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RÉSUMÉ 
 
 
 

L’intégration du génome du  virus papilloma humain (VPH)  a été  reconnu 

jusqu’`a récemment comme étant un événnement fréquent mais pourtant tardif 

dans la progression de la maladie du col de l’utérus.  La perspective temporelle 

vient, pourtant, d’être mise au défi par la détection de formes intégrées de VPH 

dans les tissus normaux et dans  les lésions prénéoplasiques. 

  

Notre objectif était de déterminer la charge virale de VPH-16 et son état physique 

dans une série de  220 échantillons provenant de cols uterins normaux et avec des 

lésions de bas-grade.  La technique quantitative de PCR en temps réel, méthode 

Taqman, nous a permis de quantifier le nombre de copies des gènes E6, E2, et de la 

B-globine, permettant ainsi l’évaluation de la charge virale et le ratio de E6/E2 

pour chaque spécimen. Le ratio E6/E2 de 1.2 ou plus était suggestif d’intégration. 

Par la suite, le site d’intégration du VPH dans le génome humain a été déterminé 

par la téchnique de  RS-PCR. 

  

La charge virale moyenne était de 57.5±324.6 copies d'ADN par cellule et le ratio 

E6/E2 a évalué neuf échantillons avec des formes d’HPV intégrées.  Ces intégrants 

ont été amplifiés par RS-PCR, suivi de séquençage, et l’homologie des amplicons a 

été déterminée par le programme BLAST de NCBI  afin d’identifier les jonctions 

virales-humaines. On a réussi `a identifier les jonctions humaines-virales pour le 

contrôle positif, c'est-à-dire les cellules SiHa, pourtant nous n’avons pas detecté 

d’intégration par la technique de RS-PCR dans les échantillons de cellules 
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cervicales exfoliées provenant de tissus normaux et de lésions de bas-grade.  Le 

VPH-16 est rarement intégré dans les spécimens de jeunes patientes. 

 

Mots Clés : Virus Papilloma Humain, LSIL, Intégration HPV, Charge Virale, PCR 

en  temps réel, RS-PCR, PCR-séquençage, HPV16.    
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ABSTRACT 
 
 
 

 

Integration of human papillomavirus (HPV) has, until recently, been a frequent but 

late event in cervical carcinogenesis.  The temporal view has, however, been 

challenged lately as integrated forms of HPV have been detected even in normal 

and preneoplastic lesions.   

 

Our objective was to describe HPV 16 load and physical state in a series of 220 

normal and low grade cervical samples.  We used quantitative real-time PCR, 

Taqman method, targeting E6, E2 and B-globin to calculate the HPV 16 load and 

the E6/E2 ratio in each sample.  An E6/E2 ratio of 1.2 was used as a surrogate 

marker of integration.  The site of integration was determined by restriction site 

PCR. 

 

Results show that the average viral load was 57.5±324.6 copies of DNA per cell, 

while E6/E2 ratio identified 9 samples with integrants.  These integrants underwent 

amplification by restriction site PCR, followed by sequencing and nucleotide blast 

to identify the human-viral junctions.  In conclusion, although it was possible to 

identify viral-host junctions with the integration positive control, that is, the SiHa 

cell line, the exfoliated cells of normal and low grade cervical lesions were 

negative for integration site by RS-PCR.  HPV-16 is seldom integrated in 

specimens from young patients. 

 
 
Key Words : Human Papillomavirus 16, LSIL, HPV integration, Viral load, real-
time PCR, RS-PCR, PCR sequencing, HPV16.   
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Introduction 
 
Over 100 types of human papillomavirus (HPV) have been identified based on 

DNA sequence analysis [1].  Of these, 40 infect the anogenital region and have 

been classified according to their oncogenic potential into high-risk and low-risk 

types.  High-risk papillomaviruses  have been found to be  the single most 

important risk factor of cervical cancer [2], with HPV 16, the  most frequent 

oncogenic type,  accounting for over 50% of cervical cancer[3, 4]. Most women 

are infected with the HPV virus shortly after sexual debut, with prevalence 

reaching a maximum around 25 years of age. Prevalence decreases rapidly 

thereafter, as most HPV infections become latent or are cleared by the host 

immune system [5-7].  

 

Thus while genital HPV infection is the most common sexually transmitted 

infection, cancer of the cervix is an uncommon outcome of a high-risk HPV 

infection. Recent research suggests viral load and viral integration as potential 

markers for cervical disease progression [8, 9].  

 

Association between increasing viral load of HPV 16 and increasing severity of 

cervical lesions has been found [10-13]. Conversely, smaller amount of HPV16 

DNA in women with HSIL compared to those with LSIL has also been reported 

[14, 15]. 

  

The physical status of high-risk HPV also promises to be a risk marker to evaluate 

progression of cervical lesions to cancer [16-18]. HPV integration into the cellular 

genome usually disrupts the E1 and E2 genes, E2 being the preferential site of 
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integration [19, 20]. The disruption of the E2 regulatory gene, due to integration, 

results in lack of expression of the E2 protein with subsequential upregulation of 

the oncogenic E6 and E7 proteins [18, 21].  The continuous overexpression of the 

E6 and E7 proteins contributes to malignant transformation. 

 

The role that integration plays in malignant transformation is still being 

questioned. Initial studies on viral integration found viral DNA to be integrated 

into the host genome in nearly all cases of cervical carcinomas and cervical 

carcinoma cell lines  [22-26], whereas the HPV genome was usually in episomal 

form in benign and low-grade cervical  intraepithelial  lesions[16, 25, 27]. 

 

This temporal view of integration has, however, been challenged recently as some 

investigators [15, 28-30] have detected HPV integration even in preneoplastic 

lesions. In these studies, viral load and viral integration were assessed with 

qualitative or quantitative real-time PCR targeting the E2 and E6 gene.   

 

The aim of this study was to quantitatively assess, by real time PCR, amplification 

of E2/E6 sequences in exfoliated cells from normal and LSIL cervical specimens, 

from which to evaluate viral load and E6/E2 ratio. An E6/E2 ratio of 1.2 or greater 

was suggestive of integration in nine samples. Restriction site PCR (RS-PCR), a 

technique that allows retrieval of human–viral junctions, followed by DNA 

sequencing, however, did not confirm integration site in these potential integrants, 

although it did identify integration in the positive control of SiHa cultured cells, 

and some integration artefacts.  
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1. Basics of Human Papillomavirus Virology 

1.1 History 

 

The papillomaviruses are a very diverse family of non-enveloped double-stranded 

DNA viruses.  These small DNA tumour viruses are found in a wide variety of 

higher vertebrates including mammals, reptiles, and birds [31, 32]. 

Papillomaviruses infect both mucosal and epithelial cells and induce cellular 

proliferation giving rise to malignant or benign tumours (warts, papillomas).    

 

The common wart has been described since ancient times, and   is   characteristic 

of cutaneous and mucosal epithelial infections.  Ciuffo at the beginning of the 20th 

century demonstrated cell-free filtrates from warty lesions to transmit the disease 

leading him to conclude that warts are related to an infectious agent [33].  

 

The first papillomavirus was identified in cottontail rabbits in 1933, but progress 

on the study of human papillomavirus (HPV) infection was delayed for many 

decades because the virus could not be propagated in cell culture[34].  

 

In 1956, Koss described the morphological aspects of cells from warty lesions of 

the cervix, coining the term koilocytic atypia [35].  It took another 20 years, 

however, before researchers were able to demonstrate that this morphological 

appearance was due to HPV infection [36-38]. The morphological features of 

koilocytic atypia, which include perinuclear cytoplasmic clearing, peripheral 

condensation of cytoplasmic filaments, with nuclear enlargement and 
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hyperchromasia, have since been confirmed to be diagnostic for effect of the  HPV 

virus and as  the direct result of the viral genome replication. 

 

The papillomavirus (PV) were studied less intensively in the 1950s and 1960s. 

Nevertheless, there were two important advances, namely, the physiochemical 

analysis of the virions and the demonstration that papillomavirus replication was 

closely associated with the differentiation process of the infected epithelium [39].  

Papillomaviruses have indeed proven difficult to propagate in vitro because these 

viruses replicate in stratified squamous epithelium, which is not mimicked in 

monolayer cultures.  Also, the species specific nature of HPV has thus far also 

prevented the adaptation of authentic HPV infection to experimental animals, 

although some useful animal papillomavirus models have since been described. 

With the development of molecular cloning technique in the 1970s, however, 

investigators were able to study the biological and biochemical properties of 

papillomavirus genomes. Sequencing of the cloned Papillomavirus genomes 

identified open reading frames and the function of the viral genes was determined 

by reverse genetics, and this resulted in a revived interest in papillomavirus 

research [40, 41]. Since, DNA sequence analysis has led researchers to recognize 

that papillomaviruses are a very diverse group with over 100 human members [31]. 

 

During the past decade, it has been determined that a subset of HPV types is 

closely linked with certain human cancers, most notably, cancer of the cervix.  

Interest has therefore been focused on this specific subgroup of HPVs which are 

associated with genital lesions. Of the 40 HPV which infect the anogenital tract, 

approximately 15 have been found in cervical cancers in a higher percentage than 

controls, while others are found rarely in cervical cancer, and this has given rise to 

the distinction between high-risk and low-risk HPV types.  
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Whilst  studies have determined the interaction between HPV and  the epithelial 

host cell, have identified the HPV protein functions and recognized  the molecular 

targets of infected cells, ongoing  research seeks to understand the natural history 

of the infection, to determine the biological properties of the different HPV types, 

and to identify the role of the nonviral and viral factors  in the pathogenesis of 

cervical disease that may influence the outcome of an HPV infection.  

 

 

1.2 Taxonomy of papillomaviruses                           

1.2.1 Family Classification 

Early systems of classification lumped papillomavirus, polyomavirus and simian 

vacuolating virus, into a family grouping collectively known as the papovavirus 

family.  This was based on identification of a common genetic structure: all 3 have 

a small, circular, double-stranded DNA genome (episome) that replicates in the 

host cell nucleus, and releases a non-enveloped virion with an icosahedral protein 

capsid  as in Figure 1[31]. 

 

                            

Figure 1: Atomic Model of the Human papillomavirus showing the arrangement of 

capsid proteins Later it was recognized, however, that the papillomaviruses were 

distinct from the other 2 members of this group. The papillomavirus genome 
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ranges from 6900 up to about 8000 base pairs in length, 60% larger than the 

polyomavirus genome. As such, the capsid is 55 nm in diameter, rather than 40 

nm. The genomes are organized differently and except for the helicase motif of the 

PV E1 protein, do not share any major nucleotide or amino acid sequences [31]. 

These discoveries led to the reclassification of papillomaviruses as a distinct family 

by the International Committee on the Taxonomy of Viruses. HPVs are now 

officially recognized as members of the Papillomaviridae family. 
 

 

 

1.2.2 Genotype Classification 

 

The common warts and lesions of Epidermodysplasia verruciformis (EV), which 

contain large quantities of viral particles, provided enough material to isolate viral 

DNA genomes. Initially, as more and more types of viruses were identified, 

researchers in the field agreed on a taxonomic system based on numbering, with 

each subsequent type receiving the next higher number[31]. For instance, HPV1 is 

an abbreviation for human papillomavirus type 1. An isolate was accepted as a new 

type based on liquid hybridisation analysis. 

 

Since the early 1980s, however, when the first full genomes of several 

papillomaviruses were cloned, nearly all known papillomavirus genomes have 

been sequenced and compiled into a database such as GenBank and EMBL 

databases[42] This has allowed for a new classification, at the International 

Papillomavirus Workshop in 1995, based on nucleotide sequence of the L1 gene.  
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This new classification, based on DNA sequence, includes to date over 100 

genotypes. Genotypes are defined as sharing between 71% and 89% identical 

nucleotide sequences with other HPV types in the L1 open reading frame, which is 

the most conserved ORF in the papillomavirus genome [43].  Subtypes have 

between 90% and 98% sequence identity to a prototype sequence, and variants of a 

genotype have <2% sequence difference in the coding regions [44]. 

 

Further conventional cloning of complete genomes has been difficult due to either 

limited amounts of sample available or because the viral DNA sequence is toxic to 

the vector systems used in cloning.  This has led to an increased use of PCR 

amplification of overlapping fragments to obtain viral DNA genomes. These are 

distinguished by the mention cand, as for example, HPVcand (number.)  PCR 

amplification with degenerate primers mainly of the L1 ORF has identified a few 

hundred potentially PV novel types [45].  
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Phylogenetic criteria have thus led to the taxonomic levels of family, genus, 

species, and the previously defined types, subtypes and variants. The sixteen 

different genera have less than 60% similarity of the L1 gene sequence. Species 

share between 60% and 70% of L1 ORF identical sequences.  

 

These groupings are relatively consistent with observable papillomavirus 

phenotypes, including species of origin, tissue tropism, and association with benign 

versus malignant lesions.  

 

1.2.3.1 Genus or Site of Infection 

Based on DNA sequence and protein homologies, the relations between HPV 

genotypes can be expressed in the form of phylogenetic trees. Tissue tropism of the 

HPVs is reflected in the grouping of species within a genus.  As such, genital 

mucosal human papillomaviruses are grouped into the genus Alpha-

Papillomavirus, although the genus contains a few viruses that are tropic for 

cutaneous sites and cause common warts. The Alpha-Papillomavirus, however, 

share certain life cycle features common to this genus that differ from that of other 

cutaneotropic viruses. 

 

 The Beta papillomaviruses are evolutionary distinct from the Alpha genus and 

seemingly cause asymptomatic infections in the general population.   The Beta 

Papillomavirus have been most frequently isolated from cutaneous epithelium, 

particularly among patients affected with a rare inherited disorder termed 

epidermodysplaqsia verruciformis (EV).  

 



 

 

10

While the taxon genus encompasses PV types that have adapted to a particular 

tissue type and location, this is not absolute. Thus, within the  genus Alpha-

Papillomavirus, HPV16 is found not only in the genital mucosa, but can also be 

found in the mucosa of the oropharynx, and in genital cutaneous epithelium. 

 

 

 

1.2.3.2 Species: Oncogenic versus non-oncogenic HPV types 

 

The genus Alpha-Papillomavirus which groups genital HPV genotypes is further 

divided into evolutionarily related subgroups called species [44].  Thus, within a 

genus, distinct genomic sequences having identical or very similar biological and 

pathological properties belong to the same species. The sequence-based taxonomy 

therefore groups the HPV types with known cancer association at the species level.  

 

The HPV types that have most often been associated with cervical cancer and its 

precursor lesions have been evolutionarily clustered into species 5, 7, and 9. 

Fifteen HPV types are considered to be carcinogenic or high-risk types: 16, 18, 31, 

33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82. Three are classified as probable 

high-risk types: 26, 53 and 66.  In contrast, HPV types in species 10 have almost 

no association with invasive cancer.  Consequently, these HPV types have been 

called low-risk types. HPV types 6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, and HPV 

89 are classified as low-risk types [4].  
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Further, there is good agreement between epidemiologic classification and the 

classification based on phylogenetic grouping as seen in Table I below. 

 
 

                       
 

TableI: Phylogenetic and Epidemiologic Classification of HPV types. The epidemiologic classification of 

these types as probable high-risk types is based on zero controls and one to three positive cases. 

  

 

1.2.4 Clinical Association:  Host-Site-Disease 

Papillomaviruses have often been classified primarily according to the host species 

they infect and the sites or diseases with which they are associated.  Of the more 

than 100 human papillomaviruses types that have been identified, they fall into two 

groups, cutaneous and mucosal HPVs. Mucosal types are associated with 

oropharyngeal and cervical lesions.  
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The capsid proteins (L1 and L2) are virally encoded by the late open reading 

frames. The L1 protein is the major structural element, and has a molecular weight 

of approximately 55 kDa. The L1 protein represents approximately 80% of the 

total viral protein, whereas L2 is a minor virion protein component, and has a 

molecular size of approximately 70 kDa. Infectious virions contain 360 copies of 

the L1 protein organized into 72 capsomeres[46]. A single L2 molecule may be 

present in the centre of the pentavalent capsomeres at the virion vertices [46, 47]. 

Both proteins play an important role in mediating efficient virus infectivity. 
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1.3.2-Genome Structure and Organization 

The genomes of the more than 100 human papillomaviruses types have been 

molecularly cloned and sequenced in their entirety. As the genomic structure of 

papillomaviruses shares many common features, the genetic map of HPV16 in 

figure 4 below illustrates the overall genetic organization of HPV genomes. 
 

              

Figure 4: Genome organization of human papillomavirus type 16  
The HPV16 genome (7904 bp) is shown as a black circle with the early (p97) and late (p670) promoters marked by arrows. The six early ORFs 

[E1, E2, E4 and E5 (in green) and E6 and E7 (in red)] are expressed from either p97 or p670 at different stages during epithelial cell 

differentiation. The late ORFs [L1 and L2 (in yellow)] are also expressed from p670, following a change in splicing patterns, and a shift in 

polyadenylation site usage [from early polyadenylation site (PAE) to late polyadenylation site (PAL)]. All the viral genes are encoded on one 

strand of the double-stranded circular DNA genome. The long control region (LCR from 7156–7184) is enlarged to allow visualization of the E2-

binding sites and the TATA element of the p97 promoter. The location of the E1- and SP1-binding sites is also shown. 

 

All of the viral open reading frames (ORFs) are transcribed by one strand.The 

coding strand contains approximately 10 designated translational ORF that are 

classified as either early (E)  or late (L) ORF, based on their location within the 
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genome[44].  The early region of the viral genome encodes for proteins E6, E7, 

E1, E2, E4, E5, which are implicated in DNA replication, transcription, and 

cellular transformation. The late ORF composed of L1 and L2 encode the viral 

capsid proteins. Downstream of the late L2 capsid gene ORF is the ~850bp LCR 

that contains no ORF but contains the sequence elements required for regulation of 

gene expression, replication of the genome and its assembly into virus particles. 

 

The viral E proteins are transcribed from the early promoter whereas the L proteins 

are transcribed principally from the late promoter. Viral early genes are expressed 

in undifferentiated and intermediately differentiated keratinocytes, whereas the 

products of the late genes, the capsid proteins L1 and L2, are expressed only in 

productively infected differentiated cells [48]. The function of the individual ORF, 

whose properties have been well characterized, is described in more detail below in 

section 1.4.4 entitled HPV Protein Functions. 

 

1.4-Normal Infectious Cycle 

The papillomaviruses are highly species-specific and also have a specific tropism 

for squamous epithelial cells. Therefore, all papillomaviruses obligatorily complete 

their life cycle in the epithelial tissue that they infect.   

The human papillomaviruses establish productive infections only within stratified 

epithelium of the anogenital tract (and of skin and the oral cavity), eventually 

producing virions from the lysis of dying epithelial surface. As the infected cell 

moves towards the epithelial surface, the different stages of the virus life cycle are 

tightly linked to the differentiation program of the epithelial tissue and there is a 

coordinated timely expression of the different viral gene products. 
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1.4.1 Attachment, Entry, and Uncoating  

The epithelial basal layer of the uninfected epidermis contains cells that are 

mitotically active. As the surface cells exfoliate, it is the continual division of the 

basal cells that allows for renewal of the epidermis. 

 

It is believed that papillomavirus infection begins when PV particles gain access to 

the basal keratinocytes or cervical epithelial cells. This occurs most likely through 

microwounds or damage of the epithelial sheet [49, 50], although some 

papillomaviruses are thought to infect sites where access to the basal layer is 

already naturally facilitated, as at the base of the hair follicle, or sites where the 

columnar and stratified epithelial cells meet each other (such as the cervical or anal 

transformation zone).   

 

The receptor by which papillomaviruses  bind and enter the cells has not been 

clearly   identified, however,  alpha6- integrin has been proposed as a candidate 

receptor and heparin sulphate may also be involved [51, 52]. Following binding, 

papillomaviruses are taken into the cell relatively slowly, and for HPV 16, the 

virus seems to penetrate the cell by clathrin-dependent receptor-mediated 

endocytosis [53-55].   

 

Inside the cell, there is papillomavirus uncoating and release of the virion 

occurring most likely by the disruption of intracapsomeric disulfide bonds (in 

lysosomes).  The L2 minor capsid protein facilitates the transfer of the viral DNA 

to the nucleus where it undergoes transcription and replication.   
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1.4.2 Virus Replication and Life Cycle 

1.4.2.1 Productive Infection  

Papillomaviruses establish productive infections only within stratified epithelium 

and the viral life cycle is closely linked to the differentiation program of the 

infected epithelial cell, as depicted in figure 5. Productive infection occurs in warts 

and in CIN 1 lesions of the cervix.  The productive infection of cells by the 

papillomaviruses can be divided into early and late stages. 

 
Figure 5: HPV genome and its expression within the epithelium 
The key events that occur following infection are shown diagrammatically on the left. The epidermis is shown in colour with the 

underlying dermis being shown in grey. The different cell layers present in the epithelium are indicated on the left. Cells in the 

epidermis expressing cell cycle markers are shown with red nuclei. The appearance of such cells above the basal layer is a 

consequence of virus infection, and in particular, the expression of the viral oncogenes, E6 and E7. The expression of viral 

proteins necessary for genome replication occurs in cells expressing E6 and E7 following activation of p670 in the upper 

epithelial layers (cells shown in green with red nuclei). The L1 and L2 genes (yellow) are expressed in a subset of the cells that 

contain amplified viral DNA in the upper epithelial layers. Cells containing infectious particles are eventually shed from the 

epithelial surface (cells shown in green with yellow nuclei). In cutaneous tissue, this follows nuclear degeneration and the 

formation of flattened squames. The timing and extent of expression of the various viral proteins are summarized using arrows at 

the right of the Figure. The consequence of expressing viral gene products in this ordered way is shown on the far right.  
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1.4.2.1.1 Early Stage of Productive Infection 

 

Following access to the basal layer (cycling cells), the viral genome will replicate 

with the cellular DNA during S-phase. The genomes will be divided equally 

between daughter cells, and each infected basal cell thus accumulates a stable but 

low copy number of episomes, in the order of 50-100 copies per cell. This type of 

non-vegetative DNA replication is thought to require the expression of the viral 

replication proteins, E1 and E2, and possibly E5.  Papillomavirus gene expression 

of the immediate early proteins E6 and E7 is maintained at minimal in the dividing 

basal cells.   

 

 

1.4.2.1.2 Late Stage of Productive Infection 

 

In the normal epithelium, suprabasal cells normally complete the cell cycle and 

begin the process of differentiation in order to produce the protective barrier of the 

skin or mucosa[56].  However, in HPV-infected epithelium, the cells in the 

suprabasal layers continue dividing and lose the normal differentiation phase [57].  

The expression of E6 and E7 viral proteins is upregulated in the HPV-infected 

suprabasal cells, in contrast to the basal cells.  The high level of expression of the 

E6 and E7 proteins, both of which exhibit pleiotropic effects (as discussed below), 

induces the host DNA replication machinery.  This allows vegetative DNA 

replication to occur,  followed by expression of the virus capsid proteins (L1 and 

L2) in the highly differentiated cells, producing genomes to be packaged into 
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capsids [58].   Also, although nuclei are degraded in normal differentiating 

epithelia, in HPV- infected epithelium, nuclei are present in all layers. 

 

In this phase, E1 and E2 play a critical role.  E2 protein is required for the initiation 

of viral DNA replication and genome segregation.  In addition, E2 can also act as a 

transcription factor and can regulate the viral early promoter P97 in HPV16 and 

control expression of the viral oncogenes E6 and E7. The E7 of HPV16 has been 

shown to be necessary and sufficient to induce suprabasal DNA synthesis.  The E5 

oncoprotein also contributes quantitatively to this property. 

 

The mechanism(s) which upregulate the switch from plasmid maintenance to 

vegetative viral DNA replication are not known. The switch may involve the 

presence or absence of controlling cellular factors in differentiating keratinocytes.  

In addition, or alternatively, the relative levels of viral factors, such as E1 or E2, or 

their modification, may change in terminally differentiating keratinocytes. Few 

studies have examined the mode of vegetative viral DNA replication in 

differentiated cells.   
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1.4.3 Regulation  of  Viral  Gene  Expression 

1.4.3.1 Viral Transcription 

Papillomavirus transcription is tightly regulated by the differentiation state of the 

infected squamous epithelial cell.   

 

Papillomavirus transcription is complex. Whilst multiple promoters generate the 

various mRNA species, the mRNAs also undergo alternate and multiple splice 

patterns, resulting in diverse mRNA species in different cells.  The major promoter 

active for HPV 16, in nonterminally differentiated cells, is P97 which directs the 

expression of E6 and E7 as well as several other early gene products. 

 

1.4.3.2 The Long Control Region (LCR) 

Each papillomavirus LCR (also referred to as the URR) contains constitutive 

enhancer elements that have some tissue or cell type specificity.  These constitutive 

enhancer elements are responsive to cellular factors as well as to virally encoded 

transcription regulatory factors. Binding of these factors to the URR modulates 

viral replication and viral gene transcription.  Binding sites have been identified for 

the virally encoded E2 regulatory proteins and the origin of DNA replication that 

binds the E1 replication factor, as well as for the cellular factors AP1, Oct1, and 

YY1, among others. 

 

The cis-responsive elements play an important role in initial expression of the viral 

genes after virus infection and may otherwise be important in the maintenance of 

viral latency.   
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1.4.4  HPV Protein Functions 

 

As mentioned previously, the viral genome is divided into early and late open 

reading frames (Table 2). The early open reading frames encode 6 proteins related 

to regulation of DNA replication and cell proliferation [59, 60]. The early open 

reading frames are E1, E2, E3, E4, E5 and E6.  The late open reading frames are 

L1 and L2, and encode proteins related to the viral capsid [60].  

 

The roles of the viral gene products have been most thoroughly worked out for the 

Alpha HPV types, in particular, the high-risk types associated with cervical cancer. 

The functions of each of the early and late virally encoded proteins are summarized 

in Table II and discussed in more detail in the appropriate sections below.     

 

                         

                                 Table II:  Function of HPV Proteins 
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1.4.4.1 Regulatory Proteins E1 & E2 

The regulatory proteins, E1 and E2, modulate transcription and replication.   

 

1.4.4.1.1   In Viral Replication 

 

Establishment of the viral genome as a stable episome in the proliferating basal cell 

layer requires the expression of the viral replication proteins E1 and E2. The 

molecular basis for the role of E1 and E2 in replication is well understood. The E1 

gene product is a 73 kDa protein and is expressed at very low levels in the basal 

cells. The E1 protein binds weakly to the six E1 specific DNA binding sites located 

within the viral origin of replication.  The E2 protein associates with E1 primarily 

through its N-terminus and also binds to DNA as a dimer through its C-terminus.  

The complexing of E2 with E1 increases the affinity of the E1 protein to the E1 

binding sites in the LCR. The resultant E1-E2 complex induces localized distortion 

at the viral origin. As additional E1 molecules are recruited at the viral origin, the 

E2 protein is eventually displaced. This gives rise to a hexameric complex with 

helicase activity. Subsequently, the DNA unwinds providing the template for DNA 

synthesis.   

 

The replicating proteins, E1 and E2, are also necessary for the replication of the 

viral episomes above the basal cell layer. As the infected cell migrates to the 

epithelial surface, activation of the late promoter (P670 in HPV 16), dependent on 

cellular differentiation, results in increased levels of E1 and E2.  As the levels of 

E1 and E2 proteins increase, viral genome amplification occurs in the suprabasal 

cells, producing genomes to be packaged into infectious virions.    
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1.4.4.1.2 In Genome Segregation 

 

The E2 proteins are well conserved among the papillomaviruses. The E2 protein 

consists of a transactivating domain at the N-terminal and of a sequence specific 

DNA binding and dimerization domain located in the carboxy terminal region of 

the protein.  These two domains are separated by an internal hinge region.  

 

The DNA binding domain of E2 recognizes a palindromic motif in the long control 

region (LCR) of the viral genome.  In the case of HPV 16, there are four such E2 

specific binding sites in the non coding region of the viral genome.    

 

In addition to the full length E2’s critical role in viral DNA replication, the product 

of the E2 ORF is also important in genome segregation. As the basal cells of the 

epithelium undergo mitosis, it is thought that the viral genome replicates in 

synchrony with the cellular DNA during S-phase.  It has been reported that E2 

plays an important role in anchoring the viral episomes to mitotic chromosomes or 

to the mitotic spindle (for the high risk genotypes) thereby ensuring correct 

division of the episomes between the daughter cells [61, 62].  E2’s crucial role in 

segregation thus allows episomes to be maintained long term within replicating 

cells at a constant level.   
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1.4.4.1.3 In Viral Transcription 

 

E2 transcriptional regulation has been well studied for HPV infecting the genital 

tract. E2 acts as a transcriptional factor, activating or repressing the viral early 

promoter (P97 in HPV16), thus controlling expression of the viral oncogenes E6 

and E7.  At low levels, E2 acts as a transcriptional activator. At E2 high levels,  E2 

represses oncogene expression by displacing SP1 transcriptional activator from a 

site adjacent to the early promoter. 
  

The ability of E2 to either repress or activate early viral gene expression according 

to its abundance is thought to result from differences in the affinity of E2 for its 

various binding sites [63].  High levels of E2 acts to downregulate the expression 

of E6 and E7 genes in experimental systems.  In HPV16 it is thought that binding 

site 4 is the primary site that is occupied when E2 is present at low levels and that 

binding to this site and to binding site 3 leads to promoter activation [64]. As E2 

increases in abundance, occupancy of the remaining sites leads to the displacement 

of basal transcription factors, such as Sp1 and TBP (TATA-box-binding protein), 

that are necessary for promoter activation[65].  It appears that the increase in E2 

expression that is important in stimulating viral genome amplification will lead 

eventually to the down regulation of the E6/E7 expression and to the eventual loss 

of the replicative environment necessary for viral DNA synthesis.  
 

In addition to binding at its cognate sites, the E2 transcriptional activation function 

is required for E2 mediated promoter repression. Specific conservative point 

mutations within the E2 transactivation domain that eliminates E2 mediated 

transcriptional activation, also eliminates E6/E7 promoter repression [66, 67].  The 
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specific cellular transcription or chromatin remodelling that may mediate the 

repression has not yet been identified.   
                           

 

1.4.4.2 Proliferatory Role of E6 and E7 in HPV Productive Life cycle 

1.4.4.2.1 Basics of E6 & E7  

 

The first open reading frames in the HPV early region, E6 and E7, comprise the 

two main oncogenes of HPV. 

 

The E6 proteins, from both the low and the high risk types, are approximately 150 

amino acids in size and contain two zinc fingers with the characteristic motif Cys-

X-X-Cys. Following HPV infection of the epithelial basal cell, the high risk E6 

protein is one of the first early viral genes to be expressed, and can be found both 

in the nucleus and in the the cytoplasm.   

 

The E7 protein of the high risk HPV is a small nuclear protein of 100 amino acids 

which has been shown to bind zinc through its single binding motif and is 

phosphorylated by casein kinase II. 
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1.4.4.2.2 HPV-Infected Epithelial Differentiation 

 

The basal cells of the normal epithelium are mitotically active cells. As the basal or 

first parabasal cell divides, one cell maintains the basal population, while the other 

migrates upward to become the superbasal cell layer. The suprabasal cells exit the 

cell cycle and begin the process of differentiation to  become the protective barrier  

that is normally provided by the skin or mucosa [56].  

 

A number of model systems have been used to examine the papillomavirus 

productive life cycle during in vivo infection.  Following experimental inoculation 

of mucosal epithelial tissue by ROPV (rabbit oral papillomavirus) or COPV 

(canine oral papillomavirus), there is an increase in cell proliferation in the basal 

and as well in the suprabasal cells [68, 69], leading to mature wart formation 

within 4 weeks post infection. In HPV-infected keratinocytes, there is stimulation 

of cell cycle progression, and as a result, expected normal terminal differentiation 

of the epithelium does not occur [57]. Following natural HPV infection, there is 

minimal activity of the E6 and E7 genes in the basal cell layer. The low activity of 

the E6 and E7 viral proteins drives the infected basal cell to divide, producing a 

small number of infected basal cells. The increase in proliferation of infected basal 

cells and the viral stimulation of suprabasal cells to re-enter the cell cycle, 

subsequently increases the number of virus producing cells.  

 

The basic mechanism by which papillomaviruses stimulate cell cycle progression 

is well known.  Basically, the E6 and E7 gene products target an abundance of 

cellular functions, with the most important interactions being what may be termed 

the E6-p53 and E7-pRb model.  
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1.4.4.2.3 Role of E6 & E7 in Cell Cycle Progression 

 

Vegetative papillomavirus replication occurs in the more differentiated cells of the 

epithelium.  These cells, however, are no longer dividing. Although the E1 and E2 

proteins necessary for viral replication are coded by the virus, the virus is 

dependent on cell for all other enzymes necessary for its replication. These proteins 

are normally only expressed in S-phase during cellular DNA replication.   

Papillomaviruses have thus evolved, through E6 and E7 oncoproteins, a 

mechanism that activates the cellular genes necessary for their replication.  E7 

inactivates retinoblastoma tumor suppressor and related pocket-proteins which 

results in increased levels of p53, followed by G1 cell cycle arrest or apoptosis.  E6 

by promoting p53 degradation counters the acitivity of E7 and allows for activation 

of the cell DNA machinery necessary for viral replication.  

 

 

 

1.4.4.2.3.1 Role of E7 

1.4.4.2.3.1.1 E7–pRb Model 

The main cellular target of E7 is the tumour suppressor protein pRb. Normally, the 

hypophosphorylated form of pRb binds to and inactivates the transcriptional 

regulator E2F.  As a transcriptional regulator, the E2F molecule is important in the 

activation of genes necessary to enter S-phase.  In normal cells, complex formation 

between pRb and E2F thus prevents the cell from entering the S-phase.  

 

As a result of papillomavirus infection, however, the HPV E7 protein binds to the 

protein pRb [70], resulting in dissociation of the pRb protein from the E2F 
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transcriptional factors [71]. The released E2F transcriptional factors stimulate cells 

to pass from the G1 phase of the cell cycle to the stage of DNA replication. Thus 

E7 binding to pRb results in loss of pRb function which leads to E2F release, and 

subsequently basal and parabasal cell proliferation in the absence of external 

growth factors.  

 

Apart from the dissociation of the pRb/E2F complexes, the binding of E7 to the 

protein pRb also causes a sharp decrease in the stability of the pRb protein and its 

rapid proteosomal degradation [72].  

 

As a result of E7-pRb interaction, cell cycle progresses, and the tumour suppressor 

protein p53 also increases. The p53 tumour suppressor protein has numerous 

functions. Its principal role, however, is that of a transcriptional regulator required 

for the expression of a number of genes involved in cell cycle regulation and 

apoptosis. 
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1.4.4.2.3.1.2 E7 associates with other cellular proliferation proteins 

 

In addition to pRb, E7 complexes with the pRb related pocket proteins, p107 and 

p130  [73], thereby exerting its transforming activities. 

 

E7 also associates with other proteins involved in cellular proliferation,  such as 

histone diacetylases [74], components of the AP1 transcription complex [75] and 

the cyclin-dependent kinase inhibitors p21 and p27 [76].  

 

Although the property of the E7 viral oncoprotein to complex pRb would appear to 

account, at least in part, for induction of DNA synthesis and cellular proliferation, 

genetic studies indicate, however, that complex formation between E7 and the 

pocket proteins, including pRb, is not sufficien for its immortalization and 

transforming functions, suggesting the existence of additional E7 cellular targets 

relevant to cell transformation. 
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Figure 6 below provides a list of additional targets to which E7 has been shown to 

bind, although the relevance of such interactions is not yet clear. 

 
 

 
 
Figure 6. Schematic representation of the HPV 16 E7 protein and  interaction of E7 with cellular proteins. Conserved 

regions (CR) 1-3 are indicated and exhibit homologies with Adenovirus E1A and SV40 large T antigen. A consensus 

casein kinase phosphorylation site within CR2 is denoted by a black dot. Regions that harbor binding domains for 

cellular proteins are indicated. These include within the N-terminus a strong interaction domain for the retinoblastoma 

protein family, as well as domains for the binding of p300 and p600 . The C-terminus contains a weak interaction 

domain for the retinoblastoma protein family and an E2F binding domain, as well as domains for the binding of the 

p21CIP1 and p27KIP1 cyclin/cdk inhibitors, hTID-1 (168), BRG1 (169), TATA binding protein (170), Mi-2beta  (46) , M2 

pyruvate kinase  and acid alpha-glucosidase. Asterisks indicate cellular proteins that interact with both high and low risk 

HPV E7.                       
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1.4.4.2.3.2 Role  of  E6 

1.4.4.2.3.2.1 Normal DNA Damage Response 

 

Cells normally respond to DNA damage or to genotoxic agents by increasing the 

level of p53 protein within the cell. The higher level of p53 within the cell will 

signal growth arrest in the G1 phase of the cell cycle, or even apoptosis. Therefore, 

intracellular level of p53 is part of a cell defense mechanism which allows for 

either the DNA damage to be repaired before initiation of a new round of DNA 

replication or allows the removal of the cell by apoptosis [77].  

 

1.4.4.2.3.2.2 E6-p53 Model 

 

A primary role of the E6 protein is its association with the cellular tumour 

suppressor p53.   In the case of high risk types, the E6 oncoprotein binds to p53 

and stimulates its degradation by forming a complex with an ubiquitin ligase, the 

human protein E6AP [78]. The degradation of p53 is thought to prevent growth 

arrest or apoptosis in response to E7 mediated cell cycle entry in the upper 

epithelial layers.  

 

1.4.4.2.3.2.3 E6 associates with Bak and Bax 

 

The role of E6 protein in proliferation is further emphasized by the finding that it 

also associates with the proapoptotic proteins Bak [79] and Bax [80].  As an anti-

apoptotic protein, E6 allows cellular progression and prevents death of the infected 

replicating cells. 
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1.4.4.3 The E4 and E5 Proteins 

1.4.4.3.1 The E5 Protein 

 

The HPV E5 proteins are required for optimal growth. In tissue culture, various 

HPV E5 genes have been shown to have some modest transforming activities. In 

transgenic mice, HPV16 E5 expressed in basal keratinocytes can alter the growth 

and differentiation of stratified epithelia and induce epithelial tumors at high 

frequency. 

 

Although the biochemichal mechanism by which the E5 gene of HPV exerts its 

growth stimulatory effects have not yet been fully elaborated, it may involve 

interactions with the EGF receptor or the 16 kd subunit of the vacuolar ATPase, 

each of which has been shown to bind HPV E5 proteins. Interaction of HPV E5 

protein with the 16kd subunit of the vacuolar ATPase can inhibit acidification of 

endosomes.  

 

The E5 protein also binds to platelet-derived growth factor β receptor and colony 

stimulating factor 1 receptor [81], and is believed to be necessary for amplification 

of the viral genome [82] possibly related to the expression of polyadenylation 

sequences that regulate viral gene expression for all early ORFs [83]. 

 

There is also some evidence that E5 helps prevent cell apoptosis after DNA 

damage [84].  E5, however, is not expressed in most HPV-positive cancers, 

suggesting that if the E5 gene does stimulate cell proliferation in vivo, it probably 

functions in benign papillomas and not in cancer.   
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E5 protein might also participate in the initiation of the carcinogenic process or in 

some other aspects of the viral-host interaction relevant to the pathogenesis of the 

HPV infection.  Indeed, some data implicate E5 in the downregulation of major 

histocompatibility complex (MHC) class II antigen expression which may aid the 

infected cells to evade the host immune system [85]. 

 

1.4.4.3.2 The E4 Protein 

 

Although E4 is located in the early region of the viral genome, it is nevertheless a 

protein that exerts its action in the viral replication cycle. The expression of E4 is 

necessary for the production of the L2 protein, one of the 2 capsid structural 

proteins. The E4 protein is the most abundant protein in benign warts, and is 

expressed at relatively high levels in differentiated squamous cells [83] where viral 

packaging and assembly occur. In cultured epithelial cells, the E4 proteins are 

associated with the keratin cytoskeleton.  The HPV16 E4 protein  induce collapse 

of the cytokeratin network causing condensation of tonofilaments at the cell 

periphery and perinuclear cytoplasmic clearing which results in the morphological 

appearance of a koilocyte [83]. It is possible that this disruption facilitates the 

release of viral particles from superficial squamous epithelial cells [86, 87]. 

 

In addition, E4 may have a role in supporting amplification of the viral genome 

[88].  Reiterating, the available data thus point to the possibility that E4 may 

contribute to vegetative DNA replication or to altering the cellular environment in 

a manner that may favour virus synthesis or perhaps virus release.   
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1.4.4.4   Structural Proteins L1-L2 

 

The structural proteins L1 and L2 compose the viral capsid [89]. 

 

 
 
1.5 Virus Assembly and Release 

Little is yet known of papillomavirus assembly and release. The virus is not 

cytolytic. Virus particles are only observed in the granular layer of the epithelium 

and not at lower levels. Release of the virion particles occurs in the granular layers 

of the mucosal epithelium or the cornified layers of the keratinized epithelium. 

Viral release probably follows cell death thereby increasing the invisibility of 

HPVs to the immune system. 

 

1.6 Abnormal Proliferative Infection 

 

Ocasionally, the tight regulation between viral gene expression and epithelium 

differentiation is lost. In contrast to a differentiated and virally productive 

phenotype as that which occurs in warts and low grade lesions, in a proliferative 

infection there is apparent morphological evidence of increased abnormal 

proliferation of the basal cells. E6 and E7 are overexpressed in proliferating 

basaloid cells that overtake the epithelium and produce lesions. Ongoing research 

seeks to identify among viral, host, and environmental factors the mechanism that 

mediates loss of E2 control of E6/E7 expression. 
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2-Natural History and Epidemiology of Cervical HPV Infection 

2.1 HPV acquisition and transmission 

 

HPV is acquired by sexual transmission and this has been strongly confirmed by 

studies involving initially virginal women [90]. HPVs in the anogenital tract are 

transmitted mainly by skin-to-skin or mucosa-to-mucosa contact with infected 

epithelium of cervical, vaginal, vulvar, penile or anal origin. It is presumed that 

HPV infections are easily transmitted through microscopic lesions in the skin or 

the mucosa.   

 

Some studies, however, report that on occasion, HPVs are transmitted through a 

non-sexual mode of transmission, namely, through vertical transmission  from 

parent to unborn child,  by fomites  and by skin contact [91]. 

                                                                                                                                                          

The probability of infection per sexual act is not known.  However, a recent study 

on the McGill Concordia Cohort of young female students, the same cohort being 

studied for the current report on integration, has estimated the probability of HPV 

transmission per coital act among newly forming couples by using stochastic 

computer simulation. The HPV transmission probability per act was found to range 

anywhere from 5-100%, leading the authors to conclude HPV to be more 

transmissible than either HIV or herpes virus [92].   There is also evidence to 

suggest that the amplitude of sexual transmissibility possibly varies among HPV 

types and also among populations [93].Due to their common transmission avenue, 

several HPV types can be transmitted from the same partner. This results in a high 

proportion of simultaneous infections with several different HPV types when 

individuals of either sex are sampled in the general population.  
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Epidemiological studies suggest, that in addition to the sexual behaviour of both 

men and women, genetic and environmental susceptibility factors  such as age,  use 

of barrier contraceptives, co-infections, and male circumcision are related to the 

acquisition and transmission of HPV[94].  

 

 

2.2 Prevalence of HPV Infection 

2.2.1 Definition 

HPV prevalence can be defined as the percentage of individuals with detectable 

infection at a given point or period in time. Because the infection due to HPV is 

subclinical, prevalence estimates will vary based on the method of detection 

(cytology, colposcopy, biopsy, or HPV DNA detection). PCR-based methods yield 

the highest prevalence estimates of HPV DNA in the genital tract, and identify 

between 1.5%-44.3% of genital HPV infections in otherwise normal Pap smears 

[95, 96]   

 

However when cervical specimens are taken from these women during follow-up 

surveys, the majority of infections is found to be transient. Thus total exposure to 

HPV infection is difficult to measure not only due to detection method but also 

because HPV DNA detection is usually transient. Serologic assays used to detect 

serum antibodies to certain viral proteins have also been insensitive. Moreover, 

titers of antibodies induced by natural infection are quite low. Thus, the true extent 

of HPV infection is thought to be underestimated. 

 

The prevalence of HPV infection also varies between countries. In the United 

States,  the annual incidence of HPV infection has been reported to approach 6.2 
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million per year, and has  an estimated prevalence of 20 million [97], with   genital 

HPV infection considered to be the most common sexually transmitted viral 

infection [94, 98].  

 

2.2.2 Age-specific prevalence of HPV DNA 

 

HPV incidence peaks soon after women initiate sexual activity, figure 8 below.  

Prevalence of infection ranges from approximately 25% to 40% [99, 100] in 

women 15 to 25 years of age. Subsequently, there is a lower incidence of HPV 

infection with age perhaps due to immune response, or otherwise due, to decreased 

HPV exposure and/or developing resistance to infection. 

 

In some populations there is an increase in detection of HPV DNA in women over 

60 years of age [101].  It is believed this peak of HPV prevalence around the age of 

menopause could perhaps represent persistent infections acquired at a younger age, 

could result from reexposure or otherwise be a cohort effect.  

2.2.3 Type-specific prevalence of HPV DNA 

In general, high risk types tend to be detected more frequently than low-risk types, 

and infection with one or more of the more than 40 genital HPV genotypes is a 

common occurrence among sexually active women [6].  HPV16 is the most 

common type detected among cytologically normal women [102]. 
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2.3 HPV clearance versus persistence 

2.3.1 HPV Clearance 

 

 

 

Figure 8: Major steps in the development of cervical cancer 
Top row shows cytology, bottom row colposcopy 

 

Cervical HPV infection follows one of two patterns: HPV infection is frequently 

self limiting with no clinical manifestations, or conversely, 30% of HPV-infected 

women will develop detectable CIN lesions (infection being accompanied by 

cytological changes, such as koilocytes)  usually occurring within 3-6 months, that 

may progress to  cervical cancer, as in figure 8. Most cervical HPV infections, with 

cytological abnormality or not, however, are transient. Dependent on their stage 

and host immune system, 50% of low-grade lesions regress within 1 year, while 

only a smaller proportion of high grade lesions regress [104]. 
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Overall, as detected by sensitive PCR assays, 85% of the virus and of the cytologic 

abnormalities are cleared or suppressed by the host immune response within 1-2 

years of exposure [105-107].  

 

It is believed that low-grade lesions generally give  rise to higher grade lesions 

after several years [108, 109], or high-grade  lesions can also develop rapidly from 

a high risk HPV infection without any signs of CIN1 or CIN2  stages [110]. 

 

Although less frequent, the process is also reversible by clearance of the HPV 

infection and regression of the precancerous lesions to normality given that 

invasion has not yet occurred. 

 

Ongoing cohort studies, with up to 10 years of follow up data, have shown, 

however, that after clearance, the same HPV type can re-appear [111].  It remains 

unclear as to whether infections resolve by complete viral clearance or whether the 

virus remains as a persistent although silent infection.  The virus may persist as a 

latent infection by various viral strategies:  the virus may be  maintained in a latent 

state in the basal cells without viral DNA replication, the virus productive life 

cycle is  absent but is reactivated periodically similar to that of herpes simplex 

virus, or the virus is chronically maintained at low replication.  

 

There is indirect evidence for such a persistent silent state (latent or chronic 

infection) from immunosuppresed patients (renal transplant and HIV infected) who  

 

are at a higher risk for CIN and cancer, and from pregnant women who develop 

HPV-related lesions during pregnancy (an immunocompromised state) which 
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regress postpartum.   In addition it has been reported that a high risk HPV 

infection, but otherwise normal smear, can develop into CIN3 within 4 years [106]. 

2.3.2 HPV Persistence 

Compared to clearance, persistence is uncommon.  Persistence can be defined as 

infection with the same HPV type detected two or more times over a certain 

period, with the interval usually being 6-12 months. 

 

A small proportion of infected women do have persistent infection, with infection 

by high risk types being of a longer duration as compared to low risk types.  

HPV16 persists longer than any other HPV type [112], and it is generally accepted 

that persistent infection with high risk HPV confers a higher risk for developing 

high-grade neoplasia and cancer[113]. 

 

The molecular virology underlying HPV persistence, progression, and invasion is 

not yet well understood, but this causal model is supported by epidemiological and 

laboratory data. 

 

 

3. Development of cervical cancer 
 

3.1 Pap Test 

Current cervical cancer screening in industrialized countries is based on 

Papanicolaou staining (Pap test) of cervical swab or cytobrush specimens 

containing exfoliated cervical cells.  This cytological staining process enables 

microscopic detection of cellular changes characteristic of HPV infection 
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(koilocytosis, dyskariosis) and associated with various stages of the development 

of ICC.  

   

Women with precancerous or cancerous lesions identified through Pap screening 

are referred for repeat Pap screening, colposcopy, biopsy and treatment if need be. 

 

3.2  Pre-Cancerous  Abnormalities 

The microscopic abnormalities result from HPV induced cellular proliferation, and 

have been classified by pathologists as cervical intraepithelial neoplasia (CIN) of 

varying grade.  

 

3.2.1 Classification Systems 

 

Many classification systems for cervical cytology have been proposed over the 

years in different health systems, including the Papanicolaou terminology, the 

Munich classifications, and the histology oriented WHO classification frequently 

used in the UK. The most widely used system, however,  is the two-tiered 

Bethesda classification in that abnormal cells are classified as low grade or high 

grade squamous intraepithelial lesions,  that is, LSIL, HSIL respectively [114]. A 

substantial number of atypical specimens not attributed to either one of these are 

referred to as atypical squamous cells of undetermined significance (ASCUS).  

Lesions are graded according to a multistage cytopathology model (see figure 9 

below for comparative terminology), and assessment may be visual (colposcopy), 

microscopic (via cytology and histology), or by molecular detection methods. 
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3.2.2 Microscopic Lesion Progression 

Precancerous lesions undergo a defined set of dysplastic alterations, over the time 

course of several years, before progressing to malignant cell carcinomas[115]. 

 

The severity of the lesion (microscopic abnormality) is determined by the degree to 

which the squamous epithelium is replaced by basaloid cells, with the entire 

thickness being replaced in the most severe dysplasias (Figure 9). 
 

 
 

Figure 9:Progression from a benign cervical lesion to invasive cervical cancer. Infection by oncogenic HPV types, 

especially HPV16, may directly cause a benign condylomatous lesion, low-grade dysplasia, or sometimes even an 

early high-grade lesion. Carcinoma in situ rarely occurs until several years after infection. It results from the 

combined effects of HPV genes, particularly those encoding E6 and E7, which are the 2 viral oncoproteins that are 

preferentially retained and expressed in cervical cancers; integration of the viral DNA into the host DNA; and a 

series of genetic and epigenetic changes in cellular genes. HSIL, high-grade squamous intraepithelial lesion; LSIL, 

low-grade squamous intraepithelial lesion.  
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3.2.2.1 Low-Grade CIN  

The most characteristic histological feature of anogenital HPV infection is nuclear 

atypia. HPV-related nuclear atypia is due to heteroploidy, which results from 

mitotic spindle abnormalities, leading to replication without cytokinesis.  This 

results in bi and multinucleated cells and enlarged atypical nuclei.  In low-grade 

lesions the nuclei are mainly diploid and polyploid.  Normal mitotic figures are 

generally increased in low-grade lesions, but these remain restricted to the lower 

third of the epithelium, as are undifferentiated basal type cells.    

 

3.2.2.2 High-Grade CIN 

 

High-grade lesions (CIN 2 and CIN3) are substantially more atypical than low-

grade CIN, have a higher degree of disorganization and have undifferentiated cells 

that extend beyond the lower third of the epithelium. In high-grade lesions, the 

characteristic koilocyte of low- grade lesions is absent or considerably decreased, 

and the high-grade lesions have abnormal mitotic figures which clearly distinguish 

them from the low-grade lesions.   

 

Accurate identification of lesion grade has prognostic significance.  About 20% of 

CIN 1 will progress to CIN2 and around 30% of CIN2 will progress to CIN3 if left 

untreated.  Approximately 40% of untreated CIN3 lesions will progress to cervical 

cancer [116].  

It is important to note here, however, that microscopic diagnoses are susceptible to 

subjectivity and lack interobserver reproducibility. 
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3.2.3 Molecular Progression of Lesions 

 

After a normal HPV infectious cycle, the E6 and E7 proteins are expressed at low 

levels. However, during cancer progression, and at an as of yet undefined point, 

normal regulation of the papillomavirus life cycle is lost.  This results in changes in 

the viral gene expression pattern, with an increase in levels of E6 and E7 

transcripts in cervical cancer cells [117] with E6/E7 expressed in the full thickness 

of the epithelial lesion [118].   

 

CIN1 or (LSIL) lesions generally resemble productive lesions as previously 

described under the heading normal infectious cycle. The order of events is 

generally similar to that seen in productive lesions with virus coat proteins 

expressed at the epithelial surface.  

 

In CIN2 and CIN3, the order of events remains the same, however, E7 expression 

is increased [119-121] and the onset of late events is retarded.  Production of 

infectious virions becomes restricted to smaller and smaller areas close to the 

epithelial surface.  

 

 

Integration of HPV sequences into the host cell genome can accompany these 

changes and can lead to further deregulation in the expression of E7 (and the loss 

of the E1 and E2 replication proteins). In cervical cancer the productive stages of 

the virus life cycle are no longer supported and viral episomes are usually lost. 
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4. Cancer of the Cervix 

4.1 Cause of Cervical Cancer 

 

In the mid 1970’s, Meisels and Fortin recognized that human papillomavirus 

(HPV) infection of the cervix occurred frequently and that, histologically, the 

infection often displayed characteristics of mild cervical intraepithelial neoplasia 

(CIN) [122].  

 

Meanwhile, ongoing clinical and epidemiological research pointed to cervical 

cancer as a sexually transmitted disease. This led zur Hausen in 1976 to propose 

HPV as the  sexually transmitted agent responsible for cervical cancer [36].  In the 

early 1980s,  zur Hausen then went on to identify HPV16 and HPV18 [22, 123] 

and these two types together have been found to account for about 70% of cervical 

cancer. 

 

Since then, epidemiological studies have permitted researchers to identify the tight 

relationship between the virus and the disease.   Under optimal testing conditions 

HPV DNA can be identified in 99.7% of all invasive cervical cancer specimens, in 

at least 70% of CIN1,    80%  of CIN2, and 96% of CIN3 precursor lesions.  

 

Indeed, it is now well established that the vast majority of cervical carcinomas and 

its precursor lesions are caused by persistent infections with certain types of human 

papillomaviruses which have been designated as high risk types [3, 124, 125].  
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4.2 Burden of Cervical Cancer to Humanity 

 

Despite being a theoretically preventable disease, cervical cancer remains the 

second most common cancer in women worldwide, after breast cancer [126].  Of 

approximately 2 274 000 women affected in 2002, there were 500 000 newly 

diagnosed cases of cervical cancer, and of these, about 275 000 deaths, being 

equivalent to approximately one tenth of all cancers in women [127].  Despite its 

worldwide distribution, the frequency of cervical cancer varies considerably, being 

about ten times more common in some countries than in others (Figure 10 below). 
 

 

 

 

Figure 10: Cancer of the uterine cervix: age-standardised (world) incidence and mortality 

rates per 100 000 (all ages) in 18 world regions 
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Approximately 80% of the burden of cervical cancer occurs in developing 

countries of Africa, South and Central America and in the Caribbean, where it is 

the major cause of cancer-related death among women.  In developing countries, 

cervical cancer  is often detected at later stages due to non-existent or inadequate 

screening, and also because the standard treatment options  are  often absent or 

unaffordable, thus making it the most prevalent and important cancer in women.  

 

By contrast, in industrialised nations, the widespread use of the Papanicolau (Pap) 

screening test has reduced cervical cancer rates by nearly 80% in the last 50 years 

[127].  Nevertheless, in Western Europe, approximately 33 500 new cases of 

cervical cancer are diagnosed each year, and of these, 15 000 women die from the 

disease. In the United States, an estimated 13 000 new cases of cervical cancer, and 

4 000 deaths occurred in 2003 [128]. Therefore, despite recent advances in 

treatment, cervical cancer remains nonetheless an important cancer in women from 

a public health perspective. 

 

4.3 The Cervical Transformation Zone 

 

The transformation zone of the cervix is defined as the area where the columnar 

cells of the endocervix form a junction with the stratified squamous epithelium of 

the ectocervix.  Microscopically, the ectocervix can be divided into basal, 

intermediate, and superficial zones.  Cell proliferation is normally limited to the 

basal zone.  As the basal or first parabasal cell divides, one cell maintains the basal 

cell population while the other migrates upward and differentiates in a highly 

controlled manner. Most cervical cancers and its precursors originate from the 

cervical transformation zone.  The reason for this is not well defined. However, as 
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4.5 Cancer of the Cervix & HPV Types 

 

Certain types of human papilloma viruses, the so-called high risk types are the 

aetiological agents of cervical cancer [2, 123, 132]. HPV- negative squamous cell 

cervical carcinomas are extremely rare [133].  

4.5.1 Definition of high risk-low risk HPV 

There are over 100 types of HPV defined on the basis of DNA homology. Of these, 

approximately 40 strains are termed mucosotropic viruses that infect the anogenital 

and upper digestive tracts. Only some of these mucosotropic types, however, are 

regularly found in cervical cancers, and in a higher proportion than controls, such 

that these types have subsequently been termed high risk types.  On the other hand, 

those HPV types less frequently found or never found  in tumours as compared to 

controls, have been termed low risk viruses [31]. 

4.5.2 Low risk HPV 

The low risk HPV types are HPV 6, 11, 34, 42, 44, 53 and 54.  Infection with HPV 

types classified as low or no oncogenic risk, predominantly, HPV 6 and 11, may 

cause subclinical infection and benign genital lesions, including low-grade CINs 

and ano-genital warts. Genital warts are small bumps localized in the genital areas 

of men and women including the vagina, cervix, vulva, penis and rectum.  

 

HPV 6 and HPV 11 are responsible for at least 90% of genital warts. Although low 

risk types such as HPV11 are rarely associated with cervical cancer, they are still 

medically important because they cause genital warts, a major sexually transmitted 

disease in many countries  affecting 1-2% of young adults.  
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4.5.3.1 Human Papillomavirus Type 16 

 

In almost all areas of the world, HPV16 is the most prevalent HR-HPV in the 

general population.  It accounts for about 20% of infections among cytologically 

normal women, 20% among women with equivocal lesions, and 26% among those 

with mild abnormalities.  Prospectively, HPV16 persists longer on average than 

any other type.  Persistence is highly associated with precancer, approximately 

45% of women with persistent HPV16 being diagnosed within 5 years with 

precancer.  Even though HPV16 is more likely to cause cytological abnormalities 

than any other carcinogenic type, it also disproportionately causes changes 

suggesting precancer. 

 

 

HPV 16 is the major carcinogenic type in almost every country surveyed. HPV16 

is associated with 54% of SCCs of the cervix and 41% of adenocarcinomas 

worldwide, and is the main type that causes other anogenital and oropharyngeal 

cancers.  

 

Given the cause of cervical cancer is persistent infection with one of the 

approximately 15 carcinogenic human papillomavirus (HPV) types,  if we could 

eliminate HPV16 infection or reliably identify and destroy all its cytopathological 

and colposcopic manifestations, we could at the very least prevent half of cancer 

cases in the world. As HPV16 is the most clinically significant, it has also become 

one of the most studied, thereby serving as the prototype for understanding HPVs, 

and in particular,  for detecting HPV persistence. 
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4.6 Invasive cervical cancer 

 

4.6.1 Persistence of HPV Infection  

Most studies confirm the association between persistent HPV infection and the 

increased risk of progression to HSIL and cancer [136]. As persistent infection 

with a high risk HPV is considered the main risk factor for progression to CIN or 

invasive cancer and since high risk HPV DNA is found in virtually all cases of 

cervical cancer [124], it has been concluded that HPV infection is therefore a 

necessary cause of cervical cancer.  

 

Persistent HPV infection alone, however, is not sufficient to cause cancer because 

some individuals who have persistent infection with a high risk HPV do not 

develop serious lesions, and because low-grade HPV types that persist are much 

less likely to progress than high risk types[112]. 

 

Therefore, other factors influence persistence, and these are thought to be viral, 

host or environmental.   
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4.6.2 Relationship among incidences of cervical HPV infection, precancer, and 

cancer 

 
Figure 12: Relationship among incidences of cervical HPV infection, precancer, and cancer. The 

HPV curve emphasizes the high incidence of infection that develops soon after women initiate sexual activity and subsequent 

lower incidence because a high proportion of infections are self-limited. The precancer incidence curve follows several years 

behind the HPV incidence curve and is substantially lower than that of HPV incidence, as there is generally a delay between the 

acquisition of HPV infection and precancer development, and only a subset of infected women develop precancers. The cancer 

incidence curve follows several years behind the precancer curve, reflecting the relatively long interval between precancer and 

progression to invasive cancer. As women approach 40 years of age, the incidence of cancer begins to approach the incidence of 

precancer. Figure modified with permission from the New England Journal of Medicine53). Copyright © 2009, The American 

Society for Clinical Investigation. 
 

The precancer incidence curve is considerably lower than the HPV incidence 

curve, revealing that only a subset of infected women will develop precancers. 

There are also many more precancers than cancers, suggesting that only a minority 

invade.  Given the high prevalence of genital HPV types in the general population, 

the incidence of cervical cancers is very low with most infections being either 

successfully resolved or controlled by the host immune system [115].  
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There is a lag time of about 7-10 years between the occurrence of HPV infection in 

the late teens or early twenties and the peak of precancer around 25–30 years of 

age. The cancer incidence curve follows several years behind the precancer curve, 

as invasive cancer generally occurs in women 10 years older than women with 

CIN3. The long interval between initial infection and development of cervical 

cancer implies that in addition to persistent infection by an appropriate HPV type, 

additional environmental or host factors may contribute to malignant progression. 

 
 

5. Determinants of clinical progression of HPV infection 

5.1 Environmental Factors 

Many of the potential cofactors for cervical cancer and the precursor lesions have 

not been rigorously evaluated in epidemiological studies, that is, did not restrict 

their analyses to HPV positive women or these had small sample sizes resulting in 

conflicting results. Therefore, an incomplete summary follows with focus on 

infectious agents, multiparity/early parity, tobacco smoking, and hormonal 

contraceptive use. 

 

 

5.1.1 Infectious Agents 

5.1.1.1 Herpes 

It has been suspected since the early 90’s that HPV coinfection with certain 

microorganisms could have an influencing effect on the development of cervical 
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cancer. Herpes simplex virus 2 is one of the infectious agents that have been most 

frequently studied as a possible cofactor for cervical cancer.  However, despite a 

positive correlation with herpes simplex 2 infection [137], there has not been 

consistent epidemiological evidence in support of a herpes role in cervical cancer. 

[138-140]  

 

5.1.1.2 Chlamydia trachomatis  

Another infectious agent, Chlamydia trachomatis, has been associated with clinical 

cervical hypertrophy [141] and with the induction of squamous metaplasia [142], 

and additional reports provide evidence in support of C.trachomatis possible role in 

the etiology of cervical disease [143, 144].  

 

In epidemiological studies that controlled statistically for HPV infection [144], an 

epidemiological association of Chlamydia trachomatis co-infection with cervical 

neoplasia and invasive cervical cancer has been found. 

 

Recent studies suggest that C. trachomatis might act indirectly in cervical 

carcinogenesis by varying the expression of tumour suppressor genes in epithelial 

cells .  

 

5.1.1.3 HIV/AIDS 

The incidence of cervical cancer is significantly increased in women who have 

human immunodeficiency virus/acquired immune deficiency syndrome 
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(HIV/AIDS) [145], but it remains uncertain, however, whether there might also be 

a direct biological interaction between HIV and HPV [146, 147].  

 

5.1.1.4 Cervical inflammation 

During C.trachomatis infection, many cytokines are released and these possibly 

cause tissue damage by inducing apoptosis of uninfected cells [148]. Infiltrating 

macrophages could cause further tissue damage through release of reactive oxygen 

species [149]. These effects, together, probably result in partial disruption of the 

tissue barrier and exposure of the basal cells to HPV infection. Therefore, it is 

possible that the immune response to pathogen infection plays a role in HPV 

infection and cervical cancer, thus offering an explanation for the conflicting 

results obtained in epidemiological studies with a range of microbial agents 

including herpes viruses, C.trachomatis, and others. Any sexually transmitted 

infection could possibly act as a co-factor in cervical carcinogenesis by either 

simply bringing a permissive environment for HPV infection and viral persistence 

or by promoting genomic changes.  

 

5.1.2 Hormonal Contraceptive Use 

Epidemiological data suggest an association between hormonal status that is, age at 

first intercourse and early parity/multiparity (three or more children), the long term 

use of oral contraceptives, and the risk for preneoplastic lesions of the cervix and 

cervical cancer.  Progesterone is the major ingredient of oral contraceptives and 

injectable hormonal contraceptives. The level of progesterone has been shown to 

increase during pregnancy. In vitro experimental studies indicate that upon 
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exogenous hormonal stimulation, hormonal recognition elements in the LCR of 

high risk mucosal HPV will increase the production of the E6 protein [150-152].    

 

The female sex hormone, estrogen, is also considered another possible cofactor to 

the oncogenic effect of HPVs. During puberty, the high level of circulating 

estrogen is considered a major influence in the metaplastic changes in the cervical 

transformation zone.  

 

Additional evidence of a co-carcinogenic role for hormones in cervical cancer 

results from studies on HPV infected transgenic mice. Steroid hormones were 

found to increase the transcription of oncoproteins E6 and E7, contributing not 

only to the formation but also to the maintenance and malignant progression of 

cervical cancers in HPV16 transgenic mice [153, 154].  

 

Furthermore, the degree of proliferation of SiHa cancer cells was directly 

proportional to the duration of estrogen therapy [155], and the levels of estrogen 

were found to be significantly higher in a dose dependent fashion in cervical 

cancer patients as compared to controls [156] .  

 

There is also experimental evidence that hormones may mediate changes in the 

immune status of the cervical mucosa [157].  

 

These results suggest that the hormonal environment of the cervical mucosa of an 

HPV infected woman could contribute to cervical malignancy. 
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5.1.3 Tobacco Smoking 

Cigarette smoking, in the presence of HPV infection, is also being considered a 

cofactor in the development of preneoplastic lesions of the cervix and invasive 

cervical cancer.  Although secondary genetic changes may occur randomly, the 

presence of tobacco metabolites in cervical secretions is considered a risk factor in 

the development of cervical cancer [158], and certain smoking carcinogens are 

found at significantly higher levels in the cervical secretions of cigarette smoking 

women [159].  

Cigarette smoke contains mutagens, carcinogens and other components that may 

act as initiators and /or promoters of uterine cervix carcinogenesis. Currently, there 

appear to be two mechanisms by which tobacco smoking can increase the risk for 

cervical disease.  First, cigarette components can affect the immune function and 

allow HPV infection to persist and progress: tobacco smoking has been associated 

with a generalized suppression of the immune system, including a significant 

decrease in NK cells and NK cell activity, in level of immunoglobin (Ig)G and 

(Ig)A,  and in  Langerhans dendritic antigen presenting  cells [160, 161]. Second, 

components of tobacco smoke such as nicotine or cotinine or their metabolites can 

also act  directly as co-carcinogens in cervical tissue [162, 163], or in combination 

with the immune system.  

 

5.2 Genetic or Host Factors 

Host genetic differences that influence the host response to viral infection are also 

being investigated. These include the immune response and genetic 
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polymorphisms present in genes related to viral infection (HLA, DNA repair 

systems, and tumour suppressor genes) [164]. 

5.2.1 Evidence of Immune Response 

In most women, the immune response is able to successfully control the HPV 

infection [165]. The humoral and cellular components of the immune system have 

been shown to contribute to the host response in transient infections. 

 

The contribution of the humoral component is expressed via the presence of HPV 

antibodies.  Antibodies against the HPV capsid proteins have been found in the 

cervical secretion of HPV induced lesions. Antibodies induced by HPV L1 vaccine 

are nearly 100% protective against incident CIN2, 3. 

 

Evidence that the cellular component of the immune response also plays a role in 

the control of HPV infections is provided by the observation that most HPV 

infected tissues show an inflammatory response at the time of regression. 

Immunomodulation studies involving the use of IFN and imiquimod also highlight 

the importance of cell-mediated immunity in promoting the regression of HPV 

lesions.  

 

Additional evidence for the role of the immune system derives from individuals 

who have genetic or aquired immune deficiency.  Immunosuppressed patients are 

at an increased risk for HPV infections and associated neoplasia.  Renal transplant 

patients, for example, suffering from cell mediated immune suppression are at an 

increased risk for cutaneous and genital HPV lesions [166, 167]. T-cell 

immunosuppression has been shown to have a profound effect on the risk for HPV 

infection and persistence [168], highlighting the significance of the T-cell 
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response. HIV-positive women have at least double the HPV prevalence of HIV-

negative women who report similar risk profiles and the risk for persistent HPV is 

strongly associated with degree of immunosuppression. These data highlight not 

only the importance of host responses for resolution of natural infection, but also 

define the HIV-positive population as high risk group for HPV-associated 

malignancies. 

 

Therefore, HPV resolution requires an effective host immune response. Most HPV 

associated lesions regress spontaneously, however, on occasion the lesions 

progress.   

 

5.2.2 Genetic susceptibility factors 

Based on observations that natural daughters and sisters of patients with cervical 

cancer have a higher risk for developing cancer than adopted daughters or sisters, 

with half sisters showing approximately half of the risk compared to full sisters 

[164, 169] genetic predisposition may exist to developing cervical cancer. 

 

Therefore research has focused to identify the host factors that increase one’s 

susceptibility to development of invasive cervical cancer following HPV infection 

including, among others, the immune major histocompatibility complex (HLA 

types) and p53 polymorphisms. 
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5.2.2.1 MHC Complex  

Human Leukocyte Antigen (HLA) molecules are responsible for the presentation 

of foreign antigens to the immune system.  The HLA molecules consist of a family 

of genes within the major histocompatibility complex (MHC), composed of class I 

and class II genes.  The evidence in the literature suggests that members of class II 

HLA genes are likely to protect against the development of cancer whilst on the 

other hand no alleles have consistently been associated with an increase risk of 

disease [113]. 

5.2.2.2 p53 Polymorphism 

Polymorphism at specific loci of several genes is also being investigated, with that 

of p53 gene being the most extensively studied. The frequent mutation of p53 in 

human cancers suggests the critical participation of this gene in the carcinogenesis 

process [170].  Essentially, p53 exists in two main polymorphic forms at codon 72, 

arginine(72R) or proline(72P) [171], and this polymorphism is balanced  [172].  

 

In cervical cancer, HPV E6 oncoprotein is known to contribute to neoplastic 

progression by inhibiting the p53 pathway.  Since it was found that p53Arg is more 

prone to degradation by HPV16 and HPV18 E6 protein, it was proposed that the 

polymorphism at codon 72 in the p53 gene could be associated with an increased 

risk for cervical cancer [173].   Case control studies have compared the frequency 

of the p53 allele in controls to cervical carcinoma, however results vary by country 

and HPV genotype [174]. 
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5.3 Viral Factors in Progression to Malignancy 

 

It is well established that the vast majority of cervical carcinomas and its 

precursors are caused by persistent infections with certain high risk types of human 

papillomaviruses, the high risk types.   

 

However, within the high risk type group, there are some differences in the 

frequency of cancer association that are not fully understood [175]. Although 

HPV16 and HPV31 are closely related at the evolutionary level, HPV 16 is 

associated with approximately 54% of cervical cancer whereas HPV 31 is 

associated with only about 3% of cases [135, 175, 176].  Research has therefore 

focused on viral factors (genotype differences, viral polymorphism, viral load, and 

HPV integration status) as to elucidate the role of these in cancer progression. 

     

 

5.3.1 Genotype- High risk-low risk differences 

There are more than 40 different HPV genotypes that can infect the cervix. 

Approximately only 15 of these are associated with cervical cancer [4] and have 

consequently been called high risk types. Therefore, this has led scientists to 

believe that the molecular differences between the E6 and E7 proteins of the low 

and high risk types are important factors that could partially explain the differences 

in the likelihood of cancer progression between low and high risk viral types. 
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5.3.1.1In Vitro Properties of E6 and E7 Proteins 

E6 and E7 encode for proteins that allow for immortalization and transformation of 

the cell that hosts the HPV DNA. 

 

Indeed, a number of assays have been used to evaluate the ability of the E6 and E7 

proteins to transform cells in vitro.  Using primary rodent cells, primary human 

fibroblast and keratinocyte cultures, the high risk HPVs have been found to induce  

transformation [177-183] whereas the low risk viruses do not [182, 184].  These 

assays have permitted the mapping of the viral genes directly involved in cellular 

transformation to the E6 and E7 ORFs. 

 

Although the HPV16 E7 is the major transforming gene in established NIH3T3 

rodent cells and  E7   induces DNA synthesis in quiescent cells and cooperates 

with an activated ras oncogene to transform primary rodent cells,  E6 together with  

E7  are required for efficient immortalization of primary human fibroblasts or 

keratinocytes, leading to unterminal differentiation [179, 180, 182].   

 

 

 

5.3.1.2 E7 Oncoprotein 

 

As previously stated, the E6 and E7 of both the low risk and high risk HPVs bind 

to the tumour suppressor proteins p53 and Rb respectively. However, the low risk 

types bind with a lower affinity than the high risk HPVs.   
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The high risk E7 protein binds to pRb with a tenfold higher affinity than the low 

risk E7 proteins [185, 186]. The resultant E7-pRb binding inactivates the pRb 

tumour suppressor,   thereby disrupting a G1 cell cycle control mechanism.  

The high risk E7 proteins are also capable of mediating Rb degradation through a 

proteosome-dependent mechanism [72, 187], which is important for E7-mediated 

cell transformation. 

 

Unlike the low risk, the high risk E7 proteins are also able to induce centrosome- 

related mitotic disturbances, as has been detected in cell culture and in transgenic 

animals. A loss of spindle integrity during cell division increases the risk for 

chromosome missegregation and aneuploidy. This leads to an increase in genome 

instability not as yet quite understood [188-190]. 

 

5.3.1.3  E6 Oncoprotein 

As with E7, the E6 protein also differs in its function between the high and low 

risk HPV types. 

5.3.1.3.1 E6 complexes E6AP and p53  

The high risk E6 proteins bind p53 with higher affinity. In addition, the high risk 

E6 proteins form a complex with both p53 and cellular ubiquitin ligase E6AP (E6-

associated protein), which leads to degradation of p53 mediated by proteosomes. 

Conversely, the E6 of the low risk types don’t have either significant ability to bind 

E6AP nor to stimulate p53 degradation [173, 191].   
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5.3.1.3.2  p53 dependent repression of transcription 

 
High risk E6 proteins associated with cervical cancer also have the capacity to 

repress p-53 dependent transcription by binding the transcriptional coactivator 

p300/CREB-binding protein, providing a second mechanism by which to inhibit 

p53 expression [192, 193].   

 

 

5.3.1.3.3 E6 PDZ binding 

A number of additional cellular targets have been identified for the high risk E6 

proteins. The high risk E6 oncoproteins contain a motif at the extreme C-terminus 

that can mediate the binding of cellular PDZ domain containing proteins.  This 

motif is unique in the high risk HPV E6 proteins and is not present in the E6 

proteins of the low risk HPV types. The E6 protein serves as a molecular bridge 

between these PDZ domain proteins and E6-AP facilitates their ubiquitylation and 

mediates their proteolysis.  Among the PDZ domain proteins implicated as E6 

targets are hDlg, hScrib, both tumour suppressors.  Several of the PDZ-containing 

proteins have been shown to be involved in negatively regulating cellular 

proliferation.  Therefore, through its C-terminal PDZ ligand domain, the E6 protein 

of the high risk HPV types mediates cell proliferation independently of E7.  E6 

PDZ binding is reported to mediate suprabasal cell proliferation which may 

contribute to the development of metastatic tumours by disrupting normal cell 

adhesion [194-196]. 

5.3.1.3.4 E6 Activates Telomerase 

A p53 independent activity of the E6 of the high risk HPV types is its ability to 

transcriptionally upregulate telomerase through expression of the catalytic subunit 
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hTERT. The mechanism by which E6 activates the hTERT promoter is still 

unclear, although two E6-related mechanisms involving the interaction of E6AP 

have been proposed.  

As normal cells lack telomerase, there is a gradual loss of telomere length upon 

successive cell divisions in vitro. Once telomere length reaches a critical size, 

cellular senescence is induced. In HPV infected cells, however, E6-induced 

telomerase activity synthesizes hexamer repeats at the ends of chromosomes and 

thus allows for maintenance of telomere length [197, 198], extending the lifespan 

of cells infected with HPV,  and in this way perhaps predisposing to persistent 

infection. 

 

5.3.2 HPV Viral Polymorphism 

There is sufficient nucleic acid heterogeneity within all HPV types to form 

phylogenetically distinct subgroups (variants) within the same viral type. 

Sequencing of one or more ORFs 

(E6, E7, and L1), as well as the LCR has identified based on DNA homology 

multiple subtypes and variants for HPV 18 and in particular for HPV16.  The 

HPV16 variants have been broadly categorized into European (E), and non-

European variants (NE), according to DNA homology and the region of the world 

where they were originally isolated.  Since the prototype variant of HPV16 was 

first detected in a cervical cancer specimen from a woman in Europe, this variant 

established the European lineage. Nonprototype HPV 16 variants are classified as 

Asian, Asian-American, African-1, or African-2 lineages. The nonprototype HPV 

16 variants generally contain multiple nucleotide variations [199].   
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Multiple studies have demonstrated an increased risk of high grade cervical 

dysplasia and cervical cancer among women infected with the HPV 16  

nonprototypic variant relative to the European variant [200, 201]. Although 

differences between these variants in terms of viral oncogenicity or immune 

recognition are not as of yet fully understood, these are under investigation. 

 

5.3.3 HPV Viral Load 

Viral load, that is, the quantity of viral DNA, is currently under study.  Ongoing 

research tries to determine the importance of this viral factor in detectable disease 

development. There is evidence to suggest that in women with cytological 

abnormalities, a high viral load is associated to high grade CIN [202].  Women 

with a type specific infection and a high viral load have the highest risk of 

persistent SIL [203]. Using a sensitive PCR assay, it has been demonstrated that 

carcinoma in situ associated with HPV16 occurs mainly in HPV16 women who 

have consistently high long term viral loads [11].  Further, in a cohort study, 

women with normal cytology as well as those with abnormal cytology, an 

increased HPV16 viral load conferred an increased risk of developing a cervical 

lesion [204]. 

 

Although these data indicate that women with higher viral loads may be more 

likely to progress to high grade dysplasia [104, 205] not all studies have supported 

this conclusion [206].  Moreover, the association between viral load and disease 

may vary between types. 
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5.3.4 Integration of Viral DNA 

5.3.4.1 In Cervical cancer and in Lesions 

In cancer of the cervix, the HPV18 viral genome is always integrated into the 

human genome, with HPV16 also found integrated in the majority of HPV16-

related cancers [18, 22, 23, 207, 208].  

 

In the cervical lesions, however,  HPV is usually present in episomal form, but 

sometimes it is also  found integrated in the host cell genome,  particularly in  

premalignant lesions of CIN 2/3 [17, 208].  HPV integration frequency has been 

reported to increase in parallel with the severity of cervical lesions [209, 210].  In 

contrast, HPV DNA is commonly found extrachromosomally (in episomal form) in 

benign and low-grade cervical lesions [16, 25, 211, 212]. 

 

Recent studies however suggest that viral integration of HPV DNA into the human 

genome occurs already in early lesions and even in clinically normal epithelium 

[15, 28-30, 213, 214]. In addition, low risk types are very rarely found integrated in 

tumours. However, a recent report provided evidence of integrated genomes of the 

low risk type HPV11 in cancers patients with early onset recurrent respiratory 

papillomatosis [215].   

 

Together, these results point to the possible relevance of integration of the viral 

genome in malignant transformation. Integration, occurring as a rare but early 

event, may thus play a role in transforming HPV-16 low grade lesions into high 

grade dysplasia and invasive carcinoma. As a result, integration may be a possible 

marker for identifying high grade lesions in patients with asymptomatic and low 

cytologic abnormalities.  
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5.3.4.2 Model of Integration  

 

During HPV integration, the viral genome usually breaks in the E1/E2 region [18, 

207], leading to the loss or fragmentation of the E1 and/or E2 regions,  most 

commonly in the E2 protein hinge region [17].  Full length E2 protein inhibits the 

basal transcription of E6 and E7 ORFs. Upon HPV integration, the fragmented E2 

protein is insufficient to suppress the E6/E7 gene promoter region, and this leads, 

at least in part, to constitutive expression of E6/E7 proteins [208].  E2 loss of the 

regulatory control of E6 and E7 proteins, as depicted in figure 13 below, generally 

results in cellular changes that lead to deregulated cell cycle control and increased 

genomic instability as found in high grade dysplasia and cervical cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Regulation of effect of HPV transforming proteins  
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6. Techniques Available to Identify Viral Load & Integration  
 

 

Integration has traditionally been studied by Southern blotting, two-dimensional 

gel electrophoresis, multiple displacement amplification, in situ hybridisation and 

PCR.  

 

6.1 Southern hybridisation 

 

Southern blot has been considered the gold standard for the evaluation of HPV 

genomes. The technique not only identifies HPV genomes in a specimen 

accurately and specifically, but it can also determine the physical status of the 

genomes, thus differentiating between episomal and integrated HPV DNA. The 

viral load is determined semiquantitatively by comparison to a known amount of 

viral DNA on gel.  

 

 The main drawback, however, with using this hybridisation procedure to detect 

integration of HPV is that it lacks sensitivity, and therefore requires large amounts 

(5-10ug) of highly purified and well preserved DNA. While cell lines or biopsy 

specimens provide sufficient material for Southern or in situ hybridisation, the 

volume of the premalignant lesion, or of exfoliated cells from the cervix only 

provides enough nucleic acid for PCR-based methods, leaving scientists no other 

alternative to determine the physical HPV status in normal and premalignant 

lesions of the cervix. 
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6.2 PCR-based methods  

 

PCR, on the other hand, can selectively amplify HPV DNA by a series of reactions 

leading to an exponential and reproducible increase in viral sequences in the 

biological specimen.  By using specific primers to the DNA template of interest, a 

PCR reaction can, under optimal reaction conditions theoretically produce from a 

single double stranded DNA molecule and after 30 cycles of amplification, 109 

copies of the molecule or gene. 

 

Nowadays, routine collection of specimens in liquid-based cytology solutions 

allows both morphological and immunohistochemical evaluation, and DNA and 

RNA studies can be performed for at least 14 days following sampling [216, 217].  

Due to its enzymatic nature, however, the PCR-based procedures do not tolerate 

impurities in the sample well.  Amplification of a housekeeping gene such as B-

globin, B-actin or GADPH determines the adequacy of the cervical samples for 

PCR analysis and internal controls screen for the presence of inhibitors in real-time 

PCR assays. Primer–driven inhibition is eliminated in 90% of diluted cervical 

samples [218]. 

 

6.2.1 Real-Time QT-PCR-an indirect method  

Quantitative real-time PCR permits sensitive specific detection and quantification 

of both RNA and DNA. The real-time PCR 5’-exonuclease Taqman method, 

releases and quantifies fluorescence at each amplification cycle directly 

proportional to the amount of amplicon generated.  

 



 

 

74

The assay detects integrated and episomal forms of HPV 16 based on measurement 

of the absolute values of the E2 and E6 ORFs in HPV 16 positive DNA samples. A 

unique region of the E2 open reading frame that is most often disrupted during  

HPV 16 integration (the hinge region) is targeted by one set of PCR primers and a 

probe, and another set targets the E6 ORF.  

  

Integration of HPV 16 into the human genome is detected by subtracting the total 

copy numbers of E2 representing episomal HPV from the total copy numbers of E6 

(E6 detects both episomal and integrated virus). When only episomal forms of 

HPV are present, the specific primers of E2 and E6 should detect equivalent copy 

numbers.  Otherwise, when only integrated form is present, E2 PCR signal should 

be undetectable. 

 

PCR amplification of the E2 gene can detect integration even when the amount of 

sample DNA is very small [28], as that of cervical exfoliated cells, as oppposed to 

Southern blots and 2D gel electrophoresis which require large amounts of well 

preserved (high molecular weight) DNA. In addition, real-time quantitative PCR is 

more sensitive than Southerns, as blot hybridization risks displaying faint signals 

while assessing minute events of randomly integrated HPV DNA into the host 

genome. Southern blot and 2D gel electrophoresis techniques, however, may prove 

essential to confirm the physical status of HPV.  

 

Another advantage of real-time quantitative PCR is its ability to detect the viral 

load and the physical state of the viral genome simultaneously, making it suitable 

for both screening and research purposes.  
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Due to the retention of E2 sequences in both the pure episomal form and in mixed 

(integrated and episomal) forms, quantitative real-time PCR technique assessment 

of integration is dependent, however, on the relative ratio of HPV-E6 to HPV-E2 

amplification products (E6/E2 ratio).  In order to discriminate between the pure 

episomal form and mixed forms, a cutoff value of the E6/E2 ratio is determined 

empirically, and this value varies between laboratories, making it difficult to 

compare integration results between research studies. Moreover,  sensitive 

quantification of the E2 gene (or E6 gene) by the real-time PCR approach requires 

the target sequences to be extremely small, 87 base pairs (bp) in this study, in 

comparison to the entire E2 ORF of 1,097 bp.  Therefore, misinterpretation of 

mixed forms as episomal could lead to false negative results of integration. In this 

research project, an E6/E2 ratio equal to or greater than 1.2 was suggestive of  

integration.   

 

 

 

6.2.2 PCR-based methods to prove integration 

 

A direct proof of HPV integration is laborious since HPV genomes are integrated 

at random positions in the genome and thus lack a specific sequence that can be 

amplified.  

 

To identify integrated HPV genomes, new PCR-based methods have been 

developed recently, namely ligation mediated PCR (DIPS-PCR) [219], the 

amplification of papillomavirus oncogene transcript (APOT) test [9], and 

Restriction Site PCR (RS-PCR).   
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The APOT assay, an RNA-based amplification of viral-cellular fusion transcripts 

specific for HPV integration, is less laborious than the DNA based integration 

detection assays (RS-PCR and DIPS-PCR).  

The main problem with techniques using RNA, however, is that it requires fresh 

frozen material with proper RNA quality, and is therefore less available in most 

biological specimens, depending on the time and type of storage conditions [220].  

In addition, the APOT test is highly sensitive in detecting integration but only if 

there is transcriptional activity from integrants.    

 

The restriction site PCR (RS-PCR) integration detection assay applied to the 9 

exfoliated cervical specimens in this study with an E6/E2 ratio equal to or greater 

than 1.2, uses primers binding to specific restriction enzymes sites  for 

amplification and sequencing of the unknown cellular sequence [221]. 

 

6.2.2.1 Restriction Site  PCR 

Restriction site PCR (RS-PCR) enables amplification of unknown nucleotide 

sequences adjacent to known nucleotide sequences. The use of RS-PCR to 

generate PCR products spanning HPV host junction fragments in cervical 

carcinomas has been used previously [222-224], and in cell cultured W12 cervical 

keratinocytes [225, 226]. Basically, previous studies, have amplified 100ng of 

genomic DNA from each sample, beginning with a biopsy or cell line (as start 

material). 

 

The basic outline followed to isolate and characterize integration in cervical 

exfoliated clinical specimens is shown in Figure 14 below. Basically, DNA from 
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cervical samples is amplified by quantitative real-time PCR for the E2 and E6 ORF 

with their respective primer–probe pair.  

 

Quantification of E2 and E6 DNA products allows determination of the E6/E2 

ratio. Clinical samples with an E6/E2 ratio of 1.2 or greater are suggestive of 

integration and are thus amplified by RS-PCR to identify viral integration into the 

human genome.  

 
 
Normal or LSIL DNA 

↓ 
Quantitative real time PCR(determines E6/E2 ratio) 

↓ 
RS-PCR(amplify samples with E6/E2 ratio greater than 1.2) 

↓ 
Electrophoresis of PCR 

Products 
↓ 

 Sequencing of  
Selected PCR Bands 

↓ 
Database Analysis 

 

 

Figure 14: Schematic of the procedure used to detect integration in normal and LSIL 

cervical specimens with RS-PCR.  

 

In Round 1 RS-PCR, various combinations of eight HPV 16-specific primers and 

six restriction site oligonucleotide primers (RSOs) are used under low-stringency 

cyling conditions, Figure 15. The selected RSOs have 0-2 restriction recognition 

sites per HPV genome.  
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For every cervical sample, a total of 48 HPV 16 primary RS-PCR reactions are set 

using every possible combination of the six RSO primers with BamH1(RSO1), 

SacI(RSO2), NheI(RSO3), SalI(RSO4), SapI(RSO5), ECORI(RSO6) restriction 

sites and the eight HPV 16-specific primers [224].  In Round 2 RS-PCR, five 

microliters of the 1st PCR is used as template for the nested PCR reaction, where 

same restriction site primer is paired with the corresponding internal HPV primer, 

under high-stringency conditions.   
 

 

 

 
Figure 15:  Schematic of RS-CR, involving two rounds of PCR, followed by sequencing of 

amplicons.  

 

The amplified products from the 48 HPV 16 nested reactions are separated in a 

1.5-2% ethidium bromide agarose gel as outlined in figure 14.  RS-PCR products 

of interest, that is, not corresponding to bands of human or HPV 16 DNA are 

excised in a black room under ultraviolet illumination. Consequently, DNA is 

eluted from the gel using Qiagen Gel Extraction Kit.  DNA sequencing reactions 

are performed using the Big Dye terminator DNA sequencing kit. As HPV16-

specific sequencing primers, internal to the nested primers, were not available, 

PCR products were sequenced bidirectionally with T7 primer and same nested 

HPV-specific primer.  Sequencing data is then aligned using the NCBI BLASTN-

program to the human and nucleotide databases to identify homologous sequences. 
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     STUDY OBJECTIVE 
  

• To set up, by Taqman  quantitative real-time PCR,  standard curves of 

plasmid HPV-16 from 101 to 106  DNA copies  to determine the 

reproducibility of E6 and E2 real-time PCR  

• To assess the validity of QT real-time PCR in determining physical status, 

by validating E2/E6 ratios for known amounts of pBr322 HPV16 and SiHa 

cells(integrated HPV 16) 

• To evaluate the number of copies of E2 and E6 ORFs in each specimen from 

which to identify and select integrants to be amplified by RS-PCR  and  

from which to determine the episomal, integrated and total HPV 16 viral 

load in each sample 

• To optimize RS-PCR for detection of SiHa cells, the integration positive 

control and to amplify by nested RS-PCR potential integrants with an E6/E2 

ratio of 1.2 or greater  

• To separate by agarose gel electrophoresis, sequence and  map RS-PCR 

amplicons  using  NCBI BLAST alignment services to evaluate the HPV16 

integration frequency in a population of young women without lesions 

• To determine the association between viral load and persistance of infection 

• To determine the risk factors associated with a high viral load 
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ROLE OF STUDENT 
The student accomplished all of the above with the exception of the two last 
statistical objectives  
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Abstract (249 words): 

 

Background. HPV burden is a predictor for high-grade cervical intraepithelial neoplasia and 

cancer. The natural history of HPV load in young women being recently exposed to HPV is now 

described.   

Methods. A total of 621 female university students were followed for 2 years each 6 month. 

Cervical specimens containing HPV-16, -18, -31, or -45 DNA by consensus PCR were further 

evaluated with type-specific and β-globin real-time PCR assays. Proportional hazards regression 

was used to estimate hazard ratios (HR) of infection clearance. Generalized estimating equations 

assessed whether HPV loads was predictive of HPV infection at the subsequent visit.  

Results. HPV loads were consistently higher among women <25 years old, with multiple sex 

partners, with multiple HPV type infections or smokers. Infection clearance was faster among 

women at lower tertiles of HPV-16 (HR=2.8, 95%CI: 1.0-8.1), HPV-18 (HR=3.5, 95%CI: 1.1-

11.2) or combined (HR=2.4, 95%CI: 1.8-6.2) DNA loads. The relationship between HPV-16 and 

HPV-18 DNA loads and infection clearance followed a clear dose-response pattern, adjusting for 

age and number of sexual partners. Odds Ratios for HPV persistence of the middle and upper 

tertiles relative to the lower tertile were 2.7 and 3.0 for HPV-16 and 3.8 and 39.1 for HPV-18, 

respectively. There was no association between HPV-31 or -45 DNA loads and persistence. 

HPV-16 integration was a rare event in this cohort being encountered only in one sample. 

Conclusions.  The association between HPV load and persistence is not uniformly found across 

high-risk genital genotypes. HPV-16 integration was rarely demonstrated in young women.  
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Most sexually active women are infected by human papillomavirus (HPV). Since most 

genital HPV infections regress within two years, only a minority of women will develop 

persistent HPV infection that could eventually cause cervical intraepithelial neoplasia (CIN). 

High-grade CIN (CIN-2,3) is the immediate precursor lesion to invasive cervical cancer. 

Considering the natural history of HPV infection over several years, there is a need for 

understanding various predictors of cancer and their relevance in monitoring an array of viral 

outcomes.  

 In several recent studies, HPV-16 DNA load has been independently associated with 

CIN-2,3 and invasive cancer (1-6). Most studies also reported that HPV load was an ancillary 

marker for persistent HPV infection (3,7-11). HPV-16 or 18 infections are cleared more slowly 

than infections caused by other high-risk types (12). Since the biological behavior of HPV types 

differs, the predictive value for persistence of HPV DNA load may vary between types (13). We 

still know little about type-specific viral loads and their relation with clearance of HPV infection. 

Moreover, most studies on HPV viral load have focused on women in older women at risk for CIN. 

The evolution of HPV viral load in younger women recently infected remains largely unexplored. 

  High-risk HPV integration is considered to be a key event in the progression of CIN to 

invasive cancer (14). In the current model of cervical carcinogenesis, HPV-16 is integrated in 

CIN-2,3 and cancer. Recent data casts doubt on this concept by showing that integrated HPV-16 

DNA can be detected in women with CIN-1 or no cervical lesion (15-20), although these results 

were not confirmed by all (21). It is important to establish whether HPV integration occurs early 

in the course of HPV infection to assess its contribution to carcinogenesis. Overall, the 

longitudinal assessment of high-risk HPV load and integration in the natural history of HPV 

infection considering various viral outcomes such as clearance and persistence has thus received 

little attention up to now. In order to improve our current understanding of the natural history of 

HPV infection, it would be useful to assess in young women who have initiated sexual activity 

the time course of HPV viral loads and occurrence of HPV integration at the early stages of 

interactions between the virus and the host.  

 In 1996, we began a prospective cohort study of the natural history of HPV infection in a 

population of young women attending college in Montreal, Canada, to investigate epidemiologic 

determinants of persistent and transient cervical HPV infections (22,23). The focus of the 

analyses reported here was to assess prospectively in this cohort of young women the time 
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course and association between HPV-16 integration, HPV-16, 18, 31 and 45 DNA loads, and 

type-specific viral outcomes.  

 

Materials and Methods 

Study subjects. Female students attending either the McGill University or the Concordia 

University Health Clinics were invited to participate if they intended to remain in Montreal for 

the next 2 years and had not been treated for cervical disease in the last 12 months (22). A total 

of 621 female university students were recruited between November 1996 and January 1999, and 

were followed for 2 years every 6 months. Detailed information was obtained at enrollment with 

a self-administrated questionnaire and changes in life-style factors were obtained at each follow-

up visits with an abridged questionnaire, as described previously (22). Two cervical samples 

were collected with an Accelon cervical biosampler at every visit. A Papanicolaou smear was 

prepared with the first sampler. The remaining cells along with those collected with the second 

sampler were processed for HPV testing. Informed consent was obtained from all study 

participants. The study was reviewed and approved by the Ethics committees from each 

participating institution. 

HPV DNA testing. HPV DNA testing has been described elsewhere (22).  Briefly, five μl of 

sample DNA purified with QIAamp columns (Quiagen Inc, Valencia, CA) were first amplified 

for β-globin with PC04/GH20 primers to demonstrate the integrity of extracted DNA. β-globin-

positive specimens were further tested with the L1 consensus HPV primers MY09/MY11 and 

HMB01 using AmpliTaq gold (Roche Diagnostic Systems, Laval, Canada) and with the Line blot 

assay for the detection of 27 genital HPV genotypes (22). 

HPV-16, 18, 31 and 45 viral loads. A total of 382 specimens collected from 183 participants 

contained HPV-16, -18, -31 or -45 DNA. Nineteen women were infected concurrently with two 

or more of these genotypes. Extracted DNA from these samples was first screened for the 

presence of PCR inhibitors by amplification of internal controls for HPV-16, HPV-18, HPV-31 

or HPV-45, and for ß-globin DNA, as described previously (18,24). The presence of PCR 

inhibitors was suspected when 1000 copies of at least one internal control generated a signal 

corresponding to less than 700 copies, as previously described (25). All samples were free of 

inhibitors. Two µl of processed sample were tested in duplicate for quantitation of ß-globin DNA 

to estimate the cell content of samples (18,24). HPV-16 E6 and HPV-18 E7 DNA  was 
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quantitated using a standard protocol (26). HPV-31 L1 DNA was measured with the assay 

described by Weissenborn et al. (27). HPV-45 E6  DNA was amplified in a Light Cycler PCR 

and detection system (Roche Molecular Systems) in a twenty-µl reaction mixture containing 1x 

DNA Master Hybridization Probe Mix with the Fast Start Taq DNA polymerase (Roche 

Molecular Biochemicals), 0.3 pmoles of each HPV-45 primer 45 E6-F (nucleotide position 

463-486; 5’-TTAAGGACAAACGAAGATTTCACA-3’) and 45 E6-R (nucleotide position 670-

647; 5’-ACACAACAGGTCAACAGGATCTAA-3’),  and 50 nM of fluorogenic 45 E6-TM 

probe (nucleotide position 491-514; FAM-5’-AGCTGGACAGTACCGAGGGCAGTG-3’-

TAMRA). Cycling parameters included an activation step at 95ºC for 10 min followed by 50 

cycles at 95ºC for 15 sec, 60ºC for 5 sec and 65°C for 45 sec. For each of the four genotypes 

analyzed, cycle thresholds obtained for each sample were compared to those of a titration curve 

obtained by serial ten-fold dilutions of HPV-16, 18, 31 or 45 plasmids in a fixed amount of 75 ng 

of human genomic DNA (Roche Diagnostics) in 10 mM Tris-HCl [pH 8.2]. Each assay 

consistently detected 10 HPV DNA copies (data not shown). HPV viral loads were expressed as 

the number of HPV DNA copies per cell. 

HPV-16 integration assays. The presence of integrated HPV-16 was investigated with real-time 

PCR assays targeting E6 and E2, as previously described (28). Since HPV integration often 

results in the disruption of the E2 gene, detection of a greater quantity of HPV-16 E6 compared 

to HPV-16 E2 strongly suggests the presence of integrated HPV-16 DNA (16,17). Two µl of 

each processed sample was tested in duplicate in each HPV-16 E6 and E2 assays. Cycle 

thresholds were compared to those of serial ten-fold dilutions of an HPV-16 plasmid in a fixed 

amount of 2,000 copies of human genomic DNA (Roche Diagnostics). The presence of integrated 

HPV-16 DNA was suspected for specimens with ratios of HPV-6 E6 and E2 copies (HPV-6 

E6/E2) at or above 2, as previously discussed for types 16 and 33 (18,28,29).  

HPV-16 integration was confirmed by restriction site PCR (RS-PCR), a sequencing 

technique that demonstrates the presence of HPV-16 and human DNA junctions in the same 

amplicon (30). Briefly, 9 HPV-16-specific primers spanning the entire HPV-16 genome were 

combined separately with 6 restriction site oligonucleotides designed to anneal on selected 

restriction sites on the human genome, in a two-step hemi-nested PCR performed in a 9600 

Thermal Cycler. Amplicons were migrated in a 2% agarose gel stained with ethidium bromide. 

When visible bands were obtained, direct double-stranded PCR-sequencing was done by a cycle-
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sequencing method (BigDye terminator ready reaction kit, Perkin-Elmer) using the internal 

primers and a sequencing primer on 20 ng of purified amplicon. 

Statistical Methods. Cross-sectional correlations were calculated using the Pearson correlation 

coefficient (r) among viral load measurements at entry and follow-up visits for all four HPV 

types. Geometric means were calculated as a function of selected characteristics reported at the 

index visit of first positivity for a specific HPV type. The Kaplan Meir technique was used to 

estimate the cumulative probability of infection clearance as a function of time (length of follow-

up). Proportional hazards regression was also used to estimate the clearance of type-specific 

infection, stratified by tertiles (33.33%) of their viral load distributions (31). Logistic generalized 

estimating equations (GEE) was utilized to assess whether a viral load measured at a given visit 

was a predictor of persistent HPV infection at the subsequent visit (32,33). Exponential 

coefficients of crude and adjusted odd ratios for age and sexual partners between persistent HPV 

at visit (t) and viral load at visit (t-1) within specified periods of follow-ups were presented to 

reveal the associations.  

 

Results 

The 621 women enrolled in the McGill-Concordia cohort contributed to 2650 completed 

visits (mean of 4.3 visits/subject) during an average of 21.5 months of follow-up. Nearly all 

cervical specimens (n=2,570, 97.6%)) were suitable for HPV testing (22). The mean age of 

participants was 23 years (median age, 21 years; age range, 17-42 years). Nearly half of 

participants had had more than 4 lifetime sexual partners (22). The prevalence, incidence and 

mean duration of HPV infections have been reported elsewhere (22). High-grade squamous 

intraepithelial lesion (SIL) was shown on 4 smears while of low-grade SIL was shown on 49 

smears, precluding the analysis of association between HPV loads and SIL.   

Samples positive for HPV-16 (n=220 from 104 women, mean of 2.1±1.2 

samples/woman), -18 (n=80 from 43 women, mean of 1.9±1.1 samples/woman), -31 (n=75 from 

36 women, mean of 2.1±1.2 samples/woman), or -45 (n=33 from 19 women, mean of 1.7±1.2 

samples/woman), were further tested with type-specific quantitative real-time PCR assays. 

Descriptive statistics of log-transformed HPV loads stratified by baseline and follow-up time 

points are presented in Figure 1. We observed no significant intra-patient diversity between two 

subsequent HPV-16 DNA loads using a Wilcoxon rank sum test between medians [p=0.831 for 
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visits (1,2); p=0.127 for (2,3); p=0.340 for (3,4); p=0.731 for (4,5)] . The other three HPV types 

exhibited some intra-patient diversity between observed time points. No particular trend was 

observed with viral load groups at different time period. 

To investigate the consistency of HPV load measurements across the cohort, correlations 

of type-specific HPV load measured at baseline and at various follow-up visits were calculated 

(Table 1). HPV loads were significantly correlated only when considering neighboring visits. 

The strength of association was diluted as time progressed. Stronger correlations between 

consecutive visits were found in women with positive infection with HPV-16. Correlation 

coefficients of HPV loads were non-significant when visits 12 months apart were compared, 

except when all four HPV types were combined (Figure 2). 

  HPV loads stratified by various selected characteristics at the index visit of HPV-

positivity for each given HPV type are provided in table 2. To assess if some of these factors 

were determinants for higher HPV DNA loads, we compared the geometric means of log-

transformed HPV load values with 95% confidence intervals. HPV DNA loads were consistently 

slightly higher among women younger than 25 years of age, with > 2 lifetime sex partners, with 

sequential HPV co-infections but not those with concurrent co-infections, and current smokers. 

For all types except HPV-16, HPV DNA loads were also higher in past smokers. The influence 

of the use of contraceptives (condom or oral contraceptive) on HPV DNA load was not 

consistent across the four types (Table 2), but suggested that the use of one of these 

contraceptive methods was associated with a higher HPV DNA load. The biggest difference of 

HPV DNA loads for all types studied was found when comparing women with one partner and 

those with more than two lifetime sexual partners.  

Table 3 and Figure 3 show the pattern of the duration and clearance of HPV infection 

according to the HPV DNA load measured for each genotype. Once infected, 30% of HPV-16, 

44% of HPV-18, 63% of HPV-31 and 55% of HPV-45 infections cleared within 6 months. 

Infection clearance was faster among women with lower tertiles of HPV viral loads.  Relative to 

upper tertiles of HPV load, the age-adjusted hazard ratios of lower tertiles were 2.8 (1.0-8.1), 3.5 

(1.1-11.2) and 2.4 (1.7-3.5) for HPV-16, HPV-18 and all four types combined, respectively.  The 

relation between HPV loads and infection clearance followed a clear dose-response pattern for 

HPV types 16, 18 and all four types combined, even after adjusting for age and lifetime number 
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of sexual partners. There were no clear association between HPV-31 and HPV-45 HPV loads 

and clearance of these infections.  

The association between HPV viral load and persistence of infection was investigated for 

each genotype by calculating crude and adjusted (age, number of sexual partners) GEE Odds 

Ratios with exponential coefficients (Table 4). Odd ratios for HPV persistence were 2.7 (1.1-6.3) 

and 3.0 (1.3-7.0) for middle and upper tertiles of HPV-16 DNA loads, respectively, compared to 

lower tertiles. Similarly, odd ratios for middle and upper tertiles of HPV-18 DNA loads were 3.8 

(0.8-18.6) and 39.1 (5.1-302.0), respectively. These associations were ambiguous for persistence 

of HPV types 31 and 45. In order to avoid arbitrary selection of tertiles, we plotted a Receiver 

Operating Characteristic curve (ROC) by considering measured HPV-16 load continuously 

(Figure 4). The area under the curve was 0.6544, also suggesting that HPV load at visit (t-1) is a 

predictor for HPV-16 infection at visit (t). 

 We then investigated if HPV-16 infections in young women resulted in HPV-16 

integration into the human genome. Forty eight specimens were excluded of this analysis 

because they contained <15 copies of HPV-16 DNA per µl of extracted DNA. HPV-16 E6 and 

E2 DNA were thus quantitated on 172 HPV-16-positive samples. The mean HPV-16 E6 viral 

load was 57.5±324.6 DNA copies per cell (95% confidence interval, 8.6-106.4; median, 0.92, 

range 0.0001-4084.7 copies per cell). The mean HPV-16 E6/E2 ratio was 0.97 ±0.25 (95% 

confidence interval, 0.93-1.01; median, 0.97; range, 0.5-2.48). Although 2 samples had HPV-16 

E6/E2 ratios > 1.5 and <2.0 (1.54 and 1.70), samples collected at consecutive visits from these 

two participants yielded HPV-16 E6/E2 ratios near or below 1.0 (data not shown). One sample 

from one woman at her last visit generated a HPV-16 E6/E2 ratio of 2.48 with a HPV-16 E6 

DNA load of 0.94 copy/cell. HPV-16 was detected only at the last of five visits attended by this 

participant.  Normal cytology smears were obtained at the first four visits while a low-grade SIL 

smear was obtained at the fifth visit. RS-PCR was performed on the 18 samples that generated a 

HPV-16 E6/E2 ratio > 1.2. Despite using several primer combinations, we could not demonstrate 

the presence of cellular and HPV junctions in any of the samples tested. A minimal amount of 35 

ng of cellular DNA per test was analyzed for the only sample with a ratio > 2, unsuccessfully, 

which could have limited our ability to sequence HPV-human DNA junctions.  

Since we detected HPV-16 integrated forms only once, we investigated if quantity of 

cellular DNA introduced in the quantitative assays hampered our ability to measure HPV-16 E6 
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and E2, as reported by another group (34). When mixtures of episomal HPV-16 and DNA 

extracted from SiHa cells were tested, we observed interference with quantitation of HPV-16 E2 

and E6 with DNA extracted from 106 and from 104 SiHa cells, respectively (data not shown). 

One thousand copies of episomal HPV-16 DNA was detected without loss of signal when tested 

in a mixture of DNA extracted from up to 200,000 cells in the HPV-16 E2 assay and up to 

40,000 cells in the HPV-16 E6 test (Table 5). Interference of HPV-16 quantitation by input DNA 

was not an issue in our study since all samples tested contained < 39,200 copies of cellular DNA 

per test.  

 

Discussion 

In this report, HPV DNA load was measured for four high-risk types with real-time PCR 

on a set of samples collected prospectively in young women. These four genotypes are amongst 

the most frequently detected in cervical cancer. In opposite to cross-sectional studies of older 

women, the four HPV genotypes were detected at similar loads (1,11,35). HPV loads were not 

substantially different between women with single and multiple type infections, except for HPV-

31 loads. It is still unclear if multiple type infections are caused by a selective immune deficit 

against HPV infection, by exposure to HPV before an efficient humoral response or by exposure 

to multiple partners or partners with multiple type infections.  

 In our study, the quantitative real-time PCR assays utilized to estimate HPV loads were 

specific and reproducible (25,28). The number of HPV DNA copies was normalized for cell 

content by quantitation of β-globin DNA. The HPV-16 integration assay was devised 

considering the genetic diversity of HPV-16 (28,36). Using type-specific quantitative assays 

allowed isolating the effect of HPV type loads in multiple type infections. Consistent 

measurements for HPV types 16, 18, and 31 were shown for the five visits. The HPV-16 viral 

load assay was the steadiest and most precise. The HPV-45 loads were the most tangled but few 

cases were infected by HPV-45. The cohort design also allows testing time-dependent 

correlations by distinguishing the differences within or between pair visits. Such models reveal 

two types of correlations: cross-sectional familial correlation between pairs from the same HPV 

type and serial correlation among repeated measures for the same pair. Among the measured 

viral load pairs, as expected, the correlations were stronger in the neighboring visits, especially 

for HPV-16 and 18. This is an indication of reproducibility of laboratory results. In addition, the 
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weak correlations over a 12 month period suggest that most of the index infections are probably 

transient after one year.  

As reported by others, younger woman (< 25 years) harbored higher HPV loads (1). 

These younger women were possibly exposed to HPV while they were immunologically naïve to 

HPV. In the current study, we observed a greater HPV burden among current and former 

smokers. This finding could be due to a defective cell-mediated immunity against HPV induced 

by tobacco (37). Results from this cohort as well as others suggest that tobacco smoking 

increases the duration of high-risk HPV infection (23,38). This could be explained in part by the 

increased replication of HPV in women exposed to tobacco.  

Although the regular use of condoms protects against most sexually transmitted 

infections, they are not as efficient against HPV infection (39). We found a trend with the 

consistent use of condoms for having higher HPV loads for all four genotypes. These results 

could be biased by the fact that condoms could be associated with risky sexual behavior or 

exposure to new sexual partners (23). Condom use has been associated in one study with 

regression of CIN and clearance of HPV (40). Although oral contraceptive use did not modify 

the duration of high-risk HPV infection in our cohort (23), HPV-18 DNA loads were markedly 

increased in women using oral contraceptive. Oral contraceptives may also be a proxy for a 

higher number of sexual partners.  

HPV-16 and -18 loads were good predictors of the duration of infection in opposite to 

HPV-31 and -45. HPV-16 load has been reported by others to be a stronger predictor for 

persistence or lesions than HPV-18, 31 or 33 loads (13). There was a clear dose-response 

relationship between HPV load and persistence of HPV-16 and HPV-18 infections. The current 

investigation adds the concept that clearance rates depended largely on the level of HPV load. 

Viral-hosts interactions play a determinant role in the clearance of viral infections (41). HPV has 

developed several mechanisms to evade the host immune system (42). Functional differences 

between HPV-encoded proteins could also explain why some types and variants have a better 

viral fitness with a greater ability to persist (14,41,43). HPV loads were greater with HPV co-

infections at different visits (sequential) than concurrent co-infection. In recent studies (44,45), 

two or more oncogenic HPV types diagnosed concurrently did not confer an additional risk of 

developing lesions. All but one study confirmed that sustained or increased viral loads, 

especially for HPV-16, were predictive of persistent infection (3,5,8,11). In a cohort of nearly 



 

 

93

6,000 women in France, women with HPV loads above 10 pg/ml were less likely to clear the 

infection, irrespective of the age of participants (8). Similarly, another cohort study conducted in 

the Netherlands reported that women with low HPV-16 loads were five times more likely to 

clear HPV-16 infection (5). In a third study conducted in Brazil,  there was a dose-response 

relationship between increasing viral loads and risk of incident abnormal smear over time (3). 

(3,5,8,46).  

 HPV-16 integration often disrupts the E2 gene, resulting in uncontrolled expression of 

HPV-16 oncoproteins (14,17). Quantitation of load of integrated HPV-16 forms could be a better 

biomarker for CIN-2,3 than HPV load, although integration of HPV-16 or load of HPV-16 

integrated forms has been at best weakly associated with CIN-2,3 (15,19,20,28,47). One study 

investigated the rate of HPV-16 and 18 integration in women aged 15 to 19 years old (48). 

Disruption of the E2 gene was demonstrated in up to 25% of incident HPV-16 infections, 

suggesting that HPV-16 E2 disruption was a common event occurring early during the infection. 

The higher detection rate of HPV-16 integration compared to our study could be related to 

different risk factors for HPV infection in this cohort. The entire E2 gene was studied for 

disruption in that study while our assay focused on the hinge region of E2. Disruption of E2 

could occur more frequently at the very early phases of infection in younger women while half of 

participants to our cohort had had more than four sexual partners at recruitment. In another study 

on older women followed longitudinally, nearly 50% of women with persistent or transient 

infections also had mixed integrated and episomal forms (11). In opposite to our study, over 50% 

of these participants had Pap smears anomalies. Surprisingly, HPV integration was not found to 

be associated with persistence. Results from other cohorts are thus awaited to assess the rate and 

persistence of HPV integration at early stages of infection.  

We recognize that there are some limitations in our study. Few women had abnormal 

smears, reducing our power to test the associations between HPV load and lesion outcomes. The 

time interval between visits can influence the assessment of persistence and clearance. The 

majority of women in our cohort returned within 6 months of each visit and there was only a 

small proportion of women whose time interval between visits extended beyond a year (22). The 

association between higher viral loads and persistence would only be distorted if it had been 

associated differentially with time between visits. Given that the participants were unaware of 

their HPV and viral load status, this is an unlikely scenario. It is also unlikely that their behavior 
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and other risk factors will change in this short span of time. The same associations between HPV 

loads and persistence were obtained when HPV persistence was defined more stringently by 

using three 3 consecutive HPV-positive visits for the same type.  

Consecutive detection of HPV DNA is due to either ongoing viral replication or 

reactivation of latent infections (49). The design of our study can not discriminate between these 

possibilities. Participants considered as having persistent infection could have been reinfected 

with another isolate of the same HPV type. This is however unlikely since women with persistent 

infection were all infected with the same HPV variant (manuscript in preparation). Both 

prevalent and incident HPV infections were included in our analysis of persistence, increasing 

the power of our analyses. Though it may not have a direct implication on HPV clearance, the 

exact duration of prevalent cases is unknown. We could have introduced a survival bias because 

a greater proportion of prevalent HPV infections represent persistent infections compared to 

incident infections. However, our conclusions did not change when we restricted our analyses to 

incident infections. We also analyzed the entire cohort to utilize the clustered binary outcome of 

persistence, by using the ‘visit number’ as panel variable. This method increases the power of 

our analyses by fitting logistic generalized estimate equations. The odds ratios were adjusted for 

age and numbers of sexual partners, and were in the same direction of hazard ratios of clearance 

stratified by viral load tertiles. So we assume that the bias incurred due to inclusion of prevalent 

cases is also minimal. We also doubt that misclassification of HPV status have significantly 

occurred in our cohort, since there were very few women with persistent type-specific infections 

who had an intervening visit with a negative HPV test result and more than 80% of the same type 

persistent infections occurred during consecutive visits (22).  

 Apart from studying type-specific viral loads, we also investigated the association 

between persistence and combined viral load results. Cumulative viral loads may be a marker for 

the presence of multiple type HPV infections which are associated by themselves with high-

grade lesions (50).  The results obtained by combining viral loads from various types need to be 

interpreted with caution as this strategy poses difficulties in terms of tertile cut-offs. Receiver 

Operating Characteristics (ROC) curves were used to check the sensitivity of these arbitrary 

tertile cut-offs.  

 We can not exclude the possibility that HPV-16 was disruption during integration in areas 

outside of the E2 hinge region, could not be excluded. This could result in the underestimation of 
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the prevalence HPV-16 integration in our study. Nevertheless, HPV-16 E2 hinge is the most 

frequently disrupted site in studies conducted in North America (17). Our assay would also be 

falsely negative in cases where multiple copies of HPV-16 integrated into head-to-tail tandems in 

which only flanking HPV-16 sequences are disrupted. Although the analytical sensitivity of real-

time PCR for quantitation of HPV-16 E6 and E2 DNA is excellent, the clinical sensitivity and 

specificity of these assays to detect HPV-16 integration have not been thoroughly assessed. We 

could not confirm the presence of HPV-16 integration with a standard technique identifying the 

presence of HPV-human DNA junctions in the only sample with a HPV-16 E6/E2 ratio above 

2.0. However, the quantity of sample that could be analyzed was limited. RS PCR is a tedious 

procedure sometimes difficult to interpret. A recent report using a similar technique to 

demonstrate the presence of HPV-human junctions did not find HPV-16 integration in specimens 

from women with low-grade SIL (21). Real-time PCR assays are interesting techniques to detect 

integrated HPV forms but further studies on a greater number of specimens using in parallel 

several techniques for detection of integrated HPV-16 need to be conducted. Until then, we 

should interpret these results obtained with these assays.   

In conclusion, this study demonstrates a clear association between HPV load and 

persistence of HPV-16 and18 infections in young women at the early stages of their sexual life.  

This association will depend on the HPV type studied. More longitudinal studies are needed to 

clarify the onset of HPV integration and its relationship with disease progression.  
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Table 1: Between-visit correlation (r) of HPV load measurements by HPV type at entry and follow-up visits 

HPV type Visit Correlation with visit at 

6 months 12 months 18 months 24 months 

16 Entry 0.4789* (29) 0.3781 (20) 0.2046(14) 0.4583 (6) 

 6 months  0.7561* (27) 0.6764* (21) 0.4282 (10) 

 12 months   0.8295* (30) 0.5810+ (17) 

 18 months    0.8043* (24) 

      

18 Entry 0.0103 (10) 0.5481 (5) -- -- 

 6 months  0.3132 (11) 0.6612 (5) -- 

 12 months   0.0173 (8) -- 

 18 months    0.9949+ (3) 

      

31 Entry 0.9562* (6) 0.4242 (5) 0.8583 (4) -- 

 6 months  0.2427 (6) 0.8063+ (5) 0.5138 (5) 

 12 months   0.1930 (11) 0.3574 (7) 

 18 months    0.7289* (12) 

      

45 Entry -- -- -- -- 

 6 months  -- -- -- 

 12 months  -- -- -- 

 18 months    -- 
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Combined HPV 

types (16, 18 31,45) 

Entry 0.3200+ (48) 0.4208+ (36) 0.3647+ (23) 0.4753 (11) 

 6 months  0.5491* (46) 0.5562* (34) 0.3505 (16) 

 12 months   0.5391* (48) 0.3463+ (27) 

 18 months    0.7778* (36) 

HPV loads were measured with type-specific PCR assays. * P value is at 1% level of significance   +P value is at 5% level of 

significance 

Pearson correlation coefficients (r) were presented with number of subjects in the parenthesis 



 

 

98

Table 2: Geometric means of HPV viral loads as a function of selected characteristics at the first occurrence of positivity 

for a given HPV type 

 

Characteristics* HPV 16 HPV 18 HPV 31 HPV 45 

N Mean 95% CI N Mean 95% CI N Mean 95% CI N Mean 95% CI 

             

      Age <25  72 4.41 3.98-4.89 32 4.52 3.63-5.65 31 5.22 4.69-5.83 14 4.95 4.16-5.89 

      Age 25+  31 3.97 3.30-4.78 11 4.01 3.34-4.82 5 4.55 3.41-6.08 5 4.59 3.24-6.48 

             

     No co-infection # 10 3.95 2.56-6.07 5 1.64 0.26-10.26 4 7.06 5.46-9.12 3 4.87 1.23-19.3 

     Co-inf-sequential 56 4.71 4.28-5.18 21 5.26 4.52-610 17 4.99 4.44-5.61 8 5.16 4.26-6.24 

     Co-inf-concurrent 38 3.77 3.17-4.47 17 4.45 3.76-5.28 15 4.96 4.14-5.95 8 4.64 4.15-5.19 

             

     No smoking 60 4.33 3.87-4.84 23 3.91 2.92-5.25 22 4.90 4.27-5.63 11 4.72 3.57-6.24 

     Current  25 4.61 3.84-5.51 15 4.94 4.12-5.91 8 5.11 4.25-6.14 3 5.03 3.83-6.60 

     Former  18 3.66 2.78-4.84 5 5.21 2.71-10.01 6 6.42 5.55-7.44 5 5.00 4.58-5.47 

             

    No Condom  use 15 3.57 2.64-4.82 10 4.50 3.08-6.57 4 4.63 2.68-7.97 3 3.23 0.55-18.9 

     Used sometimes  44  4.60 4.02-5.26 17 4.03 2.77-5.87 13 5.75 4.90-6.75 12 4.95 4.38-6.15 

     Regular use  39 4.54 4.03-5.13 15 4.84 3.94-5.96 16 5.01 4.28-5.87 5 5.12 4.50-5.82 

             

     No OC Use  23 4.09 3.28-5.10 13 4.37 3.59-5.33 10 5.36 3.99-761 7 4.68 4.02-5.45 
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     Use Sometimes  63 4.39 3.95-4.88 25 4.67 3.99-5.46 21 4.95 4.32-5.66 10 4.92 3.88-6.23 

     Regular use  7 3.95 3.45-4.64 4 7.42 7.21-7.64 4 6.91 0.85-36.1 2 5.13 -- 

                    

     One Partner 5 3.53 2.02-6.16 5 2.46 0.55-10.87 2 5.03 3.12-8.12 5 3.16 0.52-5.81 

     2-3 Partners 24 4.79 4.23-5.42 7 5.15 3.52-7.52 13 5.51 4.54-6.67 2 5.34 - 

     4+ Partners 75 4.17 3.72-4.67 31 4.68 4.09-5.34 21 4.99 4.40-5.66 12 5.39 4.12-6.71 

*above variables are having updated information at each visit. There are treated like dynamic variables at the time of first occurrence 

of the HPV positivity. 

#we defined concurrent co-infection as the detection of more than one HPV type in the cervical cell specimen collected at a given 

visit. We defined sequential co-infection as infections with multiple HPV types detected at different visits (Thomas 2000) 
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Table 3: Hazard Ratios of HPV Clearance from Cox Regression Models, Stratified by Various Levels of Viral Load 

 

HPV type Viral load level  No. Eligible cases/ 

No. of Events 

HR (CI 95%) 

Unadjusted  Adjusted 

 

16 

 

 

Tertiles 3 

Tertiles 2 

Tertiles 1 

 

26/6 

28/11 

27/9 

 

1.0 

1.94 (0.71-5.27) 

2.61 (0.23-7.38) 

1.0 

1.95 (0.72-5.31) 

2.79 (0.96-8.12) 

 

18 

 

 

Tertiles 3 

Tertiles 2 

Tertiles 1 

 

14/4 

12/3 

13/11 

 

1.0 

2.03 (0.45-9.08) 

3.39 (1.08-10.71) 

1.0 

2.21 (0.46-9.82) 

3.49 (1.09-11.19) 

31 

 

 

Tertiles 3 

Tertiles 2 

Tertiles 1 

 

9/6 

11/5 

9/0 

1.0 

0.86 (0.15-6.03) 

-- 

1.0 

0.89 (0.19-6.80) 

-- 

 

45 

 

 

Tertiles 3 

Tertiles 2 

Tertiles 1 

 

6/4 

6/3 

6/3 

1.0 

0.54 (0.11-2.72) 

0.90 (0.30-3.50) 

1.0 

0.55 (0.11-2.74) 

0.92 (0.34-3.57) 

Combined HPVs 

(16, 18, 31, 45) 

Tertiles 3 

Tertiles 2 

54/20 

58/23 

1.0* 

1.54 (0.85-2.81) 

1.0* 

1.59 (1.11-2.40) 
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 Tertiles 1 

 

55/23 

 

2.28 (1.25-4.17) 2.42 (1.68-3.51) 

 

*Since the observations are not independent within strata, we used sandwich robust variance estimator of variance in place of the 

conventional calculations for confidence interval.   Adjusted hazard ratios were adjusted for age and sexual partners. 
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Table 4: Odd ratios for associations between persistent HPV at visit (t) and viral load at visit (t-1) within specified periods of 

follow-up, McGill-Concordia Cohort study (GEE model with exponential coefficients) 

 

HPV type Viral load No. of Events OR and 95% CI 

Crude Adjusted* 

16 Tertiles 1 29 1.0 1.0 

 Tertiles 2 44 2.59 (1.13-5.93) 2.66 (1.13-6.29) 

 Tertiles 3 42 2.94 (1.28-6.73) 2.99 (1.28-6.97) 

     

18 Tertiles 1 6 1.0 1.0 

 Tertiles 2 11 1.77 (0.53-5.88) 3.81 (0.79-18.6) 

 Tertiles 3 20 17.1 (3.67-79.7) 39.1 (5.08-302) 

     

31 Tertiles 1 22 1.0 1.0 

 Tertiles 2 18 0.48 (0.09-2.46) 0.48 (0.09-2.61) 

 Tertiles 3 16 0.19 (0.04-0.90) 0.19 (0.04-0.97) 

     

     

45 Tertiles 1 6 1.0 1.0 

 Tertiles 2 3 0.18 (0.05-8.46) 1.62 (0.07-353) 

 Tertiles 3 5 1.00 (0.04-22.8) 1.30 (0.08-174) 
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Events are considered as HPV outcome in the visit (t), where t=2, 3, 4, and 5.  Viral load cut-offs at visit (t-1), where t-1=1, 2, 3, 4 

were used as predictors of out come. 

*ORs were adjusted for age and number of lifetime sexual partners 
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Table 5. Interference of background human DNA in quantitation of HPV-16 DNA with HPV-16 E6 and HPV-16 E2 real-time 

PCR assays. 

 

 

 

No. of copies of human DNA Quantitation of 1000 copies of episomal HPV-16 DNA with real-timer PCR assays 

 HPV-16 E2 HPV-16 E6 

 

 0  933±13  1150±39 

 8x103  1080±35  1114±7 
 1x104  1097±38  1179±148   

 2x104  1026±149  1109±59 
 4x104  1125±15  1015±46 
 6x104  1173±10  820±30 
 8x104  1151±100  726±19 
 1x105  1082±82  787±32 
 2x105  1071±38  562±20 

 

1000 copies of HPV-16 DNA were amplified in a background of various copies of human DNA and detected in real-time PCR assays 

for quantitation of HPV-16 E6 and HPV-16 E2. Results are means ± 1 standard deviation of duplicate values. Repeat experiments 

gave similar results.  
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Figure-1: Log-transformed HPV loads (HPV DNA copies per cell) at recruitment and at 

follow-up Visits among HPV-positive women for the 4 genotypes studied.  The length of 

each box corresponds to the interquartile range, with the top boundary of the box 

representing 75th and bottom boundary the 25th percentile. The horizontal line in the box 

indicates the median value. Outlier values are shown in circles outside the boxes. 
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Figure-2: Correlation matrix for viral load measurement of four combined HPV types 

(HPV-16, 18, 31, 45) at accrual and follow-up (see material and methods). 
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Figure 3:  Combined HPV (16, 18 31 45) clearance stratified by tertiles of viral load 

assuming multiple events per individuals (unit of analyses is infection).  Since the 

observations are not independent within strata, we used robust variance estimator of 

variance in place of the conventional calculations for confidence interval. Hazard Ratios 

and confidence intervals are shown in the above text box. 
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Figure-4: Predicted ROC curve between the viral load (continuous) at visit t-1 and 

persistent HPV 16 infection at visit (t) within specified periods of follow-up. Red line is 

the fitted line based on the plotted values. 
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DISCUSSION 
 

Rationale for the evaluation of HPV16 Viral Load and Integration 

 

The role of human papillomaviruses in the development of cervical cancer is 

well recognized [227], with HPV DNA detected in at least 99.7% of cervical 

cancers [124].  Of the 40 human papillomavirus that infect the anogenital 

area, approximately 15 are considered high-risk for the development of 

cervical cancer. HPV16, the most prevalent oncogenic type, is found in more 

than 50% of cervical cancers [3, 4].  

 

Cervical cancer, however, only develops in a small fraction of women 

infected with oncogenic HPV types.  The disease also develops several years 

to decades post infection.  This indicates that besides high risk HPV 

infection, other factors contribute to the development of cervical cancer.   

 

After infection with a high risk papillomavirus, the infection is transient and 

cleared, or it can give rise to a progressive cervical intraepithelial disease 

pattern: CIN 1 may either regress spontaneously or progress to CIN 2/3 

precancerous lesions and CIN 2/3 may progress toward invasive carcinoma.  

A persistent infection is required for the lesions to develop and to progress to 

CIN2/3 or carcinoma [228, 229]. A high viral load has been associated with 

increased persistence of HPV infection, and with an increased risk of 

developing CIN2/3 or cancer [108, 228, 230].     

 

HPV16 DNA is found to be integrated in the majority of invasive cervical 

cancers [231, 232].  Integrated HPV DNA has also been detected in cell 
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lines isolated fom cervical neoplasia and in immortalized human 

keratinocytes [20, 233]. Integration of HPV DNA into host cell DNA usually 

occurs in the E1 and/or E2 genes.  The product of the E2 gene is a repressor 

of the E6 and E7 transforming viral genes. Integration or disruption of the 

E2 gene results in loss of E6/E7 negative feedback control, leading to 

deregulation of E6 and E7 expression.  Overexpression of E6 and E7 

oncoproteins might promote the development of neoplasia.  

 

Therefore viral load and integration of viral DNA into the human genome 

are at present being investigated as important risk factors in the progression 

of cervical lesions to cervical cancer. Traditionally, several methods have 

been used to detect integration: multiple displacement amplification, 

Southern blot analysis, two dimensional gel electrophoresis, in situ 

hybridisation, and PCR amplification of the E1/E2 region of the virus.  

 

Most researchers, have however, opted for the PCR technique, and have 

studied HPV DNA integration by either quantitative real-time PCR or 

qualitative PCR targeting the E1 and E2 gene, or simply the E2 gene.  

 

Some investigators report viral integration almost exclusively in high grade 

lesions and invasive carcinoma [9, 209, 212].  There are, however, reports of 

early integration of HPV DNA in low-grade cervical lesions and in 

asymptomatic infections [15, 28-30], and these results have been obtained 

with real-time quantitative PCR   or qualitative PCR. 

 

 
 



118 
 

 

Real-time Quantitative PCR 

 

While real-time quantitative PCR has been recently developed [28], it has 

since been widely applied.  The technique has the advantage of measuring 

both viral load and integration status.  The E2 and E6 ORFs are quantified 

with two sets of primer/probe specific for E2 and E6 respectively. 

Measurement of absolute copy number of E2 and E6 genes allow for 

determination of HPV 16 viral load and ratio of E2/E6 determines 

integration status. 

 

Using quantitative real time PCR technique, one research group found 

integration in over 50% of CIN I [28].   

 

Fontaine et al[213], from our team, demonstrated for the first time, in an 

extensive report, and this contrary to previous reports which detected mostly 

episomal HPV DNA in normal or LSIL smears [209, 219], that HPV 

integration occurs even in normal women before the presence of HPV-

induced lesions.   

 

Early integration findings are further supported by Kulmala et al who report 

normal morphological Pap smears to contain episomal and integrated forms.  

He also reported the mixed form to be the most frequent physical state of 

HPV 16 in low-grade cervical lesions [15]. 

 

Evaluating with the same method, and so as to maximize detection of 

integration, Cheung et al applied three sets of quantitative real-time PCR 

directed against the amino-terminal, hinge and carboxyl terminal of the E2 
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gene [234]. The E2 gene was found to be disrupted in 67.9% of normal/CIN 

I lesions.  

 

Detection of integrated sequences in preneoplastic lesions in several other 

studies has consolidated these findings [30, 213, 235-237].  Kulmala et al. 

found purely episomal HPV 16 DNA to be associated with normal and LSIL 

smears only, although normal and LSIL smears also revealed the presence of 

mixed forms (episomal and integrated HPV) and pure integrated forms.  In 

agreement with these results, Huang et al observed that 83.3% of CIN I 

contained integrated DNA, with the mixed pattern being the most prevalent 

physical form of HPV 16.   According to Cricca et al, the most prevalent 

form of HPV DNA in CIN 1 is episomal, 27.8% of samples had mixed 

forms and integrated forms only being undetected in CIN1. Saunier et al. 

also reported that 29 % of normal smears had integrated HPV 16 genomes.  

Quantitative PCR therefore determines the episomal frequency in CIN I to 

be 15.4%, according to  Kulmala, 17% by Huang, 36% by Saunier and 72%   

by Cricca.  In this study, however, we found only 1 out of 89 women to have 

have an E6/E2 ratio greater than 2, thus resulting in an integration frequency 

of 1.1%.    
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Qualitative PCR 
 

Other investigators study integration by evaluating disruption of the E2 gene 

qualitatively. The integrity of the E2 gene is evaluated by using sets of 

specific primers to amplify regions of full length HPV 16 E2.  PCR products 

are identified on a 2% agarose ethidium bromide stained gel. The E2 is 

considered intact when all HPV 16 E2 primers produce a band on gel 

electrophoresis. Otherwise, integration is concluded when there is no 

amplification of at least one of overlapping or nonoverlapping E2 amplicons, 

or when all the E2 primers are negative for amplification.  This assay thus 

detects pure integrated forms when episomal forms are absent.   

 

To investigate the physical status of HPV 16 in low grade squamous 

intraepithelial lesions, Gallo et al amplified 13 of these lesions by qualitative 

PCR. As the E2 gene PCR product was not detected in 7 of the 13 LSIL 

HPV 16 samples analysed, 50% viral integration into the cellular genome 

was concluded [29]. 

 

In another study [238], Li et al evaluated integration in all grades of cervical 

lesions by the ampification of 3 overlapping fragments of the E2 gene. 

Multiplex PCR followed by densitometry electrophoresis image analysis of 

gel discriminated between episomal and mixed forms. HPV-16 was 

considered integrated if one or more fragments of the three amplimers were 

absent. The authors report HPV 16 integration in 16.7% of CIN I.  

 

Consistent with these findings, Collins SI et al 2009, assessed the integrity 

of the E2 gene with 5 sets of primers spanning overlapping regions of the  
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full length of E2 gene,  and  demonstrated that 26% of incident HPV-16  

infection had a disrupted E2, leading the authors to conclude HPV16  

integration [239].  Yet in another study, Cricca M et al studied integration in 

precancerous lesions of different grade by evaluating the combined physical 

status of E1 and E2 [240]. Among the low grade intraepithelial lesions, 

15.4% had one of the E1 fragments absent, while all of the HSIL samples 

had at least one of E1 or E2 disrupted/deleted fragments.  The authors 

concluded that these samples contained HPV-16 integrated forms without 

episomal forms.  The frequency of HPV integration in low grade cervical 

neoplasia therefore ranges from 0% [9, 212] to more than 50% by either 

quantitative [15, 28, 237] or qualitative PCR [29].  One suggested possible 

explanation for the discrepancy is the sensitivity of real time PCR technique, 

its ability to detect low copy numbers in small intraepithelial lesions, as 

opposed to Southern blot or two-dimensional electrophoresis which require a 

large amount of DNA to detect physical status.   

 

Another plausible explanation, however, is that variation in reported  

integration frequency could be attributed, at least in part, to the detection of 

integration in qualitative and quantitative real time PCR being defined by the 

lack of E2 amplification. Absence of E2 amplification could be due to 

causes other than HPV-16 integration. 

 

 

We have recently shown in our laboratory that negative amplification of E2 

can be due to point mutations within the primer binding region, primer 

selection in conserved regions of E1/E2 ORFs being a prerequisite for a 

valid HPV integration assay [241]. However, in natural infections, some 
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HPV 16 variants may carry nucleotide variations not yet characterized. A 

study determining the effect of HPV 16 intratypic variations on the 

quantitative real-time PCR evaluation of E2/E6 ratio, demonstrated that 

incorporation of degenerate bases into the primers and probe can efficiently 

compensate for the reduced amplification efficiency due to mismatched 

nucleotides.  It was shown in this study that mismatches between primers 

and probes and their binding sites, unequally affect the amplification 

efficiency of E2 and/or E6 ORF, giving rise to a decreased E2/E6 ratio in the 

range from 0 to less than 1, thus being misinterpreted as integration [242]. 

 

Lack of amplification could also, however, result from inhibition [218], 

some of the E1/ E2 primer pairs (or E2/E6 in quantitative PCR),  being more 

sensitive than others to PCR inhibiting substances, as for instance, organic 

solvents. While amplification of a housekeeping gene such as B-globin or B-

actin determines the adequacy of the samples for PCR analysis in terms of 

nucleic acid quantity and sample degradation, Lefebre et al suggest 

amplification of internal controls to screen for the presence of inhibitors in 

real-time PCR assays and advise sample dilution to eliminate 90% of 

inhibitory activity in cervical specimens [243].  

 

Besides reduced inter and intra assay variability, quantitative real-time PCR 

requires a high and comparable amplification efficiency for E2 and E6 (E7) 

primer pairs. Sensitivity and specificity of primers are also important 

parameters to be considered, some primer pairs being more sensitive to 

excess background DNA [244]. The sensitivity of methods to measure E6 

and E2 should be similar. 
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In this study, the physical status of HPV-16 DNA in 220 cytological samples 

was analysed by real-time PCR amplification of E2 and E6. Equivalent copy 

numbers of E2 and E6 indicates the presence of episomal forms only, 

whereas a ratio of E6/E2 greater than 1.2 was interpreted as mixed forms. 

Utilizing these criteria, quantitative real-time PCR allowed the selection of 9 

clinical samples with integrated and episomal forms. 

 

Real time PCR amplification of the E2 and E6 regions and comparison of E2 

to E6 ratio of  the DNA amplification products, however, provides only 

indirect evidence of viral integration into the host genome [28].  Therefore, 

RS-PCR was performed on the nine samples with an E6/E2 ratio greater than 

1.2 to confirm integration and to determine the viral human DNA junction. 
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As RS-PCR products are electrophored many DNA bands are resolved due 

to: non-specific DNA amplification, episomal DNA amplification, human-

viral integrants, genomic DNA amplification. In order to minimize the 

number of DNA bands to be excised under UV light in the dark room the 

following analysis was applied to select the potential integrant amplicons. 

 

In case of viral integration, RS-PCR amplicons include the site of viral 

disruption and the human genomic integration site.  However, in case of 

episomal status, RS-PCR products display amplicon of the same size as 

plasmid HPV 16, the negative control for HPV integration or may display 

bands as in human genomic DNA lane.  RS-PCR amplicons of interest, that 

is, not aligning with human genomic DNA (lane 7), or with pBR322 HPV16 

(lane8) amplification products, are excised from the gel and sequenced to 

allow confirmation of integrants. Despite DNA bands being quite faint, a 

common occurrence, prolonged electrophoresis was nevertheless applied, in 

some cases, for adequate separation of the potential integrants  because  faint 

DNA amplicons could possibly represent a rare integrative event ( at this 

stage indistinguishable from non-specific DNA amplification). This 

technique may thus prove to be insensitive due to the difficulty of 

identifying amplicons containing integrated HPV DNA. 
 

 

RS-PCR technique detects integration in SiHa cells  

 

To establish the feasibility of RS-PCR in detecting integration, SiHa, an 

established cell line obtained from a human cervical carcinoma, served as an 
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gb|AF001599.1|AF001599  Human papillomavirus type 16 integrated SiHa HPV-16 variant, replication protein gene, 
complete cds, and flanking cellular sequence 
Length=3531 
Score = 1166 bits (1292),  Expect = 0.0 
Identities = 660/668 (98%), Gaps = 3/668 (0%) 
Strand=Plus/Minus 

  HUMAN DNA 
Query  1     AATTCATAAAATATTCCAANNTTGTGATAAGTGTGAATCCGGTGGAATTACAATGAGAAT  60 
             ||||||||||||||||||    |||||||||||||||||||||||||||||||||||||| 
Sbjct  3370  AATTCATAAAATATTCCATAGCTGTGATAAGTGTGAATCCGGTGGAATTACAATGAGAAT  3311 
 
Query  61    TTAGATATATA--AGTATAGTAGACATACTGGGTTATCTGAGGTGTCCTTCATTGGGATT  118 
             |||||||||||  ||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  3310  TTAGATATATATAAGTATAGTAGACATACTGGGTTATCTGAGGTGTCCTTCATTGGGATT  3251 
 
Query  119   CCCTTATCCCCACCACTAGTCACAGAAGCAGGTTCCTAACAGTCATCTTTAGACATTGTG  178 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  3250  CCCTTATCCCCACCACTAGTCACAGAAGCAGGTTCCTAACAGTCATCTTTAGACATTGTG  3191 
             HPV16 
Query  179   ACAATGCCCAATAGGCTCCAGTCTTATCTGTCCAGGGTTAGTCAGCTAAGCTGAGCAGCA  238 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  3190  ACAATGCCCAATAGGCTCCAGTCTTATCTGTCCAGGGTTAGTCAGCTAAGCTGAGCAGCA  3131 
 
Query  239   TATGTCTCCATCAAACTGCACTTCCACTGTATATCCATGtttttttATACATCCTGTTGG  298 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  3130  TATGTCTCCATCAAACTGCACTTCCACTGTATATCCATGTTTTTTTATACATCCTGTTGG  3071 
 
Query  299   TGTAGTTAAATACACTTCAAGGCTAACGTCTTGTAATGTCCACTTTTCATTACTATATTG  358 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  3070  TGTAGTTAAATACACTTCAAGGCTAACGTCTTGTAATGTCCACTTTTCATTACTATATTG  3011 
 
Query  359   TGAGTTATATATTGTTTCTAACGTTAGTTGCAGTTCAATTGCTTGTAATGCTTTATTCTT  418 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  3010  TGAGTTATATATTGTTTCTAACGTTAGTTGCAGTTCAATTGCTTGTAATGCTTTATTCTT  2951 
 
Query  419   TGATACAGCCAGTGTTGGCACCACCTGGTGGTTAATATGTTTAAATCCCATTTCTCTGGC  478 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  2950  TGATACAGCCAGTGTTGGCACCACCTGGTGGTTAATATGTTTAAATCCCATTTCTCTGGC  2891 
 
Query  479   CTTGTAATAAATAGCACATTCTAGGCGCATGTGTTTCCAATAGTCTATATGGTCACGTAG  538 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  2890  CTTGTAATAAATAGCACATTCTAGGCGCATGTGTTTCCAATAGTCTATATGGTCACGTAG  2831 
 
Query  539   GTCTGTACTATCATTTTCATAATGTGTTAGTATTTTGTCCTGACACACATTTAAACGTTG  598 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  2830  GTCTGTACTATCATTTTCATAATGTGTTAGTATTTTGTCCTGACACACATTTAAACGTTG  2771 
 
Query  599   GCAAAGAGTCTCCATCGNTTTTCCTTGNCCTCGTCCTCGTGCAAACTTAATCTGGACCAC  658 
             ||||||||||||||||| ||||||||| |||||||||||||||||||||||||||||||| 
Sbjct  2770  GCAAAGAGTCTCCATCG-TTTTCCTTGTCCTCGTCCTCGTGCAAACTTAATCTGGACCAC  2712 
 

Figure 17 :  Blast Nucleotide Alignment  of SiHa no. 75 with integration occurring (as  published) at nucleotides 3134 

of E2 sequence 

 

 

The RS-PCR technique  is thus functional in the laboratory, and able to 

detect viral genomic sequences in the integration positive control, the  SiHa 

cell line. 
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Integration negative control detects PCR artefacts 

 

In the analysis of potential HPV integrants by nucleotide blast, suitably 

matched controls were also included. The HPV16 genome, cloned in 

pBr322, was the integration negative control throughout the procedure. The 

episomal DNA was particularly important to distinguish the true integrants 

in the clinical samples from non-specific amplification inherent to the 

primers/assay system employed. 

                                                                                                                                                  

Amplified RS-PCR products were sequenced in both directions with a T7 

primer (complementary to the the T7 phage promoter in RSOs) and with the 

HPV specific nested primer used in 2nd round of RS-PCR. However, use of 

T7 phage promoter primer  and of same nested primer as in RS-PCR 

reaction, rather than sequencing primers internal to nested primer, results in 

nonspecific blast alignments which at first analysis,  promised to be potential  

HPV/ human junctions.  

 

Further, by incorporating HPV16 as a negative control into RS-PCR and 

blast database analysis, amplification of various artefacts was detected. The 

characteristic pattern of the various artefacts as seen in the cervical specimen 

F268 is presented in figure 18A and 18B below.  Nested PCR thus gave rise 

to unexpected HPV 16 short PCR products with internal deletions.  
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The specificity of a 297 bp sequence obtained from nested RS PCR in F268 

cervical sample was confirmed by designing primers internal to the 

junctional sequence of the amplicon, followed by PCR amplification. A 

product of expected size and sequence was obtained. In addition, 

amplification of HPV 16, the integration negative control, was also 

performed with these internal primers.  Unfortunately, the 297 bp sequence 

was also amplified in HPV 16 integration negative control, confirming the 

HPV 16 deletion amplicon to be a PCR artefact.  

 

The truncated PCR products possibly result from within a difficult to 

amplify region, as that of AT-rich region.  In some of the short PCR 

amplicons, the PCR primers are oriented in opposite directions within the 

region deleted from the nested PCR product.  Both of the PCR sequences 

flanking the primers are correct, however the PCR product is an artefact. 

 

Although RS-PCR is an established method to obtain  unknown sequence 

information adjacent to a known sequence, the data presented  demonstrates 

that caution should be exercised when analysing junction fragments obtained 

by PCR based data and emphasizes how important it is to utilize, in 

conjunction with RS-PCR, a non-PCR based strategy (such as Southern blot) 

to confirm the viral-cellular  junction sequence.  

 

During DNA elongation, genomes containing numerous interspersed repeat 

elements, or inverted repeats, as that of sequence aggt in HPV 16, may give 

rise to PCR artefacts.  
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It is noteworthy to mention that Matovina et al [246], utilizing another PCR 

technique to confirm integration, namely the DIPS PCR method, also 

reported in 10 of the 176 HPV16 positive precancerous cervical lesion 

samples analysed, fragments of different size than expected.   In that study, 

the PCR amplicons were sequenced to verify integration, only to reveal HPV 

DNA, suggesting the presence of episomal HPV 16 only.  The authors 

proposed presence of HPV 16 variants with internal rearrangements or gain / 

loss of restriction site.  

 

 

Explanation of RS-PCR Integration Negative Results 

 

In this study, the integration status of HPV-16 in normal/LSIL cervical 

samples was first assessed with real-time PCR-based quantification of the E2 

and E6 gene ratio. This technique assumes that HPV-16 E2 and E6 genes are 

present in equivalent amounts within each episomal HPV genome and that a 

deleted or absent E2 signal indicates integrated HPV forms. Therefore as the 

E2 gene is deleted or absent upon HPV integration, the1:1 theoretical ratio 

of E6/E2 (indicating equal amounts of E6 and E2 genes), is expected to shift 

towards the E6 gene.  Otherwise, an E6/E2 ratio greater than 1 is suggestive 

of the presence of integrated forms. 

 

As it had been previously determined, however, in our laboratory that an 

E6/E2 ratio for the integration-negative low-risk HPV-6 type in the range 

from 0.4 to 2.0 was due to assay variability [247], it was concluded that 

integrated forms were to be considered only in samples with an E6/E2 ratio 

above 2.0.   Given  that in this study there was only 1 sample with an E6/E2 
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ratio above 2.0, and so as to ensure that our definition of integration did not 

miss  certain types of integration, RS-PCR analysis were also conducted in 9 

samples with an E6/E2 ratio above 1.2. Based on the RS-PCR technique, 

there was no evidence of integration in the low/normal grade lesions, in 

agreement with other studies [212, 248].    

 

A combined approach study of E1/E2 polymerase chain reaction 

amplification and DIPS PCR also revealed no integration of HPV DNA in 

LSIL, although mixed forms were present in 1 sample of unknown status 

and integration was determined in only 1 ASCUS cervical specimen [246]. 

However, ASCUS can translate into any one of the possible histological 

diagnoses, ranging from a normal cervix to carcinoma.  

 

While the RS-PCR data is negative for integration, the results do not exclude 

the possibility of undetected HPV integration occurring in low grade lesions 

and this for various reasons:  

 

Sampling strategy 

 

One probable explanation for this is the sampling strategy used, ie, cervical 

scrapes vs. biopsies. Although analyses of exfoliated cells enable an easy 

access to clinical material and are ideal in a diagnostic setting, the results are 

not representative for the overall quantity of the nucleic acids or for the 

diversity of viral mRNA species in the underlying lesions [118]. In other 

words, the exfoliated cells are not representative of cells in deeper layers of 

the cervix. 
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In a recent analysis, Steinau et al. [249] have compared primary cervical 

tissue with normal exfoliated cells from 7 donors to evaluate the differences 

between the two tissue sources. Approximately 50% of the genes present in 

the primary tissue could also be identified in exfoliated cells.  This indicates 

that exfoliated cells are only a partial representation of the lesion perhaps 

due to the under-representation of basal cells in exfoliated tissue. 

 

 

 

Sensitivity of RS-PCR 

 

The exact sensitivity of RS-PCR is also unknown, although attempt was 

made to define it. Given that SiHa cells were utilized as integration positive 

control throughout the procedure, and assuming 1 copy of HPV 16  

integrated in SiHa cultured cells, SiHa DNA representing 50, 10, 5, 2 and 1 

copies of integrated HPV-16 DNA was RS-PCR amplified with 3 different 

sets of primers (3HPV specific primers and 3 RSOs). Amplification products 

were separated on gel,   sequenced and NCBI Blast nucleotide alignment 

was performed. HPV-16 integration in SiHa cells was detected with at least 

10 copies of HPV-16.  More sensitive detection is limited at least in part by 

the selection and excision of faint DNA bands under ultraviolet light (Gel 

photograph not included). 
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Episomal Forms May Mask Integrants 

 

Identification of a small number of integrated forms in a background of 

mainly episomal forms may be difficult. Exfoliated cells present a diversely 

HPV- infected cell population [250], and in low-grade lesions in particular, 

an abundant episomal signal from HPV-infected cells may mask the few 

integrated forms.  

 

Arias-Pulido et al [251], conducted reconstitution experiments to assess the 

sensitivity of the quantitative real time PCR assay, and as a result concluded 

that the method allows distinction of integrated forms, only when these are 

in 100-fold excess of episomal forms. Similar results were reported 

suggesting the assay’s lack of sensitivity [214]. More recently, Ruutu MP et 

al [244], have investigated the performance of quantitative real time PCR 

assay,  so widely adopted  by researchers, and have reported to be unable to 

detect integration when episomal forms are in 10 fold excess of integrated 

forms.   

 

Given that quantitative real-time PCR was applied based on the assumption 

that the E6/E2 ratio would allow selection of HPV16 specimens with 

integrated forms, it is possible that the rare integrants, in a background of 

10- 100 fold excess of episomal, were missed by quantitative real time PCR. 

 

In other words, quantitative PCR assays are not sensitive in specimens 

containing mixed forms. 
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Primers and Probe Locations 

 

-Integration defined by E2 Hinge Region 

 

The quantitative real-time PCR assay assumes integration based on a 

decreased level of E2 amplification with respect to the E6 gene copy 

number.  However, in order to maximize sensitivity, primers are often 

limited to amplify a segment less than 150 base pairs. Therefore, disruptions 

occurring in other areas of the 1097 base pair E2 gene will consequently be 

undetected by quantitative PCR. 

 

The hinge region has been identified as the most common site of disruption 

[15, 17, 30, 251, 252], the E2 primers and probe locations in this study were 

selected to recognize E2 hinge region.  

  

In this study, amplification of an 82 bp fragment located between 

nucleotides 3362-3443 of the E2 hinge region assumes episomal status. 

Conversely, no amplification assumes integration. Although this is the same 

region that is deleted in SiHa cells and in the majority of cervical cancer 

samples, integration could have occurred in E2 but outside the area defined 

by the E2 hinge region primer pairs employed, going unnoticed by 

quantitative real-time PCR.  

 

An additional upstream site position 2962-3138 has also been shown to be 

frequently interrupted in HPV 16 positive carcinomas [15, 17]. To account 

for the possibility that integration might involve other parts of the E2 gene 
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some investigators identify integration by examining overlapping fragments 

within the entire E2 ORF [15].  

 

In this study, integration occurring outside E2 hinge region might have been 

missed as quantitative PCR selected potential integrants based on E6/E2 

ratio, with E2 delineated by 82 base pairs in the hinge region.  

 

To circumvent this limitation, however, some studies design and validate 

several small contiguous primer pairs to cover the entire E2 ORF.  

 

 

 

-Integration occurs outside the E2 ORF 

 

The E2 open reading frame has been identified as the preferential site of 

integration because it has been found to be disrupted or deleted more 

frequently than other sites.  However, integration could result in disruption 

outside the E2 gene, such as within the E1 as disruption usually involves E2 

and E1 ORFs [17, 18, 219, 251, 253], or even at other sites, as for instance 

in E4, E5 and L2 ORF. 

 

Arias-Pulido et al demonstrated deletions in both E1 and E2 ORFs in 

cervical carcinoma, with 78.4% observed within HPV 16 E2 hinge region 

[251]. 

 

Therefore it is possible that integration has been missed with these 

techniques, and future analysis should include the E1 ORF. 
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-CaSki type integration 

 

HPV integration may not always result in disruption of the E1 /E2 ORF. 

Some other type of integration might occur as exemplified in the cancer cell 

line CaSki.  

 

Integration in this cancer cell results in multiple copies in a head to tail 

tandem repeat. In this type of situation, only the viral copy flanking cellular 

DNA is interrupted in E1 or E2 region, this leaves the internal copies with 

intact E1 and E2.  It is possible that preselection of potential integrants by an 

E6/E2 ratio of 1.2 or greater missed this type of viral integration into the 

human genome.    

 

 

-Random Viral Integration in Human Genome 

 

Viral integration in the human genome is random [246, 254], with a 

preference in common fragile sites[222].  

 

The human junction sequences can be distributed throughout any of the 

common fragile sites of the whole human genome. As every integration site 

is unique in each specimen, the primer used to amplify the human sequences 

will vary from one lesion to the other.  As the human primer sequences will 

vary, it is not possible to optimize the length of amplicon to be amplified, 

reaction conditions for the primer pairs, etc.  It is possible that restriction site 

oligonucleotides (RSO's) and /or nested primers, as well as the reaction 
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conditions used were not optimal to amplify viral-human junctional 

sequences in all specimens. 

 

In addition, the HPV16 specific primers used for the nested RS-PCR were 

designed based on the fact that HPV integration rarely occurs within E6 and 

E7 ORFs, if otherwise, however, integration may have been undetected.   

 

 

 

-Sampling Numbers 

 

Real time quantitative PCR directed towards E2 hinge region selected, based 

on E6/E2 ratio of 1.2 or greater, nine cervical specimens to be amplified by 

RS-PCR.  

 

Negative integration results obtained by RS-PCR may thus be attributable in 

part to the small numbers of samples undergoing RS-PCR.  Integration 

cannot be excluded until a larger set of normal and LSIL samples is 

explored. 

 

 

-Interpretation of RS-PCR Results 

 

The RS-PCR method is laborious, time consuming, and the results are not 

always clear. Unlike the DIPS PCR technique where two enzymes with a 

known HPV genome restriction enzyme cutting position allow for selection 

of PCR amplicons deviating from expected size as the potential integrants, 
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gb|AC108024.3|  Homo sapiens BAC clone RP11-17J21 from 4, complete sequence   

Length=119882 

Score = 80.6 bits (88),  Expect = 7e-13 

Identities = 55/60 (91%), Gaps = 3/60 (5%) 

Strand=Plus/Minus 

 

Query1        CCGANCTCTGGATATGTTGGAGGTTATATAGTCCAATACTACTTTGTTATTTAGTTGCTT  60 
              |||| ||||| ||||||||   |||||||||||||||||||||||||||||||||||||| 
Sbjct  22431  CCGACCTCTG-ATATGTTGA--GTTATATAGTCCAATACTACTTTGTTATTTAGTTGCTT  22375 

 

gb|FJ610152.1|  Human papillomavirus type 16 strain CU7, complete genome 

Length=7905 

 Score = 59.0 bits (64),  Expect = 2e-06 

 Identities = 52/60 (86%), Gaps = 4/60 (6%) 

 Strand=Plus/Plus 

 

Query  26    ATATAG-TCCA-ATACT-ACTTTGTT-ATTTAGTTGCTTTACATAGGCCAGCATTAACCT  81 
             |||||| |||| || || ||||| |  || |||||||||||||||||||||||||||||| 
Sbjct  5062  ATATAGCTCCAGATCCTGACTTTTTGGATATAGTTGCTTTACATAGGCCAGCATTAACCT  5121 
 

Query  82    C  82    NP5 primer 
             | 
Sbjct  5122  C  5122 

 

Figure 19: Short sequence homologous to HPV 16 L1 ORF and to Human DNA, 

depicting difficulty in interpretation of NCBI BLASTresults 

 

 

Recent studies suggest that viral load is associated with persistence of 

infection [228, 255]. High viral loads in cervical intraepithelial neoplasia 

lesions have been associated with a 60-fold increase in the risk of malignant 

progression [108]. Other investigators have demonstrated an association 

with increasing viral load of HPV16 and increasing severity of cervical 

lesions [11, 256, 257]. In contrast, some researchers have found viral loads 

to decrease with increasing abnormality [14] and increasing again in 

cancer[15].  
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  A total of 220 HPV16 positive normal/ LSIL cervical samples were 

quantified for E6 and E2 DNA by quantitative real-time PCR assays. Forty 

eight specimens however gave a very low reading for E2 and/or E6 

indicating a low HPV concentration in samples.  In an attempt to better 

quantify and detect any possible difference between E2 and E6 ORFs 

perhaps undefined at near 0 values, the DNA of these specimens was 

concentrated by master pure. Although E6/E2 ratio was slightly altered, 

concentrating the DNA in 5 or 10 times its initial volume did not indicate 

integration.    

 

In our specimens, high variability was found in the amount of HPV viral 

load, in agreement with data reported by other authors [28, 204, 212, 258].  

Women younger than 25 years of age have more elevated HPV loads, also in 

concordance with the literature. The mean HPV 16 viral load was 

57.5±324.6 copies per cell.  

 

Some samples have a significantly low mean copy number and an E2 gene 

value   greater than E6. Using the same technique, an E2/E6 ratio above 1.5 

has been reported in six cervical lesions [259], leading the authors to define 

unusual integration forms.  The elevated E2/E6 ratio could result from E2 

duplication, similar to the CaSki cell line, in which the virus integrates in a 

head-to- tail tandem repeat [20], or from integration of dimeric viral DNA 

with an E2 portion at both ends[260], or to variability of viral quantitation 

resulting in uninterpretable ratios from 0.5 to 2.0. 

 

Another plausible explanation for a relatively increased E2 to E6 gene copy 

number (given that E2 and E6 standard curves had comparable efficiencies 
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of amplification),  is nucleotide alterations in the region targeted by the 

prototypic HPV 16 primers-probe set [261].  Quantification of E2 and E6 

gene copy numbers in specimens relies on a standard curve generated by a 

primers-probe set complementary to the prototypic HPV 16. The primer–

probe set is chosen in a conserved region of prototype HPV 16 to account for 

intratypic diversity, however in natural infections, HPV 16 variants may 

carry more nucleotide alterations than those identified. Primer-probe 

mismatch to the target region reduces the real-time PCR amplification 

efficiency, and impacts E6 differently from E2, thereby introducing 

significant error into the determination of E2/E6 copy number resulting in 

erroneous quantitative viral load and misinterpretation of integration. The E6 

gene of all the HPV-16 positive samples has however been sequenced with 

PCR. The isolates did not present mutations at either primer or probe 

binding sites of E6 gene. It is possible, however, that sequence alterations in 

the E2 gene was responsible for an E2 value greater than E6 [242].  

Incorporation of degenerate bases into the primers and probe compensates 

for the reduced amplification efficiency due to target nucleotide mismatches.  
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CONCLUSION  
Further examination of a larger sample size, all grades of cervical disease 

with a normal control group, followed prospectively, and at all levels of 

experimental  procedure the use of suitably matched controls, will allow to 

assess the association between viral load, integration and cervical disease 

status. It would be interesting to determine whether the detection of integrant 

derived transcripts by the APOT assay in cervical material has a more useful 

predictive value of cervical disease progression than integration at the DNA 

level. 

 

At the moment, the variability of methods to detect the development of 

lesions, different HPV detection methods, different protocols, material of 

different background, different primers and probes, insufficient follow-up 

time, and results expressed in different units and with variable cut-off values 

for E2/E6 ratio  defining integration, affect the comparability of results and 

thus do not allow for a consensus to be reached on viral load and  viral 

integration.  

 

Standardization, however, with prospective data, as from the HPV-

PathogenISS study will allow for the comparison of viral load and 

integration results from different studies and laboratories. The SUCCEED 

study by the NCI, collects biological material from more than 1500 women 

with transient HPV infection at different grades of cervical dysplasia and 

cervical cancer, will also provide comparable data to assess viral load and 

integration at different steps in the progression to cervical cancer. 
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Cervical carcinomas develop from pre-invasive stages. With appropriate 

high risk HPV detection and a validated early marker, as for instance viral 

integration, for early diagnosis and treatment of cervical cancer precursors, 

cervical cancer will become a preventable disease in the near future. 
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