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RÉSUMÉ

Nous étudions le problème de la mesure de l’incertitude des simulations de
modèles d’équilibre général calculable (MEGC). Nous décrivons deux approches
pour construire des régions de confiance pour les variables endogènes de ces
modèles. La première utilise une statistique standard de type Wald. La seconde
approche suppose l’existence, pour les paramètres libres du modèle, d’une région
de confiance (échantillonnale ou bayesienne) à partir de laquelle des régions de
confiance, pour les variables endogènes, sont déduites par une technique de
projection. Cette dernière méthode a deux avantages: premièrement, la validité
des régions de confiance construites n’est pas affectée par la non-linéarité du
modèle; deuxièmement, on peut facilement construire des intervalles de confiance
pour un nombre illimité de variables. Nous étudions aussi les conditions sous
lesquelles ces régions de confiance prennent la forme d’intervalles et nous
montrons que ces méthodes peuvent facilement être utilisées au moyen de
méthodes standard de résolution des MEGC. Nous présentons une application sur
un modèle de l’économie marocaine qui étudie les effets visant à faire augmenter
les rapatriements de capitaux par les résidents marocains à l’étranger.

Mots clés : intervalle de confiance, région de confiance, modèle d’équilibre
général calculable, analyse de sensibilité, calibration, projection,
Maroc, politique fiscale

ABSTRACT

We study the problem of measuring the uncertainty of CGE (or RBC)-type
model simulations associated with parameter uncertainty. We describe two
approaches for building confidence sets on model endogenous variables. The first
one uses a standard Wald-type statistic. The second approach assumes that a
confidence set (sampling or Bayesian) is available for the free parameters, from
which confidence sets are derived by a projection technique. The latter has two
advantages: first, confidence set validity is not affected by model nonlinearities;
second, we can easily build simultaneous confidence intervals for an unlimited
number of variables. We study conditions under which these confidence sets take
the form of intervals and show they can be implemented using standard methods
for solving CGE models. We present an application to a CGE model of the
Moroccan economy to study the effects of policy-induced increases of transfers
from Moroccan expatriates.

Keywords : confidence interval, confidence set, computable general
equilibrium models, sensitivity analysis, calibration, projection,
Morocco, fiscal policy



1. INTRODUCTION

Computable general equilibrium models (CGE) are now widely used to simulate alternative economic

policies in both developed and developing countries. For example, Martens (1993) has surveyed not less than 120

models on more than 30 developing countries; for other reviews of the subject, see Shoven and Whalley (1984),

Ballard et al. (1985), Manne (1985), Devarajan, Lewis and Robinson (1986), Decaluwé  and  Martens  (1988),

and Gunning and Keyzer (1995). Such models are usually non-stochastic and nonlinear. They rely on various

assumptions, e.g., on agent behaviour and the choice of exogenous variables (the "closure" of the model). The

nature and quality of the data used also influence the results. These usually focus on the reference year of a social

accounting matrix (in static models) or on a stationary equilibrium (in dynamic models), and parameter values

of behavioral functions. Available data do not typically allow one to estimate CGE models econometrically, and

so "calibration" procedures are used to obtain models that can be simulated; see Mansur and Whalley (1984).

As emphasized by Wigle (1986), the selection of parameter values in CGE models may be highly

subjective and thus raises a natural scepticism on the reliability of the resulting simulations. Parameter values

are usually obtained from other studies, possibly on different  countries, and may even be entirely subjective.  The

"elasticities" available from the literature are often only distantly related to the case studied, coming from

different countries or time periods than those we are be interested in. Consequently, there is a large uncertainty

on these basic ingredients, which gets transmitted to  simulation results. As CGE models are almost never

estimated by econometric methods [for a rare and notable exception, see however the work of Jorgenson (1984)

and his associates], it is difficult to test the assumptions made. Even if model specification is not questioned, the

credibility of simulation results is affected by the uncertainty on the parameter values used. Indeed, Mansur and

Whalley (1984, pp. 100 and 103) have underscored the crucial character of this stage of the modelization: "The

choice of elasticity values critically affects results obtained with these models" and "The set of elasticity

values used are critical parameters in determining  the  general equilibrium impacts of policy changes

generated by these models". Further the elasticities or parameters which are most crucial may depend on the

experiment conducted; see Pagan and Shannon (1987). The critical role of parameter selection and the difficulties

associated with the calibration of CGE models are also discussed in the survey of Shoven and Whalley (1984),

who point out that the most widely used procedure for assessing the reliability of the simulations (when an

attempt of this sort is made) consists in performing a few alternative simulations with different parameter values:

"The procedure generally employed is to choose a central case specification, around which sensitivity

analysis can be performed" (Shoven and Whalley, 1984, pp. 1030-1031). 

This importance of this problem has been recognized by several authors, and various approaches have

been proposed for assessing the simulation uncertainty induced by parameter uncertainty; see Pagan and Shannon

(1985), Harrison (1986, 1989), Bernheim, Scholz and Shoven (1989), Harrison and Vinod (1992), Wigle (1991),

Harrison et al. (1993). The different methods proposed are fundamentally descriptive. They may be classified

in five groups: limited sensitivity analysis [Bernheim, Scholz and Shoven (1989), Wigle (1991)], conditional

systematic sensitivity analysis [Harrison and Kimbell (1985), Harrison (1986), Harrison et al.(1993)],

unconditional systematic sensitivity analysis [Bernheim, Scholz and Shoven (1989), Harrison and Vinod (1992),
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Harrison, Jones, Kimbell and Wigle (1993)], the "Bayesian" approach of Harrison and Vinod (1992), and the

extremal approach of Pagan and Shannon (1985). Limited sensitivity analysis is recommended by Shoven and

Whalley (1984) and has been largely used in various applications of CGE models. It simply consists in looking

at the sensitivity of the results when a few alternative parameter vectors are considered. Because of the

discretionary character of the values selected, this procedure is of course quite unsatisfactory from the point of

view of ensuring statistical "objectivity". Conditional systematic sensitivity analysis examines the effect of

perturbating one parameter at a time on the solution of the model, and so ignores possible interactions due to

simultaneous perturbations and does not provide a criterion for determining the appropriate size of parameter

perturbations. Unconditional systematic sensitivity analysis attempts to remedy this situation by considering

a parameter grid. Although more satisfactory than previous approaches, this procedure has no statistical

foundations and can easily be numerically expensive. The Bayesian approach of Harrison and Vinod relies on

a "discretization"  of the parameter space on which an a priori distribution is imposed. The latter is then used

to compute a distribution, and in particular a measure of central tendency, on the solutions of the model. Finally

the extremal approach of Pagan and Shannon is based on a linearization of the model based on the first and

second derivatives of the endogenous variables with respect to the uncertain parameters. It is clearly the most

rigorous procedure from a statistical viewpoint. In this paper, we shall largely rely on the setup considered by

Pagan and Shannon (1985). The reader will find a more detailed description of these different approaches in

Abdelkhalek (1994). Note also that Byron (1978) derived standard errors for the coefficients of large social

accounting matrices (which are widely used to calibrate CGE models) but those have not apparently been

exploited to assess simulation uncertainty in the context of CGE models.

In all above studies "calibration" is not explicitly studied. This procedure, largely used in CGE models,

is considerably less demanding than econometric analysis, especially because only scant data are required. Mansur

and Whalley (1984) and Lau [comment on Mansur and Whalley (1984, pp.127-135)] simply point out that

"calibration"  also raises difficulties for the reliability of simulation results. Note finally a somewhat different

form of calibration has been used and discussed in the "real business cycle" (RBC) literature; see Gregory and

Smith (1990, 1991, 1993), Canova (1994), Canova, Finn and Pagan (1992), Fève and Langot (1994), and Kim

and Pagan (1995). In this context, alternatives to calibration are usually based on the generalized method of

moments and require considerable amounts of data. They are not appropriate for many situations where CGE

models are applied, e.g., in developing countries. The distinction between the type of calibration in RBC models

versus that in CGE models is really one of definition. In CGE models one tries to find an equilibrium data set,

ideally a particular year, to replicate. In RBC and stochastic CGE models one emulate the expected values,

especially its first and second order moments. The methods developed in the present may clearly be adapted to

measure uncertainty in RBC models. However the peculiarities of such models [e.g., the fact that they are

stochastic] require developments that go beyond the scope (and space limitations) of the present paper.

In this paper, we study the problem of measuring the uncertainty of CGE model simulations in relation

to parameter uncertainty. In Section 2, we describe the general setup  considered, which is similar to the one of

Pagan and Shannon (1985), and show first that calibration can easily be covered by this setup. Then, in two
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following sections, we describe two systematic approaches for assessing simulation uncertainty, both of which

are based on the classical statistical notion of confidence set. More precisely, we deal with the problem of

measuring simulation uncertainty in CGE models by building confidence sets for the endogenous variables of the

model, given minimal information on parameter uncertainty in the sense that only one confidence set for the

uncertain parameters (not a complete sampling distribution for a parameter estimate or a complete Bayesian prior

or posterior distribution) may be sufficient. We study two methods for building such confidence sets. The first

one (Section 3) is a direct extension of the approach proposed by Pagan and Shannon (1985). It is based on a

standard Wald statistic and assumes that consistent asymptotically normal estimators are available for the free

parameters of the model. We describe this method mainly because it is a natural follow-up under the assumptions

considered by Pagan and Shannon (1985), although it has not apparently been discussed by previous authors in

the context of CGE models. Instead we shall emphasize a second technique, which is both more reliable from a

statistical viewpoint and (somewhat surprisingly) easier to implement in the context of CGE models. This second

method (Section 4) assumes that a confidence set (sampling or Bayesian) is available for the free parameters.

Given this confidence set, we can then obtain valid confidence sets for the variables of interest by a projection

technique. This approach has two important advantages: first, the validity of the confidence sets is not affected

by the nonlinear character of the model; second, it allows one to easily build simultaneous confidence intervals

for an unlimited number of variables of interest (or transformations of these). Further, we study general

conditions under which these confidence sets are connected (not a union of disjoint sets) and/or take the form of

intervals. Numerical procedures required to apply these procedures are discussed in Section 5. In particular, we

show that valid projection-based confidence sets can be obtained easily by using standard methods for solving

CGE models [e.g., routines available in GAMS (Brooke et al., 1988)], which make them both conceptually and

numerically simple to implement in this context, indeed appreciably more than Wald-type confidence sets. Section

6 presents an application of these procedures to a CGE model of the Moroccan economy built to study the

economic effects of policy induced increases of transfers from Moroccans working abroad. In particular, we found

that the projection technique was both simple to implement in the case studied and yielded remarkably short and

informative  confidence intervals for the endogenous variables of interest. We conclude in Section 7.

2. FRAMEWORK

In general, a CGE model can be represented by a function M such that

where Y is a vector of m endogenous variables, M is a (typically nonlinear) function which can be analytically

complex but remains computable, X is a vector of exogenous (or policy) variables, $ is a vector of p free

parameters in a subset ' of ú , and ( is a vector of k calibration parameters.p

From a theoretical viewpoint, $ and ( are not fundamentally different. However, they are treated quite

differently in CGE models. While the components of $ are parameters (such as elasticities) of the behavioral

functions of the model (representing: utility and demand, production and supply, imports, exports, etc), the
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elements of ( are usually scale or share parameters. The calibration process determines a value of ( which allows

the model to reproduce exactly the data of a reference year (possibly adjusted to take into account special

circumstances), given the value of the free parameter $. Consequently it is not surprising the selection of these

parameters may strongly influence simulation results. In other words, when calibrating a model, we consider the

equation , where Y  and X are the vectors of endogenous and exogenous variables for a0  0 

reference year, and solve it for ( (assuming there is a unique solution): 

When an estimate  of $ is available, ( is estimated on replacing $ by  in (2.2). Moreover, ( can usually be

decomposed into subvectors (  and ( , where (  does not depend on $ while the second subvector (  is a function1  2   1          2

of $, X  and Y . We can then write:0  0

Provided X is known and the deterministic character of the model is not questioned, we can simplify notations

and write the model in the more compact form:

where the functions  and g are defined for a particular reference year (after calibration) while g also treats X

as given. This formalization of the calibration process will be useful for both the theoretical developments and

the implementation of the methods proposed in this paper.

Usually the investigator is interested by the effects of alternative policies which are represented by

elements of X. The solutions of model M, simulated with different values of X, are then compared and used for

decision making. All these solutions depend on the estimate employed for $. Theoretically, this vector should be

estimated by econometric methods that would yield a covariance matrix for . Unfortunately this is not the case

in most CGE-based studies. Usually no measure of uncertainty is provided and the only method used to assess

this uncertainty consists in looking at the sensitivity of the results to a few parameter configurations.

Note also the difficulties associated with the calibration of CGE models are not directly taken into

account by the procedures of sensitivity analysis briefly discussed in the previous section. These procedures only

consider the estimation of $, not (. In CGE models the dimension of  can be quite large and its

econometric estimation difficult, if not impossible. Indeed, the number of parameters of a CGE model increases

rapidly with the number of sectors and consumers considered. Statistical series at high levels of desaggregation

are usually not available, so the number of unknown parameters may easily exceed the number of observations.

Calibration may be interpreted as an estimation of ( based on a single year data. It is clear this is only pointwise

estimation and the uncertainty of the estimate of $ is not taken into account. We will now propose more

systematic approaches for assessing simulation uncertainty.

3. WALD-TYPE CONFIDENCE SETS 
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In this section, we consider a setup identical to the one studied by Pagan and Shannon (1985). In

particular, let us suppose an estimate  of $ is available,  is based on a sample of size T with an

asymptotically normal distribution: 

where det[V($)] … 0, with a consistent estimator  of V($):  Under usual regularity

conditions [see Gouriéroux and Monfort (1989, volume 2, R.245, p. 556) or Serfling (1980, chap. 3)], we then

have:  where G($) is the (m,p) matrix . If

and setting  the variable

is asymptotically  distributed like a P (m) variable when Y = g($). Consequently, the set 2

where  P[P (m) $ P (m)] = ", is a confidence set for Y= g($) with level 1 - " asymptotically. As special cases2   2
"

of C ("), we can also obtain confidence intervals for each element of Y.Y

Since the rank condition (3.2) is not satisfied when m > p, i.e., when there are more endogenous variables

than unknown parameters in $, one can build ellipsoidal confidence sets only if the number of endogenous

variables is not larger than the dimension of $. Nevertheless, even if m > p, we can still build simultaneous

rectangular confidence sets for any  number of endogenous variables. Indeed, an individual confidence interval

with level 1 - "  (asymptotically) for the i-th endogenous variable Y = g ($) is given byi        i  i

where  is the i-th diagonal element of , and . We then have (for T

sufficiently large):

Each set C (" ) is thus a valid confidence interval with level 1 - "  for Y . It would also be interesting to combinei i            i  i

these to obtain a simultaneous confidence set. Unfortunately, individual intervals are not typically independent

and the stochastic relationship between the former is difficult to establish. Nevertheless, on using the Boole-

Bonferroni inequality, we see that
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(3.8)

(4.1)

(4.2)

(4.3)

for any 1 # k # m, hence 

Moreover, if the marginal confidence sets C (" ) all have the same level 1 - " , we have:i i         1

 so that the simultaneous confidence set

 has level not smaller than 1-k" . If we wish to obtain a simultaneous1

confidence set whose level is not smaller than 1 - ", it is then sufficient to build marginal confidence sets with

levels 1 - " , i = 1, ... , k, where  In particular, we can take .i

The confidence sets developed in this section are remarkably simple. They suppose however that the

function g($) can be approximated reasonably well by linear functions (at least locally) and that the distribution

of  is approximately normal. These limitations are identical with those of the approach of Pagan

and Shannon (1985).

4. PROJECTION-BASED CONFIDENCE SETS

Suppose now we have a confidence set C with level 1 - " for $. In other words, C is a subset of ú  suchp

that

with 0 # " < 1. The region C can be interpreted in two different ways. First, C may be a sampling confidence set

obtained by statistical methods (typically, an earlier study), i.e. C = C(Z) is a random subset of ú , based on ap

sample Z, such that the probability that the fixed vector $ be covered by C(Z) is at least 1-". Second, in other

cases, $ itself may be viewed as a random vector  and C is a Bayesian confidence set for $. The arguments which

follow are applicable irrespective of the interpretation adopted.

Denote by g(C) the image of the set C by the function g:

It is then clear that:  hence

This means g(C) is a confidence set for g($) with level at least 1- " [see Rao (1973, section 7b.3, page 473)].1

As the function g is usually nonlinear, the set g(C) may not be easy to determine or visualize. It is not generally

an interval or an ellipse. So we may find interesting to simplify its structure. To do this, write
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(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

It is then clear that:  hence by (4.3),

The inequality (4.5) shows the sets g (C), i = 1, . .. , m, constitute simultaneous confidence sets with level 1 -i

" for the components of Y, while (4.6) gives marginal confidence sets with level 1 - " for each component of

Y.  These marginal confidence sets g (C) are subsets of the real numbers which are simpler to apprehend than the2
i

multidimensional set g(C). However, without further assumptions, they do not generally take the form of

intervals.

To obtain confidence regions that take the form of intervals, consider the values g (C) and g (C) definedi   i
L   U

as follows:

where g (C) and g (C) take their values in the extended real numbers . Then, for all $ 0i   i
L   U

C,  hence

The intervals [g (C), g (C)], i = 1, ... , m, are thus valid simultaneous confidence intervals (with level 1 - ") fori  i
L  U

Y  = g ($), i = 1, ... , m. It is also clear thati  i

We should note here two important points. First, the interval [g (C), g (C)] is generally larger than g (C), in thei  i      i
L  U

sense that  Second, this interval is not necessarily bounded, i.e. we may have g (C) =i
L

-4 or g (C) = +4. It would be interesting to determine conditions under which g (C) = [g (C), g (C)],  wherei             i   i  i
U               L  U

the interval [g (C), g (C)] is closed and bounded.  We give such conditions in the three following propositions.i  i
L  U

If we suppose the function g is continuous [as done by Pagan and Shannon (1985), Wigle (1991) and

Bernheim, Scholz and Shoven (1989)] and the confidence set C is compact and/or connected in ú , somep

interesting properties can be derived.  More precisely, if we suppose g is continuous and the confidence set C is3

compact (i.e., C is closed and bounded in ú ), then the confidence set g(C) for g($) is also compact. Similarly,p

each function g is bounded in C and reaches both a maximum and a minimum at points in C. In this case, we cani 

find vectors $  and  $  in ú  such that   This result isi    i
L   U  p

summarized in the following proposition.
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(4.10)

PROPOSITION 1: If the function g(.) is continuous and the confidence set C is compact in ú , then thep

simultaneous confidence set g(C) in ú and the univariate confidence sets g (C), i = 1, ... , m, in ú arem 
i

compact.

The proofs of the propositions are given in Appendix 1. Thus, when the region C is compact and g is

continuous, the values g (C) and g (C) yield a closed confidence interval for the endogenous variable Y , fori   i           i
L   U

any i = 1, ... , m. However, if we add a connexity assumption on C, further refinements are possible. Indeed if,

in addition to the continuity of g, we assume the confidence set C for $ is connected [i.e., one cannot find two

open subsets O  and O  of ú , both meeting C, such that C f O  c O  and C 1 O  1 O  = i], the confidence region1  2          1  2    1  2
p

g(C) for g($) is also connected in ú . Clearly this is the case when C is an ellipsoid. Similarly, the marginalm

confidence sets g (C), i = 1, . .. , m are connected in ú. A subset of ú is connected only if it is an interval. Thusi

under these two conditions, we get confidence sets of the form (-4, g (C)), (-4, g (C)], (g (C) , 4), [g (C) , 4),i   i  i    i
U   U  L    L

(-4, 4), (g (C), g (C)), [g (C), g (C)), (g (C), g (C)] or [g (C), g (C)]. This result is in turn summarized byi  i  i  i  i  i   i  i
L  U  L  U  L  U   L  U

the following proposition.

PROPOSITION 2: If the function g(.) is continuous and the confidence set C is connected in ú , then thep

confidence set g(C) in ú  and the univariate confidence sets g (C), i = 1, . .. , m, in ú are connected. Inm 
i

particular, the sets g (C), i = 1, . .. , m, are intervals in ú.i

Finally, if in addition to the continuity of g, the region C is both compact and connected in ú, we can see that p

PROPOSITION 3: If the function g(.) is continuous and the confidence set C is compact and connected in ú  ,p

then each one of the univariate confidence intervals g (C), i = 1, . .. , m, is compact and connected in ú ,  soi

that , with g  > -4 and g  < +4.i     i
L    U

To illustrate how one can build the intervals [g (C), g (C)] in practice, consider the special case studiedi  i
L  U

by Pagan and Shannon (1985) when the confidence set C is an ellipsoid:

where  is an estimate of $ and A is the inverse of the "covariance matrix" of . Or again, according to a

Bayesian interpretation,  is the a priori (or a posteriori) mean of $ and A is the inverse of the a priori (or a

posteriori) covariance matrix of . In this case, the confidence set C is both compact and connected. Since g is

differentiable by assumption, the confidence sets (4.2) and (4.4) are necessarily compact and connected by

Propositions 1 and 2 above. In particular, marginal confidence sets for the endogenous variables Y  of the modeli

are closed bounded intervals. The bounds g (C) and g (C) can be obtained by respectively minimizing  andi   i
L   U
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(4.11)

(4.12)

(4.13)

maximizing g ($) on the set C. Under usual regularity conditions,  g (C) and g (C) may be computed by thei           i   i
L   U

Lagrange multiplier method. Setting

the values of $  which minimize and maximize g ($ ) under the restriction $ 0 C must satisfy:0     i 0

Assuming A is non-singular, it follows from (4.12) that the values of $  which yield g (C) and g (C), denoted 0   i   i
L   U

and , solve the equation:

Note the bounding values $  and $  were also considered by Pagan and Shannon (1985), but without referencei   i
L  U

to the fact that [g (C), g (C)] can be interpreted as a confidence interval.i  i
L  U

The above method of building confidence intervals for the endogenous variables of a CGE model is valid

in finite samples in contrast with the Wald-type procedure previously discussed which only has an asymptotic

justification. No linear approximation to the (generally nonlinear) relationship between the endogenous variables

and $ is made. Of course, the projection technique does not solve by itself the problem of finding a confidence

set for $, which in a sampling framework should be obtained by inverting "pivotal" functions [see Dufour

(1994)]. But it clearly eliminate possible level distortions associated with the nonlinearity of the function g($).

Further, we will see below its numerical implementation is considerably less demanding than one would expect

at first sight.

5. ALGORITHMS AND NUMERICAL PROCEDURES

 

 In this section, we discuss algorithms for applying the procedures proposed in Sections 3 and 4. They

can implemented with various software. The one we used is GAMS-MINOS [see Brooke et al. (1988)] which

is by far the most widely utilized by CGE model builders.

5.1. Wald-type procedure

To implement the Wald-type procedure, we need estimates  and  of $ and V($)



C(") ' 6g($): WT(g($)) # P2
"(m)> ' 6g($): T[g($̂T)&g($)])Ŝ&1

T [g($̂T)&g($)] # P2
"(m)>

P[$ 0 C] ' P[$ 0 C _ C0] $ 1 & " .

ŜT ' G($̂T)V̂T($̂T)G($̂T))

G($̂T) ŜT

P[$ 0 C] $ 1 & "

P[$ 0 C] $ 1 & " and $ 0 C0 ,

$ 0 C ] $ 0 C _ C0

(̂1 ' h1(Y0, X0) , (̂2 ' h2(Y0, X0, $̂) ;

$̂ (̂1 (̂2 Y ' M(X1, (̂1, (̂2, $̂)
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(5.1)

(5.2)

respectively. Under appropriate differentiability assumptions, we can then compute .

In general the derivatives  must be evaluated by standard numerical methods. Provided  is invertible,

we get from (3.4) that the set

is a confidence set with level 1 - " asymptotically for the vector g($). Depending on the value of m, the set C(")

can be an interval, an ellipsoid or an hyperellipsoid. When m > p, we can still build simultaneous confidence

intervals for the components of Y. For further details on the implementation of this procedure, see Appendix 2.

 5.2. Projection procedure

Although the theory of the projection technique is fairly simple, numerical methods for applying it to

CGE models may be less so. The procedure requires a confidence set C (sampling or Bayesian) in ú  such thatp

, with 0 # " < 1. Since the set C may sometimes cover economically or numerically

inadmissible values (e.g., negative values or values for which the model does not admit a solution), the confidence

set C can be restricted only to its admissible values. In a Bayesian setup, this simply involves restricting the

support of the prior distribution. For sampling (frequentist) confidence sets, it is easy to see that eliminating

(truncating) inadmissible values from a confidence set does not modify its level. If

 where C  is a set of admissible values for $  representing a priori information,0

we have , hence

We will now show how one can build valid confidence regions by projection while taking into account

the "calibration" of the model. Typically the numerical solution of a CGE model is obtained in two steps. First,

the model is "calibrated", i.e. a number of unknown parameters (() are fixed to reproduce the data of the reference

year given an estimate of the free parameter vector ($) and the values of the endogenous and exogenous variables

of this year. Second, the model is solved with different values of the exogenous variables (e.g., policy variables),

given the values of all parameters obtained at the end of the first step. In general, one must solve a set of nonlinear

equations. This leads to the following algorithm: (1) compute  (2) given

, X  , X  , Y  ,  and , compute . In practice, to compute Y, we must solve a0  1  0

potentially complex nonlinear equation system. Using the GAMS-MINOS program, this can done by maximizing

a constant function under the constraints which represent the model.

Projection-based confidence sets may be obtained by a modification of the above procedure. To do this,

the free parameters and the associated calibrated parameters (  are treated as endogenous "variables" just like2

the other endogenous variables Y of the model. More formally, given X  , X  and Y   and a confidence set with0  1  0



(̂1 ' h1(Y0, X0) ;

Yi ' gi(X1, $) ' gi($)

Y ' M(X1, (̂1, (2, $) , (2 ' h2(Y0, X0, $) and $ 0 C _ C0 .

($), ()

2)
)
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level 1 - " for $ (possibly specified by inequalities), we consider the procedure: (1) compute 

(2) for each i = 1, ... , m, both maximize and minimize:  subject to the restrictions

This nonlinear program must be solved at most 2m times to determine the lower and upper bounds of

confidence intervals for each endogenous variable of interest. A good initialization usually accelerates

convergence. In particular, good initial estimates of the calibrated parameters and the endogenous variables may

be good starting points. The first step of this revised algorithm determines, from data of the social accounting

matrix of the reference year (or its equivalent), the values of the calibrated parameters that  do not depend on free

parameters. Then given X , the second step treats the free parameters in $ and the associated calibrated1

parameters (  as additional variables, while the calibration equations are treated as additional relationships of2

the model. The inequalities that define the confidence set on $ are also added to the model. The basic structure

of the latter is preserved by this program but the parameters  are specified as "variables". The

optimization problem is then solved by minimizing and maximizing each variable of interest. Note the number

of times the model is solved depends on the number of variables for which we wish build confidence intervals,

not the number of parameters p subject to uncertainty (as happens for the Wald-type procedure). Depending on

the values of m and p, one may prefer a procedure over the other. Again the above approach can be applied to

any endogenous variable of the model. Simultaneous confidence sets based on Boole-Bonferroni inequalities can

also be built for several endogenous variables at a time.

6. APPLICATION TO A CGE MODEL OF THE MOROCCAN ECONOMY

To illustrate the procedures proposed in the previous sections, we have built a simple CGE model of the

Moroccan economy.  This model has a fairly standard structure close to the one of models developed by4

Devarajan, Lewis and Robinson (1990), de Melo and Robinson (1989), Condon, Dahl and Devarajan (1987) and

Martin, Souissi and Decaluwé (1993). We will use it to study the economic impact of a 25% increase of transfers

from Moroccans working abroad (or workers' remittances), an important source of currency for Morocco.

Although this question has intrinsic interest, our first objective here will be to illustrate the methodology

proposed. Consequently, we have adopted the most simplified structure that will make clear the procedures. The

latter may of course be applied to more complex models. Although simplified, our model will illustrate the

methods suggested for assessing the uncertainty associated with the free parameters of the model, which in our

case will be foreign trade elasticities.

6.1. A simplified CGE model of the Moroccan economy
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(6.1)

(6.2)

(6.3)

The model studied here is of the "1-2-3" type representing the economy of a single country, Morocco

in this case, with two sectors and three goods. Each one of the two sectors produces one good. The first one EX

is deemed for export and not sold on the domestic market. The second good D is produced and sold on the

domestic market. The third good M is imported and not produced domestically. The assumption that Morocco

is a "small country" is preserved so that the prices of exports and imports are exogenous. More precisely, to

model foreign trade, we have used a formalization based on recent theories of product differentiation as described

by de Melo and Robinson (1989, 1992). It is clear this modelization can have an important influence on the

results of policy simulations especially when the latter directly affect the foreign sector. In this theory, an

imperfect substitutability between goods is assumed (Armington hypothesis), in contrast with the classical

assumption of perfect substitutability between local and imported goods. More precisely, we have a composite

good Q consumed on the domestic market, which is a function of imports M and the domestically produced good

D with constant elasticity of substitution (CES) between M and D. The representative consumer selects a

combination of M and D which minimizes total expenditure given the two corresponding prices p  and p  andM  D

the level Q. The Armington formulation of this CES function is given by

where  is the constant elasticity of substitution between imported and domestic goods, B is a

constant which depends on measurement units and * is a weighting parameter. In our terminology, following

usual calibration procedures for this type of function in CGE models [see Mansur and Whalley (1984)], B and

* are calibrated parameters while F (or D) is a free parameter that needs to be estimated before calibration.

The first order equilibrium condition for this problem is given by the equality of the price ratio between

the two goods and the marginal rate of substitution between imported and  domestic goods or equivalently:

The prices p  and p  are endogenous. The price p  of the composite good is determined by the equations:M  D     C

where p  is the international price of imports, t  the duty rate on imports, and E the nominal exchange rate whichwm       m

can be fixed in some formulations of the model.

Exports are modeled in a comparable way. Again, in contrast with the standard small economy

hypothesis, we suppose there is product and market differentiation. It is still assumed that Morocco is a "price-

taker" on the international market, but domestic producers can choose to direct their supply, denoted X , eithers

towards the domestic market or towards exports depending on relative prices. Since there is a quality difference

between products sold locally and exported products, a constant elasticity transformation function (CET) between

these two products is specified. Exports come from local production (not the composite good), so the direct
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(6.4)

(6.5)

(6.6)

(6.7)

content in import of exports is taken to be zero. However, their indirect content through intermediate consumption

may not be void. Producers maximize their income given the technological constraint represented by the

transformation function, i.e., they maximize

subject to the constraint

The price of exports p , the price of the domestic good p  as will as the composite supply price p are endogenous.E        D

p  is evaluated in national currency and defined by the expression   E

where p  is the international price of exports, E the nominal exchange rate and t  the duty rate on exports. Again,we             e

to help interpretation, we define , or  As before, B  is a scale parameter, ( aE

weight coefficient, and S a constant elasticity of transformation between exports and the domestic good. B  andE

( are calibrated parameters while S (or R) is a free parameter for which an estimate is required. The

maximization of (6.4) subject to (6.5) yields the condition

This way of modelling foreign trade, studied in detail by de Melo and Robinson (1989) and Devarajan,

Lewis and Robinson (1990), is widely used in CGE models.  It appears more realistic than the classical5

assumption of perfect substitutability between goods. The two functions CES and CET are sufficiently easy to

manipulate in analytic derivations and calibration, even though a free parameter is introduced by each function.

The functions are homogenous of degree one with respect to their arguments. Given a hypothesis of factor full

employment, the CET function defines a concave production possibility frontier between exports and sales on

the domestic market.

Equations (6.1)-(6.7) all belong to the model. Overall, the model has 30 equations (including Walras

law), 42 variables, 2 free parameters, 10 calibration parameters and 5 tax parameters. To solve it model, we need

to treat as exogenous 13 of the 42 variables. By the small country assumption, it is natural to take the prices of

exports and imports as exogenous. Six categories of transfers between agents (government to firms, government

to households, government to the rest of the world, rest of the world to households, rest of the world to

government, firms to the rest of the world), government expenditures, total labor and capital are also taken as

exogenous. This corresponds to a classical "closure" of the model, in the sense that investment adjusts itself to

total available saving [see Decaluwé, Martens and Monette (1988)], which could be contrasted with Keynesian,

Kaldorian and Johansen-type closures. To complete the closure, the balance of the current account is treated as
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(6.8)

(6.9)

(6.10)

exogenous (the nominal exchange rate remains endogenous) and the price p  of the composite good is taken asc

numeraire (fixed by definition). 

6.2. Deterministic calibration of the model 

To calibrate the model described above, we used a social accounting matrix of the Moroccan economy

constructed by G.R.E.I. (1992) and econometric estimates of the two free parameters (the foreign trade elasticities

F and S). To show how this is done, consider the Armington-type model for imports described above. To

calibrate the parameters which appear in this function, we first need an estimate of the substitution elasticity F.

Then, using the first order condition (6.2), the data on the values Q  , M  , D  ,  and  of the reference year,0  0  0

and a normalization convention on the prices of the same year,  we can write6

from which we get an estimate of *:

An estimate of the scale parameter B follows on using equation (6.1):

In equations (6.9) and (6.10), the crucial role played by the free parameter for determining the other

parameters is clear. In this case we usually have D  > M  what entails  is an increasing function of . When0  0

the elasticity of substitution is small, which is the case for developing countries like Morocco,  tends to zero

and numerical problems show up in solving the model. We can proceed in a similar way for the parameters of the

export function which depend on the free parameter S. Further details are given in Abdelkhalek (1994).

To calibrate and simulate this model, we need estimates of the foreign trade elasticities F and S. No

earlier estimates of such parameters for Morocco appear to be available in the literature. The closest work is the

one of Khan (1975) and Stern, Francis and Schumacker (1976), who estimated import and export elasticities with

respect to their relative price, as opposed to the substitution and transformation elasticities which appear in our

model. Further, the work of Khan (1975) leads to elasticities which are essentially zero for Morocco over the

period 1951-69, so we estimated the needed elasticities from Moroccan data over a more recent period.

The two required elasticities were estimated simultaneously from Moroccan data covering the period

1962 to 1992. An econometric analysis of structural change in the two estimated equations (relating the
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(6.12)

logarithms of the ratios D/M and E/D to the logarithms of the corresponding price ratios and a measure of overall

economic activity) led us to divide the sample into two more homogeneous subperiods (1962-1972 and 1973-

1992). The two estimated equations are given in Appendix 3. Without going into the details of this econometric

analysis, which is not the purpose of this paper, note the two equations have contemporaneously correlated

disturbances, so the latter were estimated as a set of seemingly unrelated regressions (SURE): shocks that affect

exports may also affect imports and vice-versa, hence the correlation between the disturbances. We obtained in

this way the following estimates for (S, F) for the subperiod 1962-1972, with the corresponding asymptotic

covariance matrix:

Of course, given the very small sample size on which these estimates are based, the usual large sample

distributional theory may not be very reliable here, and the resulting confidence sets should be interpreted with

caution. Given the available data, these appeared to be the best that could be obtained. Using these estimates of

the free parameters of the model, we can then calibrate the other parameters on the basis of the reference year and

simulate the model. The latter were performed with the GAMS-MINOS program.

6.3. A simulation

In general, CGE models are built to study the effects of various economic policies or changes in other

exogenous variables (X) of the model. Given a change in X, the model is solved for a new equilibrium. We will

study here the effect of a 25% increase in transfers from the rest of the world to households in Morocco. These

transfers consist mainly of repatriations by Moroccan workers abroad, an important source of foreign currency

for Morocco. Indeed, the latter country receives more currency from this source than from phosphate exports and

tourism. These transfers of income have increased during the 1980's due to returns of emigrants and to various

public policies encouraging fund repatriations. As these transfers may take several channels, they are difficult

to measure statistically. In particular they can go through formal channels or take the form of liquidities brought

during holidays, settlements between compatriots or even purchases of imported goods. The first of these

elements is the only one measured by official balance of payments statistics, which shows a regular progression

at an annual rate of 22% between 1970 and 1990.  This evolution appears to corroborate a positive reaction to7

various incentives put forward by public authorities. Because of the importance of these repatriations, it is of

interest to study their economic impact on the Moroccan economy. Although our first objective here will be to

illustrate the methods proposed above, our general equilibrium simulations will also provide useful information

for economic policy. The transfers have direct effects on household income, and indirect effects on consumption,
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saving, investment and government revenue. The simulation which follows studies these aggregate effects.

The results of the simulation are displayed in Table 1. They show that the increased influx of currency

raises household income YM and saving SM, consumption CM, and thus total demand originating from

households, both for the composite good Q and the domestic good D. Since the structure of the model, and

especially its closure, does not allow an increase in supply (added value VA or intermediate consumption CI),

the price p  of domestic goods increases leading to an increase of imports M (because of their substitutability withD

domestic goods). The currency influx decreases the nominal exchange rate E, i.e. leads to an appreciation of the

national currency, which in turn decreases exports EX and increases imports M. As imports increase more in value

than exports decrease and duty rates are higher on imports, government receipts increase. Furthermore, due to

the raise of household income, direct taxes increase, government saving SG follows, and the government deficit

decreases. The current balance account (saving from the rest of the world) is exogenous in this model and thus

remains unchanged. All savings increase or remain fixed. Aggregate investment IT, given the closure of the

model, increases and puts additional pressure on internal demand and imports. All these trends are symptoms of

what is known as the "Dutch disease".

The reactions of the endogenous variables of the model, especially imports, exports and internal demand

for the domestic good depend on the substitutability between the different goods represented by the elasticities

S and F. Indeed the smaller these elasticities the larger the effects of the shocks simulated here. The results in

Table 1 only give point estimates of the endogenous variables associated with given elasticity estimates and

exogenous variables. Any serious analysis should look at the robustness of the results to parameter uncertainty.

The procedures proposed above allow one to build confidence sets for the endogenous variables of the model,

and we will now give such confidence sets for the endogenous variables of most interest.

- Wald-type confidence sets

As there are only two free parameters in this model, confidence sets of ellipsoidal type may be built only

for two variables at a time. We can however obtain Wald-type confidence intervals for all the variables of the

model. We shall concentrate on six of these variables: exports (EX), imports (M), government saving (SG),

aggregate investment (IT), internal demand for the domestic good (D), and the nominal exchange rate (E).

Table 2 gives the partial derivatives of these six endogenous variables with respect to the two free

parameters, which are the source of the uncertainty. These derivatives were evaluated by numerical methods (as

described in Appendix 2) using symmetric parameter perturbations with . Given these, we can build

marginal confidence intervals for the endogenous variables of interest. Table 3 presents such intervals (with level

95%) for the endogenous variables under the new vector of exogenous variables, the difference with respect to

the reference year value and the difference in percentage. We see from these that the effect of the 25% increase

in transfers is clearly positive (at 5% level) for three variables (M, SG, IT) and negative for another one (E), while
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(6.14)

the intervals for EX and D include zero indicating that these effects are not statistically significant (although these

intervals also cover values that may economically sizable). All the intervals are fairly precise in the sense that the

difference between the upper and lower bounds (the range) are always less than 4% of the corresponding level,

even less than 1% for IT and D.

Tables 2 and 3 also give confidence interval construction for variables taken individually. In the case of

this model, ellipsoidal simultaneous confidence sets can be obtained for pairs of endogenous variables. For the

sake of illustration, we give in Figure 1 a 95% confidence ellipsoid for the changes of public saving SG and

aggregate investment IT. We see from the shape of this ellipse that the changes in SG and IT are positively

associated, which is not surprising. We also report on the same figure Boole-Bonferroni 95% simultaneous

confidence intervals (rectangular confidence region) which are easier to understand but are less precise.

- Projection-based confidence sets

The simultaneous estimations of the two foreign trade elasticities S and F by the SURE

procedure yields a covariance matrix which can be used to build a confidence set for the vector

 This confidence set can be rectangular if we ignore the covariance between the estimators

of the two foreign trade elasticities. Interestingly, this approach also allows one to use estimates

which are not based on the same data or for which a covariance matrix is not available. In the case

considered here, we have a covariance matrix and so we can build an ellipsoidal confidence set for

S and F. For illustrative purposes, we present below results based on rectangular and ellipsoidal

confidence sets for $. Throughout the confidence level is 95%. 

The rectangular confidence set is obtained by simply estimating S and F separately (through

two regressions) and then building confidence intervals C  and C  for S and F from these regressions.S  F

To ensure that the resulting rectangle has the desired coverage probability, we build confidence

intervals C  and C  with levels 1 - "  and 1 - "  respectively, where " = "  + " . In contrast with theS  F     1    2     1  2

SURE approach considered below, this method does not make any assumption on the form of the

dependence between the errors in the two equations. This is due to the fact the level " = "  + "  is1  2

obtained through the Boole-Bonferroni inequality which holds irrespective of the nature of the

dependence between the two separate regressions used; for further discussion of such methods, see

Dufour and Torrès (1997). More precisely, we take "  = "  = "/2 = 0.025 and find the intervals: 1  2

where  and  are the usual standard error estimates for  and , t("  ; <) is such that P[t(<) $ t("1        1

; <)] = " , and t(<) is Student-t random variable with < degrees of freedom; here we take "  = 0.025,1                1
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(6.15)

(6.16)

(6.17)

(6.18)

hence t("  ; 8) = 2.75152 and t("  ; 6) = 2.96869. Furthermore the above intervals may cover1      1

negative values of the elasticities, which are viewed as inadmissible by economic theory, or values for

which the model has no numerical solution (which we also take as inadmissible). So the confidence

set was also truncated to exclude such values. This turned out to matter only for the S-interval which

had to be truncated to the left at the smallest value for which a numerical solution does exist: this

value is 0.3633. The final simultaneous confidence intervals so obtained are:

In other words, the rectangle represented by (6.15) is a confidence set for , whose level is not

inferior to 0.95. By maximizing and minimizing the endogenous variables subject to (6.15), we can

then find 95% confidence intervals for the latter. The results are reported in Table 4A.

The results based on this method yield wider intervals than the Wald-type method. Since the

basic estimates are different and are based on weaker assumptions (possible dependence between the

two equations estimated is not modeled), this is not surprising. Nevertheless these results still show

that the effect of the fund transfer increase is clearly positive (at level 5%) for M and IT and negative

for E. Furthermore the effect on EX is now clearly negative and the one on D clearly positive. The

effect on SG is not statistically different from zero, but this interval is quite wide and covers mostly

positive values.   

Consider now an ellipsoidal confidence set for S and F. Such a confidence set takes into

account the correlation between the estimators of the two parameters. Let  be the SURE estimator

of  and  its estimated covariance matrix. Then, under the assumptions of the SURE

model, the quadratic form 

follows approximately an F(p, T - K) distribution with p = 2 and T - K = 12. Then by choosing F.05

= F (p, T-K) = 3.88529 where P[F(p, T-K) $ F (p, T-K)] = ", the set.05         "

is a confidence set for $ whose level is approximately 0.95. Since this confidence set can cover

negative values of S and F or values for which the model has no solution, it was further restricted as

in (6.15), which yields the confidence set: 

As for the rectangular confidence set, the confidence intervals for the endogenous variables of the

model are obtained on maximizing and minimizing each of them subject to (6.18). They are reported

in Table 4B.
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The confidence intervals obtained by latter method are much shorter than those based on

projecting from the conservative rectangular confidence set above (Table 4A). This is not surprising

since the SURE method uses stronger statistical assumptions on the dependence between the two

equations (which are the same as in the Wald-type method) and yields more efficient estimators under

these assumptions. More surprisingly, despite the fact that projection-based intervals are

"conservative", the confidence intervals in Table 4B are shorter than the Wald-type intervals for three

variables (EX, M, D) out of six. Furthermore, none of the intervals covers zero, and so all effects are

statistically significant (at level 5%): positive for M, SG, IT, D, and negative for EX and E. More

precisely according to this simulation, the 25% increase in fund repatriations leads to an appreciation

of the dirham (decrease in E between 1.41% and 3.52%), to a decrease of exports (between 0.73%

and 3.42%), and to increases of imports (2.89 to 4.90%), saving (3.47 to 8.22%), investment (0.99

to 1.84%) and aggregate demand (0.11 to 0.51%). Even if the projection technique is

computationally more demanding, it is more reliable (in the sense that levels are better controlled) and

more powerful (in the sense that confidence intervals may be shorter).

7. CONCLUSION

During recent years, CGE models have become important tools of policy analysis. However

parameter uncertainty throws doubt on the reliability of simulation results. In this paper, we have

proposed formal methods for assessing this type of uncertainty. These rely on building confidence

sets, of which two variants were considered. The first approach is based on a Wald-type statistic and

can easily be applied whenever an estimator with an approximately normal distribution and an

estimate of its covariance matrix are available. The second approach applies a projection technique

from a (sampling or Bayesian) confidence set on the free parameters of the model. The latter requires

considerably less regularity conditions than the former (especially on the nonlinear structure of the

model) and allows great flexibility in the nature of the information used on the uncertain free

parameters. Furthermore, it can be implemented with standard numerical procedures usually applied

to solve CGE models.

We then considered a simple model of the Moroccan economy and studied the effect of a 25%

increase of fund repatriations by Moroccans working abroad. We showed that the methods proposed

for assessing the uncertainty of the simulations could be implemented easily in the context of a CGE

model and yielded quite reasonable results. For the six variables studied, we found using the

projection technique that all the changes predicted by the simulations were significantly different from

zero (at a level of 5%) and could be ascertained by tight confidence intervals. In particular, using the

projection technique (from a SURE-based ellipsoidal confidence set on the parameters), we found
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remarkably short confidence intervals on the 6 variables considered which all indicated statistically

significant effects: appreciation of the dirham, export reduction, and increases in imports, saving,

investment and aggregate demand. Even though this model does not involve a large number of free

parameters estimated by econometric methods, it is clear that GAMS and the methods proposed in

this article can accommodate much larger models and parameter numbers. In applications of CGE

models to developing countries, however, the main limitation will remain the availability of good data

for estimating the relevant  parameters.

NOTES

1. For other examples of similar projection techniques in econometrics, see Dufour (1989, 1990),

Dufour and Kiviet (1994, 1996), Campbell and Dufour (1997) and Kiviet and Dufour (1997). 

2. For a more detailed discussion of simultaneous and marginal confidence sets, see Miller (1981)

and Dufour (1989).

3. For conditions ensuring that g(.) is continuous, see Kehoe (1983).

4. A detailed description of this model appears in Abdelkhalek (1994).

5. For a review, see Decaluwé and Martens (1988).

6. As done usually in CGE models, all pre-tax (or pre-subsidy) prices are normalized  to one for the

reference year.

7. See the letter of the Centre Morocain de Conjoncture (1991). 
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APPENDIX 1: PROOFS OF PROPOSITIONS

Proof of Proposition 1: By assumption, the function g is continuous on C f ú  where C is a compactp

set. Consequently, from any cover of C, we can extract a finite subcover. Let   a cover of

g(C) where all the sets V  are open subsets of ú . Since g is continuous,   is an open"
m

cover of C. And since C is compact, one can extract a finite cover J of C: i.e., we can find a finite

subset J of I such that J f I and . Since g[g (V )] f V , then . Thus -1
"   "

is a finite cover of g(C), i.e. g(C) is compact. The proof for the marginal confidence regions is similar

on replacing ú  by  ú and g(.) by g (.).  Q.E.D.m
i

Proof of Proposition 2: By assumption, the function g is continuous from C f ú   to g(C) f ú ,  andp     m

C is connected. Suppose the set g(C) is not connected.  This entails there are two open non-empty

sets O  and O in ú  such that:1  2 
m

i) g(C) 1 O  … i, g(C) 1 O  … i ;1     2

ii) g(C) f O c O  ;1  2

iii) g(C) 1 O  1 O  = i ; 1  2

see Royden (1968, p.152). Since the function g is continuous, it follows that g (O ) and g (O ) are-1   -1
1   2

two open sets in ú . Moreover, we have:p

i) g(C) 1 O  … i Y › y 0 ú  such that y 0 g(C) 1 O  1              1
m

      Y › $ 0 ú  such that $ 0 C 1 g (O ) Y C 1 g (O ) … i ;p       -1     -1
1     1

we can see that C 1 g (O ) … i in the same way;-1
2

ii) C f g [g(C)] f g (O  c O ) = g (O ) c g (O ) ;-1   -1     -1   -1
1  2   1   2

iii) C 1 g (O ) 1 g (O ) = g (C 1 O  1 O ) = g (i) = i.-1   -1   -1       -1
1   2     1  2

Consequently, the set C is not connected in contradiction with our assumption. The proof for

marginal confidence regions g (C), i = 1, . ., m, is analogous. Q.E.D.i

Proof of Proposition 3: By assumption, the function g is continuous from C f ú  to g(C) f ú ,  andp    m

C is compact and connected. By Propositions 1 and 2, the image g (C) of C is compact and connectedi

in ú. But the only compact connected subsets of ú are intervals of the form [g (C), g (C)], wherei  i
L  U

g (C) > -4 and g (C) < +4.  Q.E.D.i     i
L     U



Mg

M$)

k

(X1, $̂T) '
g(X1, $̂1

T, .., $̂k
T % h, .., $̂p

T) & g(X1, $̂1
T, .., $̂k

T & h, .., $̂p
T)

2h
.

G($̂T)

$ ' $̂T

$̂T

G($̂T)

$̂T

G($̂T)

$ ' $̂T

Y0 ' M(X0, $, ()

Y ' g(X1, $̂T) ;

$̂k
T $̂T $̂k

T % h
$̂k

T $̂k
T & h

$̂k
T

G($̂T) V̂T

ŜT
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(A.1)

APPENDIX 2: WALD-TYPE PROCEDURE ALGORITHM

The main difficulty in the implementation of the Wald-type procedure is to compute the

derivatives . This can be done as follows. After a first solution of the model has been obtained

for the reference year with  and the initial values of the exogenous variables, we solve the

model a second time (base solution) with a new set of exogenous variables (which may represent a

different policy) but keeping the same coefficient vector . We then need to evaluate the matrix

 of the derivatives of Y at the base solution. This can be done by considering small

perturbations, symmetrical or not, of each component of . In the case of symmetrical perturbations,

we need to solve the model 2p times (in addition to the two basic simulations), while only p solutions

are required for asymmetrical perturbations. The relative precision of the two procedures depends

on the shape of the function g(.). In both methods, parameter perturbations should be very small and

applied to one parameter at a time. For each perturbed parameter vector, the model is then solved

(with the same set of exogenous variables). The difference between two corresponding perturbed

solutions (in the symmetrical case) or between each perturbed solution and the base solution is then

used to evaluate each partial derivative. More precisely,  is evaluated as follows (in the case

of symmetrical perturbations):

(1) solve the model with  and calibrate it to reproduce the reference year according to

equations  and (2.2); (2) compute the new equilibrium under the new exogenous

variables vector X , which yields the base solution:  (3) for each k = 1, ... , p, consider1

two modified $ vectors, the first obtained by changing component  of  to  (the other

components remaining the same) and the second one by changing   to  where h is small;

the value of h may be a fixed fraction of   or of its standard deviation; (4) solve the model with

these modified parameter vectors (and the new exogenous variables vector); calibrated parameters
which are functions of free parameters are of course modified after each perturbation of a free
parameter; (5) for k = 1, ... , p, evaluate the partial derivatives with the formula:

The latter algorithm allows one to evaluate the matrix  for any values of p and m. Since 

is known, we can then compute easily the matrix . However, because of the rank condition (3.2)

which cannot to be satisfied when m > p (i.e., when there are more endogenous variables than free

parameters) simultaneous confidence sets of ellipsoidal type can be constructed only when the number

of endogenous variables is at most equal to the number of free parameters. When p = 2 for example,

simultaneous confidence sets for pairs of endogenous variables may be so obtained.
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(A.2)

(A.3)

APPENDIX 3: ESTIMATION OF FOREIGN TRADE ELASTICITIES

To obtain the free parameters S et F, we estimated the following pair of equations from

annual Moroccan data:

The data come from the International Monetary Fund [International Financial Statistics (I.F.S.), 1992

and January 1994] and the variables are defined as follows:

M : Index of imports, line 73 of I.F.S. (1985 = 100); 

D : Index of domestic consumption (1985 = 100);

P  : Wholesale price index, line 63 of I.F.S. (1985 = 100);D

P  : Price index of imports, line 75 of I.F.S. (1985 = 100);M

PIB : Real gross domestic product in billions of 1985 dirhams, line 99b of I.F.S.;

E : Index of exports, line 72 of I.F.S. (1985 = 100); 

P  : Price index of exports, line 74d of I.F.S. (1985 = 100);E

PIBW: Index of gross domestic product of industrialized countries, line 110 of I.F.S.(1985 = 100).

The parameters of (A.2) and (A.3) were estimated first equation by equation (by least squares) and

then as a SURE system, using Micro TSP (version 6.0). The results of the estimations are displayed

in Table A.1.
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Table A.1: Estimation of foreign elasticities*

Independent OLS SURE 

variables

ln (M/D) ln (E/D) ln (M/D) ln (E/D)

Constant 1.80681 1.54106 1.81084 3.00096

ln(P /P ) 1.26371 ---- 1.43237 ----D M

ln(PIB) -0.47815 ---- -0.45754 ----

ln(P /P ) ---- 0.69138 ---- 0.39296E D

ln(PIBW) ---- -0.47823 ---- -0.78371

Sample size 9 11 9 9**

R 0.8132 0.6260 0.7983 0.73902

s (S.E. of reg.) 0.0578 0.0768 0.0601 0.0711

D-W 2.5010 1.4767 2.2939 1.2114

(0.7172) (1.0832) (0.5329) (0.8615)

(0.2653) (0.1553)

 (0.1649) (0.1272)

 (0.7417) (0.4305)

(0.19844) (0.1821)

 Standard errors are given in parentheses.*

 Because of missing data, the numbers of observations differ across equations (9 observations for 1964-72, and 11**

observations for 1962-72).
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TABLES AND FIGURE

 Table 1: Simulation results for a 25% increase of transfers from the rest of the world to households in Morocco

Variable Reference year value Value after simulation Variable change

SAM 1985
in value in %

VA 116858.000 116858.000 0.0000 0.0000

CI 121584.800 121584.800 0.0000 0.0000

p 1.000 1.00602 0.00602 0.60200D

p 1.000 1.000 0.0000 0.0000C

p 1.21134 1.18247 -0.02887 -2.38331M

p 0.98966 0.96607 -0.02359 -2.38365E

E 1.000 0.97617 -0.02383 -2.38300

CM 83829.100 85948.75722 2119.65722 2.52855

IT 35122.800 35666.55332 543.75332 1.54815

M 42806.000 44761.86308 1955.86308 4.56913

EX 32198.000 31867.92374 -330.07626 -1.02515

D 209847.000 210168.7960 321.79600 0.15335

Q 261699.700 264363.111 2663.41100 1.01774

YM 102093.100 104674.571 2581.47100 2.52855

YG 23402.700 23709.12414 306.42414 1.30935

TAXM 9046.700 9234.58631 187.88631 2.07685

TAXE 333.000 321.73096 -11.26904 -3.38410

SM 14116.000 14472.92953 356.92953 2.52855

SG -4677.600 -4371.17586 306.42414 6.55088
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Definitions of variables in Table 1

VA : Value added in volume M : Imports in volume

CI : Intermediate consumption in volume  EX : Exports in volume    

p  : Price of domestic good     D : Internal demand for domestic goodD

p  : Price of composite good  Q : Demand for composite good in volumeC

p  : Domestic price of imported good YM : Houshold incomeM

p Price of exported good YG : Government incomeE :

E : Nominal exchange rate (price of TAXM : Taxes on imports

foreign currency in dirhams) TAX : Taxes on exports

CM : Household consumption in value SM : Household saving

IT : Aggregate investment in value SG : Government saving

Table 2: Partial derivatives of endogenous variables of interest with respect to free parameters

Variable Reference value Value after Partial derivative Partial derivative

SAM 1985 simulation with respect to S with respect to F1

EX 32198.00 31867.92374 -704.70814873 175.60394618

M 42806.00 44761.86308 -625.08111575 282.41984793

SG -4677.60 -4371.17586 -55.51498001 168.39212746

IT 35122.80 35666.55332 -13.84375390 224.97662966

D 209847.00 210168.7960 688.37048328 -168.60157041

E 1.00 0.97617 0.01272404 0.01047215

 After 25% increase of transfers from the rest of the world to Moroccan households.1
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Table 3: Marginal Wald-type confidence intervals with level 95% for six endogenous variables

Varia- Confidence interval Confidence interval for difference with

ble reference year (1985) value 

Difference in value Difference in % 

Lower Upper Lower Upper Lower Upper Range

bound bound bound bound bound bound

EX 31257.500 32478.347 -940.4999 280.3474 -2.9210 0.8707 3.7917

M 44206.248 45317.478 1400.2481 2511.4780 3.2711 5.8671 2.5960

SG -4448.946 -4293.405 228.6535 384.1947 4.8883 8.2135 3.3252

IT 35594.208 35738.899 471.4077 616.0989 1.3422 1.7541 0.4119

D 209572.824 210764.768 -274.1761 917.7681 -0.1307 0.4374 0.5681

E 0.9657824 0.9865576 -0.0342176 -0.013442 -3.4218 -1.3442 2.0776
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Table 4: Confidence intervals with level 95% for six endogenous variables endogenous

A. Projection from a rectangular confidence set for the parameters

Variable Confidence interval Confidence interval for difference
with reference year (1985) value 

Difference in value Difference in % 

Lower Upper bound Lower Upper Lower Upper Range
bound bound bound bound bound

EX 30609.184 31966.332 -1588.8164 -231.6680 -4.9345 -0.71951 4.21501

M 43561.513 44908.459 755.5117 2102.4609 1.7650 4.91160 3.14664

SG -4699.347 -4290.609 -21.7466 386.9907 -0.4649 8.2733 8.73818

IT 35223.041 35772.746 100.2383 649.9453 0.28539 1.85049 1.56510

D 210073.700 211402.950 226.7031 1555.9063 0.10803 0.74145 0.63342

E 0.9506900 0.9893900 -0.04931 -0.010610 -4.93100 -1.06100 3.87000

B. Projection from an ellipsoidal confidence set for the parameters

 Variable Confidence interval Confidence interval for difference
with reference year (1985) value 

Difference in value Difference in % 

Lower Upper Lower Upper Lower Upper Range  
bound bound bound bound bound bound

EX 31095.856 31963.886 -1102.1445 -234.1133 -3.42302 -0.72711 2.69592

M 44044.210 44904.419 1238.2110 2098.4180 2.8926 4.90217 2.00955

SG -4515.478 -4293.113 162.1221 384.48730 3.46592 8.21976 4.75383

IT 35470.860 35769.392 348.0586 646.5898 0.99098 1.84094 0.84996

D 210076.000 210926.200 229.0000 1079.2031 0.10913 0.51428 0.40515

E 0.9647500 0.9858600 -0.035250 -0.014140 -3.52500 -1.41400 2.11100
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Figure 1 : Simultaneous confidence sets for VSG and VIT (level = 95%)


