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ABSTRACT 

Understanding how stem and progenitor cells choose between alternative cell fates is a 

major challenge in developmental biology. Efforts to tackle this problem have been hampered by 

the scarcity of markers that can predict cell division outcomes. Here we present a computational 

method based on algorithmic information theory that can analyze dynamic features of living cells 

over time. Using this method, we asked whether rat retinal progenitor cells (RPCs) display 

characteristic phenotypes before undergoing mitosis that could foretell their fate. We were able 

to predict whether RPCs will undergo a self-renewing or terminal division with 99% accuracy, or 

whether they will produce two photoreceptors or another combination of offspring with 87% 

accuracy. Our implementation can segment, track and generate predictions for 40 cells 

simultaneously on a standard PC at 5 minutes/frame. This method could be used to isolate cell 

populations with specific developmental potential, thus permitting previously impossible 

investigations.  



 

INTRODUCTION 

In the developing vertebrate nervous system, hundreds of different types of neurons and glial 

cells are produced from multipotent neural stem/progenitor cells. How is such tremendous 

diversity generated? The retina is a convenient model to study cell fate determination mechanisms 

in the central nervous system. It has a laminated structure containing only seven different cell 

types that are all identifiable by specific markers. These cell types are generated from a pool of 

multipotent retinal progenitor cells (RPCs) in a strict, but overlapping chronological order of cell 

birth during retinal development. Although RPC fate decisions are influenced by feedback 

inhibition signals, growing evidence suggests that cell autonomous developmental programs also 

have a critical regulatory role1. We and others proposed that lineage-dependent cell fate decisions 

may be “pre-programmed” into individual neural progenitor cells to generate the correct 

combination of cell types at specific times2-5. If this model were correct, one would expect a large 

heterogeneity in the progenitor cell population. Gene profiling experiments performed on whole 

RPC populations at different stages of development identified potential regulators of cell fate6-9, 

but did not provide information about heterogeneity of the RPC population. Recently, however, 

single-cell gene expression profiling revealed a large heterogeneity in gene expression among 

mouse RPCs10, even at the same stage of development, suggesting that different populations of 

RPCs with specific developmental potential might exist at any one stage of development. 

Heterogeneity in gene expression among a progenitor population is most likely not unique to the 

retina. For example, single-cell gene expression profiling of olfactory progenitor cells also 

revealed transcriptional differences among the progenitor cell population11, and it is well known 

that spinal cord development depends on the diversification of the progenitor cell pool12. Together, 

these results suggest that a given population of seemingly indistinguishable progenitor cells might 



 

actually be composed of many different sub-populations of fate-restricted progenitor cells. 

Studying this heterogeneity will require a method that can predict the fate outcome of an individual 

progenitor before it divides. This would provide invaluable information when interpreting results 

of single cell gene profiling experiments, and could help identify novel markers of sub-populations 

of progenitor cells with specific developmental potential. 

We hypothesized that distinct gene expression profiles in RPCs with specific developmental 

potential might translate into characteristic dynamic behaviors. These behaviors are likely to be 

subtly different, and difficult or impossible for a human observer to discern visually. Therefore, 

testing this hypothesis requires automated image analysis tools capable of accurately identifying 

differences in populations based on dynamic behaviors. In this paper, we present a method 

named Algorithmic Information Theoretic Prediction (AITP) that combines recent advances in 

image sequence summarization13 and semi- supervised spectral learning14 to develop this 

capability.  

In this paper, we present a method named Algorithmic Information Theoretic Prediction 

(AITP) that combines recent advances in image sequence summarization13 and semi- supervised 

spectral learning14 to develop this capability. AITP provides a sensitive parameter-free 

multiresolution	
   analysis of the multi-dimensional time-sequence data representing the 

observable spatio-temporal dynamic phenotype of cells obtained from segmentation and tracking 

algorithms.  AITP achieves a multiresolution analysis of the dynamic phenotype by analyzing the 

multidimensional numeric time series data at multiple levels of quantization and automatically 

selecting the optimal resolution. 

	
  



 

Our results indicate that RPCs display distinctive behavior, even before they undergo mitosis, 

depending on which combination of daughter cell types they are going to generate. In addition, we 

report that AITP can be used to predict cell fate outcomes of oligodendrocyte precursor cells 

(OPCs) as well. Combined with single cell microarray technology, this method should prove 

invaluable in the future to identify molecular markers characteristic of specific populations of 

various stem/progenitor cells.	
   All of the AITP software can be downloaded at: 

https://pantherfile.uwm.edu/cohena/www/aitpd%20main.html



 

 

RESULTS 

Long-term time-lapse microscopy of RPCs 

To determine whether RPCs display characteristic dynamic patterns that can predict their 

fate, we first developed a way to image live RPCs as they divide and give rise to various retinal 

cell types over a period of several days. To do this, we cultured embryonic day 20 rat RPCs at 

clonal density, as previously described2. Four hours after plating, the culture dish was placed in a 

temperature and CO2-controlled environment chamber fitted around an inverted microscope. 

Presumed RPCs were then identified by their characteristic neuroepithelial morphology. Using a 

motorized microscope stage, >100 cells were selected in each experiment and imaged under 

phase-contrast microscopy every 5 minutes over a period of 9-13 days. 

At the end of the recording, we used a combination of cell morphology and expression of 

cell-type specific markers to reliably identify the four different retinal cell types produced from 

E20 RPCs, as we previously reported2 (Fig. 1). The outcome of the first division of each RPC 

was retrospectively determined by playing back the time-lapse movie and tracking the fate of 

both daughter cells. Some daughter cells kept an RPC morphology and divided again, indicating 

that they remained RPCs. Some others did not divide again and changed morphology, indicating 

that they differentiated. In this latter case, retinal cell types were identified as summarized in 

Supplementary Table 1. Overall, we could reliably identify the outcome of RPC divisions as 

either 1) proliferative, generating two RPCs (not shown); 2) self-renewing, generating a RPC and 

a neuron or glial cell (Fig. 2; Supplementary Movie 1); or 3) terminally differentiating, 

generating two neurons of the same or different types (Fig. 3; Supplementary Movie 2).   



 

Automated measurement of cell morphology and dynamic phenotype  

The RPCs of interest were segmented (computationally delineated) and tracked over time 

(Fig. 4). An example of segmentation and tracking results for one RPC image sequence is provided 

online (Supplementary Movie 3). The segmentation and tracking results provide the basis for 

computing time courses of cell features that quantify the dynamic cellular phenotypes.  The 

segmentation and tracking are application dependent tasks that provide the input for the 

application independent AITP methodology; the AITP method can be applied directly to any 

application for which segmentation and tracking algorithms are available.  The location of a cell, 

denoted (x(t), y(t)) is estimated as the median x and y coordinates of all pixels constituting the cell 

in the image. Using these locations, we compute cell movement vectors (Δx(t), Δy(t)), , and 

movement directions θ(t)=tan-1(Δy(t)/Δx(t)) . We also compute the net movement of each cell from 

its initial location, denoted  D(t)=   |(x(t),y(t))- (x(0),y(0))|, as previously reported15. Next, we fit an 

ellipse to each cell region, and compute its eccentricity e(t). Finally, the size of the cell S(t) is 

computed as the area of its convex hull. These calculations yield a time sequence of 6-dimensional 

feature vectors F=[Δx(t), Δy(t), θ(t), D(t), e(t), S(t)], one for each cell, for subsequent analysis. This 

set of features represents the simplest choices. Additional features could be included in the future. 

The included features are not necessarily independent of each other; using derived features (e.g. 

θ(t), D(t)) can improve the accuracy of the compression based distance measure used in the 

subsequent analysis.  At this stage, it is unimportant to be concerned about choosing the optimal 

set of features since irrelevant features are identified and discarded automatically by a later 

computational step. 

 

Algorithmic information theoretic analysis of the feature vectors 



 

The AITP method is a general-purpose approach to analyzing the multidimensional time 

sequence data obtained from image segmentation and multitarget tracking algorithms.  The 

dynamic cellular phenotypes, as captured by the time sequences of feature vectors, were 

compared using the normalized compression distance measure (NCD). This measure was 

reported recently in the field of algorithmic information theory16, and was enhanced by us to 

include automatic quantization (see details in the Methods section). Briefly, the NCD is used to 

calculate a pair-wise distances matrix , where M is the number of RPCs. The (i,j)th 

element of this matrix is the NCD between the features of RPCs i and j. This calculation is 

repeated for multiple quantization levels N=1..Nmax, and for each element f of the feature vector 

power set. The special value N=1 corresponds to no quantization. The above calculations 

resulted in Nmax × ( 2|F|-1 ) distance matrices, where |F| is the number of features. If this number 

exceeds available computational capacity, feature subset selection methods13can be used to 

reduce the computational burden.  

This collection of distance matrices is analyzed using a cross-validated semi-supervised 

spectral learning methodology14 to assign predictions to cells with unknown outcomes by 

comparing their dynamic behaviors to cells from the training data that have known outcomes 

(mathematical details are presented in the Methods section, and the software can be downloaded 

at: https://pantherfile.uwm.edu/cohena/www/aitpd%20main.html). A numeric value is assigned 

to each possible outcome that we want to predict based on dynamic behavior. For a 2-class 

problem , e.g. whether a RPC will undergo a terminal versus a self-renewing division or whether 

a terminal RPC will produce two photoreceptor neurons, versus another combination of offspring 

(Table 1, top and middle rows), the outcome for an RPC is a 0 or 1. For a 3-class problem e.g. 



 

whether a RPC will produce two photoreceptors versus a photoreceptor - bipolar pair or a 

photoreceptor - amacrine pair (Table 1, bottom row),  it is 0, 1, or 2.  

Prediction of self-renewing divisions 

To determine whether AITP could reliably predict self-renewing vs. terminal divisions, we 

analyzed the time sequence data of all RPCs for which we could reliably determine the outcome 

of the first division. The results are shown in a confusion matrix (Table 1). Remarkably, only 

one out of nineteen self-renewing RPCs was erroneously predicted to be a terminal RPC, and the 

outcome for all fifty-three terminal RPCs was correctly predicted, corresponding to an accuracy 

of 99%. The 95% confidence interval for this prediction is 92.5%-99.8%17. A minimum of one 

hundred image frames (about 8 hours of recording) was chosen arbitrarily for cells to be included 

in the AITP analysis. These results indicate that RPCs exhibit distinctive dynamic behaviors 

depending on whether they will undergo a terminal or a self-renewing division and that this 

pattern can be recognized using AITP. 

In the above experiments, the entire dataset was used for semi-supervised training by 

partitioning the data using the method of leave-one-out cross validation. This raises the question 

of whether	
   training data from one experiment are applicable to an independent experiment. To 

address this question, we took advantage of the fact that the data for the 72 cells analyzed in 

Table 1 originated from three independent experiments (see Supplementary Table 2). When we 

analyzed the cells from Experiment 3 using only the outcomes from Experiments 1 and 2 for 

training, we found that only one cell out of the 23 was misclassified, giving a prediction accuracy 

of 96% (Supplementary Table 3). These results indicate that training data gained from one 

experiment are applicable to another independent experiment, and suggest that slight variations 

in culture conditions from one experiment to another should not affect the quality of the results. 



 

We next asked whether AITP could be applied to predict cell fate outcomes of a different 

neural progenitor cell type. To address this question, we cultured oligodendrocyte precursor cells 

(OPCs), which generate oligodendrocytes, the myelinating cells of the central nervous system. 

These cells, when cultured under differentiating conditions (see Methods), divide to generate 

two oligodendrocytes (terminal division; Supplementary Fig. 1 and Movie 4), one OPC and 

one oligodendrocyte (self-renewing division; Supplementary Fig. 2 and Movie 5), or two OPCs 

(proliferative division; not shown). The cells were imaged for 7-10 days, as described for RPCs, 

and AITP was applied on the resulting movies. We were able to predict whether OPCs would 

undergo a terminal or a non-terminal division with 88% accuracy. These results suggest that 

AITP could potentially be applied to different progenitor cell types, provided that the cells can be 

tracked and segmented correctly. 

 

Prediction of cell fate outcome of terminal divisions  

Since the majority of terminal divisions in the neonatal rat retina produce two photoreceptor 

cells, we next asked whether we could use the AITP method to discriminate between terminal 

divisions generating two photoreceptors (Ph/Ph) or any other combinations of offspring. By 

analyzing RPCs that will undergo a terminal division, we found that AITP could predict with 

87% accuracy whether the outcome of the division would be a daughter cell pair containing two 

photoreceptors or some other combination of cell types (Table 1b). The 95% confidence interval 

for this prediction is 78.5%-92.7%17. More precisely, RPC terminal divisions generated two 

photoreceptors, a photoreceptor/bipolar neuron, or photoreceptors/amacrine neuron cell pair, and 

AITP could predict the actual outcome of such divisions with 83% accuracy (Table 1c).  These 



 

results indicate that AITP can not only predict self-renewing vs. terminal divisions, but also 

whether a RPC will produce a particular combination of neurons. 

Live prediction of cell fate  

 In the experiments above, the fate predictions were achieved retrospectively, after the 

cells were fixed and identified by immunocytochemistry. This was necessary in the first stages of 

development of AITP as it provided a way to cross validate the predictions. However, a “live” 

fate prediction functionality for AITP would allow one to isolate cells predicted to have a 

particular fate during the course of the experiment, before they divide. To add this functionality 

to AITP, we modified and optimized the algorithm to run at a much faster rate, as described in 

the Methods and provided at: https://pantherfile.uwm.edu/cohena/www/aitpd%20main.html. To 

test the real-time capability of this new algorithm, we used the time-lapse microscopy data that 

we had generated, and simulated live acquisition by making one image available every 5 

minutes, starting from the first frame of the movie until the last frame before mitosis. We were 

able to segment, track and generate predictions for 40 cells simultaneously on a standard PC 

(dual quad core Intel Xeon X5472 3GHz processors, 8GB RAM, Windows Vista) within the 

five-minute per frame microscope acquisition time. This data required approximately 45 seconds 

per frame to segment and update the tracking, and an additional three to five seconds per cell to 

generate a prediction. The computation is inherently parallel; more cells can be analyzed 

simultaneously by adding more processors. Using this algorithm, we obtained the same fate 

prediction accuracy as in the retrospective analysis, confirming the reliability of this approach. 

  



 

 

DISCUSSION  

The value of our method lies in its ability to make up for the difficulty of visually 

identifying subtle shape and movement pattern differences. Taken together, our results suggest 

that RPCs in culture display dynamic patterns that can be sensed computationally to predict the 

outcome of their next division using the new generation of analytic tools represented by 

algorithmic statistics and algorithmic information theory. We discuss some of the implications of 

this method below. 

One exciting potential application opened up by this method is the possibility to purify a 

population of RPCs, or any other cell type that can be imaged, with a specific developmental 

potential. Although single-cell gene chip experiments have shown a high degree of heterogeneity 

of gene expression among the RPC population10, these results are difficult to interpret because 

the fate of any particular RPC was unknown. By applying the method presented here on live 

RPCs (or another type of progenitor cell), it would be possible, for example, to isolate RPCs that 

would have undergone a self-renewing division at their next mitosis and compare their gene 

expression profiles using single-cell microarray to that of RPCs that would have undergone a 

terminal division. Such experiments could help identify genes involved in self-renewing 

divisions, a mode of cell division highly relevant to stem cell biology. As the method can also 

predict the outcome of terminal divisions with high accuracy, it should be possible to isolate 

RPCs with different differentiation potential, which might lead to the identification of novel 

genes involved in the specification of various retinal cell types. The cell cycle of neonatal RPCs 

is about 36-40 hours, and we have shown that 8 hours of recording is sufficient to generate an 

accurate prediction. Since the majority of RPCs would not undergo mitosis in the first 8 hours of 



 

recording, it should be possible to generate a computational prediction on living RPCs and 

isolate them before they undergo mitosis.  

To adapt this method to applications with other cell types or using a broader set of cell 

features requires merely the availability of effective cell segmentation and/or tracking 

algorithms, and a set of relevant features. Such algorithms are increasingly available for 2-D, 3-

D and multi-channel time-lapse data18. As proof-of-principle that AITP can be extended to other 

cell types, we show that AITP can be used to accurately predict cell division pattern of OPCs, a 

different type of neural progenitor cells. Figure 4 illustrates the automated cell segmentation and 

tracking approach used for the image sequence data analyzed here. Although both cell types 

analyzed in this study were cultured at low density, it should be possible to apply AITP to cells 

cultured under high-density conditions as segmentation and tracking algorithms robust enough to 

process hundreds of such image sequences with a minimum of user interaction become available.  

All subsequent procedures for analyzing the feature data are independent of the particular 

cell type or application, and represent a common set of tools enabled by the recent advances in 

algorithmic information theory and algorithmic statistics. The method automatically identifies 

the feature subset that gives the best prediction of progenitor fate. Identifying the specific 

behaviors within the feature subset that differentiate the populations of interest is a topic for 

future research.	
   From an algorithmic information theoretic standpoint, we are estimating a 

normalized form of the length in bits of the Universal Turing machine program to convert 

between time sequence data; this is a different problem from actually identifying the specific 

program.  From a practical standpoint, efforts to understand what similarities the real world 

compression algorithm is identifying in the multidimensional time sequence data have not 

provided any useable insight. 



 

One practical issue to consider is the sheer volume of time-lapse image data, and the 

computational complexity of the analysis. Accordingly, our software is written to take advantage 

of any parallel computing facility that supports the common MPI library. We also provide a 

version that runs on serial computers for generality.  We have also implemented a highly 

optimized version of our prediction algorithm that enables the software to run live as the cells are 

being imaged on the microscope, providing the capability to collect the cells of interest without 

stopping the time-lapse acquisition. When we tested this algorithm, it obtained the same fate 

prediction accuracy as in the retrospective analysis, confirming its reliability. 

In conclusion, our findings suggest that specific cellular phenotypes can be recognized by 

carefully analyzing dynamic cellular features. As AITP could be applied to the analysis of any 

cell type of interest that can be imaged, segmented and tracked over time, it could potentially 

have applications in various fields. 



 

 

METHODS 

Retinal progenitor cell culture, immunostaining, and time-lapse imaging 

All animal experiments were done in accordance with the Canadian Council on Animal 

Care and approved by the Institut de Recherches Cliniques de Montreal animal care committee. 

Retinal cells from embryonic day 20 (E20) Sprague Dawley rat retinas were cultured as 

previously described2. Approximately 2 x 104 cells were plated in 35 mm Falcon dishes coated 

with poly-L-lysine (10 µm/ml) and laminin (10 µg/ml). The dissociated cells were allowed to 

settle for four hours in a CO2 incubator at 37º C before they were placed under the time-lapse 

microscope. RPCs were imaged with a Leica 20X phase contrast objective and the images 

captured using a Hamamatsu CCD video camera connected to a Macintosh computer equipped 

with Volocity software (Improvision) programmed to capture a frame every 5 minutes. The cells 

were kept at 37ºC, 8% CO2 and 12% O2. The reduced level of O2 was achieved by pumping N2 

into the chamber. 

The retinal cells were fixed after 9-13 days and the following antibodies were used for 

immunofluorescence: monoclonal mouse anti-islet-1 (1:2000; produced by T. Jessell and 

obtained from the Developmental Studies Hybridoma Bank) and rabbit anti-Pax-6 (1:10000; 

Santa Cruz Biotech.). Primary antibodies were detected using goat anti mouse IGg2b Alexa 

Fluor-488 and goat anti rabbit IgG Alexa Fluor-594 (Molecular Probes). In all cases, we 

counterstained the nuclei with Hoechst 33342 (Molecular Probes). Three independent 

experiments were performed to generate the entire dataset. 

Oligodendrocyte precursor cell (OPC) culture and time-lapse imaging 



 

For each experiment, at least twenty optic nerves were removed from postnatal day 7 

(P7) Sprague Dawley rats and dissociated and cultured as described previously19. Prior to time-

lapse imaging half the medium was replaced with MBS medium supplemented with T3 (Thyroid 

hormone, Sigma, 40 ng/ml) to induce OPC differentiation 20. Time-lapse setting was the same as 

for RPC imaging (see above). Cells were identified based on their characteristic morphology. 

Three independent experiments were performed to generate the entire dataset. 

Cell Segmentation and Tracking in Time-Lapse Phase Contrast Data 

Cells in phase-contrast exhibit a characteristic halo that we exploit for segmentation. Pixels 

whose brightness is five standard deviations above the average pixel intensity are considered halos 

or bright interior pixels. Morphological opening and closing operations21 are used to smooth the 

halo regions, and to identify a bounding region for each cell by filling any holes inside the halos 

(Fig. 4b). Halo pixels are then separated into connected regions using the watershed transform22. 

The morphological smoothing prevents unwanted fragmentation23. A spectral k-means clustering24 

of the pixel intensities within the bounding region for each cell groups the pixels into three groups. 

The brightest and darkest groups belong to the cell (green and yellow pixels in Fig. 4c), and the 

intermediate-intensity halo pixels (red) are discarded. A constrained watershed transform is 

applied to the cell pixels to separate touching cells. The watershed transform is constrained using 

the H-maxima transform21 to reduce fragmentation.  

To track cells, we use a variation of the method described previously 25. Importantly, we use 

tracking anomalies to identify scenarios where the watershed transform has resulted in erroneous 

cell fragmentation , and then merge the over-segmented regions automatically. This is 

implemented using a temporal look-ahead step whenever the assignment matrix used by the 

tracking algorithm is not square. In that case, our algorithm checks for temporal consistency up to 



 

9 frames ahead in the video sequence to see if merging adjacent cell regions results in more 

consistent tracking (Fig. 4g). If so, the regions are merged (Fig. 4h). This results in a time series of 

cell outlines (Fig. 4i). During the tracking, dividing cells are detected automatically. When a cell 

divides, the nuclei of daughter cells appear distinctly in phase contrast as bright regions of 

approximately equal size. Using morphological opening and connected component analysis, we 

examine whether there are two such bright regions. This is illustrated in panels j and k of Fig. 4. 

The first time that two such regions are detected is considered the time of mitosis (panel k). Prior 

to applying AITP, the results are screened visually for tracking errors. Cells with tracking errors 

are excluded from further analysis.  

Importantly, there are a wide range of approaches to segmenting and tracking different cell 

types imaged using various techniques26-29. AITP can be applied to any application for which 

segmentation and tracking algorithms are available. 

Computation of the quantization-enhanced NCD distance Matrix 

 The NCD distance measure was proposed as a practical tool for analyzing unstructured 

data16. The theoretically ideal distance measure for comparing arbitrary datasets is the 

normalized information distance30 based on Kolmogorov’s algorithmic information theory31 that 

can account for any and all differences. However, this measure is impractical due to its 

uncomputability32. To overcome this limitation, the normalized compression distance (NCD) was 

proposed as a practical approximation to the normalized information distance using data 

compression algorithms16. To use this measure, the feature vectors are treated as symbol strings. 

Let C(x) denote the size in bytes of the compressed version of string x, and C(x;y) the size of the 

compressed version of the concatenation of x and y. Then,  



 

 . (1) 

The NCD is unique in its ability to accurately compare multidimensional data sequences of 

varying length in a parameter-free manner. Problem formulations based on NCD can be general, 

parameter free, robust to noise, and independent of applications and data formats 16,33,34. They 

can also overcome the main practical limitation of Minimum Description Length (MDL)35,36 

based techniques for approximating Kolmogorov complexity – the need for “tightly-tuned” 

application-specific models and data representations. There are no parameters needed to compute 

the NCD, except for the choice of compression algorithm. It was shown that the choice of 

compression algorithm has a negligible impact on the final analysis16. We used the bzip2 

compressor. Previously, we showed that the accuracy of the NCD can be enhanced further by 

quantizing the time sequence data using N symbols, where the optimal value of N can be 

estimated automatically 13. This procedure enables a multi-resolution analysis since more 

symbols imply a finer resolution and vice versa. In our examples, we used a maximum (Nmax) of 

26 symbols, corresponding to the letters of the alphabet (typically used by text-based 

compressors).  We limited ourselves to atomic (single) symbols to ensure that the symbols 

themselves do not introduce any artifactual similarities in the data.  The goal of the quantization 

is to assign symbols to numeric data such that all symbols are equiprobable. Source code for 

automatically quantizing the time-sequence data and computing the NCD are included at: 

https://pantherfile.uwm.edu/cohena/www/aitpd%20main.html. 

Method to transform the NCD distance matrices to eigenspace 

Let D denote the diagonal matrix whose diagonal (i,i)th element is the sum of the ith row of 

the NCD distance matrix A. This matrix is first normalized using the formula 



 

   (2) 

 

The normalized matrix L is symmetrical with zeros on the diagonal (i.e., it is positive semi-

definite). The eigenvectors of L  are sorted by the magnitudes of the eigenvalues, and used to 

form the columns of a new M×M matrix denoted V. This is known as the spectral matrix because 

it is based on an eigenspace representation. The ith row of this matrix is an eigenspace 

representation of the ith RPC. The k left-most columns of the spectral matrix correspond to the k 

principal eigenvectors. When just these k columns of the ith row are retained, we obtain a reduced 

k-dimensional representation of the entire time-course of features for the ith RPC.  We use the 

symbol vi
k,N,f  to denote this k-dimensional point. The above data transformation into eigenspace 

is profoundly valuable because it casts the multi-dimensional time-sequence data in a form that 

naturally enables the use of unsupervised and/or supervised machine learning algorithms 

(clustering, nearest neighbors, decision trees, etc.).  

Semi-supervised analysis of the L-matrix with cross validation 

Unsupervised analysis methods, as previously described13, are appropriate for exploring 

unlabeled data, i.e., when the outcomes of cell division are not provided to the computational 

method. When the fates of some of the RPCs are known, these data can be provided as labeled 

training examples to a supervised learning method. Classic supervised methods learn from these 

examples, and then process the unlabeled data. Recently, a new class of semi-supervised data 

analysis methods have emerged that can exploit the unlabeled data in addition to the training data 

for improved learning. In this approach, both labeled and unlabeled data are used in the 

transformation to eigenspace, so the unlabeled data influence the spectral matrix via the 

eigenvalues and eigenvectors of the L matrix. A supervised learning algorithm that still uses only 



 

the labeled data points for training benefits from the improved spectral eigenvalues. Such 

algorithms have been shown to outperform classical supervised learning14 methods. This is the 

method adopted by us. 

We used the following semi-supervised learning with a leave-one-out cross validation. For 

each value of k from 1 to M, we applied supervised classification algorithms, denoted Cj to 

predict RPC fates. The prediction for the ith RPC is denoted Cj( vi
k,N,f  ). For a 2-class problem 

(e.g., Table 1, top and middle rows), this is a 0 or 1. For a 3-class problem (e.g., Table 1, bottom 

row), it is 0, 1, or 2.  

Now, for the RPC i with known fate yi, we can compare our prediction Cj( vi
k,N,f  ) based 

solely on the features (not including RPC i in the training data) to yi. This is the method of leave-

one-out cross validation17. The validation error for classifier Cj  is estimated as:  

, where . (3) 

 

 

Using the above procedure, we identify the values that minimize the validation error,  

 (4) 

. Software source code written in C (both single processor and MPI versions) for performing the 

above analysis is provided at: https://pantherfile.uwm.edu/cohena/www/aitpd%20main.html 

Simulated live prediction of cell fate outcome  

Live cell fate prediction begins with the segmentation and tracking results for a population of 

cells with known post-mitotic outcomes. Prior to applying live cell fate prediction, AITP is used 



 

to determine the parameters that give the most accurate prediction of cell fate for this population 

of cells.  There are two components in the live cell fate prediction algorithm.  The segmentation 

and tracking component starts a process for each live cell that we wish to analyze.  This process 

attaches to an individual folder on a computer connected to the microscope.  When a new image 

frame appears, the process wakes up, segments the new frame, updates the tracking and then 

waits for the next frame. The second component takes the current segmentation and tracking 

results generated for an individual cell and generates a prediction of that cell’s fate using the 

settings obtained from the population of cells with known outcomes.  
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FIGURE LEGENDS 

Figure 1. Retinal cell type identification. Cell types are identified based on morphology and 

immunostaining for cell type-specific markers, as indicated. (a-d) A clone composed of two rod 

photoreceptors (Ph, Pax-6 -, Islet-1-) with characteristic round cell-body, thin processes, and 

heterochromatin condensation. (e-h) A clone composed of one amacrine cell (Am, Pax-6 +, Islet-

1-), one rod photoreceptor, and one bipolar cell (Bi, Pax-6 -, Islet-1+ ). (i-l) A clone composed of 

one amacrine cell and one bipolar cell. (m-p) A Muller glial cell (Mu), note the distinct glial 

morphology, large nucleus, absence of neurites and lack of expression of neuronal markers. 

Scale bars = 25µm (a-l), 40µm (m-p). 

 

Figure 2. Self-renewing divisions. (a) Snapshots of time-lapse video microscopy showing a rod-

committed RPC undergoing three rounds of self-renewing divisions to generate a clone 

containing four rod photoreceptors; dashed circles depict mitotic cells in telophase. (b) Lineage 

reconstruction of the clone showed in (a); arrow indicates the progenitor whose behavior was 

analyzed to generate prediction using AITP; (c) Hoechst staining of cell nuclei. Ph: 

photoreceptor. Time is given in h:min. Scale bar = 15µm. 

 

Figure 3. Terminal division. (a) Snapshots of time-lapse video microscopy showing a RPC 

undergoing a terminal division to generate a clone containing one rod photoreceptor and one 

amacrine cell. Dashed circles depict mitotic cells in telophase. (b) Immunostaining for Islet-1 

(green), Pax-6 (red), and Hoechst (blue). (c) Lineage reconstruction of the clone showed in (a). 



 

Arrow points to the RPC whose behavior was analyzed using AITP; Ph, photoreceptor; Am, 

amacrine cell. Time is given in h:min. Scale bar = 25µm. 

 

Figure 4. Automated cell segmentation and tracking. (a) Example of a RPC imaged with phase-

contrast microscopy. (b) The cell is separated from the background based on the halo produced 

by phase-contrast microscopy. (c) Adaptive clustering separates pixels into groups - the yellow 

dots indicating dark interior points, green dots indicating bright interior points, and red dots 

indicating points on the halo. The cyan outline is the geometric convex hull of the interior points. 

(d-f) Segmentation results at 3 intermediate points in the time-lapse sequence. (g, h) Procedure 

for correcting segmentation results using the temporal consistency constraint. (i) Overlay of 

successive color-coded cell outlines superimposed on the initial image (panel a) to illustrate the 

cell tracking results. (j, k) Panels illustrating mitosis detection. (l, m) Progeny of cell division 

shown in phase contrast and using a fluorescent nuclear stain (Hoechst). Scale bar = 7µm (a-h); 

5µm (j, k); 15µm (l, m); 25µm (i). 

 

Table 1. Summary of performance data for prediction of RPC fate. All three outcomes were 

analyzed using the same software methodology. Top row shows the results of predicting a 

terminal versus a self-renewing division. The middle row shows the results of predicting whether 

a terminal RPC will produce two photoreceptor neurons, versus another combination of 

offspring. The bottom row shows the results of predicting whether a RPC will produce two 

photoreceptors versus a photoreceptor - bipolar pair or a photoreceptor - amacrine pair.  

 



 

Table 1: Summary of performance data for prediction of retinal progenitor cell fate. 

 Confusion matrix                             Output parameters 
 

Correct prediction 
rate 

Self renewing vs. 
terminal divisions 

(66 movies, 72 cells) 

 
   

Predicted Outcome 
 

  Self-renewing Terminal 
Self-renewing 18* 1 True 

Outcome Terminal 0 53 
     

Quantization = 17 symbols 
Spectral matrix dimension = 4 
Feature subset= (∆x, ∆y, θ, S)  

99% 

Photoreceptor (Ph) vs.  
non-photoreceptor 

progeny 
(76 movies, 86 cells) 

 
  Predicted Outcome 

 
  Non-Ph, Ph Ph, Ph 

Non-Ph, Ph 32 2 True 
Outcome Ph, Ph 9 43 

     

Quantization = 12 symbols 
Spectral matrix dimension = 80 

Feature subset= (∆x, ∆y, S)  
87% 

 
Combinations of 

progeny: 
Photoreceptor (Ph), 

Bipolar (Bi), 
Amacrine (Am) 

(68 movies, 78 cells) 

  
Predicted Outcome 

 

 

  Ph,Ph Ph,Bi Ph,Am 

Ph,Ph 49 0 3 True 
Outcome Ph,Bi 4 4 2 

 Ph,Am 4 0 12 
      

Quantization = 14 symbols 
Spectral matrix dimension = 64 

Feature subset = (D, S, e)  
83% 

 
* Entries indicate the number of cell divisions for each category 
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Supplementary Table 1. Summary of the criteria used for retinal cell type identification 
in culture 
 
 

 
* Note that a small population of amacrine cells is both Pax6+ and Islet-1+. Since bipolar 
cells are not Pax-6+, they are easily distinguished from the Pax-6 +/Islet-1+ amacrine 
cells. Müller cells sometimes stain weakly for Pax-6. 

Cell type Morphology Islet-1 staining Pax-6 
staining 

Condensed 
chromatin 

Photoreceptor Small, round cell 
body; one or two 
thin processes 

- - + 

Amacrine Large cell body; 
long branchy 

processes 
+/- * 

(sub-population) 
+ - 

Bipolar Medium-size cell 
body; one or two 
thick processes 

+ - - 

Müller Large round nuclei; 
lamellipodia; lack 

of neurites 
- - * - 



 

Supplementary Table 2. The number and type of cells from each of the three 
experiments included in the prediction of whether an RPC will undergo a self-renewing 
division or terminally differentiate (refer to Table 1). 

 

 Experiment 1 Experiment 2 Experiment 3 

Terminal cells 34 0 18 

Self renewing cells 7 7 5 

 



Supplementary Table 3. The confusion matrix showing the results of predicting whether 
an RPC will undergo a self-renewing division or terminally differentiate for Experiment 3, 
using only Experiments 1 and 2 in the supervised component of the analysis. 

 

 
 

Predicted Outcome  

Terminal Self renewing 

Terminal 18 0 

Tr
ue

 O
ut

co
m

e 
 

Self renewing 1 4  

 
One cell out of 23 was misclassified, giving a prediction accuracy of 96%. Refer to Table 
1. 
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