CAHIER 1997

TESTS OF CONDITIONAL ASSET PRICING MODELS
IN THE BRAZILIAN STOCK MARKET

Marco BONOMO" and René GARCIA’

Pontificia Universidade Catdlica do Rio de Janeiro

Centre de recherche et développement en économique (C.R.D.E.) and
Département de sciences économiques, Université de Montréal, and CIRANO

October 1997

Financial support by the PARADI Research Program funded by the Canadian
International Development Agency (CIDA) is gratefully acknowledged. Excellent research
assistance has been provided by Stéphanie Lluis.



RESUME

Dans cet article, nous testons une version du CAPM conditionnel par rapport au
portefeuille de marché local, approximé par un indice boursier brésilien, au cours de la
période 1976-1992. Nous tenons également un modele APT conditionnel en utilisant la
différence entre les taux d’intérét sur les dépdts de 30 jours (Cdb) et le taux au jour le jour
comme deuxieme facteur en plus du portefeuille de marché pour capter I'important risque
inflationniste présent durant cette période. Les modéles conditionnels CAPM et APT sont
estimés par la méthode généralisée des moments (GMM) et testés sur un ensemble de
portefeuilles construits selon la taille a partir d’'un total de 25 titres échangés sur les
marchés boursiers brésiliens. L'incorporation de ce deuxieme facteur se révéele cruciale

pour une juste valorisation des portefeuilles.

Mots clés : CAPM conditionnel, APT conditionnel, efficacité des marchés, risque et

rendements variables dans le temps

ABSTRACT

In this paper, we test a version of the conditional CAPM with respect to a local
market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We
also test a conditional APT model by using the difference between the 30-day rate (Cdb)
and the overnight rate as a second factor in addition to the market portfolio in order to
capture the large inflation risk present during this period. The conditional CAPM and APT
models are estimated by the Generalized Method of Moments (GMM) and tested on a set
of size portfolios created from a total of 25 securities exchanged on the Brazilian markets.
The inclusion of this second factor proves to be crucial for the appropriate pricing of the

portfolios.

Key words : conditional CAPM, conditional APT, efficiency of markets, time-varying risk

and returns



1 Introduction

Since the beginning of the nineties, the Brazilian stock market figures promi-
nently among the star performers of the so-called emerging markets. A bright
future seems also in store for this market if one considers the considerable
inflows of capital that followed the successful recent “Real” plan. It seems
worthwhile at this turning point in the Brazilian economy and in its financial
markets to take a close look at how predictable risk and returns have been
on the stock market in the last twenty years or so (between 1976 and 1992).

A first look at the unconditional moments of the returns series for the
stock market index taken from the IFC Emerging Markets Data Base and
reported in Table 1, shows an average return in US dollars of 21.15% and an
average excess return in local currency of 28.82% . By industrialized country
standards, these returns are high. However, as fundamental asset pricing
models such as the CAPM or the APT tell us, high expected returns ought
to be associated with high measures of risk with respect to a number of risk
factors. One would therefore want to identify the set of fundamental sources
of risk that affect the returns in this market. According to the CAPM, the
expected return on a portfolio of assets is a function of the covariance of the
portfolio return with the market portfolio return. Two different views can
be taken however when selecting this market portfolio: one can consider that
the Brazilian market is segmented and concentrate on local risk factors to
explain local returns, or one can adopt the perspective of an international
investor diversifying his portfolio worldwide. If enough investors diversify
internationally their portfolios, the market will move towards integration,
and expected returns in Brazil will be well described by the country’s world
risk exposure, the covariance of the Brazilian stock returns with the world
market portfolio. This is the view taken by Harvey (1995) in a recent study
on emerging markets. The author tests a dynamic factor asset pricing model
in which the risk loadings are measured with respect to the world market
return in excess of a risk-free asset return. Moreover, these risk loadings are
allowed to vary through time. This feature is clearly essential in the context
of emerging markets where the internal dynamics underlying the country’s
returns index along with unstable macroeconomic and political conditions
can bring considerable variation in the factor loadings. The results for Brazil
show that the beta with the world market return is not significantly different
from zero and the unexpected part of the world risk premium is related to



local market information such as the local dividend yield or a local interest
rate. This suggests that the Brazilian market is either completely segmented
from or partially integrated with the world market.

Therefore, in this paper, we adopt the view according to which the Brazil-
ian stock market is segmented and test a version of the conditional CAPM
proposed by Bodurtha and Mark (1991) with respect to a local market port-
folio, represented by the Brazilian stock index in the IFC database. The
conditional CAPM is tested on a set of size portfolios created from a total of
25 securities exchanged on the Brazilian markets. In this CAPM model, as in
Harvey (1995), the beta of a portfolio of assets is defined as the conditional
covariance between the forecast error in the portfolio return and the forecast
error of the market return divided by the conditional variance of the forecast
error in the market return. In Harvey (1995), the returns are projected over
a set of instruments in the information set of the investors. The distinc-
tive feature of the model tested in this paper is that both components of the
conditional beta are assumed to follow an ARCH process, a concept of condi-
tional heteroskedasticity introduced by Engle (1982). This modelling choice
can be rationalized in two ways. First, looking at the statistics in Table 1,
one sees considerable autocorrelation in the squared market returns series,
indicating the presence of ARCH effects. Second, the use of autoregressive
processes might provide estimates that are more robust to structural change.
Ghysels (1995) and Garcia and Ghysels (1996) show that models similar to
Harvey (1991, 1995) or Ferson and Korajezyk (1995), where the returns are
projected on a set of variables belonging to the information set such as a
term spread, a risk spread, or a dividend yield, suffer from instability in the
projection coeflicients and therefore lead to systematic mispricing of the risk
factors. By using the autoregressive structure, we hope to better forecast the
returns and their variances and covariances. A shortcoming of our approach
is that it assumes a fixed regime of segmentation throughout the period. The
concept of time-varying integration proposed by Bekaert and Harvey (1995)
addresses this shortcoming, as well as the problem of projection coefficient
instability.

Since our period of estimation covers lapses of very high inflation (up to
30% a month), we also estimate an APT model using the excess return of a
30-day bond over the overnight rate as a second risk factor. The bond return
should have a strong negative correlation with inflation surprises, and because
of the high volatility of the monthly inflation rate during this period should



capture an important risk factor!. This model offers the best estimates of the
betas both with the market portfolio and with the 30-day bond. As predicted
by the theory, the average market betas are increasing with the portfolio size.
The average 30-day bond betas are negative for all portfolios. Since the excess
return for those bonds are negatively correlated with inflation surprises, this
indicates that the performance of those portfolios are positively affected by
inflation innovations, with the big firm portfolio offering the best insurance
against inflation. As a diagnostic test of this last and most complete model,
we verify ex-post if the residuals are orthogonal to various variables in the
information set of the agents. For example, we verify if the residuals are
orthogonal to a January dummy to account for a possible January effect
put forward in the US market studies, or to a dividend yield or lags of the
risk-free asset.

The rest of the paper is organized as follows. Section 2 presents the
conditional CAPM model, its econometric specification, and the estimation
results. Section 3 mirrors section 2 for the APT model and ends with diag-
nostic tests of the model specification. Section 4 concludes.

2 The Conditional CAPM

2.1 The Model
The conditional CAPM can be stated as follows?:

Eri (8) 1] = Bk [ras (1) |€0] (1)

where 7; (t) is the one-period return on portfolio 7 in excess of the risk-free
asset return, 7 (t) the excess return on the market portfolio, and 3; is given
by the following expression:

"'We chose to use a 30-day bond because this is the longest maturity bond that was
traded in the domestic market during the whole period.

2This equation can be deduced from the fundamental pricing equation:
Elry(t)rp(@)|€%] = 1, which is valid under the absence of arbitrage or as a first-order
condition of an equilibrium model (see Duffie [1996], Chapter 1).



Cov [r; (t) ,rar (t) |Q]
Var [rar (0] )

Bit =

In this version of the CAPM, all moments are made conditional to the
information available at time t represented by the information set Q;. Many
asset pricing studies on the US stock markets (Ferson and Harvey (1991),
for example) have shown that allowing the moments to vary with time is
essential, since there is evidence that both the beta, the ratio of the covariance
to the variance, and the price of risk F [ry (t) |2 are time-varying. This is
even more essential in emerging markets, where unstable macroeconomic and
political conditions can translate into considerable variations in the factor
loadings. To put model (1) into an estimable form, we decompose the returns
into a forecastable part and an unforecastable part, namely:

ri(t) = Eri (8) 9] + wi(t) (3)

() = B rar(t) Q] 4+ uar(t) (4)

where u;(t) and wu,,(t) are forecast errors orthogonal to the information in
;. Equation (1) can therefore be rewritten as follows:

Bl ) 0] = 2 g@” lzgf%’?” B rar (1)]2] 5)

To obtain a set of moment conditions suitable for GMM estimation, we
need to specify parametric models for the expectations on the right hand
side of (5). As mentioned in the introduction, following Bodurtha and Mark
(1991), we choose to specify autoregressive processes for each of the expec-
tations:
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E Juas (8) 1] = 8o, + ; Sjarunt (t = J)? (6)
B [ (8) unr ()2 = 6o, + Zéu (t — ) (2~ j) (7)
B [rar (1) 9] = oy, + zMgaerM (t — ) (s)

The number of lags ka2, k;, ka to be included in each of the equations
above remains an empirical issue, given the constraint imposed by the number
of available observations. The final form of the moment conditions that will
be used for GMM estimation can therefore be written as follows:

rac (1) = oy + 35 agyra (= 5) 4w (2)
g (87 = G0y + 252 Spunr(t — 5)2 + v (8)
w; () ung (8) = 6o, + S8y Sj5ui (6 — ) uns (6 — §) +vm(t) i =1,..., N

5Oi+zj1:1 S5ui(t—7)upr (t—7) [

T (t) =
' ( ) 50M+Zji412 Sjppunt (t=4)°

OéOM —I— Zfi/jl OéjMTM (t — j)] —I— U,Z<t),l = 1, ,N

(9)
where v;(t) and v;,(t) are the conditional forecast errors corresponding
to the second-moment conditions.

2.2 Estimation method

The model of the last section is estimated by the Generalized Method of
Moments (GMM), a method introduced by Hansen (1982). To implement
the method, one needs to specify a set of instruments for each equation in



system (9). The system has 2(N+1) equations, where N is the number of
risky assets or portfolios. Suppose, for simplicity of exposition, that we have
the same number of possibly different instruments for each equation, say q.
Following Hansen (1982), we call f,(3) the vector formed by stacking the
Kronecker products of each forecast error €,¢,1 = 1,...,2(N 4+ 1) with the sets
of q instruments, i.e. a vector of [2(N+1)®q] x1:

fe(B) = [e: @ Z{] (10)

where we have stacked in 7Z; the sets of instruments 21¢, 29, ..., 2+ and where
[ contains all the parameters of the model. As instruments, we choose the
particular variables used in the projections to compute the forecast errors.
For the forecast errors uy;(t) and u;(t), one constant and ks lags of the mar-
ket excess return have been used. For the other forecast errors corresponding
to the asset covariances and market variance, we use respectively k; and k2
lags of the dependent variable.

Since ¢, is a vector of forecast errors, the expectation of fi(3) evaluated
at the true value of the parameters 3y must be zero. The GMM estimator is
given by:

b = arg min l%ift(ﬁ)] | et l%iﬂ(ﬁ)} (11)

where X' = %Zthl ft(b)ft(b)/. To carry out the estimation, we use a two-
step procedure, with an identity matrix for X first and then a consistent
estimate based on the Newey-West method (Newey and West, 1987). To test
the model, we use the J-statistic, which is T times the value of the minimized
value of the function. This statistic tests for the overidentifying restrictions
imposed by the model. Under the null of a correctly specified model, this
statistic is distributed asymptotically as a chi-square with 2(N+1)xq-(V (k; +
1)+ 24 kp + kasz) degrees of freedom.

To apply the GMM method, the projection variables used for the first and
second conditional moments of the returns are lagged values of the depen-
dent variable in each equation. Another common method is to use variables
such as a lagged risk or term spread or a dividend yield variable. All vari-
ables are good candidates since they are in the information set but we believe
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that using autoregressions for both the first and second moments could pro-
vide estimates that are more robust to structural change. In Ghysels (1996)
and Garcia and Ghysels (1996), it is shown that structural stability tests
often reject models that pass the J-test where projections are made on other
economic variables.

2.3 Data and Estimation Results
The TFC Emerging Markets Data Base of the World Bank provides data

on stock prices and other financial variables for both the stock index and
individual stocks in a series of developing and newly industrialized countries.
For the sample of individual securities provided for Brazil, we selected a total
of 25 common shares (see list of securities in Appendix 1) which were listed on
the IBOVESPA stock exchange from 1976:1 to 1992:12. To test the model of
section 2.1 we could theoretically use the returns on the individual securities,
but for estimation purposes we have to limit the number of parameters.
We follow common practice in grouping the securities into portfolios and
testing the model on a small set of portfolios. Given the limited number
of available firms, we decided to form three size portfolios, where size refers
to the capitalization value of the firms. We create these portfolios by first
value-ranking the returns of the individual equities in each month and then by
separating the returns into three size (value) quantiles. Within each quantile,
we weight each return by the capitalization value of the firm relative to
the total capitalization value of the firms in the quantile. The returns are
computed in the local currency, the cruzeiro, in excess of the overnight rate.

Table 1 provides some sample statistics on both the returns and the ex-
cess return series for the Brazilian stock index. Although the mean of the
raw local currency return series is quite high (159% in annualized returns)
because of the high inflation that occurred during our sample period, the
mean excess return is of the same magnitude as the mean return in US dol-
lars. The squared series show a very strong autocorrelation, a usual feature
in financial time series. All series depart also strongly from normality, as
indicated mainly by the excess kurtosis statistic.

Table 2 reports some basic statistics for the three portfolios. Portfolios 1,
2, and 3 represent the small, medium, and large firms respectively. As can
be seen on Table 2, the mean of the portfolios increases with size, while the
variance decreases with size. This would not be compatible with an asset



pricing model where risk would be measured by the variance of an asset or
a portfolio, since a higher risk should lead to a higher return. It is however
compatible with the CAPM model since the expected return would be lower
for a small firm portfolio than for a large firm portfolio, because the small
firm returns covary less with the market than the returns of the large firms.
Therefore the small firms have an insurance value and investors require a
lower return in equilibrium.

Figures 1 and 2 show the graphs of the market excess return series and
the three portfolio excess returns series respectively. All graphs show the
presence of strong autoregressive conditional heteroskedasticity. To start
however, we estimate the simplest model, a constant beta CAPM, where all
parameters in (9), except g do,,,,(i = 1,2,3) are constrained to be zero.
Estimation results are reported in table 3. Although the model cannot be
rejected according to the overidentifying restriction criterion J, with a p-value
close to 86%, one should be careful about this result. Since the number of
moment conditions is large with respect to the number of observations, the
conventional asymptotic inference might lose its validity (see Koenker and
Machado (1996)?). The calculated betas are reported in Table 7. The higher
mean return of portfolio 3 can be rationalized by its substantially higher 3
1.6, compared to values close to one for the two other portfolios.

Next, we introduce lagged terms in the mean, variance and covariance
equations to estimate a conditional form of the CAPM. The specification
chosen allows for ARCH effects in the market variance (a feature strongly
present in the data) and in the portfolio covariances with the market. It
is rich enough to test for restricted versions of interest, such as a constant
beta model, a constant market price of risk or a constant conditional market
variance. We have limited the autoregressions to a maximum of two lags
in each of the equations. Overall, there are 14 parameters for 24 equations,
which implies a x%(10) distribution for the J-test statistic. This specification
is similar to the specification used in Bodurtha and Mark (1991). The para-
meter estimates for the Conditional CAPM with ARCH effects are shown in

3They show that for the estimation of a linear model with general heteroskedasticity
that q5/2/n — 0, where ¢ is the number of moment conditions and n the number of
observations, is a sufficient condition for the validity of conventional asymptotic inference
about the GMM estimator. Indeed, using only 8 moment conditions (with only a constant
as instrument), we obtain a p-value of 0.05 for the J statistic and the t-values drop to
magnitudes of 3 and 4.



Table 4. Although all parameters estimates seem to be significantly different
from zero, except in the conditional mean equation, the warning about the
high number of moment conditions should be kept in mind. The mean betas
(reported in row 2 in Table 7) seem too high, since they are all greater than
1.

To test for the restricted versions of the model mentioned above, we per-
form Wald tests. For the constant beta model, we test whether all parameters
but the constants in each equation are equal to zero. The Wald statistic in
this case will be distributed as a x?(10) variable. For the fixed market price
of risk, we test whether the coefficients other than the constants in the mar-
ket conditional mean and variance equations are zero. This is a x?(4) test.
Finally, the test for a constant conditional market variance is a test for the
equality to zero of §13r and Sapr, which is a x%(2) test. All these restricted
versions of the model are overwhelmingly rejected (at less than 0.01 in all
cases). The high values of the mean betas and the time series behavior of
the portfolio betas (shown in figure 3) suggest that an important risk dimen-
sion could be missing in the model. Indeed, the portfolio betas appear, if
anything, to be more volatile during the first half of the sampling period,
while the returns are much more volatile during the second half. Since Brazil
was affected by a high and variable inflation especially during the second
half of the period under study, we explore in the next section a conditional
two-factor model, where the second factor aims at capturing the inflation
risk.

3 A Conditional Two-Factor Model

In this section we formulate and estimate an extension of the conditional
CAPM estimated in section 2, where a second asset (a nominal bond called
CD) is added as a second risk factor. Since the nominal return of this asset is
fixed for a month, its real return is affected by the unforecastable component
of inflation. It will therefore capture an important original risk factor in
a high inflation economy, which would not be reflected fully in the market
portfolio because its return is not fixed. This second factor contains also a
real interest rate risk, associated with an unexpected change in monetary
policy, but we believe that the variability of inflation is such that most of the
nominal interest rate risk is due to inflation risk.
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3.1 The Model

We assume the following conditional two-factor model for excess returns:

Elri (1) %] = Bine () E [rar (1) 1] + Bir (V) Elre(t) | (12)

where 7p is the excess return of the thirty-day CD over the overnight
rate. We assume that the factors are conditionally uncorrelated and obtain
the following expressions for the conditional betas:*

Covg[r;(t), mar(t)| ]
Vardrar(t)|Q]

Covg[ri(t), rp(t)|]
Varrp(t)| Q]

Bina (1)

Gir(t) =

While keeping the decomposition of the market portfolio return in (4), we
also breakdown the return of the CD into a forecastable and an unforecastable
term:

rp(t) = Elrp(t) | Q] + ur(l) (13)
Then, the betas can be rewritten as follows:

Elus(Duar(t) |

Gim(t) =

Bl (1) | ]
Elus(H)ur(t) | ]
ﬂzF<t> E[UF<t)2 ’ Qt]

4This assumption simplifies the expressions and reduces the number of parameters to
be estimated but also seems to be supported by the data. The unconditional correlation
between the factors found in the data is low (-0.08), and the projections of the cross-
products of the error terms uy;; and wp; appear to be orthogonal to various variables in
the information set.
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We maintain the autoregressive specification of section 2 for the condi-
tional expectation of the market return, for the conditional variance of the
forecast error and for the conditional covariance between the forecast errors
in predicting the market portfolio return and each individual asset return.
Similarly, we also specify an autoregressive process for the additional vari-
ables that appear as a consequence of the addition of a second factor:

Elre(t)|Q] = OéOM—I-ZF:OéjMTF(t—j)

J=1

kg2

Elur(t)’|Q] = &or + Z Sinur(t — j)°

=1

Blus(Qur(DI] = Sip+ - St — )

=1

We finally obtain the following moment conditions for the GMM estima-
tion:

rar (8) = oy + S5 gy rar (= §) 4 uar ()
Ung ()7 = S0y + T2 85 uns (= )% + var ()
TF<t) = Qop + Zfil OéjFTFO/L - ]) + UF<t)
up(t)? = 8o, + S5 6jpup(t — 5)% +vp(t)
w; (8) wng (8) = b0iyy + S5 jiggtis (= ) uns (= 5) + vim (), i =1,..., N
wi(Lyup(t) = oip + 00 8jipua(t — lup(t — §) +vip(t) i =1,.., N
80ipg + DM 60 i (t— 5 g (t—5) .
- (i S e 17) ows st 5)
<5OiF+Z§iF1 8jipui (t—7)up(t—7)

ka2 )
<50F+Zji41 ‘5J‘F“F(t73)2)

(o + STy agre(t = §)] + w(t),i =1, N

(14)

12



3.2 Estimation Results and Comparison

As before, we first estimate a model with constant factor loadings where all
parameters, except the ones with subscript zero, are constrained to be zero.
Table 5 reports the results. The magnitude of the covariance parameters is
small in absolute value, due to the small variance of the CD excess return, but
large in relative terms: the CD betas of the second and third portfolios (re-
ported in Table 7) are -5 and -30, respectively. Their negative values and the
pattern followed by their magnitudes, which increases with the capitalization
value, indicate that the high-value portfolios offer the best hedge against the
inflation risk. It should be noticed that, by adding a second factor, all the
market portfolio betas become slightly lower than one. As mentioned before
in section 2.3, the p-value of the J-statistic is overinflated given the large
number of moment conditions used in the estimation.® Table 6 reports the
estimation results of the conditional two-factor model with ARCH effects.
The results show that ARCH effects play an important role. First, it should
be noticed (in Table 7) that the average market portfolio betas change in an
important way: they are now all less than one and they increase with the size
of the portfolio. The market beta for the large firm portfolio is almost twice
as big as the one for the small firm portfolio. The time-varying betas are
plotted in Figures 4 and 5. The betas of the three portfolios with respect to
the market portfolio become much more volatile after 1987. This coincides
with a period of higher and more volatile inflation, suggesting that the ARCH
effects are important mainly because of the volatility of inflation. This is in
contrast with the variability of the betas produced by the CAPM model (see
figure 3), where no clear pattern emerges. Because of the lack of reliability of
the J-statistic with these many moment conditions, we perform in the next
section various diagnostic tests on the residuals to assess the adequacy of the
model.

3.3 Diagnostic Tests

We have already mentioned that the J-statistic could be misleading because
of the large number of moment conditions used for estimation compared with
the available number of observations. Yet, many more orthogonality condi-
tions could be used for estimation that would be consistent with the impli-

5Using only a constant as instrument, the p-value of the J-statistic falls to 0.16.
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cations of the asset pricing models we are testing. Newey (1985) proposed a
test (called CS test) of orthogonality conditions not used in estimation but
implied by the model. Intuitively, this test verifies whether the residuals in
the various equations used for estimation are orthogonal to other variables
in the information set that have not been used as instruments. It can there-
fore be seen as a diagnostic test of the specification maintained as the null
hypothesis.
The CS statistic is computed as follows:

CS =T [Lygr (br)) Q7" [Lrgr (br)], (15)

where:
9T<bT) = [91T<bT)/92T<bT)/]/

with: ng(bT) = %Zz;l fiT(bT)ui = 1, 2.

The fir and for are respectively the orthogonality conditions used and
not used in estimation. The vector for(.) of dimension s is formed by multi-
plying the residual by variables (say p) in the information set that have not
been used in estimation. The rest of the variables defining the statistic CS
are as follows:

1 & . .
Ly = [OSX(}H»S) : ]s} ) Sij,T = TZfzt (bT) fjt (bT>/ ) (@ =1,2;5= 1;2) )
t=1

- 10 .
Br = (HLTSH,THLT) Hé,Ta Hir = T ; %sz (br),(i=1,2),
Qr = Sor— SQLTSi%THl,TBT — B&“HLTS;fTSIQ + Ha 7 Br, (16)

and by is the minimizer of ng(ﬂ)’SETng(ﬂ). The results of the diagnostic
tests are reported in Table 8.

There is always some arbitrariness in choosing the information variables
that should be orthogonal to the residuals, but since we chose an autoregres-
sive specification it seems natural to test if we put enough lags. Therefore,
we test first if the residuals are orthogonal to six of their own lags.

All residuals related to the market portfolio conditions appear to be seri-
ally uncorrelated. Not too surprisingly, this is not the case however for the

14



residuals corresponding to the inflation conditions. There is strong evidence
of remaining serial correlation in these residuals. Given the high persistence
(both in mean and variance) of the rates of inflation that Brazil experienced
during this period, especially during the second part of the sample, long lags
would be necessary to make these residuals uncorrelated.

Next, we test whether residuals from each equation are orthogonal to
lagged returns: we use the corresponding portfolio excess returns for vy, vy p
and u;, the market portfolio excess returns for uy; and vy, and the CD
excess returns for up and vp. The null hypothesis of orthogonality cannot be
rejected, except for the up residual. Again, this is an indication that more
lags are necessary in the mean equation for the CD excess returns to account
for persistent inflation.

The other way to build conditional asset pricing models has been to use
variables that are deemed to help predict excess stock returns and returns
volatility, as in Harvey (1995) for example. Based on data availability, we
select three of these variables, a January dummy (to test if there is a January
effect in Brazil), the risk-free rate (in our case the overnight rate), and the
dividend yield. Given that we chose to test an autoregressive conditional
asset pricing model, it is a good way to test if we omitted some important
economic variables in our information set. Overall, the test results show little
evidence that we left some important information aside. The main failure
comes from residual in the CD variance equation, which confirms the results
obtained with the other orthogonality tests.

To conclude, we can say that our diagnostic tests tend to support the
specification chosen, apart from the equations modelling the mean, and the
variance of the CD excess returns. The highly unstable behavior of the
inflation rate during the second part of the sample, and its high persistence
makes it difficult to come up with an effective parsimonious model. The
introduction of the “inflation” factor is however essential for the conditional
asset pricing model®. We have seen that without it the betas with respect
to the market portfolio are biased and therefore the portfolios are mispriced.
The “inflation” factor reduces considerably this mispricing, but obviously
not fully. A more careful modelling of the CD equations, which for example

6Cati, Garcia, and Perron (1996) propose a time-series model for inflation accounting
for various changes in regime brought about by the various stabilization plans introduced
during the sampling period.
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would take into account the stabilization plans introduced during the period,
might improve somewhat the results. Our goal however was to show that the
addition of this factor considerably improves the model and results in market
portfolio betas that have a reasonable dynamic pattern and which average
value conforms with the theory.

4 Conclusion

In this paper, we test various conditional asset pricing models for the Brazil-
ian stock market. Our best specification involves a two-factor model, where
the equilibrium returns are determined by their covariances with the market
portfolio and with a factor capturing inflation risk. The time series obtained
for the betas seem to characterize well the evolution of risk during the esti-
mation period. To further assess the adequacy of the model, we performed
various diagnostic tests to check the orthogonality of residuals with infor-
mation not used in the estimation. Some misspecification of the conditions
related to the inflation factor was detected both for the mean and the vari-
ance. Given the extremely volatile and persistent pattern of inflation during
the second half of the sample, it is difficult to obtain a good parsimonious
specification for this moment condition. The large number of parameters
already estimated prevents us from going too far in the direction of a more
complete specification. Even with these misspecifications, the introduction
of the inflation factor is essential to reduce the mispricing of the portfolios
that would result from its omission.
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Appendix 1

List of Securities Used to Form the Size Portfolios

Acesita-ON
Alpargatas-ON
Belgo-Mineira-ON
Brahma-ON
Brahma-OP
Brasil-ON (190.1)
Brasil-ON (190.2)
Brasmotor-PN
Docas-OP
Ford-OP
Klabin-ON
Light-OP

Lojas Am.-OP
Mannesmann-ON
Moinho Sant-ON
Moinho Sant-OP
Paranapanema-ON
Paul F. Luz-OP
Petrobras-ON
Pirelli-ON
Samitri-ON
Souza-Cruz -ON
Val R. Doce -ON
Vidr S. Marina -OP
Whit Martins -ON
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Size Portfolio Excess Returns in Local Currency

1.8 2.6

.0

0.2

2.6 —1.0

1.0

0.2

2.6 —=1.0

1.8

—0.6 0.2

1977 1978 1979 1980 1981 1082 1985 1984 1985 1986 198/ 1988 19080 19900 1091 1992 1993
1977 1978 1979 1980 1981 1082 1983 1984 1985 1986 1987 1988 1980 1900 1091 1992 1993
1977 19/8 1979 1980 1981 1982 1083 1084 1985 1986 198/ 1988 1989 1930 1991 1992 1993



5o

£z

18

5 6 9

0

-3

5 6 9

-3 0

12

9

3

Figure 3
Conditional Market Betas for the CAPM Model
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Conditional Market Betas for the Two—Factor Model
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