our equilibrium asset pricing
model will price the volatility risk and the interest rate risk. Although we specify
our model in a discrete-time setting!®, it should not be interpreted as a limitation to
the generality of the results we will derive in terms of equilibrium foundations to the

stochastic differential equations.

3 An Equilibrium Asset Pricing Model Consistent with Homogeneity

In this section, we incorporate the recursive utility model of Epstein and Zin (1989) for
asset pricing into a stochastic framework dictated by the non-causality requirement as
stated by proposition 3. More precisely, we specify a stochastic environment through
a set of state variables which allows us to outline necessary and sufficient conditions

that prices must obey in equilibrium to fulfill the desirable homogeneity property.

3.1 An Asset Pricing Model with Recursive Utility

Many identical infinitely lived agents maximize their lifetime utility and receive each
period an endowment of a single nonstorable good. We specify a recursive utility

function of the form:

Ut = W<Ct7/14t)7 (6)

where W is an aggregator function that combines current consumption C; with
Pt = M(ﬁt+1 | 1) , a certainty equivalent of random future utility ﬁt+1, given the
information available to the agents at time t, to obtain the current-period lifetime
utility U;. Following Kreps and Porteus (1978), Epstein and Zin (1989) propose the

CES function as the aggregator function, i.e.

=

U, = [CF + Bufl?. 7)

BContrary to the arbitrage-based asset pricing models, equilibrium valuation of options does not
require that hedging in continuous time is feasible.

11



The way the agents form the certainty equivalent of random future utility is based
on their risk preferences, which are assumed to be isoelastic, i.e. pf = E[ﬁﬁH]]t],
where @ < 1 is the risk aversion parameter (1-« is the Arrow-Pratt measure of relative
risk aversion). Given these preferences, the following Euler condition must be valid
for any asset j if an agent maximizes his lifetime utility (see Epstein and Zin (1989)):

C
Edﬂ”(%tl

where M, represents the return on the market portfolio, R;;; the return on any

Y DM R 4] = 1, (8)

asset j, and E; the conditional expectation with respect to the information available

to the agents at time t!4

and vp = a. The parameter p is associated with intertem-
poral substitution, since the elasticity of intertemporal substitution is 1/(1 — p). The
position of o with respect to p determines whether the agent has a preference towards
early resolution of uncertainty (o < p) or late resolution of uncertainty (o > p)'°.
This condition allows us to price any asset in the economy. In particular, the price

of a European option 7; maturing at t+1 is given by:

C S, K
Ty = StEt ﬂ7<%tl>v(pil)Mtv+illMaaj[ou ;4;1 - gt] ) (9)

where K is the exercise price of the option.

This price depends on both the market portfolio return M;,; and the stock return

St+1
St

folio, say PM at time t. In this model, the payoff of the market portfolio at time t is

. A first task is therefore to determine the equilibrium price of the market port-

the total endowment of the economy C,. Therefore the return on the market portfolio

My, can be written as follows:

Replacing M1 by this expression and writing (8) for R;;;1 = M1, we obtain:

M Of course, the probability distribution considered here to define E; is P given I;, where P governs
the data generating process of the variables of interest. In general, P is different from QQ and F; is
different from E; defined earlier.

5 As mentioned in Epstein and Zin (1991), the association of risk aversion with « and intertem-
poral sustitution with p is not fully clear, since at a given level « of risk aversion, changing p affects
not only the elasticity of intertemporal sustitution but also determines whether the agent will prefer
early or late resolution of uncertainty.
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Y o Cea " oy
Al =E |8 C, (A +1)7], (10)

where: A\, = %tg. Under some regularity and stationarity assumptions, we may be
able to prove that (10) has a unique solution A; of the form A, = A(I;) with A(.)

solution of:

IV = E lm <Cgl>w (A1) + 1) | I = 11 : (11)

Typically, the pricing function A(.) will be determined as a fixed point of a certain

operator to be defined more precisely in the next section. Similarly, we will be looking

for a solution ¢ =p(I;) = %tt to the stock pricing equation:

Co N A 1N\ ! D
ﬂ”< ”1) <L> o(Ip) ==L, =1 . (12)

N=FE
o(I) G, N D,

Starting from (11) and (12), we are now able to look for a statistical specification
which leads to return processes in equilibrium (for both market and equity) consistent

with a discrete time analog of proposition 3.

3.2 Equilibrium-based Foundations of a Discrete-time Stochastic Volatil-
ity and Interest Rate Model

It is then possible, for given A and ¢ functions, to compute the market portfolio price
and the stock price as PtM = AM1)C; and S; = ¢(1;)D;. The dynamic behavior of

these prices, or equivalently of the associated rates of return:

AMLey1) +1 s Cria

LogM,, 1 =L d 13

oo = Lo B 4 gt o 13)
Sty1 ©(Liy1) Diyq

LogRy,1 = Tog2tt — [og€lt) 4, , 14

(I TAN] g S, g @(It) g D, ( )

is determined by the joint probability distribution of the stochastic process (X, Y, I;)

where: X; = Logcffl and Y; = Long?fl. We shall define this dynamics through a

stationary vector-process of state variables U, so that:

16Tt should be noted that the equivalent martingale measure of section 2 must be defined for the
dividend-price pair (see Duflie (1995), p.108) and the notation S; in section 2 as well as in the
following sections implicitly denotes the gain process (capital plus dividends).
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]t = ngt[XT; }/T; UT]

Having in mind the characterization of homogeneous option pricing in terms of
non-causality, we infer that, for the dynamics of returns defined in (13) and (14) to
obey assumptions (A1) and (A2), we need to extend these properties to the dynam-
ics of the fundamental processes X and Y. We therefore specify the two following

assumptions:

Assumption B1: (X,Y) does not cause U in the Granger sense.
Assumption B2: The pairs (X¢,Y;),t = 1,2, ..., T are mutually independent know-
ing UT = (Ut)lgtST-

Assumptions Bl and B2 are the exact analogs of assumptions Al and A2 re-
spectively. Of course S; in A1/A2 is replaced by the fundamentals X; and Y, while
increments of W¥ in A2 are replaced by the discrete-time growth rates of the funda-
mentals 17,

These assumptions are quite natural considering the interpretation given to Uy
as a vector of relevant state variables at time t. These variables are exogenous by
assumption Bl and according to B2 subsume all temporal links between the variables
of interest (X, Y;). As usual, no assumption apart from stationarity is made about
the law of motion of exogenous variables. Indeed, it should be emphasized (see
proposition 5 below) that assumptions Bl and B2 taken together are only made
about the law of (X, Y¢)1<t<r knowing U7 .

Proposition 5. Under assumplion B2, assumption Bl is equivalent to:
Assumption (B1)’: €| X, Y |U] = €[X;, Yy |UY, VT, Ve=1,2....T.

Proof: See Appendix 1.

Given the independence postulated in Assumption B2, this is in fact the Sims

characterization of the non-causality from (X,Y) to U in Assumption B1. Assumption

7Tt will be proven below that, given our pricing formulas, B1 and B2 are equivalent to the discrete
time analogs of A1l and A2 for the stock price and for the market portfolio price.

14



(B1)’ is identical to Assumption 2 in Amin and Ng (1993), i.e. (X,,Y;) 1L U%,|UYL.
Our assumption B2 is clearly implied by assumption 1 in Amin and Ng (1993).

The above analogy between assumptions Al/A2 about return processes and as-
sumptions B1/B2 about consumption and dividend processes will be made more pre-
cise below by characterizing the return processes implied by our equilibrium model.

Indeed, B1 and B2 allow us to characterize the joint probability distribution of the
(X¢, Y:) pairs, t=1,...,T, given UT by:

T
(X Yoreeer|[UT) = T [ 00, V2ITT) (15)
=1

Proposition 6 below provides the exact relationship between the state variables

and equilibrium prices.
Proposition 6: Under assumptions Bl and B2 we have:
PM = \UNC, S = (Uy) Dy,

where A\(U}) and @(U}) are respectively defined by :

Tp
Aoty = | (S2) o+
and
Cor ' (AU 41\ Dyt
U =B |57 (=2 AL P Ui Ut
o= (42) o BRCCAR O

There is of course a slight abuse of notation in proposition 6 since the dimension
of Ut is time-varying. It is implicitly assumed in this notation that the state variable
process Uy is Markovian of some order p so that the functions A(.), ¢(.) are defined on
RE? if there are K state variables. This remark will apply in general to all functions
of Ut considered in the rest of the paper. Moreover, the stationarity property of
the U process together with assumptions B1l, B2 and a suitable specification of the
density function (15) (see for instance B3 below) allow us to make the process (X,Y)
stationary by a judicious choice of the initial distribution of (X,Y). In this setting,
a contraction mapping argument may be applied as in Lucas (1978) to characterize

the functions A(.) and ¢(.) according to proposition 6.
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It should be stressed that our framework is more general than the Lucas one
because the state variables U} are given by a general multivariate Markovian process
(while a Markovian dividend process is the only state variable in Lucas (1978)).

Indeed, it results from equations 13, 14, and proposition 6 that:

MUY +1

LogM,, = L X d 16
0g M1 og ATD + A¢g1,an (16)
Ut+1
LogR¢y 1 = LOQM + Yiia

w(U1)
Hence, the return processes (M, 1, K1) are stationary as U, X, and Y, but, contrary
to the stochastic setting in the Lucas (1978) economy, are not Markovian due to the
presence of unobservable state variables U.

In any case, this asset pricing model gives some equilibrium foundations to sta-

tistical assumptions like Al and A2 as stated by proposition 7.

Proposition 7: Given (11) and (12), the two following equivalences hold:

(i) (X,Y) does not cause U in the Granger sense (Assumption B1) if and only if
(PMS) does not cause U in the Granger sense (discrete time analog of Assumption
A1 for the two price processes).

(ii) The pairs (X¢,Y:),t = 1,...,T are mutually independent knowing U (As-
sumption B2) if and only if the consecutive returns for both market portfolio and
stock (M, Ry),t = 1,.... T are mutually independent knowing U (discrete time analog
of Assumption A2 for the joint distribution of the two returns).

However, it should be noted that while (Al) and (A2) were stated for the so-called
pricing probability measure, the properties addressed by proposition 7 are considered
for the DGP. It turns out that the two points of view are equivalent in that case, as

1t 1s checked in subsection 3.3 below.

3.3 Homogeneous Option Prices in Equilibrium

Let us consider a FEuropean call option on the stock, coming to maturity at date
T with exercise price K. If we consider for notational simplicity that dividends are
paid immediately after exercising the option, we can determine the option price by

backward recursive application of Euler equation (9):

16



ﬂ_t:Et

sy (G -1
ﬂ F (MTMtfl---MH»l) Maa:[O, ST - K] .
t

Thus, by using (16):

=F
e C AUT)

- <ﬁ> o ﬁ [%1 o Maz[0, Sy — K]] .

It is worth noting that the option pricing formula (17) is path-dependent with
respect to the state variables; it depends not only on the initial and terminal values
of the process U; but also on its intermediate values'®. Indeed, it is not so surprising
that when preferences are not time-separable (v # 1), the option price may depend
on the whole past of the state variables. As clearly explained by Machina (1989),
it is inappropriate to impose the property of consequentialism to non-expected util-
ity maximizers, since they would take the past uncertainty into account instead of
ignoring the risk they have borne in the dynamic resolution of uncertainty.

Equation (17) can be rewritten as:

T o (O Y T+ AT Sy K
LI A I ol ANl St S M = __ 1
7=t
with:
Cr d
— =exp[ ) X;],
Ct th;l
and:

Sy Dy p(UT) _ p(UT)
5 " Do) ey P2 Y

T=t+1

Therefore, the conditional expectation (18) is computed with respect to the prob-

ability distribution of (XtTH, YEH, UEH) given [;. With a similar argument to the one

BSince we assume that the state variable process is Markovian of order p, )\(UIT )does not, depend
on the whole path of state variables but only on the last p values Ur,Up_1,...,Upr_,1;1.

17



in Proposition 6, it can be proven that it depends on I; only through U’ (see Appendix

1). Then the pricing formula characterizes a function ¥ such that:

K
Ty = @(U{, —)St (19)
St
Equation (19) states that, as expected, the option pricing formula is homogeneous of

degree one with respect to the pair (S;, K)!°.

4 An extended Black-Scholes formula

In this section, we introduce an additional assumption on the probability distribution

of the fundamentals X and Y given the state variables U.

Assumption B3:

Xy ¢ mx¢ 0%t Oxvi
Uy ~ R
(3 x| O ) [ ]

where mx, My, Ugm Oxvt, U)Q/t are stationary and measurable functions with respect
t _ t _ 0 2 2 (7T A2 2 (7L _
to UY, so that mx, = mx(U}), my: = my (U7), 0%, = 0% (U}), 05, = o3 (U}), 0xy¢ =

O'Xy<Uf).

We want to stress that, as soon as previous assumptions Bl and B2 required for
homogeneous option pricing are maintained, this additional assumption, which will
allow us to derive an extended BS option pricing formula, is not very restrictive. This
is the reason why we will claim that the BS shape for an option pricing formula is
very robust when one remains true to homogeneity. The fundamental argument is
that, if one considers that the discrete-time interval is somewhat arbitrary and can
be infinitely split, log-normality (conditional on state variables U) is obtained as a
consequence of a standard central limit argument given the independence between
consecutive (X,Y’) given U. This assumption B3 extends a similar assumption made
by Amin and Ng (1993) to derive an option pricing formula in an expected utility

framework, a special case of our setting. Given this log-normality assumption, we

19Tt should be emphasized that even though we have chosen to focus on Kreps-Porteus preferences,
the main argument of this section to ensure homogeneous option prices in equilibrium remains valid
with other types of preferences.
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will characterize successively the pricing probability measure, the role of preferences
in the pricing of bonds (value of time) and equity (value of risk) and the combination

of these values in the option price.

4.1 The Pricing Probability Measure

By the argument already used to prove proposition 1 (see Appendix 1), we deduce
from the option pricing formula (18) the cumulative distribution function of the pric-

ing probability measure as a function of the cumulative distribution ® of the standard

normal N(0,1):

B(LT)Q: [% > k:] = BT epla— 1Y X))

ﬁ L+ 2T \
T /77N T
AUT) | el Yolzm

T=t

where 1;; denotes the indicator function.
By iterating on conditional expectations (given Ul and Iy ., 7 = 1,2, ....T —t) of
the inner part of the above expectation, we can apply assumptions B1, B2 and B3 to

derive the following formula (see Appendix 2):

BTG | 5 > H] = Bl o), (20)
where:
N T 1 T
B.T) = P00l (esp((a—1) 3 mur =17 Y ox),
T=t+1 T=t+1

. 1 [apartH]7t
with: al (v) = sztl [(JFT((UITJ)—)} , and:

T
In2t +1n %Ujf—)) + Zzztﬂ my; + (@ —1) ZZ:tH IxYT

2 = T
O reeprov)'?
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4.2 The Pricing of Bonds

To price a bond delivering one unit of the good at time T, it suffices to apply equation

(20) with k = 0. Therefore we obtain the following bond pricing formula:

B(t,T) = EB(t,T)]. (21)
This formula shows how the interest rate risk is compensated in equilibrium, and
in particular how the term premium is related to preference parameters. In what
follows, we will refer loosely to B (t,T) as a stochastic discount factor, but naturally
it is strictly so just for an asset with zero covariance with the aggregate risk. To be
more explicit about the relationship between the term premium and the preference
parameters, let us first notice that we have a natural factorization of the stochastic

discount factor:

B(t,T) = f[§<m+1). (22)

Therefore, while the discount parameter 3 enters in the determination of the general
level of discount factors, the two other parameters a and y affect the term premium
(with respect to the return-to-maturity expectations hypothesis, Cox, Ingersoll, and

Ross (1981)) through the ratio:

B(t,T) B} B(r, 7+ 1))
By Hf;tl B<Ta7—+ 1) E, HZ;tl ET§<T7T+ 1)‘

To better understand this term premium from an economic point of view, let
us compare implicit forward rates and expected spot rates at only one intermediary

period between ¢ and T

B(t,T) EB(t,7)B(r,T) =~ N Cow|B(t, 1), B(r,T)]
B(t,7)  E,B(t,T1) = BBrT)+ E,B(t,T) )

Up to Jensen inequality, equation (23) proves that a positive term premium is brought

about by a negative covariation between present and future stochastic discount fac-
tors. Given the expression for B (t,T) above, it can be seen that for von-Neuman

preferences (v = 1) the term premium is proportional to the square of the coefficient
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of relative risk aversion (up to a conditional stochastic volatility effect). Another im-
portant observation is that even without any risk aversion (o = 1), preferences still
affect the term premium through the non-indifference to the timing of uncertainty
resolution (v # 1).

There is however an important sub-case where the term premium will be preference-
free because the stochastic discount factor B (t,T) coincides with the observed rolling-
over discount factor (the product of short-term future bond prices, B(7,7 + 1),
T = t,..,T —1). Taking equation (22) into account, this will occur as soon as
B(r,7 + 1) = B(r,7 + 1), that is when B(7,7 + 1) is known at time 7. From the
expression of E(t, T') above, it is easy to see that this last property stands if and only
if the mean and variance parameters my, and ox, depend on U7 only through U] !,
given that in this case one can see by proposition 6 that A(U7) itself depends on U7
only through U7 .

This leads us to introduce a property of the consumption process termed pre-
dictability by Amin and Ng (1993). Contrary to the most usual notation which
introduces a large enough number of state variables in order to obtain a Markovian
system of order one, it is important here to stress that the market portfolio price may
depend on the whole recent history: Uy, U;_q,...,U;_py1. This distinctive framework
allows us to highlight the so-called “leverage effect” which is so important for option
pricing. This effect appears here when the probability distribution of (X;) given U}
depends (through the functions myx,c%) on the contemporaneous value Uy of the
state process. More generally, the non-causality assumption Bl could be reinforced

in the following way:

Assumption B4 : X does not cause U in the strong sense, i.e. there is neither

Granger nor instantaneous causality from X to U.

In this case, the analog of proposition 5 is A( X |U]) = #(XJUI™); it is this
property which ensures that short-term stochastic discount factors are predetermined,
so the bond pricing formula becomes preference-free:

B(t,T) = EtﬁB<T,T +1).

7=t

Of course this does not necessarily cancel the term premiums but it makes them
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preference-free. Moreover, when there is no interest rate risk because the consumption
growth rates X, are iid, it is straightforward to check that constant my, and 0%, imply
constant A(U}) and in turn deterministic discount factors: E(t, T) = B(t,T) and zero

term premiums.

4.3 The Pricing of Stocks

The stock price formula is obtained as a particular case of the general option pricing
formula (18) for the limit case K = 0, that is:

ﬂW(Tit) <ﬁ>a17]i_‘[1 [<1+A<UT+1)‘| IST

S pr—
' Ct AUT)

Using a similar argument to the one used for the pricing probability measure, we

obtain under conditional log-normality assumption B3:

St:Et{ﬂW(Tft)af(fy) exp((a—1) Z mXT—I— (a—1)? Z o’ x+(a—1) Z Oxyr)St},

T=t+1 T=t+1 T=t+1

which can be rewritten as:

Sy =By | Bt,T)exp((a—1) Y oxy:)Sr| . (24)

T=t+1

As expected, the stock price is expressed as the conditional expectation of its dis-
counted terminal value, where the stochastic discount factor B (t,T) is risk-adjusted
by a CAPM-like term exp((a — 1) ET 4 oxyr). This term accounts for the covari-
ance risk between the stock and the market portfolio (proportional to the standard
CAPM beta risk), weighted by the coefficient of relative risk aversion. In other words,
the specific role of time preference parameters (3 and = is fully embodied in the sto-
chastic discount factor which characterizes the bond equation. The additional risk
premium associated with the stock involves only the risk parameter a.

Another useful way of writing the stock pricing formula is:

B Qxy(t,T)] =1, (25)

where:
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Quv(t, 1) = Bt T)expl(e— 1) 3 oo EZIUT) 26)

T=t+1
To understand the role of the factor Qxy (¢,7T), it is useful to notice that it can

be factorized:
T 1
Qxy(t,T) = [ Qxv(r,7+1),
7=t

and that there is an important particular case where Qxy (7,7 + 1) is known at time
7 and therefore equal to one by (25 ). This is when there is no leverage effect in the

general sense of the following assumption B5 (which reinforces assumption B4).

Assumption B5 : (X,Y) does not cause U in the strong sense, i.e. there is neither

Granger nor instantaneous causality from (X,Y") to U.

Under assumptions B1 and B2, B5 is equivalent to (X, Y;|UT) = £(X;, Y |JUT ).
This means that not only there is no leverage effect neither for X nor for Y, but
also that the instantaneous covariance oxy; itself does not depend on U;. In this
case, we have Qxy (¢,7) = 1. From (26) and (22), taking into account that under B5

B(r,7+ 1) = B(7,7 + 1), we can express the conditional expected stock return as:

1 T
HTA Bor D) exp((1 — ) zt;rl Oxyr)-

S’
s[3] -
¢ T=t
For pricing over one period (¢ to ¢ + 1), this formula provides the agent’s expectation
of the next period return (since in this case the only relevant information is U{ which

is included in [; ):

S, 1
F [ ‘tsj;l ’]t‘| = mexp[(l — a)UXYt+1]'

This is a particularly striking result since it is very close to a standard conditional
CAPM equation (and unconditional in an iid world), which remains true for any
value of the preference parameters o and p. While Epstein and Zin (1991) emphasize
that the CAPM obtains for o« = 0 (logarithmic utility) or p = 1 (infinite elasticity
of intertemporal substitution), we stress here that the relation is obtained under a

particular stochastic setting for any values of o and p. Remarkably, the stochastic
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setting without leverage effect which produces this CAPM relationship will also pro-
duce most standard option pricing models (for example BS and Hull-White), which

are of course preference-free?’.

4.4 A General Pricing Formula for Options

We finally arrive at the central result of the paper, which proposes an extended

Black-Scholes formula:

- KB(t,T
T, {Qxy<t,T><1><d1> - %@@m} , (21)
", t
where:
Log |:StQ)N(Y(t:T):| 1 T
B KB(t,T) 2 \1/2
dy = - + =( Z oy.) % and
(ET:t+1 0_}2’7')1/2 2 T=t+1
T
do =dy — ( Z 012/7)1/2'
T=t+1

The second part of the formula results directly from the expression obtained above for
the pricing probability measure; Appendix 2 details the derivation of the first part.

Apart from the familiar decomposition into ®(d;) and ®(dy) parts which is also
found in the usual BS formula and its extensions, it should be noticed that the
expressions for d;and dy are also very close to the corresponding quantities in these
formulas. In particular, our EZZHI o= Var [log “Z—::]Uﬂ corresponds to o(T —t)
in the BS formula and ftT o2du in the Hull-White formula.

Indeed, a preference-free option pricing formula similar to the one obtained by
Hull and White (1987), Amin and Jarrow (1992), Merton (1973) is obtained when-
ever Qxy(t,T) = 1and E(t, T) = Hz;tl B(7,7+1), that is when there are no leverage
effects, neither through the market risk nor through the stock risk. Another case of
preference-free option pricing is worth emphasizing. Even when Qxy (t,7) is differ-

ent from one (which means that exists a leverage effect for the individual stock), it

20A similar parallel is drawn in an unconditional two-period framework in Breeden and Litzen-

berger (1978).
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becomes independent of risk aversion, as does the option price, when the stock is
zero-beta with respect to the market (oxyy = 0).

In the general case, our option pricing formula has two main characteristics. First,
the advantages of standard extensions of BS option pricing by the introduction of
unobservable heterogeneity factors (see Renault (1996)) are maintained. The main
advantage of these approaches is to keep in expectation the BS functional shape.
Second, contrary to a philosophy where the BS formula is praised for its independence

with respect to preference parameters and expected returns?*

, our extension does not
need these virtues to stay close to the Black-Scholes formula. Indeed, while the three
preference parameters enter the option price through the value of time B (t,T) (as
soon as there is a leverage effect at the aggregate level), the risk aversion parameter
and the expected stock return play an additional role in the option price through
Qxvy(t,T) (as soon as there is a leverage effect at the individual stock level).

To conclude, it is worth noting that our results of equivalence between preference-
free option pricing and no instantaneous causality between state variables and asset
returns are consistent with another strand of the option pricing literature, namely
GARCH option pricing introduced by Duan (1995). Indeed, while GARCH models
are unable to capture a genuine leverage effect, they are close to the spirit of the
framework B1, B2, B3, B5. Of course, this framework involves unobserved state
variables while the GARCH specification of conditional variance is a deterministic
function of past observables, but in both cases, precluding leverage effect allows one
to plug the discrete-time model into a continuous time one, where conditional vari-
ance is constant between two integer dates. Kallsen and Taqqu (1994) have shown
that such a continuous-time embedding makes possible arbitrage pricing which is
per se preference-free. This explains why the GARCH option pricing and the sto-
chastic volatility and interest rate option pricing proposed here under B5 are very
similar: they are both preference-free and involve a cumulated conditional variance
Ezzt " oZ_. Section 5 below will summarize the practical implications of these various

paradigms.

21See Merton (1990), footnote 26 p. 282.
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5 Homogeneous Option Pricing and Volatility Smile

The fact that the BS formula is free from preference parameters is often perceived as
its main advantage. In reality, the argument is hard to understand if one considers
that practitioners are used to infer implicit parameters from option prices, irrespective
of their theoretical interpretation. One prominent example is the so-called implied
or implicit volatility parameter, i.e. the volatility parameter derived from the BS
formula. Similarly to yields on the bond market, implicit volatilities serve as a useful
unit of measure on option markets. The usefulness of this unit of measure comes
from the fact that it does not depend on the stock price level, in other words that
the implicit volatility function is homogeneous of degree zero with respect to the
pair (S,K) where S is the price of the underlying asset and K the strike price. It
should be emphasized however that this homogeneity property holds if and only if
the option pricing formula itself is homogeneous of degree one with respect to the
same pair (S,K). This is the case of course of the BS formula itself. Therefore, any
option pricing formula that features this homogeneity property should be of interest to
practitioners, be it based on preferences or not. The usefulness of such homogeneous
general option pricing formulas is discussed here through the volatility smile, that is
the representation, at a given date ¢ and for a given maturity T, of the set of BS
implicit volatilities in function of the corresponding strike prices. In particular, we
provide new characterizations of the symmetry of the volatility smile in terms of the
option pricing function and of the pricing probability measure. We also draw the

implications of these characterizations for our option pricing model.

5.1 The volatility smile as an image of the pricing probability measure

According to the notations of Proposition 1, we will compare in this subsection a
general but homogeneous option pricing formula 7(S;, K) with the BS option pricing
formula defined itself by a homogeneous function BS(.,., o), for a given volatility

parameter ¢, with:
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( BS(Si, K,0) = Si¢p(di) — KB(t, T)$(ds),

1 S 1,
— — |Log—t— 4+ Z0*(T — ¢

L dlzdl—O'\/T—t.

Following Renault and Touzi (1996), it appears useful to characterize the shape

d1:

S,
of the volatility smile with respect to the moneyness x; = LOQW;T) rather than
the strike price K. In other words, the BS implicit volatility is a function o} (z¢) of

x¢ only, and not of S; and K separately. Starting with the defining formula:

(S, K) = BS(S, K, 07 (), (29)

a direct application of the homogeneity of degree one of m(.,.) and BS(.,.,0) with
respect to the pair (S;, K) allows one to divide each side of (29) by K and conclude
that o} (z;) is well-defined as a function of S;/ K or (equivalently) of z; by :

me(xe) = BS(z4, 07 (1)) (30)

with the following slight change of notations :

S
7Tt(37t) = Ty <§t7 1> )

BS(z¢,0) = BS <%,1,0> :

The subscripts ¢ in the functions 7¢(.,.) and 07(.) indicate that they may depend
upon other state variables, the value of which is fixed at time t. The property we
just emphasized is in fact the homogeneity of degree zero of the BS implicit volatility
with respect to the pair (S;, K). This homogeneity is a direct consequence of the
postulated homogeneity of degree one of the general option pricing formula 7y(.,.) as
well as the known homogeneity property of the BS option pricing formula BS(.,., ).

Various consequences of this setting both in terms of option pricing and option
hedging are detailed in Renault and Touzi (1996), Renault (1997) and Garcia and
Renault (1998). In particular, Renault and Touzi (1996) and Renault (1997) have
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investigated the well-documented skewness of the smile and provided the theoretical

setting which guarantees symmetric volatility smiles??, that is the property:

of(z) = oy (—x) for any =x. (32)

We will characterize the variations of 7(z), BS(x,0),07(x) as functions of = for
a given value of S;. In other words, the genuine variable of interest is the strike price
K, while the switch to the variable x is only a matter of rescaling for convenience.

In Proposition 8 below, we extend a result first stated in Renault and Touzi
(1996), which characterizes the symmetry of the smile in terms of the option pricing

function?.

Proposition 8. If option prices are conformable to a homogeneous option pricing
formula x — 7(x), the volatility smile is symmetric (6*(x) = o*(—x) for any x) if
and only if, for any x:

w(—z) =e"n(z)+1—¢"
Proof: See Appendix 3.

Thanks to proposition 1, this characterization of the symmetry of the smile ad-
mits an equivalent formulation in terms of the pricing probability measure. While this
pricing probability measure was characterized in Proposition 1 through the cumula-

tive distribution function of ?T, it is convenient here to characterise it through either

¢

the cumulative distribution function Fy..(.) or the probability density function fi..(.)
SrB(t,T

of Vi = Logw

g . We are then able to prove (see Appendix 3) the following
proposition: '

SrB(t, T
Proposition 9 If Vi = LOQM

admits a probability density function fv..(.)
with respect to the pricing pmbabiltity measure and s integrable with respect to this
measure, the volatility smile is symmetric if and only if one of the following three
equivalent properties is fulfilled:

(i) For any x:

221n the standard analysis of the smile relationship between the implicit volatility and the strike
price, the symmetry is characterized with respect to the log strike price, and not its absolute value.
23For sake of notational simplicity, the subscripts ¢ have been dropped
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7T<a:) = FVT<x) - eim[l - FVT<_$)]
(ii) For any x:

FVT (aj) = E: [€VT1[VTZ*$]]

(75i) There exists an even function g(.) such that for any x:
fin(z) = ¢ "g(2)

As announced in the introduction, these characterizations offer to practitioners vari-
ous ways to extend the BS formula, while keeping both a homogeneous option pricing
function and a symmetric smile. Characterization (i) provides a theoretical support
to descriptive approaches which replace the standard normal cumulative distribution
function of the BS formula by alternative distribution functions, possibly asymmetric
(see Garcia and Gencay (1997)). Characterization (ii) should be interpreted in terms
of hedging. Indeed, Garcia and Renault (1998) have shown that Ef[e'T1p,> 4] is
precisely the hedging ratio, in other words the derivative of the option pricing func-
tion with respect to the stock price (the so-called delta of the option)?*. Finally, for
characterization (iii) let us just notice at this stage® that if the pricing probability
measure is characterized by a conditional log-normal distribution of future returns

given available information at time  :

SrB(t,T)

Vir = Log 5
t

’ ]t Q) N<mt7 Ut2>

the condition of Proposition 9 means that :

or
my — ———

2

2ATheir proposition 2.1 shows that this characterization of the hedging ratio is a necessary and
sufficient condition for homogeneous option pricing. Since hedging is not the primary focus of this
paper, we leave to the reader the interpretation of this fairly natural relationship between Fy,.(z)
and the delta coefficient.

25The characterization of the set of asset prices processes in equilibrium whose equivalent pricing
probability measure fulfills the condition (iii) of Proposition 9 is also beyond the scope of this paper.
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which is automatically fulfilled in equilibrium since, by application of (1) with K =0,
we have:
Sy = B(t,T)E; St
SrB(t,T
s (¢, T)

More generally, if V7 = Lo follows (under );) a conditional gaussian
¢
distribution N [m(UT'), 02(UT)] given I; and the path U (between t and T') of some
state variables U, the condition will be fulfilled (by integration over U[') as soon as:
ot (Uf)
5

my(U]) = —

This is the case for instance for an Hull and White world without leverage effect,
which explains the main result of Renault and Touzi (1996): if option prices are
conformable to the Hull and White option pricing formula without leverage effect, the
volatility smile is symmetric. More generally, it is often claimed that an asymmetric
smile means that the underlying pricing probability measure is skewed. Proposition 9
characterizes precisely which type of ”symmetry” of the pricing probability measure
is required for the symmetry of the smile. In particular, it shows that it is not
the density of the log returns that should be symmetric (as it is commonly believed
perhaps because of the usual log-normal setting), but the same density rescaled by a
suitable exponential function.

In the next subsection, we generalize this result by characterizing the skewness
of the volatility smile in terms of the leverage effects or the serial correlation in the

aggregate consumption risk which appear in our general option pricing formula.

5.2 Asymmetric smiles, preferences and implied latent binomial trees

By taking into account the slight change of notations (31), our general option pricing

formula (27) can be rewritten as follows:

where




d2<ﬂ?) = d1<a?) _Et,T
E?,T = Z 0}2’7'

However, we know by (20) that:

B(t, )1 = Fup(=2)] = E[B(L, T)®(dy(x))].

Therefore, when one compares the option pricing formula (33) to the symmetry con-

dition (i) in Proposition 9, it is easy to check that:

E, { B(t,T)e (ID(dQ(a:))} =e "[1 - Fy,.(—2)]
In other words, the symmetry property of the smile is equivalent to:

Fyp(@) = B {Qxy (t,T)®(d1(2))}

or:

B(t,T)
1-E {B@’T)@(Cb(—a?))} = E{Qxy (1, T)®(d1(z))} (34)

From the bond and stock pricing equations (21) and (25), we know that %Z—% and
Qxvy(t,T) are two random random variables that are equal in expectation conditional
to I;. Given this equality in expectation, it is natural to ask whether (34) holds when
these two random variables are equal with probability one. The answer is affirmative,
since from (33):

B(t,T

Qur(t, T)E(t T)

S~—r

do(—z) = —dy(z) + _lLog

0T

Then, when the two random variables are equal: ®(do(—2)) = 1 — ®(dy(z)), which
ensures that (34) holds. We have therefore proven the following proposition:

Proposition 10 : In the framework of section 4, a sufficient condition for a sym-

metric volatility smile is the following identity :

pgz
3

Qxvy(t,T) =
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The details of the proof above suggest that the condition is not too far from being
a necessary and sufficient condition. It should also be stressed that, from (26), this
condition for symmetry is equivalent to:

T

BV = gy eeli =) 3 o

This equation corresponds to a CAPM-like stock pricing formula. Moreover, when
the symmetry condition of proposition 10 is fulfilled, d;(x) and dy(z) are preference-
free and coincide with the corresponding arguments of a Hull-White type option pric-
ing formula. The formula does not imply however that option prices are preference-

free. Indeed the option pricing formula becomes:

_ BT .
mw—E{B@ﬂ@umm—e@@@m}

Therefore, preference parameters may still appear through the ratio %(z—%. As already
explained in subsection 4.4 above, the natural way to obtain a true preference-free

Hull-White option pricing formula is indeed to impose the two following conditions:

(1) B(t,T) = B(t,T) and (i) Qxy (t,T) = 1.

In other words two kinds of “generalized” leverage effects may explain (besides the
instantaneous interest rate risk) asymmetric smiles: either a genuine leverage effect,
that is an instantaneous correlation between the return on the stock and its stochastic
volatility process, or a stochastic correlation between the return of the stock and the
total endowment of the economy. These results provide some theoretical foundation
to the observed asymmetric smiles and their empirically documented relationship with
the business cycle and interest rate movements (see for instance the survey by Bates
(1996)). More importantly, the new conclusion of our model for practicioners should
be that an asymmetric smile is indicative of the relevance of preference parameters to
price options. Indeed, our structural equilibrium model has shown that violations of
the symmetry condition in Proposition 10 (due to interest rate risk or the occurence
of a leverage effect in the general sense above) correspond precisely to cases where
preference parameters matter for option pricing.

Therefore, whenever an asymmetric smile is observed, the first issue to address is

to specify a list of state variables as well as a set of mean, variance and covariance
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functions conformable to B3. Since the process of state variables is a latent Markov
process, a natural candidate is the Markov switching model introduced by Hamilton
(1989) and applied to asset pricing by Cecchetti, Lam and Mark (1990, 1993) and
Bonomo and Garcia (1993, 1994, 1996). The standard procedures of estimation and
identification of such a model (Hamilton (1989), Garcia (1997)) can then be used for
the modeling of the bivariate process (X, Y).

The statistical procedure just referred to amounts to an unrestricted inference
procedure based on aggregate consumption and stock dividends. However, the equi-
librium pricing relationships for bonds, stocks and options constrain these dynamics
and suggest to look for a Markov switching process consistent with these equilibrium
relationships. This approach is in the spirit of Hansen and Singleton (1983), who esti-
mate a VAR process for consumption and returns constrained by Euler equations, and
Bonomo and Garcia (1996), who estimate a Markov switching model consistent with
CCAPM pricing relationships for stock and bond returns. What our model suggests
is that adding option prices to such relationships should be informative about both
laws of motion and preference parameters. This is in contrast with Merton (1990,
p. 282) who claims that: “...attempts to use the option price to estimate either ex-
pected returns on the stock or risk preferences of investors are doomed to failure.” Of
course, this citation refers to a world where option prices are preference-free, which
is different from our extended framework when leverage effects are at play and smiles
are asymmetric.

Our approach has to be compared with a recent trend in the literature called
implied binomial trees (Rubinstein (1994)). There is a formal similarity between
the two approaches, because in both cases we try to calibrate a binomial tree or a
discrete Markov process on the dynamics of option prices. However, while implied
binomial trees inferred in Rubinstein (1994) represent the local volatility of the un-
derlying asset, the riskless interest rate and the asset payout rate as a function of
the prior path of the underlying asset price, our implied latent binomial trees are
hidden Markov chains which correspond to violation 3 of the BS model in Rubinstein
(1994, p. 778): “The local volatility of the underlying asset, the riskless interest rate
or the asset payout rate is a function of a state variable which is not the concurrent
underlying asset price or the prior path of the underlying asset price”. We have

explained that this type of violation is useful since it maintains the homogeneity of
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option prices but of course we are led to follow the route of what Rubinstein calls
the unpalatable alternative of establishing an equilibrium model in which investor
preferences explicitly enter. We have argued that such a route is viable: once the
Markov process has been identified and estimated, it can be simulated to calibrate
preference parameters on our closed-form option pricing formula. Inferring the dy-
namics of fundamentals and preference parameters from option prices does not then
appear much more complicated than the usual Monte Carlo procedures used perva-
sively for extended BS pricing models. Moreover, implied latent binomial trees and
preference parameters should provide more stable option pricing and hedging than

standard implied binomial trees?® given their structural underpinning.

6 Conclusion

In this paper, we have specified a stochastic framework for the fundamentals which
produces, in a dynamic equilibrium asset pricing model, a homogeneous option pricing
formula. Since this homogeneity property preserves a Black-Scholes shape to our
generalized option pricing formula, it reinforces the robustness of the BS formula
and rationalizes the abundant literature that extends the BS model to improve its
usefulness for practitioners.

In general, through an instantaneous causality relationship between the market
portfolio or the stock price and state variables which affect the interest rate risk or
the stochastic volatility of the stock price, the option price depends on preference
parameters. The interest rate risk premium is not hidden in the market price of
long-term bonds and involves all preference characteristics (discounting, risk aversion
and intertemporal substitution), while the risk premium related to the volatility risk
or leverage effect only involves the risk aversion parameter. This last effect is purely
due to a covariance risk (in the spirit of the CAPM) and vanishes if the stock has
a zero beta with respect to the market. It is only in the absence of such instanta-
neous causality effects that our general option pricing formula specializes to the usual
preference-free option pricing formulas. When the processes of consumption growth
and dividend growth are not instantaneously caused by unobserved state variables,

we recover preference-free option pricing as if markets were complete and unambigu-

26Recent work by Dumas, Fleming and Whaley (1996) has shown that lack of stability is an
important drawback of the implied binomial tree methodology.
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ous arbitrage-based pricing was possible, as well as CAPM pricing for stocks. On
the other hand, when markets are genuinely incomplete, due to a leverage effect for
the stock or a similar effect for the market return, a causality effect appears and one
needs some assessment of the appropriate pricing of systematic volatility and interest
rate risks through attitudes towards risk and intertemporal substitution.

Even though the state variables are usually unobservable, our formula is of prac-
tical relevance in two respects. First, we have referred to Hamilton’s (1989) Markov
switching model as a tractable way to filter out these state variables from the data,
which makes our formula implementable. Second, we have shown that observed asym-
metries in the smile effect are directly related to the risk premiums associated with
correlations with these state variables, which make their presence essential to price
options more accurately and in particular to account for asymmetric smile effects
observed with BS implicit volatilities.

We have emphasized in section 5 that equilibrium conditions for option prices can
be informative to infer the laws of motion of the fundamentals and the preference
parameters. In particular, option prices appear to matter empirically to disentangle
risk aversion from intertemporal substitution in a recursive utility framework with
Kreps-Porteus preferences. A preliminary study?’ estimating Euler conditions with
various asset prices shows that the addition of first-order conditions related to options
leads to parameter estimates supportive of Kreps-Porteus preferences, contrary to
what is obtained simply with stocks and Treasury bills . Further simulation and
estimation work is warranted to confirm these results, but they point to the potential
usefulness of option prices to identify asset pricing models, an avenue which has been

overlooked in the literature.

2"In a previous version of the paper, we included a section entitled “GMM estimation of the
Recursive Utility Model with Option Prices” in which the equilibrium model was tested on a set of
Euler conditions with daily option data from the Montreal Stock Exchange. Further details can be
found in that version which is available upon request from the authors.
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Appendix 1

Proof of Proposition 1:

The price of the option can be rewritten as:

T (K) :B(lt,T)st/S£ @i g) dQ, <—>

Therefore:

b — B(t,1)S, [x™ —2dQ, (%1) ;

oK i

o — B, T)Qt[ S = sj‘

Proof of Proposition 2:
(i1)=(i)

Sy K\T'
t.T E* —
B(t,T)S; <St St>

The pricing function 7; would be homogeneous of degree one if multiplying K and

S; by a positive scalar A, m; would also be multiplied by A. Looking at the formula
above, this could be true as soon as the Q; probability distribution of the return %f,
with respect to which the expectation is computed, is independent of S;.

()= (ii)

By Proposition 1:

Qt &ZQT _ _ 1 87[_1&([(7515)7
St B(t,T) 0K
with: z = sﬁt
But if 7; is homogeneous of degree one, % is homogeneous of degree zero,
so that:

87'(}()\[(, )\St> . 87'(}([(, St) 87%(5%71) . 87(}(37,1)

oK 0K oK 0K
which depends only on z.
Therefore (), [ > a:} does not depend on S;.
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Proof of Proposition 4:

The equivalence between (A1) and (A1)’ is nothing but the characterization of
Granger non-causality in continuous time (from S to (r,¢)) provided by Florens and
Fougere (1996, p.1206). When these assumptions are maintained, we are able to
write:

dS;
S
where dW* is a standard Brownian motion independent of (dW" dWW?), and:
l Bur(1) 1 _ l L pe(t) 1 l por(1) 1
Bso (8) pro(t) 1 psa(t) |
and 7]2<t> :1_ﬂ§r<t> - ng <t> - 2pra<t)ﬂsr<t)ﬂsa<t>-
Assumption (A2) means that, given 7(.) and o(.),the process (S;) is a geomet-

= r(t)dt + o (t)Bsr (1)dWT (t) + 0 () Bso (L)W (L) + o (L) (£)dWZ (1),

ric Brownian motion. This means that the trend and the diffusion terms of %Sf are
deterministic functions of time (given r(.) and o(.)), that is V[r(.),o(.)]— measur-
able. Since V[r(.),o(.)] and V[S] are assumed to be measurably separated given
V([r(t),o(t)], this means that the trend and the diffusion terms of dS—Sf are determinis-
tic functions of (r(t), o (t)).Taking into account the above expressions for these terms

and assumption (A1) about p,,,we conclude that (A2) is equivalent to (A2)’.

Proof of Proposition 5:
Let us define: 7, = (X,,Y}), 7 = (X, Y7 ) 1<r<t-

By assumption By :

T
[[axviul) = ezfo))
t=1
ozZL Uy T 02, Ul 20 Ue Y
ooy (ut)
_ L vz UYL (4l 20 07)
(ut) '

Under assumptions By and B, :

(U201 Ur Y = UJUF ) (assumption B1),
UZ )28 1 UD = 6 2,|UY) (assumption B2).
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Then:

E U |U 1
[[ex ol = t’ : Hé Z|U7)

T

= [, viloy).

t=1

Integrating over (X,,Y;),7 # t, it can be seen that, under assumption B2, As-
sumption B1 implies B1’. Conversely, if assumption B1’ holds together with B2, then

it has been seen above that by assumption B2:

T T

t=1 t=1

But it is also true that:

020,00 = «uhuz|oy),
T T

= Hﬁ(UtlUltfl) HE(Zt]UlT), by assumption B2
t=1

T T
= Hﬁ(Ut]Uffl) Hﬁ(ZtlUlt), by assumption B1’.

t=1 t=1
Comparing these two expressions for ¢(Z] U[') it can be seen that:

T T

[[cwizi Y = [ ewdui™.

t=1 t=1

Applying this recursively for T=1, 2, 3 and so on, we obtain that:
YU 2y U Y) = (U UT ), vt
which is Assumption Bl.

Proofs of Propositions 6 and 7:

a) Proposition 6:
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The conditional expectation (11) is computed under the probability distribution of
X1, L1 given (X, Y;)-<; and U{ that is basically (X1, Yiq1,Uryry given (X1, Y, UY).

But with obvious notations:

g[XtJrl; }/t+17 Ut+1’Xf7 }/1t7 Uﬂ = g[UtJrl’Xf? Yltu Uﬂ'g[XtJrl; }/tJrlle? }/1t7 Uerl]
= g[UH‘l’Uﬂ‘g[XH“lJ}/15+1’Uf+1]7

by application of respectively (B1l) and (B2). Therefore:

O X1, Yerr, U | X1, YL, UL = 01X i1, Yy, U [UR),

and the conditional expectation (11) depends on I; only through Uf : A(1;) = A\(UY}).
A similar argument can be applied to (12) after replacement of Ay 1and A, by A(UF™)
and A(UY}).

b) Proposition 7:

From Proposition 6 and (16), it is straightforward to check that Bl (resp. B2)
implies the discrete time analogue of Al (respectively A2). To obtain the converse of
these implications, we have to prove that (Al) together with (A2) imply that A(Z;)
and ¢ (I;) depend on I[;only through Uf. This is obtained by a proof fully similar to

the proof of Proposition 6, since, thanks to (16) it is equivalent to think about the
joint probability of (X,Y,U) or (M,R,U).

39



Appendix 2

We derive in this appendix pricing formulas (20), (24) and (27), for the pricing
probability measure, the stock and the call option respectively. We know from equa-

tion (18) that the call option price can be written as the difference of two terms

Gy — H;,where:

Gt:Et

t

C a—1
g <FT> atT(V)STl[SWK]]

and:

Ht - KEt

- C a—1
g <FT> atT(W)l[SwK]]

t

‘ o1 [(aa@m+y 17!
with:af (7) = [[,_, [(T((Uf])_)} '

To arrive at formula (27), we need to show that:

Gi = SiE[Qxv (t,T)®(d1)]

Hy, = KE(B(t, T)®(dy)]
The second result is obviously equivalent to formula (20) (see the argument at

the beginning of subsection 4.1), while the first will provide as a by-product formula
(24). Indeed, in the particular case K=0:

C a—1
G, = B, ﬂV(Tft) <FT> atT(W)ST

t

and therefore the first result gives:

St = Sebi[Qxy (¢, T))

that is formula (25), which is equivalent to (24).
We therefore concentrate on proving the two above expressions for Gy and H;.

First, given that:
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C T
T
10ga = E XT,

T=t+1

and:

Sr e | v
log — = log + § Y-,
St p(U1) T—t+1

G; and H; can be rewritten as:

Gt ( ) @(UT> - X -
_ = E /B,Y Tt G,T 1 eXp o — 1 T + }/T 1 ) ]t
S, t t (’7) @(Ult) [( ) th;rl th;rl ) o7 i1 Yr>log s% w((gf))]

T
- (T-t) , T —
Hy = Et{ﬁV af (Yexpl(a —1) ) Aellisr v ]}

)
Slog KL 220
T=t+1 ST 4

By the law of iterated expectations:
E(.) = E[E(|U7)],

we are led to compute some expectations of the form Elexp(Z1)1z,>q], where (Z1, Z5)'

is a bivariate Gaussian vector. We therefore establish the following lemma.

Lemma : If gl > s a bivariate Gaussian vector, with:
2
Z1 . ma Z1 . w% PL1Wr
o(%) =0 ) v (%)= (ol 5

Elexp(Z1)1 ., ] = exp[mi1 + %12-](1)(%22 + pwi), with @ the cumulative normal distri-
bution function.

a) Proof of the Lemma:

El(exp Z1)(11z,50))] = Elexp(Z1 — p&tZs) exp(p Z2)1(2,50)]
= Elexp(Z1 — p2LZ5)| Elexp(p2t Z2)112,50)]

= exp(m1 — p2tmy + 3 [w} — pwi]) Elexp(Z)1125]

where:

Zros R]p£imy, p*wi] = Rm, 0] (assuming p > 0).
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1

Ele?1250] —fo Z(2m0?) " Ze %0 Hz(Z=m)?
= 0 (2%0) 26 — iy [Z22—2mZ - 2207 +m?) 5oz
= 0 (27T(7) 2@ 202[22 (m+o?))? e 2o L [m?—(m+a?)? 147
—¢ 22[2m070]Prob{N[m+U,U]>O}
— T2 4 )
= P CID(—Z + pwi)
Using this expression in the previous equation, we finally obtain:

w2

1m2
—|d(—= + pw
](2 Pl)

El(exp Z1)(11z,0))] = exp[m; + 5

Clearly, the result carries through for p = 0.
If p < 0,we obtain:

w1 m+ﬁ m
E[eXp<pw_2Z2)1[ZQZO]] = Elexp(Z)1jz<q)] = €™ @(—; —0)

with:o = —pw.

The result is therefore unchanged.

b) Proof of the formula Gy = S, Fi[Qxy (¢, T)P(d})]
We apply the above lemma with:

Zy = (a-1) ) X+ > Y, (35)

T=t+1 T=t+1

B AT)
4= 3 v stsowf)

T=t+1

We know that, given Ul | (Z1, Z)' is a bivariate Gaussian vector with the following

moments:

T T
my = (a—1) Z mx. + Z my,

T=t+1 T=t+1
K o(U5)
my = my, — log —
th;l St <70<UT>
w% = Oé—l ZUXT+ZUYT+2a_1 ZO_XYM
T=t+1 T=t+1 T=t+1
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T=t+1
T T
2
pwiwe = (a—1) § oxyr + E Ty
T=t+1 T=t+1

Therefore, by application of the lemma:

B lexpl(a = 1) S0 oy Xo+ S0 Yol s lUT | = expl(a = 1) 27 mx, +
ZLH my, + %<O‘ —1)? Zfzm 0 xr + 5 ZT:t+1 o’yr +(a—1) Zim Txyr)]
! [(zftﬂl A S 02”1

with: A, = Zzztﬂ my, — log Sﬁt%gj% +(a—1) Zzztﬂ Oxyr.

It is worth noticing at this stage that:

S’
5 [207] = 20 e 3 42 3 ot
¢ T=t+1 T=t+1
and in turn:
S, T
A = logB l—]UT] HgSt o) Y =1 Y o7,
T=t+1 T:t+1
S tT) 1 «
= pog 2o bT) L5~
KB(t,T) T=t+1
Therefore, the above application of the lemma proves that:
G _
gt = BAS" Val(y)explla—1) Y mx, +
¢ T=t+1
Oé—l Z UXT Oé—l Z UXYT [ ’U{} @(dl)}
T=t+1 T=t+1
where:
1 S LT) 1
dy = =7 ST |08 thY( )—I-— Z O_QYT]
(X1 0%vr)? KB(,T) T=t+1

In other words, we have proven that:
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Gy
E =F, [QXY(tuT)(I)<d1)]

which is the required result.

c) Proof of the formula H, = KE,[B(t,T)®(dy)].
We apply the lemma with:

T
Zy o= (a=1) ) X,
T=t+1
- K o(Uy)
Zy = Y, —log —
’ th;rl Sep(UT)

Therefore, (ms,ws) are unchanged with respect to the case b) above, but now:

pwws = (a—1) Z Oxynr.

Therefore, by application of the lemma:
E [eXPKO‘ —1) Efzm XT]]‘[STZK]’UIT} = exp[(a —1) ELH mx, + %(O‘ - 1)2 Zim UQXT]

d|l—L——A
l(szﬂyﬁ t]
By the same argument as above, we then obtain:

—-p, {m(T%m expla—1) 3 my, + 30— 17 ) 02X71¢<d2>}

T=t+1 T=t+1

T 1
(ET:t+1 O_QYT) 2
5 .

dy =dy —
This provides the required result:

H, = KE[B(t,T)®(ds)].
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Appendix 3

Proof of Proposition 8:
We first check that, for any given value of o,the function 7(.) = BS(., ) fulfills

the announced property:

Indeed, from (28) and (31):
BS(z,0) = @[di(z,0)] — e “@lda(x, 0)],

with: dy(z,0) = £ + £ dy(x,0) = £ — Z.

But: ®[dy(—z,0)] = ®[—di(z,0)] = 1-Pld1(z, 0)],and: Pldi(—=x,0)] = P[—da(x,0)] =
1 — ®[dy(z,0)].

Therefore:

BS(—z,0) = ®[di(—=x,0)] — " @ldy(—z,0)]
= "®ldy(z,0)] — Plde(z,0)]+ 1 —€”
= €'BS(z,0)+1—¢".

Let us now consider another homogeneous option pricing formula z — 7(z). The

associated BS implied volatilities are then defined by:

Therefore, for any x:



Proof of Proposition 9:

a) First, we prove that the criterion of Proposition 8 is equivalent to the property

(1) of Proposition 9. We know by proposition 1 that:

or ST K
% - Oro 2
Sr(SuK) = BT > ¢
= _B<t7T)[1 - FVT<_$)]'
Since, from (31):
on 0 K K 0

we have, for any x :

on o
2 ) = e[t = Fiy ().

Therefore, the propery (i) of Proposition 9 may be rewritten as:

m(x)=1-— emg—Z(—a:) — g—Z(a:)

or equivalently:

o m or
—g(-ﬂ?) = e”[n(x) + ﬁ@j) —1].

This last equality is obviously a corollary of proposition 8 obtained by taking the
derivative with respect to x of the identity in Proposition 8. Conversely, this equality

implies that for any x :

T = [ e + )

This equation will provide the criterion of Proposition 8 if we are able to complete it

by the following limit condition:

lim 7(—z) = lim [e"n(z)+1—€"].

x—+00 x—+o00

Therefore, the required equivalence will be proved if we show that this limit con-

dition is always guaranteed. But, on the one hand:
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lim 7(—z) = lim 7(x)

x—+o00 T——00

= lim B(t,T)EfMaz[0, Sy — K] =0

K—+o00
by virtue of the Lebesgue dominated convergence theorem since:Max[0, Sy —

K] —x 1o 0 almost surely and 0 < Max[0, St — K| < Sy, which is by assumption
integrable with respect to the pricing probability measure. On the other hand:

o : 1 x x
mETOOe m(z) -1 +1 = 1+ Klgrol+ m{B(t,T)Et Max[0,S7 — K| — B(t,T)E; Sr}

1
= 1+ lim ?E;‘Maa:[—ST,—K]

K—0t
~ - lim B Min[2L

1
K—0+ K ]

= — lim E;Mm[%—m]:o

K—0+
by virtue of the Lebesgue dominated convergence theorem since: M zn[% —1,0] —x_o+
0 almost surely and 0 < —]\hn[ﬁKZ —1,0] < 1. This proves that: lim, . 7(—2x) =
0 = lim, oo [€*7(z) + 1 — €”] and completes the proof of the required equivalence.
b) We now check that properties (i) and (ii) of Proposition 9 are equivalent. The
general definition (1) of the pricing probability measure implies that:

7Tt<St7 K) = B(t,T)E: [ST]-[STZK] - B(t,T)KQt[ST Z K],
that is, after dividing by S; :
7T<a:) = E: [€VT1[VTZ*$]] - eim[l - FVT<_$)]
By identification of this formula with condition (i), we see that (i) is equivalent
to (i1).

c) Finally, we prove that conditions (i) and (iii) are equivalent. By taking the

derivative of (i), we obtain:

g_j?(aj) = fVT(aj) - eimeT<_aj) + 6*13[1 - FVT(_aj)]'

But, since by part a) of this proof:
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o

g(a?) =c¢ "[1 = Fy (-]

we conclude that (i) implies:

fVT (aj) = eimeT<_x)

or:

G%fVT@j) = eingT<_aj)

which means that the function x — e fvi(x) is even, which is exactly condition (iii)

of Proposition 9. Conversely, if this condition is fulfilled, we have, for any x:

€T

+o0 +o0
frvp(w)du = / e fyp (—u)du.

This equation will provide property (i) of proposition 9 if we complete it by the

following limit condition:

lim 7(z) = lm [Fy(z) —e *[1 — Fy.(—x)]].

x—+00 x—+00

Therefore, the required equivalence will be proved is we show that this limit condition

always holds. But it is clear that:

lim [Fyv,.(z) —e *[1 — Fy.(—2)]] = lm Fy.(z) =1

x—+00 x—+00

and that :lim, 1. 7(z) = 1, since we have already shown in part a) of this proof

that: lim, ,,, €®[7(z) — 1] = —1. This completes the proof.l
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