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Résumé 

Les facteurs de risque des maladies cardiovasculaires, telle, que la détérioration du 

profil lipidique, deviennent plus prononcés après la ménopause, ce qui fait de la maladie 

coronarienne, l’une des principales causes de décès chez les femmes ménopausées. Une 

proportion importante de femmes prennent du poids après la ménopause en particulier dans 

la région abdominale entraînant par conséquent des perturbations métaboliques. Des 

données récentes suggèrent également que l’absence des œstrogènes observée à la 

ménopause favorise le développement de la stéatose hépatique. Cette dernière a été 

incriminée pour incriminée dans le développement de la résistance à l'insuline, et est de ce 

fait considérée comme une composante hépatique du syndrome métabolique. Il est 

impératif d'établir des stratégies visant à contrecarrer l'accumulation de graisse dans le foie 

et l’accroissement du tissu adipeux chez les femmes ménopausées, en tenant compte que 

l'utilisation de l'hormonothérapie substitutive est de nos jours moins soutenue. Les quatre 

études de la présente thèse ont été conduites pour tenter de fournir des informations sur le 

traitement et la prévention de l’augmentation de la masse graisseuse et de la stéatose 

hépatique qu’entraîne la suppression des œstrogènes, à travers les modifications du mode 

de vie (diète et exercice physique) chez la rate ovariectomizée (Ovx); un modèle animal de 

la ménopause. 

Dans les deux premières études nous nous sommes concentrés sur l’augmentation 

de la masse graisseuse et sa reprise suite à une perte de poids. Dans la première étude, nous 

avons montré que les rates Ovx qui ont suivi un programme de restriction alimentaire (FR) 

ont diminué significativement (P < 0.01) leur poids corporel, leur contenu en graisses intra-

abdominales ainsi que leurs triacylglycérols (TAG) hépatiques, comparativement aux rates 

Ovx nourries à la diète normale. De plus, l’entraînement en résistance (RT) a prévenu la 

reprise de poids corporel ainsi que l’accroissement du tissu adipeux et l’accumulation de 

lipides dans le foie des rates Ovx, après l’arrêt du régime amaigrissant. Les résultats de la 

deuxième étude ont confirmé l'efficacité de la restriction alimentaire associée à 
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l’entraînement en résistance (FR + RT) dans la réduction du poids corporel, des lipides 

dans le foie et le tissu adipeux chez les rates Ovx. Tenant compte des résultats de notre 

première étude, l’entraînement en résistance seulement a constitué un atout pour atténuer le 

poids corporel et la masse grasse reprise par les rates Ovx suite à un programme de perte de 

poids (FR + RT); bien que l'impact ait été moindre comparé au maintien seul de la 

restriction alimentaire. De la même manière que la supplémentation en œstrogènes, les 

résultats de la troisième étude indiquent que l'entraînement en endurance mené 

concurremment avec l’ovariectomie a significativement atténué l'accumulation de lipides 

dans le foie ainsi que dans le tissu adipeux. Toutefois, l’entraînement en endurance effectué 

avant l'ovariectomie n'a pas protégé contre l'accumulation des graisses qu’entraîne 

l'ovariectomie, si celui-ci est interrompu après l'ovariectomie. Enfin, pour compléter les 

résultats antérieurs, nous avons montré dans la quatrième étude que l’expression des gènes 

impliqués dans la synthèse de lipide; SREBP-1c, SCD-1, ChREBP, et ACC dans le foie a 

augmenté après le retrait des œstrogènes, tandis qu’une diminution (P < 0.01) des niveaux 

d'ARNm de PPAR-α a été observée.  De plus, l'expression hépatique des gènes des 

cytokines pro-inflammatoires incluant IKKβ, IL-6 ainsi que le contenu protéinique de NF-

кB étaient augmentés (P < 0.01) chez les rates Ovx par rapport aux rates ayant subi une 

Ovx simulée (Sham). Toutes ces perturbations ont été améliorées avec la supplémentation 

en œstrogènes seulement, ainsi qu'avec l'entraînement en endurance seulement.  

Dans l'ensemble, nos résultats indiquent que l'exercice physique (en résistance ou en 

endurance) a un impact significatif sur la réduction de l'accumulation des lipides dans le 

foie et dans le tissu adipeux des rates Ovx. De plus, chez les rates Ovx, l’entraînement en 

endurance mimerait les effets des œstrogènes sur l'expression des gènes impliqués dans 

l'accumulation de lipides et l’inflammation préclinique dans le foie.  

 

Mots-clés : Œstrogènes, Obésité ménopausique, Reprise de poids et de graisse, Foie gras, 

Restriction alimentaire, Entraînement en résistance, Entraînement en endurance, Bio-

marqueurs de l'inflammation, Ovariectomie (Ovx), Rat 
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Abstract 

Cardiovascular disease risk factors, such as lipid profile deterioration, become more 

pronounced after menopause making coronary heart disease a leading cause of death among 

postmenopausal women. A large proportion of women after menopause gain weight 

especially in the abdominal region resulting in several metabolic disturbances. Recent 

evidence also suggests that loss of estrogen function in menopause is associated with the 

development of a state of hepatic steatosis. Excessive fat accumulation in hepatocytes has 

been shown to play an important role in the development of insulin resistance and is even 

considered as a hepatic component of the metabolic syndrome. There is an important need 

to establish strategies to counteract fat accumulation in adipocyte and liver in 

postmenopausal women specifically considering the fact that utilization of hormone 

replacement therapy is now less supported. The four studies of the present thesis have been 

conducted in an attempt to provide information on the treatment and prevention of estrogen 

withdrawal-induced fat mass and hepatic steatosis via lifestyle modifications (diet and 

exercise training) in an ovariectomized (Ovx) rat model of menopause.  

In the first two studies we focused on fat mass gain and regain following weight 

loss. In study 1, we showed that food restriction program (FR) decreased (P < 0.01) body 

mass, intra-abdominal fat pad weight, and liver triacylglycerol (TAG) levels as compared to 

normally fed Ovx rats. Moreover, resistance training program (RT) was useful in 

preventing body weight as well as adipose tissue and liver fat regain in Ovx rats, following 

diet-induced weight loss. Results of study 2 confirmed the efficiency of the FR + RT 

program in reducing body weight as well as liver and adipocytes fat accretion in Ovx rats. 

In line with the findings of our first study, continuation of only RT constituted an asset to 

attenuate body weight and fat mass regain in Ovx rats following a FR + RT weight loss 

program, although the impact was less than maintaining FR alone. Similar to estrogen 

supplementation, results of study 3 indicated that endurance exercise training conducted 

concurrently with the induction of ovariectomy significantly attenuated liver and adipocyte 
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fat accumulation. However, an endurance exercise training state acquired before 

ovariectomy did not provide any protective effects against ovariectomy-induced fat 

accumulation if exercise is discontinued after the ovariectomy. Finally, complementing 

previous findings we showed in study 4 that liver gene expressions of transcription factors 

SREBP-1c and ChREBP along with downstream lipogenic enzymes SCD-1 and ACC were 

increased with estrogens withdrawal conversely to reduced PPAR-α mRNA levels (P < 

0.01). Furthermore, gene expressions of pro-inflammatory cytokines including IKKβ and 

IL-6 as well as protein content of NF-кB were higher (P < 0.01) in the liver of Ovx than in 

Sham animals. All of these responses were corrected with estrogen supplementation alone 

as well as with endurance exercise training alone in Ovx rats.  

On the whole, our results indicate that exercise training (resistance or endurance) 

has a significant impact on reducing fat accumulation in liver and adipocytes in Ovx rats. In 

addition, it seems that endurance exercise training in Ovx rats stimulates estrogenic-like 

effects on the expression of genes involved in lipid accumulation and sub-clinical 

inflammation in the liver. 

 

Keywords: Estrogen, Menopausal obesity, Weight and fat regain, Hepatic steatosis, Food 

restriction, Resistance training, Endurance exercise training, Inflammatory bio-markers, 

Ovariectomy (Ovx), Rat 
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 Introduction 

One of the subpopulations in which the prevalence of obesity and overweight is 

growing rapidly is postmenopausal women. Although it is not yet clear whether the 

menopausal transition itself leads to weight gain, it is known that the physiological 

withdrawal of estrogen brings about changes in fat distribution that increase the risk for the 

metabolic syndrome, diabetes, and cardiovascular disease [Dubnov-Raz, Pines et al. 2007]. 

In fact, with arrival of menopause, women experience an increase in body weight and 

alterations in body composition, with a tendency for intra-abdominal (visceral or central) 

fat accumulation [Brochu, Starling et al. 2000]. Increased intra-abdominal fat is strongly 

associated with insulin resistance and cardiovascular complications, while the same amount 

of lower body fat seems to have a protective effect [Kopelman 2000; Okura, Nakata et al. 

2004]. Remarkably, postmenopausal women tend to accumulate fat outside the adipose 

tissue (mainly in the liver) referred to as ectopic lipid deposition, which may be the cause 

of deleterious metabolic complications [Volzke, Schwarz et al. 2007; Kotronen and Yki-

Jarvinen 2008]. On the other hand, there is growing evidence of the metabolic and 

cardiovascular impact of liver lipid infiltration [Johnson, Sachinwalla et al. 2009] and 

interventions which reduce hepatic fat concentration are often accompanied with significant 

improvements in metabolic function such as insulin resistance and cardiovascular metabolic 

disturbances [Petersen, Dufour et al. 2005]. These observations highlight the importance of 

understanding the molecular and physiological mechanisms that underlie menopause-

associated obesity and metabolic dysregulation. Therefore, it is relevant to investigate 

possible strategies and their underlying mechanisms for the prevention/treatment of 

adipocyte and liver fat accumulation in the estrogen-deficient state. 

The four studies presented in this thesis have been conducted in an attempt to 

provide information on the treatment and prevention of estrogen withdrawal-induced fat 

mass increase and hepatic steatosis by lifestyle modifications (diet and exercise training) in 

ovariectomized (Ovx) rat model of menopause. Rodent ovariectomy is one approach to 

modeling human menopause and studying the metabolic consequences of loss of ovarian 

function. Studies in rodents consistently demonstrate that Ovx promotes obesity and its 
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metabolic complications. Using the Ovx model, we addressed several questions regarding 

regulation of adipocytes and liver fat accumulation.  

In the first study, we tested the hypothesis that substituting food restriction (FR) by 

resistance training (RT) after a period of weight loss would maintain the decrease in fat 

accumulation in liver and adipose tissue that occurs with weight loss in Ovx rats. In line 

with this approach, the second study investigated the effect of maintaining RT or FR on 

body weight regain, fat mass, and liver lipid infiltration in estrogen deficient animals 

previously submitted to a FR + RT weight loss program. An interesting question related to 

exercise and estrogen withdrawal is whether women who exercise regularly during their 

reproductive period are protected against the deleterious metabolic effects of menopause. 

Therefore, in the third study, we addressed this question using an animal model that 

allowed us to test a complete design of trained and untrained animals before and after 

withdrawal of estrogens. In continuation with our third study, the aim of the fourth study 

was to test the hypothesis that exercise training reduces the expression of key molecules 

involved in lipid synthesis while favoring the expression of molecules involved in fat 

oxidation. The second objective of this last study was to investigate the effects of 

ovariectomy and exercise training on gene expression of inflammatory markers in the liver. 

This thesis comprised seven chapters. The first section of chapter 1 presents a 

review of literature on the emergence of metabolic syndrome (intra-abdominal fat) and 

hepatic steatosis in the postmenopausal hormonal state, and their treatment and prevention 

by lifestyle modifications (exercise training). In the second part, a review on the pathogenic 

role of sub-acute inflammation in obesity and insulin resistance is presented. Chapters 2-5 

introduce the experimental studies of this thesis that are presented according to the format 

required by the journals in which they are published or have been submitted to and have the 

references provided at the end of each study. Finally, chapter 6 presents a general 

discussion and conclusion on the studies presented in this dissertation. Chapter 7 presents 

thesis references. 



 

 

Chapter 1: Review of literature 

 

Emergence of metabolic syndrome and hepatic steatosis in 

menopausal hormonal state: treatment and prevention by 

exercise training 

 

Cardiovascular disease in postmenopausal women 

Gender differences in the development of cardiovascular disease (CVD) are well 

documented. Female gender is comparatively protected against CVD in the reproductive 

age range [Loria, Lonardo et al. 2008]. However, coronary heart disease (CHD) is a main 

and leading cause of death in women [Wingo, Calle et al. 2000]. Early epidemiological 

studies indicated higher incidence of the disease in postmenopausal women compared to 

women of reproductive age [Gordon, Kannel et al. 1978; Rosenberg, Hennekens et al. 

1981; Colditz, Willett et al. 1987; Matthews, Meilahn et al. 1989]. Accordingly, 

cardiovascular diseases are more prevalent in men than in premenopausal women, but the 

incidence increases sharply in postmenopausal women [Wenger, Speroff et al. 1993]. 

Menopause is characterized by the progressive reduction of estrogens resulting to cessation 

of menses [Mastorakos, Valsamakis et al. 2010]. Strategies to prevent CVD in this 

population should therefore be a principal objective for healthcare providers. 

Based on above evidence, the hypothesis that estrogens have protective effect 

against atherosclerosis has been put forward. Studies that have investigated the role of age 

at menarche and the calculated total lifetime exposure to endogenous estrogen, indicate that 

endogenous estrogens appear to play a protective role for the cardiovascular system [de 

Kleijn, van der Schouw et al. 2002; Jansen, Temme et al. 2002; Saltiki, Doukas et al. 2006]. 

These studies conclude that shorter lifetime exposure to endogenous estrogens is an 
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important risk factor for the presence and the severity of coronary heart disease. It is known 

that estrogens exert several protective effects on the cardiovascular system such as 

favorably modifying the lipid profile by increasing high density lipoprotein (HDL) and 

lowering low density lipoprotein (LDL) while also improving endothelial function 

[Lieberman, Gerhard et al. 1994]. The lack of these estrogenic effects at the time of 

menopause results in deleterious metabolic changes that not only negatively affect lipids 

but also fat redistribution and insulin resistance [Seed 2002]. Therefore, although we have 

to be careful on the effect of age, menopause can be considered a risk factor for CVD 

because estrogen withdrawal has a negative effect on cardiovascular functions and 

metabolism. Menopause negatively impacts upon many traditional risk factors for CVD, 

including changes in body fat distribution from a gynoid to an android pattern, reduced 

glucose tolerance, abnormal plasma lipids, increased blood pressure, endothelial 

dysfunction and vascular inflammation [Rosano, Vitale et al. 2007]. Based on these data, 

hormone replacement therapy in postmenopausal women was the first line prescription by 

physicians for many years and numerous observational studies suggested a cardiovascular 

benefit in women taking postmenopausal hormone replacement therapy [Psaty, Heckbert et 

al. 1994; Sidney, Petitti et al. 1997; Grodstein, Manson et al. 2000].  However, in recent 

years, large prospective and randomized trial studies such as the Women’s Health Initiative 

(WHI) reported no CHD benefit by hormone replacement therapy and even suggested a 

possible increased incidence of CVD [Rossouw, Anderson et al. 2002]. Although no 

specific mechanism has yet fully explained this paradox, several potential adverse 

consequences from estrogen therapy relative to CHD risk have been proposed, such as 

elevations in TAGs and C-reactive protein (CRP) along with increased likelihood of 

thrombus formation; all of which have been implicated in increasing CHD risk in women 

[Welty 2001; Alexander and Clearfield 2006]. Moreover, from a clinical standpoint, the 

protection conferred by initiating hormone replacement therapy soon after the menopause is 

small [2006]. Therefore, it seems that prevention of CVD or CHD in postmenopausal 

women have to mostly rely on well-established interventions such as diet and exercise 
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which should be vigorously emphasized by health care providers at the time of menopause 

[2006; Alexander and Clearfield 2006].  

 

Menopausal obesity and the emergence of metabolic syndrome 

The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rapidly increasing 

worldwide. The public health consequences of this situation are devastating and recognized 

by practically every major international health organization. Obesity is first and foremost a 

problem of energy imbalance (energy intake exceeds energy expenditure); and 

unfortunately, women who can expect to live almost more than a third of their lives after 

menopause; are disproportionately affected by obesity and its co-morbidities such as 

aforementioned CVD. Review of the relevant literature and results from recent clinical trial 

studies indicate that 60% of postmenopausal women are considered overweight and obese 

and 43% present the metabolic syndrome [Ford, Giles et al. 2002]. In addition, 

postmenopausal status is associated with a 60% increased risk of the metabolic syndrome, 

even after adjusting for confounding variables, such as age, body mass index, household 

income, and physical inactivity [Park, Zhu et al. 2003]. Menopausal obesity-related CVD 

become a leading cause of morbidity and mortality in women after fifty years of age 

[Simoncig-Netjasov, Vujovic et al. 2008]. In parallel there is an increased prevalence of 

cardiometabolic abnormalities in the transition from pre- to postmenopause such as 

increased central (intra-abdominal/visceral/abdominal) body fat, a shift toward a more 

atherogenic lipid profile, increased blood pressure, and glucose intolerance along with 

reduced insulin sensitivity and high prevalence of nonalcoholic fatty liver disease 

(NAFLD); elucidating the noticeable increase of rate in CVD after menopause [Carr 2003; 

Clark 2006]. It has been suggested that there is a metabolic syndrome resulting from the 

menopause due to estrogen deficiency, as many of the risk factors are more prevalent in 

postmenopausal women [Kaaja 2008]. Eshtiaghi et al. recently reported that menopause 

can be a predictor of metabolic syndrome independent of age [Eshtiaghi, Esteghamati et al. 
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2010]. The features of the metabolic syndrome include the accretion of visceral adiposity, 

insulin resistance, hypertension, and dyslipidemia (hypertriglyceridemia, reduced HDL, and 

increased small dense LDL particles) (Table 1) [Despres 1993]. The emergence of these 

risk factors may be a direct consequence of ovarian failure or alternatively, an indirect result 

of the metabolic cost of central fat redistribution with estrogen deficiency [Carr 2003]. 

Nevertheless, the exact mechanism linking menopausal hormonal context and its resulting 

visceral adiposity to the downstream metabolic diseases remains unclear.  

 

Menopause, weight gain and fat redistribution 

The rate of weight gain during the menopausal period is not consistent between 

studies [Panotopoulos, Raison et al. 1997]. While it is still unclear whether the menopause 

transition itself brings about weight gain [Crawford, Casey et al. 2000; Dubnov-Raz, Pines 

et al. 2007], there is good evidence that menopause is associated with weight gain and 

changes in fat distribution that increase the risk of cardiovascular diseases [Astrup 1999; 

Milewicz, Demissie et al. 2003; Genazzani and Gambacciani 2006]. Rosano et al. reported 

that postmenopausal women tend to gain weight from the first year of menopause and 

experience a redistribution of body fat from a gynoid to an android pattern [Rosano, Vitale 

et al. 2007]. There are two patterns of fat distribution: accumulation of fat centrally as intra-

abdominal fat (named android or apple shape); and accumulation of fat peripherally in the 

gluteo-femoral region (named gynoid or pear shape). Apple shape/android/intra-

abdominal/central/visceral fat deposition is associated with a higher risk of 

hypertriglyceridemia, insulin resistance, diabetes, and CVD, independently of overall 

obesity [Kannel, Cupples et al. 1991; Despres 1993]. It seems that estrogen promotes the 

accumulation of gluteo-femoral fat [Krotkiewski, Bjorntorp et al. 1983]. This may, at least 

partially, explains that fluctuations in reproductive hormone concentrations throughout 

women’s lives uniquely predispose them to excess weight gain. For example, menopause is  
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Table 1. Taken from [Despres 1993] Features of the metabolic syndrome. 

 

 

1. Central obesity 

2. Insulin resistance 

3. Dyslipidemia 

a. Elevated TG 

b. Small dense LDL particles 

c. Reduced HDL 

4. High blood pressure  

5. Hypercoaguable state 

6. Pro-inflammatory state 
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one of the critical periods of a woman’s life during which weight gain and onset or 

worsening of obesity is favored [Pavon de Paz, Alameda Hernando et al. 2006]. 

Longitudinal and review of cross-sectional studies support the notion that the menopause 

transition, independently of aging process and total body fatness, is associated with an 

increase in abdominal and visceral adipose tissue accumulation [Tchernof, Calles-Escandon 

et al. 1998]. Alterations in regional adipose tissue metabolism along with positive energy 

imbalance resulting from hormonal changes of the menopause transition may be potential 

mechanisms for the menopause related acceleration in abdominal fat accumulation 

[Guthrie, Dennerstein et al. 2003] (Figure 1). Moreover, Lovejoy et al. in their recent 

observational-longitudinal study with annual measurements for 4 years reported that 

menopause onset is associated with reduced energy expenditure (both basal and physical 

activity) and fat oxidation that can predispose to obesity (total and visceral abdominal fat) if 

lifestyle changes are not made [Lovejoy, Champagne et al. 2008]. A menopause related 

decline in fat-free mass (muscle) is also reported which may be responsible for a decrease 

in energy expenditure [Colombel and Charbonnel 1997; Panotopoulos, Raison et al. 1997]. 

Intra-abdominal adipose tissue is thought to be the most important determinant for the 

constellation of metabolic disturbances, termed metabolic syndrome. Women with high 

amounts of visceral fat have an excess of cardiovascular mortality and associated metabolic 

abnormalities [Lapidus, Bengtsson et al. 1984]. Therefore, it is not surprising that review of 

the relevant literature and results from recent clinical trials indicate that metabolic 

syndrome may occur in at least 40% of postmenopausal women, which is largely 

determined by overweight status and obesity [Lobo 2008]. The prime emphasis in 

management of the metabolic syndrome and the prevention of CVD is to reduce underlying 

modifiable risk factors through lifestyle changes [Kaaja 2008]. Consequently, almost all 

concerned review studies support the importance of focusing on postmenopausal women, 

with the goal of weight reduction, increasing physical activity and encouraging healthy 

dietary choices to prevent weight and visceral fat gain in menopause transition [Sowers, 

Zheng et al. 2007; Kaaja 2008; Lobo 2008; Lovejoy, Champagne et al. 2008]. 
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Figure 1. Potential mechanisms explaining menopause-related increases in abdominal and 

intra-abdominal adiposity.   
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Menopause and hepatic steatosis 

Non-alcoholic fatty liver disease (NAFLD) 

Liver lies below the diaphragm in the thoracic region of the abdomen. This organ 

plays a major role in metabolism and has a wide range of functions including production of 

biochemicals necessary for digestion, glycogen storage, decomposition of red blood cells, 

protein synthesis, hormone production, and detoxification [Maton, Hopkins et al. 1993]. 

Liver is particularly vulnerable to ectopic fat accumulation [Bruce and Byrne 2009] that 

could result in NAFLD characterized by hepatic lipid accumulation in the absence of 

significant alcohol consumption. NAFLD is the most frequent chronic liver disease in 

Western countries [Angulo 2002] and its incidence in both adults and children is rapidly 

rising in conjunction with the burgeoning epidemics of obesity and T2DM [Stein, Dong et 

al. 2009]. NAFLD is defined as fatty infiltration of the liver exceeding 5 to 10% by weight 

[Salt 2004]. It includes a wide spectrum of disorders ranging from simple steatosis 

described by hepatic lipid accumulation in the form of triglyceride (TG) to nonalcoholic 

steatohepatitis (NASH) described by the association of lipid accumulation with evidence of 

hepatocyte injury, inflammation and different degrees of fibrosis [Brunt and Tiniakos 

2005]. NASH can also progress to cirrhosis and hepatocellular carcinoma. NAFLD is now 

considered the hepatic manifestation of metabolic syndrome and has insulin resistance as its 

feature [Musso, Gambino et al. 2003; Musso, Gambino et al. 2008]. Moreover, new 

evidence suggests that NAFLD is becoming a risk factor for diabetes and CVD; 

independently of insulin resistance, metabolic syndrome, plasma lipid levels, and other 

usual risk factors [Chitturi and Farrell 2007; Alkhouri, Tamimi et al. 2009]. It was reported 

that hepatic steatosis by itself is associated with a pro-atherogenic lipid profile [Cali, Zern 

et al. 2007] and increased production of pro-inflammatory markers [Wieckowska, 

Papouchado et al. 2008]. In support of this, recent epidemiological studies suggest that 

NAFLD may be dynamically involved in the pathogenesis of CVD, potentially through the 

increased release of pro-atherogenic markers from liver mainly inflammatory cytokines 
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[Targher, Marra et al. 2008]. Loria and et al. showed that many well-defined metabolic, 

haemodynamic, hormonal, pro-thrombotic and pro-inflammatory CVD risk factors play a 

major role in the complex pathophysiology of NAFLD (Table 2) [Loria, Lonardo et al. 

2008]. Moreover, they conclude that lipotoxicity derived from NAFLD represents a 

potential biological mechanism accounting for increased CVD risk, and there appears to be 

a close link between deranged energy homeostasis, inflammatory changes in adipose and 

liver tissues and molecular mediators of atherogenesis.  

On the other hand, NAFLD is involved in whole-body insulin resistance and 

dyslipidemia, although whether insulin resistance is a consequence of liver ectopic fat 

deposition or vice versa remains an unanswered question [Bruce and Byrne 2009]. Some 

researchers have proposed that with insulin resistance, the combination of increased plasma 

glucose and free fatty acids concentrations promote hepatic fatty acid synthesis and impair 

β-oxidation leading to hepatic steatosis [Marchesini, Brizi et al. 1999; Sanyal, Campbell-

Sargent et al. 2001]. On the contrary, other investigators have projected that liver fat 

accumulation and hepatic insulin resistance can happen without the development of 

peripheral insulin resistance [Kraegen, Clark et al. 1991; Kim, Fillmore et al. 2001]. 

However, when considerable hepatic steatosis occurs, liver becomes insulin resistant and 

overproduces both glucose and very low density lipoprotein (VLDL) leading to 

hyperglycemia, hypertriglyceridaemia, and decreased HDL concentrations [Kotronen and 

Yki-Jarvinen 2008]. Moreover, the results of Samuel et al. support the hypothesis that 

hepatic steatosis leads to hepatic insulin resistance by stimulating gluconeogenesis and 

activating protein kinase C-ε (PKC-ε) and c-Jun N-terminal protein kinase 1 (JNK1), which 

may interfere with tyrosine phosphorylation of insulin receptor substrate 1 and 2 (IRS-1 

and IRS-2) and impair the ability of insulin to activate glycogen synthase [Samuel, Liu et 

al. 2004]. 

The exact pathogenesis of hepatic lipid accumulation seems to be very complex and 

only partially understood. Nevertheless, it is a condition usually associated with obesity 

(particularly central abdominal obesity), diabetes, and insulin resistance. On the whole, the  
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Table 2. Taken from [Loria, Lonardo et al. 2008] Possible pathophysiological bases for an 

association between NAFLD and accelerated atherosclerosis. 
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The left-hand column lists the widely accepted genetic and environmental risk factors for 

atherosclerosis. Interestingly, evidence is mounting that the same factors also play a role in 

the development of NAFLD. LDL, low density lipoprotein; VLDL, very-LDL; HDL, high 

density lipoprotein; ALT, alanine aminotransferase; HCV, hepatitis C virus; T2DM, type 2 

diabetes mellitus; PAI-1, plasminogen activator inhibitor-1; CRP, C-reactive protein.  
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general mechanism of liver fat accumulation involves an imbalance between lipid 

availability (from circulating lipid uptake or de novo lipogenesis) and lipid disposal 

(through fat oxidation or triglyceride-rich lipoprotein secretion) [Musso, Gambino et al. 

2009]. Excessive fat accumulation in the liver can occur as a result of: (i) increased fat 

delivery into the liver (dietary fatty acids and plasma non-esterified fatty acids derived from 

adipose tissue), (ii) increased fat synthesis in liver, (iii) reduced fat oxidation, and (iv) 

reduced fat export in the form of VLDL (see Figure 2 for an overview). Considering the 

complexity and heterogeneity of the mechanisms involved, it is quite difficult to imagine 

that it would be possible to identify a single gene variation as the single cause of the disease 

[Petta, Muratore et al. 2009]. Therefore many genes, related not only to fat accumulation 

but also to different mechanisms implicated in the disease progression, have been 

evaluated, and some polymorphisms capable of increasing the severity of the disease have 

been identified (Table 3) [Wilfred de Alwis and Day 2007]. 

According to Petta et al. [Petta, Muratore et al. 2009] body fat, insulin resistance, 

oxidative stress and mitochondrial dysfunction, cytokine/adipokine interplay, and apoptosis 

are risk factors of NAFLD. Most interestingly, recent data indicates that intra-abdominal 

(visceral) fat likely plays a pivotal role in the pathogenesis of NAFLD [Thomas, Hamilton 

et al. 2005] affecting all above mentioned risk factors. In effect, visceral fat acts as an 

endocrine storage organ, secreting different molecular mediators such as FFA, adiponectin, 

leptin, TNF, IL-6, etc; and participating directly in NAFLD pathogenesis in different ways, 

dependently or independently of insulin resistance, therefore contributing to liver fat 

accumulation [Ronti, Lupattelli et al. 2006]. To date, the most effective treatments of 

NAFLD are lifestyle changes (diet, weight reduction, and exercise) [Williams, Sander et al. 

2006]. However, the front-line therapy with lifestyle modifications resulting in weight loss 

through decreased caloric intake and exercise is often difficult to maintain on a long term 

basis [Stein, Dong et al. 2009]. Therefore, information regarding fat accumulation in liver 

and adipocytes is needed to establish the most effective strategies to prevent and treat 

NAFLD and to counteract the deleterious metabolic effects of NAFLD. 
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Figure 2. Taken from [Lavoie and Gauthier 2006] Overview of the four main pathways 

involved in the development of nonalcoholic hepatic steatosis, and their regulatory factors. 

Nonalcoholic hepatic steatosis is characterized by (1) an increase in the uptake of lipids by 

the liver, (2) an increase in hepatic de novo lipogenesis (DNL), and an insufficient 

elimination of excess liver triacylglycerols (TAGs) by means of (3) hepatic lipid oxidation 

and (4) very low density lipoprotein (VLDL) assembly and secretion. HSL, hormone-

sensitive lipase; LPL, lipoprotein lipase; FAT/CD36, fatty acid translocase/cluster of 

differentiation 36; SREBP-1c, sterol-regulatory-element-binding protein 1c; ChREBP, 

carbohydrate-response-element-binding protein; LXR, liver X receptors; PPAR, 
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peroxisomal proliferator-activated receptors; SCD-1, stearoyl-CoA desaturase-1; AMPK, 

AMP-activated protein kinase; PGC-1α, peroxisome proliferator-activated receptor gamma 

coactivator-1 alpha; MTP, microsomal transfer protein; DGAT, diacyglycerol 

acyltransferase; ARF-1, ADP-ribosylation factor 1; ApoB, apolipoprotein B.  
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Table 3. Taken from [Wilfred de Alwis and Day 2007] Genes potentially involved in the 

pathogenesis of nonalcoholic fatty liver disease (NAFLD). 
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RXR, retinoid X receptor; LXR, liver X receptor; SREBP, sterol responsive element 

binding protein; ChREBP, carbohydrate responsive element binding protein; MTP, 

microsomal triglyceride transfer protein; PPARα, peroxisome proliferator-activated 

receptor α; PPARγ, peroxisome proliferator-activated receptor γ; RBP4, retinol binding 

protein 4; TNFα, tumor necrosis factor α; IL-6, interleukin-6; SOCS, suppressor of 

cytokine signaling; PPA2, protein phosphatase A2; SOD, superoxide dismutase; GST, 

glutathione transferase; GSH, glutathione peroxidase; TLR, Toll-like receptor; MnSOD, 

manganese superoxide dismutase; MAO, monoamine oxidase; AFABP, adipocyte fatty 

acid binding protein; IL-10, interleukin-10; MCP1, monocyte chemoattractant protein-1; 

TNFR, tumor necrosis factor receptor; KLF6, Kupper-like factor 6; CTGF, connective 

tissue growth factor; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of matrix 

metalloproteinase.  
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NAFLD in postmenopausal women 

Gender may influence the incidence and severity of NAFLD. Women are protected 

from the occurrence of CVD and NAFLD [Isidori, Giannetta et al. 2005; Lonardo, Carani 

et al. 2006]; however, similarly to CVD and atherosclerosis, the estrogen-related hepato-

protective effect disappears after menopause [Carulli, Lonardo et al. 2006].  Population-

based studies showed that nonalcoholic hepatic steatosis is more common in men than in 

women; however, following the menopause there is a reversal in gender distribution so that 

NAFLD is more common in females [Park, Jeon et al. 2006]. In fact, nonalcoholic hepatic 

steatosis is twice as common in postmenopausal compared to premenopausal women 

[Hagymasi, Reismann et al. 2009]. It seems that endogenous estrogens play a protective 

role against the hepatic steatosis. Basic and clinical studies support the hypothesis that 

estrogens might protect from the development of NAFLD [Carulli, Lonardo et al. 2006; 

Lonardo, Carani et al. 2006]. For instance, anti-estrogens increase the risk of nonalcoholic 

steatohepatisis [Bruno, Maisonneuve et al. 2005]. In addition, alterations in body 

composition, fat distribution and/or hormonal or metabolic changes that occur following 

menopause may influence the development and progression of NAFLD [Suzuki and 

Abdelmalek 2009]. Therefore, it is logical that several studies indicated that menopause as 

a natural state of estrogen deficiency is associated with hepatic steatosis [Clark, Brancati et 

al. 2002; Park, Jeon et al. 2006; Volzke, Schwarz et al. 2007]. The importance of this 

phenomenon is enlightened by the fact that excessive fat accumulation in liver plays an 

important role in the development of insulin resistance [Kadowaki, Hara et al. 2003]. 

Furtheremore, there is a widespread agreement that NAFLD predicts CVD [Bataller, 

Sancho-Bru et al. 2003]. Increased fat accumulation in the liver is accompanied by 

atherosclerosis and the metabolic syndrome [Brea, Mosquera et al. 2005; Villanova, 

Moscatiello et al. 2005; Targher, Bertolini et al. 2006; Targher, Bertolini et al. 2007; 

Tolman, Fonseca et al. 2007], even independently of intra-abdominal visceral adiposity 

[Nguyen-Duy, Nichaman et al. 2003; Thamer, Machann et al. 2007]. New findings even 

indicate that ectopic fat in liver may be more important than visceral fat in characterization 
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of metabolically benign obesity in humans with which and atherosclerosis has been 

proposed to exist [Stefan, Kantartzis et al. 2008; Messier, Karelis et al. 2010].  Moreover, 

Tarantino et al. claim that “hepatocytes are the last cells to be involved in the progressive 

chain of fat accumulation and probably the first cells to tell us that something is wrong” 

[Tarantino, Pizza et al. 2009]. While it is not completely clear yet, the general association 

between NAFLD and CVD has just been established by the fact that the liver is involved in 

regulating/secreting numerous CVD risk factors, notably a cytokine tumor necrosis factor-

alpha (TNF-α), an acute-phase protein CRP, glucose, lipoproteins, coagulation factors 

(plasminogen activator inhibitor-1) and a substance which increases blood pressure 

(angiotensin II) [Tarantino, Pizza et al. 2009]. Therefore, due to the increasing prevalence 

and association with other metabolic disorders in postmenopausal women, it is important 

that clinicians gain a deep understanding of NAFLD and its clinical presentation as well as 

therapeutic options in the absence of ovarian secretions. Consequently, information relative 

to cellular and molecular mechanisms involved in the development of hepatic steatosis in 

menopausal status has clinical importance. It seems that hormone replacement therapy 

decreases the risk of steatosis [Hagymasi, Reismann et al. 2009] and the prevalence of 

NAFLD is lower in postmenopausal women taking hormone replacement therapy than in 

women not taking it [Clark, Brancati et al. 2002]. Nevertheless, although hormone 

replacement therapy appears safe in NAFLD, it is not recommended for liver protection 

because of the increased risk of cardiovascular events [Rossouw, Anderson et al. 2002; 

McKenzie, Fisher et al. 2006]. A recent review on NAFLD in older women reported that at 

present, there are no specific or effective pharmacological treatments available; and 

lifestyle modifications with weight loss and exercise are regarded as first line treatments 

[Frith and Newton 2010]; as this is the case for the management of metabolic syndrome. 
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General mechanisms of adipocyte fat accumulation and hepatic steatosis in rat model 

of menopause 

Among the several endocrine factors that are accountable for the development of 

obesity, female ovarian hormones have been shown to play a major role [Picard, Deshaies 

et al. 2000]. Animal models and molecular markers are precious research tools to 

understand the process leading to adipocyte and liver fat accumulation in a postmenopausal 

hormonal context. The Ovariectomized (Ovx) rat model of menopause is a model 

resembling the decline in estrogen levels in postmenopausal women, which is at least 

partially responsible for the increase in osteoporotic fractures and cardiovascular diseases 

[Gallo, Zannoni et al. 2005]. In addition, the Ovx rat model may be considered as an 

experimental model of postmenopausal obesity that may also resemble the characteristic 

features of a metabolic syndrome occurring in menopause; therefore, Ovx rats can be used 

as models to reflect the lipid pathogenic changes in perimenopausal or postmenopausal 

women [Wang, Guo et al. 2004]. This will help to investigate possible lifestyle intervention 

or new pharmacological treatments. 

It is now well established that in animals, Ovx leads to increased food intake and 

body weight [Latour, Shinoda et al. 2001] thus resulting in increased adipose tissue and 

liver fat accretion [Deshaies, Dagnault et al. 1997; Picard, Deshaies et al. 2000]. Data from 

observational and clinical trials evidently show that estrogens possess favorable metabolic 

effects and estrogen treatment has been shown to decrease body weight gain and fat 

accumulation in both animals and humans [Tchernof, Calles-Escandon et al. 1998; 

Seidlova-Wuttke, Hesse et al. 2003; Seidlova-Wuttke, Jarry et al. 2003]. Although hard to 

separate specifically, estrogens act through two general actions regarding the pathogenesis 

of Ovx induced fat gain: central effects of estrogens withdrawal (increased food intake and 

decreased energy expenditure resulting in adipocyte fat gain preferably in intra-abdominal 

region; since our focus is on hepatic fat accumulation, in our research work we call it 

‘‘extra-hepatic effects of estrogens’’) and ectopic effects of estrogens withdrawal (or intra-

hepatic: affecting ectopic tissue of liver at molecular level resulting in ectopic fat 
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accumulation). There might be interactions between two effects of estrogens in terms of 

adipocyte and ectopic fat accumulation. For example, central effects are indirectly involved 

in liver fat accumulation via increased fatty acid flow into the liver from circulation (arising 

from increased food intake and higher intra-abdominal fat depositions). 

  

Mechanisms of estrogen action in brief 

It is now well recognized that the effects of estrogens are not limited to the female 

reproductive system and almost all tissues are under estrogenic influence in both men and 

women [Ciocca and Roig 1995; Matthews and Gustafsson 2003]. Epidemiological and 

clinical evidence strongly suggest that estrogens, in particular 17β-estradiol (E2) the most 

potent and dominant estrogen in mammals, play an important regulatory role in the 

metabolism and regional distribution of adipose tissue [Wade and Gray 1978; Ohlsson, 

Hellberg et al. 2000; Mayes and Watson 2004]. Estrogen deficiency leads to increased fat, 

preferentially in visceral fat, which would link obesity to the susceptibility of related 

disorders [Pallottini, Bulzomi et al. 2008]. Estrogens promote subcutaneous fat depot after 

sexual maturation [Ohlsson, Hellberg et al. 2000]. Conversely, in postmenopausal women 

abdominal fat increases [Sjostrom, Smith et al. 1972]. It seems that E2 controls fat 

distribution by changing the lipolytic response into the two fat depots differentially, thus 

favoring fat accumulation in peripheral depots at the expense of the visceral depot 

[Pallottini, Bulzomi et al. 2008]. Estrogens also regulate activity of lipoprotein lipase 

(LPL), a major lipogenic enzyme in adipose tissue [Hamosh and Hamosh 1975]. It has been 

shown in several studies that ovariectomy in female rats results in increased LPL, while 

estrogen replacement decreased the LPL activity [Mayes and Watson 2004]. 

Moreover, in recent years it has become evident that estrogens’ role in adipose 

tissue biology and lipid metabolism may be broader and more complex than initially 

appreciated. It seems that active metabolic tissues, such as the liver, are particularly 

sensible to estrogen effects in terms of different functions including lipid metabolism. The 
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molecular and biological mechanisms underlying the metabolic actions of estrogen in liver 

are poorly understood. Estrogen is a steroid hormone mainly produced by ovaries. Its 

actions are predominantly mediated by genomic mechanisms through its nuclear receptors 

(ER) α or β [Bjornstrom and Sjoberg 2005]. ERs are ligand-activated transcription factors 

that mediate estrogens’ biological actions in liver and it was shown that ER diminishes 

sharply at postmenopause [Shimizu 2003; Meza-Munoz, Fajardo et al. 2006]. Outstanding 

advancements in recent years suggested that estrogens action in vivo is complex and often 

involves activation of cytoplasmic signaling cascades in addition to genomic actions 

mediated directly through estrogen receptors α and β; and might simultaneously activate 

distinct signaling cascades that function as networks to coordinate tissue responses to 

estrogen [Segars and Driggers 2002]. These orchestrating distinct signaling pathways 

which involves specific complexes of cytoplasmic proteins might supplement or augment 

genomic effects of estrogen that are attributable to transcriptional activation by bound 

receptors [Driggers and Segars 2002]. Therefore, it is not surprising that E2 has been shown 

to exert rapid non-genomic biological actions through membrane bound subpopulations of 

ER [Kelly and Levin 2001; Evinger and Levin 2005; Revankar, Cimino et al. 2005]. 

Interestingly, D’Eon et al. reported novel genomic and non-genomic actions of E2 that 

promote leanness in Ovx animals independently of reduced energy intake [D'Eon, Souza et 

al. 2005]. Moreover, it has been suggested that E2 reduces adiposity by promoting the use 

of lipid as fuel which is recognized by the stimulation of pathways that promote fat 

oxidation in muscle, by inhibition of lipogenesis in adipose tissue, liver, and muscle; and by 

improved rates of adipocyte lipolysis [Pallottini, Bulzomi et al. 2008]. 

 

Central (extra-hepatic) effects of estrogen withdrawal 

Obesity results from an imbalance between energy intake and expenditure. Since 

hyperphagia is a well known response to Ovx and is prevented if estradiol is replaced, 

many of the effects attributed to estradiol may be explained primarily by changes in food 
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intake [Richard 1986]. In fact, one view of Ovx-induced obesity is that estrogen removal 

leads to a marked increase in body energy stores of the rat (via increased energy intake and 

food efficiency along with decreased energy expenditure), which leads to increased 

energetic efficiency [Picard, Deshaies et al. 2000; Lemieux, Picard et al. 2003]. This 

contributes to weight gain, especially as visceral or intra-abdominal fat, that has been 

reported in both Ovx animals [Paquette, Shinoda et al. 2007] and women during and after 

menopause [Simkin-Silverman and Wing 2000]. Consequently, determinants of lipid 

metabolism such as liver triacylglycerol (an index of long-term hepatic lipid accumulation) 

and adipose tissue lipoprotein lipase activity (the enzyme which hydrolyzes lipoprotein-

bound triglycerides and favors tissue uptake of so released fatty acids) are altered in 

correspondence with increased energy flux [Lemieux, Picard et al. 2003]. In other words, 

Ovx-induced increased energy efficiency is accompanied by concomitant adaptations of 

peripheral lipid metabolism that include the induction of pathways implicated in fat 

accumulation [Deshaies, Dagnault et al. 1997]. Therefore, the central effects of estrogen 

withdrawal indirectly (i.e. via food intake and changes in insulin levels and its efficiency of 

action) affect liver fat accumulation in Ovx animals [Picard, Deshaies et al. 2000]. Briefly, 

central effects of estrogen supplementation in Ovx rats have been shown to lower food 

intake [Gray and Wade 1981; Pedersen, Bruun et al. 2001], decrease adipose tissue 

lipoprotein lipase (LPL) activity [Gray and Greenwood 1984], increase adipose tissue 

lipolysis [Darimont, Delansorne et al. 1997], increase spontaneous physical activity [Roy 

and Wade 1975], and increase energy expenditure [Heine, Taylor et al. 2000; Pedersen, 

Bruun et al. 2001]. In regard to central effects of estrogen, Picard et al. state that Ovx 

induces obesity by removing the catabolic actions of estrogens, which act upon as yet 

poorly defined central neuropeptidergic pathways that regulate energy balance [Picard, 

Deshaies et al. 2000]. For example, estrogen has been reported to have negative effects on 

feeding and energy expenditure through direct actions on the hypothalamus and/or through 

indirect actions by regulating adipose hormones such as leptin, adiponectin, and resistin 

[Cooke and Naaz 2004].  
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Intra-hepatic effects of estrogen withdrawal 

Several conditions promote liver TAG accumulation among which an estrogen-

deficient state is considerable [Paquette, Shinoda et al. 2007; Barsalani, Pighon et al. 2008; 

Corriveau, Paquette et al. 2008]. For instance, hepatic steatosis was reported to become 

evident in an aromatase-deficient mouse (which lacks the intrinsic ability to produce 

estrogen) and was diminished in animals after treatment with estradiol [Nemoto, Toda et al. 

2000]. In addition, visceral obesity, metabolic syndrome with insulin resistance, and 

hepatic steatosis are the main features of the aromatase knockout (ArKO) mouse phenotype 

[Simpson, Jones et al. 2005]. Although many of the effects attributed to estrogens in the 

pathogenesis of Ovx-induced fat gain may be explained primarily by the central effects of 

estrogens mostly via changes in food intake, D’Eon et al. demonstrated that estrogen 

reduced adiposity in Ovx rodents which is not confounded by differences in food intake 

[D'Eon, Souza et al. 2005]. Their data are consistent with the phenotypes of both estrogen 

receptors-α (ERKO) knock-out and aromatase (and thus estrogen)-deficient mice, both of 

which exhibit increased adiposity with no reported differences in food intake [Heine, 

Taylor et al. 2000; Jones, Thorburn et al. 2000; Jones, Thorburn et al. 2001; Misso, Murata 

et al. 2003]. Moreover, the results of Beckett et al. suggest that estradiol regulates substrate 

metabolism in ectopic tissues such as skeletal muscles independent of changes in food 

intake [Beckett, Tchernof et al. 2002]. Taken together, these data show that the ovarian 

hormonal status has important ectopic effects at the molecular level in peripheral tissues 

such as the liver rather than only central effects of diet (amount or type) and energy 

expenditure [Barsalani, Pighon et al. 2008]. Fisher et al. reported that despite a similar food 

intake, Ovx-pair fed animals gained markedly more weight than did Sham animals and 

nearly as much as Ovx-ad libitum animals [Fisher, Kohrt et al. 2000]. Likewise, 

unpublished data from our lab indicate that pair-feeding in Ovx rats does not completely 

prevent liver fat accretion in rats. Therefore, there must be factors other than food intake in 

the pathogenesis of liver fat accumulation in estrogen-deficient states.  
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Some pathways leading to liver lipid infiltration in estrogen deprived states have 

been investigated. Increased lipid uptake by liver because of increased fatty acid flow from 

circulation coming from intra-abdominal fat deposition, attributed to the increased food 

intake after estrogen withdrawal, can primarily and partially explain hepatic fat 

accumulation. The portal/fatty acid flux theory suggests that visceral fat, via its unique 

location and enhanced lipolytic activity, releases toxic free fatty acids, which are delivered 

in high concentrations directly to the liver [Malavazos, Gobbo et al. 2009]. This leads to the 

accumulation and storage of hepatic fat and the development of hepatic insulin resistance 

[Xu, Barnes et al. 2003]. However, the portal/fatty acid flux theory has been questioned 

with the observation that the bulk of portal vein FFAs originate from subcutaneous adipose 

tissue in overnight-fasted obese individuals [Klein 2004]. Nevertheless, other mechanisms 

and pathways leading to hepatic steatosis in postmenopausal state need to be considered. 

Unfortunately, studies on the expression of lipid metabolism-related genes in the liver Ovx 

rats are limited.  

Enhanced uptake mechanisms of lipids by the liver resulting from estrogen 

deficiency could also play a role yet to be explored. As estrogen levels decline, there may 

be increased lipogenesis and reduced fatty acid oxidation within the liver [Suzuki and 

Abdelmalek 2009]. Thus, another possible pathway leading to hepatic steatosis is de novo 

lipogenesis. Liver synthesizes fatty acids de novo through a complex cytosolic 

polymerization in which acetyl-coenzyme A is converted to malonyl-CoA by ACC and 

undergoes several cycles of metabolic reactions to form one palmitate molecule [Fabbrini, 

Sullivan et al. 2010]. Liver de novo fatty acid synthesis is mostly regulated by three known 

transcription factors: SREBP-1c, ChREBP, and PPAR-γ [Hashimoto, Cook et al. 2000; 

Bugianesi, Leone et al. 2002; Matsusue, Haluzik et al. 2003; Evans, Barish et al. 2004]. 

SREBP1-c activates FAS and SCD-1 genes that are responsible for lipogenesis in the liver 

[Reddy and Rao 2006]. D’Eon et al. investigated the expression of several genes involved 

in the regulation of lipogenesis in the liver of Ovx-control and Ovx-estrogen (E2) 

replacement mice [D'Eon, Souza et al. 2005]. Similar to their observations in adipose 
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tissue, estrogen supplementation in Ovx rats decreased hepatic expression of the lipogenic 

gene SREBP-1c, and its downstream targets ACC-1 and FAS compared to Ovx-control 

rats. Similarly, in another study from our lab, increased lipogenesis in liver of Ovx rats has 

been reported by changes in the expression and protein levels of lipogenic molecules such 

as SREBP-1c and SCD-1 [Paquette, Wang et al. 2008]. In addition, suppression of hepatic 

gene expressions involved in lipid oxidation such as PPAR-α was also reported in these 

Ovx rats. PPAR-α is a receptor for peroxisome proliferators that functions as a sensor for 

fatty acids (lipid sensor), and ineffective PPAR-α sensing can lead to reduced energy 

burning resulting in hepatic steatosis [Reddy and Rao 2006]. Moreover, very recently it has 

been reported that estrogen removal decreased the rate of fatty acid oxidation by 34% in 

liver tissue of Ovx rats [Paquette, Chapados et al. 2009]. Furthermore, Na et al. reported 

that estrogen deficiency in the liver of Ovx rats (high-fat fed) raises lipogenesis by 

increasing mRNA expression of FAS and PPAR-γ, while diminishing lipolysis by 

decreasing the expression of HSL and PPAR-α mRNAs [Na, Ezaki et al. 2008]. In line with 

this observation, in a very recent study of Rogers et al., liver from Ovx mice displayed 

visible steatosis even in a state of pair-feeding that was coincident with a remarkable 

elevation in hepatic PPAR-γ expression which is known to stimulate a program increasing 

lipogenic gene expression [Rogers, Perfield et al. 2009]. Accordingly, higher expression of 

two genes involved in lipogenesis; FAS and ACC was observed in this study. To confirm 

the role of estrogens in the regulation of hepatic lipid metabolism, it has been shown that 

17β-estradiol (E2) replacement in an animal model completely prevented the accumulation 

of lipids in the liver of Ovx rats and normalized the disturbed lipogenesis and lipid 

oxidation in liver [Paquette, Wang et al. 2008; Paquette, Chapados et al. 2009].  

Moreover, to our knowledge, the VLDL-TG production and secretion system under 

low estrogenic condition is not well established. However, very recent data (unpublished) 

from our laboratory revealed declined VLDL-TG production in Ovx rats [Barsalani, 

Chapados et al. 2010 submitted paper].  
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Despite growing number of evidences relating to menopause-associated metabolic 

disturbances; there are few studies with reference to the underlying pathways of estrogen-

deficiency induced hepatic steatosis. Taken together, estrogen withdrawal can have direct 

effects on hepatocytes and cellular constituents of liver tissue (intra-hepatic effects), as well 

as central effects on food consumption, energy expenditure, and adipose deposition that 

contribute to the overall effects on liver fat accretion (Table 4). 
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Table 4. Effects of estrogen withdrawal on liver fat accumulation. 

Central Effects  Intra-hepatic Effects 

CNS/hypothalamic effects 
• Food consumption 
• Leptin secretion 
• Activity and energy 

expenditure 
 

Lipid profile and adipose tissue effects 
• Absence of estrogen causes 

fat redistribution/gain 
particularly increased intra-
abdominal fat and altered 
lipid homeostasis 
(portal/fatty acid flux theory) 

 
 

 Lipid uptake  
• Unknown (possible mechanism 

of down-regulation of fatty acid 
uptake via estrogen-dependent 
pathways, yet to be explored) 

 
Lipogenesis  

• SREBP-1c 
• SCD-1 
• FAS  
• ACC 
• PPAR-γ 

 
Lipid oxidation 

• PPAR-α  
• HSL 
• Fatty acid β-oxidation 

 
VLDL-TG production and secretion system 

• VLDL-TG production in Ovx 
rats 

 
 

 

Effects of estrogen withdrawal on liver lipid accumulation (hepatic steatosis) may be direct 

by affecting lipid uptake, de novo lipogeneis, lipid oxidation, and liver VLDL-TG 

production and secretion in liver; or secondary to its effects on the central nervous system 

(CNS) or fat gain, particularly intra-abdominal (visceral) fat accretion.  
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       Prevention/treatment of adipose tissue and liver fat accumulation in 

menopausal hormonal state 

More than 60% of American postmenopausal women are overweight or obese 

[Mokdad, Serdula et al. 1999] and as mentioned earlier, it is well established that 

menopause is associated with weight gain, unfavorable alteration in body composition 

(elevated visceral fat deposition), and a state of hepatic steatosis [Astrup 1999; Faria, 

Ribeiro Filho et al. 2002; Volzke, Schwarz et al. 2007]. It seems that hormone replacement 

therapy (HRT) alleviates these symptoms of menopause [Hassager and Christiansen 1989; 

Arabi, Garnero et al. 2003; Green, Stanforth et al. 2004]. However, research on the safety 

of HRT is conflicting. The Women’s Health Initiative in the United States in 2002 and the 

Million Women Study in the UK in 2003 reported the evidence of increased risk of heart 

disease, stroke, venous thromboembolism, and breast cancer with HRT in postmenopausal 

women [Rossouw, Anderson et al. 2002; Beral 2003]. In general, although short-term use 

of HRT remains beneficial for severe menopausal symptoms, the uncertainty with the 

risks/benefits of HRT along with the well-publicized results of above two large-scale HRT 

trials, have led to the conclusion that HRT will not protect future health in postmenopausal 

women [McPherson 2004; Wegge, Roberts et al. 2004]. Therefore, it seems that the 

justification for HRT can no longer be applied for disease prevention or treatment, thus 

women continue to seek alternative options to improve their quality of life and reduce the 

risk of heart disease, osteoporosis, and breast cancer during postmenopause time [Cassidy 

2005]. 

Interestingly, the most research recommended prevention/treatment for weight gain, 

elevated visceral fat deposition, and hepatic steatosis is identical which is weight loss 

through lifestyle interventions including exercise and/or diet. These lifestyle modifications 

can constitute an important alternative (or complementary) strategy to HRT in 

postmenopausal women to alleviate concerned disorders. Moreover, very recently Zanesco 

and Zaros in their review paper reported that in an attempt to reduce the incidence of CVD 
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in postmenopausal women, a variety of approaches have been used but the results are 

conflicting and changes in lifestyle have been proposed as a most effective preventive 

action [Zanesco and Zaros 2009]. It seems there is no substitute for an appropriate lifestyle 

[Dubnov-Raz, Pines et al. 2007]. Moreover, Hagey and Warren suggested that exercise and 

nutrition play important roles in the prevention and treatment of obesity, diabetes, and CVD 

in postmenopausal women [Hagey and Warren 2008]. Data from a 5-year randomized 

clinical trial known as the Women’s Healthy Lifestyle Project, demonstrated that weight 

gain and increased waist circumference during the peri- to postmenopause can be prevented 

by a long-term lifestyle dietary and physical activity intervention [Simkin-Silverman, Wing 

et al. 2003].  

One of the most important components of lifestyle relates to physical activity which 

for a long time has been known to be a powerful low-risk means for the promotion of all 

aspects of human health including postmenopausal women [Pines and Berry 2007]. 

Postmenopausal women might demonstrate a greater response to exercise [Hagey and 

Warren 2008] since it was shown that even small increases in physical activity and exercise 

at the time of menopause can help prevent the atherogenic changes in lipid profiles and the 

weight gain experienced by menopausal women [Rainville and Vaccaro 1984]. 

Longitudinal and cross-sectional studies have shown that physical activity is associated 

with lower body fat and less central adiposity in postmenopausal women [Stevenson, Davy 

et al. 1995; Astrup 1999; Guo, Zeller et al. 1999; Irwin, Yasui et al. 2003; Sternfeld, Wang 

et al. 2004]. The results of a research by Hagberg et al. even indicated that numerous years 

of high-intensity endurance training had a greater effect on total and regional body fat 

values than HRT in postmenopausal women [Hagberg, Zmuda et al. 2000]. Furthermore, it 

has been shown that moderate-intensity exercise can result in improvements in 

coronary/metabolic risk factors such as insulin action in postmenopausal women [Ready, 

Drinkwater et al. 1995; Ready, Naimark et al. 1996; Asikainen, Miilunpalo et al. 2002; 

Asikainen, Miilunpalo et al. 2003; Frank, Sorensen et al. 2005]. Given that obesity is 

extremely prevalent and difficult to treat, prevention of weight gain during this time in a 
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women’s life is an important health goal. A successful model of weight gain prevention has 

yet to be established [Simkin-Silverman, Wing et al. 2003]. In a cross-sectional study by 

Hagmar et al., postmenopausal former elite endurance athlete women were investigated in 

terms of athlete’s heart being compared with age-matched sedentary controls. Authors 

suggested that intense training enhances cardiovascular performance in the aging female 

athlete [Hagmar, Hirschberg et al. 2005]. This may imply that previous exercise training 

(during the reproductive period) may be useful in the prevention of deleterious cardio-

metabolic effects of menopause. Taken together, it seems that postmenopausal women with 

high levels of physical activity have lower body fat and abdominal fat and are less likely to 

gain fat (total and abdominal) during menopause than those with low levels of physical 

activity [Astrup 1999].  

It has been shown that Ovx animal models can benefit from an exercise training 

program. In 1987, a reduction in fat gain with training has been reported [Richard, Rochon 

et al. 1987]. Then in 2002, Shinoda et al. showed that exercise training has a strong action 

upon reduction in body fat accumulation following a decrease in estrogen levels [Shinoda, 

Latour et al. 2002]. 8-wk endurance exercise training in the latter did not reduce overall 

weight gain and increased food intake brought about by an ovariectomy; suggesting a 

compensatory increase in muscle weight by training. On the other hand, although food 

restriction seems to prevent the Ovx-induced weight gain, this treatment suppresses muscle 

growth in Ovx rats [Fisher, Kohrt et al. 2000]. It appears that increase in body weight and 

organ weights including muscle mass subsequent to ovariectomy in rats [Booth and Tipton 

1969; Santidrian and Thompson 1981] may be a compensatory mechanism to protect the 

bone loss when the estrogen levels are low. For instance, it has been reported that freely 

eating Ovx rats suffered less bone loss than did food restricted Ovx animals; suggesting 

that freely eating Ovx animals were partially protected from bone loss by their greater body 

weight [Wronski, Schenck et al. 1987]. In this regard, it was shown that muscle tissue 

hypertrophy induced by a progressive loading exercise program has a stimulatory effect on 

bone mass in Ovx rats as there are many studies showing beneficial effects of exercise on 
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bone tissue in the postmenopausal estrogen-deficient state [Renno, Silveira Gomes et al. 

2007].  

Another concern of a reduction in estrogenic status is insulin resistance. It is well 

known that environmental factors such as aging and obesity are linked to the development 

of a state of insulin resistance and type 2 diabetes mellitus. The prevalence and progression 

of type 2 diabetes mellitus increase in postmenopausal women that is closely related to 

estrogen deficiency which leads to higher body weight and fat mass exacerbating insulin 

resistance [Choi, Jang et al. 2005]. Similarly, several studies have reported insulin 

resistance in experimental animals after Ovx, which can be reversed by HRT and exercise 

training, although the results have been somewhat conflicting [Latour, Shinoda et al. 2001; 

Yakar, Nunez et al. 2006]. In spite of well-documented influences of estrogens on insulin 

action, the exact mechanisms are not well described [Hansen, McCarthy et al. 1996]. The 

deterioration of insulin action in Ovx animals might be related to the central effects (i.e. 

increases in body fat) or to the ectopic effects of estrogen withdrawal (lower estrogen levels 

per se) or to a combination of both. Ropero et al. showed that estrogens in mouse 

pancreatic β-cells act synergistically with glucose to close KATP channels through a cGMP-

dependent phosphorylation process, consequently resulting in a calcium-mediated 

stimulation of insulin secretion [Ropero, Fuentes et al. 1999]. This might explain the 

ectopic and direct effects of estrogen at a molecular level in pancreatic β-cells suggesting 

that this could also be the case in other ectopic tissues such as muscle and liver.  

Exercise training and low-calorie diet have long been prescribed as part of the 

treatment in the management of type 2 diabetes. There are several studies reporting that 

food restriction and exercise training increases insulin sensitivity through loss of body fat 

[Ross, Dagnone et al. 2000; Greco, Mingrone et al. 2002; Shinoda, Latour et al. 2002]. In 

the study on Ovx diabetic rats, food restriction treatment was partially successful in 

reversing diabetes progression through body weight and fat reduction (reversing the central 

effects of estrogen withdrawal) [Choi, Jang et al. 2005]. However, the improvement could 

not be sustained since this treatment failed to improve pancreatic β-cells function and mass 
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(showing no ectopic effect of this treatment). On the other hand, regular exercise alone, 

regardless of estrogen replacement, had the most beneficial effects on insulin sensitivity 

and β-cell function and mass (reversing both central and ectopic effects of estrogen 

withdrawal) in Ovx diabetic rats, even though estrogen replacement alone also improved 

them. Moreover, Saengsirisuwan et al., showed that ovariectomy in female Sprague-

Dawley rats results in the development of a systemic metabolic condition representing 

characteristics of the metabolic syndrome including increased visceral fat content, 

abnormal serum lipid profile, impaired glucose tolerance, and defective insulin-mediated 

skeletal muscle glucose transport [Saengsirisuwan, Pongseeda et al. 2009]. In this study, 

new evidence was provided showing that whole-body and skeletal muscle insulin resistance 

is effectively corrected by endurance exercise training alone and estrogen replacement 

alone. Despite this, similarly to Choi et al., they could find no evidence that exercise 

training could additively modulate insulin action in Ovx animals that also received estrogen 

replacement; suggesting that endurance exercise training and estrogen may share common 

mechanisms to correct defects in ectopic tissues caused by estrogen deficiency [Choi, Jang 

et al. 2005]. This concept is supported by observations that transcripts encoding estrogen 

signaling in skeletal muscle, cardiac muscle, and liver are enhanced by regular exercise 

[Lemoine, Granier et al. 2002; Wiik, Gustafsson et al. 2005; Paquette, Wang et al. 2007]. 

 

Resistance training  

Weight loss achieved through restrictive diet often results in adverse effects on 

muscle mass [Villareal, Apovian et al. 2005]. In this regard, resistance training (RT) seems 

to be a logical choice considering its beneficial effects on muscular strength in 

postmenopausal women [Bemben, Fetters et al. 2000]. It has been demonstrated that RT 

exercise can be an effective substitute for hormone replacement therapy in preserving 

menopause related osteoporosis and sarcopenia [Maddalozzo, Widrick et al. 2007]. In 

addition to increasing muscle mass and improving muscle function, RT has been reported 
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to augment resting and total energy expenditure, and to induce decreases in total and 

abdominal fat [Maesta, Nahas et al. 2007]. On the other hand, there are studies that showed 

no reduction in fat tissue and Orsatti et al. suggest that this discrepancy might be related to 

the methods used to assess adiposity in postmenopausal women (measurements of skin fold 

thickness, indirect measurements such as waist circumference and body composition 

measurements, computerized tomography, dual-energy X-ray absorptiometry) [Orsatti, 

Nahas et al. 2008]. However, 8 weeks of low intensity, short duration RT program was not 

sufficient to produce significant alterations in body composition and blood lipid 

concentrations in postmenopausal women, although it produced substantial improvements 

in muscle strength [Elliott, Sale et al. 2002]. In obese, sedentary postmenopausal women, it 

has been suggested that RT has the potential to ameliorate/prevent the development of 

insulin resistance and may reduce the risk of glucose intolerance and non-insulin-dependent 

diabetes mellitus [Ryan, Pratley et al. 1996]. In these subjects, RT alone or in combination 

with weight loss program (diet) (RT+WL) improved muscular strength and insulin action 

and glucose homeostasis. However, the same authors in another study showed that body 

weight and fat mass did not change with RT alone, but decreased with RT+WL [Ryan, 

Pratley et al. 2000]. Nevertheless, RT and RT+WL both increased fat-free mass and resting 

metabolic rate and decreased percent fat in these postmenopausal women [Ryan, Pratley et 

al. 1995]. Considering the fact that subjects in the RT group were non-obese and subjects in 

RT+WL group were obese postmenopausal women, this research group suggests that RT 

may be a valuable component of an integrated weight management program in 

postmenopausal women. In general, it seems that data from human studies are suggestive of 

resistance training. 

In ovariectomized rats, Corriveau et al. have shown that an 8-wk program of 

resistance training in conjunction with a restrictive diet reduced intra-abdominal fat depot 

and plasma free fatty acid levels and prevented liver fat accumulation [Corriveau, Paquette 

et al. 2008]. They concluded that RT is an asset to minimize the deleterious effects of 

ovarian hormone withdrawal on abdominal fat and liver lipid accumulations in Ovx rats. 
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Leite et al. also recently indicated the potential benefits of resistance training as an 

alternative strategy to control the negative effects of ovariectomy [Leite, Prestes et al. 

2009]. Twelve-wk strength training in Ovx rats decreased fat content in the liver, skeletal 

muscle, and intra-abdominal adipose tissue and positively changed the lipid profile such as 

increasing HDL levels while decreasing total cholesterol and LDL levels. In both studies, 

the RT program consisted of climbing vertical grill with weights attached to the tail of rat. 

Although these studies did not investigate the mechanism of RT action on liver lipid 

content, based on evidences on the effects of exercise on AMP-activated protein kinase 

(AMPK) activation [Griffiths, Baker et al. 1993; Park, Kaushik et al. 2002; Dobrzyn, 

Dobrzyn et al. 2004; Lavoie and Gauthier 2006], they speculated that RT could induce 

AMPK activation with a decrease in the expression of transcription factors related to 

lipogenesis, improving liver fat oxidation and consequently reducing liver lipid content. 

Moreover, the notion that liver fat follows adipose tissue fat accumulation is always present 

(exercise has secondary effects on liver fat). 

 

Weight regain  

It seems that maintenance of weight loss is a core problem in the treatment of 

obesity and long term maintenance of weight loss remains a challenge. A common 

treatment for weight loss is food restriction or hypocaloric diet therapy. Although 

interventions aimed at weight loss are strongly supported [Scheen and Luyckx 2002], 

reductions in weight by dietary restriction are typically modest and are increasingly viewed 

as an unsustainable outcome of lifestyle modification [Shaw, Gennat et al. 2006; Hansen, 

Dendale et al. 2007]. It seems that there is a high rate of relapse after diet-induced weight 

loss [1992]. One of the main underlying problem in this matter appears to be the 

compensatory metabolic responses to weight reduction which results in a strong drive to 

regain lost weight [Corbett, Wilterdink et al. 1985; Hill, Thacker et al. 1988; Dulloo and 

Girardier 1990; Dulloo and Calokatisa 1991; MacLean, Higgins et al. 2004]. Such 
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responses including enhanced metabolic efficiency with a progressively increasing appetite 

along with interrelated alterations like improved insulin sensitivity and energetically 

favorable shifts in fuel utilization characterized by an increased preference for carbohydrate 

oxidation at the expense of lipid oxidation; may well explain why successful weight 

reduction is so hard to achieve [MacLean, Higgins et al. 2004]. MacLean et al. suggest that 

these compensatory adjustments in metabolism are part of an interrelated group of 

adaptations in the homeostatic feedback loop between the periphery and the central nervous 

system that controls body weight [MacLean, Higgins et al. 2006]. Their proposed metabolic 

state after weight-reduction in the context of the homeostatic feedback system that defends 

fat stores is summarized in Figure 3. It seems that this homeostatic feedback system 

defending body weight and adiposity is fundamental to the metabolic drive to regain lost 

weight [Levin and Dunn-Meynell 2000; MacLean, Higgins et al. 2006]. The good thing is 

that modification of this biological predisposition is possible. Interestingly, exercise 

training seems to positively alter this propensity and has been shown to be important to 

successful weight maintenance after weight loss programs [Klem, Wing et al. 1997; 

Wadden, Vogt et al. 1998]. Levin et al. reported that regular physical activity lowers the 

defended level of weight gain and adiposity without a compensatory increase in intake and 

with a favorable alteration in the development of the hypothalamic pathways controlling 

energy homeostasis as compared to calorically restricted rats [Levin and Dunn-Meynell 

2004; Patterson, Dunn-Meynell et al. 2008]. These authors suggested that exercise produces 

a different set of regulatory signals from caloric restriction that resets the homeostatic 

balance between energy intake and expenditure toward defense of a lower level of weight 

gain and adiposity. 
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Figure 3. Taken from [MacLean, Higgins et al. 2006] Metabolic state after weight-

reduction (A), early in relapse (B), and after relapse (C). The compensatory adaptations in 

the periphery, regarding 1) energy balance, 2) energetic cost of gain, 3) lipid accretion, and 

4) adiposity signals that facilitate rapid and efficient weight regain are summarized in the 

context of the homeostatic feedback system that defends peripheral fat stores. A: the 

metabolic state after weight reduction is diagrammed. The anabolic central nervous system 

profile promotes a large energy gap with an increased drive to eat and a suppressed 

expenditure of energy. The weight-reduced state is maintained only if intake is forcefully 

restricted to the level that energy expenditure is suppressed. Peripheral tissues are forced to 

be flexible with their use of fuels because of intermittent exogenous fuel availability. 

Adipose depots are stable, but depleted, and humoral adiposity signals are lower than 

would be expected for the level of peripheral fat. This blunted signal contributes to the 

adapted regulatory loop by lowering the sensitivity of neural control centers to hunger and 

satiety signals in a manner that promotes the overall anabolic output. B: with uncontrolled 

intake, the energy gap is realized. Excess fuels and the accompanying insulin excursions, in 

the context of insulin sensitive tissues that have the cellular infrastructure to suppress fat 

oxidation, promote a dramatic shift in fuel utilization whereby exogenous fat is 

preferentially diverted to storage depots. Ingested energy is rapidly and efficiently diverted 

toward the repletion of adipose stores. C: the pressures driving regain gradually resolve as 

the lost weight is regained. The metabolic state gradually shifts to one that attempts to 

prevent further weight gain. The energy gap is minimized at a higher overall energy flux, 

and peripheral tissues become resistant to insulin’s actions and metabolically inflexible. 

The energetic efficiency of further gain is elevated. The regulatory system achieves a level 

of equilibrium similar to what is seen before weight loss except that the adipose depots 

have increased their total capacity to store fat, an effect that may have implications on the 

continued progression of obesity. In the face of both hyperinsulinemia and hyperleptinemia, 

the neural control centers exhibit what would appear to be a selective resistance to 

regulating intake, as both intake and expenditure remain high.  
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Body weight and fat mass gain and regain following weight loss may be even more 

critical after menopause since physiological withdrawal of ovarian hormones, by itself, 

negatively affects the energy balance. Similarly to above discussion on weight regain, 

Nicklas et al. suggest that the poor success rate of food restriction treatment in 

postmenopausal women may be due in part to metabolic adaptations that occur in response 

to a long period of negative energy balance such as declined fat oxidation, resting 

metabolic rate, and adipocyte lipolytic responsiveness; which predispose to regain body 

weight [Nicklas, Rogus et al. 1997]. They showed that addition of endurance exercise to 

diet-induced weight loss program minimizes these negative metabolic adaptations in 

postmenopausal women. Another strategy, substituting a walking training with very-low-

energy diet in premenopausal obese women improved maintenance of losses in weight and 

waist circumference and prevented further clustering of metabolic risk factors [Fogelholm, 

Kukkonen-Harjula et al. 2000]. However, randomized controlled trials comparing different 

strategies such as diet and diet plus exercise in postmenopausal women are few and the 

results do not allow a firm conclusion as to whether physical activity may prevent or limit 

the gain of total and abdominal fat during menopause or whether it may be effective as part 

of an obesity treatment program [Astrup 1999].  

 

The specific case of liver fat accumulation and exercise training  

A fatty liver overproduces components of the metabolic syndrome (dyslipidemia, 

hyperglycemia) and new data imply that fat accumulation in the liver is a key player in the 

pathogenesis of insulin resistance and the metabolic syndrome which may distinguish who 

develop the syndrome from those who do not, even independently of obesity [Kotronen, 

Westerbacka et al. 2007; Kotronen, Seppala-Lindroos et al. 2008]. Despite growing 

evidence of the metabolic and cardiovascular impact of liver lipid infiltration, there are 

relatively few studies examining the effects of lifestyle intervention [Johnson, Sachinwalla 

et al. 2009]. Interventions which reduce hepatic triglyceride concentrations are often come 
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with significant improvements in metabolic function such as insulin resistance [Petersen, 

Dufour et al. 2005]. On the other hand, there is increasing evidence suggesting that physical 

activity and increased fitness can improve the metabolic syndrome even without weight 

loss [Ross, Dagnone et al. 2000; Cox, Burke et al. 2004; Ross, Janssen et al. 2004; Nassis, 

Papantakou et al. 2005]. Very recent experimental study showed that short-term 4-week 

aerobic exercise training results in a significant reduction in both hepatic lipids and visceral 

adipose tissue even in the absence of body weight reduction [Johnson, Sachinwalla et al. 

2009]. Moreover, concurrent exercise training in animals prevented high-fat-diet-induced 

intra-abdominal fat accumulation and hepatic steatosis [Gauthier, Couturier et al. 2003]. 

Therefore, it is very relevant to investigate the effects of exercise training in estrogen-

deficient states which is characterized with increased visceral adipose tissue and hepatic 

lipid accumulation. 

 

Pathogenic role of sub-acute systemic inflammation in obesity 

and insulin resistance 

 

Inflammation 

Inflammation is one of the first responses of the immune system to infection or 

irritation. It is stimulated by chemical factors, including specialized chemical mediators, 

called cytokines and ranges from a local to a systemic response to cellular injury 

[Moldoveanu, Shephard et al. 2001]. The local response to infections or tissue injury 

involves the production of cytokines that are released at the site of inflammation. Cytokines 

are small polypeptides, which were originally discovered to have immunoregulatory roles 

[Akira and Kishimoto 1992; Akira, Taga et al. 1993]. Some of these cytokines facilitate an 

influx of lymphocytes, neutrophils, monocytes, and other cells. The local inflammatory 
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response is accompanied by a systemic response known as the acute-phase response. This 

response includes the production of a large number of hepatocyte-derived acute phase 

proteins, such as C-reactive protein (CRP). The initial cytokines in the cytokine cascade are 

(named in order) tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, IL-1 

receptor antagonist (IL-1ra), and soluble TNF-α receptors (sTNF-R) [Petersen and Pedersen 

2005]. IL-1ra inhibits IL-1 signal transduction and sTNF-R represents the naturally 

occurring inhibitors of TNF-α [Dinarello 1991; Akira and Kishimoto 1992; Akira, Taga et 

al. 1993]. In response to an acute infection or trauma, the cytokines and cytokine inhibitors 

may increase several fold and decrease when the infection or trauma is healed. When 

inflammation overwhelms the whole organism, systemic inflammatory response syndrome 

(SIRS) is diagnosed. When it is due to infection, the term sepsis is applied.  

With the discovery of interleukins, another concept of systemic inflammation was 

developed. Although the processes involved are identical, this form of inflammation is not 

confined to a particular tissue but involves the endothelium (lining of blood vessels) and 

many other organ systems. During the last decade, it has become clear that inflammatory 

mechanisms are key players in pathological processes of several chronic diseases such as 

ischemic cardiovascular disease (CVD), insulin resistance,  type 2 diabetes (T2D), 

colorectal cancer, stroke, chronic obstructive pulmonary disease, and Alzheimer’s disease; 

which are among the most common causes of mortality in the Western world [Bruunsgaard 

2005]. At the same time, it has been recognized that cytokines are not only important 

signals in immune function, as they also represent important regulators of endocrine 

systems, the metabolism, the coagulation system, and the brain function [Febbraio and 

Pedersen 2002]. In addition, it has been discovered recently that circulating levels of 

cytokines in vivo are affected significantly by contributions of cells outside the immune 

system such as adipose tissue, skeletal muscle, and endothelial cells in healthy humans; 

e.g., 30% of IL-6 in plasma is derived from fat tissue [Mohamed-Ali, Goodrick et al. 1997]. 

The concept of regulatory adipokines has developed together with the discovery of fat 

tissue as an important endocrine organ, producing and secreting classical cytokines 
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including TNF-α, IL-6, IL-18, as well as a wide range of other new peptides [Kershaw and 

Flier 2004]. Moreover, it was demonstrated that working skeletal muscles produce and also 

release cytokines to the circulation [Febbraio and Pedersen 2002]. Therefore, cytokine 

production is not restricted to the context of infections.  

Systemic low-level inflammation is defined as two- to fourfold elevation in 

circulating levels of cytokines, natural occurring cytokine antagonists, and acute-phase 

proteins, as well as minor increases in counts of neutrophils and natural killer cells 

[Bruunsgaard and Pedersen 2003]. Although these increases are far from levels observed 

during acute/severe infections, systemic low-level inflammation is strongly associated with 

lifestyle factors such as obesity, and dietary patterns [Bermudez, Rifai et al. 2002; Esposito, 

Marfella et al. 2004]. Chronic low-grade inflammation accompanies aging as well as some 

chronic medical disorders and it is a strong, consistent, and independent predictor of all-

cause mortality and CVD-cause mortality in elderly populations [Harris, Ferrucci et al. 

1999; Yeh, Hafner et al. 2004]. Several reports investigating various markers of 

inflammation in different population groups have confirmed an association between low-

grade systemic inflammation on one hand and the metabolic syndrome, Type 2 diabetes, 

and atherosclerosis on the other [Barzilay, Abraham et al. 2001; Ford 2002; Duncan, 

Schmidt et al. 2003]. It seems that systemic low-grade inflammation is a cause as well as a 

consequence of pathological processes [Bruunsgaard 2005].  

 

Circulating inflammatory markers in metabolic syndrome 

In sepsis and experimental models of sepsis (the processes involved are identical as 

in low-level systemic inflammation), the cytokine cascade consists of TNF-α, IL-1β, IL-6, 

IL-1ra, sTNF-R, and IL-10 [Akira, Taga et al. 1993]. The first two cytokines in the 

cytokine cascade, that is, TNF-α and  IL-1β, along with IL-2, IL-8, and IL-15 are usually 

referred to as pro-inflammatory cytokines [Moldoveanu, Shephard et al. 2001]. While IL-

1ra, sTNF-R, IL-4, IL-10 and IL-13 are well-known anti-inflammatory cytokines 
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[Moldoveanu, Shephard et al. 2001]. TNF-α and IL-1 stimulate the production of IL-6, 

which has been classified as both a pro- and anti-inflammatory cytokine [Tilg, Dinarello et 

al. 1997] depending on the origin of its production such as adipose and liver tissue in 

obesity-originated versus muscles during exercise, respectively. IL-10 attenuates the cell 

surface expression of TNFRs and it inhibits the production of cytokines by monocytes and 

type 1 T cells [Kolling, Hansen et al. 2001]. However, circulating levels of cytokines work 

in a network, and their levels are found to inter-correlate, e.g., plasma levels of TNF-α were 

positively correlated with IL-6, sTNF-R, and CRP in centenarians [Bruunsgaard 2005; 

Petersen and Pedersen 2005].  

Cytokines such as IL-6, IL-1β, and TNF-α which are produced during and 

participate in inflammatory processes, are the chief stimulators of the production of acute-

phase proteins [Gabay and Kushner 1999]. The acute phase reaction is a nonspecific 

physiological response to tissue injury, infection, inflammation, and disease activity; whose 

functions include repairing tissue damage, containing infections, promoting wound healing 

and triggering host defense mechanisms such as the innate immune response [Chen 2006; 

Kalani, Judge et al. 2006]. As mentioned, this response is carried out by secretion of acute 

phase proteins coming mainly from hepatocytes including CRP, serum amyloid A (SAA), 

fibrinogen, and plasminogen activator inhibitor-1 (PAI-1) [Gabay and Kushner 1999]. 

Among the acute phase markers, CRP that functions primarily to recognize and eliminate 

pathogens and damaged cells by activating the complement system and phagocyte cells 

[Volanakis 2001], is considered as an excellent pro-inflammatory biomarker, and received 

more attention due to its potential in predicting cardiovascular disease in several 

populations including postmenopausal women [Tracy, Lemaitre et al. 1997; Ridker, 

Hennekens et al. 2000]. Plasma CRP concentrations have also been reported to increase in 

the metabolic syndrome and diabetes [Danesh, Whincup et al. 2000]. Moreover, IL-6, 

another acute phase cytokine and the main stimulator of liver CRP production, has been 

implicated in developing the inflammatory response persistent in cardiovascular disease 

[Ridker, Cushman et al. 1997]. Elevated levels of circulating IL-6 have been associated 
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with several disorders and plasma concentrations of IL-6 and TNF-α have been shown to 

predict the risk of myocardial infarction in several studies [Ridker, Rifai et al. 2000]. It 

must be mentioned that although IL-6 is generally regarded as a pro-inflammatory 

cytokine, it can play a contrary role. For example, it is now well known that IL-6 is rapidly 

released into the circulation following exercise [Febbraio and Pedersen 2002] and it seems 

that when IL-6 is produced by working muscles independently of TNF-α/IL-1β, it exerts 

mainly anti-inflammatory activities [Bruunsgaard 2005]. Furthermore, other cytokines 

originating from adipocytes or other cells including TNF-α are also involved in this process 

[Maachi, Pieroni et al. 2004]. TNF-α is a pro-inflammatory cytokine produced by different 

tissues such as immune cells and adipocytes and it has been shown to play a role in obesity-

induced local and systemic insulin resistance [Bastard, Maachi et al. 2006]. There is 

accumulating data to suggest that TNF-α plays a direct role in the metabolic syndrome. 

TNF-α, together with IL-6 and other chemokines, mediates macrophage infiltration that 

causes adipose tissue inflammation in obesity leading to deregulated secretion of 

adipokines and insulin resistance [Schenk, Saberi et al. 2008]. Consequently, it is not 

surprising that patients with diabetes demonstrate high expression of TNF-α in plasma 

[Winkler, Salamon et al. 1998; Mishima, Kuyama et al. 2001] and in skeletal muscle 

[Saghizadeh, Ong et al. 1996], and it is likely that adipose tissue is the main source of the 

circulating TNF-α [Coppack 2001]. 

 Taken as a whole, Esposito and Giugliano report that elevated circulating levels of 

major pro-inflammatory cytokines including CRP, IL-6, TNF-α, and IL-1β along with low 

levels of anti-inflammatory cytokines such as IL-10 are associated with the metabolic 

syndrome [Esposito and Giugliano 2004].  

 

Cellular inflammatory responses in obesity and insulin resistance 

Weight gain and obesity are most important risk factors for diseases ranging from 

insulin resistance and T2DM to atherosclerosis and the sequelae of NAFLD [Shoelson, 
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Herrero et al. 2007]. In recent years, it has become clear that metabolic disturbances related 

to fat accumulation in adipocytes and ectopic tissues such as the liver, are associated to sub-

clinical inflammation [Esposito and Giugliano 2004; Bruunsgaard 2005]. Obesity is 

strongly associated with enhanced circulating TNF-α levels, whereas weight loss reduces 

systemic levels [Dandona, Weinstock et al. 1998]. Adipose tissue from obese individuals 

shows accumulation of macrophages, which provide the major cellular source of a 

concomitant, enhanced, local expression of the TNF-α and IL-6 proteins [Weisberg, 

McCann et al. 2003]. In fact, obesity is associated with accretion of lipids into adipocytes 

and expansion of adipose tissue which produce pro-inflammatory cytokines like TNF-α, IL-

6, resistin, MCP-1, and PAI-1; initiating an inflammatory signal that in turn, results in a 

state of local and systemic insulin resistance (Figure 4) [Shoelson, Herrero et al. 2007].  

A model on how inflammation leads to insulin resistance has been proposed by 

Chen that is illustrated in Figure 5 [Chen 2006]. It seems that adipokines such as TNF-α 

induces insulin resistance in experimental animal models by mechanisms that involve 

serine phosphorylation of the insulin receptor substrate 1 (IRS-1) [Hotamisligil, Peraldi et 

al. 1996]. This phosphorylation reduces insulin receptor tyrosine kinase activity in response 

to insulin and the ability of IRS-1 to associate with the insulin receptor and thereby 

interfering with downstream insulin signal transduction [Dandona, Aljada et al. 2005]. The 

responsible intracellular pathways involve activation of c-Jun N-terminal kinases 

(JNKs/stress activated protein kinases) [Hirosumi, Tuncman et al. 2002] and the inhibitor 

of кB kinase (IKKβ) [Arkan, Hevener et al. 2005] whereas activation of members in the 

suppressor of cytokine signaling (SOCS) family represents alternative intracellular stress 

pathways in cytokine-mediated inhibition of insulin signaling [Ueki, Kondo et al. 2004]. 

IKKβ activates nuclear factor of kappa B (NF-kB), a master regulator of inflammation and 

transcription factor that stimulates production of many inflammatory markers. It seems that 

IKKβ/NF-kB signaling pathway which is activated by pro-inflammatory cytokines is a key 

pathway in tissue inflammation [Chen 2006]. Increased free fatty acids (FFA) levels have  
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Figure 4. Taken from [Shoelson, Herrero et al. 2007] Potential mechanisms for obesity-

induced adipocyte inflammation. The accumulation of lipids in adipose tissue and the 

expansion of the fat mass lead to the initiation of an inflammatory process. This may be 

initiated through the production of pro-inflammatory cytokines and chemokines by the 

adipocytes, including TNF-α, IL-6, leptin, resistin, MCP-1, and PAI-1. Endothelial cells 

respond through the increased expression of adhesion molecules, which along with the 

chemokines serve to recruit immune cells including monocyte-derived macrophages to the 

adipose tissue. Together, the adipocyte-, immune cell-, and endothelial cell-derived 

substances create an inflammatory milieu that promotes insulin resistance locally. Similar 

pro-inflammatory and pro-atherogenic mediators enter the circulation to promote insulin 

resistance and increase the risk for atherosclerosis.  
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Figure 5. Taken from [Chen 2006] Hypothetical model of metabolic stress, cellular 

inflammatory responses and effects on insulin signaling pathway. Nutrient overload in 

adipose tissue leads to increased secretion of FFAs and pro-inflammatory adipokines, 

which activate resident macrophages. Activated macrophages in turn secrete cytokines and 

chemokines to recruit additional monocytes and macrophages into fat. The secreted FFAs, 

IL-6 and TNF-α cause insulin resistance in adipocytes through activation of several serine-

threonine kinase pathways that interfere with insulin signaling via serine phosphorylation 

and subsequent inactivation of IRS-1. In addition, IKKβ and JNK1 activate transcription 

factors which increase expression of cytokines and inflammatory genes. This vicious cycle 

amplifies inflammation and accentuates insulin action. Obesity-mediated metabolic stress 

also adds burden to cellular machineries, leading to ER stress or mitochondria oxidative 

stress, which again activate IKKβ/NF-kB and JNK1 inflammatory pathways. These same 

immune modulators similarly lead to impaired insulin action in other tissues like liver and 

muscle. FFAs: free fatty acids; DAG: diacylglycerol; ER: endoplasmic reticulum.  
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also been implicated as a causative factor in phosphorylation of IRS-1 [Dandona, Aljada et 

al. 2005] through increased intra-cellular fatty acyle-CoA and diacylglaycerol (DAG) 

concentrations and activation of pro-inflammatory kinase, protein kinase C-θ (PKC-θ) 

[Gao, Zhang et al. 2004]. Moreover, it has been shown that nutritional fatty acids, whose 

circulating levels are often increased in obesity, activate toll-like receptors (critical players 

of innate immune system) which in turn trigger pro-inflammatory pathways and induce 

cytokine expression in a variety of cell types [Shi, Kokoeva et al. 2006]. On the other hand, 

obesity-mediated metabolic stress (increased fatty acids and glucose metabolism and 

reactive oxygen species) also exerts a higher-than-normal load to cellular machineries 

leading to endoplasmic reticulum (ER) stress or mitochondria oxidative stress, which 

activate both IKKβ/NF-kB and JNK1 inflammatory pathways [Furukawa, Fujita et al. 

2004; Ozcan, Cao et al. 2004; Summers 2006]. 

Moreover, inflammatory markers and mediators such as CRP and IL-6 are 

synthesized in the liver, suggesting hepatic low-level inflammation most likely secondary 

to hepatic steatosis, might be involved in the development of insulin resistance and the 

metabolic syndrome. The findings of Cai et al. demonstrate that fat accumulation in the 

liver leads to sub-acute hepatic inflammation via IKKβ/NF-kB activation and downstream 

pro-inflammatory cytokine production including IL-6, TNF-α, and IL-1β [Cai, Yuan et al. 

2005] . This suggests that hepatocyte lipid accumulation (steatosis) might induce a sub-

acute inflammatory response in liver that is similar to adipose tissue inflammation. 

Alternatively, pro-inflammatory substances in the portal circulation, potentially produced in 

abdominal fat, might initiate hepatic inflammation [Shoelson, Lee et al. 2006]. In any case, 

it seems that NF-кB pathway is stimulated in hepatocytes, and cytokines including IL-6, 

TNF-α, and IL-1β, are overproduced in a fatty liver. The pro-inflammatory cytokines 

participate in the development of insulin resistance both locally in liver and systemically 

[Cai, Yuan et al. 2005].  

According to Shoelson et al., skeletal muscle is another major site of insulin 

resistance and a target of inflammation-induced insulin resistance as opposed to a site of 



 

 

 

50

initiation (Figure 6) [Shoelson, Lee et al. 2006]. However, in contrast with this, a study by 

Boden et al. [Boden 2006] indicates that elevated plasma free fatty acid levels, either as a 

result of obesity or high-fat diet feeding, produces low-grade inflammation in skeletal 

muscle and liver through activation of NF-кB, as in adipose tissue, resulting in the releasing 

several pro-inflammatory and pro-atherogenic cytokines leading to insulin resistance. 

Finally, vascular inflammation is central in the pathology of atherosclerosis [Ross 1999] 

and inflammation (in adipose tissue and liver) might be a connecting link between obesity 

and many of its pathological metabolic disorders such as atherosclerosis by infiltrating the 

artery wall [Surmi and Hasty 2010] (Figure 6). Apart from the underlying mechanisms, the 

pro-inflammatory state that accompanies the metabolic syndrome associates with both 

insulin resistance and endothelial dysfunction, providing a connection between 

inflammation and metabolic processes which is highly deleterious for vascular functions 

[Esposito and Giugliano 2004].  

 

Physical activity and systemic low-level inflammation 

A recent number of papers have documented that self-reported physical activity or 

physical performance is correlated inversely with systemic low-level inflammation, 

although the lack of an association has also been reported (Table 5) [Bruunsgaard 2005]. 

However, the findings of cross-sectional studies demonstrating an association between 

physical inactivity and low-grade systemic inflammation in healthy subjects and in elderly 

people [McFarlin, Flynn et al. 2006] [King, Carek et al. 2003; McFarlin, Flynn et al. 2006] 

together with the results of longitudinal and prospective studies showing that regular 

training reduces CRP level, suggest that physical activity as such may suppress systemic 

low-grade inflammation [Mattusch, Dufaux et al. 2000; Kasapis and Thompson 2005]. 

Accordingly, a high level of physical activity has been shown to be associated with reduced 

levels of inflammatory mediators in the range of 20–60% compared with a sedentary 

lifestyle among apparently healthy middle-aged and older US  
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Figure 6. Taken from [Shoelson, Lee et al. 2006] Local, portal, and systemic effects of 

inflammation in insulin resistance and atherogenesis. Increasing adiposity activates 

inflammatory responses in fat and liver, with associated increases in the production of 

cytokines and chemokines. Immune cells including monocytes and macrophages are 

recruited and/or activated, and together, they cause local insulin resistance. Hepatic 

steatosis and/or portal delivery of abdominal fat–derived cytokines and lipids contribute to 

hepatic inflammation and insulin resistance. Pro-inflammatory and pro-atherogenic 

mediators are produced in adipose tissue and liver as well as associated immune cells. This 

creates a systemic inflammatory diathesis that promotes insulin resistance in skeletal 

muscle and other tissues and atherogenesis in the vasculature.  
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Table 5. Taken from [Bruunsgaard 2005] Self-reported physical activity and physical 

performance in relation to low-level inflammation in epidemiological studies 

 
SAA, Serum amyloid A; WBC, white blood cell count; HRT, hormone replacement 

therapy; MIP-1α, macrophage-inflammatory protein-1α; circulating levels, concentration in 

serum or plasma.  
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adults [Abramson and Vaccarino 2002]. In addition, several studies have reported that 

exercise intervention programs reduce systemic low-level inflammation in patients with 

coronary heart disease [Oberbach, Tonjes et al. 2006], claudicants [Tisi, Hulse et al. 1997], 

patients with chronic heart failure [Gielen, Adams et al. 2003], and also in healthy young 

adults [Mattusch, Dufaux et al. 2000]. Improved measures of chronic inflammation markers 

with exercise training in animal models has also been reported [Kalani, Judge et al. 2006; 

de Lemos, Reis et al. 2007]. 

Several studies have shown an anti-inflammatory effect of acute physical exercise, 

characterized through increased circulating concentrations of IL-10, IL-1 receptor 

antagonist (IL-1ra), soluble receptor of TNF (TNFRs) [Petersen and Pedersen 2005]. It 

seems that the cytokine response to exercise differs from that elicited by severe infections 

[Febbraio and Pedersen 2002]. An acute bout of exercise appears to mediate anti-

inflammatory effects in skeletal muscle and fat tissue [Ostrowski, Rohde et al. 1999; 

Febbraio and Pedersen 2002; Febbraio, Hiscock et al. 2004; Kelly, Keller et al. 2004; 

Petersen and Pedersen 2005]. The underlying mechanisms appear to involve IL-6- 

dependent [Petersen and Pedersen 2005] and –independent [van der Poll, Coyle et al. 1996; 

Kolling, Hansen et al. 2001; Keller, Keller et al. 2004] pathways. Muscle contractions 

induce a myokine response characterized by a large release of IL-6 from working muscles, 

independently of pro-inflammatory markers such as TNF-α; which is followed by 

elevations in circulating levels of well-known anti-inflammatory cytokines and cytokine 

inhibitors including IL-1ra, IL-10, and sTNFRs [Ostrowski, Rohde et al. 1999]. It has been 

suggested that the contraction-induced IL-6 expression in skeletal muscle is a specific 

biochemical phenomenon with the purpose of mobilizing substrate from fuel depots within 

the body to facilitate energy metabolism [Pedersen, Steensberg et al. 2003]. According to 

Pederson’s theory, contracting skeletal muscles release myokines, which work in a 

hormone-like fashion, exerting specific endocrine effects on visceral fat and other ectopic 

fat deposits while other myokines will work locally within the muscle via paracrine 

mechanisms, exerting their effects on signaling pathways involved in fat oxidation 
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[Pedersen 2009]. This may provide a conceptual basis to understand the mechanisms 

whereby exercise influences metabolism and exerts anti-inflammatory effects; playing an 

important role in the health-beneficial effects of exercise. For instance, even moderate 

physical activity is probably sufficient to induce the anti-inflammatory effects of exercise, 

as an increased transcription rate of the IL-6 gene is already detected after 30 min of two-

leg extensor exercise at 60% of the individual maximal power output [Keller, Steensberg et 

al. 2001]. Thus, only 30 min of moderate exercise on a regular basis probably has the 

power to facilitate an anti-inflammatory environment characterized by enhanced levels of 

IL-10, IL-1Ra, and sTNFRs between bouts of physical activity [Bruunsgaard 2005]. 

Although the exact link between acute and long-term effects yet to be known, regular 

exercise protects against diseases associated with chronic systemic low-grade 

inflammation; and this long-term effect might be ascribed to the anti-inflammatory 

response elicited by an acute bout of exercise [Petersen and Pedersen 2005]. In theory, a 

reduced local pro-inflammatory markers production could explain a part of the decline in 

systemic low-level inflammation together with the improvement in symptoms and risk 

factors (mainly decreased visceral and ectopic fat accumulation) associated with the 

metabolic syndrome, CVD, and T2DM in relation to regular exercise [Bruunsgaard 2005]. 

  

The importance of inflammatory cytokines in fatty liver and insulin 

resistance 

Obesity is associated with a chronic inflammatory response characterized by 

abnormal cytokine production and activation of inflammatory signaling pathways, which 

has been proposed to play a key role in the pathogenesis of obesity-related insulin 

resistance and NAFLD [Hotamisligil 2006]. The contribution of the adipose tissue versus 

the liver as the major sources of circulating and systemically active pro-inflammatory 

cytokines in these diseases remains unclear. However, once obesity leads to fatty liver, 

mostly observed in cases of obesity, the liver itself can become a major source of various 
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inflammatory mediators [Tilg and Moschen 2008; Fabbrini, Sullivan et al. 2010]. In fact, 

many inflammatory markers that have been associated with insulin resistance, T2DM, 

metabolic syndrome, and cardiovascular diseases such as CRP, PAI-1, and fibrinogen are 

liver proteins [Cai, Yuan et al. 2005]. Bruce and Byrne suggest that hepatic ectopic fat 

accumulation per se is associated with a pro-inflammatory state; together being central to 

the development of the metabolic syndrome [Bruce and Byrne 2009]. Accordingly, it has 

been shown that hepatic steatosis increased production of pro-inflammatory cytokines 

including IL-6 [Wieckowska, Papouchado et al. 2008], showing the strong link between 

NAFLD and increased cardiovascular risk [Alkhouri, Tamimi et al. 2009]. Similarly, in 

animal models, high-fat diet and genetically induced obesity resulted in hepatic steatosis, 

insulin resistance, and increased hepatic pro-inflammatory markers including NF-kB 

activity, IL-6, IL-1β, TNF-α [Samuel, Liu et al. 2004; Cai, Yuan et al. 2005]. Joshi-Brave 

et al. induced lipid accumulation in hepatocytes (rat and human primary hepatocytes) by 

exposing them to pathophysiologically relevant concentrations of palmitic acid to stimulate 

the excessive influx of fatty acids into hepatocytes [Joshi-Barve, Barve et al. 2007]. This 

was accompanied by hepatic steatosis (increased intracellular TAG) that induced hepatic 

inflammation (elevated pro-inflammatory IL-8) through activation of NF-kB and JNK1. 

Moreover, Cai and colleagues demonstrated that sub-acute hepatocellular activation of NF-

kB caused hepatic inflammation without steatosis and resulted in both hepatic and skeletal 

muscle insulin resistance notably through IL-6 since these animals increased hepatocyte 

expression of IL-6 and plasma IL-6 concentrations; and IL-6 neutralization (IL-6 antibody) 

restored insulin sensitivity in both hepatic and peripheral insulin resistance [Cai, Yuan et al. 

2005]. These findings suggest that steatosis can cause sub-acute hepatocellular 

inflammation by activating IKKβ/NF-kB pathway, which up-regulates the production of 

pro-inflammatory cytokines that mediate both local hepatic and systemic insulin resistance. 

The balance between various inflammatory mediators seems to play an important 

role in hepatic and systemic insulin action and also in the development of fatty liver disease 

[Tilg and Hotamisligil 2006]. For instance, it has been suggested that a proper balance 



 

 

 

56

between IL-10 and TNF-α, rather than any of individual cytokines is of more physiological 

importance and IL-10/TNF-α ratio has been pointed out as an indicator of inflammatory 

status [Kaur, Sharma et al. 2006; Leonidou, Mouzaki et al. 2007]. TNF-α plays a central 

role in initiating and sustaining inflammation and has a pivotal role in the production of 

several cytokines [Ksontini, MacKay et al. 1998; Coppack 2001; Trayhurn and Wood 

2005]. Whereas, IL-10 demonstrates potent anti-inflammatory properties through 

restraining IKKβ/NF-kB signaling pathway and inhibiting the production of various pro-

inflammatory cytokines including IL-6 and TNF-α [Schottelius, Mayo et al. 1999; Bolger, 

Sharma et al. 2002]. Hashem et al. reported that IL-10/TNF-α ratio is a convenient 

predictive biomarker for investigation of fatty liver of different grades and suggests that 

modulation of this ratio in favor of increasing it may exert significant improvement 

[Hashem, Mahmoud et al. 2008]. However, considering the fact that IL-6 by itself is known 

to induce insulin resistance in hepatocytes [Kim, Higashimori et al. 2004] and according to 

their results on IL-6 as the strongest evidence of pathological involvement, Cai et al. state 

that ‘’many pieces of the pathogenic puzzle are still missing including how steatosis 

activates IKK-β and NF-κB and how IL-6 mediates hepatic insulin resistance’’ [Cai, Yuan 

et al. 2005]. 

 

Inflammation and menopause  

The increase in visceral adiposity along with deprivation of female ovarian sex 

hormones across the menopausal transition may result in the development of pro-

inflammatory cytokine changes, pointing to a role of cytokines and inflammation in 

metabolic disorders. In fact, it has been suggested that adipocytokines may be a link 

connecting postmenopausal hormonal changes, the excess of visceral fat and increased risk 

of cardiovascular disease [Sieminska, Cichon-Lenart et al. 2006]. There is now a large body 

of evidence suggesting that the decline in ovarian function with menopause increases pro-

inflammatory cytokines such as CRP, IL-1, IL-6, and TNF-α [Pfeilschifter, Koditz et al. 
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2002; Vural, Akgul et al. 2006; Georgiadou and Sbarouni 2009; Kireev, Tresguerres et al. 

2010]. Physiological concentrations of E2 have been shown to inhibit the spontaneous 

secretion of these pro-inflammatory cytokines [Rogers and Eastell 2001; Vural, Akgul et al. 

2006] suggesting that estrogens have anti-inflammatory and vasoprotective properties 

[Miller and Duckles 2008]. However, a review paper that recently outlined the effects of 

hormone replacement therapy on inflammatory biomarkers states that although animal and 

observational studies have shown beneficial effects of hormone replacement therapy in 

early periods of post-menopause, randomized trials in older women have not shown any 

benefit in the prevention of cardiovascular events; strongly supporting the current practice 

which is not to prescribe HRT [Georgiadou and Sbarouni 2009]. 

In rodents, it has been shown that serum IL-1β increases shortly after Ovx which 

precedes body mass and retroperitoneal fat mass increases; indicating the fact that the 

interplay between ovarian function and inflammatory cytokines may not be directly related 

to weight and fat gain per se [Percegoni, Ferreira et al. 2009]. Moreover, inflammatory 

responses of different tissues in animal models of menopause have been investigated. 

Estrogen-deficient rats were found to have increased production of IL-6 and IL-8 in adipose 

tissue [Bruun, Nielsen et al. 2003]. Hamilton et al. found an Ovx-induced increases in 

myocardial genes mediating inflammation including IL-6 and TNF-α [Hamilton, Lin et al. 

2008]. In the study by Kireev et al., inflammation (increased pro-inflammatory cytokines 

TNF-α, IL-1β, IL-6 and decreased anti-inflammatory cytokine IL-10) induced during aging 

in the liver were more marked in castrated than in intact old female rats [Kireev, 

Tresguerres et al. 2010]. Administration of hormonal replacement therapy was able to 

inhibit the induction of pro-inflammatory cytokines in different tissues in all of these 

studies. More interestingly, very recently, the research group of Greenburg in Tufts 

University showed that increased inflammation is an early event in the development of 

Ovx-induced obesity and identified, for the first time, distinct depot-specific inflammatory 

profiles that support a role for macrophages in Ovx-associated adipose tissue inflammation; 

highlighting the loss of ovarian function as a metabolic risk factor that can promote a 
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deleterious state of chronic inflammation even in the absence of dietary change [Rogers, 

Perfield et al. 2009]. Ovx-induced hepatic steatosis in this study was associated with the 

induction of hepatic TNF-α and osteopontin (a cytokine is implicated in the progressive 

pathophysiology of hepatic inflammation and cancer as well as the development of insulin 

resistance and atherosclerosis) (Figure 7). On the other hand, it is important to recall that 

physical activity mediates anti-inflammatory effects in skeletal muscle and fat tissue 

[Bruunsgaard 2005]. However, to our knowledge, currently the effects of exercise training 

on Ovx-induced hepatic inflammation are entirely unknown. In humans, exercise 

intervention has been shown to improve the metabolic and lipid profile and to reduce 

inflammatory and cell adhesion molecules in postmenopausal women [Wegge, Roberts et 

al. 2004].   

 

General objective of thesis and presentation of manuscripts 

The general objective of this thesis is to provide information on the treatment and 

prevention of estrogen withdrawal-induced fat mass increase and hepatic steatosis by 

lifestyle modifications including diet and exercise training in Ovx rat model of menopause. 

Following this objective, in this chapter the emergence of metabolic syndrome (intra-

abdominal fat) and hepatic steatosis in the postmenopausal hormonal state, and their 

treatment and prevention by lifestyle modifications such as exercise training have been 

reviewed. In addition, the review on the pathogenic role of sub-acute inflammation in 

obesity and insulin resistance was presented. In coming chapters (chapters 2-5) the 

experimental studies of this thesis will be presented. The first study was undertaken to 

evaluate the effect of resistance training protocol on body weight and fat mass in Ovx 

Sprague-Dawley rats following diet-induced weight loss. In line with approach, the aim of 

the second study was to investigate the effects of maintaining only one of the two 

components of a food restriction (FR) + resistance training (RT) regimen on the regain of 

body weight and fat mass (liver and adipocytes) in Ovx rats. The third study was conducted  
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Figure 7. Taken from [Rogers, Perfield et al. 2009] Ovx mice display early hepatic 

steatosis and inflammation. A, Representative hematoxylin and eosin staining demonstrates 

more lipid droplet development in liver sections from OVX mice. B, Liver gene expression 

determined using quantitative real-time PCR. Error bars indicate SEM. n = 7–10. *, P 

<0.05; **, P< 0.01; ***, P< 0.001.  
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to determine whether a training state protects against the metabolically deleterious effects 

of ovariectomy on liver and adipocytes fat accumulation in rats. In continuation of this 

study, we hypothesized, in the fourth study that the reduction in liver fat accumulation 

known to occur with exercise training in Ovx rats is associated with reduced expression of 

genes involved in lipogenesis while favoring the expression of transcription factors 

regulating lipid oxidation. In this last study, we also tested the hypothesis that liver fat 

accumulation in Ovx rats is associated with an increased gene expression of several pro-

inflammatory markers and that exercise training would attenuate this response. 
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Abstract 

Objective: Fat mass gain and regain following weight loss is a major concern and 

may even be more critical after menopause. The present study was undertaken to evaluate 

the effect of resistance training protocol on body weight and fat mass in ovariectomized 

Sprague-Dawley rats following diet-induced weight loss.  

Design: Rats were randomly divided into ovariectomized (Ovx) and sham-operated 

(Sham) groups. Five weeks after ovariectomy, Ovx rats were subjected to a 26% food 

restriction (OvxFR) for 8 wk. Following this period, OvxFR rats went back to a normal ad 

libitum feeding and divided into two groups: either sedentary or undergoing a resistance 

training program for an additional 5 weeks, which consisted of climbing a 1.5-m vertical 

grill, 20-40 times, with progressively increasing load 4 times/week.  

Results: The food restriction program decreased (P < 0.01) body mass, fat pad 

weight (intra-abdominal and subcutaneous), and liver triacylglycerol (TAG) levels as 

compared to normally fed Ovx rats. Stopping the food restriction program over a 5-week 

period resulted in a partial regain in body weight and intra-abdominal fat pad weight (P < 

0.05), and in an almost complete regain in liver TAG compared to normally fed Ovx rats. 

On the other hand, no significant increases in these variables were noted when the food 

restriction was replaced by resistance training over the same 5-week period.  

Conclusion: These results indicate that a resistance training program could be 

useful in preventing body weight as well as adipose tissue and liver fat regain in Ovx rats, 

following diet-induced weight loss. It is suggested that alternating from a food restriction 

regimen to a resistance training program can be an interesting strategy to promote 

successful long-term weight reduction in postmenopausal women. 
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Introduction 

Menopause is associated with increased risks of developing obesity and its 

associated health problems such as dyslipidemia, diabetes and cardiovascular diseases.1 In 

recent years, fat accumulation in liver, often in conjunction with increased fat in intra-

abdominal depots, has been identified as an important factor in the development of insulin 

resistance and it is now considered as the hepatic component of the metabolic syndrome.2, 3 

Recent data in ovariectomized (Ovx) rats support the interpretation that the absence of 

estrogens contributes to liver lipid infiltration.4 There is also good evidence that menopause 

is in fact associated with the development of a state of hepatic steatosis.5 In a recent study 

that included 800 women aged 40-59 years, it was confirmed that the menopausal status is 

indeed associated with a state of hepatic steatosis.6 Therefore, information regarding fat 

accumulation in liver and adipocytes is needed to establish strategies to counteract the 

deleterious metabolic effects of increased body fat content in postmenopausal women. 

Weight loss achieved through lifestyle modifications (diet and exercise) may reduce 

the risks of developing obesity-induced disorders in post-menopausal women.7, 8 It has been 

reported that weight loss, as modest as 5 to 10%, can reduce obesity-related disorders.9 

However, long-lasting maintenance of weight loss is difficult to achieve and body weight 

relapse is a common feature after weight loss intervention.10-12 Strategies to improve the 

maintenance of weight loss and its associated metabolic changes are multiple but most of 

them involve changes in diet and higher levels of physical activity.13-15 Since weight loss 

achieved through restrictive diet has negative effects on muscle mass,16 some authors used 

a resistance training program in conjunction with energy restriction in postmenopausal 

women with 17 and without 18 beneficial effects on body weight and fat mass. In a recent 

study, an Ovx rat model was used to evaluate the effects of adding resistance training to a 

restrictive diet. In this study, it was found that the addition of resistance training to food 

restriction not only further reduced fat accumulation in the intra-abdominal depots, but 

completely abolished liver lipid accumulation in the Ovx rats.19 It is thus possible that 

resistance training may constitute an interesting adjunct therapy to food restriction to 
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maintain the beneficial effects of food restriction in estrogen-deficient animals and in 

postmenopausal women. In the present study, we used an Ovx rat model to test the 

hypothesis that substituting food restriction by resistance training after a period of weight 

loss would maintain the decrease in fat accumulation in liver and adipose tissue that occurs 

with weight loss.  
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Methods 

Animal care. Six-week-old Sprague-Dawley female rats, ranging in mass from 180 

to 200 g were purchased from Charles River (St-Constant, PQ, Canada) and maintained on 

a 12:12 h light-dark cycle, with lights on at 0600. The animals were housed individually 

throughout the study at 20-23°C ambient temperature. All rats received standard rat chow 

(12.5% fat; 63.2% carbohydrate; 24.3% protein; kJ, Agribrands Purina Canada, Woodstock, 

ON, Canada) and had free access to tap water. Rats were randomly divided into seven 

groups (n = 8 per group) that initially had similar mean body masses and were treated 

similarly in terms of daily manipulations. All experiments described in this report were 

conducted according to the guidelines of the Canadian Council on Animal Care after 

institutional approval. 

Surgery. Two days after their arrival to our laboratory, rats were randomly divided 

into ovariectomized (Ovx) and sham-operated (Sham) groups. Ovx was conducted 

according to the technique described by Robertson and colleagues.20 Animals were injected 

with antibiotics (Tribrissen 24%; 0.125cc/kg s.c.) for 3 days, beginning the day before 

surgery. We followed the surgery guidelines that have been described in the report of 

Shinoda and colleagues.21 Following surgery, body weight and food intake were monitored 

three times per week in all rats. 

Groups, food restriction and training protocol. A schematic representation of the 

experimental design is presented in Figure 1. Five weeks after ovariectomy, rats were first 

submitted to a food restriction regimen (OvxFR) for 8 weeks (weeks 6-13). Following this 

period, OvxFR rats went back to a normal ad libitum feeding while either remaining 

sedentary (OvxPostFR) or being submitted to a resistance training program 

(OvxPostFR+RT) for an additional 5 weeks (weeks 14-18). Subgroups of Sham and Ovx 

rats were sacrificed either after 13 or 18 weeks. The food restriction program consisted of a 

target 25% daily caloric reduction calculated from the daily energy intake average of the 2 

preceding weeks in normally fed rats. It turned out that the daily caloric reduction was 26% 

for the rats submitted to this program for 8 weeks (weeks 6-13). Resistance training was 
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conducted using a device similar to the one described by Murphy and colleagues.22 The 

resistance training program consisted of climbing on a 1.5-m vertical metal grill with a 

slope of 7°, four times a week with a progressively increasing load up to 50% of body 

weight attached to the tail. The number of repetitions increased progressively during the 

first 2 weeks from two sets of ten repetitions to four sets of ten repetitions. Each repetition 

lasted ~3-5 s with ~40 s rest between repetitions. Exercise animals were sacrificed 48 h 

after the last exercise session. 

Sacrifice. Rats were sacrificed between 09.00 and 12.00. Remaining food was 

removed from the animal’s cage at least 3 h before sacrifice. Immediately after complete 

anesthesia (pentobarbital sodium; 50mg/kg i.p.), the abdominal cavity was opened 

following the median line of the abdomen, and approximately 4 ml of blood were collected 

from the abdominal vena cava (<45s) into syringes pre-treated with 

ethylenediaminetetraacetic acid (15%, EDTA). Blood was centrifuged at 3000 rpm at 4°C 

for 12 min (Beckman GPR Centrifuge) and the plasma was kept for further analysis. 

Several organs and tissues were removed and weighed (Mettler AE 100) in the following 

order: liver, uterus, mesenteric, urogenital, retroperitoneal and subcutaneous fat deposits 

along with four skeletal muscles of the right hind-limb (soleus, plantaris, medial 

gastrocnemius and lateral gastrocnemius). All tissue samples were frozen in liquid nitrogen 

immediately after they were weighed. The liver median lobe was freeze-clamped and used 

for triacylglycerol (TAG) determination. Mesenteric fat was collected from the superficial 

area covering the alimentary tract, the spleen and the pancreas. Special care was taken to 

distinguish fat cells from pancreatic cells, based on color and texture differences. On the 

right side of the animal, the subcutaneous fat was removed from the region between the 

caudal border of the rib cage, the dorsal and ventral midlines of the body and the urogenital 

organs. All tissue and plasma samples were stored at -78°C until analyses were performed. 

All rats were visually inspected for presence or not of ovaries, and uteri were excised and 

weighed to confirm ovariectomy or sham surgery. 
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Analytical procedures. Plasma 17β-estradiol and insulin concentrations were 

determined with radioimmunoassay test kits distributed by ICN Biomedicals (Costa Mesa, 

CA, USA) and Medicorp Laboratories (Montreal, PQ, Canada), respectively. Plasma 

glucose concentrations were determined with the use of a glucose analyzer (Yellow Springs 

Instruments 2300, Yellow Springs, OH, USA). Plasma glucose and insulin values were 

used to calculate a homeostasis model assessment of insulin resistance (HOMA-IR) as 

followed: glucose (mmol/l) x insulin (mIU/ml)/22.5.23 Plasma free fatty acid (FFA) and TAG 

concentrations were determined with an enzymatic colorimetric assay available from Roche 

Diagnostics (Mannheim, Germany) and Sigma (Saint Louis, Missouri, USA), respectively. 

Liver TAG concentrations were estimated from glycerol released after ethanolic KOH 

hydrolysis by using commercial kit from Sigma (Saint Louis, Missouri, USA).  

Statistical analysis. Values are expressed as means ± standard error (SE). Statistical 

analyses were performed by one-way ANOVA for non-repeated measures design using 

treatment as a main effect. These analyses were conducted separately at two different times 

(13 and 18 weeks). Fisher’s post hoc test was used in the event of a significant (P < 0.05) F 

ratio. The effect of ovariectomy on food intake between weeks 1 and 5 was analyzed using 

unpaired t-test. 
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Results 

Final body weight and food intake. Ovariectomized as compared to Sham animals 

had higher body weight, measured either after 13 and 18 weeks (Figure 2a). Food 

restriction between weeks 5 and 13 led to significantly (P < 0.01) lower final body weight 

in Ovx rats than that observed in the free-feeding Ovx animals. In fact, body weight in 

OvxFR animals was not significantly different from that measured in Sham rats at 13 

weeks. Interrupting the food restriction treatment between weeks 13 and 18 resulted in 

body weight values that were still lower (P < 0.05) than values measured in free-feeding 

Ovx rats but higher (P < 0.01) than Sham rats (Figure 1a). This indicates a partial regain of 

body weight with the abandonment of the food restriction program. However, the final 

body weight in Ovx rats in which food restriction was substituted by resistance training 

between weeks 13 and 18 was not significantly different that of Sham rats but significantly 

lower than that observed in both OvxPostFR and Ovx (P < 0.01). 

As for body weight, food intake was higher (P < 0.01) in Ovx than in Sham rats 

during the first 5 weeks after surgery (Figure 2b). As designed, the 8-week food restriction 

program resulted in a lower (P < 0.01) food intake in OvxFR compared to ad libitum fed 

Ovx rats. However, all groups of animals had similar food intake from weeks 14 to 18.  

Uterus weight, plasma estradiol and muscle weight. All Ovx animals showed lower 

(P < 0.01) uterus weight and plasma estradiol concentrations than Sham rats, indicating 

total ovariectomy (Table 1). Ovx resulted in higher (P < 0.05) muscle weight compared to 

Sham animals and these higher values were maintained whether Ovx rats underwent the 

food restriction or the resistance training treatment. This relation was, however, abolished 

when the sum of muscle weight was divided by body weight. The gain in muscle weight 

with ovariectomy was observed only in conditions where body weight in Ovx rats was 

reduced, that is, after food restriction and when food restriction was substituted by 

resistance training.  
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Plasma glucose, insulin and free fatty acids concentrations. There was no 

difference in plasma glucose concentration after 13 weeks (Table 2). After 18 weeks, 

however, plasma glucose concentrations were higher (P < 0.01) in Ovx and OvxPostFR rats 

compared to Sham animals; this result was attenuated by substituting food restriction by 

resistance training (P < 0.05). The food restriction regimen and substitution of food 

restriction by resistance training in OvxFR and OvxPostFR+RT rats, respectively, led to 

lower plasmatic concentrations of insulin compared to Ovx rats. Calculation of the HOMA-

IR ratio indicated lower values in OvxFR compared to Ovx rats at week 13. Interestingly, 

the resistance training program in OvxPostFR+RT animals was associated with lower 

HOMA-IR ratio compared to Ovx and OvxPostFR rats. There were no inter-group 

differences in plasma free fatty acid levels (Table 2). 

Liver and plasma TAG concentrations. Ovarictomy resulted in significantly (P < 

0.01) higher levels of liver TAG measured either after 13 and 18 weeks (Figure 3a). Food 

restriction between weeks 5 and 13 significantly (P < 0.01) attenuated liver lipid infiltration 

in Ovx rats such that no significant differences were found compared to Sham rats. 

Abandoning the food restriction regimen between weeks 13 and 18 resulted in a regain in 

liver fat levels that were midway between those measured in Sham and Ovx animals. 

However, substituting food restriction by resistance training kept liver TAG levels in 

OvxPostFR+RT rats to the level of Sham rats. Similar findings were observed for plasma 

TAG levels (Figure 3b). Plasma TAG levels were not significantly different between Ovx 

and Sham rats after 13 weeks but were lower in Ovx than in Sham animals after 18 weeks. 

The FR regimen significantly (P < 0.01) reduced plasma TAG accumulation in Ovx rats 

(week 13). Plasma TAG levels returned to the level of normally fed Ovx rats 5 weeks after 

abandoning the food restriction treatment. Interestingly, however, substituting food 

restriction by resistance training prevented the re-increase in plasma TAG levels. 

Intra-abdominal and subcutaneous fat pad weights. The sum of three intra-

abdominal fat pad weight and subcutaneous fat depots were higher in Ovx than in Sham 

rats either after 13 (P < 0.01) or 18 weeks (P < 0.05) (Figure 4). Similarly to what we 
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observed for liver TAG levels, food restriction significantly (P < 0.01) reduced fat depots 

in adipose tissues in Ovx rats. Interrupting of the food restriction regimen during 5 weeks 

did not result in a pronounced regain of fat mass such that fat pad weights were still lower 

(P < 0.05) than what was measured in Ovx rats. However, substituting food restriction by 

resistance training largely lowered (P < 0.01) fat mass accumulation. 
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Discussion 

In this study, we sought to determine the efficacy of resistance training in 

attenuating the regain of adiposity and liver fat after the cessation of a prolonged food 

restriction leading to weight loss in Ovx rats. Results of this experimental approach indicate 

that substitution of resistance training favored the maintenance of a lower body weight and 

adiposity in this animal model. These data support the concept that resistance training may 

provide a successful alternative to chronic food restriction to avoid relapse of body weight 

and lipid accumulation in Ovx rats. 

Body weight. As previously reported, body weight was higher in Ovx than in Sham 

rats.24, 25 The ~ 25% FR in OvxFR animals resulted in a reduction of body weight to the 

level of Sham animals (Figure 2a, week 13). Considering that food intake in OvxFR 

animals was lower than in Sham rats, one would have expected a larger reduction in body 

weight. This suggests a decrease in energy expenditure in the OvxFR rats. As expected, the 

abandonment of the food restriction regimen resulted in a regain of body weight, but not 

completely since body weight in OvxPostFR rats was still lower than in Ovx animals. 

Nevertheless, this partial regain in body weight was significantly attenuated by substituting 

resistance training for food restriction. These changes in body weight can hardly be 

attributed to differences in food intake since food intake was similar in all groups after the 

abandonment of the food restriction program (Figure 2b, weeks 14-18). It is well 

documented that weight-reduced rats show a profound drive to regain lost weight when 

they are allowed free access to food.26, 27 A large body of evidence now suggests that a 

homeostatic feedback system defending body weight and adiposity is fundamental to this 

metabolic drive to regain lost weight.28-30 Interestingly, it has also been reported that 

exercise lowers the defended level of weight gain and adiposity.31 These authors suggested 

that exercise resets the homeostatic balance between energy intake and expenditure toward 

defense of a lower level of weight gain and adiposity. It seems that exercise produces a 

different set of regulatory signals from caloric restriction that lowers the defended level of 

weight gain and adiposity.31 In a recent study,32 the same authors showed that early-onset 
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exercise, as opposed to early caloric restriction, may favorably alter the development of the 

hypothalamic pathways controlling energy homeostasis during brain development. It may, 

therefore, be inferred that the introduction of the resistance training program initiated a new 

set of regulatory signals that contributes to the maintenance and even the lowering of the 

defended body weight gain and adiposity after cessation of the food restriction regimen.  

Liver TAG and adiposity. The main objective of the present study was to determine 

whether substituting food restriction by resistance training would help to maintain the 

decreased liver lipid infiltration that is likely to occur with food restriction in Ovx rats. The 

importance of this information has been highlighted in recent years by the recognition of 

hepatic steatosis as the hepatic component of the metabolic syndrome.33 Ovx in the present 

study resulted in ~ 50-55% higher fat accumulation in the livers of our rats (Figure 3a). 

Food restriction resulted in a complete resorption of liver fat accumulation to the level of 

that in Sham rats (week 13), along with an important reduction in plasma TAG. In a recent 

study,19 only a partial reduction of liver TAG levels was found after 8 weeks of food 

restriction in Ovx rats. The discrepancy between the two studies may be due to a better 

control of the food restriction regimen in the present study. The abandonment of the food 

restriction resulted in regains of liver and plasma TAG that were significantly attenuated by 

the introduction of the resistance training program. It was previously reported that the 

adjunct of a resistance training program to a food restriction regimen largely contributed to 

the reduction of fat accumulation in liver of Ovx rats.19 The present data complement this 

finding by indicating that a food restriction regimen may be adequately replaced by a 

resistance training program to maintain low liver fat accumulation in Ovx animals. 

Although the present study did not address mechanisms involved in these responses, it is 

likely that the mechanisms of action are different for the food restriction than for the 

resistance training treatment. Food intake reduction in the present Ovx rats was important, 

reaching food intake levels lower than what was ingested in Sham rats. This must have 

substantially reduced the amount of substrate taking up by the liver and consequently 

resulted in a progressive resorption of accumulated lipids. A return to a normal diet would 

increase the amount of substrate available, thus causing a regain of liver fat accumulation. 
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The introduction of resistance training  after cessation of food restriction would, on the 

other hand, control liver fat accumulation by stimulating lipid oxidation inside the liver 

itself, in addition of increasing energy expenditure. This interpretation is supported by the 

observation that the introduction of the resistance training program after cessation of the 

food restriction regimen not only prevented the relapse in fat accumulation in adipose 

tissues, but reduced fat mass to levels lower than those measured in Ovx animals. Since 

changes in liver fat accumulation paralleled changes in adipose tissue fat mass following 

food restriction and resistance training in Ovx rats, one may reach the conclusion that liver 

fat accumulation is strictly related to adipose tissue fat accumulation or relapse. Although 

this is probably correct to a certain point, it must be kept in mind that estrogens can act 

intrahepatically as a protective tool against liver lipid infiltration. Estrogens are known to 

have a role in regard to several regulatory aspects of hepatic lipid metabolism, including 

very low density lipoprotein synthesis.34, 35 The absence of estrogens as such could 

therefore favor liver fat accumulation. If, on one hand, food restriction would most likely 

reduce the amount of lipids taken up by the liver, on the other hand, it is possible that 

resistance training may stimulate metabolic pathways in liver common to estrogens, thus 

favoring a reduction in hepatic fat accumulation. In this regard, endurance training in Ovx 

rats has been recently reported to have beneficial effects similar to those of estrogens on the 

heart of Ovx rats.36 

Food restriction in Ovx rats was associated with lower plasma insulin levels 

compared to ad libitum fed Ovx rats. However, this effect was not observed anymore after 

cessation of food restriction, indicating an increase in insulin levels. Plasma glucose levels 

were also higher with cessation of food restriction as compared to values in Sham rats. 

Most interestingly, it is with the introduction of the resistance training program that the 

lower plasma glucose and insulin values were observed. Although our rats were not in an 

overnight fasted state (3-h fast or more), we calculated HOMA-IR to obtain an index of 

insulin sensitivity. This index indicates a deterioration of insulin sensitivity with Ovx (week 

13), which was improved by the food restriction regimen and even more by the resistance 

training program. Although insulin sensitivity in the present context should be measured 
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using more sophisticated techniques, the present data suggest that, in addition to attenuating 

fat accumulation resulting from cessation of a food restriction regimen, the introduction of 

a resistance training program in Ovx animals may also be an adjunct in attenuating the 

metabolic deleterious effects associated with the withdrawal of ovarian hormones. 

The appropriateness of present resistance training program in Ovx animals needs to 

be addressed. It is difficult to use a RT program in rats without mobilizing several muscle 

groups. Taken into account the very short active time (~ 3-5 s) interspersed by a relatively 

long period of rest (~ 40 s), we feel confident that the nature of the present training program 

is closely related to resistance training. In the present resistance training program, rats were 

trained four times a week with a maximal load attached to the tail of the rats of 50% body 

weight, compared to five times a week with a maximal load of 75% body weight in a 

previous study.19 It was thought that these limitations make the program more suitable to 

Ovx rats. Both of these resistance training programs did not result in higher muscle mass 

compared to Ovx. This may be explained by the fact that ovariectomy itself resulted in an 

increased muscle mass, attributed to increased body weight.25 Accordingly, there was no 

difference in muscle mass/body weight between Sham and Ovx rats. The abandonment of 

the food restriction regimen resulted in a tendency (P < 0.09) to lower relative muscle mass 

values (0.73 vs 0.65). However, substituting food restriction by resistance training resulted 

in the maintenance of the relative muscle mass (0.73 vs 0.71). This may be taken as an 

indication that the present resistance training program had an effect on muscle mass. 

In summary, results of the present study show that the cessation of food restriction 

regimen aimed at lower body weight and fat accumulation in Ovx rats may be 

advantageously substituted by a resistance training program, without causing any 

appreciable regain of body weight and fat in liver and adipose tissue. The resistance 

training program was even associated with a lowering of fat accumulation in adipocytes to 

levels lower than measured in Sham rats.  

While it is still unclear whether the menopause transition itself brings about weight 

gain,37 there is good evidence that menopause is associated with weight gain and changes in 
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fat distribution that increase the risk of cardiovascular diseases.38, 39 There is also recent 

evidence that withdrawal of estrogens results in rapid fat accumulation in liver of 

postmenopausal women.6 Postmenopausal women are, therefore, often confront with the 

undertaking of lifestyle modifications (nutrition and exercise) that are so hard to maintain 

in practice. Results of the present study suggest that changing from a food restriction 

regimen to a resistance training program may prove to be an interesting strategy to promote 

successful long-term weight reduction in postmenopausal women. 
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Table 1. Uterus weight, estradiol levels, and sum of weight of four muscles measured after 

13 and 18 weeks in the following groups of rats: Sham (sham-operated), Ovx 

(ovariectomized), OvxFR (5-week ovariectomized + 8-week food restriction), OvxPostFR 

(5-week ovariectomized + 8-week food restriction + 5-week interruption of food 

restriction), and OvxPostFR+RT (5-week ovariectomized + 8-week food restriction + 5-

week resistance training). Values are given as mean ± standard error with n = 8 rats in each 

group 

 

 

Significantly different from Ovx group, bP < 0.01; significantly different from Sham group, 

cP < 0.05, dP < 0.01; significantly different from OvxFR group, eP < 0.01; significantly 

different from OvxPostFR group, fP < 0.01, gP < 0.01 
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Table 2. Plasma concentrations of glucose, insulin, HOMA-IR, and free fatty acids 

measured after 13 and 18 weeks in the following groups of rats: Sham (sham-operated), 

Ovx (ovariectomized), OvxFR (5-week ovariectomized + 8-week food restriction), 

OvxPostFR (5-week ovariectomized + 8-week food restriction + 5-week interruption of 

food restriction), and OvxPostFR+RT (5-week ovariectomized + 8-week food restriction + 

5-week resistance training). Values are given as mean ± standard error with n = 8 rats in 

each group 

 

 

Significantly different from Ovx group, aP < 0.05, bP < 0.01; significantly different from 

Sham group, cP < 0.05, dP < 0.01; significantly different from OvxPostFR group, fP < 0.05 

HOMA-IR, homeostatic model assessment of insulin resistance (glucose (mmol/l) × insulin 

(mIU/ml)/22.5; 3-h fasted state) 
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Legends 

 

Figure 1.  Schematic representation of the experimental design. The tip of the arrow 

indicates the time of sacrifice. Sham, sham-operated; Ovx, ovariectomized; FR, food 

restriction; RT, resistance training 

 

Figure 2. Body weight (a) and average daily food intake (b) measured after 5, 13 

and 18 weeks in the following groups of rats: Sham (sham-operated), Ovx 

(ovariectomized), OvxFR (5-week ovariectomized + 8-week food restriction), OvxPostFR 

(5-week ovariectomized + 8-week food restriction + 5-week interruption of food 

restriction), and OvxPostFR+RT (5-week ovariectomized + 8-week food restriction + 5-

week resistance training). Values are given as mean ± standard error with n = 8 rats in each 

group. Significantly different from Ovx group, aP < 0.05, bP < 0.01; significantly different 

from OvxFR group, eP < 0.01; significantly different from OvxPostFR group, gP < 0.01  

 

Figure 3. Liver triacylglycerol (TAG) concentrations (a) and plasma concentrations 

of TAG (b) measured after 13 and 18 weeks in the following groups of rats: Sham (sham-

operated), Ovx (ovariectomized), OvxFR (5-week ovariectomized + 8-week food 

restriction), OvxPostFR (5-week ovariectomized + 8-week food restriction + 5-week 

interruption of food restriction), and OvxPostFR+RT (5-week ovariectomized + 8-week 

food restriction + 5-week resistance training). Values are given as mean ± standard error 

with n = 8 rats in each group. Significantly different from Ovx group, aP < 0.05, bP < 0.01; 

significantly different from Sham group, dP < 0.01; significantly different from OvxFR 

group, eP < 0.01; significantly different from OvxPostFR group, fP < 0.05, gP < 0.01 

 

Figure 4. Sum of weights of three intra-abdominal (mesenteric, urogenital and 

retroperitoneal) fat depots (a) and subcutaneous fat depot weight (b) measured after 13 and 
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18 weeks in the following groups of rats: Sham (sham-operated), Ovx (ovariectomized), 

OvxFR (5-week ovariectomized + 8-week food restriction), OvxPostFR (5-week 

ovariectomized + 8-week food restriction + 5-week interruption of food restriction), and 

OvxPostFR+RT (5-week ovariectomized + 8-week food restriction + 5-week resistance 

training). Values are given as mean ± standard error with n = 8 rats in each group. 

Significantly different from Ovx group, aP < 0.05, bP < 0.01; significantly different from 

Sham group, dP < 0.01; significantly different from OvxPostFR group, gP < 0.01  
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Abstract 

Objective: The aim of the present study was to investigate the effects of 

maintaining only one of the two components of a food restriction (FR) + resistance training 

(RT) regimen on the regain of body weight and fat mass (liver and adipocytes) in 

ovariectomized (Ovx) rats.  

Methods: Five week Ovx rats were submitted to a weight loss program consisting 

of a 26% FR combined with RT (OvxFR+RT) for 8 weeks. RT consisted of climbing a 1.5 

m vertical grid with a load attached to the tail, 20-40 times with progressively increasing 

loads 4 times/week. Following this weight loss intervention, OvxFR+RT rats were sub-

divided into 3 groups for an additional 5 weeks: 2 groups went back to a normal ad libitum 

feeding with or without RT and the other group kept only FR.  

Results: Combined FR+RT program in Ovx rats led to lower body mass gain, liver 

triacylglycerol (TAG) levels, and fat mass gain compared to sedentary normally fed Ovx 

rats (P < 0.01). Stopping both FR and RT over a 5-week period resulted in the regain of 

body weight, intra-abdominal fat pad weight and liver TAG (P < 0.01). When only FR was 

maintained, the regain of body and fat pad weight as well as liver and plasma TAG 

concentrations was completely prevented. However, when only RT was maintained, regain 

in the aforementioned parameters was attenuated but not prevented (P < 0.05).  

Conclusion: It is concluded that following a FR+RT weight loss program, 

continuation of only RT constitutes an asset to attenuate body weight and fat mass regain in 

Ovx rats; although the impact is less than the maintaining FR alone. These results suggest 

that, in post-menopausal women, RT is a positive strategy to reduce body weight and fat 

mass relapse.  

 

Key words: Food restriction, exercise, liver triacylglycerols, plasma lipid profile, 

body weight relapse. 
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1. Introduction 

Menopause in women is associated with an increased risk of incidence of several 

deleterious metabolic effects which may compromise quality of life. There is clear evidence 

that the prevalence of all individual components of the metabolic syndrome increases in 

women after menopause [1]. The tendency for weight gain is one of the most frequently 

observed sign after menopause [2] and increases the risk of obesity-related diseases 

including coronary heart diseases and type 2 diabetes in post-menopausal women [3]. 

Although therapies aimed at preventing these changes in women include hormone 

replacement therapy (HRT) [4], the risks associated with HRT have prompted extensive 

studies for other preventive or therapeutic alternatives such as diet and exercise [5].  

It is well established that ovariectomy (Ovx) in animals leads to increased food 

intake and body weight [6] thus resulting in increased adipose tissue and liver fat accretion 

[7,8]. The increase in liver fat infiltration is of special interest since recent evidences 

suggest that the deficiency in estrogens in rat directly contributes to liver fat accumulation 

[9,10]. Fatty liver is now considered as a hepatic component of the metabolic syndrome that 

is known to significantly enhance the risk of developing cardiovascular disease and/or type 

2 diabetes [11]. Moreover, recent data suggest that ectopic fat in the liver may be more 

important than visceral fat in characterization of metabolically benign obesity in humans 

[12]. It is thus of importance to investigate non-pharmacological interventions that may 

influence the accumulation of adipose tissue and/or lipids in liver following estrogen 

withdrawal. 

Resistance training (RT) may constitute an interesting adjunct to food restriction 

(FR) to control body weight and fat accumulation in post-menopausal women [13]. 

However, it is a common observation that long-lasting maintenance of weight loss is 

difficult to achieve and body weight relapse is a common feature [14-16]. We recently 

reported, using an animal model, that a FR+RT program was effective to attenuate the 

ovariectomy-induced increase in body fat, especially in liver [17]. In line with this 

approach, the present study investigates the effect of maintaining RT or FR on body weight 
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regain, fat mass, and liver lipid infiltration in estrogen deficient animals previously 

submitted to a FR+RT weight loss program. 
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2. Methods 

2.1. Animal care 

Female Sprague-Dawley strain rats (n = 64) weighing 180-200g (6 weeks of age) 

were obtained from Charles River (St-Constant, PQ, Canada) and were housed individually. 

The 12:12-h light-dark cycle started at 6:00 AM and the room temperature was maintained 

at 20-23°C. All rats received usual pellet rat chow, referred to as the standard diet (SD; 

12.5% fat; 63.2% carbohydrate; 24.3% protein; kcal, Agribrands Purina Canada, 

Woodstock, ON) and had free access to tap water. The experiments described in this report 

were conducted according to the directives of the Canadian Council on Animal Care after 

institutional approval. 

2.2. Surgery 

Two days after their arrival to our laboratory, rats were randomly divided into 

ovariectomized (Ovx) and sham-operated (Sham) groups. Ovx was conducted according to 

the technique described by Robertson et al. [18]. Animals were injected with antibiotics 

(Tribrissen 24%; 0.125cc/kg, sc) for three days, beginning the day before surgery. Details 

of the surgery have been previously described [19]. Following surgery, body weight and 

food intake were monitored three times per week in all rats. 

2.3. Groups, food restriction and training protocol 

Rats were randomly divided into 8 groups (n = 8/group) that had similar initial 

mean body mass and were treated similarly in terms of daily manipulations. A schematic 

representation of the experimental design is presented in Fig. 1. Rats that had been 

ovariectomized for 5 weeks were first submitted to a program of weight loss consisting of a 

FR regimen combined with a program of RT (OvxFR+RT) for 8 weeks (weeks 6-13). 

Following this period, OvxFR+RT rats were sub-divided into 3 groups for an additional 5 

weeks (weeks 14-18): One group stopped both RT and FR (Ovx[postFR-RT]), one group 

continued FR while stopping RT (Ovx[contFRw/oRT]), and the last group went back to a 

normal ad libitum feeding while continuing RT (Ovx[contRTw/oFR]). Subgroups of Sham 
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and Ovx rats were either sacrificed after 13 or 18 weeks. The FR program consisted in a 

target 25% daily caloric reduction calculated from the daily energy intake average of the 2 

preceding wk in normally fed rats. It turned out that the daily caloric reduction was 26% for 

the rats submitted to this program. RT was conducted using a device similar to the one 

described by Murphy et al. [20]. The resistance training program consisted of climbing on a 

1.5 m metal grill with a slope of 7° from the wall, 4 times a week with a progressively 

increasing load up to 50% of body weight attached to the tail. The climbing grid (0.6-cm 

mesh) was divided into six 15-cm lanes. The animals were placed at the bottom of the grid 

(approximately 60 cm from the floor), head up, and climbed to the top where they could 

rest on a platform. The number of repetitions increased progressively during the first 2 

weeks from 2 sets of 10 repetitions to 4 sets of 10 repetitions. Each repetition lasted ~3-5 s 

with ~40 s rest between repetitions. Exercise animals were sacrificed 48 h after the last 

exercise session. 

2.4. Sacrifice 

Rats were sacrificed between 09:00 and 12:00 AM. Remaining food was removed 

from the animal’s cage at least 3 h before sacrifice. Immediately after complete anesthesia 

(pentobarbital sodium; 50mg/kg, ip), the abdominal cavity was opened following the 

median line of the abdomen and approximately 4 mL of blood was collected from the 

abdominal vena cava (<45s) into syringes pre-treated with ethylenediaminetetraacetic acid 

(15%; EDTA). Blood was centrifuged (3000 rpm; 4°C; 12 min; Beckman GPR Centrifuge) 

and the plasma was kept for further analysis. Several organs and tissues were removed and 

weighed (Mettler AE 100) in the following order: liver, uterus, mesenteric, urogenital, 

retroperitoneal, and subcutaneous fat deposits along with 4 skeletal muscles of the right 

hindlimb (soleus, plantaris, medial gastrocnemius, and lateral gastrocnemius). All tissue 

samples were frozen in liquid nitrogen immediately after they were weighed. The liver 

median lobe was freeze-clamped and used for triacylglycerol (TAG) determination. 

Mesenteric fat was collected from the superficial area covering the alimentary tract, the 

spleen and the pancreas. Special care was taken to distinguish fat cells from pancreatic cells 
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based on color and texture differences. On the right side of the animal, the subcutaneous fat 

was removed from the region between the caudal border of the rib cage, the dorsal and 

ventral midlines of the body and the urogenital organs. All rats were visually inspected for 

presence or not of ovaries, and uteri were excised and weighed to confirm ovariectomy or 

sham surgery. All tissue and plasma samples were stored at -78° C until analyses were 

performed.  

2.5. Analytical procedures 

Plasma 17β-estradiol and insulin concentrations were determined with 

radioimmunoassay test kits distributed by ICN Biomedicals (Costa Mesa, CA) and 

MEDICORP Laboratories (Montreal, PQ, Canada) respectively. Plasma glucose 

concentrations were determined with the use of a glucose analyzer (Yellow Springs 

Instruments 2300, Yellow Springs, OH). Plasma glucose and insulin values were used to 

calculate a homeostasis model assessment of insulin resistance (HOMA-IR) as followed: 

glucose (mmol/l) x insulin (mIU/ml)/22.5 [21]. Plasma free fatty acid (FFA) and TAG 

concentrations were determined with an enzymatic colorimetric assay available from Roche 

Diagnostics (Mannheim, Germany) and SIGMA (Saint Louis, Missouri, USA), 

respectively. Liver TAG concentrations were estimated from glycerol released after 

ethanolic KOH hydrolysis by using commercial kit from SIGMA (Saint Louis, Missouri, 

USA).  

2.6. Statistical analysis 

Values are expressed as means ± S.E. Statistical analyses were performed by one-

way ANOVA for non-repeated measures design using treatment as a main effect. These 

analyses were conducted separately at two different times (13 and 18 weeks). Fisher’s post 

hoc test was used in the event of a significant (P < 0.05) F ratio. Ovx effects on body 

weight change and food intake between weeks 1 and 5 were analyzed using unpaired t-test.  
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3. Results 

3.1. Final body weight, body weight change and food intake 

Ovx resulted in higher body weight measured either after 13 and 18 weeks (Table 

1). The FR+RT program significantly (P < 0.01) reduced final body weight in Ovx animals 

to the level measured in Sham rats. Stopping both FR and RT treatments between weeks 13 

and 18 re-established body weight values back to those of Ovx animals (Table 1). This 

regain in body weight was, however, completely prevented by maintaining FR while 

stopping RT. Continuing only RT resulted in body weight values that were midway 

between those measured in corresponding Sham and Ovx animals. The extents of these 

body weight changes are illustrated in Fig. 2A. These data first show that the gain in body 

weight following Ovx was mainly observed during the first 5-week post-surgery. These 

data also show the attenuation of body weight regain when FR or RT was maintained. 

Food intake measured throughout the experiment follows a pattern similar to body 

weight changes (Fig. 2B). Food intake was higher (P < 0.01) in Ovx than in Sham rats 

between weeks 1-5 but not between weeks 6-13 and weeks 14-18. As planned, the FR 

program resulted in a lower (P < 0.01) food intake in OvxFR+RT (weeks 6-13) and 

Ovx[contFRw/oRT] (weeks 14-18) compared to all other ad libitum fed animals. 

Abandoning FR also led to increased (P < 0.01) food intake (weeks 14-18).  

3.2. Uterus weight, plasma estradiol, and sum of 4 leg muscles weight. 

All Ovx animals showed lower (P < 0.01) uterus weight and plasma estradiol 

concentrations than Sham rats confirming total ovariectomy (Table 1). The sum of 4 

muscles weight was significantly (P < 0.01) increased in Ovx compared to Sham rats. The 

FR+RT program, however, decreased (P < 0.01) muscle mass to the level measured in 

Sham rats (Table 1). The abandon of both of the FR+RT components along with the 

selective continuation of RT or FR maintained muscle mass to the level of Ovx animals. 
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3.3. Plasma glucose, insulin, and free fatty acids concentrations 

Plasma glucose concentrations were higher in Ovx compared to almost all other 

groups (week 18) (Table 2). The FR+RT regimen between weeks 6-13 in OvxFR+RT and 

continuing either FR or RT (weeks 14-18) in Ovx[contFRw/oRT] and Ovx[contRTw/oFR], 

led to lower plasmatic concentrations of insulin compared to corresponding Ovx rats. On 

the other hand, stopping both FR and RT treatments between weeks 13 and 18 

(Ovx[postFR-RT]) increased the plasma insulin concentrations to the levels observed in 

Ovx rats (week 18). Calculation of the HOMA-IR score indicates lower values following 

the FR+RT program and the maintenance of either FR or RT of this program. There were 

no inter-group differences in plasma free fatty acid levels at week 13, but 

Ovx[contFRw/oRT] rats had lower (P < 0.05) plasma FFA concentrations compared to 

Sham, Ovx, and Ovx[postFR-RT] animals at week 18 (Table 2).  

3.4. Liver and plasma TAG concentrations 

Ovx resulted in significantly (P < 0.01) higher levels of liver TAG measured either 

after 13 and 18 weeks (Fig. 3A). FR+RT between weeks 5 and 13 significantly (P < 0.01) 

reduced liver lipid infiltration in Ovx rats to the levels of Sham rats. Abandoning both FR 

and RT between weeks 13 and 18 resulted in an increase in liver fat to the levels measured 

in Ovx animals. Interestingly, continuing either FR or RT kept liver TAG levels to the level 

measured in Sham rats.  

Plasma TAG levels were not significantly different between Ovx and Sham rats 

after 13 weeks but were lower in Ovx than in Sham after 18 weeks (Fig. 3B). The FR+RT 

weight loss program reduced (P < 0.05) plasma TAG accumulation in Ovx rats (week 13). 

Plasma TAG concentrations returned to higher levels than normally fed Ovx rats (P < 0.05) 

5 weeks after interrupting both FR and RT between weeks 13 and 18. Similarly to liver 

TAG, continuing either FR or RT prevented the increase in plasma TAG (week 18). 
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3.5. Intra-abdominal and subcutaneous fat pads 

The sum of 3 intra-abdominal (mesenteric, urogenital, and retroperitoneal) fat pads 

weight and subcutaneous fat depots were higher in Ovx than in Sham rats either after 13 or 

18 weeks (Fig. 4). FR+RT significantly (P < 0.01) reduced fat depots in Ovx rats. Stopping 

FR+RT in Ovx animals during 5 weeks resulted in a pronounced regain of fat to the levels 

of normally fed Ovx rats. On the other hand, maintenance of FR or RT largely prevented 

the fat regain although this effect was more pronounced when FR was maintained. 
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4. Discussion 

Weight loss achieved through lifestyle interventions such as diet and exercise may 

be beneficial in reducing the risks of developing obesity and associated metabolic disorders 

in post-menopausal women [22,23]. Several strategies have been put forward to improve 

maintenance of weight loss in which, most involve changes in diet and increased levels of 

physical activity [24-26]. In recent years, our research group used an ovariectomized rat 

model to show that the addition of RT to a FR treatment synergistically reduced abdominal 

fat deposition and completely prevented liver lipid infiltration [17]. Results of the present 

study confirm the efficiency of the FR+RT program in reducing body weight as well as 

liver and adipocytes fat accretion in Ovx rats. The efficiency of the present FR+RT 

program is further supported by the subsequent relapse in all measured metabolic 

parameters in rats that were removed from the program for 5 weeks. In a recent study [27] 

we also observed that RT may be successfully substituted to a FR regimen to avoid body 

weight and fat mass regain. In line with this, the present study sought to determine if 

keeping the RT component of the FR+RT weight loss program would be successful in 

avoiding the relapse of body weight and fat mass. Results of the present study indicate that, 

although maintaining FR was more efficient than maintaining RT alone, the latter was 

successful in reducing the relapse in body weight, fat mass, and plasma TAG 

concentrations.   

Liver lipid infiltration is known to increase in Ovx rats [28] and to a certain extend 

in post-menopausal women [29]. The present effect of RT on preventing liver TAG re-

increase follows a pattern similar to that found for intra-abdominal fat accumulation. Both 

of these responses could, therefore, be simply associated with increased energy expenditure 

with the maintenance of the RT program. However, in recent studies, we reported 

observations suggesting that liver fat accumulation in Ovx animals may be regulated 

differently than adipocytes fat accumulation. For instance, we observed that adding RT to a 

program of FR is more successful in preventing fat accumulation in liver than FR alone 

[17]. These observations are in line with recent findings that the absence of estrogens alters 
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gene expressions in liver favoring a reduction in lipid oxidation and an increase in 

lipogenesis [10]. We previously suggested that RT may specifically regulate the levels of 

fat accumulation in liver by, for instance, maintaining the level of fat oxidation in spite of 

estrogen deficiency [17]. Although the present study does not provide any molecular and/or 

enzymatic evidence to support this interpretation, it does indicate that liver fat 

accumulation in Ovx rats is not solely regulated by an increased food intake. 

Although maintenance of RT attenuated the relapse of body weight and fat 

accumulation in the present study, body weight, and fat mass regain was better preserved 

with the maintenance of the FR regimen. This indicates that the FR component of the 

FR+RT program is more important than the RT component. Nevertheless, the contribution 

of the RT component cannot be considered as non-significant since its maintenance 

attenuated the relapse. In a recent study [27], we observed that substituting FR by RT 

resulted in a large attenuation of body weight and fat regain. This suggests that a RT 

program might have a larger impact on maintaining body weight and fat loss when it is 

newly introduced into a program of weight loss than when it is already part of a FR weight 

loss program. It is likely that the biological interactions between FR and RT upon reducing 

body weight and fat accumulation are dominated by the FR intervention. Cessation of FR 

would therefore have a larger impact on fat regain than training cessation, as observed in 

the present study. This interpretation means that the impact of a RT program on body 

weight and fat mass reduction and/or maintenance is different when pursued in conjunction 

or in substitution of a FR program. Although identification of regulatory mechanisms are 

beyond the aim of the present study, it is possible on a speculative point of view, that gene 

expression and activity of key enzymes involved in metabolic pathways that may have an 

impact on body weight and fat accumulation are activated to a different extent whether RT 

is conducted simultaneously or substituted to a FR regimen.  

Exercise training and FR may both affect peripheral insulin sensitivity. Although 

the rats in the present study were not in an overnight fasted state (3 h fast or more), we 

calculated HOMA-IR to obtain an index of insulin sensitivity. This index indicates a 
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deterioration of insulin sensitivity with Ovx, which was improved by the FR+RT program. 

Interestingly, maintenance of either FR or RT contributed similarly to the maintenance of 

low levels of HOMA-IR score. Although insulin sensitivity in the present context should be 

measured using more sophisticated techniques, the present data suggest that RT may be an 

asset in maintaining gain in insulin sensitivity after withdrawal of ovarian hormones.  

As previously reported, Ovx resulted in an increase in muscle mass most likely 

secondary to an increase in body weight [17,30]. Accordingly, muscle mass was 

significantly decreased following the FR+RT program and re-increased after the total 

abandon of the program. It is likely, as it is the case for body weight and fat mass 

accumulation, that these changes in muscle mass are related more to the FR than to the RT 

component of the weight loss program. The incapacity of the RT program to maintain 

muscle mass when combined to FR program might be due to the substantial food restriction 

(26%) used in the present study. It is difficult to determine the real impact of the RT 

program on muscle mass in this study due to the confounding effect of the FR program.  

In summary, results from the present study show that body weight and fat mass 

regain after the cessation of a weight loss program consisting of FR and RT in Ovx rats is 

minimized by the maintenance of FR regimen. Maintenance of RT program also constitutes 

an asset to attenuate body weight and fat mass regain, although the impact is less than 

maintaining FR alone. On a clinical point of view, the present results suggest that the 

maintenance of only one component of a FR+RT weight loss program constitutes a positive 

strategy to reduce body weight and fat mass relapse in post-menopausal women. 
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Table 1. Final body weight (Wt.), uterus Wt., plasma estradiol, and sum of 4 leg muscles 

Wt. measured after 13 and 18 weeks. 

 
Values are mean ± SE. Sham: sham-operated; Ovx: ovariectomized; FR: food restriction; 

RT: resistance training; cont: continued; w/o: without. 5 week Ovx rats were first submitted 

to a program of weight loss consisting of a FR regimen combined with a program of RT 

(OvxFR+RT) for 8 weeks (weeks 6–13). Following this period, OvxFR+RT rats were sub-

divided into 3 groups for an additional 5weeks (weeks 14–18): One group stopped both RT 

and FR (Ovx[postFR-RT]), one group stopped only RT (Ovx[contFRw/oRT]), and the last 

group stopped only FR (Ovx[contRTw/oFR]). 
a Significantly different from Ovx[contFRw/oRT], P < 0.05. 

aa P < 0.01. 

bb Significantly different from Ovx[contRTw/oFR], P < 0.01. 

** Significantly different from Ovx[postFR-RT], P < 0.01. 

§§ Significantly different from Ovx, P < 0.01. 

++ Significantly different from OvxFR+RT, P < 0.01.  
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Table 2. Plasma concentrations of glucose, insulin, HOMA-IR, and free fatty acids (FFA) 

measured after 13 and 18 weeks. 

 
Values are mean ± SE. HOMA-IR: homeostatic model assessment of insulin resistance 

[(glucose: mmol/l × insulin: mlU/ml)/22.5] (3 h fasted state). Abbreviations and groups are 

described in Table 1. 
aa Significantly different from Ovx[contFRw/oRT], P < 0.01. 

b Significantly different from Ovx[contRTw/oFR], P < 0.05. 

bb P < 0.01. 

§ Significantly different from Ovx, P < 0.05. 

§§ P < 0.01. 

* Significantly different from Ovx[postFR-RT], P < 0.05. 

** P < 0.01.  
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Legends 

 

Fig. 1. Schematic representation of the experimental design. The tip of the arrow 

indicates the time of sacrifice. Sham: sham-operated, Ovx: ovariectomized, FR: food 

restriction, and RT: resistance training. 

 

Fig. 2. Body weight change (A) and average daily food intake (B) during weeks 0–

5, weeks 6–13, and weeks 14–18. Values are mean ± SE. §§ Significantly different from 

Ovx, P < 0.01. ++Significantly different from OvxFR+RT, P < 0.01. *Significantly 

different from Ovx[postFR-RT], P < 0.05, **P < 0.01. aa: Significantly different from 

Ovx[contFRw/oRT], P < 0.01. bb: Significantly different from Ovx[contRTw/oFR], P < 

0.01. Abbreviations and groups are described in Table 1.  

 

Fig. 3. Liver triacylglycerol (TAG) concentration (A) and plasma concentration of 

TAG (B) measured after 13 and 18weeks. Values are mean ± SE. § Significantly different 

from Ovx, P < 0.05, §§P < 0.01. +Significantly different from OvxFR+RT, P < 0.05, ++P 

< 0.01. *Significantly different from Ovx[postFR-RT], P < 0.05, **P < 0.01. aa: 

Significantly different from Ovx[contFRw/oRT], P < 0.01. bb: Significantly different from 

Ovx[contRTw/oFR], P < 0.01. Abbreviations and groups are described in Table 1.  

 

Fig. 4. Sum of 3 intra-abdominal (mesenteric, urogenital, and retroperitoneal) fat 

depots weight (A) and sub-cutaneous fat pad weight (B) measured after 13 and 18 weeks. 

Values are mean ± SE. § Significantly different from Ovx, P < 0.05, §§P < 0.01. 

++Significantly different from OvxFR + RT, P < 0.01. **Significantly different from 

Ovx[postFR-RT], P < 0.01. a: Significantly different from Ovx[contFRw/oRT], P < 0.05, 
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aa: P < 0.01. bb: Significantly different from Ovx[contRTw/oFR], P < 0.01. Abbreviations 

and groups are described in Table 1. 
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 

 



 

 

 

116

Chapter 4: Original article 3 
 

 

Title: 

Does exercise training prior to Ovx protect against liver and adipocyte fat accumulation in 

rats? 

 

 

Authors: 

Abdolnaser Pighon, Razieh Barsalani, Siham Yasari, Denis Prud'homme, Jean-Marc Lavoie 

 

 

 

 

Journal publication reference: 

Climacteric. 2010 Jan 19. [Epub ahead of print] DOI: 10.1080/13697130802447074 

 

 

 

 

 

Reprinted with permission of Climacteric, the Journal of the International 

Menopause Society (IMS).  

 

 

 

 



 

 

 

117

Does exercise training prior to Ovx protect against liver and adipocyte fat 

accumulation in rats? 

 
 

Abdolnaser Pighon1, Razieh Barsalani1, Siham Yasari2, Denis Prud'homme2, and Jean-Marc 

Lavoie1 
 

 

1 Department of Kinesiology, University of Montreal, Montreal, Canada. 
2 School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, 

Canada. 

 

 

Short title: Ovariectomy in exercise trained rats. 

 

 

Key words: Hepatic steatosis, Plasma lipid profile, HOMA-IR, Estrogens, Training 

cessation. 

 

 

 

 

 

 

 

 

 

 



 

 

 

118

ABSTRACT 

Objective: To determine whether a training state protects against the metabolically 

deleterious effects of ovariectomy on liver and adipocytes fat accumulation in rats.  

Design: Female rats were randomly assigned to each group (n = 8 rats/group). The 

animals were first either exercise trained (Tr) for 6 weeks or kept sedentary (Sed) before 

being sham operated (Sham), ovariectomized (Ovx), or Ovx with 17 β-estradiol 

supplementation (OvxE2). Following surgery, sedentary rats either remained sedentary 

(Sed-Sed) or undertook exercise training for 6 weeks (Sed-Tr) while exercise-trained rats 

either became sedentary (Tr-Sed) or resumed exercise training (Tr-Tr).  

Results: Body weight and energy intake along with intra-abdominal and 

subcutaneous fat pad weights and homeostasis model assessment of insulin resistance 

(HOMA-IR) were significantly (P < 0.01) increased in the Ovx group compared to the 

Sham and OvxE2 groups. Rats kept in a sedentary state after surgery showed the higher (P 

< 0.05) values for all of these variables whether they were trained or not before surgery 

(Sed-Sed and Tr-Sed), indicating no protective effect of a previous exercise-trained state. 

On the other hand, training conducted after surgery resulted in a lowering of fat mass and 

HOMA-IR whether rats had been trained or not before surgery (Sed-Tr and Tr-Tr), 

indicating the effectiveness of exercise training even initiated after surgery. These 

responses were independent of surgery. Interestingly, liver triacylglycerol concentrations 

followed a pattern of responses identical to fat mass with the exception that all of the 

responses were observed only in the Ovx group (P < 0.05).  

Conclusion: There is no protective effect of a previous exercise-training state on 

ovariectomy-induced liver and adipocytes fat accumulation if rats remain sedentary after 

ovariectomy. However, training conducted concurrently with estrogen withdrawal has 

protective effects, especially on liver fat accumulation, whether or not rats were previously 

trained. 
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INTRODUCTION 

Cardiovascular disease risk factors, such as lipid profile deterioration, become more 

pronounced after menopause,1 making coronary heart disease a leading cause of death 

among postmenopausal women.2 A large proportion of women after menopause gain 

weight, especially in the abdominal region, resulting in several metabolic 

disturbances.3,4(for a review, see reference 5)  Recent evidence also suggests that 

menopause is associated with the development of a state of hepatic steatosis.6,7  Excessive 

fat accumulation in hepatocytes has been shown to play an important role in the 

development of insulin resistance8 and is even considered as a hepatic component of the 

metabolic syndrome.9,10  The importance of the phenomenon is highlighted by recent data 

suggesting that ectopic fat in liver may be even more important than visceral fat in 

characterization of metabolically benign obesity in humans.11 Liver fat accumulation with 

estrogen withdrawal is also well documented in animals in which ovariectomy leads to 

increased adipose tissue and liver fat accretion.12-15 Considering the consequences of 

ectopic fat accumulation in liver, there is an important need to establish strategies to 

counteract this effect in postmenopausal women. 

Although results from animal and human studies have shown a decrease in body 

weight and abdominal fat accumulation following estrogen replacement,16-18 long-term 

estrogen supplementation in postmenopausal women could increase several health risks, 

such as cancer, and their utilization is still under debate.19,20 Lifestyle modifications (diet 

and physical activity), therefore, constitute an interesting alternative to circumvent 

metabolic problems arising with menopause. Cross-sectional and randomized controlled 

trials studies indicate that physical activity can be an effective intervention to improve body 

fat and/or metabolic risks variables in overweight/obese postmenopausal women.21-23 On 

the other hand, recent reviews6,24 of lifestyle modifications on liver lipid infiltration in 

humans indicate a paucity of specific information on liver lipid infiltration associated with 

menopause. In animals, we recently reported that resistance training prevents liver fat 

accumulation in ovariectomized rats.12,25 There is, however, no information to our 
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knowledge on the effects of an endurance training program on the prevention of liver fat 

accumulation with estrogen withdrawal. 

An interesting question related to exercise and estrogen withdrawal is whether 

women who exercise regularly during their reproductive period are protected against the 

deleterious metabolic effects of menopause. In the only study conducted in women that 

addressed this question, cross-sectional comparisons indicated that there was no difference 

in percent body fat between premenopausal and postmenopausal trained runners.26 There 

are, however, no randomized controlled trial studies on the effects of exercise on body fat 

and abdominal fat throughout menopause that would allow a firm conclusion on whether 

physical activity may prevent or limit the gain of total fat and abdominal fat during 

menopause. In the present study, we addressed this question using an animal model that 

allowed us to test a complete design of trained and untrained animals before and after 

withdrawal of estrogens. 
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METHODS 

Animal care 

Female Sprague-Dawley strain rats weighing 180-200 g (8-week-old) were obtained 

from Charles River (St-Constant, PQ, Canada) and were housed individually. The 12 : 12-h 

light-dark cycle started at 06:00 and the room temperature was maintained at 20-23°C. All 

rats received usual pellet rat chow, referred to as the standard diet (SD; 12.5% fat; 63.2% 

carbohydrate; 24.3% protein; kcal, Agribrands Purina Canada, Woodstock, ON) and had 

free access to tap water. Rats were randomly sequentially assigned to each group (n = 8 

rats/group) that had initial similar mean body mass and were treated similarly in terms of 

daily manipulations. The experiments described in this report were conducted according to 

the directives of the Canadian Council on Animal Care after institutional approval. 

Groups, surgery and post-surgery treatment 

A schematic representation of the experimental design is presented in Figure 1. Rats 

were first submitted to an endurance training (Tr) program, or remained sedentary (Sed) for 

6 weeks. Exercise training consisted of continuous running on a motor-driven rodent 

treadmill (Quinton Instruments, Seattle, WA), 5 times/week. The rats progressively ran 

from 15 min/day at 15 m/min, 0% slope, up to 60 min/day at 26 m/min, 10% slope, for the 

last 4 weeks. At the end of this first 6-week period, two groups (n = 8/group) of Sed and Tr 

animals were sacrificed. All other rats were ovariectomized (Ovx), sham-operated (Sham), 

or Ovx with 17β-estradiol supplementation (OvxE2). 

Ovariectomy was conducted according to the technique described by Robertson et 

al.27 Animals were injected with antibiotics (Tribrissen 24%; 0.125cc/kg, subcutaneously) 

for 3 days, beginning the day before surgery. For surgery, rats were anesthetized with a 

mixture of ketamine-xylazine (61.5-7.6 mg/kg, intraperitoneally). In OvxE2 rats, a small 

17β-estradiol pellet (0.72 mg; 0.012 mg/d) with a biodegradable carrier binder efficient for 

60 days (catalog no. SE-121; Innovative Research of America, Sarasota, FL) was placed 

subcutaneously between the shoulder blades. El-Mas and Abdel-Rahman28 previously 
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showed that this estrogen regimen produces physiological levels of the hormone. A placebo 

60-day pellet containing the binding carrier only was used in all other rats (catalog no. SC-

111).  

One week (7th week) was provided for surgery and recovery in all rats. During this 

time, all rats were only submitted to a habituation running protocol (10-15 min/day) in the 

last 3 days. Thereafter, sedentary rats either remained sedentary (Sed-Sed) or started 

training (Sed-Tr) after surgery and trained rats either stopped (Tr-Sed) or resumed training 

(Tr-Tr) after surgery (Figure 1). Training resumed for rats assigned to training groups the 

next week for 5 more weeks. This second program of training was adjusted to be the same 

for all training rats and to be close to the training program used before surgery. The post-

surgery exercise-trained rats progressively ran from 15 min/day at 15 m/min, 0% slope, up 

to 60 min/day at 26 m/min, 10% slope, for the last 3 weeks. Body weight and food intake 

were monitored every other day. Rats were sacrificed at the end of this second treatment 

(week 12). Exercise animals were sacrificed 48 h after the last exercise bout. 

Blood and tissue sampling 

Rats were sacrificed between 09:00 and 12:00. Remaining food was removed from 

the animal’s cage at least 3 h before sacrifice. Immediately after complete anesthesia 

(pentobarbital sodium; 50mg/kg, intraperitoneally), the abdominal cavity was opened 

following the median line of the abdomen and approximately 4 ml of blood was collected 

from the abdominal vena cava (<45s) into syringes pre-treated with 

ethylenediaminetetraacetic acid (15%; EDTA). Blood was centrifuged (3000 rpm; 4°C; 12 

min; Beckman GPR Centrifuge) and the plasma was kept for further analysis. Several 

organs and tissues were removed and weighed (Mettler AE 100) in the following order: 

liver, uterus, mesenteric, urogenital, retroperitoneal, and subcutaneous fat deposits along 

with four skeletal muscles of the right hind limb (soleus, plantaris, medial gastrocnemius, 

and lateral gastrocnemius). All tissue samples were frozen in liquid nitrogen immediately 

after they were weighed. The liver median lobe was freeze-clamped and used for 

triacylglycerol (TAG) determination. Mesenteric fat pad consisted of adipose tissue 



 

 

 

123

surrounding the gastro-intestinal tract from the gastro-oesophageal sphincter to the end of 

the rectum, with special care taken in distinguishing and removing pancreatic cells. 

Urogenital fat pad included adipose tissue surrounding the kidneys, ureters and bladder as 

well as ovaries, oviducts and uterus. Retroperitoneal fat pad was taken as that distinct 

deposit behind each kidney along the lumbar muscles. For subcutaneous fat deposit 

measurement, a rectangular piece of skin was taken on the right side of each animal, from 

the median line of the abdomen to the spine and the right hip to the first rib as described by 

Krotkiewski and Bjorntorp.29 All rats were visually inspected for presence or not of ovaries, 

and uteri were excised and weighed to confirm ovariectomy or sham surgery. All tissue and 

plasma samples were stored at -78°C until analyses were performed.  

Biochemical analyses 

Plasma insulin concentrations were determined with radioimmunoassay test kit 

distributed by LINCO Research (St. Charles, Missouri, USA). Plasma glucose 

concentrations were determined with the use of a glucose analyzer (Yellow Springs 

Instruments 2300, Yellow Springs, OH). Plasma glucose and insulin values were used to 

calculate a homeostasis model assessment of insulin resistance (HOMA-IR) as follows: 

glucose (mmol/l)  insulin (mIU/L)/22.5.30 Plasma free fatty acid (FFA) and TAG 

concentrations were determined with an enzymatic colorimetric assay available from Roche 

Diagnostics (Mannheim, Germany) and SIGMA (Saint Louis, Missouri, USA), 

respectively. Liver TAG concentrations were estimated from glycerol released after 

ethanolic KOH hydrolysis by using commercial kit from SIGMA (Saint Louis, Missouri, 

USA).  

Statistical analysis 

Values are expressed as means ± standard error. Statistical analyses were performed 

by two-way ANOVA for non-repeated measures design using surgery and training as main 

effects. Fisher’s post hoc test was used in the event of a significant (P < 0.05) F ratio. 

Comparisons between Sed and Tr rats at week 6 were conducted using unpaired t-test. 
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RESULTS 

All Ovx animals showed lower (P<0.01) uterus weight than Sham and OvxE2 rats, 

indicating total ovariectomy (Table 1). Moreover, uterus weight of OvxE2 rats was higher 

(P<0.01) compared to Sham rats, suggesting hyperestrogenic state in OvxE2 animals. The 

6-week pre-surgery training increased (P<0.05) muscle weight compared to the weights in 

the sedentary group. Ovariectomy resulted in higher (P<0.01) muscle weight and plasma 

glucose concentrations compared to Sham and OvxE2 rats (Table 1). Estrogen replacement 

in OvxE2 led to lower plasma glucose concentrations than in Sham rats (P<0.01). There 

was no treatment effect on the sum of weights of the four leg muscles and plasma glucose 

concentrations. 

Body weight (Figure 2a), energy intake (Figure 2b), intra-abdominal and 

subcutaneous fat pad weights (Figure 3), plasma insulin concentrations (Table 1), and 

HOMA-IR values (Figure 4) show a similar pattern of responses to the treatments.  All of 

these parameters were significantly (P<0.01) increased in the Ovx compared to the Sham 

and OvxE2 groups. Body weight and HOMA-IR values were also significantly (P<0.01) 

reduced in OvxE2 compared to Sham rats (Fig. 2a and 4). Endurance exercise training 

conducted after the surgery decreased all of these variables in all groups whether rats have 

been trained or not before the surgery (Tr-Tr and Sed-Tr) (P<0.05). This also implies that 

rats kept sedentary after surgery had the higher values whether they were trained or not 

before surgery (Sed-Sed and Tr-Sed).  

Liver TAG concentrations follow a similar response pattern to fat mass with the 

exception that the responses were seen only in the Ovx group (Figure 5). More specifically, 

Ovx-induced liver fat accumulation was reduced in trained rats independently of whether 

the rats were trained or not before surgery. As a rule, the higher values of liver fat 

accumulation were found if the rats that were kept sedentary after the ovariectomy, whether 

they were trained or not before surgery.  
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The only exceptions to the response patterns observed for all above-mentioned 

variables were plasma TAG and FFA. There were no effects of ovariectomy with and 

without E2 replacement on plasma TAG levels (Table 1). When rats were trained, either 

before or after surgery or both, plasma TAG concentrations show lower (P<0.01) values 

compared to rats continuously maintained in the sedentary state (Sed-Sed). On the other 

hand, the 6-week pre-surgery training decreased the plasma FFA levels (P<0.01) compared 

to the levels in sedentary animals (Table 1, week 6). Opposite to liver TAG, ovariectomy 

resulted in lower (P<0.01) plasma FFA concentrations than in Sham and OvxE2 in all 

treatment groups. Lower (P<0.01) plasma FFA values were found in Sed-Tr condition 

compared to Sed-Sed and Tr-Sed groups. 
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DISCUSSION 

As previously reported13,31,32 body weight, energy intake, adipose tissue mass, and 

muscles weights were higher in Ovx compared to Sham rats. These effects of ovariectomy 

were reversed in E2-supplemented rats. The present results also confirm recent 

observations that ovariectomy leads to liver TAG accretion in rats12-15,33-35 that is prevented 

by E2 treatment.13,35 E2 supplementation in Ovx rats has been reported to counteract the 

effects of estrogens withdrawal by lowering food intake, decreasing lipoprotein lipase 

activity, and increasing adipose tissue lipolysis and energy expenditure.36 Similar to 

estrogen supplementation, the present results indicate that endurance exercise training 

conducted concurrently with the induction of ovariectomy significantly attenuated liver and 

adipocytes fat accumulation. However, an endurance exercise training state acquired before 

ovariectmoy does not provide any protective effects against ovariectmoy-induced fat 

accumulation if exercise is discontinued after the ovariectmoy.  

Training before Ovx 

Results of the present study indicate that there is no protective effect of a previous 

endurance exercise training state on ovariectmoy-induced liver and adipocytes fat 

accumulation in rats. The 6-week pre-surgery training resulted in decreased intra-

abdominal fat and plasma FFA levels and increased muscle weight in comparison to 

animals kept sedentary, indicating that this endurance exercise training program was 

successful. In spite of this, fat accumulation in liver and adipocytes 6 weeks after 

ovariectmoy was increased to a similar extent in rats kept sedentary, whether they were 

trained or not before surgery (Sed-Sed vs Tr-Sed). The increased food intake observed in 

the Tr-Sed group to the level of the Sed-Sed group may have contributed to the higher fat 

accretion. Linked to this observation, it is important to consider that, in addition to the 

estrogen withdrawal, rats in the Tr-Sed group were also submitted to an exercise training 

cessation stimulus. Regular exercise has been reported to lower body weight and adiposity 

level in rats.37 This has been shown to predispose to a rapid weight and fat regain upon 

cessation of a regular exercise training program.38 Increased lipid storage after cessation of 
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exercise training has been attributed to multiple factors including increased tissue 

sensitivity to insulin, increased lipoprotein lipase activity, and reduced resting and exercise-

induced energy expenditure.39-42 In a previous study38 it was found that endurance exercise 

training had no protective effect on fat accumulation following the initiation of a high-fat 

diet upon training cessation. Similar to these findings, the present study indicates that 

exercise training has no protective effect on fat accumulation following estrogens 

withdrawal upon training cessation. The only exception is the plasma TAG levels, which 

seem to be protected by a previous training state. Indeed, plasma TAG levels were lower in 

Tr-Sed than in Sed-Sed animals.  

Training after Ovx   

Training did have a significant metabolic impact when conducted concurrently with 

the induction of estrogens withdrawal. This first confirms what has been observed in 

previous animal studies,12,25 that exercise training is a lifestyle modification that has an 

important metabolic impact to circumvent the deleterious effects of estrogen withdrawal. 

The present study adds to these reports by specifying that training must be pursued 

concurrently to the ovariectmoy to be effective. Although concurrent exercise training had 

a significant impact on fat mass in Ovx animals, it is important to consider that the effects 

of training on body weight, energy intake, fat mass, and HOMA-IR were not limited to the 

Ovx animals since Sham and OvxE2 rats also benefited from these adaptations if training 

was pursued between weeks 7 and 12. This suggests that training offers a protection against 

fat accumulation not only against estrogens withdrawal but also against fat accumulation in 

Sham and OvxE2 animals. In addition, endurance training initiated before the period of 

observation (weeks 0 to 6) did not seem to offer any supplementary protection since there 

were no significant differences between rats in Sed-Tr and Tr-Tr groups. However, the fact 

that rats had to stop training after surgery and slowly resumed training thereafter may 

explain the absence of additive effects of training in the Tr-Tr compared to the Sed-Tr rats. 

The present study was not aimed at studying the underlying mechanisms involved in the 

protective effect of endurance exercise training on fat accumulation in Ovx animals. 
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However, based on the present data, it is clear that the mechanisms involved in the training 

effects (i.e. increased energy expenditure) must be maintained to be effective.  

The special case of liver fat accumulation with Ovx 

One of the tissues that is particularly affected by fat accumulation in Ovx animals12-

15 as well as in postmenopausal women6,7 is the liver. In the present study, the fact that liver 

fat accumulation was the only measured parameter in which the training and detraining 

status affected only the Ovx animals (not the Sham and OvxE2 groups), is of particular 

interest. Molecular and physiological results from recent studies conducted by our group 

indicated that liver lipid infiltration in Ovx animals may be related to reduced hepatic lipid 

oxidation and increased lipogenesis.35,43 Results from these studies provided some support 

to the concept that estrogens act intrahepatically as a protective tool against liver lipid 

infiltration. Subsequently, we observed that lipid accumulation in liver following estrogen 

deprivation is hardly reversible by diet changes in this hormonal context, thus supporting 

the concept that fat accumulation in liver of Ovx animals is not only linked to increased 

energy intake.34 In this context, it is particularly interesting to observe that training 

conducted concurrently with ovariectmoy largely reduced liver fat accumulation. This 

suggests that endurance exercise training could induce metabolic adaptations in liver 

similar to estrogen. Since liver fat accumulation has been shown to play an important role 

in the development of insulin resistance,8 the present data support the importance of 

endurance exercise training to prevent liver lipid infiltration in postmenopausal women.  

Metabolic consequences of fat accumulation in Ovx rats 

To get an insight into the possibility that exercise training may overcome the 

metabolic consequences of fat accumulation in Ovx rats, we calculated the HOMA-IR as an 

index of insulin sensitivity. As previously observed,12 ovariectomy was associated with a 

deterioration of insulin sensitivity. Although insulin sensitivity in the present context 

should be measured with more sophisticated techniques, it is revealing that training 

conducted concurrently with the induction of ovariectmoy resulted in the same pattern of 

positive effects as those observed for liver and adipocytes fat accumulation. This 
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observation is a further indication that training conducted concurrently with estrogen 

withdrawal is an asset not only to reduce liver and adipocytes fat accumulation, but also to 

attenuate the metabolic consequences associated with it. 

In conclusion, results of the present study indicate that training has a significant 

impact on reducing fat accumulation in liver and adipocytes, as well as increasing insulin 

sensitivity based on HOMA-IR index, in Ovx rats if conducted concurrently with the 

initiation of the estrogen withdrawal. In addition, training conducted before the 

ovariectmoy does not provide any protection against the metabolic deleterious effects of 

ovariectmoy if endurance exercise training is not pursued after ovariectmoy. From a 

clinical point of view, these observations suggest that sedentary women who undertake an 

endurance exercise training program during the menopause transition will benefit from it 

even though they have not been training before. Although further clinical randomized 

studies in women are warranted, the present results also emphasize the recommendation 

that trained women should keep on training after menopause. 
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Table 1. Uterus weight, sum of weights of four leg muscles and plasma glucose, insulin, 

triacyglycerol (TAG), free fatty acid (FFA) concentrations in sedentary (Sed) and training 

(Tr) rats for 6 weeks before surgery and subsequently divided into groups of sham-operated 

(Sham) and ovariectomized rats without (Ovx), and with 17β-estradiol replacement 

(OvxE2) evaluated 6 weeks after surgery (total 12 weeks). Pre-surgery sedentary rats either 

remained sedentary (Sed-Sed) or started training (Sed-Tr) after surgery while pre-surgery 

trained rats either stopped (Tr-Sed) or kept on training (Tr-Tr) after surgery. Values are 

mean ± standard errors; n = 8 rats/group  
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a, Significantly different from Tr group, P < 0.05, aa, P < 0.01; b, surgery effect: 

significantly different from Sham and OvxE2 groups, P < 0.05; c, surgery effect: 

significantly different from Sham group, P < 0.05; d, treatment effect: significantly 

different from Sed-Sed groups, P < 0.05, dd, P < 0.01; e, treatment effect: significantly 

different from Tr-Sed groups, P < 0.05, ee, P < 0.01 
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LEGENDS 

 

Figure 1. Schematic representation of the experimental design. The tip of the arrow 

indicates the time of sacrifice. Sham, sham-operated; Ovx, ovariectomized; OvxE2, 

ovariectomized þ 17β-estradiol replacement. Pre-surgery sedentary (Sed) rats either 

remained sedentary (Sed-Sed) or started training (Sed-Tr) after surgery while pre-surgery 

training (Tr) rats either stopped (Tr-Sed) or kept on training (Tr-Tr) after surgery (n = 8 

rats/group) 

 

Figure 2. Final body weight (a) and daily energy intake (b) in sedentary (Sed) and 

training (Tr) rats for 6 weeks before surgery and subsequently divided into groups of sham-

operated (Sham) and ovariectomized rats without (Ovx) and with 17 β-estradiol 

replacement (OvxE2) evaluated 6 weeks after surgery (total 12 weeks). Pre-surgery Sed 

rats either remained sedentary (Sed-Sed) or started training (Sed-Tr) after surgery while 

pre-surgery Tr rats either stopped (Tr-Sed) or kept on training (Tr-Tr) after surgery. Values 

are mean ± standard error, n = 8 rats/group. *, Surgery effect: significantly different from 

Sham and OvxE2 groups, P < 0.01; #, surgery effect: significantly different from Sham 

group, P < 0.01; ++, treatment effect: significantly different from Sed-Sed groups, P < 

0.01; §§, treatment effect: significantly different from Tr-Sed groups, P < 0.01 

 

Figure 3. Sum of the weights of three intra-abdominal fat pads (a) and 

subcutaneous fat pad weight (b) in sedentary (Sed) and training (Tr) rats for 6 weeks before 

surgery and subsequently divided into groups of sham-operated (Sham) and ovariectomized 

rats without (Ovx) and with 17β-estradiol replacement (OvxE2) evaluated 6 weeks after 

surgery (total 12 weeks). Pre-surgery Sed rats either remained sedentary (Sed-Sed) or 

started training (Sed-Tr) after surgery while pre-surgery Tr rats either stopped (Tr-Sed) or 

kept on training (Tr-Tr) after surgery. Values are mean ± standard error, n = 8 rats/group. a, 
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Significantly different from Tr group, P < 0.05; * surgery effect: significantly different 

from Sham and OvxE2 groups, P < 0.01; ++, treatment effect: significantly different from 

Sed-Sed groups, P < 0.01; §§; treatment effect: significantly different from Tr-Sed groups, 

P < 0.01 

 

Figure 4. HOMA-IR values in sedentary (Sed) and training (Tr) rats for 6 weeks 

before surgery and subsequently divided into groups of sham-operated (Sham) and 

ovariectomized rats without (Ovx) and with 17β-estradiol replacement (OvxE2) evaluated 6 

weeks after surgery (total 12 weeks). Pre-surgery Sed rats either remained sedentary (Sed-

Sed) or started training (Sed-Tr) after surgery while pre-surgery Tr rats either stopped (Tr-

Sed) or kept on training (Tr-Tr) after surgery. Values are mean ± standard error, n = 8 

rats/group. *, Surgery effect: significantly different from Sham and OvxE2 groups, P < 

0.01; #, surgery effect: significantly different from Sham group, P < 0.01; +, treatment 

effect: significantly different from Sed-Sed groups, P < 0.05, ++ P < 0.01; §§, treatment 

effect: significantly different from Tr-Sed groups, P < 0.01. HOMA-IR, homeostatic model 

assessment of insulin resistance [glucose (mmol/l) x insulin (mIU/l)/22.5], (3-h fasted state) 

 

Figure 5. Liver triacylglycerol (TAG) concentrations in sedentary (Sed) and 

training (Tr) rats for 6 weeks before surgery and subsequently divided into groups of sham-

operated (Sham) and ovariectomized rats without (Ovx) and with 17β-estradiol replacement 

(OvxE2) evaluated 6 weeks after surgery (total 12 weeks). Pre-surgery Sed rats either 

remained sedentary (Sed-Sed) or started training (Sed-Tr) after surgery while pre-surgery 

Tr rats either stopped (Tr-Sed) or kept on training (Tr-Tr) after surgery. Values are mean ± 

standard error, n = 8 rats/group. *, Surgery effect; significantly different from Sham and 

OvxE2 groups, P < 0.01; +, treatment effect: significantly different from Sed-Sed groups, P 

< 0.05; §, treatment effect: significantly different from Tr-Sed groups, P < 0.05 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5.  
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Abstract 

Objective: We hypothesized that the reduction in liver fat accumulation known to 

occur with exercise training in ovariectomized rats is associated with reduced expression of 

genes involved in lipogenesis while favoring the expression of transcription factors 

regulating lipid oxidation. We also tested the hypothesis that liver fat accumulation in Ovx 

rats is associated with an increased gene expression of several pro-inflammatory markers 

and that exercise training would attenuate this response.  

Methods: Sprague-Dawley female rats (14 wk of age) were randomly divided into 

four groups of sedentary sham-operated (Sham), ovariectomized (Ovx), and Ovx with 17β-

estradiol supplementation (OvxE2), and one group of endurance exercise trained Ovx 

(OvxTr). Endurance exercise training consisted of continuous running on a motor-driven 

rodent treadmill 5 times/wk for 5 wk.  

Results: Fat accumulation in liver as well as in adipose fat depots was higher (P < 

0.01) in Ovx than in Sham rats. This response was prevented in OvxE2 and OvxTr animals. 

Liver gene expressions of sterol regulatory element-binding protein 1-c (SREBP-1c), 

stearoyl coenzyme A desaturase 1 (SCD-1), carbohydrate response element binding protein 

(ChREBP), and acetyl-CoA carboxylase (ACC) were increased with estrogens withdrawal 

(P < 0.01). These responses were corrected with E2 supplementation alone as well as with 

training alone. Conversely, hepatic peroxisome proliferator-activated receptor α (PPAR-α) 

mRNA levels were lower (P<0.01) after estrogen removal compared to Sham rats. The 

lower hepatic PPAR-α mRNA levels in Ovx rats were re-increased by E2 replacement or 

by exercise training. Gene expression of pro-inflammatory cytokines including inhibitor-

kappaB kinase β (IKKβ) and interleukin-6 (IL-6) as well as protein content of nuclear 

factor-kappa B (NF-кB) was higher (P < 0.01) in Ovx than in Sham animals. As for the 

metabolic markers, E2 supplementation or exercise training prevented the expression of the 

pro-inflammatory markers.  
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Conclusion: It is concluded that exercise training, similarly to estrogens reduces fat 

accumulation in liver of Ovx rats possibly through regulation of key molecules involved in 

lipogenesis and lipid oxidation. Exercise training also acts as estrogens in properly 

regulating the expression of inflammatory bio-markers in liver of Ovx rats. 

 

Key words: Physical activity, Fatty liver, Estrogens, Lipogenesis, Lipid oxidation, 

hepatic inflammation, Menopause.  
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Introduction 

Menopause is associated with the development of a state of hepatic steatosis (1, 2). 

The importance of this phenomenon is enlightened by the fact that excessive fat 

accumulation in liver plays an important role in the development of insulin resistance (3). 

Recent findings even indicate that ectopic fat in liver may be more important than visceral 

fat in characterization of metabolically benign obesity in humans (4, 5). Hepatic and 

adipocytes fat accumulation is also well documented in animal models of menopause (6-9). 

Ovariectomized (Ovx) rats as well as aromatase receptor knockout mice exhibit hepatic fat 

accumulation that seems to be triggered by changes in expression of genes that increase 

lipid synthesis and reduce lipid oxidation in liver (10, 11). There is also recent 

physiological evidence that fatty acid oxidation is reduced in liver of Ovx rats (12). An 

alternative to counteract liver fat accumulation with estrogen withdrawal might be exercise 

training. It was reported that exercise training prevents fat accumulation in liver of high-fat 

fed rats (13, 14). Specifically in Ovx rats, there is some evidence that resistance training in 

conjunction with food restriction reduces liver fat accumulation (15, 16). Recently, we 

reported that endurance exercise training when conducted concurrently with estrogen 

withdrawal prevented liver fat accumulation in Ovx rats (17). These studies, however, did 

not provide any mechanistic information on the action of exercise training in preventing 

liver fat accumulation in Ovx animals. The first aim of the present study was to test the 

hypothesis that exercise training reduces the expression of key molecules involved in lipid 

synthesis while favoring the expression of molecules involved in fat oxidation. 

In recent years, it has become clear that metabolic disturbances related to fat 

accumulation in adipocytes and ectopic tissues, such as liver, are associated with sub-

clinical inflammation (18, 19). For instance, Cai et al. showed that inflammatory gene 

expression increases in liver of both transgenic and high-fat fed mice with increasing 

adiposity (20). Regardless of the causes, the nuclear factor-kappa B (NF-кB) is activated in 

hepatocytes and pro-inflammatory cytokines including tumor necrosis factor α (TNF-α) and 

interleukin 6 (IL-6) are overproduced in fatty liver (21). As such, it is relevant to 
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investigate if liver lipid accumulation resulting from estrogens deficit in Ovx rats leads to 

sub-acute hepatic inflammation and if it is so, whether exercise training attenuates this 

response as it does for fat accumulation. Consequently, the second objective of the present 

study was to investigate the effects of ovariectomy and exercise training on gene expression 

of inflammatory bio-markers in the liver. 
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Methods 

Animal care. Female Sprague-Dawley strain rats (Charles River, St-Constant, PQ, 

Canada), weighing 180-200g upon their arrival were housed individually and had ad 

libitum access to food and tap water. All rats received usual pellet rat chow, referred to as 

the standard diet (SD; 12.5% fat; 63.2% carbohydrate; 24.3% protein; kcal, Agribrands 

Purina Canada, Woodstock, ON). Their environment was controlled in terms of light 

(12:12-h light-dark cycle starting at 6:00 AM), humidity and room temperature (20-23°C). 

The experiments described in this report were conducted according to the directives of the 

Canadian Council on Animal Care after institutional approval. 

Groups. 6 weeks after their arrival to our laboratory, rats were randomly divided 

into sedentary sham-operated (Sham), sedentary ovariectomized (Ovx), sedentary Ovx with 

17β-estradiol supplementation (OvxE2), and Ovx rats that underwent endurance exercise 

training (OvxTr) groups (n = 6-8 rats / group). Body weight and food intake were 

monitored three times per week. All animals were sacrificed 6 weeks after the surgical 

manipulations. 

Surgery. Ovariectomy surgery was conducted according to the technique described 

by Robertson et al. (22). Animals were injected with antibiotics (Tribrissen 24%; 

0.125cc/kg, SC) for three days, beginning the day before surgery. For surgery, rats were 

anesthetized with a mixture of ketamine-xylazine (61.5-7.6 mg/kg, IP). In OvxE2 rats, a 

small 17β-estradiol pellet (0.72 mg; 0.012 mg/d) with a biodegradable carrier binder 

efficient for 60 days (catalog no. SE-121; Innovative Research of America, Sarasota, FL) 

was placed SC between the shoulder blades. El-Mas and Abdel-Rahman previously showed 

that this estrogen regimen produces physiological levels of the hormone (23). A placebo 

60-day pellet containing the binding carrier only was used in all other rats (catalog no. SC-

111). 

Exercise protocol. One week (7th wk) was provided for surgery and recovery in all 

rats. During this time, all animals were submitted to a habituation running protocol (10-15 
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min/day) in the last 3 days of the week. Exercise training (Tr) consisted of continuous 

running on a motor-driven rodent treadmill (Quinton Instruments, Seattle, WA), 5 times per 

week for the duration of the experiment (5 weeks after recovery). OvxTr rats progressively 

ran from 15 min/day at 15 m/min, 0% slope, up to 60 min/day at 26 m/min, 10% slope for 

the last 3 wk. All Tr animals were restrained from training 48 h before sacrifice. 

Blood and tissue sampling. Rats were sacrificed between 09:00 and 12:00 AM. 

Food was removed from the animal’s cage at least 3 h before sacrifice. Immediately after 

complete anesthesia (pentobarbital sodium; 50mg/kg, IP), the abdominal cavity was opened 

following the median line of the abdomen and approximately 4 mL of blood was collected 

from the abdominal vena cava (<45s) into syringes pre-treated with 

ethylenediaminetetraacetic acid (15%; EDTA). Blood was centrifuged (3000 rpm; 4°C; 12 

min; Beckman GPR Centrifuge) and the plasma was kept for further analysis. The liver was 

excised and the median lobe was immediately snap-frozen and was used for triacylglycerol 

(TAG) determination, mRNA extraction and quantification, and Western blotting. The 

uterus, mesenteric and retroperitoneal fat pads along with 4 skeletal muscles of the right 

hind limb (soleus, plantaris, medial gastrocnemius, and lateral gastrocnemius) were, 

thereafter, rapidly excised and weighed. All tissue and plasma samples were stored at -78° 

C until analyses were performed. Finally, the right femur wet weight was obtained 

following a short boiling period in a 10% KOH solution in order to remove the surrounding 

tissue. 

Biochemical analyses. Plasma insulin and leptin concentrations were determined 

with radioimmunoassay test kit distributed by LINCO Research (St. Charles, Missouri, 

USA). Plasma glucose concentrations were determined with the use of a glucose analyzer 

(Yellow Springs Instruments 2300, Yellow Springs, OH). Plasma glucose and insulin 

values were used to calculate a homeostasis model assessment of insulin resistance 

(HOMA-IR) as follows: glucose (mmol/l)  insulin (mIU/L)/22.5 (24). Plasma CRP 

concentrations were measured with Synchron LX Systems (Beckman Coulter) using Alpco 

Diagnostics kit (cat. no 41-CRPRT-E01). Liver TAG concentrations were estimated from 
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glycerol released after ethanolic KOH hydrolysis by using commercial kit from SIGMA 

(Saint Louis, Missouri, USA).  

Isolation of RNA and quantitative real-time (RT) polymerase chain reaction 

(PCR): RNA extraction and cDNA preparation. Quick-frozen tissue samples of the liver 

were powdered with cold mortar and pestle, and approximately 100 mg was used for the 

isolation of RNA. Total RNA was extracted by the guanidine thiocyanate method and 

mRNA purified using PureLink RNA Mini Kit (Invitrogen) according to the 

manufacturer’s instruction.  Total RNA were reverse transcribed in a final volume of 100 

μL using the High Capacity cDNA Reverse Transcription Kit with random primers 

(Applied Biosystems, Foster City, CA) as described by the manufacturer. Reverse 

transcribed samples were stored at -20°C. A reference RNA (Human reference total RNA, 

Stratagene, Ca) was also transcribed in cDNA. 

qPCR Reactions- ABI Gene Expression Assay – Endogenous controls. Gene 

expression level was determined using primer and probe sets from Applied Biosystems 

(ABI Gene Expression Assays, http://www.appliedbiosystems.com). PCR reactions for 384 

well plate formats were performed using 2 µl of cDNA samples (20-50 ng), 5 µl of the 

Express qPCR SuperMix (Invitrogen), 0.5 µl of the TaqMan® Gene Expression Assays 

(20X) and 2.5 µl of water in a total volume of 10 µl. The following pre-developed 

TaqMan® assays were used as endogenous control: GAPDH (glyceraldehyde-3-phosphate 

dehydrogenase). 

TaqMan reactions using Universal Probe Library. Gene expression level was also 

determined using primer and probe sets from Universal ProbeLibrary from Roche, a fast, 

specific and flexible format for quantitative real-time PCR (https://www.roche-applied-

science.com/sis/rtpcr/upl/index.jsp). PCR reactions for 384 well plate formats were 

performed using 2 µl of cDNA samples (50 ng), 5 µl of the Express qPCR SuperMix 

(Invitrogen), 2 µM of each primer and 1 µM of the Universal TaqMan probe in a total 

volume of 10 µl. The primer sets served to generate amplicons are presented in Table 1.  
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Detection and analysis. The ABI PRISM® 7900HT Sequence Detection System 

(Applied Biosystems) was used to detect the amplification level and was programmed 

FAST with an initial step of 3 min at 95˚C, followed by 45 cycles of 5 seconds at 95˚C and 

30 seconds at 60˚C. All reactions were run in triplicate and the average values were used 

for quantification. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used as 

endogenous control. The relative quantification of target genes was determined using the 

CT method. Briefly, the Ct (threshold cycle) values of target genes were normalized to 

an endogenous control gene (GAPDH) ( CT = Ct target – Ct GAPDH) and compared with a 

calibrator: CT = Ct Sample - Ct Calibrator. Relative expression (RQ) was calculated 

using the Sequence Detection System (SDS) 2.2.2 software (Applied Biosystems): RQ = 2-

CT.  

Western blot analysis. 100 mg of liver was homogenized in TPER containing 

protease inhibitors (10 μl/ml pepstatin, and 1 mM phenylmethanesulfonyl fluoride and 

100U Trasylol) using a polytron and centrifuged at 12000g, 4°C for 10 min. The infranatant 

was collected with a blunt-tipped Pasteur pipette and stored at −80°C until protein 

determination. SCD-1 and NFκB contents in the liver were determined by Western blotting. 

All samples (10μg of proteins) were separated on a SDS-polyacrylamide gel and electro-

transferred onto Hybond-Cextra nitrocellulose membranes (Amersham). Membranes were 

blocked overnight in Tris-buffered saline containing 0.05% Tween 20 (TBST 0.05%) and 

5% nonfat dry milk at 4°C. The blot was then incubated with specific primary antibodies: 

SCD-1 (kindly provided by Dr. J. Ozols, University of Connecticut Health Center, Storrs, 

CT) and NFκB p65 (sc-109, Santa Cruz Biotechnology, Santa Cruz, CA) overnight at 4°C. 

After two washes in TBST (0.05%) and two washes in TBST (0.05%) containing 0.5% 

nonfat dry milk, the membrane was incubated for 30 min with a horseradish peroxidase-

conjugated anti-rabbit/anti-mouse IgG (Bm chemiluminescence Western Blotting Kit, cat. 

no. 11520709001, Roche Diagnostics) at room temperature. Then the membrane was 

washed four times for 20 min each time in TBST (0.05%) before a chemiluminescence 

substrate (cat. no. 11520709001, Roche Diagnostics) was applied to the membrane. The 

resulting signal was detected on scientific imaging films (Amersham). Densitometric 
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measurement of the bands was performed using Image J software and expressed as 

arbitrary units. Equal protein loading was determined using mouse anti-β-actin primary 

antibodies (Sigma, Saint Louis, Missouri, USA). 

Statistical analysis. Values are expressed as mean ± S.E. Statistical analyses were 

performed using one-way ANOVA for non-repeated measures. Fisher’s PLSD post-hoc test 

was used in the event of a significant (P < 0.05) F ratio.  
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Results 

Ovariectomy in rats, as compared to Sham operation resulted in higher body weight 

(P<0.05), daily energy intake, mesenteric and retroperitoneal fat depots weights (P<0.01) 

as well as higher plasma concentrations of insulin (P=0.059), glucose, leptin, and HOMA-

IR index (P < 0.01; Table 2). Furthermore, Ovx resulted in lower femur (14%; P<0.05) and 

uterus weight (80%; P<0.01) indicating physiological effects of ovariectomy. As a rule, 

almost all changes induced by ovariectomy were prevented either by 17β-estradiol 

supplementation or endurance exercise training (Table 2). The exceptions were uterus 

weight and an increase in plasma glucose concentrations in OvxTr rats. On the other hand, 

the higher uterus weight (29%; P<0.01) in OvxE2 compared with Sham rats suggests that 

17β-estradiol supplementation was slightly supraphysiological. There was no significant 

difference between Sham and Ovx rats in relative muscle weight (Table 2). However, 

exercise training and 17β-estradiol supplementation in Ovx rats increased leg muscles 

weight (P<0.01). 

Liver TAG levels were 71% higher (25.1±2.7 vs 14.6±1 mg/g; P<0.01) in Ovx than 

in Sham rats (Fig. 1A).  The ovx-induced hepatic fat accumulation was prevented either by 

17 β-estradiol replacement or exercise training. Quantitative real-time polymerase chain 

reaction (RT-PCR) analysis showed higher (P<0.01) gene expression of hepatic lipogenic 

transcription factors sterol regulatory element-binding protein 1-c (SREBP-1c) (57%; Fig. 

1B), stearoyl coenzyme A desaturase 1 (SCD-1) (87%; Fig. 2A), and carbohydrate response 

element binding protein (ChREBP) (63%; Fig. 2C), as well as acetyl-CoA carboxylase 

(ACC)  (68%; Fig. 2D) mRNA levels in Ovx than in Sham rats. Protein quantification by 

Western blot analysis confirmed results obtained by RT-PCR for SCD-1. We found greater 

SCD-1 (40%; P<0.01; Fig. 2B) protein abundance in the liver of Ovx rats. These Ovx-

induced higher lipogenic gene expressions and protein content were totally prevented either 

by E2 replacement or by endurance training. Conversely, the hepatic oxidative transcription 

factor peroxisome proliferator-activated receptor α (PPAR-α) mRNA was lower (31%; 

P<0.01) in Ovx than in Sham rats while hepatic peroxisome proliferator-activated receptor-
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γ coactivator 1α (PGC-1α) mRNA showed the same trend, although the differences did not 

reach significant statistical levels (Fig. 3). Again, lower PPAR-α mRNA levels were re-

established in OvxE2 animals and Ovx trained rats. 

To get an insight into how estrogen withdrawal and endurance exercise training 

affect the hepatic inflammatory response, we measured gene expression of several 

inflammatory markers in liver. Ovx, as compared to Sham rats, resulted in higher (P<0.01) 

hepatic pro-inflammatory IL-6 (37%) and inhibitor of kappa B kinase beta (IKKB) (35%) 

mRNA expressions (Fig. 4). Moreover, we found higher NF-кB (51%; P<0.01; Fig. 4C) 

protein level in liver of Ovx rats than in Sham control. Likewise the metabolic markers, 

Ovx-induced changes of inflammatory markers were totally prevented with estrogen 

replacement as well as with endurance training. TNF-α and interleukin 10 (IL-10) mRNA 

were not significantly changed by the ovariectomy (Fig. 5). Nevertheless, TNF-α gene 

expression was significantly (P<0.05) lower in OvxE2 and OvxTr rats compared to Ovx 

animals. Interestingly, the ratio IL-10/TNF-α was higher (P<0.05) in OvxE2 and OvxTr 

animals compared to Ovx group indicating better inflammatory status under these 

physiological conditions (E2 supplementation and exercise training) (Fig. 5).  

Opposite to the other inflammatory markers, we found that plasma C reactive 

protein (CRP) level as well as hepatic CRP mRNA expression were significantly lower 

(P<0.01) in Ovx rats than in Sham animals (Fig. 6).  These responses were re-increased 

when E2 replacement was provided. On the other hand plasma CRP remained decreased in 

OvxTr and hepatic CRP mRNA level in this group was midway between Ovx and OvxE2 

groups at the Sham group’s level.  
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Discussion 

The present observation that liver TAG content was 71% higher in Ovx than in 

Sham rats is consistent with previous findings showing that estrogen withdrawal results in a 

state of hepatic steatosis (7, 9, 25). We also confirmed previous reports that 17β-estradiol 

supplementation as well as endurance exercise training prevents the accretion of lipids in 

the liver of Ovx rats (10, 12, 17). This indicates that endurance exercise training has an 

important estrogenic-like effect on the prevention of hepatic steatosis in Ovx animals. It is 

important to recall that pair-feeding in Ovx rats does not completely prevent fat 

accumulation in liver ((26) and unpublished data from our lab). Consequently, Ovx-induced 

hepatic fat accumulation cannot be totally attributed to the increased food intake. To shed 

some light on possible mechanisms involved in the metabolic action of exercise training in 

liver of Ovx rats, we analyzed the expression of influential genes that regulate hepatic fat 

accumulation.  

Kinetic studies in human subjects indicate that ~26% of hepatic TAG accumulation 

can be accounted for by de novo lipogenesis (27). Therefore, it has been assumed that the 

enhancement of de novo lipid synthesis is a primary disorder in hepatic steatosis which is 

tightly stimulated by lipogenic molecules such as the transcription factor SREBP-1c and 

the ACC downstream enzyme (28). Similarly, SCD-1 is an enzyme that represents a pivotal 

control point in lipid homeostasis by catalyzing a rate-limiting step in the biosynthesis of 

monounsaturated fats, which are required for TAG synthesis (29, 30). On the other hand, 

the transcription factor ChREBP also plays an essential role in the regulation of gene 

expression of enzymes (i.e. ACC and fatty acid synthase (FAS)) involved in lipogenesis 

derived from glucose metabolism (31). Recently, it was reported that ovariectomy 

increased SREBP-1c and SCD-1 gene expressions (10). The present results complement 

these previous findings by showing that the gene expression of transcription factor 

ChREBP and the important downstream ACC enzyme are also elevated in Ovx rats. The 

main contribution of the present study, however, is the original finding that endurance 

exercise training, similarly to E2 supplementation, counteracted these hepatic molecular 
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disturbances by cancelling the increase in SREBP-1c, SCD-1, ChREBP, and ACC 

transcripts in Ovx rats. This effect was confirmed at the protein level for SCD-1. These 

molecular responses strongly suggest that endurance training depressed lipogenesis in liver 

of Ovx rats, thus constituting a possible mechanism that contributes to the decrease in liver 

fat accumulation. 

In addition to increased lipogenesis, recent data indicate that fatty acid oxidation is 

reduced in the liver of estrogen-deficient animals (10-12). The present decrease in gene 

expression of PPAR-α in liver of Ovx rats, which is re-increased in OvxE2 animals, is in 

agreement with this finding. PPAR-α is the key transcriptional regulator of peroxisomal, 

mitochondrial, and microsomal fatty acid oxidation systems in the liver (32, 33). Although 

less pronounced, PPAR-α transcript was also higher in OvxTr than in Ovx rats. This 

suggests that in addition to suppression of higher rates of liver lipogenesis, a re-increase in 

lipid oxidation in exercise trained Ovx rats, may also contribute to the prevention of liver 

lipid accumulation in Ovx rats. 

The fact that exercise training acts similarly as estrogen supplementation in 

changing gene expression of key molecules involved in fat metabolism in the liver of Ovx 

rats raises the question if both of these actions take place through a similar pathway. The 

molecular and biological mechanisms underlying the metabolic actions of estrogen in liver 

are weakly understood. Estrogen (E2) is a steroid hormone whose actions are 

predominantly mediated by genomic mechanisms of E2 action through its nuclear receptors 

(ER) α or β (34). E2 has also been shown to have rapid non-genomic biological actions 

through membrane bound subpopulations of ER (35-37). D`Eon et al. recently reported that 

E2 treatment decreases gene expression of SREBP-1c and its target genes FAS and ACC in 

liver (38). It is possible that E2 directly regulates SREBP-1c which contains an estrogen 

response element (ERE) in its promoter region (39). On the other hand, D`Eon et al. 

showed that E2 rapidly activates AMP-activated protein kinase (AMPK) in skeletal muscle 

(38). Since SREBP-1c expression is down-regulated by AMPK (40), they suggested that 

the decreased expression of SREBP-1c in muscle reflects AMPK activation by non-
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genomic action of E2 (38). Because physical exercise has been reported to activate AMPK 

in liver (41), it is thus possible that the decreased expression of SREBP-1c and its 

downstream targets (SCD-1 and ACC) by exercise training may be mediated through the 

AMPK pathway. Important increases in hepatic ERα mRNA levels have also been found in 

endurance-trained rats (42). Although further work is needed to clarify the precise 

mechanism, the present data support the contention that both E2 and exercise training act 

on hepatic expression of the same target genes to reduce de novo lipogenesis while favoring 

fat oxidation.  

An additional support to the interpretation that exercise training acts similarly as 

estrogen supplementation is the finding that exercise training had similar effects as E2 

supplementation in reducing peripheral fat accumulation and plasma leptin levels, as well 

as peripheral insulin resistance (as measured from HOMA-IR index) in the present Ovx 

rats. These results are in line with the recent report of Saengsirisuwan et al. who showed 

Ovx-induced features of the insulin resistance syndrome are largely attenuated by 

endurance exercise training alone and estrogen replacement alone (43). On the whole, the 

present results suggest that exercise training in Ovx rats acts similarly as estrogen 

supplementation in regulating not only liver fat but also peripheral fat accumulation and its 

metabolic consequence, the insulin resistance.  

The second objective of the present study was to investigate if gene expressions of 

some important inflammatory biomarkers were increased in liver of Ovx rats and the 

impact of exercise training on this response. Regardless if the cause is the liver fat 

accumulation or the pro-inflammatory substances in the portal circulation; pro-

inflammatory cytokines such as IL-6 and TNF-α are overproduced in fatty liver (21). Two 

main signaling pathways have been linked to inflammation associated with obesity: the NF-

κB pathway, activated by IKKB; and the c-Jun NH2-terminal kinase (JNK) pathway (44). 

In recent years, it was found that the NF-κB and IKKB signaling pathway activated by pro-

inflammatory cytokines is a key modulator of inflammation and insulin resistance (45). Cai 

et al. (20) demonstrated that lipid accumulation in liver (induced either by high-fat diet or 
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by transgenic expression of IKKB in mice) leads to sub-acute hepatic inflammation and 

downstream cytokine production, IL-6 showing the strongest evidence of pathological 

involvement. In the present study, mRNA levels of IL-6 and IKKB as well as protein 

content of NF-κB increased in liver of Ovx rats. E2 replacement neutralized these elevated 

gene expressions indicating that estrogens contribute to maintenance of low expression 

level of these inflammatory biomarkers in the liver. This is in line with results of Kireev et 

al. (46) and Hamilton et al. (47) who reported an increase in IL-6 and TNF-α gene 

expression in liver and heart of Ovx rats, respectively, that was corrected by 17β-estradiol 

replacement. To our knowledge, the present study is the first to report that endurance 

exercise training acts like estrogens in neutralizing increased gene expression of IL-6, 

IKKB, and NF-κB in liver of Ovx rats.  Although this effect of exercise training in liver 

might be solely linked to the reduction of fat accumulation, it is important to recall that 

physical activity mediates anti-inflammatory effects in skeletal muscle and fat tissue (18). 

Regular exercise protects against diseases associated with chronic low-grade systemic 

inflammation and the long-term effect of exercise training may be ascribed to the anti-

inflammatory response elicited by an acute bout of exercise (48).  

TNF-α plays a central role in initiating and sustaining inflammation (49), while IL-

10 demonstrates potent anti-inflammatory properties through inhibiting the production of 

various pro-inflammatory cytokines including IL-6 and TNF-α  (50). In fact, Kaur et al. 

(51) showed that a proper balance between IL-10 and TNF-α rather than any of these 

individual cytokine responses is of physiological importance. Hashem et al. (52) reported 

that IL-10/TNF-α ratio is a convenient predictive biomarker for investigation of fatty liver 

of different grades including steatohepatitis and nonalcoholic fatty liver disease. The 

present increase in gene expression ratio of IL-10/TNF-α with E2 replacement as well as 

with endurance exercise training in Ovx animals, therefore, indicates an improvement in the 

status of the liver in both of these conditions.  

An intriguing response related to inflammatory biomarkers in the present study is 

the observation that plasma CRP as well as CRP mRNA levels in liver decreased in Ovx 
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animals and re-increased with E2 replacement. A number of investigations have reported 

that hormone replacement therapy increases plasma CRP levels (53-55) especially in 

response to oral conjugated estrogens (56). Although it has been argued that rats are not an 

appropriate model to investigate the relationship between estrogen and CRP, Yang et al. 

showed that ovariectomy in rat reduces plasma CRP and that estrogen replacement raises 

the plasma CRP levels (57). It has been suggested that E2-mediated increase in CRP may 

not represent an up-regulation of pro-inflammatory response mediated by upstream 

cytokines but rather are related to a secondary mechanism (56). Nevertheless, in the present 

study, plasma and liver mRNA expression of CRP did not increase in endurance exercise 

trained Ovx rats. This indicates that whatever the clinical significance of the action of E2 

on increasing CRP levels, this is not carried out in exercise trained rats. 

In summary, results of present study indicate that exercise training acts as estrogen 

supplementation in properly regulating gene expressions of molecular markers involved in 

liver fat accumulation and bio-markers of sub-clinical inflammation in Ovx rats. On a 

clinical point of view, the present results reiterate the importance of exercise training as a 

tool to alleviate some of the metabolic consequences of low estrogenic status in post-

menopausal women. 
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Table 1. Oligonucleotide primers used for quantitative real-time polymerase chain reaction. 

Genes Accession no Sense primer (5′-3′) Antisense primer (5′-3′) 

SREBP-1c XM_213329 TACAGCGTGGCTGGGAAC GGCTGAGCGATACAGTTCAA 

SCD-1 NM_139192 GCCCTGTACGGGATCACA CCCAGGGCACTGATAAGGTA 

ChREBP NM_133552 AATCCCAGCCCCTACACC CTGGGAGGAGCCAATGTG 

ACC NM_022193 ACAGAGATGGTGGCTGATGTC GATCCCCATGGCAATCTG 

PPAR-α NM_013196 TCGGAGGGCTCTGTCATC CATCTGTACTGGTGGGGACA 

PGC-1α NM_031347 GAAGCGGGAGTCTGAAAGG GTAAATCACACGGCGCTCTT 

CRP NM_017096 CTTCTCTCAGGCTTTTGGTCA GCTTCCAGTGGCTTCTTTGA 

IKKB NM_053355 GAGAGCGTCAGCTGTGTCC CCCCACACTTTCCTCATCTG 

IL-6 NM_012589 CCCTTCAGGAACAGCTATGAA ACAACATCAGTCCCAAGAAGG 

TNF-α NM_012675 GCCTCTTCTCATTCCTGCTC GAGCCCATTTGGGAACTTCT 

IL-10 NM_012854 GCTCAGCACTGCTATGTTGC AATGGCCTTTGCTGGTCTT 

GAPDH NM_017008 CCCTCTGGAAAGCTGTGG AGTGGATGCAGGGATGATG 

 

SREBP-1c: sterol regulatory element-binding protein-1c; SCD-1: stearoyl CoA desaturase-

1; ChREBP: carbohydrate response element-binding protein; ACC: acetyl-CoA 

carboxylase; PPAR-α: peroxisome proliferator activated receptor-α; PGC-1α: Peroxisome 

proliferator-activated receptor-γ coactivator 1α; CRP: C-reactive protein; IKKB: inhibitor 

of kappa B kinase beta; IL-6: interleukin 6; TNF-α: tumor necrosis factor-α; IL-10: 

interleukin 10; GADPH: glyceraldehyde-3-phosphate dehydrogenase. 
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Table 2. Effects of ovariectomy, estrogen replacement, and exercise training on 

anthropometric and physiological parameters. 

 Sham Ovx OvxE2 OvxTr 

Body weight (g) 345±13 388±12abb 314±5 357±13b 

Energy intake (kj/day) 333±11 378±11aabbc 331±9 341±9 

Mesenteric fat weight (g) 9.52±0.9 13.6±1.2aabbcc 8.72±0.6 7.83±0.5 

Retroperitoneal fat weight (g) 5.69±0.8 8.69±1aabbcc 5.67±0.6 5.0±0.4 

Uterus weight (mg) 602±51 123±9aabb 774±64aa 123±8aabb 

Leg muscles weight (g/100gBW) 0.62±0.02 0.6±0.02bbcc 0.67±0.02 0.71±0.02aa 

Femur weight (g/100gBW) 0.21±0.007 0.18±0.01abbcc 0.24±0.009aa 0.22±0.007 

Plasma insulin (pM) 263±22 387±52 (abc)* 231±34 250±50 

Plasma glucose (mM) 8.62±0.3 10.5±0.4aabb 6.83±0.3aacc 9.59±0.3a 

HOMA-IR (mIU/l) 16.8±1.5 29.8±4.5aabbc 11.9±1.8 17.7±3.7 

Plasma Leptin (ng/ml) 8.85±1.1 13.6±1.3aabbcc 8.81±0.9 6.63±0.8 
 

a Significantly different from Sham, P < 0.05, aa P < 0.01. b significantly different from 

OvxE2, P < 0.05, bb P < 0.01. c significantly different from OvxTr, P < 0.05, cc P < 0.01. 
(abc)*: (P = 0.059). Values are mean ± S.E., n = 6-8 rats/group. 

Sham: sham-operated; Ovx: ovariectomized; OvxE2: ovariectomized with 17β-estradiol 

supplementation; OvxTr: ovariectomized + endurance exercise training. 

 



 

 

 

171

Figure legends 

Figure 1. Liver triacyleglycerol (TAG) (A) and sterol regulatory element-binding 

protein-1c (SREBP-1c) mRNA (B) in sham-operated (Sham), ovariectomized (Ovx), 

ovariectomized with 17β-estradiol supplementation (OvxE2), and ovariectomized + 

endurance exercise training (OvxTr) rats. aa Significantly different from Sham, P < 0.01. b 

significantly different from OvxE2, P < 0.05, bb P < 0.01. c significantly different from 

OvxTr, P < 0.05, cc P < 0.01. Values are mean ± S.E., n = 6-8 rats/group. 

 

Figure 2. Hepatic lipogenic mRNA and protein abundance in sham-operated 

(Sham), ovariectomized (Ovx), ovariectomized with 17β-estradiol supplementation 

(OvxE2), and ovariectomized + endurance exercise training (OvxTr) rats. aa Significantly 

different from Sham, P < 0.01. b significantly different from OvxE2, P < 0.05, bb P < 0.01. 
cc significantly different from OvxTr, P < 0.01. Values are mean ± S.E., n = 6-8 rats/group. 

SCD-1: stearoyl CoA desaturase-1; ChREBP: carbohydrate response element-binding 

protein; ACC: acetyl-CoA carboxylase.  

 

Figure 3. Hepatic lipid oxidative mRNA abundance in sham-operated (Sham), 

ovariectomized (Ovx), ovariectomized with 17β-estradiol supplementation (OvxE2), and 

ovariectomized + endurance exercise training (OvxTr) rats. aa Significantly different from 

Sham, P < 0.01. bb significantly different from OvxE2, P < 0.01. c significantly different 

from OvxTr, P < 0.05. Values are mean ± S.E., n = 6-8 rats/group. 

PPAR-α: peroxisome proliferator activated receptor-α; PGC-1α: Peroxisome proliferator-

activated receptor-γ coactivator 1α.  

 

Figure 4. Hepatic gene expression of interleukin 6 (IL-6) (A), inhibitor of kappa B 

kinase beta (IKKB) (B), and the protein abundance of nuclear factor-kappa B (NF-кB) (C) 
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in sham-operated (Sham), ovariectomized (Ovx), ovariectomized with 17β-estradiol 

supplementation (OvxE2), and ovariectomized + endurance exercise training (OvxTr) rats. 
a Significantly different from Sham, P < 0.05, aa P < 0.01. bb significantly different from 

OvxE2, P < 0.01. c significantly different from OvxTr, P < 0.05, cc P < 0.01. Values are 

mean ± S.E., n = 6-8 rats/group. 

 

Figure 5. Hepatic gene expression of tumor necrosis factor-α (TNF-α) (A), 

interleukin 10 (IL-10) (B), and IL-10/TNF-α ratio (C) in sham-operated (Sham), 

ovariectomized (Ovx), ovariectomized with 17β-estradiol supplementation (OvxE2), and 

ovariectomized + endurance exercise training (OvxTr) rats. b significantly different from 

OvxE2, P < 0.05. c significantly different from OvxTr, P < 0.05. Values are mean ± S.E., n 

= 6-8 rats/group.  

 

Figure 6. Plasma C-reactive protein (CRP) levels (A) and hepatic gene expression 

of CRP (B) in sham-operated (Sham), ovariectomized (Ovx), ovariectomized with 17β-

estradiol supplementation (OvxE2), and ovariectomized + endurance exercise training 

(OvxTr) rats. aa Significantly different from Sham, P < 0.01. bb significantly different from 

OvxE2, P < 0.01. cc significantly different from OvxTr, P < 0.01. Values are mean ± S.E., n 

= 6-8 rats/group. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4.  
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Figure 5. 
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Figure 6. 
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Chapter 6: General discussion and conclusion 

The general objective of the studies presented in this thesis was to provide 

information regarding treatment and prevention of hepatic steatosis development and 

adipocyte fat accumulation in the estrogen deficient animals using lifestyle modifications 

(i.e. exercise training) as an alternative strategy for hormone replacement therapy. Since 

prospective studies assessing the physiological and biochemical effects of exercise in 

humans is difficult to carry out in controlled settings [de Lemos, Reis et al. 2007], we used 

an ovariectomized animal model that provided us with an appropriate research tool to 

mimic the postmenopausal hormonal state. If confirmed in human studies, the observations 

in the presented studies would be clinically relevant to the growing menopausal population 

in a society defined by energy overconsumption. However, we acknowledge the fact that 

the conclusions of our studies are limited to the employed experimental model. Human 

aging/onset of menopause implies a continuum of estrogen changes. Our model of 

ovariectomy is an aggressive method of estrogen withdrawal and may result in changes in 

metabolic profile and gene expression that may differ from those imposed by menopause in 

humans. Nevertheless, given that the risk of all causes of mortality associated with surgical 

ovariectomy in women younger than 45 year-old is increased [Rocca, Grossardt et al. 

2006], we believe that our model and experiments still provide information reasonably 

relevant to basic research on estrogen related changes in metabolic profile and gene 

expression. In support of this, Barlet et al. and Kalu reported that the ovariectomized rat 

model is suitable for studying problems that are relevant to postmenopausal bone loss [Kalu 

1991; Barlet, Coxam et al. 1994].  

All Ovx animals in the four studies showed lower uterus weight and higher food 

intake, body weight and fat pads weight than Sham rats indicating typical morphologic 

changes associated with ovariectomy [Lemieux, Picard et al. 2003; Paquette, Shinoda et al. 

2007] thus confirming quality of total ovariectomy in our studies. Moreover, E2 

supplementation in the last two studies totally prevented these Ovx-induced changes 

confirming that the observed effects in Ovx rats were indeed related to estrogen shortage. 
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The four original studies presented in this thesis provided information regarding the 

treatment and prevention of ovariectomy-induced fat accumulation in adipocytes and 

hepatocytes by lifestyle modifications including restrictive diets and physical activity in the 

form of resistance and endurance exercise training. Since in recent years hepatic steatosis 

was recognized as a hepatic component of the metabolic syndrome, we focused on liver 

lipid accretion after ovariectomy. The data from the first two studies support the concept 

that resistance training might provide a successful alternative or complement to chronic 

restrictive diet for preventing body weight gain, peripheral fat accumulation, and liver lipid 

infiltration following estrogen withdrawal and for avoiding their relapse in Ovx rats. This 

positive effect of resistance training on liver TAG followed the changes in fat mass 

accumulation in Ovx rats. Therefore, it is reasonable to conclude that liver fat infiltration is 

largely associated to adipose tissue fat accumulation; highlighting the dominant central 

properties of estrogen withdrawal compared to intra-hepatic effects. In this regard, food 

restriction in ovariectomized animals would most probably reduce the amount of lipids 

taken up by the liver. On the other hand, resistance training can increase the energy 

expenditure counteracting the central effects of estrogen withdrawal. Nevertheless, it is 

possible that resistance training act intra-hepatically invigorating metabolic pathways in 

liver common to estrogens such as stimulating lipid oxidation inside the liver itself, in 

addition to increasing energy expenditure. As mentioned in the first study, the 

appropriateness of the present resistance training program needs to be addressed. Since it is 

difficult to use a resistance training program in rats without mobilizing several muscle 

groups, one may discuss that our results in the first two studies might be partially originated 

from aerobic adaptations of employed exercise program. In humans, a 6-month resistance 

training program in relatively healthy postmenopausal subjects did not contribute to 

improving the metabolic profile [Brochu, Malita et al. 2009]. Although the comparison 

between animal and human studies is difficult, the discrepancy between the two studies 

may be due to the intensity of employed programs and the better control of the training 

regimen in our animal studies. 
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We conducted our third study in an attempt to address the question whether women 

who exercise regularly during their reproductive period of life are protected against the 

deleterious metabolic effects of menopause. Contrary to our first two studies, we addressed 

this question using endurance exercise training. Using the Ovx animal model, we were able 

to test a complete design of trained and untrained animals before and after withdrawal of 

estrogens. The data from this study 1) confirmed our previous observations that 

ovariectomy leads to increased adipose tissue mass and liver TAG accretion that was 

prevented in E2-supplemented rats; 2) showed that there is no protective effect of a 

previous exercise-training state on ovariectomy-induced liver and adipocyte fat 

accumulation if rats remain sedentary after ovariectomy; 3) similarly to estrogen 

supplementation, endurance exercise training conducted concomitantly with estrogen 

induction has protective effect on ovariectomy-induced liver and adipocytes fat 

accumulation, whether or not rats were previously trained. Our observation that endurance 

exercise training has a strong influence on lowering body fat accumulation following a 

decrease in estrogen levels was recently confirmed by a research group in Germany [Zoth, 

Weigt et al. 2010]. Again, it is likely that mechanisms involved in exercise effects 

counteracted the central effects of estrogen withdrawal (increased energy expenditure) and 

induced intra-hepatic metabolic adaptations (decreased lipogenesis and increased hepatic 

lipid oxidation). More importantly, in this study we found that the liver lipid infiltration 

was the only measured parameter in which the training status affected only the 

ovariectomized rats (not the Sham and OvxE2 animals) increasing our interest about the 

intra-hepatic effects of estrogens and exercise training in Ovx rats. The role of estrogen in 

the regulation of energy homeostasis in females is well recognized. On the other hand, it is 

also well acknowledged that exercise training has beneficial effects on the metabolic 

syndrome. Considering the fact that pair-feeding in Ovx rats does not completely prevent 

fat accumulation in liver [unpublished data from our lab], we hypothesized that Ovx-

induced hepatic fat accumulation cannot be totally attributed to the central effects of 

estrogen withdrawal and our data in the fourth study open a new avenue for the 
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investigation of potential mechanisms that might explain benefits of exercise in 

postmenopausal women.   

Supporting the recent reports of Paquette et al. [Paquette, Wang et al. 2008; 

Paquette, Chapados et al. 2009], data of the fourth study confirms that withdrawal of 

estrogen affects hepatic pathways of lipid synthesis and oxidation. We showed that mRNA 

levels of SREBP1-c and ChREBP which are known as the two major transcription factors 

in hepatic lipogenesis and the gene expression of their downstream enzyme proteins SCD-1 

and ACC are up-regulated in Ovx animals; while gene expression of PPAR-α, the key 

transcriptional regulator of lipid oxidation in liver of Ovx rats was decreased. In this last 

study, we provided important information regarding the similar effects of exercise training 

and estrogen replacement therapy in ovariectomized animals. Our original findings show 

that endurance exercise training, similarly to E2 supplementation, counteracted these 

hepatic molecular disturbances by cancelling the increase in SREBP-1c, SCD-1, ChREBP, 

and ACC transcripts; while re-increasing gene expression of PPAR-α in Ovx rats. These 

observations suggest that exercise training acts as estrogen supplementation in properly 

regulating gene expressions of molecular markers involved in liver fat accumulation in 

ovariectomized rats. The moderately short duration of our endurance exercise training 

program (5 weeks) may be a limitation of our study. To comprehend the full effect of 

exercise training on Ovx-induced liver lipid accumulation, future studies should consider 

extending exercise training for longer periods and controlling the central effects of estrogen 

withdrawal such as using pair-feeding model. Moreover, the intensity of exercise training 

used in the present studies can be considered as substantial. Moderating the intensity of 

exercise training program in future studies will allow relating the results to the clinical 

researches in postmenopausal women. 

Since in recent years metabolic consequences of increased ectopic fat are associated 

with sub-clinical inflammation, we hypothesized that gene expressions of hepatic 

inflammatory bio-markers would be changed in Ovx animals. Results of our fourth study 

showed that mRNA levels of IL-6 and IKKB as well as protein content of NF-κB were 
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increased in liver of Ovx rats. As for metabolic markers, E2 supplementation alone or 

exercise training alone neutralized these elevated gene expressions. Moreover, we observed 

an increase in the ratio of IL-10/TNF-α gene expressions with E2 supplementation as well 

as with exercise training in Ovx rats. Although we are the first, to our knowledge, to put 

forward the concept that exercise training has an estrogenic-like effect on the improvement 

of pre-clinical inflammatory status in the liver of Ovx rats, it seems that further research is 

warranted to reach firm conclusion on the effect of exercise training on Ovx-hepatic-

steatosis-induced sub-clinical inflammation in postmenopausal hormonal state. 

Taken together, our results introduce the concept that exercise training can 

compensate estrogenic actions in the estrogen deficit context, at least to a certain extent of 

metabolic consequences. However, identification of mechanisms such as activation of 

estrogen receptors and downstream pathways stimulated by exercise training will permit to 

explore more details concerning this concept. As indicated by the results of this thesis, it 

seems that similarly to estrogen supplementation, exercise training prevents lipid 

accumulation in the liver of Ovx rats possibly through proper regulation of key intra-

hepatic molecules implicated in lipogenesis and lipid oxidation; and/or through its 

secondary effects on lowering lipid storage in adipocytes (Table 6).  
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Table 6. Estrogenic-like effects of exercise training on metabolic and inflammatory bio-

markers in Ovx rats. 

Intra-hepatic Effects  Secondary Effects 

Decreased lipogenesis  
• SREBP-1c mRNA 
• ChREBP mRNA 
• SCD-1  
• ACC mRNA 

 
Increased lipid oxidation 

• PPAR-α mRNA 
 

Improved inflammatory bio-markers 
• IL-6 mRNA 
• IKKB mRNA 
• NF-κB 
• TNF-α mRNA 
• IL-10/ TNF-α mRNA 

 

 Most possibly increased energy 
expenditure 

 
Improved insulin sensitivity and 
lipid profile  
 
Decreased intra-abdominal and 
subcutaneous fat pads 

 

See list of abbreviations for meaning of acronyms.  
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Conclusion 

The results of the studies presented in this thesis complement previous findings 

regarding the central (increased intra-abdominal fat) and intra-hepatic effects (pathways of 

liver lipogenesis and lipid oxidation) of estrogen withdrawal favoring the accumulation of 

TAG in hepatocytes of Ovx rats. Our results clearly indicate that exercise training (either in 

the form of resistance or endurance) has a significant impact on ovariectomy-induced 

deleterious metabolic effects including reducing fat accumulation in liver and adipocytes. 

In addition, we showed for the first time that exercise training in Ovx rats seems to 

stimulate estrogenic-like effects on the expression of genes involved in lipid accumulation 

and sub-clinical inflammation in the liver. This is of importance knowing the fact that two-

thirds of postmenopausal women are overweight and since utilization of hormone 

replacement therapy is under debate. Moreover, this thesis opens new avenue in designing 

clinical studies in women by promoting physical activity. 

From a clinical point of view, results of this PhD work confirm the recommendation 

of The Study of Women’s Health Across the Nation which suggests that ‘‘not only do 

women who enter menopause transition (midlife) with higher level of physical activity and 

maintain that level weigh less to begin with and gain less weight over time, but women who 

increase their level of activity in midlife, regardless of where they start from, also gain less 

weight’’ [Sternfeld, Wang et al. 2004]. Moreover, the results of the first two studies suggest 

that the application of resistance training can play a role to minimize the deleterious effects 

of menopause and may constitute a positive strategy to reduce body weight and fat mass 

relapse in postmenopausal women. These results are promising for health care staff 

providing advice to postmenopausal women for lifestyle changes that reduce the risks of 

insulin resistance, cardiovascular and coronary heart disease, and diabetes [Frank, Sorensen 

et al. 2005]. From a systemic review of randomized controlled exercise trials in 

postmenopausal women, it was recommended that early postmenopausal women could 

benefit from 30 minutes of daily moderate walking in one or three bouts combined with a 

resistance training program twice a week [Asikainen, Kukkonen-Harjula et al. 2004]. This 
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review indicates that such exercise training is likely to preserve normal weight and increase 

cardiovascular capacity, and improve disorders of lipid and carbohydrate metabolism. 
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