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RÉSUMÉ 
 

Les acides biliaires sont des composés naturels existants dans le corps humain. 

Leur biocompatibilité, leur caractère amphiphile et la rigidité de leur noyau stéroïdien, 

ainsi que l’excellent contrôle de leurs modifications chimiques, en font de remarquables 

candidats pour la préparation de matériaux biodégradables pour le relargage de 

médicaments et l'ingénierie tissulaire. 

Nous avons préparé une variété de polymères à base d’acides biliaires ayant de 

hautes masses molaires. Des monomères macrocycliques ont été synthétisés à partir de 

diènes composés de chaînes alkyles flexibles attachées à un noyau d'acide biliaire via des 

liens esters ou amides. Ces synthèses ont été réalisées par la fermeture de cycle par 

métathèse, utilisant le catalyseur de Grubbs de première génération. Les macrocycles 

obtenus ont ensuite été polymérisés par ouverture de cycle, entropiquement induite le 

catalyseur de Grubbs de seconde génération. Des copolymères ont également été préparés 

à partir de monolactones d'acide ricinoléique et de monomères cycliques de triester 

d’acide cholique via la même méthode. 

Les propriétés thermiques et mécaniques et la dégradabilité de ces polymères ont 

été étudiées. Elles peuvent être modulées en modifiant les différents groupes fonctionnels 

décorant l’acide biliaire et en ayant recours à la copolymérisation. La variation des 

caractéristiques physiques de ces polymères biocompatibles permet de moduler d’autres 

propriétés utiles, tel que l’effet de mémoire de forme qui  est important pour des 

applications biomédicales.  

 

Mots-clés : Acide biliaire, biocompatibilité, caractère amphiphile, métathèse par 

fermeture de cycle, polymérisation par ouverture de cycle. 
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ABSTRACT 

 

Bile acids are natural compounds in the body. Their biocompatibility, facial 

amphiphilicity, rigidity of steroid nucleus, and ease of chemical modification make them 

excellent candidates as building blocks for making biodegradable materials used in drug 

delivery and tissue engineering applications.  

We have prepared main-chain bile acid-based polymers having high molecular 

weights. Macrocyclic monomers were synthesized from dienes, which consist of flexible 

alkyl chains attached to a bile acid core through either ester or amide linkages, via ring 

closing metathesis using first-generation Grubbs catalyst. They were polymerized using 

entropy-driven ring-opening metathesis polymerization using second-generation Grubbs 

catalyst. Copolymers were also prepared from monolactone of ricinoleic acid and cholic 

acid-based cyclic triester monomer via the same method. 

The thermal and mechanical properties and degradation behaviours of these 

polymers have been investigated. The properties can be tuned by varying the chemical 

linking with the bile acid moiety and by varying the chemical composition of the 

polymers such as copolymerization with ricinoleic acid lactones. The tunability of the 

physical properties of these biocompatible polymers gives access to a range of interesting 

attributes. For example, shape memory properties have been observed in some samples. 

This may prove useful in the design of materials for biomedical applications.  

 

Keywords : Bile acids, biocompatibility, amphiphilicity, ring closing metathesis, ring 

opening metathesis polymerization 
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1 Introduction 
 

For several decades now, drug delivery and tissue engineering, two important areas 

in the field of biomedical engineering, have drawn much research interest. Scientists 

made great effort to find materials that could deliver pharmaceutical substances to 

targeted areas in the body in a controlled way, or materials that could support and 

stimulate cell growth. In both cases, the materials should be biocompatible to avoid 

triggering a strong immune response, and sometimes biodegradable in order to degrade 

after accomplishing their tasks.1 

Suitable materials having these properties can be divided into two main classes: 

natural2-4 and synthetic polymers.2,3,5-9 Natural polymers may be the most promising 

candidates for biomedical applications due to their inherent advantages.10 However, 

natural polymers still have some short-comings: they may trigger immune responses at 

the implantation site;11,12 their stability and mechanical properties are often relatively 

poor;4,13 and their toxicity may be a problem.1 In comparison with natural polymers, 

synthetic polymers possess better qualities, such as the ease in processing and good 

mechanical properties.1 

Bile acids are natural compounds that exist in the bile of most animals. Materials 

based on bile acids, when used for biomedical purposes, present lower toxicity for their 

degradation products.14 Thus, these materials show great promise in drug delivery and 

tissue engineering.15 

1.1 Bile acids 

Bile acids are compounds in the steroid family that help during the digestion of fat 

by forming micellar aggregates. Biosynthesized from cholesterol by the liver, bile acids 

are conjugated with taurine or glycine and stored in the gallbladder. Taurocholic acid and 

glycocholic acid (derivatives of cholic acid) account for eighty percent of all bile acids in 

a human body.16  
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Figure 1.1. Chemical structure of bile acids. 
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Bile acids contain a rigid steroid nucleus and a short aliphatic side chain (shown in 

Figure 1.1). The steroid nucleus consists of three six-membered rings (A, B and C) and a 

five-membered ring (D). In contrast to the cholestane steroids, which are trans isomers, 

the cis connection between rings A and B bends the steroid skeleton, and results in the 

formation of a cavity17 and two faces having different properties. The face with the 

carboxylic group at position 24 and several hydroxyl groups directed toward the cavity is 

hydrophilic. The other face is hydrophobic and contains three methyl groups. Because of 

its facial amphiphilicity, bile acids can form micelles with back-to-back hydrophobic 

interactions.18,19 

Bile acids possess several chiral centers and have two to four functional groups that 

can be used to form chemical links with other molecules (Figure 1.1). An ester or ether 

bond can be formed from the hydroxyl group at position 3. Ester or ether bonds can also 

be formed from the hydroxyl groups at positions 7 and 12, although the reactivity of the 

axial hydroxyl groups is much lower than the equatorial one at position 3. Furthermore, 

an ester or amide bond can be formed from the carboxylic group at position 24.1,17  

The interesting properties of bile acids make them useful building blocks in the 

design of new polymeric materials. These materials may retain some of the properties of 

bile acids, such as the rigidity, chemical stability, chirality, facial amphiphilicity, capacity 

of self-assemble and reactivity of functional groups. In general, polymers based on bile 

acids include bile acids in the main chain,15,20,21 bile acids as pendent groups,22-26 and 

star-shaped polymers with bile acids as the core.27-34 

1.2 Biodegradable polymers based on bile acids 

In the last 30 years, biodegradable biomaterials have been developed for related 

applications.10,35 Based on the current trend, it has been predicted that, in the near future, 

most of prosthetic devices for temporary use will be made from biodegradable 

polymers.10  
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Figure 1.2. Structures of selected biodegradable polymers: (1) Polylactides; 

(2) Polyglycolides; (3) Polysebacic anhydrides. 

 

Biodegradable polymers can be divided into natural polymers such as 

polysaccharides (starch, cellulose, chitin, chitosan and alginic acid), polypeptides of 

natural origin and bacterial polyesters, and synthetic polymers such as polyesters, 

polyamides and polyanhydrides.36 In comparison with natural polymers, synthetic 

polymers are more versatile in chemical structure and their mechanical and biodegradable 

biocompatible properties can be easily tuned.1 Several synthetic polymers, such as 

polylactides (PLA), polyglycolides (PGA) and polysebacic anhydrides (PSA, Figure 1.2), 

approved by the USA Food and Drug Administration (FDA), are subjects of intensive 

reseach37-41 and show promise for biomaterial applications. However, these polymers are 

based on small aliphatic molecules that induce a high level of crystallinity. As a result, 

their mechanical and degradable properties still need to be improved. Therefore, it is 

necessary to introduce comonomers such as ricinoleic acid to improve the properties of 

these polymers. Furthermore, the acidic degradation products of these polymers may 

cause adverse tissue reactions.42 

When incorporated into a polymer, bile acids add new properties, such as the 

tuning of the hydrophobicity and increased rigidity of the polymer chain. The tuning of 

the polymer properties can make it more suitable for use in the fields of drug delivery and 

tissue engineering. 
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1.2.1 Grafting of bile acids onto degradable polymers 

Bile acids can be grafted to degradable polymers via their carboxylic acid group at 

position 2443,44 or their hydroxyl group at position 345; thus the use of an ester or amide 

linker at those positions improve the hydrophobicity, biocompatibility and aggregation 

properties of the polymers.46-48 Many natural polymers, including polysaccharides 

(chitosan47-49, glycol chitosan50-53, heparin54, dextran43-45 or agarose55) and proteins 

(bovine serum albumin56,57) have been modified in this way with bile acids. 

Kwon and co-workers studied core-shell spheres made from degradable polymers 

such as chitosan and glycol chitosan. They grafted bile acids onto these polymers to 

increase their hydrophobicity47-49 and induce aggregation in the form of nanometer-sized 

core-shell spheres. When deoxycholic acid-derivatized chitosan (Figure 1.3, 1) forms 

such core-shell spheres, the hard hydrophobic core contains deoxycholic acid and the soft 

hydrophilic shell has the chitosan chain. 

Nichifor et al. attached cholic acid and deoxycholic acid as pendant groups to 

dextran using the carboxylic group of cholic acid via an ester linker (Figure 1.3, 2).43,44 It 

was found that the critical aggregation concentration (CAC) decreases with increasing 

degree of substitution (DS), which is similar to the chitosan case. Meanwhile, the CAC 

measured for modified dextran was one order of magnitude lower than that measured for 

modified chitosan because chitosan is more hydrophilic than dextran. Nichifor et al. also 

attached cholic acid as pendant group to dextran using the hydroxyl group at position 3 of 

cholic acid (Figure 1.3, 3) to increase the solubility of dextran in aqueous solution.45 This 

polymer is still water-soluble even with a DS as high as 25%. 
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Figure 1.3. The structure of bile-acid-modified polysaccharides: (1) chitosan 

modified with deoxycholic acid; (2) dextran modified with cholic acid via the 

carboxylic group at position 24; (3) dextran modified with cholic acid via the 

hydroxyl group at position 3. 

 

1.2.2 Degradable synthetic polymers based on bile acids 

Bile acids can be incorporated into the backbone of synthetic polymers through an 

ester, anhydride or amide linkage using either polycondensation or ring-opening 

metathesis. However, the preparation of bile-acid-based polyesters is still a challenge and 
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reports on bile-acid-based polyesters are scarce. Ahlheim and Hallenleben used 

p-toluenesulfonic acid as a catalyst and high reaction temperature to obtain main-chain 

cholic acid-based and deoxycholic acid-based polyesters.58 The polyesters obtained had 

low molecular weights and poor solubility in organic solvents. In other attempts to 

synthesize main-chain bile acid-based polyesters, Noll and Ritter used a lipase enzyme as 

the catalyst59 and Zuluaga et al. used N,N-(dimethylamino)pyridine and p-toluenesulfonic 

acid as catalyst.60 Polyesters with quite high molecular weights, ranging from 2.0 to 6.0 × 

104, have been obtained by these methods at room temperature. 

Three different methods can be used to prepare bile-acid-based polyanhydrides. 

The first developed in our group involved a selective hydrolysis of 3α-lithocholic acid 

methyl ester dimers, previously synthesized by linking two lithocholate methyl ester 

molecules with sebacoyl chloride, yielded carboxylic acid dimer (Figure 1.4, 1).20 After 

refluxing in acetic anhydride, the carboxylic acid dimer was transformed to dianhydride 

(Figure 1.4, 2). This dianhydride was then polycondensed or with a comonomer such as 

sebacic acid to get homo- or co-polymers with various bile acid contents. The second 

method to prepare lithocholic-acid-based polyanhydrides, developed by Domb and 

co-workers, consists of using lithocholic acid as starting material for a reaction with a 

sebacic anhydride pre-polymer to form a diacid, which contained a lithocholic acid 

moiety and sebacic acid moiety linked by an ester.61 This diacid polycondensed with 

varying amounts of sebacic anhydride pre-polymer, and resulted in copolymers with 

various contents of lithocholic acid was obtained. The molecular weight measured was 

from 1.2 to 6.7 × 104. A third method was also developed in our group involving the 

polycondensation of acid dimer (Figure 1.4, compound 1) and sebacoyl chloride, and this 

research is still ongoing. 
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Figure 1.4. Synthesis of lithocholic acid-based polyanhydrides. 

 

Although these polymers can be prepared by polycondensation as discussed above, 

their molecular weights are still relatively low. The preparation of bile acid-based 

degradable polymers is still a challenge to the organic chemists. 

1.3 Olefin metathesis 

Ring opening metathesis polymerization (ROMP) is one of the useful applications 

of olefin metathesis and a powerful tool for preparing polymers with high molecular 

weights. The word “metathesis” is derived from the Greek word for “transposition”. 

Calderon et al. first introduced the term “olefin metathesis” in the 1960s62-64. The 
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generally accepted mechanism of olefin metathesis (shown in Figure 1.5) was originally 

reported by Hérisson and Chauvin in 197165, and subsequently validated with key 

experimental evidences by the Casey66, Katz67 and Grubbs’ groups.68-70 The revolution of 

synthetic chemistry caused by olefin metathesis led to the 2005 Nobel Prize in Chemistry 

awarded to Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock.71-73 
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Figure 1.5. Olefin metathesis mechanism proposed by Chauvin.65 

 

Olefin metathesis is a fundamental chemical reaction involving the 

metal-catalyzed redistribution of carbon-carbon double bonds. It can be used to couple, 

cleave, or polymerize olefinic molecules.74 As shown in Figure 1.6, olefin metathesis can 

be applied in different ways including ring-closing metathesis (RCM), ring-opening 

metathesis (ROM), ring-opening metathesis polymerization (ROMP), acyclic diene 

metathesis polymerization (ADMET), and cross-metathesis (CM).75 The catalyst plays a 

crucial role in these reactions. The early catalytic systems, such as WCl6/Bu4Sn, 

WOCl4/EtAlCl2, MoO3/SiO2 and Re2O7/Al2O3, are easy to prepare and cheap. Thus, these 

catalytic systems are used in important commercial applications of olefin metathesis75, 

but they are not tolerant to most functional groups, and the reactions catalyzed by these 

systems are difficult to initiate or control because very few active species are formed in 

the catalytic mixture.75 



 

 10

xx

xxx xxx

RCM

ROMP

-C2H4 ADMET-C2H4

n

n

n

xxx

+
R

xx

R

ROM

R2

R1 + CM R1

R2

+  
 

Figure 1.6. Various olefin metathesis reactions including ring-closing metathesis 

(RCM), ring-opening metathesis polymerization (ROMP), acyclic diene 

metathesis polymerization (ADMET), ring-opening metathesis (ROM), and 

cross-metathesis (CM). 
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The first single-component catalysts for metathesis, based on molybdenum and 

tungsten, have a general formula (NAr)(OR´)2M=CHR, where Ar is aryl group, and R 

and R´ are different alkyl groups.76 They have greater activity under milder 

reaction conditions and provide moderate functional group tolerance.76 However, they are 

extremely sensitive to oxygen and moisture, and can only be used in an inert atmosphere 

and with vigorously purified, dried and degassed solvents and reagents.76  

The ruthenium-based metathesis catalysts (Figure 1.7) provide a high tolerance to 

functional groups and allow researchers to work outside the glovebox as they do not 

require a strictly inert atmosphere.76 It should be stressed that all the ruthenium-based 

metathesis catalysts shown are able to initiate the metathesis.76 

The first well-defined ruthenium-based metathesis catalyst (Figure 1.7, compound 

1) was able to polymerize norbornene in protic media,77 even in the presence of water and 

ethanol.75 Furthermore, this catalyst can be used for living polymerization because chain 

termination and transfer of the polymerization initiated by the catalyst are slow.78 

Although the initiation behavior and the tolerance of functional groups of the first 

well-defined ruthenium-based metathesis catalyst were exciting, the activity of this 

catalyst in the ROMP of low-strained monomers is low. It was found that the activity 

increases with the basicity of the phosphates, finally leading to the discovery of the 

first-generation Grubbs catalysts (compound 2).79 

The Grubbs catalysts consist of a ruthenium atom surrounded by five ligands. 

They can be divided into two categories based on the types of ligands: L2X2Ru=CHR 

complexes (where L is a phosphine ligand) discovered first are known as the 

first-generation Grubbs catalysts (compound 2), and (L)(L’)X2Ru=CHR complexes 

(where L is a phosphine ligand and L’ is a saturated N-heterocylic carbine or NHC ligand) 

become as the second-generation Grubbs catalysts (compound 3).74 
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Figure 1.7. Ruthenium-based olefin metathesis catalysts: (1) the first well-defined 

metathesis-active ruthenium catalyst; (2) the first-generation Grubbs catalyst; (3) 

the different second-generation Grubbs catalysts (a-d); (4) the second-generation 

Hoveyda-Grubbs catalyst; (5) the third-generation Grubbs catalyst. 
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The first-generation Grubbs catalysts possess attractive functional group tolerance 

and can be widely used in metathesis applications, such as ring opening metathesis 

polymerization,77 ring closing metathesis,80,81 ethenolysis,82,83 cross metathesis,84 and 

enyne metathesis.85 However, the first-generation Grubbs catalysts are not as active as the 

more sensitive but highly active Schrock catalysts.74 The substitution of one P(Cy3) 

ligand of the first-generation Grubbs catalyst with an N-heterocyclic carbine (NHC) led 

to the discovery of the second-generation Grubbs catalysts (compound 3a), which possess 

excellent metathesis activity and broad functional group tolerance.76 Furthermore, the 

second-generation Grubbs (compound 3a) and Hoveyda-Grubbs catalysts (compound 4) 

can still function in some metathesis applications of sterically hindered and electronically 

deactivated olefins.74  

Discovered in 1999, the second-generation Grubbs catalysts have rapidly evolved 

into a large family of catalysts with various properties that are widely used in a broad 

range of applications, such as fine chemicals, pharmaceuticals, and materials.74 There is 

no single second-generation Grubbs catalyst that is optimal for all transformations and 

applications. In fact, many second-generation Grubbs catalysts have been developed for 

specific purposes.74 Slow-initiating phosphine containing (compound 3b) and phosphine 

free (compound 3c) second-generation Grubbs catalysts were developed for the 

controlled ROMP of strained cyclic olefins, while fast-initiating phosphine containing 

(compound 3d) second-generation Grubbs catalysts were designed for low temperature 

metathesis processes or for the production of polymers with narrow polydispersities.74 

The third-generation Grubbs catalyst (compound 5, sometimes referred as a 

modified second-generation Grubbs catalyst) also contains an N-heterocyclic carbene 

group, but a phosphine ligand is replaced by two bromo-pyridine groups. This catalyst 

has improved initiation rates and high activity to a range of monomers. The 

polydispersity indexes of polymers obtained by this reaction has been improved.86,87  

As mentioned above, olefin metathesis provides a route to prepare unsaturated 

molecules that are difficult or even impossible to prepare by any other means. Thus, it 

has become an important tool in organic synthetic chemistry.75 Among its important 

applications, ring closing metathesis is a straightforward and reliable method for the 
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preparation of various carbocyclic and heterocyclic ring systems of various sizes and 

complexity.64  

Cyclic compounds ranging from five-membered rings to macrocycles can be 

synthesized via ring closing metathesis and numerous reviews about RCM have been 

published to date.70,88-94 Majumdar et al. discussed the reaction conditions of RCM in 

their paper64: many factors, such as the catalyst properties, solvent, reaction temperature, 

concentration of the starting material, reaction time, and properties of final products 

influence RCM reactions. Slow addition of the catalyst, higher reaction temperatures and 

low concentration of starting materials favor the ring formation in the synthesis of 

macrocycles. However, higher reaction temperatures can accelerate the decomposition of 

the catalyst and, hence, higher catalyst loading is required for the closure of larger 

rings.64  

Ring opening metathesis polymerization is one of the important applications of 

olefin metathesis and it is a very useful technique for the preparation of polyesters with 

controlled molecular weight.21 In most reported examples of ROMP, small strained 

cycles (3-8-membered) have been used and the polymerization is driven by enthalpy.21 

However, ROMP of macrocycles is driven by entropy, as described by the 

Jacobson-Stockmayer theory for ring-chain equilibria.95-97 In contrast to acyclic diene 

metathesis (ADMET) polymerization15, polymers prepared by this method could achieve 

appreciably high molecular weights under appropriate conditions.98-102 

Entropy-driven ring-opening metathesis polymerization (ED-ROMP) appears as an 

appropriate technique for the preparation of high molecular weight main-chain bile 

acid-based polymers. Moreover, the large amount of coupling agents normally used for 

polycondensations can be avoided by using this technique and, thereby, lowering the 

toxicity of the final material.  

1.4 Objectives of this work 

The main objective of this work is to design and prepare high molecular weight 

polymers that contain bile acids incorporated in their main chain. These degradable 

polymers are developed because of potential use in biomedical applications. The 

following specific research objectives have been pursued: 
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(1) Synthesis of macrocyclic monomers based on bile acids by first attaching 

two flexible chains containing double bonds to cholic acid or lithocholic 

acid by ester and amide bonds. Ring-closing metathesis of the resulting 

dienes generates the macrocyclic bile acid-based monomers.  

(2) Preparation of main-chain bile acid-based homopolymers via ring-opening 

metathesis polymerization from the macrocyclic monomers using the 

second-generation Grubbs catalysts. A kinetic study of polymerization will 

be executed on cholic acid-based triester cyclic monomer; the thermal, 

mechanical and degradation properties of these homopolymers will be 

studied. 

(3) Preparation of copolymers with different monomer ratios of cholic 

acid-based triester cyclic monomer and cyclic ricinoleic acid via 

ring-opening metathesis polymerization using the second generation 

catalysts. Study of the thermal, mechanical and degradation properties of 

these copolymers. The purpose of the copolymerization is to tune the 

thermal, mechanical and degradation properties of the homopolymer. 

The synthesis of macrocyclic monomers, homopolymers and copolymers is 

presented in Chapter 2, and the results of the synthesis are presented and discussed in the 

first parts of Chapter 3. The thermal and mechanical properties, and degradation behavior 

of homopolymers and copolymers are discussed in the following parts of Chapter 3. 
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2 Experimental Part 

 

2.1 Materials 

Lithocholic acid, cholic acid, ω-undecylenyl alcohol, ω-undecenoyl chloride, 

triethyl amine, ethylene glycol, 2-aminoethanol, ethylene diamine, castor oil, 

dicyclohexylcarbodiimide, 4-(dimethylamino)-pyridine and Grubbs’ catalysts (first- and 

second-generations) were purchased from Aldrich. Dichloromethane (DCM), 

tetrahydrofuran (THF), methanol, chloroform, hexanes and ethyl acetate were purchased 

from VWR. They were used as received without further purification unless specified in 

the text. Anhydrous dichloromethane was purified by the use of a solvent purification 

system from Glass Contour. Silica gel 230-400 mesh for chromatography was purchased 

from Qingdao Meicao Co., China. Tetrahydrofuran for GPC was filtered through 0.2 μm 

Millipore nylon filters. Methyl ester of lithocholic acid was prepared using the conditions 

previously established in the literature.1 

2.2 Synthesis of macrocyclic monomers 

The macrocyclic monomers were synthesized via three steps as shown in Figures 

2.1 and 2.2. Briefly, a diene was synthesized by attaching two long alkane chains with a 

carbon – carbon double bonds at the end to the group of the (litho)cholic acid core. Then 

macrocyclic monomers were synthesized via ring closure metathesis in a highly diluted 

anhydrous diene solution in DCM under argon atmosphere. The reaction was carried out 

under reflux and catalyzed by first-generation Grubbs’ catalyst with a catalytic loading of 

5%. 
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3b R = H, X1 = X2 = O
3c  R = H, X1 = X2 = NH
3d R = H, X1 = NH, X2 = O

 

Figure 2.1. Synthesis of bile acid-based cyclic monomers 3a-d. 
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Figure 2.2. Synthesis of bile acid-based cyclic monomer 3e. 
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Compound 1a. This compound was synthesized using a procedure established 

previously.2 Cholic acid (10 g, 24.5 mmol), ethylene glycol (100 mL) and concentrated 

hydrochloric acid (1 mL) were placed in a one-neck flask (250 mL) with stirring. The 

resulting solution was brought to 80oC for 2 h and then poured into cool water (120 mL) 

to precipitate the solid product. The product was filtered and washed with aqueous 

sodium carbonate and water. The desired compound was obtained by recrystallization 

from ethyl acetate (9.4 g, 85%). IR (NaCl, cm-1) 3316, 2935, 2869, 2850, 1735, 1691, 

1462, 1414, 1371, 1315, 1247, 1112, 1076, 1046, 1016, 980, and 912; 1H NMR (CDCl3, 

ppm) δ 4.23 (t, 2H, CH2CH2OH), 4.00 (s, 12 α-CH), 3.84 (m, 3H, 7 α-CH, CH2CH2OH), 

3.47 (m, 1H, 3α-CH), 1.00 (d, 3H, 21-CH3), 0.91 (s, 3H, 19-CH3), 0.70 (s, 3H, 

18-CH3);13C NMR (CDCl3, ppm) δ 12.86, 17.77, 22.89,23.67,27.98, 28.56, 30.72, 31.26, 

31.37, 35.07, 35.20, 35.71, 35.75, 39.89, 41.90, 42.02, 46.82, 46.99, 61.26, 66.39, 68.86, 

72.26, 73.50 and 175.34 (25 observed, 26 required). 

Compound 1b. This compound was synthesized following a similar procedure as 

for compound 1a. Lithocholic acid (10 g), ethylene glycol (100 mL) and concentrated 

hydrochloric acid (0.1 mL) were placed in a one-neck flask (250 mL) with stirring. The 

resulting solution was brought to 80oC for 2 h and then poured into cool water (120 mL) 

to precipitate a solid. The product was filtered and washed with sodium carbonate 

aqueous solution and water. The desired compound was obtained by recrystallization 

from ethyl acetate (9.8 g, 88%). IR (NaCl, cm-1) 3243, 2926, 2865, 2848, 1730, 1445, 

1374, 1331, 1240, 1169, 1081, 1069, 1040, 1019, 995, 947, 892, 876, 829, 677, 605 and 

515; 1H NMR (CDCl3, ppm) δ 4.21 (m, 2H, COCH2CH2OH), 3.82 (m, 2H, CH2CH2OH), 

3.63 (m, 1H, 3α-CH), 0.93 (d, 3H, 21-CH3), 0.92 (s, 3H, 19-CH3), 0.65 (s, 3H, 18-CH3); 
13C NMR (CDCl3, ppm) δ 12.46, 18.70, 21.23, 23.80, 24.62, 26.84, 27.61, 28.63, 30.90, 

31.35, 31.56, 34.98, 35.76, 36.25, 36.80, 40.58, 40.84, 42.50, 43.15, 56.35, 56.90, 61.61, 

66.34, 72.25 and 175.12 (25 observed, 26 required). 

Compound 1c. This compound was prepared following a procedure established 

previously.3 Methyl ester of lithocholic acid (10 g, 25.6 mmol) was dissolved in dry 

ethylenediamine (90 mL) and refluxed (116oC) for 5 h. The reaction solution was then 

cooled down and ice-water (70 mL) was added into the reaction media. The resulting 
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mixture was then stirred at room temperature for 2 h and placed into a refrigerator for 20 

h. The white precipitate was filtered, washed thoroughly with water and then dried in a 

vacuum oven for 20 h (9.6 g, 90%). IR (NaCl, cm-1) 3266, 2927, 2863, 1648, 1556, 1446, 

1374, 1265, 1193, 1068, 1047, 945 and 607; 1H NMR (CDCl3, ppm) δ 5.98 (s, 1H, 

CONH), 3.64 (m, 1H, 3α-CH), 3.33 (m, 2H, CONHCH2CH2), 2.85 (m, 2H, 

NHCH2CH2NH2), 0.95 (s, 3H, 19-CH3), 0.93 (s, 3H, 21-CH3), 0.66 (s, 3H, 18-CH3); 13C 

NMR (CDCl3, ppm) δ 12.47, 18.82, 21.24, 23.80, 24.63, 26.84, 27.62, 28.67, 30.97, 

32.25, 34.09, 34.99, 35.77, 35.94, 36.27, 36.88, 40.61, 40.85, 41.85, 42.33, 42.51, 43.16, 

56.43, 56.92, 72.24 and 174.32 (26 observed, 26 required). 

Compound 1d. The methyl ester of lithocholic acid (10 g, 25.6 mmol) was 

dissolved in 2-aminoethanol (100 mL) with stirring. The resulting mixture was brought to 

100oC for 4 h. The reaction solution was then cooled down to room temperature, poured 

into cold water (500 mL), and placed into a refrigerator for 20 h. The white precipitate 

was filtered, washed thoroughly with water and then dried in a vacuum oven for 20 h (9.6 

g, 89%). IR (NaCl, cm-1) 3301, 2930, 2866, 1647, 1554, 1440, 1370, 1358, 1290, 1184, 

1112, 1066, 1049, 1032, 1014, 945, 703, 607 and 497; 1H NMR (CDCl3, ppm) δ 5.89 (s, 

1H, CONH), 3.76 (t, 2H, CH2CH2OH), 3.65 (m, 1H, 3α-CH), 3.46 (m, 2H, CONHCH2), 

0.95 (s, 3H, 21-CH3), 0.94 (s, 3H, 19-CH3), 0.67 (s, 3H, 18-CH3); 13C NMR (CD3OD, 

ppm) δ 11.56, 17.93, 20.99, 23.01, 24.32, 26.70, 27.40, 28.29, 30.22, 32.27, 33.11, 34.71, 

35.52, 35.90, 36.19, 36.26, 40.56, 40.90, 41.96, 42.55, 42.94, 56.46, 56.94, 60.67, 71.43 

and 176.10 (26 observed, 26 required). 

Compound 1e. This compound was synthesized following a procedure established 

previously.4 Cholic acid (10 g, 24.5 mmol), ω-undecylenyl alcohol (30 mL) and 

concentrated sulfuric acid (0.05 mL) were placed in a round-bottom flask (100 mL). The 

resulting mixture was heated up to 90oC and stirred at this temperature for 5 h. After the 

reaction solution cooled down to room temperature, it was mixed with ethyl acetate (250 

mL) and extracted with water (3 × 200 mL). It was then dried with magnesium sulfate, 

filtered and concentrated. Chromatography (silica gel, hexanes/ethyl acetate 80/20) 

yielded a white solid (12.8 g, 93%). IR (NaCl, cm-1) 3726, 3375, 3975, 3926, 2855, 2113, 

1989, 1735, 1640, 1464, 1375, 1309, 1251, 1172, 1078, 1044, 998, 980, 950, 912; 1H 
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NMR (CDCl3, ppm) δ 5.82 (1H; m; CH=C), 5.03 - 4.93 (2H; m; CH2=C), 4.06 (2H, t, 

COOCH2CH2), 3.98 (s, 12 α-CH), 3.86 (s, 1H, 7 α-CH), 3.46 (m, 1H, 3α-CH), 1.00 (d, 

3H, 21-CH3), 0.90 (s, 3H, 19-CH3), 0.69 (s, 3H, 18-CH3); 13C NMR (CDCl3, ppm) δ 

12.81, 17.66, 22.83, 23.65, 26.30, 26.53, 27.96, 28.51, 29.03, 29.26, 29.46, 29.61, 29.77, 

29.83, 30.70, 31.38, 31.75, 34.15, 35.18, 35.74, 39.67, 39.85, 41.81, 41.95, 46.72, 47.29, 

64.73, 68.72, 72.18, 73.40, 114.54, 139.36 and 174.83 (33 observed, 35 required). 

Diene 2a. Compound 1a (12.00 g, 26.51 mmol), freshly distilled triethylamine (8.8 

mL, 64.1 mmol) and anhydrous DCM (200 mL) were placed in a flame-dried round 

bottom flask (three-neck, 500 mL) equipped with a pressure equalizing dropping funnel 

under an argon atmosphere. The mixture was cooled down to 0oC in an ice-water bath 

and freshly distilled ω-undecenoyl chloride (11.80 g, 58.3 mmol) in anhydrous DCM (30 

mL) was added via dropping funnel over 2 h. During the addition, compound 1a 

dissolved slowly and the reaction solution became transparent. With more ω-undecenoyl 

chloride added into the reaction system, a white precipitate (triethylammonium chloride) 

appeared. After the addition finished, the reaction solution was stirred for 20 h at room 

temperature. Before stopping the reaction, thin layer chromatography (TLC) analysis 

(hexanes/ethyl acetate 60/40) confirmed the presence of the desired diene and then the 

reaction solution was poured into an aqueous hydrochloric acid solution (0.1 M, 500 mL). 

The DCM phase was then extracted with water (3 × 200 mL). The resulting milky DCM 

phase was moved into a 500 mL conical flask and dried by anhydrous magnesium 

sulphate (50 g). The mixture was stirred overnight. The magnesium sulphate was filtered 

and the solvent was evaporated. Chromatography (silica gel, hexanes/ethyl acetate 70/30) 

yielded a colourless solid. The resulting compound was dried in vacuum for 20 h (13.12 g, 

63%); Tm (DSC) 88ºC; IR (NaCl, cm-1) 3492, 3076, 2969, 2928, 2856, 1738, 1641, 1464, 

1447, 1418, 1379, 1360, 1243, 1171, 1096, 1073, 1040, 994 and 911; 1H NMR (CDCl3, 

ppm) δ 5.80 (2H; m; CH=C), 5.02 - 4.89 (4H; m; CH2=C), 4.57 (1H; m; H-3), 4.26 (4H; s; 

CH2OCO), 3.98 (1H; m; H-12), 3.85 (1H; m; H-7), 2.44 - 1.00 (56H; mm), 0.98 (3H; d, J 

= 6.2 Hz; 21-CH3), 0.90 (3H; s; 19-CH3) and 0.69 (3H; s; 18-CH3); 13C NMR (CDCl3, 

ppm) δ 12.99, 17.76, 22.97, 23.57, 25.30, 25.48, 27.14, 27.16, 27.86, 28.83, 29.32, 29.50, 

29.53, 29.57, 29.64, 29.72, 29.73, 31.19, 31.48, 34.21, 34.23, 34.56, 34.83, 35.12, 35.23, 
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35.32, 35.54, 35.67, 39.99, 41.63, 42.50, 46.98, 47.62, 62.44, 62.51, 68.68, 73.32, 74.42, 

114.55, 114.60, 139.59, 139.66, 173.97, 174.04 and 174.39 (45 observed, 48 required); 

MS (MALDI-TOF) : calc for C48H80O8Na+ 807.6, found 807.4; elemental analysis: calc: 

C, 73.4%, H, 10.3%; found: C, 73.5%, H, 9.0%. 

Diene 2b. This compound was prepared following a similar procedure as for diene 

2a, from compound 1b (12.00 g, 28.53 mmol), anhydrous DCM (100 mL), triethylamine 

(freshly distilled, 13.7 mL, 99.1 mmol) and freshly distilled ω-undecenoyl chloride 

(14.50 g, 71.5 mmol). Chromatography (silica gel, hexanes/ethyl acetate 90/10) and 

recrystallization from hexanes produced white crystals (16.46 g, 77%). Mp 57 - 58oC; IR 

(NaCl, cm-1) 2928, 2855, 1739, 1641, 1451, 1380, 1242, 1163, 1117, 1097, 1065, 993, 

909 and 724; 1H NMR (CDCl3, ppm) δ 5.78 (2H; m; CH=C), 4.96 (4H; m; CH2=C), 4.73 

(1H; m; H-3), 4.27 (4H; s; CH2OCO), 2.39 - 0.96 (60H; mm), 0.92 (3H; s; 21-CH3), 0.90 

(3H; s; 19-CH3) and 0.64 (3H; s; 18-CH3); 13C NMR (CDCl3, ppm) δ 12.02, 18.24, 20.81, 

23.32, 24.16, 24.86, 25.05, 26.31, 26.67, 27.01, 28.17, 28.87, 29.03, 29.05, 29.07, 29.17, 

29.19, 29.26, 30.90, 31.09, 32.28, 33.76, 34.11, 34.58, 34.75, 35.03, 35.33, 35.77, 40.12, 

40.38, 41.88, 42.72, 55.99, 56.46, 61.98, 61.99, 74.03, 114.11, 114.14, 139.09, 139.13, 

173.37, 173.53 and 173.97 (44 observed, 48 required); MS (electrospray) : calc for 

C48H80O6Na+ 775.5853, found 775.5825; elemental analysis: calc: C, 76.5%, H, 10.7%; 

found: C, 76.8%, H, 11.0%. 

Diene 2c. This compound was prepared following a similar procedure as for diene 

2a, from compound 1c (12.00 g, 28.66 mmol), anhydrous DCM (300 mL), triethylamine 

(freshly distilled, 12.3 mL, 88.8 mmol) and freshly distilled ω-undecenoyl chloride 

(17.36 g, 85.6 mmol). Chromatography (silica gel, ethyl acetate/methanol 95/5) yielded 

the desired product as a colourless oil (17.34 g, 81%). IR (NaCl, cm-1) 3295, 3213, 3080, 

2973, 2927, 2855, 1736, 1639, 1555, 1466, 1449, 1422, 1380, 1243, 1174, 1118, 992 and 

909; 1H NMR (CDCl3, ppm) δ 6.45 (2H; s; NH), 5.79 (2H; m; CH=C), 5.01 - 4.87 (4H; 

m; CH2=C), 4.71 (1H; m; H-3), 3.35 (4H; t, J = 2.3 Hz; CH2NHCO), 2.28 - 0.95 (60H; 

mm), 0.91 (3H; s; 19-CH3), 0.90 (3H; s, 21-CH3) and 0.62 (3H; s; 18-CH3); 13C NMR 

(CDCl3, ppm) δ 12.37, 18.71, 21.15, 23.65, 24.51, 25.38, 26.11, 27.00, 27.34, 28.58, 

29.19, 29.22, 29.35, 29.40, 29.44, 29.50, 29.59, 29.67, 29.70, 29.71, 32.17, 32.61, 33.83, 
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34.09, 34.10, 34.90, 35.07, 35.36, 35.89, 36.10, 36.93, 40.22, 40.28, 40.47, 40.72, 42.21, 

43.04, 56.39, 56.78, 74.38, 114.47, 114.51, 139.35, 139.42, 173.74, 174.93 and 175.37 

(47 observed, 48 required); MS (MALDI-TOF) : calc for C48H82O4N2Na+ 773.6, found 

773.5; elemental analysis: calc: C, 76.7%, H, 11.0%, N, 3.7%; found: C, 76.8%, H, 

11.5%, N, 3.7%. 

Diene 2d. This compound was prepared following a similar procedure as for diene 

2a, from compound 1d (12.00 g, 28.60 mmol), anhydrous DCM (250 mL), triethylamine 

(freshly distilled, 12 mL, 86.0 mmol) and freshly distilled ω-undecenoyl chloride (17.3 g, 

85.3 mmol). Chromatography (silica gel, hexanes/ethyl acetate 40/60) yielded the desired 

product as a colourless oil (21.68 g, 85%). IR (NaCl, cm-1) 3296, 3076, 2928, 2855, 1736, 

1679, 1648, 1545, 1465, 1452, 1419, 1380, 1357, 1328, 1240, 1173, 1118, 992 and 909; 
1H NMR (CDCl3, ppm) δ 5.81 (2H; m; CH=C), 5.72 (1H; t, J = 5.1 Hz; NH), 5.03 - 4.88 

(4H; m; CH2=C), 4.72 (1H; m; H-3), 4.17 (2H; t, J = 5.3 Hz; CH2OCO), 3.51 (2H; q, J = 

5.4 Hz; CO NH CH2), 2.37 - 0.81 (66H; mm) and 0.64 (3H; s; 18-CH3); 13C NMR 

(CDCl3, ppm) δ 12.50, 18.82, 21.28, 23.78, 24.63, 25.36, 25.52, 26.77, 27.15, 27.47, 

28.70, 29.33, 29.49, 29.51, 29.54, 29.58, 29.64, 29.67, 29.73, 29.75, 32.16, 32.75, 34.05, 

34.22, 34.23, 34.63, 35.05, 35.23, 35.50, 35.95, 36.24, 39.32, 40.61, 40.86, 42.36, 43.20, 

56.52, 56.94, 63.57, 74.52, 114.59, 114.64, 139.57, 139.63, 173.89, 174.11 and 174.45 

(47 observed, 48 required); MS (MALDI-TOF) : calc for C48H81O5NNa+ 774.6, found 

774.5; elemental analysis: calc: C, 76.6%, H, 10.9%, N, 1.9%; found: C, 76.4%, H, 

10.5%, N, 1.9%. 

Diene 2e. This compound was prepared following a similar procedure as for diene 

2a, from compound 1e (12.00 g, 21.43 mmol), anhydrous DCM (250 mL), triethylamine 

(freshly distilled, 4.2 mL, 30.0 mmol) and freshly distilled ω-undecenoyl chloride (5.20 g, 

25.7 mmol). Chromatography (silica gel, hexanes/ethyl acetate 80/20) yielded the desired 

product as a white solid (14.10 g, 91%). IR (NaCl, cm-1) 3511, 2920, 2852, 1724, 1639, 

1464, 1416, 1364, 1345, 1312, 1273, 1246, 1198, 1171, 1128, 1093, 1073, 1039, 1024, 

992, 948, 910; 1H NMR (CDCl3, ppm) δ 5.82 (2H; m; CH=C), 5.03 - 4.94 (4H; m; 

CH2=C), 4.60 (m, 1H, 3α-CH), 4.07 (t, 2H, COOCH2CH2), 4.01 (s, 12 α-CH), 3.88 (s, 

1H, 7 α-CH), 1.01 (d, 3H, 21-CH3), 0.93 (s, 3H, 19-CH3), 0.72 (s, 3H, 18-CH3); 13C 
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NMR (CDCl3, ppm) δ 12.92, 17.76, 22.87, 23.61, 25.48, 26.35, 26.98, 27.18, 27.91, 

28.65, 29.06, 29.30, 29.32, 29.48, 29.52, 29.58, 29.65, 29.71, 29.81, 29.88, 31.28, 31.68, 

34.21, 34.96, 35.11, 35.24, 35.35, 35.57, 35.64, 39.84, 41.64, 42.37, 46.95, 47.63, 64.87, 

68.74, 73.46, 74.45, 114.55, 139.56, 173.85 and 174.83 (42 obs, 46 req). 

Cyclic monomer 3a. Diene 2a (3.00 g, 3.82 mmol) was dissolved in DCM (1.5 L) 

in a 3-neck flame-dried round bottom flask (2 L) attached to a condenser. The resulting 

solution was heated up to reflux and degassed by bubbling with argon for 30 minutes 

while stirring. Then a solution of 157 mg benzylidene-bis(tricyclohexylphosphine) 

dichlororuthenium (first-generation Grubbs catalyst) (1.91 × 10-4 mol) in 20 mL 

argon-degassed DCM was added via a syringe (50 mL). The reaction continued with 

stirring for 5 h under reflux with the protection of argon. Thin layer chromatography 

(TLC) analysis revealed the desired cyclic monomer in the reaction system. Finally, ethyl 

vinyl ether (2 mL, excess) was added in order to quench the catalyst and the reaction 

solution was stirred for 1 h further at room temperature. Column chromatography (silica 

gel, hexanes/ethyl acetate 70/30) produced a white solid (2.46 g, 85%); Tm (DSC) 119ºC; 

IR (NaCl, cm-1) 3452, 3385, 2974, 2925, 2854, 1738, 1462, 1377, 1301, 1253, 1173, 

1075, 1039 and 966; 1H NMR (CDCl3, ppm) δ 5.44 - 5.29 (2H; mm; CH=), 4.59 (1H; m; 

H-3), 4.35 - 4.18 (4H; m; CH2OCO), 3.97 (1H; m; H-12), 3.85 (1H; m; H-7), 2.42 - 1.03 

(56H; mm), 1.00 (3H; d, J = 10.2 Hz; 21-CH3), 0.90 (3H; s; 19-CH3) and 0.70 (3H; s; 

18-CH3); 13C NMR (CDCl3, ppm) δ 12.96, 17.78, 23.00, 23.53, 25.31, 25.55, 27.08, 

27.32, 27.79, 29.00, 29.12, 29.14, 29.19, 29.43, 29.56, 29.59, 29.71, 29.77, 30.07, 30.85, 

31.25, 32.91, 33.05, 34.65, 34.82, 35.04, 35.22, 35.27, 35.44, 35.62, 39.98, 41.60, 42.71, 

46.78, 46.90, 62.59, 62.55, 68.58, 73.22, 74.32, 130.75, 130.84, 174.02, 174.10 and 

174.51 (45 observed, 46 required); MS (MALDI-TOF) : calc for C46H76O8Na+ 779.5, 

found 779.4; elemental analysis: calc: C, 73.0%, H, 10.1%; found: C, 72.8%, H, 9.2%. 

Cyclic monomer 3b. This compound was prepared following a similar procedure as 

for cyclic monomer 3a, from diene 2b (3.00 g, 3.98 mmol), 

benzylidene-bis(tricyclohexylphosphine) dichlororuthenium (first-generation Grubbs’ 

catalyst) (164 mg, 1.99 × 10-4 mol) and DCM (1.5 L). Chromatography (silica gel, 

hexanes/ethyl acetate 90/10) yielded a white solid (2.31 g, 80%). Tm (DSC) 95ºC; IR 

(NaCl, cm-1) 2927, 2855, 1738, 1450, 1378, 1245, 1162, 1096, 1061, 1018 and 966; 1H 
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NMR (CDCl3, ppm) δ 5.37 (2H; mm; CH=), 4.74 (1H; m; H-3), 4.28 (4H; m; CH2OCO), 

2.42 - 0.97 (60H; mm), 0.93 (3H; s; 21-CH3), 0.92 (3H; s; 19-CH3) and 0.65 (3H; s; 

18-CH3); 13C NMR (CDCl3, ppm) δ 12.38, 18.59, 21.17, 23.67, 24.51, 25.22, 25.41, 

26.66, 27.03, 27.36, 28.51, 29.22, 29.37, 29.42, 29.46, 29.54, 29.58, 29.65, 29.96, 31.25, 

31.47, 32.64, 32.93, 34.11, 34.46, 34.91, 34.93, 35.10, 35.15, 35.38, 35.68, 36.13, 40.48, 

40.74, 42.24, 43.07, 56.38, 56.81, 62.32, 62.52, 74.39, 130.64, 130.68, 173.73, 173.90 

and 174.33 (46 observed, 46 required); MS (MALDI-TOF) : calc for C46H76O6Na+ 

747.55, found 747.50; elemental analysis: calc: C, 76.2%, H, 10.6%; found: C, 75.8%, H, 

10.9%. 

Cyclic monomer 3c. This compound was prepared following a similar procedure as 

for cyclic monomer 3a, from diene 2c (3.00 g, 3.99 mmol), benzylidene-bis 

(tricyclohexylphosphine) dichlororuthenium (first-generation Grubbs’ catalyst) (164 mg, 

1.99 × 10-4 mol) and DCM (1.5 L). Chromatography (silica gel, ethyl acetate/methanol 

95/5) yielded the desired compound as a white solid (2.36 g, 82%). Tm (DSC) 134ºC; IR 

(NaCl, cm-1) 3299, 3220, 3080, 2971, 2927, 2854, 1731, 1670, 1649, 1546, 1464, 1449, 

1378, 1334, 1246, 1176, 1020 and 966; 1H NMR (CDCl3, ppm) δ 6.34 (2H; s; NH), 5.43 - 

5.29 (2H; mm; CH=), 4.74 (1H; m; H-3), 3.48 - 3.29 (4H; m; CH2NHCO), 2.31 - 0.97 

(60H; mm), 0.92 (3H; s; 19-CH3), 0.91 (3H; d, J = 6.4 Hz; 21-CH3) and 0.64 (3H; s; 

18-CH3); 13C NMR (CDCl3, ppm) δ 12.45, 18.81, 21.29, 23.75, 24.61, 25.55, 26.14, 

26.74, 27.08, 27.42, 28.76, 28.99, 29.00, 29.30, 29.60, 29.70, 29.72, 29.75, 29.76, 29.82, 

30.05, 32.35, 32.69, 32.85, 33.03, 33.89, 34.99, 35.33, 35.45, 36.11, 36.19, 37.15, 40.62, 

40.76, 40.88, 42.27, 43.17, 56.30, 56.99, 74.41, 130.65, 130.81, 173.95, 175.20 and 

175.66 (45 obs, 46 req); MS (MALDI-TOF) : calc for C46H78O4N2Na+ 745.6, found 745.5; 

elemental analysis: calc: C, 76.4%, H, 10.9%, N, 3.9%; found: C, 75.4%, H, 11.2%, N, 

3.7%. 

Cyclic monomer 3d. This compound was prepared following a similar procedure as 

for cyclic monomer 3a, from diene 3d (3.00 g, 3.99 mmol), benzylidene-bis 

(tricyclohexylphosphine) dichlororuthenium (first-generation Grubbs’ catalyst) (164 mg, 

1.99 × 10-4 mol) and DCM (1.5 L). Chromatography (silica gel, hexanes/ethyl acetate 

50/50) yielded a white solid (2.40 g, 83%). Tm (DSC) 13ºC; IR (NaCl, cm-1) 3300, 3075, 

2927, 2855, 1735, 1675, 1649, 1546, 1460, 1450, 1380, 1241, 1174, 1121 and 966; 1H 
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NMR (CDCl3, ppm) δ 5.77 (1H; t, J = 5.1 Hz; NH), 5.43 - 5.29 (2H; mm; CH=), 4.74 (1H; 

m; H-3), 4.18 (2H; t, J = 4.9 Hz; CH2OCO), 3.52 (2H; m; CH2NHCO), 2.36 - 0.97 (60H; 

mm), 0.93 (3H; d, J = 5.9 Hz; 21-CH3), 0.92 (3H; s; 19-CH3) and 0.64 (3H; s; 18-CH3); 
13C NMR (CDCl3, ppm) δ 12.44, 18.84, 21.28, 23.75, 24.60, 25.35, 25.55, 26.75, 27.09, 

27.41, 28.68, 29.00, 29.05, 29.35, 29.52, 29.55, 29.57, 29.69, 29.72, 29.82, 30.02, 32.27, 

32.69, 32.86, 33.00, 33.54, 34.66, 34.99, 35.33, 35.45, 35.73, 36.18, 39.47, 40.64, 40.89, 

42.27, 43.16, 56.04, 57.04, 63.54, 74.41, 130.69, 130.79, 173.90, 174.16 and 174.53 (46 

observed, 46 required); MS (MALDI-TOF) : calc for C46H77O5NNa+ 746.6, found 746.4; 

elemental analysis: calc: C, 76.3%, H, 10.7%, N, 1.9%; found: C, 76.0%, H, 9.9%, N, 

1.9%. 

Cyclic monomer 3e. This compound was prepared following a similar procedure as 

for cyclic monomer 3a, from diene 2e (3.00 g, 4.13 mmol), benzylidene-bis 

(tricyclohexylphosphine) dichlororuthenium (first-generation Grubbs’ catalyst) (170 mg, 

2.07 × 10-4 mol) and DCM (1.5 L). Chromatography (silica gel, hexanes/ethyl acetate 

80/20) yielded a white solid (2.34 g, 81%). IR (NaCl, cm-1) 3332, 2922, 2853, 2113, 1727, 

1462, 1377, 1253, 1186, 1123, 1075, 1036, 1020, 1004, 965 and 912; 1H NMR (CDCl3, 

ppm) δ 5.43 (2H; mm; CH=), 4.60 (m, 1H, 3α-CH), 4.16 - 4.03 (m, 2H, COOCH2CH2), 

4.00 (s, 12 α-CH), 3.87 (s, 1H, 7 α-CH), 1.03 (d, 3H, 21-CH3), 0.92 (s, 3H, 19-CH3), 

0.73 (s, 3H, 18-CH3); 13C NMR (CDCl3, ppm) δ 12.92, 17.77, 23.00, 23.48, 25.65, 26.78, 

27.01, 27.41, 27.84, 29.00, 29.18, 29.30, 29.33, 29.43, 29.63, 29.73, 29.85, 29.89, 30.01, 

30.76, 31.33, 33.08, 33.20, 34.77, 34.96, 35.19, 35.24, 35.53, 35.67, 39.92, 41.56, 42.91, 

46.42, 46.81, 64.89, 68.54, 73.24, 74.34, 130.69, 130.74, 173.98 and 174.95 (42 obs, 44 

req); MS (electrospray) 721.53834, C44H74O6Na+ requires 721.53776; elemental analysis: 

calc: C, 75.60%, H, 10.67%; found: C, 75.93%, H, 10.93%. 

2.3 Kinetic study of ring-opening metathesis polymerization 

The kinetic study of ring-opening metathesis polymerization by 

second-generation Grubbs’ catalyst was conducted. To a concentrated solution (1.3 M) of 

cyclic monomer 3a in anhydrous DCM (2 mL), a catalytic amount (1% eq.) of 

second-generation Grubbs’ catalyst was added. A small amount of reaction medium (40 
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µL) was taken out via a syringe at specific time intervals and quenched by ethyl vinyl 

ether immediately. The molecular weight of the polymer in the resulting solution was 

measured by GPC, and a plot of molecular weight vs. time was constructed. 

2.4 The preparation of bile acid-based polymers 1-5 

The polymers were prepared via entropy-driven ring-opening metathesis 

polymerization of the cyclic bile acid monomers as shown in Figure 2.3. To a 

concentrated solution of cyclic monomer (1.3 mol/L) in anhydrous DCM, a catalytic 

amount (0.067 eq.) of second-generation Grubbs catalyst was added. The resulting 

solution was vigorously stirred and then ethyl vinyl ether was added to quench the 

catalyst. The desired polymer was obtained by precipitation in a hexanes/methanol (2:1) 

mixture. 

Polymers 1a-f. Polymer 1a was prepared via entropy driven ring-opening 

metathesis polymerization of cyclic monomer 3a. Cyclic monomer 3a (2.50 g, 3.3 mmol) 

and anhydrous DCM (degassed with argon for one hour, 2.1 mL) were placed in a 

flame-dried round-bottomed flask (1-neck, 50 mL) under argon. A solution of 

[1,3-bis-(2,4,6-trimethylphenyl)-2-imidazolidinylidene) dichloro(phenylmethylene)-(tricy 

clehexylphos-phine)ruthenium] (second-generation Grubbs catalyst) in DCM (19 mg, 2.2 

× 10-5 mol in 400 μL degassed anhydrous DCM), amounting to 0.67 mol% with respect 

to the monomer, was added via a syringe. The mixture was left to react at room 

temperature for 20 minutes. The vigorously stirred solution rapidly became very viscous 

and finally stirring stopped. Ethyl vinyl ether (1 mL) was added and left to diffuse for 1 h 

in order to quench the catalyst and DCM (40 mL) was added. The resulting viscous 

solution was precipitated in a hexanes/methanol (2/1, v/v) mixture (1 L). The colourless 

gum that precipitated was filtered, quickly dried in vacuum, dissolved in DCM (40 mL) 

and precipitated in a hexanes/methanol (2/1, v/v) mixture (1 L) again. Filtration and 

drying in vacuum for 20 h yielded a colourless gum (2.3 g, 92 %). TGA: Tdec: 349oC; IR 

(NaCl, cm-1) 4508, 2926, 2855, 1732, 1464, 1418, 1380, 1251, 1172, 1096, 1074, 969 and 

914; 1H NMR (CDCl3, ppm) δ 5.43 - 5.27 (2H; mm; CH=CH), 4.57 (1H; m; H-3), 4.26 

(4H; s; CH2OCO), 3.98 (1H; m; H-12), 3.85 (1H; m; H-7), 2.45 - 0.80 (62H; mm) and 

0.69 (3H; s; 18-CH3); 13C NMR (CDCl3, ppm) δ 12.97, 14.55, 17.77, 22.93, 23.09, 23.62, 
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25.31, 25.50, 27.06, 27.18, 27.64, 27.91, 28.75, 29.54, 29.62, 29.68, 29.70, 29.76, 30.05, 

31.18, 31.51, 31.53, 32.02, 33.03, 34.56, 34.58, 35.14, 35.25, 35.26, 35.64, 39.92, 41.66, 

42.44, 46.99, 47.66, 62.44, 62.52, 68.73, 74.47, 130.73, 130.76, 130.78, 130.81, 173.98, 

174.07 and 174.44 (46 observed, 46 required); elemental analysis: calc for (C46H76O8)n: C, 

73.0%, H, 10.1%; found: C, 72.7%, H, 10.6%. 

Polymers 1b-f were prepared following a similar procedure as for polymer 1a from 

cyclic monomer 3a using different catalyst loadings and reaction times (shown in Table 

2.1). Their IR and NMR spectra are the same as those for polymer 1a. 

 

Table 2.1. Catalytic loading of second-generation Grubbs catalyst and quenching 

time of polymers 1a-f. 

Homopolymer Catalytic loading (%) Quenching time 

1a 0.67 20 min 

1b 0.67 20 h 

1c 1 3 h 

1d 1 20 h 

1e 2 20 h 

1f 1 1 min 
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Figure 2.3. Preparation of polymers 1-5 via ring-opening metathesis 

polymerization. 

 

Polymer 2. This polymer was prepared following a similar procedure as for 

polymer 1, from cyclic monomer 3b (2.50 g, 3.5 mmol), anhydrous DCM (degassed with 

argon for one hour, 2.1 mL) and a solution of [1,3-bis-(2,4,6-trimethylphenyl)-2-imidazo- 
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lidinylidene)dichloro(phenylmethylene)-(tricyclohexylphosphine)ruthenium] 

(second-generation Grubbs catalyst) in DCM (20 mg, 2.3 × 10-5 mol in 400 μL degassed 

anhydrous DCM), amounting to 0.67 mol% with respect to the monomer. This produced 

a colourless gum (2.38 g, 95 %). TGA: Tdec: 348oC; IR (NaCl, cm-1) 2927, 2854, 1739, 

1453, 1380, 1243, 1163, 1122, 1097, 1065, 967, 930 and 737; 1H NMR (CDCl3, ppm) δ 

5.35 (2H; m; CH=), 4.72 (1H; m; H-3), 4.26 (4H; s; CH2OCO), 2.41 - 0.96 (60H; mm), 

0.92 (3H; s; 21-CH3), 0.90 (3H; s; 19-CH3) and 0.64(3H; s; 18-CH3); 13C NMR (CDCl3, 

ppm) δ 12.03, 18.25, 20.82, 23.33, 24.18, 24.78, 24.87, 25.06, 26.32, 26.69, 27.02, 27.20, 

28.18, 29.12, 29.24, 29.32, 29.63, 30.90, 31.14, 32.30, 32.59, 34.11, 34.59, 34.75, 35.05, 

35.35, 35.79, 40.13, 40.39, 41.90, 42.73, 56.05, 56.46, 62.00, 74.04, 130.30, 173.39, 

173.55 and 173.97 (39 observed, 46 required); elemental analysis: calc for (C46H76O6)n: C, 

76.2%, H, 10.6%; found: C, 75.5%, H, 11.5%. 

Polymer 3. This polymer was prepared following a similar procedure as for 

polymer 1, from cyclic monomer 3c (2.50 g, 3.5 mmol), anhydrous DCM (degassed with 

argon for one hour, 2.1 mL) and a solution of [1,3-bis-(2,4,6-trimethylphenyl) 

2-imidazolidinylidene)dichloro(phenylmethylene)-(tricyclohexylphosphine)ruthenium] 

(second-generation Grubbs catalyst) in anhydrous DCM (20 mg, 2.3 × 10-5 mol in 400 μL 

degassed anhydrous DCM), amounting to 0.67 mol% with respect to the monomer. This 

yielded a colourless gum (2.3 g, 92 %). TGA: Tdec: 350oC; IR (NaCl, cm-1) 3290, 3216, 

3083, 2926, 2854, 2696, 1732, 1644, 1560, 1550, 1465, 1449, 1379, 1359, 1245, 1177, 

1120, 967 and 912; 1H NMR (CDCl3, ppm) δ 6.68 (2H; s; NH), 5.43-5.28 (2H; mm; 

CH=), 4.72 (1H; m; H-3), 3.36 (4H; s; CH2NHCO), 2.33-0.81 (66H; mm) and 0.63 (3H; s; 

18-CH3); 13C NMR (CDCl3, ppm) δ 12.52, 18.85, 21.28, 23.79, 24.64, 25.53, 26.24, 

26.29, 26.79, 27.14, 27.48, 28.71, 29.41, 29.49, 29.53, 29.57, 29.62, 29.67, 29.72, 29.76, 

29.80, 29.86, 30.02, 30.05, 30.09, 32.27, 32.75, 33.03, 35.04, 35.23, 35.50, 36.24, 37.11, 

40.60, 40.86, 42.34, 43.19, 56.51, 56.92, 74.52, 130.74, 130.77, 130.84, 173.92, 175.11 

and 175.51 (46 observed, 46 required); elemental analysis: calc for (C46H78O4N2)n: C, 

76.4%, H, 10.9%, N, 3.9%; found: C, 74.9%, H, 10.0%, N, 3.8%. 

Polymer 4. This polymer was prepared following a similar procedure as for 

polymer 1, from cyclic monomer 3d (2.50 g, 3.5 mmol), anhydrous DCM (degassed with 
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argon for one hour, 2.1 mL) and a solution of [1,3-bis-(2,4,6-trimethylphenyl)-2- 

imidazolidinylidene)dichloro(phenylmethylene)-(tricyclohexylphosphine)ruthenium] 

(second-generation Grubbs catalyst) in anhydrous DCM (20 mg, 2.3 × 10-5 mol in 400 μL 

degassed anhydrous DCM), amounting to 0.67 mol% with respect to the monomer. This 

yielded a colourless gum (2.35 g, 93 %). TGA: Tdec: 350oC; IR (NaCl, cm-1) 3433, 3366, 

3300, 3222, 3075, 2927, 2854, 1733, 1679, 1651, 1547, 1464, 1454, 1422, 1380, 1239, 

1175, 1120, 990 and 967; 1H NMR (CDCl3, ppm) δ 5.81 (1H; m; NH), 5.42-5.29 (2H; 

mm; CH=), 4.72 (1H; m; H-3), 4.15 (2H; t, J = 5.3 Hz; CH2OCO), 3.51 (2H; q, J = 5.5 

Hz; CH2NHCO), 2.34-0.81 (66H; mm) and 0.63 (3H; s; 18-CH3); 13C NMR (CDCl3, ppm) 

δ 12.49, 18.82, 21.28, 23.78, 24.63, 25.36, 25.52, 25.71, 26.77, 27.14, 27.47, 27.64, 28.69, 

29.54, 29.57, 29.68, 29.70, 29.76, 29.78, 30.06, 32.14, 32.75, 34.05, 34.62, 35.04, 35.21, 

35.50, 35.96, 36.24, 39.26, 40.60, 40.85, 42.35, 43.19, 56.55, 56.92, 63.54, 74.52, 130.72, 

130.75, 130.76, 130.80, 173.88, 174.11 and 174.42 (45 observed, 46 required); elemental 

analysis: calc for (C46H77O5N)n: C, 76.3%, H, 10.7%, N, 1.9%; found: C, 75.8%, H, 

11.2%, N, 1.9%. 

Polymer 5. This polymer was prepared following a similar procedure as for 

polymer 1, from cyclic monomer 3e (2.50 g, 3.6 mmol), anhydrous DCM (degassed with 

argon for one hour, 2.1 mL) and a solution of [1,3-bis-(2,4,6-trimethylphenyl) 

2-imidazolidinylidene)dichloro(phenylmethylene)-(tricyclohexylphosphine)ruthenium] 

(second-generation Grubbs catalyst) in DCM (21 mg, 2.4 × 10-5 mol in 400 μL degassed 

anhydrous DCM, amounting to 0.67 mol% with respect to the monomer). This produced 

a colourless gum (2.35 g, 94 %). TGA: Tdec: 363 oC; IR (NaCl, cm-1) 3439, 2921, 2852, 

1730, 1464, 1378, 1249, 1172, 1093, 1072, 1038, 967, 912 and 722; 1H NMR (CDCl3, 

ppm) δ 5.40 (2H; mm; CH=), 4.60 (m, 1H, 3α-CH), 4.07 (t, 2H, COOCH2CH2), 4.01 (s, 

12 α-CH), 3.87 (s, 1H, 7 α-CH), 1.01 (d, 3H, 21-CH3), 0.93 (s, 3H, 19-CH3), 0.72 (s, 3H, 

18-CH3); 13C NMR (CDCl3, ppm) δ 12.97, 17.79, 22.94, 23.62, 25.50, 26.36, 27.06, 

27.18, 27.63, 27.90, 28.73, 29.08, 29.53, 29.62, 29.69, 29.75, 29.82, 29.85, 29.90, 29.92, 

30.04, 31.33, 31.75, 33.02, 34.91, 35.13, 35.26, 35.35, 35.62, 39.92, 41.65, 42.42, 46.98, 

47.69, 64.91, 68.73, 73.41, 73.44, 74.45, 130.74, 130.76, 173.91 and 174.83 (43 observed, 
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44 required); elemental analysis: calc for (C46H76O6)n: C, 75.60%, H, 10.67%; found: C, 

75.81%, H, 10.92%. 

2.5 Synthesis of copolyesters based on cholic acid and ricinoleic acid  

Ricinoleic acid methyl ester. Castor oil (10.00 g, 10.7 mmol), methanol (50 mL) 

and potassium hydroxide (0.22 g, 3.9 mmol) were placed in a one-neck round-bottom 

flask (100 mL) equipped with a condenser. The resulting solution was stirred and heated 

to reflux for 4 h using an oil bath and then condensed to 20 mL by evaporation. The 

remaining mixture was dissolved in 200 mL DCM, extracted with water (3 × 250 mL), 

dried with magnesium sulfate, filtered and then the solvent was evaporated. Column 

chromatography (silica gel, hexanes/ethyl acetate 95/5) resulted in a colourless oil (8.81 g, 

88%); 1H NMR (CDCl3, ppm) δ 5.63 - 5.37 (2H; m; C9, C10, -CH=CH-), 3.69 (4H; m; 

C12, CH-OH; -OCH3), 2.32 (2H; m; C2, -CH2-), 2.23 (2H; m; C11, -CH2-), 2.06 (2H; m; 

C8, -CH2-), 1.62 (2H; m; C3, -CH2-), 1.46 (2H; m; C13, -CH2-), 1.31 (16H; m; 

C4-7,C14-17, -CH2-), 0.89 (3H; m; C18, -CH3). 

Ricinoleic acid. Methyl ester of ricinoleic acid (10.00 g, 32.1 mmol) was placed in 

a three-neck flask (500 mL) fitted with a pressure equalizing dropping funnel and stirred 

while potassium hydroxide methanol-water solution (6 M, 200 mL, methanol : water =  

1:1, v/v) was added into the flask quickly. The resulting mixture solidified quickly and 

became a wax. Three hours later, the reaction system was cooled down to 0oC in an ice 

bath. Concentrated hydrochloride acid (12.1 M, 100 mL) was added over 3 h via a 

dropping funnel. The solid was dissolved gradually and the resulting solution separated 

into water and oil phases. DCM (200 mL) was added into the flask and the DCM phase 

was extracted with water (3 × 250 mL), dried with magnesium sulfate, filtered and the 

solvent was evaporated. The desired compound is a colorless viscous liquid (8.79 g, 92%); 
1H NMR (CDCl3, ppm) δ 5.58-5.35 (2H; m; C9, C10, -CH=CH-), 3.64 (1H; m; C12, 

CH-OH), 2.35 (2H; m; C2, -CH2-), 2.23 (2H; m; C11, -CH2-), 2.07 (2H; m; C8, -CH2-), 

1.64 (2H; m; C3, -CH2-), 1.48 (2H; m; C13, -CH2-), 1.33 (16H; m; C4-7,C14-17, -CH2-), 

0.90 (3H; m; C18, -CH3). 
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Ricinoleic acid monolactone. This compound was prepared following the same 

procedure as published in the literature5 as shown in Figure 2.4. Ethanol-free dry CHCl3 

(500 mL CHCl3 extracted with 50 mL concentrated sulfuric acid, then extracted with 200 

mL water three times, dried by calcium chloride, filtered and then distilled) (900 mL), 

DCC (13.7 g, 66.4 mmol), DMAP (12.2 g, 99.5 mmol) and DMAP·HCl (10.5 g, 66.2 

mmol) were placed into a three-neck, round-bottom flask (2 L) equipped with a magnetic 

stirrer, condenser and dropping funnel with an argon inlet (through a septum cap). The 

resulting mixture was heated up to reflux under argon protection and a solution of 

ricinoleic acid (10.00 g, 33.5 mmol in 100 mL ethanol-free dry CHCl3) was added via a 

dropping funnel during 5 h. The reaction system was then cooled down to room 

temperature. The reaction continued for 10 h under argon protection. Methanol (40 mL) 

and acetic acid (7.5 mL) were then added, and stirring was continued for 30 minutes. 

Meanwhile, no DCC was detected by TLC (hexanes/ethyl acetate 90/10), indicating the 

reaction was completed. The reaction mixture was concentrated to 200 mL and diluted 

with diethyl ether (800 mL). The resulting solution was filtered and the solvent was 

evaporated. The remaining viscous mixture was dissolved in minimum hexane and 

column chromatography (silica gel, hexanes/DCM 50/50) yielded a colourless liquid (3.2 

g, 46%); 1H NMR (CDCl3, ppm) δ 5.54-5.34 (2H; m; C9, C10, -CH=CH-), 5.02-4.92 

(J=6Hz, 1H; m; C12, CH-OH), 2.50 (1H; m; C11, CHa), 2.30 (3H; m; C2, -CH2-; C11, 

CHb), 2.12 (2H; m; C8, -CH2-), 1.77-1.64 (3H; m; C3, -CH2-; C13, CHa), 1.64-1.16 (17H; 

m; C13, CHb; C4-7,C14-17, -CH2-), 0.90 (3H; m; C18, -CH3). 13C NMR (CDCl3, ppm) δ 

13.94, 22.47, 23.36, 24.48, 25.60, 25.64, 26.02, 27.26, 29.00, 29.40, 31.64,31.74, 33.73, 

35.06, 73.67, 124.74, 132.29 and 174.14 (18 obs, 18 req); MS (electrospray) : calc for 

C18H32O2Na+ 303.22945, found 303.22837. 
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Figure 2.4. Synthesis of monolactone of ricinoleic acid. 

 

Copolymers 6a-f. Copolymer 6a was prepared following a procedure established 

previously6 (shown in Figure 2.5) based on cyclic monomer 3a and ricinoleic acid 
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monolactone in the desired proportions (shown in Table 2.2). Cyclic monomer 3a (2.00 g, 

2.55 mmol), ricinoleic acid monolactone (126 mg, 0.45 mmol) and anhydrous DCM (1.9 

mL) were placed in a round-bottom flask (10 mL). A solution of second-generation 

Grubbs catalyst in anhydrous DCM (19 mg, 2.2 × 10-5 mol in 400 μL degassed anhydrous 

DCM, amounting to 0.67 mol% with respect to the total monomer quantity) was injected 

via a syringe. The resulting solution became viscous quickly and formed a gel. Ethyl 

vinyl ether (1 mL) was added into the reaction system to quench the catalyst after 20 h, 

and left to diffuse for 2 h. DCM (40 mL) was added and the resulting viscous solution 

was precipitated in a hexanes/methanol (2/1, v/v) mixture (1 L). The colourless gum that 

precipitated was filtered, quickly dried in vacuum, dissolved in DCM (40 mL) and 

precipitated in a hexanes/methanol (2/1, v/v) mixture (1 L) again. Filtration and drying in 

vacuum for 20 h yielded a colourless gum (1.7 g, 85%). TGA: Tdec: 357oC; IR (NaCl, 

cm-1) 3441, 2922, 2852, 1729, 1456, 1378, 1242, 1159, 1094, 1072, 1038, 967, 913 and 

724; 1H NMR (CDCl3, ppm) δ 5.46-5.32 (2.51H, mm, CH=, CA + RA), 4.88 (0.28H, m, 

CHOCO, RA ), 4.60 (1H, m, H-3, CA), 4.29, (4H, s, CH2OCO, CA ), 4.01 (1H, s, H-12, 

CA), 3.88 (1H, s, H-7, CA), 2.50-0.83 (68.5H, mm, CA + RA), 0.72 (3H, s, 18 –CH3, 

CA); 13C NMR (CDCl3, ppm) δ 12.97, 14.51, 17.76, 22.94, 23.00, 23.60, 25.30, 25.49, 

27.06, 27.16, 27.62, 27.90, 28.75, 29.39, 29.53, 29.60, 29.67, 29.75, 29.87, 30.03, 30.15, 

31.17, 31.50, 32.16, 33.01, 34.54, 34.89, 35.13, 35.23, 35.34, 35.63, 39.91, 41.64, 42.42, 

46.97, 47.65, 62.42, 62.50, 68.69, 73.36, 74.43, 130.70, 130.73, 130.75, 130.79, 173.90, 

173.94, 174.02 and 174.41. 

Copolymers 6b-f were prepared following a similar procedure as for copolymer 6a 

from cyclic monomer 3a and ricinoleic acid monolactone in the desired proportions 

(shown in Table 2.2). Their spectroscopic data (IR, 1H and 13C NMR) are similar to those 

of copolymer 6a, with differences in peak area ratios. 
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Figure 2.5. Synthesis of copolymers 6a-f. 

 

Table 2.2. Designed molar ratios of cyclic monomer 3a and ricinoleic acid 

monolactone for copolymers 6a-f. 

Copolymer Cyclic monomer 3a   

(mol %) 

Ricinoleic acid 

monolactone (mol %) 

6a 85 15 

6b 70 30 

6c 55 45 

6d 40 60 

6e 25 75 

6f 10 90 
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2.6 Characterization 

Thermogravimetric analyses (TGA) of polymers were recorded on a Hi-Res TGA 

2950 thermogravimetric analyzer from TA Instruments. A heating rate of 10oC/min from 

room temperature to a final temperature of 700oC was used for all samples. Tdec was 

defined as the onset of decomposition temperature. 

Differential scanning calorimetry (DSC) experiments were performed on a DSC 

Q1000 from TA Instruments. The heating and cooling rates were 10 ºC/min, and Tg was 

defined as the inflection point temperature of the transition of the second run. 

1H and 13C NMR spectra were recorded at room temperature on a Bruker AV400 

spectrometer operating at 400.13 MHz for proton and 100.61 MHz for carbon-13. The 

samples were dissolved in deuterated chloroform (or as indicated in the text) and 

measured. 

IR spectra were recorded on an Excalibur HE series FTS 3100 instrument from 

Digilab. All samples were dissolved in DCM and then coated onto NaCl crystal pallets. 

Size exclusion chromatography (SEC) was performed on a Breeze system from 

Waters equipped with a 1525 HPLC pump, a 717 Plus autosampler, a 2410 refractive 

index refractometer detector and a heater. Three Styragel Waters columns (HR3, HR4 

and HR6, all three 7.8 × 300 mm) were used in series. The eluent (THF) flow rate was 1 

mL/min. The temperature of the columns was set at 33 ºC. Calibration was performed by 

the use of the polystyrene kit SM-105 (10 points) from Shodex. 

Mechanical analysis was done on a DMA 2980 from TA Instruments. Polymer 

films for mechanical tests were prepared by evaporating the polymer solution in DCM in 

a PTFE mould (6.5 × 6.5 × 1 cm) covered with a Petri dish under atmospheric pressure 

for 24 h. The Petri dish helped to slow the evaporation and reduced the formation of air 

bubbles. Films were then further dried under vacuum for 24 h. Small rectangular samples 

(3.5 mm × 3.0 cm × 0.2 mm) were cut from these films with a knife and used for the 

mechanical tests. The dimensions of the samples were measured by the use of an 

electronic digital calliper with a precision of 0.01 mm. 
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Stress-strain experiments were carried out with a preload force of 0.02 N and a 

force ramp of 0.5 N/min. Young’s modulus is defined as the slope of the stress-strain 

curves between the starting point of the deformation and the point of 10% strain. For 

multifrequency experiments, a preload force of 0.02 N, an amplitude of 10 µm, a 

temperature sweeping rate of 1 oC/min, and a frequency of 1 Hz were used. Tg is defined 

as the extrapolated onset of the change in the storage modulus from the hard glassy state 

to the soft rubbery state of the material. 

Shape memory experiments were carried out with the controlled force mode. In a 

typical experiment, the sample was equilibrated for 5 min at a temperature 10oC higher 

than the Tg of the polymer determined from multifrequency experiment, and then was 

stretched at 1 N/min to at least 200%. The temperature was reduced to 10oC lower than 

the Tg and kept constant for 5 min. The force was then released and the sample was 

allowed to relax for 5 min. The sample was then heated to 10oC higher than the Tg at 

10oC/min, and allowed to relax for 5 min at this temperature. 

In a typical cold drawing experiment, the sample was held at 10oC lower than the 

Tg for 5 min, and then stretched at 1 N/min to at least 150%. The force was released and 

the sample allowed to relax at this temperature for 5 min. The temperature was finally 

increased to 10oC higher than the Tg at 10oC/min, and the sample was allowed to relax at 

this temperature for 5 min. 

Polarizing optical microscopy was done on a Zeiss Axioshop 40Pol microscope 

coupled with a Linkam Instruments THMS600 hot stage and a TMS94 temperature 

controller. 

X-ray diffractograms were obtained at room temperature with a Bruker D8 

Discover system equipped with a Bruker Hi-Star two-dimensional detector and 

CuKα radiation source. 

Light scattering experiments for determining the molecular weight of polymer 3 

were carried out on a static light scattering Daen EOS coupled with a Optilab Rex 

differential refractive index detector, both from Wyatt Technology Corporation. The 

isocratic pump is a Waters 600E, and the manual injector is a Rheodyne 7126 with 1 mL 
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loop. The control of the instrument and analysis of data were carried out using the Astra 

5.3.4.13 software of Wyatt Technology Corporation. Eight samples of polymer 3 of 

different concentrations in CHCl3 were prepared and injected automatically into the LS 

instrument to obtain a standard curve for calculating the specific refractive index (dn/dc). 

The rms radius and absolute molecular weight can be obtained by injection of another 

sample of polymer 3. 

2.7 Degradation studies 

Glass slides (1.25 × 1.25 cm, 24 slides) were washed by dipping into a sodium 

carbonate solution (0.1 M, 100 mL) for 20 h, rinsing thoroughly with Millipore water, 

then drying in vacuum for 20 h and weighting on a balance with a precision of 0.01 mg. 

The polymer (250 mg) was dissolved completely in DCM (10 mL), coated onto the glass 

slides with about 10 mg per slide, dried at room temperature for 20 h and in vacuum for 

20 h, and then weighed on a balance with a precision of 0.01 mg. The polymer-coated 

glass slides were put into a small vial (20 mL). Phosphate buffer solution (10 mL, pH = 

7.4) was added into the vials, and the vials were placed into an incubator (Precision 

Scientific Reciprocating Shaker Bath model 25) at 37 oC. The buffer solution was 

changed every two weeks, and samples (4 samples at a time) were withdrawn at regular 

time intervals (4 weeks), weighed and analyzed by SEC. 

 

2.8 Preparation of liquid crystalline film 

Polymer 3 was dissolved in refluxing THF. The solution was then cooled down to 

room temperature to precipitate polymer 3 from the solution. The precipitate was dried at 

40oC under vacuum for 20 h. For comparison, the sample was also dissolved in 

chloroform, precipitated and treated following the same procedure. Among all the 

polymers 1-5 tested, only polymer 3 obtained from THF showed the presence of a LC 

phase.  
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3 Results and Discussion 

 

3.1 Synthesis of macrocyclic monomers 

In the synthesis of macrocyclic bile acids via ring-closure metathesis (RCM), 

cyclic monomers 3a-d (38-membered rings) and 3e (35-membered rings) were prepared 

(Figure 3.1). There are three main differences between these cyclic monomers. First, 

different bile acid cores are used (cholic acid core for cyclic monomers 3a and 3e, 

lithocholic acid core for cyclic monomers 3b-d). Cholic acid has two extra hydroxyl 

groups at positions 7 and 12 compared to lithocholic acid. Consequently, cyclic 

monomers with a cholic acid core are more hydrophilic than those with a lithocholic acid 

core. Second, the types of linkages between bile acid core and long alkane chain are 

different. Some of the linkages are ester bonds and some are amide bonds. Generally, 

amide groups are more stable and more hydrophilic than ester groups. Third, the number 

of linkages is different. Cyclic monomers 3a-d possess three linkages and cyclic 

monomer 3e has only two. These differences make polymers prepared from cyclic 

monomers 3a-e different and interesting. 

The macrocyclic monomers were obtained in high yields (80 – 85 %) from the 

corresponding dienes as shown in Figures 2.1 and 2.2. Cyclic monomer 3b and diene 2c 

were prepared as previously reported.1,2 Therefore, the synthesis of these two compounds 

is not discussed here. 

3.1.1 Synthesis of cholic acid-based cyclic triester monomer 3a 

Cyclic monomer 3a can be synthesized in three steps as shown in Figure 2.1. In the 

first step, compound 1a was prepared using the conditions established previously.3 The 
1H NMR spectra of cholic acid and compound 1a are shown in Figure 3.2. This step was 

executed successfully with a yield of 90%. 
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Figure 3.1. The structure of cyclic monomers 3a-e. 

 

In the second step, two flexible chains, each with a double bond at the end, were 

attached to the cholic acid core through ester bonds. From the 1H NMR spectra shown in 

Figures 3.2 and 3.3, three obvious differences in the spectra of compound 1a and diene 

2a can be observed. First, the peak of 3α−H shifted from 3.50 to 4.60 ppm because the 

hydroxyl group was transformed to an ester and one flexible chain was successfully 

attached to the cholic acid core. Second, the peaks of the methylene groups at 4.23 and 

3.85 ppm of compound 1a merged into a singlet at 4.29 ppm for diene 2a. This indicates 

that the hydrogen atoms of these two methylene groups are chemically equivalent, and 
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that the flexible chain was attached to the cholic acid core on the other side. Third, the 

multiplets at 5.82 and 4.96 ppm are the signals of the hydrogen of the double bonds.  
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Figure 3.2. 1H NMR spectra of (A) cholic acid and (B) compound 1a in 

CDCl3. 



 

 49

8 7 6 5 4 3 2 1 0
ppm

OH

O

OH
O

O

C8H16

O

O C8H16

O

3

18

12

7

19
21

a

b c

c

d

e

OH

O

OH
O

O

C8H16

O

O C8H16

O

a

b

3
7

12
18

19
21

c d

e

cd

e

Cyclic monomer 3a

Diene 2a

c

18
19

21

c

e
d

d+e
a+b

7

12

3

A

B

12

7

1819

21a+b

 

Figure 3.3. 1H NMR spectra of (A) diene 2a and (B) cyclic monomer 3a in 

CDCl3. 
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The synthetic procedure initially used to make cyclic monomer 3a was based on a 

procedure developed earlier.4 Here, the concentration of the starting diene material 2a 

was 13 mM, a catalyst corresponding to 5 mol% of the cyclic monomer was used, and the 

reaction was completed in 24 h at room temperature. There were, however, some 

problems encountered with this procedure. For one, as indicated by TLC (shown in A and 

B of Figure 3.4), the starting material remained in quite a large proportion even 24 h after 

the reaction started. Moreover, the reaction system formed a series of oligomers, such as 

dimers, trimers, tetramers, etc., which made the purification of the desired cyclic 

monomers more difficult and reduced the yield. 

 

 

 

Figure 3.4. TLC plates of the synthesis of cyclic monomer 3a, (A) 4 h and (B) 

24 h after the reaction started at room temperature with 13 mM of diene, (C) 5 

h after the reaction started at 40oC (reflux) with 3 mM of diene. 

 

To overcome these problems, another method was used to synthesize the cyclic 

monomer.5 It consists of using a lower concentration of starting material (3 mM) and the 

reaction was completed in DCM under reflux (shown in Figure 3.4 C). In comparison 

with the method used earlier, this method resulted in a significantly improved yield of 

Diene
Cyclic monomer

Cyclic oligomer Cyclic monomer 
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cyclic monomer 3a (from 53 to 90%) and easier separation of the cyclic monomer from 

the reaction mixture because the amount of cyclic oligomers was greatly decreased. 

Comparison of the 1H NMR spectrum of diene 2a and cyclic monomer 3a reveals 

two main differences (Figure 3.3). First, the multiplets at 5.82 and 4.96 ppm of the 

protons of the two double bonds at the end of the long alkene chains were merged into 

one multiplet after the formation of the cycle because the protons on the double bond of 

cyclic monomer 3a became chemically equivalent. Second, the single peak of the protons 

on carbons a and b of diene 2a became a multiplet because the formation of the 

macrocycle is slightly hampered by the rotation of carbons a and b, and the relaxation 

times of the protons on these carbons became longer compared to the NMR time scale. 

Combined with the results of MALDI-TOF and elemental analysis (Chapter 2), the 

results of 1H NMR spectroscopy further confirmed the formation of the macrocycle. 

3.1.2 Synthesis of lithocholic acid-based cyclic ester-amide-amide monomer 3c 

The cyclic monomer 3c was prepared from diene 2c.2 The 1H NMR spectra of 

diene 2c and cyclic monomer 3c are shown in Figure 3.5. 

Conversion of diene 2c to cyclic monomer 3c results in the same changes in the 1H 

NMR spectra that were observed when diene 2a was converted to cyclic monomer 3a. 

The combined results of MALDI-TOF, elemental analysis (Chapter 2) and 1H NMR 

spectroscopy confirmed the formation of cyclic monomer 3c. 

The differences in the structures of cyclic monomers 3a and 3c are clearly 

observed in the 1H NMR spectra. The peaks at 3.97 and 3.85 ppm in the 1H NMR 

spectrum of cyclic monomer 3a are not present in the 1H NMR spectrum of cyclic 

monomer 3c because the core is a lithocholic acid, which has, in contrast with those of 

cyclic monomer 3a, no hydroxyl group at positions 7 and 12. In addition, there is an extra 

peak at 6.34 ppm in the 1H NMR spectrum of the cyclic monomer 3c attributed to the 

proton on the amide group. 
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Figure 3.5. 1H NMR spectra of (A) diene 2c and (B) cyclic monomer 3c in 

CDCl3. 
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3.1.3 Synthesis of lithocholic acid-based cyclic ester-amide-ester monomer 3d 

The synthesis of cyclic monomer 3d was completed in 3 steps, as shown in Figure 

2.1. The 1H NMR spectra of methyl ester of lithocholic acid, compound 1d, diene 2d and 

cyclic monomer 3d, are shown in Figures 3.6 and 3.7.  

The sharp singlet at 3.67 ppm in the 1H NMR spectrum of the methyl ester of 

lithocholic acid is a typical peak for methyl ester. After refluxing with 2-aminoethanol, 

the ester bond was transformed to an amide group. As a result, the sharp singlet at 3.67 

ppm disappeared and the peaks of two methylene groups at 3.76 and 3.46 ppm were 

observed in the 1H NMR spectrum of compound 1d. In the 1H NMR spectrum of diene 

2d, the peak shifts of 3α-H (from 3.65 to 4.75 ppm) and protons on carbon c (from 3.76 

to 4.19 ppm) are similar to those observed for diene 2a. In the 1H NMR spectrum of 

cyclic monomer 3d, the peaks of the protons on the two carbon-carbon double bonds 

were merged into one peak, which is also what was observed for cyclic monomer 3a. For 

cyclic monomer 3d, the protons on carbon b (next to an amide group) and carbon c (next 

to an ester group) are not equivalent; they show distinct peaks in the 1H NMR spectra of 

diene 2d and cyclic monomer 3d. 

3.1.4 Synthesis of cholic acid-based diester cyclic monomer 3e 

The synthesis of the cholic acid-based diester cyclic monomer is different from the 

synthesis of cyclic monomers 2a-d in which the two long alkane chains were attached to 

the core in separate reactions (as shown in Figure 2.2). In the first step, the cholic acid 

was reacted with ω-undecylenyl alcohol and a long alkane chain was attached to the 

cholic acid core through an ester bond. In the 1H NMR spectrum of compound 1e (shown 

in Figure 3.8), two multiplet-peaks at 5.83 and 4.96 ppm were caused by the proton on 

the carbon-carbon double bonds at the end of the alkane chain. In the second step, 

another long alkane chain was attached to the cholic acid core through an ester bond at 

position 3 of cholic acid. In the 1H NMR spectrum of diene 2e (shown in Figure 3.9), the 

peak of 3α-H shifted from 3.46 to 4.60 ppm when compound 1e was transformed to 

diene 2e. Meanwhile, the relevant integration of peaks c and d of diene 2e is two times of 

that for compound 1e. The difference between diene 2e and cyclic monomer 3e followed 

the same tendency as the differences for diene 2a and cyclic monomer 3a. 
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Figure 3.6. 1H NMR spectra of (A) lithocholic acid methyl ester and (B) 

compound 1d in CDCl3. 



 

 55

8 7 6 5 4 3 2 1 0
ppm

e+f

Cyclic monomer 3d

O

O

H
N

C8H16
O

O C8H16

O

3

18
19

21 a

b

c

d

d e
f 18

19+21
d

b

c

3
a

A

O

O

H
N

C8H16
O

O C8H16

O

3

18 19 21 a

b

c d e

f

f

e d

B

3a
fe

bc

d

19+21

18

Diene 2d

 

Figure 3.7. 1H NMR spectra of (A) diene 2d and (B) cyclic monomer 3d in 

CDCl3. 
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Figure 3.8. 1H NMR spectra of (A) cholic acid and (B) compound 1e in 

CDCl3. 
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Figure 3.9. 1H NMR spectra of (A) diene 2e and (B) cyclic monomer 3e in 

CDCl3.  
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3.2 Kinetic study of ED-ROMP via second-generation Grubbs catalyst 

The purpose of the kinetic study was to provide a guideline of the polymerization 

process to terminate the reaction at an optimal time. The kinetic study was conducted in a 

concentrated solution (1.3 M) of cyclic monomer 3a in anhydrous DCM (2 mL) with a 

catalytic amount (1% eq.) of the second-generation Grubbs catalyst. A small amount of 

reaction medium (40 µL) was taken out via a syringe at specific time intervals and then 

quenched immediately by ethyl vinyl ether. The molecular weight of the polymer in the 

resulting solution was monitored by GPC as shown in Figure 3.10. The cyclic monomer 

3a was almost consumed completely 31 minutes after the polymerization started. 

0 10 20 30 40

b
a

Elution time (minutes)

Po
ly

m
er

iz
at

io
n 

tim
e 

(m
in

)

0.5
1.5
2.0
2.5
3.0
3.5
4.0
5.0
7.0
8.0
9.0
16.0
21.0
31.0
51.0
76.0
107.0
138.0
169.0
203.0
385.0
550.0
801.0
1104.0

 

 

Figure 3.10. GPC traces of samples quenched at different polymerization 

times. THF was used as eluent. (a) indicates the peak of the polymer 1 while 

(b) indicates the peak of the cyclic monomer 3a. 
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The graph of Mn versus reaction time of ring-opening metathesis polymerization of 

cyclic monomer 3a, shown in Figure 3.11, exhibits a maximum with its summit at 15 

minutes and a plateau at 6-7 h after the beginning of the polymerization. This can be 

explained by the well-known equilibrium between the cyclic oligmers and the 

polymers.6-9 At the beginning of the polymerization, the ROMP is predominant, gradually 

establishing an equilibrium of polymerization and cyclo-depolymerization, leading to a 

lower Mn at a higher conversion rate. 
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Figure 3.11. Mn as a function of polymerization time of cyclic monomer 3a 

via ROMP with an initial monomer concentration of 1.28 M and 1 mol% 

loading of second-generation Grubbs catalyst in anhydrous DCM. The plain 

curve serves as a visual guide. 
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3.3 Preparation of bile acid-based homopolymers via ED-ROMP 

The polymers prepared via ED-ROMP exhibit similar 1H NMR spectra as those of 

the corresponding cyclic monomers. For example, the 1H NMR spectra of cyclic 

monomer 3a and polymer 1 are shown in Figure 3.12. Except the peak a + b, the peaks of 

cyclic monomer 3a and polymer 1 are mostly the same. In the 1H NMR spectrum of 

cyclic monomer 3a, this peak is a multiplet, but it becomes a singlet in the 1H NMR 

spectrum of polymer 1. This is because the carbons a and b cannot rotate freely in cyclic 

monomer 3a as they can in polymer 1 and the relaxation times of the protons on these 

carbons became shorter than the NMR time scale. 

Polymers 1a - f with molecular weight varied from 6.3 to 52.1 × 104 were prepared 

using different amounts of catalyst and various quenching times (Table 3.1). 

 

Table 3.1. Physical properties of polymers 1a-f prepared using different 

amounts of second-generation Grubbs catalyst and polymerization times. 

Homopolymers 
Catalytic loading 

(mol %) 

Polymerization 

time 

Mn    

(× 103)a 
PDI 

Tg  

(oC)b 

1a 0.67 20 min. 521 1.60 49.4 ± 0.4

1b 0.67 20 h 394 1.52 49.0 ± 0.5

1c 1 3 h 231 1.71 48.0 ± 0.3

1d 1 20 h 148 1.63 48.8 ± 0.6

1e 2 20 h 111 1.65 46.6 ± 0.4

1f 1 1 min. 63 1.71 45.0 ± 0.5
Note:  
a Mn was determined by GPC using THF as the eluent and polystyrene as the 

standards. 

b Tg measured by DSC with a heating rate of 10oC/min. The standard deviation is 

calculated from the Tg values by selecting different start and end points of the DSC 

curves.  
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Figure 3.12. 1H NMR spectra of (A) cyclic monomer 3a and (B) polymer 1a 

in CDCl3. 
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The molecular weights of polymers 1c and 1d are higher than those obtained from 

the curves of the kinetic study (Figure 3.11), even if the reaction conditions were the 

same in the preparation of polymers 1c and 1d. However, the samples for the kinetic 

study were injected into GPC directly without being precipitated in methanol/hexanes, a 

process that may eliminate some chains having low molecular weights. 

3.4 Synthesis of copolyesters based on cholic acid and ricinoleic acid 

A series of copolyesters based on cyclic monomer 3a and ricinoleic acid 

monolactone were prepared via ED-ROMP using second-generation Grubbs catalyst. The 

mechanical and thermal properties of these copolyesters vary significantly, rendering the 

polymers potentially useful for a variety of applications. 

3.4.1 Preparation of purified ricinoleic acid 

Ricinoleic acid is an unsaturated fatty acid naturally existing in the mature castor 

plant seeds. About 90% of triglycerides in the castor oil are formed from ricinoleic acid. 

Meanwhile, some other unsaturated fatty acids (5-15%), such as oleic acid and linoleic 

acid, also exist in the triglycerides of castor oil.10 Thus, hydrolysis and purification of 

castor oil are necessary to obtain purified ricinoleic acid (Figure 2.4). 

In the first step (Figure 2.4), the methyl ester of ricinoleic acid was formed by 

transesterification of castor oil. The methyl ester is easier to separate by column 

chromatography than ricinoleic acid itself because of its lower polarity. In the second step, 

the purified methyl ester of ricinoleic acid was hydrolyzed by potassium hydroxide and 

then neutralized by concentrated hydrochloric acid. The 1H NMR spectra of methyl ester 

of ricinoleic acid and ricinoleic acid are shown in Figure 3.13. These two spectra are 

similar, except for the methyl ester peak in Figure 3.13 A. The 1H NMR spectrum of the 

ricinoleic acid (Figure 3.13 B) is exactly the same as that reported in the literature.11 
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Figure 3.13. The 1H NMR spectra of (A) methyl ester of ricinoleic acid and 

(B) ricinoleic acid in CDCl3. 

3.4.2 Synthesis of monolactone of ricinoleic acid 

The synthesis of the monolactone of ricinoleic acid was performed as described by 

Slivniak and Domb.11 However, the 1H NMR spectrum (as shown in Figure 3.14) 

obtained for ricinoleic acid monolactone was somewhat different.11 The differences of 1H 
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NMR spectra of ricinoleic acid monolactone between the literature and this study are 

highlighted in Table 3.2 by bold characters. 

 

Table 3.2. Differences of peak assignments for the 1H NMR spectrum of 

ricinoleic acid monolactone in this study and in the literature. 

1H NMR in literature11 1H NMR in this study 

Peak 
(ppm) Integration Assignments 

(protons) 
Peak 
(ppm) Integration 

New 

assignments 

(protons) 

5.35 – 5.48 2H C9, C10 5.34 -5.52 2H C9, C10 

4.93 -4.96 1H C12 4.97 1H C12 

2.28 2H C2 2.50 1H C11 (1H) 

2.23 2H C11 2.30 3H C11 (1H), 
C2 (2H) 

2.09 2H C8 2.10 2H C8 

1.59 2H C3 1.69 3H C13 (1H), 
C3 (2H) 

1.52 2H C13    

1.29 16H C4-7, C14-17 1.15 – 1.62 17H 
C13 (1H), 

C4-7,    
C14-17 

0.87 3H C18 0.90 3H C18 

* Bold letters highlight the differences in the new assignments of proton signals 

 

In the 13C NMR spectrum of the ricinoleic acid monolactone (Figure 3.14), 18 

peaks are observed, which exactly match the number of carbons in the molecule. Two 

peaks at 125 and 132 ppm are assigned to the vinyl carbons (C9 and C10). One carbonyl 

group (C1) is observed at 174 ppm. The peak at 73.7 ppm is the signal of C12.  
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Figure 3.14. (A) 1H NMR and (B) 13C spectra of the monolactone of 

ricinoleic acid in CDCl3. 
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The structure of ricinoleic acid monolactone was also confirmed by 1H-1H COSY, 
1H-13C HMQC and mass spectrometry. The 1H-1H COSY spectrum of ricinoleic acid 

monolactone is shown in Figure 3.15, which also gives the 1H proton spectrum of 

ricinoleic acid monolactone along both axes. The spectrum shows clearly the presence of 

two multiplets from the signals of the protons on the carbon-carbon double bonds: peak a 

(1H, C10), peak b (1H, C9), and peak c (1H) from the signal of the proton on C12. Peak 

a has a cross-correlation with peaks e (3H) and d (1H); Peak c has a cross-correlation 

with peaks e and d, and peak e has a cross-correlation with peak d. It is evident that both 

peaks e and d contain the signal from the protons of C11. The rotation of C11 is restricted 

due to the ester bond of C12 and carbon-carbon double bond, so that the signal of the 

protons from C11 is divided into two peaks due to a slow exchange (on the NMR time 

scale). 
13C-1H HMQC spectrum (shown in Figure 3.16) also verifies this conclusion 

because peaks d and e have a cross-correlation with the same carbon. Moreover, peak e 

contains two kinds of protons, one kind from C11, and the other from the methylene 

group on C2. The HMQC spectrum also shows that peak e has two kinds of 

cross-correlation with two different carbons. Meanwhile, peak f is the signal of protons 

from C8 because it has a cross-correlation with peak b. Peak g contains the signals of two 

different protons from C3 and C13. Peak h contains the signals of two different protons 

from C7 and C13. Peak i is the signal of the protons from the methylene group and peak j 

is the signal of the protons of C18. Based on the results of 1H-1H COSY, 1H-13C HMQC, 

a new assignment of the 1H NMR is obtained and shown in Table 3.2. 
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Figure 3.15. The 1H-1H COSY spectrum of ricinoleic acid monolactone in 

CDCl3. 
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Figure 3.16. The 13C-1H HMQC spectrum of ricinoleic acid monolactone in 

CDCl3. 

The mass spectrum also confirms that the prepared compound matches the mass of 

the monolactone of ricinoleic acid. A peak at 281.25 amu, which is the [M+H]+ peak 

(required 281.25 amu) is observed, and another peak at 303.23 amu, which is the 

[M+Na]+ peak (required 303.23 amu), is also observed 
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3.4.3 Preparation of copolyesters based on cholic acid and ricinoleic acid 

A series of copolymers 6a-f were prepared from ricinoleic acid monolactone and 

cyclic monomer 3a (shown in Table 2.2). The 1H NMR spectra of ricinoleic acid 

monolactone, cyclic monomer 3a and copolymer 6d are shown in Figure 3.17. In the 1H 

NMR spectrum of copolymer 6d, peak 1 is the signal of the protons on the carbon-carbon 

double bonds in the repeat units of both ricinoleic acid monolactone and cyclic monomer 

3a. Peak 2 is the signal of the proton on C12 of ricinoleic acid monolactone. Peaks 3, 4, 5, 

and 6 are the proton signals of the repeat unit of the cyclic monomer 3a, assigned to 

3α-H, protons a + b, 7α-H and 12α-H, respectively. The molar percentage of the 

ricinoleic acid monolactone in the copolymers can be calculated from the integration of 

peaks 1 and 2. 

The 1H NMR spectra of copolymers 6a-f are shown in Figure 3.18. With 

increasing molar percentage of ricinoleic acid monolactone (RCA), peak 2 became more 

obvious and peaks 3, 4, 5 and 6 became almost invisible. However, peak 1 remained 

stable because both ricinoleic acid monolactone and the cyclic monomer contain 

carbon-carbon double bonds. Thus, the changes of molar percentage of ricinoleic acid 

monolactone did not affect this peak too much. The actual molar percentage of ricinoleic 

acid monolactone in the copolymers can be calculated based on the integration of 1H 

NMR signals (shown in Table 3.3). The properties of copolymers 6a-f are discussed in 

the following section. 

 



 

 70

8 7 6 5 4 3 2 1 0

O

O

O

OH
OH

O

O

O

O

O

n m

1

2 14 1

1
6

5
4

3

6

4

5
3

2

Copolymer 6d

Cyclic monomer 3a

B

A

OH

O

OH
O

O

C8H16

O

O C8H16

O

3

18

12

7

19
21

a

b c

c

d

e

11

10
9

8

7

6

5

12
O 1

2

3

4

13 14

15 16

17
18

O

ppm

d+e a+b
12

3 7

C

Ricinoleic acid monolactone

1

9+10 12

 

 

Figure 3.17. The 1H NMR spectra of (A) ricinoleic acid monolactone, (B) 

cyclic monomer 3a and (C) copolymer 6d (Mn = 1.1 × 105) in CDCl3. 
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Figure 3.18. The 1H NMR spectra (from 6.5 to 3.5 ppm) of copolymers 6a-f 

in CDCl3. 
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Table 3.3. Molar ratio of RCA in copolymers 6a-f calculated from 1H NMR 

spectra. 

Copolymer 
Mol% of 
RCA in 
polymer 

Mol% of 
RCA in 

feed 

Mn    
(× 103)a PDI Tg (oC)b 

E at 25oCc 

(MPa) 

6a 24 15 305 1.59 49.4 ± 0.4 101 ± 2 

6b 37 30 207 1.85 21.1 ± 0.5 5 ± 1 

6c 44 45 139 1.64 -1.8 ± 0.9 2.5 ± 0.5 

6d 57 60 107 1.72 -19.6 ± 0.9 1.3 ± 0.5 

6e 77 75 90 1.69 -42 ± 2 NA 

6f 86 90 70 1.65 NA NA 

Note:  
a Mn was determined by GPC using THF as the eluent and polystyrene as the 

standards. 
b Tg measured by DSC with a heating rate of 10oC/min. The standard deviation is 

calculated from the Tg values by selecting different start and end points of the DSC 

curves. 
c E is Young’s modulus measured by DMA at 25oC. The standard deviation is 

calculated from three measurements. 

3.5 Thermal and mechanical properties of polymers  

The thermal and mechanical properties of homopolymers 1-5 and copolymers 6a-f 

were characterized by TGA, DSC, and DMA. Polymers 1-5 display a glass transition 

temperature varying from 6.2 to 84.0 oC (Table 3.4) without any evidence of melting 

before decomposition. The films prepared from polymers 1-5 are transparent, which also 

suggests that these materials are amorphous.  

At the glass transition temperature (Tg), the materials change from a ‘glassy’ (rigid) 

to a ‘rubbery’ (soft) state. Many factors affect the glass transition temperature of 

polymers, such as the structure of the main chain, the polarity or flexibility of the side 
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chain, copolymerization, and molecular weight. Table 3.1 lists the glass transition 

temperatures of polymer 1 with different molecular weights. When the molecular weight 

increases from 6.3 to 52 × 104, the glass transition temperature changes from 45 to 

49.4oC, and reach a stable value at about 49.5oC (Figure 3.19). 
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Figure 3.19. Tg of polymers 1a-f as a function of molecular weight. 

 

Table 3.4 shows the glass transition temperatures of polymers 1-5. First, it can be 

seen that the different types of functionality affect the Tg'. Polymers 2, 3 and 4 have the 

same core (lithocholic acid), but different functional groups in their structure. In their 

repeat units, polymer 2 has three ester bonds, polymer 3 has two amide bonds and one 

ester bond, and polymer 4 has one amide bond and two ester bonds. Normally, the ester 

bond is more flexible than the amide bond. Thus, it is not surprising that polymer 3 has 

the highest Tg' and polymer 2 has the lowest Tg' (polymer 3 > polymer 4 > polymer 2) 

because they have similar molecular weights. Second, different cores also affect Tg'. 

Polymers 1 and 2 have the same functionality (three ester bonds) except that they possess 
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a different core: polymer 1 has cholic acid and polymer 2 has lithocholic acid. Polymer 1 

has a higher Tg' than polymer 2 and this is due to the presence of the extra hydroxyl 

groups on the cholic acid core, which may facilitate the interactions in polymer 1. Third, 

the number of ester bonds in the repeat unit also affects the Tg'. Polymers 1 and 5 possess 

the same cholic acid core, but polymer 1 has three ester bonds in the repeat unit while 

polymer 5 has two. Polymer 5 has fewer ester bonds and thus a higher Tg' than polymer 1.  

 

Table 3.4. Molecular weight and Tg of polymers 1-5. 

E (MPa)d Polymers Mw (× 

103)a 
PDI Tg' (oC)b Tg" (oC)c 

Tg"-10oC Tg"+10oC

1c 395 1.71 48.0 ± 0.4 45.3 ± 0.6 301 4.6 

2 468 1.95 6.2 ± 0.5 NA NA NA 

3 198e NAe 83 ± 1 67 ± 2 179 29.0 

4 354 1.71 48.1 ± 0.6 46.4 ± 0.9 139 4.1 

5 410 1.43 67 ± 1 54 ± 2 197 17 
 

a Weight-average molecular weight measured by GPC by using polystyrene as the 

standard. 
b Tg' measured by DSC with a heating rate 10oC/min. The standard deviation is 

calculated from the Tg' values by selecting different start and end points of the DSC 

curves. 
c Tg" measured by DMA at a frequency of 1 Hz. The standard deviation of Tg" is 

calculated from the Tg" values obtained by selecting of the DMA data of storage 

modulus plotted as a function of temperature (Figure 3.21). 
d Young’s modulus (E) measured by DMA. 
e Could not be measured by GPC as the refractive index of the polymer is close to that 

of the solvent; Mw measured by light scattering. 
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Table 3.3 shows the glass transition temperatures of copolymers 6a-f. With the 

increasing molar percentage of ricinoleic acid (RCA), the Tg decreases linearly as shown 

in Figure 3.20. Copolymerization with RCA is the main factor contributing to a drop in 

Tg because the contribution from the variation of molecular weight (from 6.3 × 104 to 5.2 

× 105) should be within 5oC (Table 3.1). 
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Figure 3.20. Tg of copolymers 6a-e as a function of molar content of 

ricinoleic acid (RCA) in the copolymers. 

The mechanical properties of homopolymers (1c and 3-5) and copolymers 6a-f 

were studied with dynamic mechanical analysis (DMA). These materials are elastomers 

with tunable mechanical properties and shape memory properties.  

Typical spectra of multifrequency experiments at 1 Hz and stress-strain curve at 

Tg" – 10oC and Tg" + 10oC are shown in Figure 3.21.  
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Figure 3.21. DMA results obtained for a film of polymer 3: (A) Evolution of 

the storage modulus as a function of temperature; (B) Stress-strain curve at 

Tg" - 10oC; (C) Stress-strain curve at Tg" + 10oC. 
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Main-chain bile acid-based polymers 1c and 3-5 display Tg"’s (measured by DMA) 

ranging from 45 to 67oC (Table 3.4). Below these temperatures, they are hard materials 

with E values ranging from 139 to 301 MPa. Above Tg", they are rubber-like materials 

with E values ranging from 4 to 29 MPa. The Tg"’s measured by DMA are clearly 

influenced by the polymer structures. 

Polymers 1c and 3-5 have been found to have shape memory properties in both 

warm and cold drawing modes with high strain recovery and strain fixity. The range from 

10oC below Tg" to 10oC above Tg" has been used in the literature.2 This area is 

well-defined to study the glass transition of the materials as it covers the sharp transition 

and adjacent range of temperatures. In the warm drawing mode (Figure 3.22 A), the 

sample film is stretched to at least 200% of strain at 10oC above its Tg" (curve 1), the film 

is then cooled down to 10oC below Tg" (curve 2) and the force is released (curve 3). The 

strain of the film has a small decrease because of the relaxation, which is characterized by 

the strain fixity Rf (Eq. 1).  Finally, the temperature is raised to 10oC above its Tg" and 

the film recovers its permanent shape (curve 4). This process is characterized by the 

strain recovery Rr (Eq. 2). 
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where N is the number of repetitive thermal cycles, εm is the maximum strain, εu is 

the strain after relaxation below Tg" and εp is the strain after recovery above Tg. 

In cold drawing mode (Figure 3.22 B), the sample film is stretched to at least 150 

% of strain at 10oC below its Tg" (Figure 3.22 B, curve 1) and then the stress is released. 

The sample film is given sufficient time to relax (Figure 3.22 B, curve 2), which is 

characterized by the strain fixity Rf (Eq. 1). The temperature is then raised to 10oC above 

its Tg", which triggers strain recovery (Figure 3.22 B, curve 3), which is characterized by 

the strain recovery Rr (Eq. 2). 
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Figure 3.22. Shape memory effect of bile acid-based polymers. (A) Warm 

drawing, (B) Cold drawing. 
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The shape memory performance of polymers 1c and 3-5 for both warm and cold 

drawing modes was evaluated for at least three cycles (Figure 3.23 and Table 3.5). In the 

warm drawing mode, the strain fixity and recovery are high, ranging from 90 to 99%. The 

initial cycle is different than the subsequent ones.12 This may be caused by the chain 

relaxation and leads to 1-5 % deviation of Rf and Rr in the following cycles.2 Strain 

recoveries in cold drawing mode remained high (above 90%), but strain fixities decreased 

a lot in comparison with those of warm drawing mode, ranging from 78 to 87%. This 

may be caused by the slower chain relaxation characteristics of the samples at the low 

temperature when the samples were stretched.2 The Young’s moduli of copolymers 6a-d 

at 25oC shown in Table 3.3, have values ranging from 1.3 to 101.1 MPa. For copolymers 

6b-d, for which Tg is below room temperature, the modulus (E) decreases as the molar 

percentage of ricinoleic acid increases. The modulus (E) of copolymer 6a is much higher 

than those of copolymer 6b-d, because its Tg is higher than room temperature. 
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Figure 3.23. Stress-strain plots for the warm drawing of a polymer 1c sample 

(respective cycle numbers indicated on the plot). 
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Table 3.5. Shape memory effect (warm drawing and cold drawing) of bile 

acid-based polymers. 

Polymers Rr (1) Rr (2) Rr (3) Rf (1) Rf (2) Rf (3) 

1c 98.0 ± 0.8 99.6 ± 0.1 99.7 ± 0.1 97.4 ± 0.1 97.3 ± 0.1 97.3 ± 0.1

3 89.9 ± 1.0 94.1 ± 1.3 94.3 ± 1.4 95.4 ± 0.6 95.3 ± 0.9 95.1 ± 0.8

4 97.1 ± 0.1 99.3 ± 0.1 99.5 ± 0.1 97.9 ± 0.1 97.8 ± 0.1 97.9 ± 0.1W
ar

m
 

dr
aw

in
g 

5 94.7 ± 1.5 99.0 ± 0.3 99.1 ± 0.5 94.5 ± 1.8 94.5 ± 1.8 94.6 ± 2.0

1c 94.2 ± 0.5 99.0 ± 0.2 99.0 ± 0.7 79.1 ± 1.3 77.6 ± 1.4 77.6 ± 1.4

3 91.0 ± 1.7 98.4 ± 0.4 98.7 ± 0.2 86.8 ± 1.6 86.5 ± 1.2 86.8 ± 1.2

4 93.9 ± 0.1 98.5 ± 0.1 99.2 ± 0.1 85.8 ± 0.6 83.5 ± 0.9 83.3 ± 0.7C
ol

d 

 d
ra

w
in

g 

5 89.5 ± 0.6 98.3 ± 0.1 96.3 ± 0.1 85.4 ± 0.2 84.2 ± 0.6 84.0 ± 0.7

 

For some samples, the measurements failed due to the slipperiness of the clamps 

and the sample defects. The standard deviations of Rr and Rf of some polymers are low 

and the others are high. All standard deviations of Rr and Rf are based on three 

measurements. 

The study of the thermal and mechanical properties of homopolymers 1-5 and 

copolymers 6a-f revealed the polymers with shape memory effect and their thermal and 

mechanical properties could be tuned by adjusting the molar ratio of ricinoleic acid. 

3.6 Degradation properties 

The degradation of synthetic polymers can be affected by their structure and 

molecular weight. Different cholic acid-based homopolymers and copolymer 6 (Figure 

3.24) were used for the degradation experiments (polymers 7 and 8 were prepared by Dr. 

Yu Shao in our group). As shown in the structures of the homopolymers 1, 7 and 8 

(Figure 3.24), the only difference between them is the number of the ester and amide 

bonds in the repeat unit. Polymer 1 has three ester bonds, polymer 7 has two ester bonds 
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and one amide bond and polymer 8 has one ester bond and two amide bonds. Normally, 

the cleavage of an amide bond is more difficult than that of an ester bond. The 

comparison of the degradation properties of these polymers is thus interesting and 

justifies further investigation. 
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Figure 3.24. The structure of the different polymers used for the degradation 

experiments. The molecular weights of these polymers are given next to the 

structure. 

 

The degradation of polymer 1a (Figure 3.25) at 37oC shows a 17.0% relative 

weight loss after 168 days. However, the molecular weight remains quite stable (the 

molecular weight (Mn) of the polymer at the beginning of the degradation is 5.2 × 105) 

and there is no effect of bulk degradation. 
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Figure 3.25. Degradation of the polymer 1a film in PBS at 37oC; (A) 

Molecular weight (Mn); (B) Relative weight loss. 

 

The degradation of polymer 7 (Figure 3.26) at 37 oC is slower than that of polymer 

1a, with 13.8% relative weight loss after 168 days. The molecular weight decreases 

slightly, probably due to the presence of the amide group in the repeat unit and the high 

molecular weight of the polymer. The degradation of polymer 8 (Figure 3.27) at 37 oC 

shows a 12.8% relative weight loss after 168 days and molecular weight (Mn) decreased 

from 4.0 to 2.5 × 104. The lower starting molecular weight of polymer 8 may be the cause 

of this faster drop in Mn. 
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Figure 3.26. Degradation of the polymer 7 film in PBS at 37oC. (A) 

Molecular weight; (Mn); (B) Relative weight loss. 
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Figure 3.27. Degradation of the polymer 8 film in PBS at 37oC. (A) 

Molecular weight (Mn); (B) Relative weight loss. The curve of molecular 

weight serves as a visual guide 
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Figure 3.28. Degradation of the copolymer 6a film in PBS at 37oC. (A) 

Molecular weight, (Mn); (B) Relative weight loss. 
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Figure 3.29. Degradation of the copolymer 6c film in PBS at 37oC. (A) 

Molecular weight (Mn); (B) Relative weight loss. 
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The degradation rates of copolymers 6a and 6c at 37 oC show 12.4% (6a) and 9.8% 

(6c) relative weight loss after 140 days (Figures 3.28 and 3.29). The molecular weight 

slowly decreased over time (almost linear). These two copolymers (6a and 6c) were 

degraded at similar rates, indicating that the copolymerization between cyclic monomer 

3a with ricinoleic acid monolactone does not greatly change the degradation process 

because no new functionality was introduced into the polymers. 

3.7 References 

(1) Gautrot, J. E.; Zhu, X. X. Chem. Commun. 2008, 14, 1674-1676. 

(2) Gautrot, J. E.; Zhu, X. X. Macromolecules, 2009, 42, 7324-7331. 

(3) Hu, X. Z.; Zhang, Z.; Zhang, X.; Li, Z. Y.; Zhu, X. X. Steroids 2005, 70, 531-537. 

(4) Gautrot, J. E.; Zhu, X. X. Angew. Chem. Int. Ed. 2006, 45, 6872-6874. 

(5) Biswas, G.; Sengupta, J.; Nath, M.; Bhattacharjya, A. Carbohydr. Res. 2005, 340, 

567-578. 

(6) Hodge, P.; Yang, Z.; Ben-Haida, A.; McGrail, C. S. J. Mater. Chem. 2000, 10, 

1533-1537. 

(7) Ruddick, C. L.; Hodge, P.; Zhuo, Y.; Beddoes, R. L.; Helliwell, M. J. Mater. 

Chem. 1999, 9, 2399-2405. 

(8) Colquhoun, H. M.; Lewis, D. F.; Hodge, P.; Ben-Haida, A.; Williams, D. J.; 

Baxter, I. Macromolecules 2002, 35, 6875-6882. 

(9) Hodge, P.; Kamau, S. D. Angew. Chem. Int. Ed. 2003, 42, 2412-2414. 

(10) Ozcan, H. M.; Sagiroglu, A. Prep. Biochem. Biotechnol. 2009, 39, 170-182. 

(11) Slivniak, R.; Domb, A. J. Biomacromolecules 2005, 6, 1679-1688. 

(12) Rabani, G.; Luftmann, H.; Kraft, A. Polymer 2006, 47, 4251-4260. 

 

 

 

 

 

 

 



 

 86

4 Conclusions 

 

4.1 Synthesis 

Macrocyclic monomers based on bile acids (lithocholic acid and cholic acid) 

(Figure 3.1, cyclic monomers 3a-e) were successfully synthesized via ring-closing 

metathesis with the first-generation Grubbs catalyst. All cyclic monomers possess one 

(litho)cholic acid core and a long flexible alkane chain connected to both positions 3 and 

24 of the bile acid core through ester and amide linkages. A small linker (ethylene glycol, 

ethanolamine or ethylene diamine) was incorporated into some of the macrocycles (cyclic 

monomers 3a-d) between the bile acid core and the long flexible alkane chain through 

ester or amide bonds.  

A significantly improved yield of the cyclic monomers (from 53 to 90% for cyclic 

monomer 3a) was achieved by using a higher reaction temperature (from room 

temperature to 40oC) and a lower concentration of the starting material (from 13 to 3 

mM). 

Different main-chain homopolymers based on bile acids were prepared from the 

corresponding cyclic monomers (compounds 3a-e) via ring-opening metathesis 

polymerization with the second-generation Grubbs catalyst. For polymer 1, molecular 

weights (Mn) ranged from 6.3 × 104 to 5.2 × 105 depending on the catalyst loadings and 

polymerization times used. Copolymerization of cyclic monomer 3a with ricinoleic acid 

monolactone provided a series of copolymers 6a-f. 

ED-ROMP is a powerful tool in the preparation of polymers with high molecular 

weights. By controlling the polymerization time and catalyst loading, high molecular 

weight polymers (up to 5.2 × 105) can be obtained with relative ease. Such high 

molecular weight may be a challenge for other methods such as acyclic diene metathesis 

polymerization or polycondensation. 
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4.2 Characterization 

For the polymers, direct correlation was observed between the Mn and Tg. Tg 

increases with increasing Mn and finally reaches a plateau (at Mn = 2.0 × 105). For the 

homopolymers 1-5 having comparable molecular weights, the Tg of the polymer based on 

cholic acid is higher than that of the polymer based on lithocholic acid when the 

functional linkages are the same (e.g. Tg, polymer 1c > Tg, polymer 2); the presence of amide 

linkages in the polymer also increases the Tg (e.g., Tg, polymer 3 > Tg, polymer 4 > Tg, polymer 2); 

the number of functional groups between the core and the flexible alkane chain (e.g., Tg, 

polymer 5 > Tg, polymer 1c) greatly affects Tg. For the copolymers 6a-f, the Tg’s and Young’s 

modulus (E) decrease with increasing content of ricinoleic acid. The Tg and hardness of 

the polymer can be thus tuned by copolymerization. This is very useful for the 

applications of these polymers. Polymers 1c and 3-5 demonstrated shape memory 

properties in both warm and cold drawing modes with high strain recovery and strain 

fixity. 

The degradation experiments were carried out on the films prepared from polymers 

1, 7 and 8 and copolymers 6a and 6c. The degradation of these polymers was slow, with a 

relative weight loss of less than 20% after 140 ~ 168 days in PBS solution. The change in 

molecular weight (Mn) is not evident, except for polymer 8, which had a lower starting 

molecular weight. 

4.3 Future work 

Firstly, further studies on the mechanical properties of the polymers will provide a 

direct comparison of the different polymers made of bile acids.  

Secondly, the degradable shape-memory polymers may find applications in 

biomedical engineering. The degradation properties of some of these polymers have been 

studied in PBS at 37oC. It will be of practical importance to study the degradation of 

these polymers in a biological environment with the presence of bacteria, fungi and/or 

enzymes.  

Thirdly, the liquid crystalline properties of polymer 3 with the presence of THF 

were observed (Appendix 3). The mechanism of formation of liquid crystalline properties 
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is still unknown. The probable reason of formation of liquid crystalline properties of this 

polymer may be related with the hydrogen bond between the solvent and amide group of 

the polymer. It would be interesting to study the structural effect on such properties by 

changing the length of spacer group linking the bile acid core and the alkane chain. 
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APPENDICES 

 

1. Grubbs catalysts 

 

There are three ruthenium-based Grubbs catalysts frequently used, referred as first-, 

second- and third-generation Grubbs catalysts (Figure A1). All these Grubbs’ catalysts 

are able to initiate the metathesis including ring-closing metathesis (RCM), ring-opening 

metathesis polymerization (ROMP), acyclic diene metathesis polymerization (ADMET), 

ring-opening metathesis (ROM), and cross-metathesis (CM).1 
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Figure A1. The structure of first- (1), second- (2) and third- (3) generation 

Grubbs’ catalysts. 

 

First-generation Grubbs catalyst (1). This catalyst has been widely used in 

polymer preparation and ring-closure metathesis. The polymer prepared possesses low 

PDI. Meanwhile, the synthesis of some large ring carbocycles and heterocycles became 
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possible with the use of this catalyst (the two examples shown in Figure A2). However, 

this catalyst is not stable in solution and reacts rapidly with air. It decomposes with the 

presence of acetonitrile, DMSO and DMF.2 Furthermore, the polymerization of bulky 

monomer using this catalyst is not very efficient.3  
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Figure A2. The structures of macrocycles prepared via ring-closure 

metathesis using first-generation Grubbs catalyst.4 

 



 

 91

Second-generation Grubbs catalyst (2). In the structure of second-generation 

Grubbs catalyst, one of the phosphine ligands is replaced by an N-heterocyclic carbine, 

which is a stronger σ-donor, bulkier and less labile. Therefore, this catalyst is more 

effective than the first-generation Grubbs catalyst for more highly substituted (bulkier) 

and electron-poor olefins.5 However, polymers with high PDI are produced using the 

second-generation Grubbs catalyst because the rate of propagation is increased greatly 

compared to the initiation rate.5 One of typical ring-opening metathesis polymerization 

using the second-generation Grubbs catalyst is shown in Figure A3. 
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Figure A3. ROMP of amino acid-derived norbornene monomer using 

second-generation Grubbs’ catalyst.6 
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Figure A4. Synthesis of third-generation Grubbs catalyst from 

second-generation Grubbs catalyst. 
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Third-generation Grubbs catalyst (3). The third-generation Grubbs catalyst can be 

easily prepared from the second-generation Grubbs catalyst (Figure A4). This catalyst 

also contains an N-heterocyclic carbene ligand, but a phosphine ligand is replaced by two 

bromo-pyridine ligands. Thus, this change makes the third-generation able to initiate 

quicker than the second-generation and yields polymers with lower PDI.7-9 
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2. NMR spectra of intermediates and products 
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Figure A5. Synthesis of bile acid-based cyclic monomers 3a-d. 
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Figure A6. Synthesis of bile acid-based cyclic monomer 3e. 
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Figure A7. 1H NMR spectra of (A) cholic acid and (B) compound 1a in 

CDCl3. 
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Figure A8. 1H NMR spectra of (A) diene 2a and (B) cyclic monomer 3a in 

CDCl3. 
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Figure A9. 1H NMR spectra of (A) lithocholic acid and (B) compound 1b in 

CDCl3. 
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Figure A10. 1H NMR spectra of (A) diene 2b and (B) cyclic monomer 3b in 

CDCl3. 
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Figure A11. 1H NMR spectra of (A) lithocholic acid methyl ester and (B) 

compound 1c in CDCl3. 
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Figure A12. 1H NMR spectra of (A) diene 2c and (B) cyclic monomer 3c in 

CDCl3. 
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Figure A13. 1H NMR spectra of (A) lithocholic acid methyl ester and (B) 

compound 1d in CDCl3. 
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Figure A14. 1H NMR spectra of (A) diene 2d and (B) cyclic monomer 3d in 

CDCl3. 
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Figure A15. 1H NMR spectra of (A) cholic acid and (B) compound 1e in 

CDCl3. 
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Figure A16. 1H NMR spectra of (A) diene 2e and (B) cyclic monomer 3e in 

CDCl3. 
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Figure A17. Preparation of polymers 1-5 via ring opening metathesis 

polymerization. 
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Figure A18. 1H NMR spectra of (A) polymer 1 and (B) polymer 2 in CDCl3. 
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Figure A19. 1H NMR spectra of (A) polymer 3 and (B) polymer 4 in CDCl3. 
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Figure A20. 1H NMR spectra of polymer 5 in CDCl3. 
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3. Liquid crystalline properties of polymer 3 

Polymer liquid crystals have attracted much interest due to their unique properties 

and applications. Liquid crystalline (LC) polymers based on cholesterol moiety have been 

widely studied and documented.1-4 Our recent study of side chain polymers based on 

cholic acid and its derivatives showed no thermotropic LC properties.5 This is attributed 

to the less planar conformation of the bile acids in comparison to cholesterol.5 It may be 

interesting to verify also if polymers with bile acids in the main chain present the same 

behavior. The chemical structure of the polymer shown in Figure 3.30 has been prepared 

via ROMP as described in Chapter 2.  

Polymer 3 is the main-chain lithocholic acid-based polymer with two amide bonds 

and one ester bond. We found that it is possible to obtain LC phase for the lithocholic 

acid-based polymer and it was surprising since this polymer was previously thought to be 

amorphous in its pure form.5 Interestingly, this polymer was found to show a LC property 

when treated with THF. 
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Figure A21. Chemical structure of the lithocholic acid-based polymer 3. 

 

The sample prepared from THF was studied with polarizing optical microscopy 

(POM) (Figure 3.31). At room temperature, it showed typical birefringence, suggesting 

an anisotropic structure. With the increase of the temperature, the birefringence decreased 

gradually, indicating the loss of intrinsic order with temperature. No abrupt 

disappearance of birefringence was found. Further annealing at 83 oC for 24 h did not 

result in any birefringence. Therefore the structure evolution inside the material may be 
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thermally irreversible. It should be noted that no birefringence was observed for the 

sample prepared from chloroform. 

 

 

Figure A22. Polarizing optical micrograph taken at room temperature of 

polymer 3 obtained by precipitation from THF. 

The thermal transformation of the samples was studied with DSC. The results are 

shown in Figure 3.32. The sample prepared from the chloroform solution shows only one 

glass transition at 83 oC (Figure 3.32 curve A). In contrast, the sample prepared from 

THF shows complex endothermal peaks (Figure 3.32 curve B). It is noted that this peak 

is not reversible in the cooling that followed. Only one glass transition (Tg = 83 oC) 

showed up in the following scans whether or not annealing (83 oC for 24 h) was done. 

These results in addition to the evidence from POM suggest that the sample obtained 

from chloroform is amorphous, while that from THF has some ordering. 
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Figure A23. DSC traces of polymer 3. (A) film cast from CHCl3 solution, (B) 

precipitated from THF. 

 

To further understand the phase transition in the sample prepared from THF, X-ray 

diffractograms recorded at various temperatures were taken and the results are shown in 

Figure 3.33. At room temperature, a diffraction peak, though broad to some extent, 

appeared at ca. 3o along with a big diffraction halo centered around 18o. This is usually 

found in liquid crystal structures, although the intrinsic order may not be defined enough 

here to confirm this. The appearance of only one broad peak at small angles makes it 

difficult to identify the real LC phase; only one peak at small angle may indicate a 

nematic phase. As a clear tendency, the intensity of broad peak at small angles decreased 

with increasing temperature, especially above 100 oC. This corresponds well to the 

observation in the DSC curve, in Figure 3.32, with the heat peak appearing at about 100 
oC. The diffractogram taken at 119 oC shows a complete loss of the diffraction peak at 
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small angles, which suggests an amorphous state of the polymer. This remained here after 

cooling the sample to room temperature as well as after annealing at 83 oC for 24 h. 
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Figure A24. X-ray diffractograms of polymer 3 (LC) measured at different 

temperatures and at 73oC for 24 h. 

 

Polymer 3 precipitated from THF forms LC phase whereas film of polymer 3 cast 

from chloroform is amorphous. In order to understand the important role of THF in the 

formation of LC phase in the material, experiments were done for the comparison of 

these two samples. 

The 1H NMR spectrum of the polymer 3 (Figure 3.34) shows the presence of THF 

existing in liquid crystalline polymer 3, as evidenced by the typical peak at 3.77 ppm, 

even though the material was dried in a vacuum oven at 83oC for 24 h.  
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Figure A25. 1H NMR spectrum of polymer 3 (LC, dried in vacuum at 83oC 

for 24 h) in CDCl3. 

 

Figure 3.35 show the X-ray diffractograms of the precipitation from THF solution, 

obtained by casting from chloroform, and the same film after being placed in a THF 

vapor chamber for 72 h. The presence of a diffraction peak at a low angle (2.8o, as 

indicated by an arrow in Figure 3.35), and a broad halo at high angles (9.6~25.0o) 

indicate a typical LC structure.6 Curves A and C in Figure 3.35 are the same, which 

indicates that a small amount of THF plays a critical role in the formation of LC phase. 

The polymers tested include polymers 1-5 and 7-8, but only polymer 3 was found to have 

such a LC property. 

In conclusion, te solvent, THF, is very critical for the formation of this LC phase. 
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Figure A26. X-ray diffractograms at room temperature of polymer 3, with 

Bragg spacings given in angstroms: (A) precipitated from THF; (B) film cast 

from CHCl3 solution; (C) same film as in B, but equilibrated in THF vapor for 

72 h. 
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