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Summary 

 

Transcription termination of messenger RNA (mRNA) is normally achieved by polyadenylation 

followed by Rat1p dependent 5’-3’ exoribonuleolytic degradation of the downstream 

transcript. Here we show that the yeast orthologue of the dsRNA-specific ribonuclease III 

(Rnt1p) may trigger Rat1p dependent termination of RNA transcripts that fail to terminate near 

polyadenylation signals. Rnt1p cleavage sites were found downstream of several genes and 

the deletion of RNT1 resulted in transcription read-through. Inactivation of Rat1p impaired 

Rnt1p dependent termination and resulted in the accumulation of 3’ end cleavage products. 

These results support a new model for transcription termination in which co-transcriptional 

cleavage by Rnt1p provides access for exoribonucleases in the absence of polyadenylation 

signals.  
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 Introduction 

 

Transcription termination plays an important role in determining the fate and function of the 

RNA. For example, formation of polyadenylated RNA could signal protein translation, while 

aberrant termination may trigger RNA degradation (Zhao et al., 1999). There are currently two 

models for transcription termination in eukaryotes; the first is called the “torpedo” model, 

which is the predominant mode of termination in protein coding genes (Luo et al., 2006; 

Tollervey, 2004), and the other is the “allosteric” model, which appears to be favoured in 

genes producing short non-coding RNA (Kim et al., 2006; Vasiljeva et al., 2008). In the case 

of “torpedo” termination the polyadenylation signal that is often found near the end of protein 

coding genes triggers an endonucleolytic RNA cleavage generating an entry site for the 5’-3’ 

exoribonuclease Rat1p that in turn destabilizes the RNAP II elongation complex (Kim et al., 

2004). On the other hand, the “allosteric” mode of termination does not require cleavage or 

the presence of a polyadenylation signal but depends on the binding of a termination complex 

in close proximity to the promoter (Carroll et al., 2004; Vasiljeva et al., 2008).  

 

In yeast, mutations that change the 3’ end sequence of mRNAs or inactivate the 

exoribonuclease Rat1p result in transcription read-through that often terminates before the 

promoter of the downstream genes (Kim et al., 2004; Luo et al., 2006). Indeed, the intergenic 

regions in yeast are normally littered with non-canonical polyadenylation sites that become 

active upon the disruption of the primary site of transcription termination (Grec et al., 2000; 

Milligan et al., 2005). Therefore, simple defects in a canonical termination site will not 

automatically lead to the production of polycistronic RNA transcripts. Consistently, most of the 

confirmed RNAP II-transcribed polycistronic transcripts in yeast are processed by the yeast 

dsRNA specific RNase III (Rnt1p) and does not require polyadenylation signals for 
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termination (Ghazal et al., 2005). Rnt1p cleaves specific RNA stems terminating with NGNN 

or AAGU tetraloops (Ghazal and Elela, 2006) found near pre-rRNA (Abou Elela et al., 1996; 

Kufel et al., 1999), snRNAs (Abou Elela and Ares, 1998), snoRNAs (Ghazal et al., 2005) or 

occasionally within mRNA coding sequence (Ge et al., 2005; Larose et al., 2007). Recently, 

Rnt1p was also shown to promote termination of RNAP I by giving access to Rat1p in a 

mechanism analogous to that of the polyadenylation-dependent “torpedo” mode of 

termination (El Hage et al., 2008; Kawauchi et al., 2008). However, the impact of Rnt1p on 

RNAP II transcription remains unexplored. 

 

Since Rnt1p processes clusters of RNAP II transcribed snoRNAs in yeast (Ghazal et al., 

2005) we explored the possibility that the enzyme also influences the expression of 

neighbouring protein coding genes. Accordingly, we have searched for clusters of open 

reading frames (ORF) separated by a canonical Rnt1p cleavage signal and identified several 

conserved regions with the potential to produce dicistronic transcripts. One of these 

transcripts was expressed in vivo in an Rnt1p dependent manner. In depth mutational 

analysis and chromatin immunoprecipitation of this transcription unit indicated, that Rnt1p is 

required for terminating mRNA transcripts that fail to terminate near polyadenylation signals. 

Genome-wide search for Rnt1p dependent transcription termination sites identified additional 

genes that require Rnt1p for alternative transcription termination. Together, the results 

presented here reveal a new mechanism for gene regulation in which Rnt1p triggers mRNA 

degradation by inducing polyadenylation independent “torpedo” like transcription termination. 



Ghazal et al., 2009 

 

5 

5 

 

Results 

 

Rnt1p represses the expression of dicistronic mRNA in yeast 

 

Rnt1p cleaves RNA stems terminating with NGNN tetraloops to initiate the processing of 

polycistronic snoRNA (Ghazal et al., 2005). Accordingly, we reasoned that the presence of 

Rnt1p cleavage signal within a cluster of genes could be indicative of dicistronic mRNA 

expression. To examine this possibility, we searched a group of 5 sensu stricto 

Saccharomyces species (Herrero, 2005; Liti et al., 2006) for the presence of conserved 

NGNN stem-loops located between gene-pairs transcribed in the same direction (Figure 1A). 

Three conserved tetraloops were found but only one in a dicistronic transcript containing the 

sequence of the NPL3 and GPI17 genes was detected in the absence of Rnt1p (Figure 1B). 

Using gene specific probes, we monitored the expression of NPL3 and GPI17 in the presence 

(RNT1) or the absence (rnt1∆) of RNT1. As shown in figure 1C, the probe specific to the 

NPL3 coding sequence (Probe I) detected the mature Npl3 mRNA (Russell and Tollervey, 

1995; Russell and Tollervey, 1992) in RNA extracted from wild type cells (Lane 1). In contrast, 

rnt1∆ RNA (Lane 3) exhibited two additional large RNA species. Hybridizing RNT1 RNA with 

GPI17 specific probes (Probe IV) highlighted a band (Lane 13) corresponding to the predicted 

size of the mature GPI17 mRNA (Zhu et al., 2005). Surprisingly, the expression of the mature 

GPI17 mRNA was reduced in rnt1∆ RNA (Lane 15) and a large transcript migrating with the 

same speed as that observed with the NPL3 specific probe (Lane 15) was detected. This 

indicates that the deletion of RNT1 inhibits the expression of GPI17 and leads to the 

accumulation of a large transcript containing both Npl3 and Gpi17 sequences. This was 

further confirmed by a probe (Probe III) hybridizing to the intergenic region (Lane 9). 
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Consistently, western blot using antibodies against Npl3p and Gpi17p (Figure 1D) revealed 

that while RNT1 deletion does not affect Npl3 mRNA translation it inhibits the production of 

Gpi17p. Since GPI17 is essential (Zhu et al., 2005), we presume that a small amount of 

proteins, below the detection level of the western blot, is expressed in rnt1∆ cells. In any 

case, the results clearly show that Rnt1p is required for the normal expression of Gpi17p. 

 

Direct cleavage of the extended Npl3-Gpi17 mRNA by Rnt1p was confirmed in vitro using 

recombinant Rnt1p. Total RNA extracted from RNT1 or rnt1∆ cells was incubated with 

recombinant Rnt1p and the impact on Npl3 and Gpi17 mRNA was monitored by Northern 

blotting (Figure 1C). As expected, Rnt1p did not affect the mature Npl3 (Lanes 2) or Gpi17 

(Lanes 14) mRNAs. On the other hand, Rnt1p converted the large extended RNA transcripts 

observed in rnt1∆ cells to smaller fragments (Lanes 4, 10, and 16) corresponding to the 

predicted cleavage products (Figure 1B). The exact location of Rnt1p cleavage was 

determined by reverse transcription using a primer (PE) complementary to the sequence 

downstream of the loop predicted to bind Rnt1p (Figure 1B). Again, no cleavage product was 

detected in wild type RNA (Figure 1E lanes 6 and 7), while a band corresponding to a 

cleavage 16 nucleotides downstream of the conserved NGNN tetraloop (C2) was observed in 

rnt1∆ RNA in the presence (Lane 9) and not in the absence (Lane 8) of recombinant Rnt1p. 

To directly determine the impact of Rnt1p cleavage on the expression of NPL3-GPI17, we 

mutated Rnt1p cleavage signal and monitored the effect on mRNA synthesis. Six point-

mutations were introduced in the two stem-loop structures (Ghazal and Elela, 2006) predicted 

to be cleaved by Rnt1p (Figure 1B) and the impact was monitored by Northern blot. A large 

Npl3- Gpi17 transcript similar to that detected in rnt1∆ RNA (Lanes, 3, 9 and 15) was 

observed in cells harbouring the stem-loop mutations (M-Loop) (Lanes 5, 11, and 17). The 

extended RNA produced from the gene carrying mutations in the loops was not cleaved by 
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recombinant Rnt1p in vitro confirming that the cleavage site was indeed disrupted (Lanes 6, 

12, and 18). However, the disruption of the cleavage signal reduced the expression of GPI17 

to a lesser extend than RNT1 deletion (Figure 1C). Indeed, western blot analysis indicated 

that the stem loop mutation does not inhibit the expression of Gpi17p (Figure 1D). Therefore, 

while direct cleavage by Rnt1p is required for inhibiting the accumulation of the Npl3-Gpi17 

transcript the presence of Rnt1p itself may play additional role in modulating the expression of 

GPI17.  

 

NPL3 termination-sequence induces the accumulation of Rnt1p dependent read-

through transcripts  

 

To determine the elements regulating the expression of GPI17, we deleted the predicted 

promoter regions of either the NPL3 or GPI17 gene (Figure 2A) and monitored the impact on 

RNA expression. The deletions were achieved by inserting a URA3 gene fused to ADH1 

termination sequence (Akada et al., 2006; Noble and Johnson, 2005) upstream of the 

translation start codon of the chromosomal copies of either NPL3 or GPI17. Deletion of the 

NPL3 promoter (npl3pr∆) blocked the expression of Npl3 mRNA (Figure 3B) in both the 

presence (Lane 4) and the absence of RNT1 (Lane 5). The deletion of the NPL3 promoter 

increased the expression of Gpi17 mRNA in rnt1∆ cells (Lane 14) but not in RNT1 cells (Lane 

13). Notably, deletion of the NPL3 promoter abolished the expression of the read-through 

Npl3-Gpi17 RNA even in the absence of RNT1. This indicates that the NPL3 promoter is 

required for the expression of the Npl3-Gpi17 RNA but not for the synthesis of normal Gpi17 

mRNA. In addition, these results indicate that Rnt1p is not required for transcription initiated 

from the GPI17 promoter. Changes in the GPI17 expression upon the deletion of Rnt1p and 

NPL3 promoter may stem from the general effect of RNT1 deletion on stress and membrane 
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related proteins (Ge et al., 2005; Lee et al., 2005; Tremblay, 2002). Deletion of the GPI17 

promoter (gpi17pr∆) abolished the expression of Gpi17 mRNA (Lane 17) without affecting the 

expression of Npl3 mRNA in wild type cells (Lane 8). Replacement of GPI17 promoter by 

URA3 gene reduced the length of the Npl3 read-through transcripts accumulating in rnt1∆ 

cells (Lane 9). These new extended transcripts did not hybridize to probes specific to GPI17 

(Lane 18) indicating that NPL3 transcription terminated upstream of the URA3 gene (Figure 

2A). We conclude that transcription read-through of NPL3 is dependent at least in part on the 

sequence near the gene 3’ end. 

 

The transcriptional read-through of NPL3 may be influenced by the promoter or termination 

sequence. To differentiate between these two possibilities, we first replaced the NPL3 

promoter with that of ACT1 and monitored the impact on RNA expression (Figure 2A and B). 

As expected, transcripts produced from the ACT1 promoter (PACT1-NPL3) were slightly larger 

than those driven from the endogenous NPL3 promoter due to changes in the transcription 

start site, irrespective of RNT1 expression (Lanes 6 and 7). On the other hand, PACT1-NPL3 

did not significantly change the expression level of either mature Npl3 (Lane 6) or Gpi17 

mRNA (Lane 15) when expressed in wild type cells. Changing NPL3 promoter in rnt1∆ cells 

reduced transcriptional read-through (Lane 7 and 16) and permitted the expression of mature 

Gpi17 mRNA (Lane 16). This suggests that either ACT1 promoter enhances termination near 

the canonical NPL3 termination site or that the changes in the site of transcription initiation 

influence the termination efficiency. 

 

To evaluate the impact of NPL3 termination on the accumulation of the extended Npl3-Gpi17 

transcripts, we replaced the sequence between the translation stop codon of NPL3 and the 

polyadenylation signal with the ADH1 termination signal (Figure 2A). The mutations were 
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introduced either in RNT1 cells or in cells carrying mutations in Rnt1p cleavage signals. As 

shown in figure 2C, the introduction of the ADH1 terminator abolished the expression of read-

through transcripts regardless of Rnt1p cleavage (Lanes 4, 5, 9 and 10). This demonstrates 

that the production of extended Npl3-Gpi17 RNA is largely due to the leaky termination of the 

NPL3 gene. Therefore, Rnt1p seems to function as a fail-safe terminator of NPL3. 

 

Rat1p is required for transcription termination downstream of Rnt1p cleavage site  

 

To determine the fate of the RNA cleaved by Rnt1p, we examined the impact of known 

exoribonucleases on the expression of NPL3 and GPI17 transcripts. As shown in figure 3, 

deletion of the nuclear 3’-5’ exoribonuclease Rrp6p induced the expression of 3’ extended 

Npl3 RNA that migrates with the same speed as Rnt1p cleavage products (lanes 4, 13, 22, 

and 31). This suggests that Rnt1p 5’ end cleavage products are degraded by Rrp6p under 

normal growth conditions. Surprisingly, inactivation of a temperature-sensitive allele of the 5’-

3’ nuclear exonuclease Rat1p (rat1-1) reduced the expression of both mature Npl3 and Gpi17 

mRNAs (Lanes 6, 15, 24 and 33). The general reduction in mRNA could be explained by poor 

termination and subsequent degradation of the aberrant RNA since Rat1p was previously 

shown to be required for the termination of polyadenylated mRNA (Kim et al., 2004). Indeed, 

Rat1p may affect the 3’ end formation by influencing the recruitment of 3’ end processing 

factor and the choice of polyadenylation site (Luo et al., 2006). At permissive temperature the 

deletion of the cytoplasmic 5’-3’ exoribonuclease XRN1 in rat1-1 cells resulted in little 

perturbation of the Npl3 mRNA, while causing an accumulation of a 5’ end-extended Gpi17 

RNA species consistent with the 3’ end cleavage product of Rnt1p (Lanes 7, 16, 25, and 34). 

At restrictive temperature, the rat1-1 xrn1∆ and rat1-1 cells exhibited the same profile of NPL3 

expression (Lanes 6, 8, 15, and 17). However, rat1-1 xrn1∆ RNA exhibited a new transcript 



Ghazal et al., 2009 

 

10 

10 

corresponding to the size of the stem-loop structure cleaved by Rnt1p (Lane 26). In addition, 

other bands corresponding to Rnt1p 3’ end cleavage products containing the GPI17 

sequence were detected (Lane 35). Deletion of the nonsense mediated decay 

exoribonuclease Upf1p had little effect on RNA expression (Lanes 9, 18, 27, 36). This result 

indicates that Rnt1p cleavage leads to the degradation of the 3’ end cleavage product by 

Rat1p in the nucleus or, surviving this, by Xrn1p in the cytoplasm. We conclude that Rnt1p 

cleavage generates an entry site for the 5’-3’ exoribonuclease Rat1p, which causes “torpedo” 

like transcription termination. 

 

To link Rnt1p directly to transcription termination, the pattern of RNAP II association with the 

NPL3 and GPI17 genes was examined by chromatin immunoprecipitation (ChIP) using 

antibodies against the RPB1 subunit (Malagon et al., 2006) in the presence or the absence of 

Rnt1p. As expected, in RNT1 cells (Figure 3B) the RNAP II co-immunoprecipitated with DNA 

fragments corresponding to the promoter (A) and coding sequence of NPL3 (B and C) but not 

with known untranscribed regions of chromosome V (Ctl). DNA corresponding to the 

intergenic region between NPL3 and GPI17 (D, E and F, white columns) co-

immunoprecipitated as or more efficiently than the DNA corresponding to the coding region or 

the sequence downstream of GPI17 (G, H and I, white columns). Strikingly, the deletion of 

RNT1 significantly increased the association of RNAP II with the intergenic region between 

NPL3 and GPI17 (D, E, and F, grey columns) and the GPI17 ORF (G, H and I, grey columns). 

This suggests that Rnt1p is required for the efficient termination of NPL3. 

 

In order to understand how Rnt1p influences transcription termination, we immunoprecipitated 

Rnt1p and monitored its association with the actively transcribed NPL3 and GPI17 genes 

(Figure 3B, black columns). Interestingly, Rnt1p co-precipitated with fragments corresponding 
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to NPL3 promoter region (A), NPL3 coding sequence (B and C), and the NPL3 transcription 

termination site (D). Weak associations with the intergenic region (E and F) and the 5’ end  

(G) of GPI17 were also detected. Rnt1p did not co-precipitate with GPI17 3’ end fragments (H 

and I). The strongest association was found between Rnt1p and fragment immediately 

adjacent to NPL3 3’ end. Inactivation of a temperature sensitive allele of RNAP II also 

inhibited the association of Rnt1p with all DNA fragments (data not shown). These data 

indicate that Rnt1p associates with actively transcribed DNA and is required for transcription 

termination downstream of NPL3 3’ end. 

 

RNT1 deletion perturbs transcription termination of several RNAP II transcribed genes 

 

To examine the possibility that Rnt1p mediated the transcription termination of genes other 

than NPL3 we initiated a new search in silico looking for all conserved Rnt1p cleavage signals 

downstream of known polyadenylation sites. As indicated in Table 1, five stem-loop structures 

other than that near NPL3 3’ end were found with score above 0.8, which was previously 

established as reasonable cut-off (Ghazal et al., 2005). Three of the newly identified genes 

were either not expressed under vegetative growth or the identified Rnt1p stem-loop 

overlapped with the sequence of downstream tRNA (data not shown). Interestingly two 

additional genes known to code for RNA binding proteins (NAB2 and RPL8A) were identified. 

Northern blot analysis of the mRNA produced by these two genes indicated that RNT1 

deletion causes transcriptional read-through downstream of the canonical termination site 

(Table 1 and Figure 4A and B). In addition, deletion of RNT1 increased the amount of the 

RNA generated from the NAB2 (Figure 4A lanes 1 and 2) and RPL8A genes (Figure 4B lane 

1 and 2). This increase in expression could be due either to an increase in transcription rate 

as evident in the case of RPL8A (Figure 4D), increased RNA stability in the absence of RNT1 



Ghazal et al., 2009 

 

12 

12 

or combination of both factors. Deletion of the exoribonuclease XRN1 and the inactivation of 

the RAT1 resulted in the accumulation of an extended Rat1 RNA and fragments 

corresponding to the sequence downstream of Rnt1p cleavage site located near the 3’ end of 

Rpl8A and Nab2 (Figure 4A and B  lane 9). Chromatin immunoprecipitation indicated that 

Rnt1p interact with the transcriptional units of NAB2 and RPL8A and confirmed transcription 

read-through of these genes upon the deletion of RNT1 (Figure 4C and D). These data further 

confirm the role of Rnt1p in suppressing the accumulation of transcription read-through 

products by generating an entry site for the exoribonculeases Rat1p and Xrn1p. 

 

In order to examine the global impact of Rnt1p on transcription termination we analyzed the 

overall pattern of RNAP II occupancy in the presence and the absence of RNT1. RNAP II 

specific chromatin immunoprecipitation was performed as described above from RNT1 or 

rnt1∆ cells and the extracted DNA hybridized to a DNA microarray containing an average of 4 

probes per kilobase across the whole yeast genome. Extended association of RNAP II at the 

3’ end of 39 genes that could not be attributed to overlapping or neighbouring genes were 

identified (Table 2). The length of these extensions varied from 230 to 2440 nts with an 

average extension length of 815 nts. As expected, the transcription read-through near the 

NPL3 and RPL8A genes was identified. However, the NAB2 gene was not detected because 

it is located next to a very highly transcribed gene that generates an RNAP II signal 

overlapping with the intergenic region located downstream from the NAB2 gene. The 

accuracy of the systematic analysis of RNAP II read-through was tested by quantitative PCR 

on 10 genes identified by ChIP-chip. In all cases, the increased association of RNAP II was 

confirmed by quantitative PCR (data not shown). Interestingly, the ChIP-chip approach 

identified a transcriptional read-through in two non-coding RNA (U2 snRNA (Abou Elela and 

Ares, 1998) and snR190 (Chanfreau et al., 1998)) that were shown to be processed by Rnt1p. 
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In both cases the deletion of RNT1 leads to the transcription of extended RNA species (Abou 

Elela and Ares, 1998; Chanfreau et al., 1998). To link the RNAP II profile to RNA expression 

we examined the RNA transcripts produced by 29 genes displaying transcriptional read-

through by ChIP-chip. Northern blot analysis indicated that 24 of those 29 genes indeed 

produce a larger RNA species in rnt1∆ cells (Table 2). Interestingly, most of these genes 

(18/24) were also overexpressed in the mutant cells. In about a third of the cases (8/24) some 

transcriptional read-through could be detected in wild type cells, suggesting that some RNAP 

II molecules can escape from Rnt1p surveillance. Only four of the genes we have tested were 

downregulated in rnt1∆ cells, while three showed no difference in expression. Most of these 

genes (6/7), however, produced extended transcript in rnt1∆ cells, suggesting that the 

termination function of Rnt1p is not linked to its role in the regulation of transcription level. As 

shown in figure 5, three of Rnt1p dependent transcriptional read-through resulted in the 

accumulation of discitronic transcripts that include the sequence of two neighbouring genes 

while, in other cases, the extension terminated in the intergenic region. Together these data 

suggest that Rnt1p impact on transcription is not limited to NPL3-GPI17 cluster and may 

extend to genes with different functions. 
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Discussion 

 

In this study, we have shown that Rnt1p cleavage signal may function as polyadenylation 

independent fail-safe terminator. Deletion of the dsRNA specific ribonuclease Rnt1p induced 

the expression of a long read-through transcript containing the sequence of the NPL3 and 

GPI17 genes (Figure 1). In vitro, recombinant Rnt1p cleaved the extended RNA species at 

the predicted NGNN stem-loop structure in the absence of any other factors (Figure 1). In vivo 

Rnt1p was found associated with actively transcribed NPL3 and its deletion resulted in 

transcriptional read-through interfering with the transcription of the downstream gene coding 

for Gpi17p (Figure 3). Rnt1p dependent transcriptional read-through was also detected in 

several genes with a variety of functions indicating that the impact of Rnt1p on transcription is 

not limited to a single gene (Table 2). Together the results reveal a new mode of gene 

regulation were polyadenylation independent transcription termination triggers degradation of 

nascent RNA transcripts.  

 

Npl3p is an RNA-binding protein implicated in the export of mRNA and it functions as an 

antagonist of transcription termination (Burkard and Butler, 2000; Krebber et al., 1999; Lund 

et al., 2008). In addition, it was recently proposed that phosphorylated Npl3p inhibits efficient 

recognition of the canonical polyadenylation signal of its own transcript (Lund et al., 2008). 

However, the mechanism by which Npl3p influences mRNA processing remained unclear. 

Npl3p binds its actively transcribed gene and overexpressing Npl3p causes transcription 

read-through that is normally inhibited by Rnt1p (data not shown). The endonucleolytic 

cleavage prevents read-through and preserves the transcriptional activity of the downstream 

genes. Indeed, the biological advantage conferred by this mechanism is evident from the 

conservation of the Rnt1p cleavage signal in five closely related Saccharomyces species 
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(Figure 1A). This phenomenon is not an isolated event since we have found other RNA 

binding proteins (Table 2 and Figure 4) that could benefit from Rnt1p triggered termination. 

For examples, Nab2p (Roth et al., 2005) and Rpl8ap (Cusick, 1994) are known to bind RNA 

and Nab2 was shown to be autoregulated via the induction of transcription read-through (Roth 

et al., 2005). 

 

The two current models of RNAP II transcription termination (torpedo and allosteric) do not 

explain how the transcription of long non-polyadenylated RNA terminates. The “torpedo” 

model requires cleavage near the polyadenylation signals and the “allosteric” model functions 

only with short non-coding RNA (Kim et al., 2006; Luo et al., 2006). We propose a modified 

“torpedo” mode of termination (Figure 6) in which Rnt1p circumvent the need for 

polyadenylation signals by generating an entry site for the Rat1p exonuclease leading to 

termination of transcription. In this model, polyadenylation is not required and therefore long 

RNA can be produced without being obligatorily transported and translated. Recruitment of 

Rnt1p to the termination site is likely to be signalled by phosphorylation dependent interaction 

of the RNA II CTD. Interestingly, Rnt1p was shown to interact with the RNAP II CTD in a two 

hybrid system when the phosphorylation site required for either polyadenylation dependent 

termination (Serine 2) or that required for Nrd1p complex dependent non-polyadenylated RNA 

termination (Serine 5) is mutated (Ghazal and Abou Elela unpublished data). This suggests 

that indeed Rnt1p represent transcription termination alternative in situations where neither 

conventional “torpedo” nor “allosteric” modes of termination are possible (e. g. long non-

polyadenylated RNA).  Indeed, it was recently shown mechanistically in a model system that 

Rnt1p elicit RNAP II termination by a torpedo mechanism (see Rondon et al., this issue). 

Rnt1p cleaves the 3’ end of the non-polyadenylated U2 snRNA and in the absence of Rnt1p a 

longer polyadenylated transcript is produced (Abou Elela and Ares, 1998). Indeed, deletion of 
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Rnt1p leads to transcriptional read-through in the U2 gene (Table 2). This mode of 

transcription termination is not unique to RNAP II. Rnt1p cleavage at the 25S pre-rRNA gives 

access to Rat1p allowing it to terminate transcription by RNAP I in a “torpedo” like fashion (El 

Hage et al., 2008).  

 

The impact of Rnt1p on transcription is not limited to transcription termination. In many cases 

we have observed an overall increase in RNAP II occupancy associated with an increase in 

gene expression in the absence of RNT1 (Table 2). The effect of Rnt1p on the level of 

transcription and termination are not necessarily linked. In the case of NPL3, the disruption of 

Rnt1p cleavage site lead to transcriptional read-through but the level of expression is lower 

than that observed upon the deletion of RNT1 (Figure 1C). On the other hand, increased 

gene expression in rnt1∆ do not necessarily lead to transcription read-through (Larose et al., 

2007). Indeed, genome-wide analysis of gene expression in the absence of Rnt1p identified 

many RNA transcripts that are over-expressed upon the deletion of RNT1 and the vast 

majority did not exhibit changes in the site of transcription termination (Ge et al., 2005). 

Therefore, in certain cases the recruitment of Rnt1p to the active transcription complex may 

directly modulate transcription independent of the cleavage at the 3’ end of the nascent RNA.  

 

Discovering that Rnt1p cleavage induces Rat1p dependent transcription termination 

mandates re-examination of Rnt1p function in RNA processing. It is currently accepted that 

Rnt1p processes most non-coding RNA in yeast including pre-rRNA, snRNA and snoRNA 

(Abou Elela and Ares, 1998; Abou Elela et al., 1996; Ghazal et al., 2005). However, it is not 

clear why this processing step is necessary and why in certain cases the lack of this 

processing leads to the generation of polyadenylated RNA (Abou Elela and Ares, 1998). The 

results presented here suggest that in many cases Rnt1p cleavage is not introduced as an 
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obligatory processing step but rather as a transcription terminator required in order to avoid 

the polyadenylation of aberrant RNA. This interpretation is also compatible with the role of 

Rnt1p in mRNA degradation (Ge et al., 2005; Larose et al., 2007). In this case, Rnt1p will not 

simply degrade the newly transcribed mRNA but will also terminate transcription. This indeed 

explains why an enzyme localized in the nucleus plays a role in the regulation of mostly 

cytoplasmic RNA species like mRNA.  However, the discovery that Rnt1p cleavage elicits 

transcription termination raises questions about the mechanism of polycistronic snoRNA 

processing. In this scenario, Rnt1p cleaves between snoRNAs that are transcribed as a single 

transcript leading to the maturation of these different RNAs (Ghazal et al., 2005). Therefore, if 

Rnt1p cleavage leads to transcription termination, the downstream snoRNA will not be 

produced. This apparent paradox could be explained by the presence of specific sequence 

elements or transcription factors that specifically prevent the 5’ end generated by Rnt1p 

cleavage of these gene clusters from being digested by Rat1p. Case by case studies of Rnt1p 

cleavage and its link to termination will reveal the existence of these elements. Meanwhile, 

the data presented here reveal a new model of polyadenylation independent transcription 

termination and provide a mechanism by which transcription termination may regulate gene 

expression.



Ghazal et al., 2009 

 

18 

18 

 

Experimental Procedures 

Strains and plasmids 

Yeast strains were grown and manipulated using standard procedures (Guthrie and Fink, 

1991). Yeast strains used in this study are listed in supplemental Table 1. For details, see 

Supplemental material file 1. 

 

Search for Rnt1p cleavage signals 

All uninterrupted pairs of ORFs transcribed in the same orientation were identified in the April 

9th 2008 version of Saccharomyces Genome Database (SGD). Independently, all conserved 

NGNN-capped stem-loops in five sensu stricto Saccharomyces species (S. cerevisiae, S. 

paradoxus, S. mikatae, S. kudriavzevii and S. bayanus) were identified using the genome 

multiple alignment from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/ 

sacCer1/bigZips/multizYeast.zip). To assess conservation, three criteria where considered: 

the conserved G in position two of the tetraloop, the capacity of the two closing base pairs to 

form canonical Watson-Crick base pairs and the formation of 23 nt NGNN-capped stem-loop 

as predicted by Vienna RNA 1.6.5. When these three criteria were validated at the same 

position in the alignment for the five species, the stem-loop was considered as conserved. We 

found that three of these conserved NGNN-capped stem-loops are located in the intergenic 

region between consecutive coding transcripts. 

 

RNA analysis 

RNA extractions, Northern hybridization and primer extension were performed as previously 

described(Ghazal et al., 2005). Primer extension was performed using (20 ng/µl) of reverse 

primer CAAATTCTTTGAAATTAGCCTGACCCAAAC, and 10 µg of RNA. The primers used to 
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generate the randomly labeled probes (Perbal, 1988) used for Northern blots are listed in 

Supplemental Table 2. Cleavage of total RNA was conducted as previously described 

(Ghazal et al., 2005) using 50 µg of total RNA and 8 pmol of purified Rnt1p (Lamontagne and 

Abou Elela, 2001). Standard 1.2 % agarose or 6% polyacrylamide gels were used to separate 

low and high molecular weight RNAs respectively. 

Western Blotting 

Total protein extracts and western blot analysis were performed as described before (Catala 

et al., 2008). Cells were grown in 50 ml culture. Proteins (10-20 µg) were loaded on 12% SDS 

gel, transferred and incubated with 1:3000 dilution of antibodies against Npl3p (Russell and 

Tollervey, 1992) and 1:500 Gpi17p (Zhu et al., 2005). Anti-rabbit HRP was used as secondary 

antibody at a dilution of 1:80 000. Pgk1p was detected using anti-mouse HRP antibody as a 

secondary at a dilution of 1:16000 (Sigma-Aldrich Canada Ltd., Oakville, Ont). 

 

Chromatin immunoprecipitation and microarray analysis 

Chromatin extracts were prepared as described (Strahl-Bolsinger et al., 1997; Taggart et al., 

2002). Immunoprecipitations were performed with monoclonal anti-Rpb1 8WG16 (Covance, 

Berkeley, CA) and polyclonal anti-Rnt1p (Lamontagne et al., 2000) as described earlier 

(Catala et al., 2008). The method used for quantitative PCR amplification is outlined in 

supplemental material. ChIP material was labeled and hybridized on DNA microarrays 

(Agilent Technologies) containing 44,290 Tm-adjusted 60-mer probes covering the entire 

yeast genome for an average density of one probe every 287 bp (±100 bp) as described 

before (Rufiange et al., 2007). The data were normalized and replicates were combined using 

a weighted average method as described previously (Rufiange et al., 2007). The combined 

datasets are available supplemental file 2. Comparing RNAP II density beyond the 3’ end of 

ORFs identified genes with termination defects in rnt1∆ cells. In addition, those exhibiting 
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previously noted changes in expression after the deletion of RNT1 were closely inspected to 

ensure that no obvious candidates are missed through the automated selection process. 
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Accession Numbers 

The ChIP-chip data in this paper have been deposited in NCBIs Gene Expression Omnibus 

(GEO) (http://www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO series accession 

number GSExxxx. 
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Table 1. List of Rnt1p cleavage sites near sites of transcription termination 

 
Gene Function Loop Scorea Effect of RNT1 Deletionb 
RPL8A LSU r-protein 0.961 3’ end extension 
NPL3 Poly A binding protein 0.955 3’ end extension 
LOH1 Unknown 0.920 NE 
NAB2 Poly A binding protein 0.878 3’ end extension 
FAB1 Membrane kinase 0.876 NE 
BNI5 Septin organization 0.850 NE 
 
a Loop score was determined as described earlier (Ghazal et al., 2005). The higher the score 
the more likely that it is cleaved by Rnt1p. b NE indicates no evidence to support 3’ end 
extension. 
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Table 2: Genome-wide screen for RNT1 dependent transcription termination 
 

Gene 
Name 

ORF  Function Extension 
lengtha 

Fold 
changeb 

Expressionc Extensiond 

NPL3 YDR432W RNA Metabolism 2440 5.3 No change NE 
U2 LSR1 RNA Metabolism 750 2.0 Decreased NE 
snR190 snR190 Ribosome 

Biogenesis 
660 8.5 Decreased NE 

RRP1 YDR033W 
Ribosome 
Biogenesis 

510 3.9 
Increased 

E 

NOP1 YDL014W 
Ribosome 
Biogenesis 910 

7.8 
Decreased No 

RPL40A YIL148W Ribosomal Protein 740 3.5 ND ND 
RPL27B YDR471W Ribosomal Protein 560 1.6 ND ND 
RPL27A YHR010W Ribosomal Protein 290 2.5 Increased NEe 

RPL8Af YHL033C Ribosomal Protein 650 5.8 Decreased NE 
RPP1af YDL081C Translation 400 1.1 No change NE 
RPS14B YJL191W Ribosomal Protein 750 2.9 ND ND 
TEF2 YBR118W Translation 1000 4.8 ND ND 
TOS1 YBR162C Cell Wall 1070 2.4 Increased No 
YPS3 YLR121C Membrane 1010 2.3 Increased E 
MRH1 YDR087C Membrane 820 2.5 Increased No 
ZEO1 YOL109W  Membrane  230 1.5 Increased E 
MIC17 YMR002W Membrane 440 2.7 Increased E 
LYP1 YNL268W Membrane 1650 3.5 Increased NE 
FTR1 YER145C Membrane 2430 5.6 Increased No 
NPL4f YBR170C Membrane 1270 1.8 Increased NE 
TPI1 YDR050C Glycolysis 470 2.8 Increased E 
CDC19 YAL038W Glycolysis 450 4.1 ND ND 
PRE6 YOL038W Glycolysis 2430 2.2 Increased E 
RPN12 YFR052W Proteosome 750 2.2 ND ND 
OTU1 YFL044C Protein Degradation 2150 3.3 ND ND 
SBA1 YKL117W Protein Folding 470 2.7 Increased No 

LGE1 YPL055C 
Histone 
Modifications 

690 2.6 Increased E 

MED7 YOL135C Transcription 820 3.0 ND ND 
SUT1 YGL162W Transcription 430 2.3 ND ND 
NCB2 YDR397C Transcription 970 2.6 ND ND 
PTC2f YER089C DNA Damage  770 4.4 Increased NE 
YKU80 f YMR106C DNA Damage 2400 1.6 Increased NE 
SIM1 YIL123W DNA Replication 580 3.1 No change NEe 

GIC2 YDR309C Budding 1160 2.7 Increased NE 
OPI6 YDL096C Dubious 460 3.2 Increased E 
RIB1 YBL033C Response to drug 680 2.9 Increased NE 
- YDR524W-C Unknown 320 1.5 Increased NE 
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a The length of the extension (in nucleotides) predicted by the RNAP II ChIP-chip upon the 
deletion of RNT1. b The rnt1∆ / RNT1 fold change of RNAP II occupancy in the identified 
extension adjusted by the difference of RNAP on the complete gene. c-d Variation in the level 
of expression of mature RNA fragment c or size d as detected by Northern blot (ND, not 
determined; E, RNA extension detected in wild type strains that is increased in the absence of 
RNT1; NE, new extension detected only in the absence of RNT1 and; No, no extension). e 
Extension due to intron retention. f Manually selected genes. The changes in the expression 
of U2 and snR190 in the absence of RNT1 were previously reported (Abou Elela and Ares, 
1998; Chanfreau et al., 1998). 
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Figure legends 

Figure 1. Identification of Rnt1p dependent dicistronic RNA. (A) In silico search of conserved 

gene clusters separated by NGNN stem-loop structures using Saccharomyces cerevisiae 

Genome Database (SGD) annotations. (B) Illustration of NPL3-GPI17 gene cluster showing 

the size of each gene fragment at bottom. Positions of Northern blot probes (I and IV) and 

reverse transcription primers are shown on top. C1 and C2 indicate the position of the 

predicted cleavage sites. Black arrowhead indicates cleavage observed in vitro using total 

RNA. Grey arrowhead indicates cleavage observed with a 5’ end labeled model substrate in 

vitro (data not shown). Point mutations disrupting Rnt1p cleavage site are shown in bold. ST1 

and ST2 indicate the position of previously reported polyadenylation sites near the NPL3 3’ 

end (Chinnusamy et al., 2008; Steinmetz et al., 2006). (C) Rnt1p is required for the cleavage 

of the extended Npl3-Gpi17 RNA in vivo and in vitro. RNA was extracted from wild type 

(RNT1), rnt1∆, and from cells carrying mutations in Rnt1p cleavage site (M-Loop) and 

incubated either alone or in the presence of recombinant Rnt1p. Schematics of the different 

RNA transcripts are indicated beside each gel. Open and grey boxes represent NPL3 and 

GPI7 ORFs respectively. (D) Western blot analysis of the Npl3p and Gpi17p. Proteins were 

extracted from RNT1, rnt1∆ and M-Loop cells separated on 12% SDS gel and visualized 

using antibodies specific to Gpi17p, Npl3p or the control Pgk1p. Note that Gpi17p exists in 

two forms, a full-length membrane-bound version (Gpi17p) and a truncated free form (T-

Gpi17p) (Zhu et al., 2005). (E) Rnt1p cleaves Npl3-Gpi17 extended RNA in vitro. Reverse 

transcription using a primer downstream of the predicted cleavage site was performed using 

RNA extracted from wild type or rnt1∆ cells incubated with or without recombinant Rnt1p. 

Sequencing of DNA corresponding to the same region is indicated on the left as a marker. 

The position of the cleavage (C2) is indicated on the right.  
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Figure 2. Identification of cis-acting elements controlling the expression of the Npl3-Gpi17 

RNA. (A) Schematics representation of the different mutations introduced in the promoter and 

termination regions of NPL3 and GPI17. The promoter of NPL3 was either replaced by ACT1 

promoter (ACT1P) or deleted by inserting a URA3 gene linked to a strong ADH1 terminator 

(URA3-AT). The 3’ end sequence containing the two reported NPL3 polyadenylation signals 

(Steinmetz et al., 2006) was replaced by a strong ADH1 terminator (ADH1T) (Blancafort et al., 

1997). The promoter region of GPI17 was replaced by URA3-AT. All replacements and 

deletions were carried in the chromosomal copies of the genes and the names of the resulting 

yeast strains are shown on top. (B) NPL3 promoter is not required for the production of 

mature Gpi17 mRNA. Northern blot analysis was performed using RNA extracted from cells 

carrying the different mutations and visualized by probes specific to either NPL3 (I) or Gpi17 

(IV) mRNA. The stained rRNA is shown as a loading control. (C) The NPL3 3’ end is required 

for transcriptional read-through. Northern blot analysis was performed using RNA extracted 

from the different mutations as described in B.  

  

Figure 3. Rnt1p cleavage triggers transcription termination. (A) Degradation of Rnt1p 

cleavage product by 5’-3’ exoribonuclease is required for the expression of GPI17. RNA was 

extracted from cells lacking the 3’-5’ nuclear exoribonuclease Rrp6p (rrp6∆), cells expressing 

a temperature sensitive allele of the 5’-3’ nuclear exoribonuclease RAT1 grown at permissive 

(rat1-1 26°C) or restrictive conditions (rat1-1 37°C), rat1-1 cells lacking 5’-3’ cytoplasmic 

exoribonuclease XRN1 grown at the permissive (rat1-1 xrn1∆ 26°C) or restrictive (rat1-1 

xrn1∆ 37°C) temperature, and cells lacking the non-sense mediated decay ribonuclease 
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Upf1p (upf1∆). The different RNAs were visualized by probes complementary to different 

regions of the NPL3-GPI17 cluster. The rRNA is included as loading control. (B) Rnt1p 

enhances the transcription termination of NPL3. Chromatin Immunoprecipitations were 

performed using antibodies against the RNAP II protein subunit Rpb1p in the presence (white 

column) or the absence (grey column) of RNT1. The association of Rnt1p with transcribed 

genes was examined using antibodies against Rnt1p (black column). The precipitated DNA 

was amplified by real-time PCR using primers specific to different regions within the NPL3-

GPI17 clusters (indicated on the top). A total of two biological and three technical replicates 

were used to calculate the relative levels of DNA precipitated and the average values are 

indicated. A primer-pair amplifying a known untranscribed region of chromosome V was used 

as negative control (Ctl). Standard deviations between replicate experiments was ± 0.05. 

 

Figure 4. Rnt1p cleavage signal identifies sites of alternative transcription termination in 

genes coding for RNA binding proteins. Extended Nab2 (A) and Rpl8A (B) RNA are cleaved 

by Rnt1p in vivo and in vitro. RNA was extracted from RNT1, rnt1∆, rrp6∆, xrn1∆ cells or cells 

expressing a temperature sensitive allele of RAT1 grown at permissive (rat1-1 26°C) or 

restrictive conditions (rat1-1 37°C) or rat1-1 cells lacking 5’-3’ cytoplasmic exoribonuclease 

XRN1 grown at the permissive (rat1-1 xrn1∆ 26°C) or restrictive (rat1-1 xrn1∆ 37°C) 

temperature. In vitro cleavage assay of RNA extracted from rnt1∆ cells was carried by 

incubation with recombinant Rnt1p (rnt1∆ + Rnt1p). RNAs were visualized by probes 

complementary to either a sequence near NAB2 3’ end  (V) or unique sequence that is found 

in the 3’UTR of RPL8A and not the RPL8B isoform (VI). The rRNA is included as loading 

control. The asterisk indicates 3’ end RNA degradation products that were observed 

occasionally. The 3’ end cleavage project of NAB2 generated by Rnt1p in vitro was too faint 
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to detect in the exposure shown.  NAB2 (C) and RPL8A (D) Chromatin immunoprecipitations 

were performed using antibodies against the RNAP II protein subunit Rpb1p in the presence 

(white column) or absence (grey column) of RNT1 or using antibodies against Rnt1p (Black 

column) in wild type cells as described in Figure 3B. Immunoprecipitations of RPL8A 

chromatin was performed either in wild type strain (data not shown) or strains lacking the 

RPL8B to avoid cross-amplification of homologous sequence (D). The data were obtained 

and calculated as mentioned in Figure 3B. 

 

Figure 5. RNAP II chromatin immunoprecipitation in the absence of RNT1 identifies genes 

with alternative transcription termination. Northern blot analysis was carried out as described 

in Figure 1. The probe position relative to the gene structure is shown on top. The nature of 

the different transcripts is schematically represented on the side. The asterisk indicate cross 

hybridization with rRNA. In all cases extensions were not detected in cells expressing RNT1 

even after prolonged exposure.  

 

Figure 6. Model describing the impact of Rnt1p on transcription termination and mRNA 

stability. Under normal conditions, (RNT1) transcription of RNA binding proteins (RBP) genes 

like NPL3, NAB2, or RPL8A is autoregulated. When the amount of RBPs is low (On 

condition), transcription terminates at the canonical site via Rat1p dependent “torpedo” 

mechanism leading to the production of mature RNA and protein synthesis. When the RBPs 

accumulate in the cell (Off condition), they bind near the termination site of their gene leading 

to transcription read-through up to Rnt1p cleavage signal downstream. Cotranscriptional 

cleavage by Rnt1p gives access to Rat1p leading to “torpedo” like termination. However, in 

this case the resulting RNA is rapidly degraded by the exoribonuclease Rrp6p, Rat1p and 

Xrn1p. In the absence of RNT1, transcription continues to the polyadenylation signal of the 
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downstream gene or until it meats a cryptic polyadenylation site in the intergenic region. In 

both cases, the polyadenylated RNA is transported and translated disrupting the auto-

regulatory circuit of the RBP. 
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