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RÉSUMÉ 
 

 
Le dogme voulant que les récepteurs couplés aux protéines G (GPCRs) activent 

des voies de signalisation seulement lorsqu’ils sont localisés à la membrane plasmatique, 

a récemment été remis en question. Des données récentes indiquent que certains GPCRs 

peuvent également induire une réponse intracellulaire à partir des compartiments 

intracellulaires dont le noyau.  

 Les récepteurs activés par la protéase (PAR) sont des membres de la famille 

GPCR. Les PARs sont activés par le clivage de la partie N–terminale du récepteur ce qui 

permet au ligand attaché sur le récepteur de se lier à sa poche réceptrice. Quatre PARs ont 

été décrits : PAR1, PAR2, PAR3 et PAR4. PAR2 peut susciter des effets mitogéniques et 

participer aux processus comme l’angiogenèse et l'inflammation. Alors que beaucoup 

d'effets intracellulaires de PAR2 peuvent être expliqués lorsqu’il est localisé à la 

membrane plasmatique, une fonction intracrine de PAR2 a aussi été proposée. Pourtant 

les mécanismes par lesquels PAR2 peut provoquer l’expression de gènes ciblés sont 

toujours inconnus.   

Le but de notre étude était de vérifier l’existence d’une population nucléaire de 

PAR2. Nous avons également émis l’hypothèse que les voies activées par l’activation de 

PAR2 dépendent de sa localization cellulaire. En utilisant des techniques de microscopie 

confocale et de  "Western Blot"  nous avons démontré la présence d’une population 

nucléaire de PAR2. À la suite de la stimulation de PAR2, nous avons observé une 

augmentation de la translocation du récepteur de la membrane plasmatique au noyau. En 
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utilisant la technique de "RT – PCR", nous avons observé des rôles différents de PAR2 à 

la surface de la cellule et du noyau dans l’initiation de l’expression des gènes.  

Afin d’identifier les mécanismes responsables de la translocation nucléaire de 

PAR2, nous avons évalué l’implication des membres de la famille de "Sorting Nexins 

(SNX)" dans la translocation nucléaire de PAR2. 

"Sorting Nexins" est un groupe de protéines avec des fonctions de transport bien 

établies. SNX1 et SNX2 ont été identifiés comme responsables du transfert de PAR1 vers 

les lysosomes. SNX11 n'a pas encore été étudié et nous avons émis l’hypothèse qu'il 

pourrait être un autre membre de la famille des SNX impliqué dans la signalisation de 

PAR2. 

Pour ce faire, nous avons développé des "knockdowns" stables pour SNX1, SNX2 

et SNX11 dans les cellules HEK293. En utilisant les essais d’immunofluorescence, 

"Western Blot" et de cytométrie en flux, nous avons déterminé que tous les trois membres 

du groupe SNX sont des partenaires d'interaction de PAR2. Toutefois, seul SNX11 se co-

localise avec son partenaire au noyau et est responsable de sa translocation nucléaire. Les 

expériences de "RT - PCR" sur les lignées de cellule de SNXs "knockdowns" ont 

démontré que la fonction de PAR2 nucléaire dépend surtout de SNX11; néanmoins 

SNX1 et SNX2 peuvent aussi l’influencer, suggérant qu'ils font aussi partie du réseau 

signalétique de PAR2.    

En conclusion, PAR2 est déplacé de la membrane plasmatique à la membrane 

nucléaire après sa stimulation avec un agoniste. La translocation nucléaire de PAR2 par 

un mécanisme impliquant SNX11, initie des effets intracellulaires différents de sa 

signalisation membranaire.  
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Mots clés : récepteurs couplés à la protéine G, “Sorting Nexins”, récepteurs 

activés par la protéase, translocation nucléaire, membrane nucléaire, signal nucléaire.
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SUMMARY 

 
During the recent years the existing statements that G – protein coupled receptors 

(GPCRs) are relaying signals only from the plasma membrane have been challenged.  It 

has become clear that some GPCRs can also signal from intracellular compartments and 

the nucleus. The role and the function of these nuclear GPCRs are subject of intensive 

investigations.  

Protease - activated receptors (PAR) are members of the GPCR family. PARs are 

activated by the cleavage of the N – terminus of the receptor followed by binding of the 

tethered ligand on to the receptor. Four PARs have been described: PAR1, PAR2, PAR3 

and PAR4. PAR2 can induce mitogenic effects and participate in processes such as 

angiogenesis and inflammation. While many of the intracellular effects of PAR2 can be 

explained with its plasma membrane signalling pathway, intracrine effects of PAR2 have 

also been proposed. However the mechanisms by which PAR2 can induce its target gene 

expressions are still unknown.   

The purpose of our study was to investigate whether a distinct nuclear population 

of PAR2 exists. We hypothesized that the roles of PAR2 at different cellular 

compartments are different since signalling pathways depend on subcellular context. 

Using confocal microscopy and Western blot techniques we were able to demonstrate the 

presence of a nuclear population of PAR2. Upon stimulation of the cell membrane PAR2, 

we observed significant translocation of the receptor from the plasma membrane to the 

nucleus. Using RT – PCR technique we detected diverse roles of cell surface and nuclear 

PAR2 on triggered gene expression.  
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In the current study we have attempted to reveal the mechanisms responsible for 

PAR2 nuclear translocation. We tested the hypothesis that members of the Sorting Nexin 

(SNX) family are involved in PAR2 nuclear translocation.  

Sorting Nexins are a new, large group of proteins with well established cargo 

functions. SNX1 and SNX2 have been demonstrated to be responsible for lysosomal 

sorting of PAR1. SNX11 has not been studied yet, and we hypothesized that it may be 

another SNX involved in PAR2 signalling.       

We developed stable knockdowns for SNX1, SNX2 and SNX11 in HEK293 cells.  

Using immunofluorescence, Western Blot analysis and FACS assays, we determined that 

all three members of SNX group are interaction partners of PAR2. However only SNX11 

co-localized with its partner in the nucleus and is responsible for its nuclear translocation. 

RT – PCR experiments on SNXs knockdowns cell lines demonstrated that PAR2 nucleus 

function is mostly dependent on SNX11; nevertheless SNX1 and SNX2 knockdowns can 

also attenuate it, suggesting that they are part of PAR2 signalling network.    

In conclusion, PAR2 is being translocated from the plasma membrane to the 

nuclear membrane after its stimulation with SLIGKV. PAR2 nucleus translocation 

triggers intracellular effects different from its cell membrane signalling. SNX11 is the 

major factor responsible for PAR2 nuclear sorting. 

 

Keywords: G – protein coupled receptors, Sorting Nexins, Protease - activated receptors, 

nuclear translocation, nuclear membrane, nuclear signalling 
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During the last decades the pharmacological approach to creating new and more 

effective drugs has changed. Previous processes of discovering new chemical substances 

and testing for therapeutic effect have been removed from the rational drug design. 

Pharmacological studies have mostly concentrated on discovering new potential targets 

(Shaaban et al., 2001). Cell surface receptors represent one of the most promising 

opportunities.   

Molecular biology underwent remarkable progress in the methods for studying 

intracellular activity of the receptors. Numerous intensive investigations in this aspect 

have changed the old model of one way signalling pathway to a signalling network. 

Activation of one receptor with agonist can lead to different responses depending on its 

interactions with other receptors. Recently more and more studies revealed the 

importance of intracellular trafficking in receptor signalling (Claudinon et al., 2007) 

G-protein coupled receptors (GPCRs) are the largest family of membrane-bound 

receptors. They play important roles in the intracellular signalling and are essential in all 

physiological systems. The last present therapeutic targets for curing pathological 

diseases such as cancer, cardiac dysfunction, diabetes, central nervous system disorders, 

obesity, inflammation, and pain (Premont et al., 2007).  
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1. Protease - Activated Receptors 

  Protease – Activated Receptors (PARs) are a family of GPCRs. They have been 

intensively studied during the last 20 years. The family of PARs presently includes four 

members PAR1, PAR2, PAR3, and PAR4. The main agonist for PAR1, PAR3 and PAR4 

in the human body is the coagulant protease thrombin. However, other proteases can 

cleave these receptors as well and may contribute to their function in vivo (Coughlin et 

al., 2000). PAR2 is different from the other members. It is activated by multiple trypsin-

like serine proteases including trypsin, tryptase, and coagulation proteases upstream of 

thrombin, factors VIIa and Xa, but not by thrombin (Coughlin and Camerer, 2003).  

The hallmark of PAR receptors is their unique mechanism of irreversible 

activation: proteases cleave at specific site within the extracellular N-terminus to expose 

a tethered ligand (TL) domain which itself binds to conserved regions in extracellular 

loop II to initiate signalling. Trypsin cleaves PAR2 at R34 ↓ S35 LIGKV to reveal the TL 

SLIGKV in humans (Nystedt et al., 1994; 1995). Itself SLIGKV can be used as an 

activation peptide (Figure 1). The PAR-activating peptides (PAR-APs) have been used 

with great value in investigations to determine specific receptor function in systems 

where more than one of the PAR family members is expressed. In addition to the 

cleavage/activation of PARs, proteinases can also negatively regulate functioning through 

the PARs by 'disarming' the receptor by cleavage at a non-receptor activating site to 

remove the TL (Tethered Ligand) (Ramachandran et al., 2008) (Figure 1). These 

truncated receptors nonetheless remain responsive to PAR-APs but are unable to signal in 

a physiological environment (Ramachandran et al., 2008). 
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 Figure 1: Mechanisms of PAR activation 

 

1.1 PAR signalling    

Most of G protein – coupled receptors possess similar mechanism of activation 

and PARs as GPCRs do not differ from them. Upon ligand activation of PARs, 

conformational changes in the receptor induce interaction with heterotrimeric G proteins.  

PAR2 couples to Gαq/11, resulting in activation of phospholipase Cβ, production of 

inositol 1,4,5-trisphosphate and diacylglycerol, mobilization of Ca2+ and activation of 

Mechanisms of PAR activation. 
 
(a) Activation of PAR signalling 
by proteinase-mediated cleavage 
of receptor N-terminus to reveal 
tethered ligand (TL).  
(b) Activation of PAR signalling 
by exogenous application of 
synthetic PAR agonist peptide 
(AP) without the need for 
proteolytic revealing of the TL. 
PAR, proteinase-activated 
receptor 

British Journal of Pharmacology (2008) 
153, S263–S282 
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protein kinase C. These signalling events are rapidly attenuated and desensitized after 

repeated stimulation, indicative of receptor desensitization and down-regulation (Cottrell 

et al., 2003).   

β-Arrestins 1 and 2 are cytosolic proteins that mediate desensitization and 

endocytosis of many GPCRs. PAR2 activation induces translocation of β-arrestins to the 

plasma membrane, where they interact with PAR2 to mediate both desensitization and 

endocytosis (Dery et al., 1999; DeFea et al., 2000a). The GTPase dynamin mediates 

detachment of PAR2-containing clathrin-coated pits, and Rab5a mediates distal steps in 

endocytic trafficking of PAR2 from clathrin-coated pits to early endosomes (Roosterman 

et al., 2003).  

Internalized GPCRs may be degraded or can be recycled. We can find receptors 

like PARs, which are activated by irreversible proteolysis and for that reason are single-

use receptors which are targeted to the lysosomes for degradation (Bohm et al., 1996). 

Receptors for neuropeptides such as the SP (substance P) receptor are activated by 

reversible peptide binding, which can be reused, internalized and recycled to the cell 

surface (Grady et al., 1995).  

The down-regulation of receptors is of fundamental importance in terminating 

signalling. However, little is known about the molecular mechanisms of post-endocytic 

sorting that target receptors for degradation. Ubiquitination mediates down-regulation of 

growth factor receptors (Strous et al., 1996) and GPCRs (Hicke et al., 1996; Shenoy et 

al., 2001). Although ubiquitination of growth factor receptors is important for 

endocytosis and post-endocytic sorting through proteasome or the multivesicular 
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body/lysosome pathways, little is known about the mechanism and function of agonist-

induced ubiquitination of GPCRs. Upon activation PAR2 is rapidly ubiquitinated within 

the C-terminus and ubiquitination is required for lysosomal trafficking but not 

endocytosis (Cottrell et al., 2003).  

Sustained signalling requires the mobilization of PAR2 from important stores in 

the Golgi apparatus or synthesis of intact receptors (Bohm et al., 1996). Rab11a co-

localizes in the Golgi apparatus with PAR2. Rab11a mediates both recovery of PAR2 at 

the cell surface and resensitization of PAR2 signalling (Roosterman et al., 2003). 

Endocytosis and mitogenic signalling of PAR2 by MAPKs (mitogen-activated protein 

kinases) are organized into ‘signalling modules’ by tethering to scaffolding proteins and 

by direct interactions between the component kinases (Widmann et al., 1999; Pouyssegur 

et al., 2002). This organization ensures physical segregation of the pathways and allows 

the same kinase to be used in more than one MAPK module without affecting the 

function of other modules. Activation of PAR2 induces assembly of a MAPK signalling 

module by a mechanism that depends on β-arrestins (DeFea et al., 2000A). PAR2 

agonists activate ERKs (extracellular-signal regulated kinases) 1/2, and activation is 

clearly inhibited by dominant-negative β-arrestin319–418. ERK1/2 remain in the cytosol 

and do not translocate to the nucleus to stimulate proliferation. The cytosolic retention of 

ERK1/2 depends on the formation of a multiprotein signalling complex (apparent mass of 

250–300 kDa) that contains PAR2, β-arrestin 1, Raf-1 and pERK1/2 (phosphorylated 

SRK1/2) (DeFea et al., 2000A). Other GPCRs can similarly interact with β-arrestin/Src/ 

MEK1 (MAPK/ERK kinase 1)/ERK1/2 modules that retain pERK1/2 in the cytosol 

(DeFea et al., 2000A; Tohgo et al., 2002). 
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Determining PAR function upon protease activation is a challenge especially in 

systems where more than one receptor is expressed. Peptides with analogue sequences of 

proteolytically revealed PAR TLs have been synthesized. These peptides have been used 

to stimulate the receptors without the necessity of proteolysis. The use of these peptides 

has contributed to the significant success to unravel cellular responses mediated by these 

receptors. Importantly, synthetic 'scrambled' TL peptide sequences that are not able to 

trigger activation of the PARs have been developed, which serve as appropriate 'control 

peptides' for studies done with cultured cells or tissues (Ramachandran et al., 2008). 

Surprisingly, PAR3 stimulation, either with thrombin or with PAR-APs based on the 

thrombin-revealed PAR3 'tethered ligand sequence', was unable to mediate a cellular 

signal. Rather, peptides with sequences derived from the thrombin-revealed PAR3 N-

terminus were able to activate either PAR1 or PAR2 (Hansen et al., 2004). Studies have 

provided evidence for a possible cofactor- like role of PAR3 through its interaction with 

PAR1 and PAR4 (Nakanishi-Matsui et al., 2000; McLaughlin et al., 2007). Experiments 

conducted in tissues or cells, with PAR-selective activating peptides, along with the 

appropriate PAR-inactive peptide sequences, have served as key reagents to explore the 

impact of activating a specific PAR, without the need for protease-stimulated activation 

of the receptor. Such activation process might result in effects other than activating a 

specific PAR (Ramachandran et al., 2008). 

1.1.1 Physiological and Pathophysiological roles of PAR2 

  The discovery of PARs initiated intensive investigations into the function of 

these receptors.  The general approach has been to map receptor distribution at  tissue  
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and  cellular  level,  and  to  examine  the  biological effects  of PAR  agonists  in  

different  systems. This approach has provided large information which suggests that 

proteases and their receptors play important role in tissue responses to injury, including 

inflammation, pain and healing (Coelho et al., 2003).  

PAR1 was the first described member of the group and most of the initial studies 

were concentrated to reveal its function in the organism. However, gradually data has 

accumulated about the significant role of PAR2 in numerous important physiological 

processes. Hence, in the recent years PAR2 arose as a potential pharmacological target. 

1.1.2 PAR2 is involved in the inflammation process 

Most of the physiological agonists of PAR2 are released during inflammation 

which suggests that PAR2 actively participates in this process. PAR2 acts in 

inflammation by its up-regulation by tumour necrosis factor α, interleukin 1α and 

lipopolysaccharide (Nystedt et al., 1996; Hamilton et al., 2001). 

Mutant deletion of PAR2 sequence results in the observed phenotype such as 

diminishing the inflammation processes in the respiratory tract and joints (Schmidlin et 

al., 2002; Ferrell et al., 2003).  

The proinflammatory effects of proteases can be mediated by activation of PAR2 

on multiple cell types (Macfarlane et al., 2001). However, recent studies indicate an 

important role of PAR2-mediated inflammation in the nervous system. PAR2 is co-

expressed with substance P (SP) and calcitonin gene-related peptide (CGRP) in rat dorsal 

root ganglia (Steinhoff et al., 2000). Activation of PAR2 on spinal primary afferent 
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neurons stimulates secretion of SP and CGRP from their projections in peripheral tissues 

and the spinal cord which cause neurogenic inflammation and thermal and mechanical 

hyperalgesia (Steinhoff et al., 2000). During inflammation, the proteases that activate 

PAR2 on sensory nerves remain to be identified. A possible protease is tryptase from 

mast cells. Mast cells containing tryptase are in close proximity to sensory nerve axons in 

uninflamed and inflamed tissues (Stead et al., 1987). PAR2-deficient mice show 

diminished thermal hyperalgesia after mast cell degranulation (Vergnolle et al., 2001). 

Inflammatory agents can potentiate responses to VR1 (vanilloid receptor-1), a member of 

the TRP (transient receptor potential) family of ion channels that is activated by protons, 

elevated temperature, certain lipids, and exogenous vanilloids such as capsaicin (Caterina 

et al., 1997; Julius et al., 2001). TRPV1 (transient receptor potential vanilloid-like 1) 

mediates PAR2-induced thermal hyperalgesia in part by a protein kinase C dependent 

mechanism (Amadesi et al., 2004). 

1.1.3 PAR2 functions in angiogenesis  

  During the last years data have accumulated for the active participation of PAR2 

in cell proliferation and migration which are essential processes for blood vessel 

formation. In vivo experiments show that PAR2 activation leads to angiogenesis 

stimulation in an ischemic mouse model (Milia et al., 2002).  

Al-Ani and colleagues have first described the functional role of PAR2 on 

endothelial cells (Al-Ani et al., 1995). They have shown that trypsin and the PAR2 

peptide agonist SLIGRL-NH2 induced an endothelium dependent vasorelaxation in rat 

aortic rings. The vasorelaxant effect was reduced by L-NAME, an inhibitor of nitric 
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oxide (NO) synthases. The last finding supports an involvement of the L-arginine/NO 

pathway (Al Ani et al., 1995).  

Successively, endothelium NO dependent responses following PAR2 activation 

have been demonstrated in several other blood vessels such as rabbit aorta (Roy et al., 

1998), porcine coronary arteries (Hwa et al., 1996; Hamilton et al., 1998) and porcine 

basilar arteries (Sobey and Cocks, 1998; Sobey et al., 1999).   Since inhibitors of the L-

Arginine/NO pathway did not abrogate the vasodilatory response induced by PAR2, the 

possible involvement of other mediators has been investigated. On this basis endothelin 

has been proposed as a second messenger. Indeed, rapid release of nitric oxide induced 

by stimulation of aortic rings with PAR2 agonist, SLIGRL-NH2, was reduced by pre-

treatment with BQ-788, an ETB endothelin receptor-specific antagonist (Magazine et al., 

1996). Consistent with a role for endothelin-1 receptor activation in PAR2 AP-induced 

NO release, endothelin-1 levels were increased significantly after 5 min of treatment of 

aortic rings with PAR2 - AP. These results strongly support an involvement of ET1B 

receptor in PAR2 response (Magazine et al., 1996). Similarly, it has been shown that NO 

production did not entirely account for vasorelaxant action of PAR2 - AP in resistance 

vessels (Hamilton and Cocks, 2000) such as rat femoral artery or vein (Emilsson et al., 

1997; Roy et al., 1998) and isolated perfused normal rat kidney artery (Trottier et al., 

2002). The multiple mechanisms underlying the PAR1 and PAR2-mediated 

vasodilatation confirm the involvement of NO, EDHF and prostanoids (Kawabata et al., 

2004). This evidence indicates that redundant signalling pathways contribute to the 

vasodilatory response following PAR2 activation as it has been underlined by a recent 

study on afferent arterioles (Wang et al., 2005). On the other hand, this redundancy in 
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PAR2 signalling cascade could play a role in pathological settings such as inflammation 

or ischemia in which PAR2 is thought to be activated (Figure 2). In vitro studies 

simulating pathological conditions have suggested a possible protective role of PAR2. 

The protective role of PAR2 has also been proposed in myocardial ischemia/reperfusion 

(I/R) injury (McLean et al., 2002). In isolated and perfused rat heart SLIGRL-NH2 

peptide has induced an endothelium-dependent coronary vasodilatation. Following I/R 

injury, PAR2 - AP-induced vasodilatation was selectively preserved as opposed to 

acetylcholine response. PAR2 response was not mediated by NO or prostanoids, but 

involved the release of an EDHF, possibly a lipoxygenase-derived eicosanoid, and the 

activation of vanilloid receptors on sensory C-fibers (McLean et al., 2002). 

 

 

   

 

 

Figure 2: Cardiovascular effects of PAR2 

Vascular Pharmacology, 247-
253, vol. 43, issue 4, 2005 
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1.1.4 PAR2 role in tumorigenesis 

   We mentioned that PAR2 plays an important role in cell proliferation and 

migration. These processes are essential for tumor development, therefore it has been 

suggested that PAR2 may actively participate in tumorigenesis.  

Darmoul et al.(2004) describe the role of PAR2 in colon cancer. They have found 

that activation of PAR2 by trypsin leads to transactivation of Epidermal Growth Factor 

Receptor (EGFR) through a pathway that includes matrix metalloproteinase – dependent 

cleavage and release of TGF – α. TGF – α in turn activates the EGFR and downstream 

MAPK signalling cascade, leading to cell proliferation (Darmoul et al, 2004). Another 

study with a STKM-1 gastric cancer cell line demonstrated that production of trypsin 

correlates with their malignant phenotype and invasive growth (Kato et al. 1998).  In 

recent studies, PAR2 activation in IL-3- dependent murine lymphoma cell line BaF-3 

resulted in cell proliferation (Mirza et al. 1997). Shimamoto et al. have shown that PAR2 

agonist peptide SLIGKV and trypsin significantly increased cell proliferation in three 

pancreatic cancer cell lines SW1990, Capan-2, and Panc-1 (Shimamoto et al., 2004). Ge 

et al. reported that secretion of trypsin-like protease and its autocrine activation of PAR2 

in the breast cancer cell line MDA MB-231 influences cell migration (Ge et al., 2004). 

Although PAR2 activation is predominantly considered as stimulating tumor cell growth, 

an inhibitory effect on cancer development has also been reported. Kaufmann et al. report 

that activation of PAR2 on CAPA2 pancreatic cell line decreases [3H]-thymidine 

incorporation into the cell related to inhibition of tumor cell growth (Kaufmann et al., 

1998).   
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Similarly, PAR1, a receptor of the same family activated by thrombin, is a 

potential tumor cell proliferating and invading agent (Wojtukiewicz et al. 1993; 

Henrikson et al. 1999). Another study demonstrates that PAR1 signaling inhibits 

migration and invasion of breast cancer cells (Kamath et al. 2001). The findings of 

Yamashita et al. also support the notion that trypsin plays a tumor-suppressive role in 

human carcinomas, as they find reduced production of trypsinogen accompanied by 

reduced PAR2 expression in esophageal squamous cell carcinomas and 72 gastric 

adenocarcinomas (Yamashita et al., 2003). Recently Rattenholl et al. show the role of 

PAR2 as an inhibitor of the development of keratinocyte-derived skin tumors (Rattenholl 

et al., 2007). The controversial results point out the complex role of PAR2 in cell 

proliferation and migration and the necessity of more intensive investigations in this 

domain. 

  2. GPCR signalling into the nucleus 

  The existing theory of GPCR signalling states that receptors and their associated 

signalling molecules are independently trafficked to the plasma membrane where they 

become functional and responsive to agonist stimulation. These cell surface receptors are 

normally internalized during desensitization of the primary signalling pathway following 

prolonged or repetitive agonist stimulation. However, internalized receptors can activate 

signalling pathways that are quite distinct from those activated by the same receptors at 

the cell surface. Therefore, desensitization of primary G protein-dependent signalling 

pathways is followed by a second wave of arrestin-dependent signalling, which may be 
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both functionally and structurally G protein-independent (Shenoy et al., 2005; Lefkowitz 

et al., 2006; Smith et al., 2006). 

  However, in recent years it has become clear that GPCRs can also signal from 

other intracellular locations as well. Furthermore, the notion that all GPCRs are initially 

trafficked to the plasma membrane has recently been challenged. For example, GABA B1 

receptor subunits remain in the endoplasmic reticulum (ER) in the absence of GABA B2 

subunits (Jones et al., 1998; Margeta-Mitrovic et al., 2000). The distribution of the 

GABA B1 receptor in the central nervous system is much broader than the GABA B2, 

suggesting that this receptor may have an intracellular function (Towers et al., 2000; 

Ritter et al., 2005). It has been demonstrated that a deorphanized GPCR30 receptor takes 

a unique place among other GPCR, as it is localized exclusively in the ER, where it 

functions as a receptor for estrogen (Revankar et al., 2005). Also, on a parallel track, a 

number of studies show that heterotrimeric G proteins are localized to ER and Golgi 

compartments where they are involved in the regulation of anterograde protein trafficking 

and Golgi organization (Jamora et al., 1999; Diaz Anel 2007). The receptors that control 

these latter events remain unknown at present. An increasing number of GPCRs are 

targeted to the nuclear membrane as well: recent articles describe lysophosphatidic acid 

receptors (LPA1R) (Gobeil et al., 2003), metabotropic glutamate receptors (mGluR5) 

(O’Malley et al., 2003), apelin receptors (APJ) (Lee et al., 2004), platelet-activating 

factor receptors (PAFR) (Marrache et al., 2002), angiotensin II type 1 receptors (AT1R) 

(Zhuo et al., 2002; Lee et al., 2004), prostaglandin receptors (EP receptors) (Gobeil et al., 

2002) endothelin receptors (ETR) (Boivin et al., 2003) and β -adrenergic receptors (β -

AR) (Boivin et al., 2006) in the nuclear membrane.  
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3. Receptor trafficking  

  An essential requirement for the normal function of every life form is the ability 

of its cells to react to external stimuli. Therefore the adequate, fast and correct 

transmission of the signals, subsequent specific receptor activation and transmission via 

different signalling pathways are important for the survival of the whole organism. 

During the last years, lots of the studies that are being devoted to understanding 

receptor’s signalling network indicate that proper trafficking of receptors to their 

appropriate destinations is crucial for the normal function of the cell.     

Several distinct pathways for trafficking exist: one important pathway is the 

transport of already synthesized receptors from the endoplasmic reticulum to the Golgi 

network and from there to the cell surface. The other pathway is receptor internalization, 

which usually occurs subsequently to receptor activation, and sorting to the early 

endosome. From there, receptor destiny can be different. One possibility is that the 

receptor is recycled and sent again to the cell surface, another possibility is its 

degradation in the lysosomes. However, it is intriguing that more than one option is 

available, with opposite consequences for downstream signalling. Therefore, the major 

question arises: what drives the receptor fate? Different groups of trafficking proteins 

have been described, and the relatively new group called “Sorting Nexins” has attracted 

great interest.  
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3.1 Sorting Nexins, structure and homologues. 

  The sorting nexins are a large group of 33 members, which are mostly cytosolic 

or membrane - bound proteins. Their hallmark is the presence of a PX (Phox) domain – a 

sequence of approximately 120 amino acids (Xu et al., 2001A). The name PX derives 

from the protein complex where it was originally identified—the phagocyte NADPH 

oxidase (phox) (Ponting et al., 1996; Xu et al., 2001A). PX domain interacts actively with 

various phosphatidylinositol phosphates (PtdIns).  

PtdIns are implicated in diverse cellular processes and they are an essential part of 

membrane structures in the cell.  PtdIns (3,4,5) regulates many signalling processes 

related to cell growth and survival. PtdIns(4,5) serves as a localization signal for 

recruitment of specific proteins participating in endocytosis. The trans-Golgi network 

(TGN) is enriched in PtdIns(4), which functions to recruit effector proteins that regulate 

traffic to post-Golgi compartments. The sorting (early) endosome is particularly enriched 

in PtdIns(3)  (Gillooly et al., 2000); this PI serves as a homing/localizing signal for 

various endosomal proteins that contain PtdIns(3)-binding motifs. Therefore the PX 

domain figuratively is the driving engine of the SNXs. It allows them to interact with 

membrane structures and to serve their role in protein trafficking. In addition to the PX 

domain many SNXs have other domains crucial for protein-protein interactions that 

might participate in their subcellular localization or formation of complexes at particular 

lipid-enriched membranes. The first described member of the family was SNX1 (Kurten 

et al., 1996). The possible function of SNX1 in intracellular trafficking was suggested 

based on the properties of its yeast homologue Vps5 (vacuolar protein sorting). Vps5 is a 
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PX containing protein involved in vacuolar protein sorting. In yeast a mutation in Vps5 

results in the secretion of the hydrolase carboxypeptidase Y, which leads to inappropriate 

delivery of the hydrolase receptor Vps10 to the vacuole. Normally Vps10 binds 

carboxypeptidase Y in the TGN and transports it to pre-vacuolar endosomes where the 

hydrolase dissociates. The hydrolase is delivered to the vacuole, whereas Vps10 is 

recycled to the TGN for further rounds of hydrolase transportation. Vps5 carries out its 

biological functions by assembling into the 'retromer complex' – important for the 

retrieval of mannose – 6 phosphate receptor.  

Grd19 is the yeast homologue of the group of SNXs which contains only a PX 

domain. It is a small hydrophilic protein that is predominantly localized in the cytosol. 

Grd19 has been shown to be a component of the retrieval machinery that functions by 

interacting directly with the cytosolic tails of certain resident TGN proteins during the 

sorting process at the pre-vacuolar compartment. Grd19 is important for the retrieval of 

Kex2 and A-ALP (alpha-actinin-associated LIM protein) (two Golgi-resident proteins), 

but not Vps10, and therefore does not have a role in sorting soluble enzymes to the 

vacuole (Lu et al., 2002).  

Mvp1 is the yeast homologue for SNX8. Mvp1 was isolated as a multicopy 

suppressor of Vps1 mutants that are deficient in trafficking of the carboxypeptidase Y 

receptor. Mvp1, in conjunction with Vps1, is involved in sorting proteins in the late Golgi 

for delivery to the vacuole. It might also function in the retrieval of proteins from the pre-

vacuolar endosomes to the late Golgi (Ekena et al., 1995). 
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3.1.1 Members of the SNX family 

3.1.1.1 SNX1 

  As we mentioned above SNX1 was the first mammalian SNX to be 

characterized (Kurten et al., 1996). SNX1 is both membrane associated and cytosolic, 

where it probably exists as a tetramer in large protein complexes (Kurten et al., 2001). It 

was identified in a yeast two-hybrid screen as a partner for the core kinase domain of the 

EGFR. Yeast orthologue of SNX1 is Vps5p.  

Vps5p is a component of the yeast retromer, a protein complex required for 

retrieval of the CPY receptor Vps10p from prevacuolar endosomes to the late-Golgi. 

Alongside Vps5p, the yeast retromer comprises Vps17p, Vps26p, Vps29p and the cargo 

selective subunit, Vps35p (Seaman et al., 1998; Nothwehr et al., 2000). Similarly to its 

yeast homologue SNX1 was found to be part of mammalian retromer.   

Mammalian retromer is involved in mediating endosome-to-trans-Golgi-network 

retrograde transport of the cation-independent mannose-6-phosphate receptor. Together 

with SNX1 and SNX2, SNX5 and SNX6 have recently been proposed to be part of the 

retromer (Wassmer et al., 2007).  

Since SNX1 was discovered as an interaction partner of EGFR, it was proposed 

that it functions in retrieving this receptor.  SNX1 was found to associate with the sorting 

endosome (Cozier et al., 2002), from where it was suggested to increase the degradative 

sorting of the EGFR through an unknown mechanism. EGFR degradation is enhanced in 

cells overexpressing SNX1. Deletion mutants of SNX1 block EGFR degradation and fail 
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to inhibit receptor endocytosis (Kurten et al., 1996; Zhong et al., 2002). SNX1 interacts 

with hepatocyte growth factor (HGF)-regulated tyrosine-kinase substrate (HRS). 

HRS is a FYVE-domain-containing protein that is localized to early endosomes 

and is a prominent target for phosphorylation by various receptors, including the EGFR 

(Raiborg et al., 2002). HRS and SNX1 compete for the same binding site on the EGFR, 

and overexpression of HRS inhibits ligand-induced degradation of the EGFR, which 

indicates that HRS might modulate lysosomal trafficking of the receptor by sequestering 

SNX1 (Chin et al., 2001).  Recent studies demonstrated that both SNX1 and SNX2 are 

involved in regulating lysosomal sorting of internalized EGFR, but neither protein is 

essential for this process (Gullapalli et al., 2006). SNX1 interacts with several other 

members of the receptor tyrosine kinase family, including the PDGFR and the insulin 

receptor (IR). In addition, SNX1 co-immunoprecipitates with the long form of the leptin 

receptor. Leptin receptor is a cytokine receptor that signals through the activation of 

Janus tyrosine kinases and transferrin receptors (TFR). These are receptors that 

internalize and recycle constitutively (Haft et al., 1998; Dixon et al., 2002). SNX1 

interacts also with HRS (Chin et al., 2001) and enterophilin-1 (Pons et al., 2003). 

Evidences for SNXs being involved in the trafficking and signalling of GPCRs 

present special interest. Heydorn et al.  determined in in vitro experiments that SNX1 

interacts with at least 10 different GPCRs (Heydorn et al., 2004). The ability of SNX1 to 

traffick seven trans – membrane domain receptors was confirmed by Gullapalli et al. 

(2006). They demonstrated that SNX1 is important for the lysosomal degradation of 

PAR1. They also established that this function is independent of the retromer. SNX2 

which usually dimerizes with SNX1, is not essential for lysosomal sorting of PAR1, but 
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rather can regulate PAR1 degradation by disrupting endosomal localization of 

endogenous SNX1 when ectopically expressed (Gullapalli et. al., 2006). This study 

represents a great value for our research project, as this is the very first evidence for the 

participation of SNX member in trafficking of PARs.    

3.1.1.2 SNX2 

  SNX2 and SNX1 share sixty-three per cent sequence identities and have the 

same localization in the cells (Dixon et al., 2002). Similarly to SNX1, SNX2 can 

oligomerize with itself and form heteromeric complexes with SNX1, SNX4 and proteins 

of the retromer complex. Analogous to SNX1, both SNX2 and SNX4 interact to different 

degrees with several receptors, including the EGFR, PDGFR, IR and the long form of the 

leptin receptor (Dixon et al., 2002). Gullapalli et al. determined that SNX2 plays a more 

important role in lysosomal sorting of EGFR (Gullapalli et al., 2004). Also we mentioned 

above that SNX2 has a role in the trafficking of PAR1 (Gullapalli et. al., 2006). Unlike 

SNX1, however, SNX2 does not interact with the TFR, which indicates different binding 

specificities. Despite the high sequence identity that is shared between their PX domains 

(70%), the SNX2 PX domain binds preferentially PtdIns(3), but not PtdIns(4,5) (Dixon et 

al., 2002; Zhong et al., 2002). 

4. Trafficking of PAR2 

As we mentioned before, the proper internalization and degradation of PAR2 has 

great importance for its role in the cellular signalling. Several studies have been devoted 

to understanding this process.  Dery et al. (1999) explored the role of β – arrestins in 
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PAR2 endocytosis. β – Arrestins mediate uncoupling and endocytosis of certain 

neurotransmitter receptors, which are activated in a reversible manner. They examined 

for the first time the role of β – arrestin1 for the subcellular distribution of PAR2. Their 

results showed that β - arrestins mediate endocytosis of PAR2 and aid in uncoupling of 

PARs (Dery et al., 1999). More recently Roosterman et al. evaluated the contribution of 

Rab5a and Rab11a to the trafficking and signalling of PAR2.  They found that Rab5a is 

required for PAR2 endocytosis and resensitization, whereas Rab11a contributes to 

trafficking of PAR2 from the Golgi apparatus to the plasma membrane (Roosterman et 

al., 2003). However there are still uncertainties for PAR2 intracellular trafficking, and 

how it impacts the receptor signalling.    

5. Conclusion 

Protease – Activated Receptors are a group of G – protein coupled receptors 

which have been intensively studied during the last 20 years. Recent investigations have 

demonstrated their essential role in numerous physiological processes. A member of this 

group, PAR2 has distinguished itself with its important functions in cardiovascular 

system, inflammation and tumorigenesis. Lately investigations have been devoted to 

understand PAR2 signalling pathways. New directions for GPCRs signalling from the 

cell nucleus have been established. Until now PAR2 has not been studied for such 

alternative signalling.  Mechanisms of the nuclear trafficking of GPCRs remain unclear.  

Sorting Nexins are large and diverse group of transporting proteins. The majority 

of SNX members are still not well studied.  Some of them have a role in trafficking of 

various receptors. Until recently it was not clear if SNXs participate into the trafficking of 
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GPCRs. In vitro studies discovered that SNX1 interacts with at least 10 GPCRs. Lately it 

was discovered that SNX1 plays a key role into lysosomal degradation of PAR1 (the 

closest relative of PAR2). Logically it can be suggested that SNX1 and probably other 

members of the family may be involved in PAR2 intracellular trafficking. 
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1. Hypothesis: 
 

 
  Recent studies demonstrated that the G – protein coupled receptors can traffic 

from the plasma membrane to the nucleus.  

   We propose that two populations of PAR2 exist; the first is localized at the plasma 

membrane, the second at the nucleus. We hypothesize that the nuclear PAR2 population 

originates through translocation of PAR2 initially localized at the cell membrane. We 

hypothesize that the two distinct populations of PAR2 play different roles in signalling. 

We propose that members of Sorting Nexin family are involved in the intracellular 

trafficking and signalling pathways of PAR2.  SNX1 and SNX2 are the most studied 

members of the group and they have been shown to participate in the intracellular 

trafficking of PAR1. Thus they could be suitable candidates for PAR2 trafficking too. 

SNX11 is a relatively not well studied member of SNX family. We hypothesize that it, 

like most members of its group, participates in trafficking of various proteins and 

receptors. 

 

2. Goals: 

1. To investigate the role of intracellular trafficking of PAR2 subsequent to its 

stimulation. 

To evaluate the role of SNX1, SNX2 and SNX11 in nuclear trafficking of PAR2 and to 

establish the physical and functional components of this partnership. 

 



Materials and Methods  25 
……………………………………………………………………………………………… 

 

 

 

 

 

 

 

 

III. MATERIALS AND METHODS 



Materials and Methods  26 
……………………………………………………………………………………………… 

 

1. Materials 

1.1 Chemicals and Reagents 

  

- Dulbecco’s Modified Eagle’s Medium (DMEM) and fetal bovine serum (FBS) were 

purchased from Wisent Inc. (St-Bruno, QC, Canada).  

- Trypsin, TPCK treated was purchased from Worthington Biochemical Corporation 

(Lakewood, NJ, USA).  

- SNX clones: Murine full-length SNX11 was cloned from embryonic murine heart 

cDNA.  

- mycSNX1 and mycSNX2 clones were obtained through collaboration with Dr. J. Trejo 

(University of Chapel Hill, North Carolina, USA). 

- PMSF (phenylmethanesulfonylfluoride), Aprotinin, Pepstatin A, Leupeptin, Na3VO4, 

NaF, DAPI, Igepal CA 630(NP-40) were purchased from Sigma-Aldrich (Oakville, ON, 

Canada).  

- PEI (polyethylenimine) cat. № 23966 (Polyscineces, Warrington, PA, USA); T4 

Polynucleotide Kinase, ATP, dNTP, Pfu polymerase, Calf Intestine Alkaline Phosphatase 

(CIAP), T4 ligase, Taq polymerase, and all restriction enzymes used in current work were 

purchased from Fermentas (Burlington, ON, Canada).  
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1.2 Antibodies  

 

- Anti- actin cat. № sc-1616, anti- DsRed cat. № sc-32233, anti- GAPDH cat. № 

sc-33354, and anti- GFP cat. № sc-8334 were purchased from Santa-Cruz Biotechnology 

Inc. (Santa Cruz, CA, USA). 

  - Anti- flag cat. № F 1804 and anti- GST cat. № G 1660 were purchased from 

Sigma-Aldrich (Oakville, ON, Canada). 

  - Anti- His cat. № sc-803, anti-c-Myc cat. № sc-40 and anti-PAR2 cat.  № sc-

13504 were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA).  

- Anti- CD49e cat.  № 610634, alternate name – Integrin alpha 5, anti- SNX1 cat.  

№ 611482 and anti-SNX2 cat.  № 611308 were purchased from BD Biosciences 

(Mississauga, ON. Canada). 

- Anti – SNX11 was designed specially for Dr. Andelfinger’s laboratory from 

Open Biosystems (Huntsville, AL, USA). Epitope: CGWAQEERQSTSHLAKGDQ. The 

epitope was chosen such to be out of the Phox domain, to avoid cross-reactivity with 

other SNX family members. The chosen epitope allows that the antibodies identify rat, 

mouse and human SNX11. 

- Anti- lamin B Receptor cat. № 1398-1 was purchased from Epitomics 

(Burlingame, CA, USA).   
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2. Methods 

2.1 Phenol/Chloroform/Isoamyl alcohol (PCI)) protocol for DNA purification 

and precipitation 

 

 To obtain PCI emulsion, 25 parts of phenol were added to 24 parts of chloroform 

and one part of isoamylalcohol.  Equal volume of PCI was added to the DNA aqueous 

phase (obtained by using Plasmid miniprep protocol), mixed and vortexed vigorously. 

The emulsion was spun at 10 000 g for 2 min, the upper aqueous phase was removed into 

a new centrifuge tube and mixed with equal volume of chloroform. The emulsion was 

vortexed vigorously and spun at 10 000 g for 1 min. The aqueous phase was removed into 

a new centrifuge tube and the chloroform purification step was repeated. Upper aqueous 

phase was removed into a new centrifuge tube and a volume of 3 M Sodium Acetate 

equal of 1/10 volume of the initial PCI volume  and three volumes of 95 % v/v ethanol 

were added to the aqueous phase. The solution was mixed and incubated for 3 hours at -

20 °C. The DNA solution was centrifuged at 10 000 g for 30 min and the supernatant was 

discarded and 0.5 ml of  70 % v/v ethanol was added to wash the pellet. The DNA pellet 

was incubated for 30 min and spun at 10 000 g. The supernatant was discarded and the 

precipitated DNA pellet was air dried for 5 min. The DNA was dissolved in an 

appropriate volume of water.  
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2.2 Electroporation protocol  

 

 A micro centrifuge tube and a 0.1 cm electroporation cuvette were placed on ice 

and DH10B cells (Invitrogen Corporation, Burlington, ON, Canada) were thawed on ice. 

Forty μl of the electrocompetent cell suspension were transferred in the cold micro 

centrifuge tube and mixed well with 1 to 2 μl of DNA corresponding to amount of 1 mcg 

of DNA (DNA should not be in a low strength buffer such as a Tris-EDTA buffer). All 

manipulations were performed on ice.  The cell suspension was transferred to a cold 

electroporation cuvette placed in the chamber slide where one pulse was applied. Bio-Rad 

MicroPulser was set to “Ec1” when using 0.1 cm cuvette. Five hundred µl of warm LB 

(bacterial medium) (37 °C) was then gently mixed with the suspension in the cuvette. The 

cell suspension was transferred to a 17 x 100 mm polypropylene tube and was shaken at 

37 °C for 1 hour at 225 rpm. 

 

2.3 Preparation of glycerol stocks  

 

 Five hundred μl of bacterial culture (prepared as per protocol 2.2) were added to 

166.66 μl of 60% v/v sterile glycerol and mixed well. The glycerol stocks were kept at  

-80 ° C for long term storage.  
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2.4 Plasmid miniprep protocol 
 
 

A GenEluteTM Plasmid Miniprep Kit (Sigma-Aldrich, Oakville, ON, Canada) was 

used. 

The rest of bacterial culture (3.5 ml) from which 500 μl was used in 2.3 was 

pelleted at 12 000 g for 1 minute. The pellet was resuspended in 200 μl Resuspention 

buffer.  Cells were vortexed thoroughly until a homogeneous suspension was obtained. 

Resuspended cells were lysed by adding 200 μl of the Lysis Solution. The contents were 

immediately mixed by gentle inversion (6–8 times) until the mixture became clear and 

viscous. The cell debris were precipitated by adding 350 μl of the Neutralization/Binding 

Solution. The tube was gently inverted 4–6 times. The cell debris were pelleted by 

centrifuging at 12 000 g for 10 minutes. GenElute Miniprep Binding Column was 

inserted into a microcentrifuge tube. Five hundred μl of the Column Preparation Solution 

were added to each miniprep column and centrifuged at 12 000 g for 30 seconds to 1 

minute. The flow-through liquid was discarded. The cleared lysate was transferred to the 

column and centrifuged at 12 000 g for 30 seconds to 1 minute. The flow-through liquid 

was discarded. Seven hundred and fifty μl of the diluted Wash Solution were added to the 

column and centrifuged at 12 000 g for 30 seconds to 1 minute. The flow-through liquid 

was discarded, and the column was centrifuged again at 20 000 g for 1 to 2 minutes 

without adding any additional Wash Solution to remove excess ethanol. The column was 

transferred to a fresh collection tube and 100 μl of Elution Solution were added. 
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2.5 Yeast-two- hybrid assay (Y2H) 

 

MatchMaker GAL4 Two-hybrid System 3 (Clontech, Palo Alto, CA, USA): a 

full-length SNX11 was cloned as bait into pGBKT7 downstream of the DNA-binding 

domain of GAL4. The vector was transformed into AH109 competent yeast cells. A lack 

of protein toxicity or transcriptional activation in AH109 cells was assayed in culture and 

protein expression confirmed by Western blot using an anti-c-Myc antibody.  

Transformed AH109 cells were mated with strain Y187 yeast pre-transformed with a 

Matchmaker 17 day mouse embryo library (Clontech, Palo Alto, CA, USA). Preys 

identified in this screen include cardiac actin, gamma actin, myosin binding protein C 

(slow type), Collagens 1A2, 5A1, 11A1, PLOD1 (dioxygenase involved in collagen 

synthesis), LASP1 (organizes actin filaments, involved in cytoskeleton and cell 

migration), and ITM2A (chondrogenic differentiation marker) (the results of 2.5 are Dr. 

Gregor Andelfinger`s unpublished data). 

 

2.6 In vitro translation of prey clones  

 

Ten selected prey clones were translated in vitro using the MagneGST system 

(Promega, San Luis Obispo, CA USA). Their protein interactions with GST controls and 

GST-SNX11 were confirmed by GST pull-down assay. (Dr. Gregor Andelfinger’s 

unpublished data). 
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 2.7 RNA extraction from cells and tissues. 

 

           RNA from tissues and cells was isolated using Trizol (Invitrogen Corporation, 

Burlington, ON, Canada). The cells were lysed directly in the culture dish (10 cm) by 

adding 2 ml of Tryzol LS Reagent and mixed using a pipette. The homogenized samples 

were incubated for 5 min at RT in order to permit complete dissociation of nucleoprotein 

complex from the RNA. The sample was transferred into two tubes of 1 ml and 0.2 ml of 

chloroform was added to each of the tubes and shaken vigorously by hand for 15 seconds. 

The samples were incubated at RT for 15 minutes and centrifuged at 12 000 g for 15 

minutes at 4 °C. The aqueous phase containing the RNA was transferred to a clean tube, 

precipitated with 0.5 ml isopropyl alcohol and incubated at RT for 10 minutes. The 

samples were centrifuged at 12 000 g for 15 minutes at 4 ° C. The supernatant was 

removed and the RNA pellet was washed with 1 ml 75 % v/v ethanol. Samples were 

vortexed, centrifuged at 7 500 g for 5 minutes at 4 ° C, and the RNA pellet was briefly air 

dried.  The RNA pellet was dissolved in RNase free water and incubated for 10 min at 

55-60°C. 

  

2.8 First strand cDNA synthesis 

First strand cDNA was synthesized following manual protocol of Super Script TM 

II Reverse Transcriptase (Invitrogen Corporation, Burlington, ON, Canada). 
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2.9 Reverse-transcription polymerase chain reaction (RT-PCR) 

 

For RT-PCR, primers were designed and synthesized as follows:  

 

Primer name Sequence 5’-3’ 

SNX11_F GTGGCTGAGAAAGCAGCTACAGA 

SNX11_R TTTGCAGGAATAGG TGCAACTGGC 

iNOS_F GTGGAAACGGTAACAAAGGA 

iNOS_R TGCCGTTGTTGGTAGAGTAA 

tie2_F CCCCAACATCATCAACTTC 

tie2_R TCAGGTACTGCATGCCATTG 

PPAR1_F TGCTGTGGGGATGTCTCATA 

PPAR1_R TTGGGCTCCATAAAGTCACC 

 

Quantum RNATM universal 18S Standard primers (Ambion, Austin, TX, USA) were 

used as internal standard references. Taq DNA polymerase was used for the RT-PCR 

reactions. For the PCR cocktail 1μl cDNA, 1 μM of each primer, 1 μM dNTP, 2.5 u Taq, 

2.5 mM MgCl2, 1x Taq buffer was used. The PCR amplification was performed as initial 

denaturation at 94°C for 2 minutes; 35 repetitive cycles including 94°C for 45 seconds, 

primer annealing at 62°C for 45 seconds, extension at 72°C for 1 minute and 72 °C for 10 

minutes as final extension step. 
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2.10  Cloning 

In order to study the intracellular localization of SNX11, clones with different 

tags were constructed. Murine SNX11 was cloned in EGFP and DsRED vectors 

(Invitrogen, Burlington, ON, Canada). These constructs contain a chromatophore group 

and allow overexpression and visualization of the intracellular distribution of the protein 

of interest, under fluorescent or confocal microscopy. 

 Blunt-end cloning was performed using SmaI enzyme with restriction site 5'-C C 

C^G G G-3'. A 3 µg plasmid DsRed and EGFP digestion was performed through 

incubation for 5 hours at 37 °C in buffer Tango containing SmaI – 25 units in final 

volume of 100 μl. Consequently dephosphorylation of the digested plasmids (100 μl) was 

carried out using 1 unit CIAP in final volume of 250 μl buffer CIAP.  

 Forward and reverse primers were 5’ phosphorylated: forward primer   5’GCC 

ACC ATG GGC TTG TGG TAT AGG ATG 3’; reverse primer 5’ GGT CTA TAG AGT 

GAG TTC CAG GAC AGC 3’.  To 1 μM of each primer, 1 x buffer A, 5 μM ATP, 1x T4 

polynucleotide kinase were added. The reaction was performed in a 10 μl final volume at 

37 °C for not more than 30 minutes. 

  10 µM TOPO-mSNX11 was used as a template; 10 mM phosphorylated primers 

were mixed with: 1μM dNTP; 1x buffer Pfu (Fermentas, Burlington, ON, Canada) with 

MgSO4; Pfu – 2.5 units in final volume of 100 μl. The PCR amplification was performed 

as initial denaturation at 95 °C for 5 minutes, 35 repetitive cycles of denaturation at 95 °C 

for 30 seconds, primer annealing at 60 °C for 30 seconds and extension at 72 °C for 2 

minutes and 72 °C for 10 minutes as final extension step.  
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The plasmids and the PCR product of SNX11 were extracted by PCI extraction (2.1) and 

loaded on an agarose gel to verify the quality and the concentration. The ligation reaction 

was performed overnight at 16 °C in a molar ratio of insert / plasmid 5:1, 0.5 unit T4 

ligase, 0.25 unit SmaI, 1x ligase buffer, 0.5 x PEG 4000 were present in final volume of 

20 μl.  

  On the next day, DH10B (E. coli) cells were transformed by electroporation (2.2). 

The cells were spread on a petri dish with agar medium and an appropriate antibiotic for 

selection was used. Positive and negative controls were set up. As a positive control we 

used transformation of pure plasmid (DsRed or EGFP, directly taken from maxi prep and 

diluted 1/1000 or 1/10 000). Two negative controls were established: the first contained 

digested plasmid without insert and the second control contained only competent cells 

without ligation mixture. The two controls were used for transformation of  DH10B cells. 

All the dishes were incubated overnight at 37 °C. On the next day, the plates were 

checked for the presence of single colonies and the absence of such colonies in the 

negative controls. From each dish several colonies were picked and were processed for 

analysis. With a single tip, colonies were picked up and the tip was dropped into a 

polypropylene sterile tube with LB medium and an appropriate antibiotic selection. The 

bacteria were incubated overnight at 37 °C with shaking at 225 rpm. Next day a glycerol 

stock (2.3) was prepared for each sample and miniprep (2.4) was performed (Sigma kit, 

Sigma - Aldrich, Oakville, ON, Canada).  

In order to confirm the presence of the insert the isolated plasmid DNA was 

digested with the appropriate enzymes.  In a case of a positive result after verifying them 

on an agrose gel, the DNA was sent out for sequencing to confirm the nucleotide 
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accuracy of the construct. In case of successful result we proceeded to maxi-prep 

(Qiagen, Mississauga, ON, Canada).  

 

2.11 Cell cultures 

 

  HEK293 cells were grown in DMEM with sodium pyruvate 110 mg/L, penicillin 

G 100 U/ml, streptomycin sulphate 100 μg/ml and 10% FBS. Cells were serum - starved 

for 6 hours prior to stimulation with Trypsin. The HEK 293 EGFP-PAR2, EGFP-SNX11 

and DsRed-SNX11 stable cell lines were grown in DMEM complete medium with 200 

μg/ml G 418  for selection. 

 

2.12 Establishing knockdown stable cell lines.  

  

The following vectors were used for establishing knockdown stable lines: 

- human GIPZ LENTIVIRAL shRNAmir SNX1 V2LHS_153303 

- GIPZ LENTIVIRAL shRNAmir SNX2V2LHS_153307 

- human GIPZ LENTIVIRAL shRNAmir SNX11 V2LHS_65515 

- Non-silenced LENTIVIRAL shRNAmir negative control – RHS 4346 

 The lentiviral constructs were purchased from Open Biosystems (Huntsville, AL, USA). 

The vectors contain GFP tag which allows measurement of transfection and transduction 

efficiency. 

On day 0, 10 x 104 cells per well in a 12 well plate were plated using full medium 

(with 10% FBS, 100 U/ml penicillin G and 100 μg/ml streptomycin) and incubated 
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overnight. On day 1, transfection was performed using “PEI Transfection Protocol”. In a 

sterile tube 100 μl of warm DMEM free of serum, pyruvate and antibiotics, were added; 1 

μg of DNA was transfected and mixed by pipetting.  In another sterile tube, 100 μl of 

warm DMEM free of serum, pyruvate and antibiotics was mixed by pipetting with 8 μl of 

PEI. PEI solution was added to DNA solution, mixed by pipetting, and incubated 15 

minutes at RT. After that, medium from cell culture was aspirated and replaced with fresh 

warm DMEM free of serum, pyruvate and antibiotics. Transfection solution was added to 

cell culture, mixed by gentle swirling and incubated at 37° C in 5% CO2. After 6 hours 

the medium was replaced with fresh warm complete DMEM without pyruvate.  

On day 2 the efficiency of the transfections was verified under fluorescence 

microscope (transfected cells fluorescence in green). A puromycin efficiency curve was 

established and the concentration of 2 μg/ml was determined as the most appropriate.  

 On day 3 the selection with puromycin 2 μg/ml was started. Every second day the 

rate of GFP-positive cells was examined. When cells reached more than 90% of 

transfection, the concentration of puromycin was reduced to 1 μg/ml. The stable level of 

transfection was maintained constantly with 1 μg/ml puromycin. 

The same procedure was performed to generate the EGFP – SNX11 HEK293 

stable line. In this case the antibiotic for selection was 400 μg/ml G 418.  Once the stable 

line was established, 200 μg/ml G 418 was used. 
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2.13 Immunoblotting  

 

For the purpose of Immunoblot analysis the following buffers were used:  

-  Laemmli  (0.0625 M Tris-base, pH 6.8; 10 % Glycerol; 2 % SDS;  

14.4 M 2 – β – mercaptoethanol, 0.01 % bromphenol blue) added 1/6 of the final 

volume of protein sample. 

- Running buffer  (123.82 mM Tris-base, 1M Glycine, 5 % SDS) diluted 1/5 in water  

to the final volume. 

- Transfer buffer (25 mM Tris-base, 192 mM Glycine, 20 % (v/v) Methanol ). 

-  TBS-T1 pH 7.5 (199.77 mM Tris-base, 1.5 mM NaCl, 1 % Tween 20) diluted 1/10 

in water to the final volume. 

- Separation gel: 0.375 mM Tris pH 8.8, 0.1 % SDS, Acrylamide / bis-acrylamide  

(Bio-Rad, Mississauga, ON, Canada), 10 %, 0.05 % ammonium persulfate (Bio-

Rad), 5 % TEMED (Invitrogen Corporation, Burlington, ON, Canada). 

- Stacking gel: 0.125 mM Tris pH 6.8, 0.1 % SDS, 4 % Acrylamide, 0.05 % 

ammonium persulfate, 5 % TEMED. 

Extracted proteins were quantified by the Bradford method (Bio-Rad Protein 

Assay, Bio-Rad, Mississauga, ON, Canada). Equal amounts of protein fractions (20 µg) 

were resuspended in sample buffer for SDS-PAGE electrophoresis and loaded on 10% 

Acrylamide gels. Protein standard was loaded on each gel. Electrophoresis was conducted 

for 1 hour at 150 V (KaleidoscopeTM, Bio-Rad, Mississauga, ON, Canada). The proteins 

from the gels were transferred onto nitrocellulose membranes (Trans Blot Protein Assay, 

Bio-Rad, Mississauga, ON, Canada) at 100 V for 1 hour (two gels apparatus, Bio-Rad) or 
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30 min (four gels apparatus, Bio-Rad). Furthermore, membranes were incubated in 5% 

milk in TBS-T for 1 hour at RT. Each washing step was performed in TBS-T for 5 

minutes and was repeated three times. The membranes were incubated overnight at 4°C 

with the appropriate primary antibodies. On the next day the membranes were washed 

three times in TBS-T buffer, the first wash for 15 minutes followed by two washes of 5 

minutes each. The membranes were incubated at RT with the appropriate secondary 

antibodies for 1 hour. Membranes were washed again three times in TBS-T buffer, the 

first wash for 15 minutes followed by two washes of 5 minutes each. Membranes were 

treated with Chemiluminescence reagent Plus (Western lightingTM, PerkinElmer, 

Woodbridge, ON, Canada) and exposed on Bioflex scientific imaging films (Clonex 

Corp, Markham, ON, Canada) at different time points in order to reach optimal clearance 

of the picture. The results were analyzed by comparing the molecular size of the obtained 

band with the reference standard.  

All the membranes were reblotted for actin using anti-actin antibody which was 

used as a loading control. The intensity of the bands was analyzed on Quantity OneTM 

software (Bio-Rad, Mississauga, ON, Canada). Densitometry protein data were expressed 

as the ratio to actin signal. 

 

 2.14 Subcellular fractionation and trypsin stimulation 

The subcellular fractionations were performed using two different protocols with 

similar efficiency.  
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Protocol I 

Cells (sixty to seventy per cent confluence) were starved in DMEM medium 

without FBS for 6 hours for cell synchronization (reach phase G0/quiescence). The 

synchronized cells were stimulated with 20 nM Trypsin or 20 μM SLIGKV for 30 

minutes. Consequently subcellular fractionation was performed. The cells were harvested 

in a solution of PBS/1mM EDTA and centrifuged for 5 minutes at 500 g, washed in cold 

PBS and centrifuged again. The pellet was resuspended in 1 ml hypotonic buffer (10 mM 

Hepes pH 8.0, 1,5 mM MgCl2, 10 mM KCl, 0.5 mM DTT) with proteinase inhibitors (1 

mM PMSF, 1 μg/ml Leupeptin, 1 μg/ml Aprotinin, 1 μg/ml Pepstatin, 1mM Na3VO4, 

1mM NaF). The pellet was incubated for 15 minutes to allow cells to swell up. One 

hundred μl Nonidet P-40 was then added to the cell suspension and mixed vigorously for 

10 seconds. The lysate was centrifuged at 12 000 g for 3 minutes at 4°C. The supernatant 

(cytosolic and membrane fractions) was collected in a fresh pre-chilled tube. The nuclear 

pellet was resuspended in 175 µl ice-cold nuclear extraction buffer I (20 mM Hepes  pH 

8.0; 25 mM MgCl2; 25% glycerol; 100 mM NaCl; 0.5 M EDTA; 5 mM DTT) and the 

cocktail of proteinase inhibitors was added. Subsequently, the nuclei suspension was 

vortexed vigorously for 30 seconds and shaken on a turn-and-over shaker at 4°C for 30 

minutes followed by centrifugation at 12 000 g for 15 minutes. The supernatant was 

collected as a nuclear extraction fraction and transferred in a new pre-chilled centrifuge 

tube. 
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Protocol II 

  Cells from two 15 cm dish cells at approximately eighty per cent confluence were 

starved for 6 hours in DMEM medium without FBS. Following stimulation with 20 nM 

Trypsin or 20 μM SLIGKV for 30 minutes cells were harvested by scraping in cold PBS. 

The cell suspension was transferred into two 15 ml tubes, centrifuged for 5 minutes at 

2000 g, resuspended and washed two times in cold PBS.  The cell pellet was resuspended 

in 4 ml ice cold nuclear extraction buffer II (20 mM HEPES pH 7.5, 20 mM NaCl, 3 mM 

MgCl2, and 300 mM Sucrose) and the cocktail of protease inhibitors was added to the 

buffer immediately before use.  The cell suspension was homogenized with a Teflon 

pestle for 20-40 minutes. Five μl of the cell suspension were pipetted, mixed with 10 μl 

0.4% Trypan Blue stain and 35 μl PBS. The sample was observed under the microscope 

for the presence of intact nuclei and complete lysis of the cells. After confirmation of 

successful cell lysis, the suspension was centrifuged at 700 g for 10 minutes to pellet the 

nuclear fraction. The supernatant, which is the non- nuclear fraction, was kept for further 

investigation. The nuclear fraction was resuspended in 2 ml of cold nuclear extraction 

buffer and 0.1 % Nonidet P-40 was added to the solution, which was kept on ice for 5 

minutes, washed twice with 2 ml nuclear extraction buffer and centrifuged at 800 g for 10 

minutes. At this stage, the isolated nuclei can be used for immunofluorescence, FACS 

studies or used for nuclear protein extraction.  

For the nuclear protein extraction, the nuclear pellet was resuspended in 100-200 

μl extraction buffer (40 mM Tris pH 7.4, 2 mM EDTA, 2mM EGTA, 300 mM NaCl, 

1mM Na3VO4, 2% Triton). Samples were shaken on a turnover shaker at 4°C for 30 



Materials and Methods  42 
……………………………………………………………………………………………… 

 

minutes and centrifuged at 12 000 g for 15 minutes. The supernatant contained the 

nuclear proteins.   

 

2.15 Protocol FACS (Fluorescence Activated Cell Sorting) 

HEK293 cells were grown in a 15 cm petri dish until they reached eighty per cent  

confluence. Subsequently the cells were transiently transfected with a FLAG – PAR2 – 

HA construct (generous gift from Dr. Nigel Bunnett, Roosterman et al., 2003). Twenty-

four hours post transfection, the cells were split into four 10 cm dishes. Forty-eight hours 

after transfection, the cells were starved for 6 h. Where applicable, 10 μM colchicine was 

added for 3 hours after 3 hours of starving. Cells were then treated with anti – Flag 

antibody (1: 200) for 15 minutes, the cell medium was changed and 20 μM SLIGKV was 

added for 30 minutes. Subsequently, intact nuclei were isolated and examined by FACS 

(BD LSR II Flow Cytometer).  

 

2.16 Immunofluorescence assay  

In order to determine the levels of co-localization between PAR2 and members of 

the SNX family, different cell lines were used:  

a) HEK293 

b) HEK293 EGFP - hPAR2 stable cell line. 

 HEK293 cells were transfected with EGFP – hPAR2 construct. The efficiency 

of the transfection was maintained with 200 μg/ ml G 418.  

c) HEK293 EGFP - mSNX11 stable cell line.  
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HEK293 cells were transfected with EGFP – mSNX11 construct. The efficiency 

of the transfection was maintained with 200 μg/ ml G 418.  

On the first day, cells were incubated with trypsin, and 60 000 cells were plated 

per well (12 well plate) on polylysine or collagen treated cover-slips. 

 On day two, cells with fifty to sixty per cent confluence were starved for 6 hours. 

The cells were separated in two groups: the first group was stimulated for 30 minutes 

with SLIGKV, and the second was not stimulated. Subsequently the medium was 

aspirated and cells were fixed with 4% paraformaldehyde for 20 minutes. The coverslips 

were washed three times with PBS for 5 minutes each time and were treated with 0.5 ml 

blocking buffer (90% PBS, 5% goat serum and 5% FBS) for 30 minutes; 0.1% Triton was  

then added. The Triton functions to permeabilise the plasma membrane and to allow the 

antibodies to penetrate. After 15 minutes the Triton was removed and the cells were 

washed three times for 5 minutes with PBS. The coverslips were then treated with the 

appropriate primary antibodies (SNX1 1/100 in blocking buffer, SNX2 1/100 in blocking 

buffer, GFP 1 / 100 in blocking buffer) and incubated overnight at 4 °C.  

On the next day coverslips were washed 3 times with PBS for 5 minutes, incubated for 

one hour at RT, after addition of secondary antibodies Alexa Fluor 594 (Invitrogen 

Corporation, Burlington, ON, Canada) and washed 3 times with PBS for 5 minutes. 

Nuclei staining was performed with DAPI 1 / 1000 in PBS for 1 minute and washing 3 

times with PBS. Coverslips were mounted on a microscope glass using 15 μl mounting 

buffer ProLong (Invitrogen Corporation, Burlington, ON, Canada). The same procedure 

was followed for isolated intact nuclei. The images were obtained with LSM 510 Zeiss 

microscope at 63x magnification.      
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 2.17 Co-immunoprecipitation 

For the co-immunoprecipitation assays we used the protocol provided by the 

manufactoring company. Immunoprecipitation kit (Protein G) (Roche Applied Science, 

Laval, QC, Canada) was used. One petri dish with cells was scratched, washed and the 

cells were homogenized using a Dounce homogenizer. The cell suspension was 

centrifuged at 12 000 g for 10 minutes. The supernatant was carefully transferred to a 

fresh microcentrifuge tube. Five hundred μg protein G – agarose suspension was added to 

the sample and the mixture was incubated for 3 hours at 4 ºC on a rocking platform. 

Agarose beads were pelleted at 12 000 g for 20 seconds. The supernatant was transferred 

to a new tube, 2 μg of anti - PAR2 or anti – His antibodies (CTL Ig G – 2 μg) were 

added. Five hundred μg protein G – agarose suspension was added and the mixture was 

incubated for 3 hours at 4 º C on a rocking platform. The agarose – antibody – antigen 

complex was collected at 12 000 g for 20 seconds,   resuspended in 1 ml washing buffer I 

and incubated for 20 minutes  at 4 º C on a rocking platform. The last step was repeated 

and the complex was collected as described before. The complex was resuspended in 1 

ml washing buffer II and the procedure was repeated as described above for washing 

buffer I. Finally the complex was washed with washing buffer III, pelleted and the 

washing was repeated. The pellet was resuspended in 75 μl gel loading buffer, the protein 

complex was denatured at 100 ºC for 3 minutes and protein G – agarose was removed at 

12 000 g for 20 seconds. The supernatant was transferred in a new tube and used for SDS 

– electrophoresis and consecutive Western blot study.  
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2.18 Statistical analysis  

 The statistical analysis was performed using GraphPad Software (La Jolla, CA, USA).  

One-way analysis of variance (ANOVA) test was performed for the calculations of the P 

values. If the results from the ANOVA test were significant than multiple comparison 

tests were performed. In some cases we used Bonferroni test to determine the differences 

between all groups and in other cases we used Dunnet test to compare with the control 

group.   The results of the ANOVA are presented in an ANOVA table, followed by the F 

statistic and associated P value. If the P value is less than 0.05, then the hypothesis is 

accepted that the means of at least two of the subgroups differ significantly.  
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1. Expression analysis and subcellular localization of PAR2 

 

The first aim was to visualize the subcellular localization of PAR2 using 

fluorescence microscopy and confocal microscopy techniques. PAR2 antibodies on 

HEK293 cells were used to determine PAR2 expression (Figure 3). The basic levels of 

PAR2 in native cells and non – stimulated condition were low. For more precise results 

and visualization of PAR2 intracellular localization, we used a stable overexpression 

system with GFP tag (Figure 4). The images of HEK293 – PAR2 stable line cells with 

confocal microscope demonstrated as well the translocation of PAR2 from the plasma 

membrane to the endosomes and perinucleus upon activation of PAR2 receptor. In a 

detailed study, where a marker for the nuclear membrane -Lamin B receptor was used, 

we discovered co-localization of PAR2 and Lamin B receptor, which suggested, that part 

of the cell membrane PAR2 is also translocated to the nucleus (Figure 4).  

 

The initial images demonstrated that PAR2 is localized preferentially in the 

plasma membrane, however a small population of endogenous PAR2 was observed in 

perinucleus and in the nuclear membrane.  
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Figure 3: Intracellular distribution of native PAR2 in HEK293 cells 
 
 

The cells were grown on glass coverslips until they reached sixty – seventy per 

cent confluence, starved for 6 hours and fixed with 4 % paraformaldehyde for 20 min. 

Consequently they were treated with primary anti – PAR2 antibody diluted 250 times in 

PBS buffer, and secondary antibodies in red, diluted 20 000 times in PBS buffer. The 

nuclei were visualized using DAPI staining. The images were taken on a Zeiss LSM 510 

confocal microscope at 63x magnification.     
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Figure 4: Internalization and nuclear translocation of PAR2 upon activation in 

HEK293 cells 

 

Stable HEK293 cell line transfected with PAR2-GFP was used. The cells were 

grown on glass coverslips until they reached sixty-seventy per cent confluence, starved 

for 6 hours and used either as unstimulated cells or cells stimulated with 20 μM SLIGKV 

for 30 minutes. Cells were fixed with 4 % paraformaldehyde for 20 minutes. Anti – 

Lamin B Receptor antibody was used to visualize the nuclear membrane. Nuclei were 

visualized with DAPI staining. Images were taken with a Zeiss LSM 510 confocal 

microscope at 63x magnification.      

Colours: 

Red: Lamin B receptor 

Blue: Nucleus 

Green: PAR2-GFP 

Orange: Overlay 

  

 

 

 

 

 

 

 



Results  50 
……………………………………………………………………………………………… 

 

 

PAR2-GFP 
stimulated

PAR2-GFP
stimulated

overlay

PAR2-GFP

PAR2-GFP
stimulated

LBR

nuclei

Phase contrast

PAR2-GFP
stimulated

PAR2-GFP
stimulated

PAR2-GFP 
stimulated

PAR2-GFP
stimulated

overlay

PAR2-GFP

PAR2-GFP
stimulated

LBR

nuclei

Phase contrast

PAR2-GFP
stimulated

PAR2-GFP
stimulated

 

 

 

 

 

 



Results  51 
……………………………………………………………………………………………… 

 

2. Agonist stimulation of PAR2 and Western blot analysis 

In order to confirm the results obtained from confocal microscope with Western 

blot we needed first to establish a technique to ensure that we could isolate pure nuclear 

fractions. It was necessary that our nuclear fraction did not contain any significant traces 

from other cellular fractions and especially from the plasma membrane fraction which is 

extremely rich in PAR2.  Once we had developed a reliable method for nuclear isolation 

(Figure 5) we were able to demonstrate significant augmentation of PAR2 in the nucleus 

fraction (Figure 6). In comparison with the control experiments (non-stimulated cells) 

and an actin loading control, a stable average pattern of twofold increased nuclear PAR2 

expression upon stimulation was observed (Figure 6). 
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Figure 5: Determining the purity of non-nuclear and nuclear cell fractions 

 

HEK293 cells were stimulated with 20 nM trypsin for 30 minutes. Subsequently, 

they were lysed and centrifuged in order to separate the different cellular fractions. 20 μg 

protein from each fraction were loaded on 10 % SDS gel for PAGE separation. The 

antibodies were diluted as follow:  250 times for Lamin B receptor, 500 times for 

GAPDH and 4000 times for Integrin α 5. The reaction with secondary antibodies was 

carried out with antibodies from the appropriate IgG species conjugated to Horseradish 

peroxidase, diluted 20 000 times in 1,5 % milk in TBS – T during  one hour at RT. 
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Figure 6: Translocation of PAR2 from the plasma membrane to the nuclear 

membrane upon stimulation with 20 nM trypsin in HEK293 cells 

 

HEK293 cells were stimulated with 20 mM trypsin for 30 minutes. Subsequently 

they were lysed and centrifuged in order to separate the different cellular fractions. 

Twenty μg proteins from each fraction were loaded on 10 % SDS – gel in order to 

separate the proteins by PAGE. Primary anti – PAR2 antibody was diluted 250 times in 

1,5 % milk diluted in buffer TBS – T and incubated 24 hours at 4 º C.  The reaction with 

secondary antibodies was carried out with antibodies from the appropriate species IgG 

conjugated to Horseradish peroxidase, diluted 20 000 times in 1,5 % milk in TBS – T 

during  one hour at RT. PAR2 appeared on the blot at 55 kDa, as two separate lines. The 

band over 55 kDa is unspecific (as shown on the specifications from the manufacturer). 
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3. Fluorescence-activated cell sorting analysis 

Western blot is not highly precise as a method for quantitative analyse. Therefore 

we used FACS (Fluorescence-activated cell sorting) technique. HEK293 cells were 

transiently transfected with a FLAG – PAR2 – HA construct. The cells were stimulated 

with 20 μM SLIGKV, which does not cleave the N – terminal upon stimulation and 

therefore leaves the antibody-labelled FLAG tag intact. Intact nuclei were isolated, and 

immunofluorescence assay against FLAG was performed. Subsequently the nuclei of 

stimulated and control cells were examined under FACS, and the results showed an 

approximately fivefold increase of PAR2 under stimulation with SLIGKV peptide. 

(Figure 7). 

PAR2 nuclear translocation was significantly decreased when blocking the 

intracellular trafficking with colchicine (Figure 7, Table 1).  

These observations confirm that PAR2 translocates from the plasma membrane to 

the nucleus upon SLIGKV stimulation. 
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Figure 7: Nuclear translocation of PAR2  

HEK293 cells were transiently transfected with FLAG – PAR2 – HA construct. 

48 hours post transfection cells were starved for 6 hours. Ten μM Colchicine was added 

for the last 3 hours of starvation. Subsequently, cells were treated with 200 times diluted 

anti – FLAG antibodies for 15 minutes and were stimulated with 20 μM SLIGLKV for 30 

minutes. Nuclear fraction was isolated and intact nuclei were examined on FACS for the 

intensity of fluorescence signal. All results were normalized to the untransfected portion.  
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Table 1: Statistical analysis of nuclear translocation of PAR2 

 One-way analysis of variance     
P value 0.0027      
P value summary **      
Are means signif. different? 
(P < 0.05) Yes      
Number of groups 4      
F 7.761      
R squared 0.6245      
       
ANOVA Table SS df MS    
Treatment (between columns) 52.02 3 17.34    
Residual (within columns) 31.28 14 2.234    
Total 83.29 17     
       
Bonferroni's Multiple 
Comparison Test 

Mean 
Diff. t 

Significant? 
P < 0.05? Summary  

Trypsin vs Vehicle -3.935 3.925 Yes **  
Trypsin vs Colchicine -1.369 1.365 No ns  
Vehicle vs Colchicine 2.566 2.714 No ns  
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4. iNOS and Tie2 genes activated by PAR2 expression 

   We aimed at identifying if there was any difference in the function of the two 

distinct PAR2 receptor populations in the plasma membrane and in the nucleus.  

We investigated the expression pattern of the genes iNOS and Tie2 which are 

known to be upregulated by PAR2. For this purpose, HEK293 cells were stimulated with 

20 μM SLIGKV for 30 min, and at the same time intracellular trafficking was 

unspecifically blocked with 10 μM colchicine. RNA extraction and RT-PCR on the genes 

of interest was then performed. PPARγ1 gene expression was used as a control. This is a 

nuclear receptor and it is not influenced by intracellular trafficking.  

 We observed that when the cells were stimulated with SLIGKV, Tie2 and iNOS 

nuclear expressions increased similarly. When we blocked intracellular trafficking with 

colchicine and stimulated with SLIGKV only Tie2 nuclear expression increased, whereas 

iNOS levels remained unaltered. These results revealed that iNOS is dependent on PAR2 

intracellular trafficking, whereas Tie2 is independent (Figure 8).  With the results 

described above we were able to confirm that nuclear sorting plays an important role in 

the signalling of PAR2. 
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Figure 8: Functional characterization of PPARγ1 iNOS, and Tie2 genes after PAR2 

internalization upon stimulation 

 

HEK293 cells were starved for 6 hours (in case of colchicine treatment – after the 

third hour of cell starvation, 10 μM colchicine was added for 3 hours). The cells were 

stimulated with 20 μM SLIGKV for 30 minutes. RT – PCRs were conducted. As a 

control PPARγ1 was used, which is a nuclear receptor whose expression is not dependent 

of intracellular trafficking. iNOS and Tie2 are genes whose expression is up regulated by 

PAR2.  18S housekeeping gene was used as a control for normalization. All results were 

normalized to 18S expression levels.   
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Table 2: Statistical analysis of functional characterization of PPARγ1 iNOS, and 

Tie2 genes after PAR2 internalization upon stimulation 

iNOS 

Table Analyzed Data 1     
       
One-way analysis of variance      
P value 0.0018     
P value summary **     
Are means signif. different? (P < 0.05) Yes     
Number of groups 4     
F 9.327     
R squared 0.6998     
       
ANOVA Table SS df MS   
Treatment (between columns) 2.648 3 0.8827   
Residual (within columns) 1.136 12 0.09465   
Total 3.784 15    
       
Dunnett's Multiple Comparison Test Mean Diff. q Significant P < 0.05 Summary 95% CI of diff 
Vehicle vs SLIGKV -0.8375 3.850 Yes ** -1.421 to -0.2539 
Vehicle vs Colchicine 0.0000 0.0000 No ns -0.5836 to 0.5836 
Vehicle vs Colchicine+AP 0.2300 1.057 No ns -0.3536 to 0.8136 

 

Tie2 

Table Analyzed Data 1     
       
One-way analysis of variance      
P value 0.0098     
P value summary **     
Are means signif. different? (P < 0.05) Yes     
Number of groups 4     
F 7.642     
R squared 0.7413     
       
ANOVA Table SS df MS   
Treatment (between columns) 2.455 3 0.8184   
Residual (within columns) 0.8567 8 0.1071   
Total 3.312 11    
       
Dunnett's Multiple Comparison Test Mean Diff. q Significant P < 0.05 Summary 95% CI of diff 
Vehicle vs SLIGKV -0.9357 3.502 Yes * -1.705 to -0.1662 
Vehicle vs Colchicine 0.0000 0.0000 No ns -0.7694 to 0.7694 
Vehicle vs Colchicine+AP -0.8713 3.261 Yes * -1.641 to -0.1019 
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PPARγ1 

Table Analyzed Data 1      
       
One-way analysis of variance     
P value 0.0485      
P value summary *      
Are means signif. different? (P < 
0.05) Yes      
Number of groups 4      
F 4.119      
R squared 0.607      
       
ANOVA Table SS df MS    
Treatment (between columns) 0.02272 3 0.007574    
Residual (within columns) 0.01471 8 0.001839    
Total 0.03743 11     
       

Dunnett's Multiple Comparison Test 
Mean 
Diff. q 

Significant? P < 
0.05? Summary 95% CI of diff 

Vehicle vs SLIGKV 0.05533 1.58 No ns -0.04549 to 0.1562 
Vehicle vs Colchicine 0 0 No ns -0.1008 to 0.1008 
Vehicle vs Colchicine +AP 0.1043 2.98 Yes * 0.003512 to 0.2052 
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5. SNX1 and SNX2  implication in PAR2 translocation to the nucleus 

 

In order to test the hypothesis that SNX1 and SNX2 are implicated in PAR2 

translocation to the nucleus, HEK293-EGFP-PAR2 stable line was used.  

Cells were stimulated with SLIGKV, while as a control we used unstimulated 

cells (Figure 9). The same method was employed for the isolated nuclei (Figure 10). The 

results showed that SNX1 and SNX2 co-localize with PAR2 (Figure 9) as expected from 

the data shown in literature about PAR1 (Wang et al., 2002). In this study the authors 

observed that PAR1 and endogenous SNX1 colocalize with EEA1-positive early 

endosomes. In our results the pattern of co-localization suggests probable spatial 

interaction in perinuclear zone and probably in endosomes (Figure 9). On the other hand 

no co-localization was detected at nuclear level (Figure 10). 
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Figure 9: Intracellular co-localization of PAR2 with SNX1 and SNX2  

 

A. PAR2 - GFP stable transfected HEK293 cells were grown on glass coverslips, 

starved for six hours, fixed with 4 % paraformaldehyde for 20 minutes, treated 

with anti – SNX1 antibodies diluted 200 times and DAPI stained to visualize the 

nuclei. Images were obtained on a Zeiss LSM 510 confocal microscope at 63x 

magnification.   

B. PAR2 - GFP stable transfected HEK293 cells were grown on glass coverslips, 

starved for six hours, fixed with 4 % paraformaldehyde for 20 minutes, treated 

with anti – SNX2 antibodies diluted 200 times and DAPIstained to visualize the 

nuclei. Images were obtained on a Zeiss LSM 510 confocal microscope at 63x 

magnification. 

Colours: 

Red: SNX1 (A); SNX2 (B) 

Blue: Nucleus 

Green: PAR2-GFP 

Yellow: Merged 
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Figure 10: Lack of nuclear localization of SNX1 and SNX2 

 

A. PAR2 – GFP stable transfected HEK293 cells were starved for 6 hours, and 

treated with 20 μM SLIGKV for 30 minutes. Nuclei were isolated, fixed with 4 % 

paraformaldehyde for 20 minutes, treated with anti –SNX1 antibodies diluted 100 

times and DAPIstained. Images were obtained on a Zeiss LSM 510 confocal 

microscope at 63x magnification.  

 

B. PAR2 – GFP stable transfected HEK293 cells were starved for 6 hours, and 

treated with 20 μM SLIGKV for 30 minutes. Nuclei were isolated, fixed with 4 % 

paraformaldehyde for 20 minutes, treated with anti –SNX2 antibodies diluted 200 

times and DAPI stained. Images were obtained on a Zeiss LSM 510 confocal 

microscope at 63x magnification.  

Colours:  

Green: PAR2-GFP 

Blue: Nucleus 
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6.  Subcellular localization of SNX11 and PAR2   

 

In order to study the cellular function of SNX11, GFP and HIS tagged clones of 

murine SNX11 were created and stable overexpression in HEK293 cells was achieved. 

We used the available mSNX11 clone to carry out a cloning in EGFP expression vector. 

A transient transfection of HEK293-EGFP-SNX11 cell lines with FLAG-PAR2-HA 

construct was performed. Subsequently the experiment was conducted with unstimulated 

cells and cells stimulated with AP (20 µM SLIGV) for 30 minutes. The cells were fixed 

and observed under a confocal microscope (Figure 11). The same procedure was used for 

the extracted nuclei (Figure 12). Images revealed two interesting observations: 

1. SNX11 was shown to be present in the nucleus. 

2. We were able to demonstrate that under stimulation PAR2 and SNX11 co-

localized in the nuclear membrane.  

The co-localization of SNX11 with Lamin A/C after SLIGKV stimulation 

provides evidence for presence of SNX11 in the nuclear membrane (Figure 12). 
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Figure 11: Intracellular distribution of SNX11 and co – localization with PAR2 

upon stimulation 

 

A. SNX11 – GFP stable transfected HEK293 cells were transiently transfected with 

FLAG – PAR2 – HA construct and grown on glass coverslips until they reached 

sixty to seventy per cent confluence.  Cells were then starved for six hours, fixed 

with 4 % paraformaldehyde for 20 minutes, treated with anti – FLAG antibodies 

diluted 200 times and nuclei were visualized with DAPI staining.  Images were 

obtained on a Zeiss LSM 510 confocal microscope at 63x magnification. 

B. SNX11 – GFP stable transfected HEK293 cells were transiently transfected with 

FLAG – PAR2 – HA construct and grown on glass coverslips. 24 hours post 

transfection cells were starved for six hours and treated with 20 μM SLIGKV for 

30 minutes. Cells were fixed with 4 % paraformaldehyde  for 20 minutes, treated 

with anti – FLAG antibodies diluted 200 times, nuclei were visualized with DAPI. 

Images were obtained on a confocal Zeiss LSM 510 microscope at 63x 

magnification. 

Colours:  

Red: FLAG-PAR2 

Green: SNX11-GFP 

Blue: Nucleus 

Yellow: Merged 
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Figure 12: Nuclear expression and co-localization of SNX11/ PAR2 and SNX11/ 

Lamin A/C receptor 

 

A. SNX11 – GFP stable transfected HEK293 cells were transiently transfected with 

FLAG – PAR2 – HA construct. 24 hours post transfection cells were starved for 

six hours and treated with 20 μM SLIGKV for 30 minutes. Nuclei were isolated, 

fixed with 4 % paraformaldehyde for 20 minutes, treated with anti – FLAG 

antibodies diluted 200 times and process for DAPI staining. Images were obtained 

on a Zeiss LSM 510  confocal microscope at 63x magnification  

 

B. SNX11 – GFP stable transfected HEK293 cells were starved for six hours and 

treated with 20 μM SLIGKV for 30 minutes. Nuclei were isolated, fixed with 4 % 

paraformaldehyde for 20 minutes, treated with anti – Lamin A/C antibodies 

diluted 30 times and DAPIstained. Images were obtained on a Zeiss LSM 510 

confocal microscope at 63x magnification.  

Colours:  

Red: FLAG-PAR2 (A) /  Lamin A/C (B) 

Green: SNX11-GFP 

Blue: Nucleus 

Yellow: Merged 
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7. Co-immnunoprecipitation analysis 

7.1. Co-immunoprecipitation of PAR2 and SNX1 and SNX2 

For the detection of an interaction between PAR2 and SNX1 and SNX2, PAR2-

GFP HEK293 stable cell lines were used. Anti –PAR2 antibodies were used to precipitate 

PAR2 protein and its partners. After protein separation and transfer on a membrane we 

detected successfully PAR2-SNX1 and PAR2-SNX2 interaction using SNX1 and SNX2 

antibodies (Figure 13). Pull down with IgG only was used as negative control for the 

antibodies; Western blot on a whole cell lysate of HEK293 was used as a positive control 

for the antibodies. 

 

7.2. Co-immunoprecipitation of PAR2 and SNX11 

 

 For the detection of an interaction between PAR2 and SNX11,  His-mSNX11 and 

PAR2-GFP HEK293 stable cell lines were used. Anti - His antibodies were used to 

precipitate SNX11 protein and its partners. After protein separation and transfer on a 

membrane we detected successfully PAR2-SNX11 interaction using PAR2 antibody 

(Figure 13). Reverse co-immunoprecipitation was also performed. In PAR2-GFP 

HEK293 stable cell line, PAR2 antibody was used for pull-down and SNX11 was 

detected with specific antibody (Figure 13). The interaction between SNX11 and PAR2 

was significantly stronger than those between PAR2 and SNX1 and SNX2.  Pull down 

with IgG only was used as negative control for the antibodies; Western blot on a whole 

cell lysate of was used as a positive control for the antibodies. 
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Figure 13: Co – immunoprecipitation of PAR2 with SNX1, SNX2 and SNX11 

 

PAR2 – GFP and His – SNX11 stable HEK293 cell lines were used, following the 

general protocol for Protein G-Agarose provided by the manufacturing company (Roche 

Applied Science, Laval, QC, Canada). 2 µg of anti - PAR2, anti – His (CTL Ig G – 2 μg) 

and 500 μg protein G – agarose suspension were used. For the Western blot analysis anti 

– SNX1 and anti – SNX2 antibodies were diluted 200 times, anti – SNX11 antibodies 

were diluted 500 times in 5 % milk in TBS – T buffer.  Pull down with IgG only was 

used as negative control for the antibodies; Western blot on a whole cell lysate was used 

as a positive control for the antibodies.   
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8. SNXs knockdown experiments 

 

 In order to conduct functional studies of SNX1, SNX2 and SNX11 we created 

knockdown cell lines. The knockdowns were performed with sh RNAs. The cells were 

transfected with shSNX1, shSNX2 and shSNX11 and control sh RNA NS (non-sense). 

The rate of knockdown efficiency was observed under a fluorescent microscope for the 

expression of GFP (green fluorescent protein) which was tagged to the above mentioned 

expression vectors. Knockdowns were confirmed using Western blot analysis. The shNS 

cell line was used as a control (Figure 14). We achieved very high efficiency of the 

knockdowns – almost 100 % for SNX2, 80 % for SNX1 and SNX11. 
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Figure 14: Establishing “knockdown” HEK293 cell lines of SNX1, SNX2 and SNX11 

genes 

 

  HEK293 cells were transfected with the appropriate shRNA vector using the 

manufacturer’s protocol. Efficiency of transfection was confirmed using epifluorescence 

microscopy. The knockdowns were confirmed with Western blot. Cells were lyzed, 

proteins were extracted, separated on a 10 % acrylamide gel, transferred on a 

nitrocellulose membrane and treated with the appropriate antibodies. Anti – SNX1 and 

anti – SNX2 antibodies were diluted 200 times, and anti – SNX11 was diluted 500 times 

in 5 % milk in TBS – T. Secondary antibodies were diluted 20 000 times. 
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The knockdown cell line was used to perform experiments with AP stimulation  

followed by nuclear isolation. For each experiment four groups of cells were used: CTL-

non-stimulated, CTL-stimulated, SNX-knockdown non-stimulated and SNX-knockdown 

stimulated. The goal of the experiment was to demonstrate that in control cells after 

stimulation the nuclear PAR2 increases and that such an augmentation cannot be detected 

in the knockdown cells.  

We carried out several series of experiments using FACS on isolated nuclei from 

cells transiently transfected with the FLAG-PAR2-HA construct (Roosterman et al., 

2003). After cell transfection, the cells were stimulated with 20 μM SLIGKV for 30 

minutes, treated with anti - FLAG antibodies, and the nuclei were isolated. FACS 

analysis of the nuclei revealed that the knockdown of either SNX1 or SNX2 does not 

abolish the increase of nuclear PAR2 after stimulation. Conversely, in SNX11 

knockdowns we were able to detect a two-fold decrease in PAR2 nuclear localization 

after stimulation, compared to the stimulated control cells (Figure 15). We were able to 

confirm the effect of SNX11 knockdown on Western blot analysis (Figure 16). In control 

cells stimulated with trypsin (shNS stable line) nuclear PAR2 was increased, whereas in 

shSNX11 stable cell line stimulation resulted in a two-fold decrease of nuclear PAR2. 

Using confocal microscopy (Figure 17) we obtained similar results. In SNX11 stable 

knockdown HEK293 cells, PAR2 is exclusively membrane localized and no nuclear 

pattern was detected after SLIGKV stimulation.    
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Figure 15: Effect of SNXs knockdowns on PAR2 nuclear translocation 

 

Knockdown HEK293 cell lines of SNX1, SNX2, SNX11 and control were used. 

Cells were transfected with FLAG – PAR2 – HA construct. 48 hours post transfection, 

cells were starved for 6 hours, treated with anti – FLAG antibodies diluted 200 times in 

PBS for 15 minutes and stimulated with 20 μM SLIGKV for 30 min. Nuclei were 

isolated and examined on FACS.      
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Table 3: Statistical analysis of effect of SNXs knockdowns on PAR2 nuclear 

translocation 

One-way analysis of variance     
P value P<0.0001    
P value summary ***    
Are means signif. different (P < 0.05) Yes    
Number of groups 5    
F 19.89    
R squared 0.8689    
      
ANOVA Table SS df MS  
Treatment (between columns) 24.91 4 6.227  
Residual (within columns) 3.756 12 0.3130  
Total 28.66 16   
      
Dunnett's Multiple Comparison Test Mean Diff. q Significant P < 0.05 Summary 
Untransfected vs Non-Silencing  -2.945 7.444 Yes *** 
Untransfected vs SNX 1 -2.633 6.163 Yes *** 
Untransfected vs SNX 2 -2.897 6.779 Yes *** 
Untransfected vs SNX 11 -1.190 2.785 No ns 
 

 

 

 

 

 

 

 

 

 

 

 

 



Results  81 
……………………………………………………………………………………………… 

 

Figure 16: SNX11 knockdown decreases PAR2 nuclear translocation  

SNX11 knockdown HEK293 and control cells were grown to eighty per cent confluence 

and starved for 6 hours. Cells were stimulated with 20 nM Trypsin for 30 minutes and 

cellular fractions were isolated. Proteins were separated on 10 % acrylamide gel, and 

examined on Western blot. Anti - PAR2 antibodies were diluted 250 times in 5 % milk in 

TBS – T buffer.       
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Figure 17: Immunofluorescence studies of PAR2 cellular localization in SNX11 

knockdown HEK293 cells 

 

SNX11 knockdown HEK293 cell were transfected with FLAG – PAR2 –HA 

construct and cells were grown on glass coverslips.  48 hours after the transfection the 

cells were starved for 6 hours, stimulated with 20 μM SLIGKV for 30 minutes, fixed with  

4 % paraformaldehyde for 20 minutes, treated with anti – FLAG and anti – LBR 

antibodies diluted 200 times in PBS and DAPI. Images were obtained on a LSM 510 

Zeiss confocal microscope at 63x magnification.    

Colours:  

Red: FLAG-PAR2 

Green: LBR 

Blue: Nucleus 
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9. iNOS gene as a marker for PAR2 nuclear trafficking  

 

Final objective was to investigate if there was any functional relationship of 

PAR2 and SNXs members to iNOS. iNOS up regulation is dependent on nuclear 

trafficking of PAR2. Therefore we used knockdown cell lines of SNX1, SNX2 and 

SNX11 to investigate how they influence iNOS expression. As a control we used Tie2 

gene whose regulation is not dependent of PAR2 translocation. The cells were stimulated 

with 20 μM SLIGKV for 30 minutes, RNA was extracted and RT – PCR was performed. 

As expected, knockdown of SNX11 diminished the expression of iNOS to the level 

observed in the control experiments without SLIGKV. This result confirmed the 

functional role of SNX11 in PAR2 nuclear signalling. Interestingly, SNX1 and SNX2 

were also able to attenuate iNOS expression though not to the same extent as SNX11. 

Expression levels of iNOS were attenuated by 15 % and 24% for SNX1 and SNX2 

knockdowns respectively (Figure 18). Tie2 expression was not affected by knockdown of 

any of the three SNX family members.  
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Figure 18:  Effect of SNXs knockdowns on the expression of PPARγ1, iNOS, and 

Tie2 genes after PAR2 stimulation 

 

HEK293 stable knockdowns of SNX1, SNX2 and SNX11 cells were starved for 6 

hours. The cells were stimulated with 20 μM SLIGKV for 30 minutes. RT – PCRs were 

conducted. As a control PPARγ1 was used, which is a nuclear receptor whose expression 

is not dependent of intracellular trafficking. iNOS and Tie2 are genes which expression is 

up regulated by PAR2.  18S housekeeping gene was used as a control for normalization. 

All results were normalized to 18S expression levels.   
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Table 4: Statistical analysis of effect of SNXs knockdowns on the expression of 

PPARγ1, iNOS, and Tie2 genes after PAR2 stimulation  

iNOS 

One-way analysis of variance      
P value P<0.0001     
P value summary ***     
Are means signif. different? (P < 0.05) Yes     
Number of groups 5     
F 1118     
R squared 0.9978     
      
ANOVA Table SS df MS   
Treatment (between columns) 1.848 4 0.4621   
Residual (within columns) 0.004133 10 0.0004133   
Total 1.853 14    
      

Bonferroni's Multiple Comparison Test 
Mean 
Diff. t Significant? P < 0.05? Summary 95% CI of diff 

MockshRNA vs MockshRNA+AP -0.8767 52.81 Yes *** -0.9326 to -0.8208 
MockshRNA vs SNX1shRNA+AP -0.7033 42.37 Yes *** -0.7592 to -0.6474 
MockshRNA vs SNX2shRNA+AP -0.41 24.7 Yes *** -0.4659 to -0.3541 
MockshRNA vs SNX11shRNA+AP -0.03 1.807 No ns -0.08591 to 0.02591 
MockshRNA+AP vs SNX1shRNA+AP 0.1733 10.44 Yes *** 0.1174 to 0.2292 
MockshRNA+AP vs SNX2shRNA+AP 0.4667 28.11 Yes *** 0.4108 to 0.5226 
MockshRNA+AP vs SNX11shRNA+AP 0.8467 51 Yes *** 0.7908 to 0.9026 

 

Tie2 

One-way analysis of variance      
P value P<0.0001     

P value summary ***     
Are means signif. different? (P < 0.05) Yes     

Number of groups 5     
F 652.6     

R squared 0.9962     
      

ANOVA Table SS df MS   
Treatment (between columns) 1.096 4 0.2741   

Residual (within columns) 0.0042 10 0.00042   
Total 1.101 14    

      

Bonferroni's Multiple Comparison Test 
Mean 
Diff. t Significant? P < 0.05? Summary 95% CI of diff 

MockshRNA vs MockshRNA+AP -0.68 40.64 Yes *** -0.7364 to -0.6236 
MockshRNA vs SNX1shRNA+AP -0.6533 39.04 Yes *** -0.7097 to -0.5970 
MockshRNA vs SNX2shRNA+AP -0.7133 42.63 Yes *** -0.7697 to -0.6570 
MockshRNA vs SNX11shRNA+AP -0.6467 38.65 Yes *** -0.7030 to -0.5903 
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MockshRNA+AP vs SNX1shRNA+AP 0.02667 1.594 No ns -0.02969 to 0.08303 
MockshRNA+AP vs SNX2shRNA+AP -0.03333 1.992 No ns -0.08969 to 0.02303 
MockshRNA+AP vs SNX11shRNA+AP 0.03333 1.992 No ns -0.02303 to 0.08969 

  

 

PPARγ1 

One-way analysis of variance      
P value 0.0343     
P value summary *     
Are means signif. different? (P < 0.05) Yes     
Number of groups 5     
F 4     
R squared 0.6154     
      
ANOVA Table SS df MS   
Treatment (between columns) 0.000427 4 0.0001067   
Residual (within columns) 0.000267 10 0.00002667   
Total 0.000693 14    
      

Bonferroni's Multiple Comparison Test 
Mean 
Diff. t Significant? P < 0.05? Summary 95% CI of diff 

MockshRNA vs MockshRNA+AP -0.01333 3.162 No ns 
-0.02753 to 
0.0008682 

MockshRNA vs SNX1shRNA+AP -0.01333 3.162 No ns 
-0.02753 to 
0.0008682 

MockshRNA vs SNX2shRNA+AP -0.01333 3.162 No ns 
-0.02753 to 
0.0008682 

MockshRNA vs SNX11shRNA+AP -0.01333 3.162 No ns 
-0.02753 to 
0.0008682 

MockshRNA+AP vs SNX1shRNA+AP 0 0 No ns -0.01420 to 0.01420 
MockshRNA+AP vs SNX2shRNA+AP 0 0 No ns -0.01420 to 0.01420 
MockshRNA+AP vs SNX11shRNA+AP 0 0 No ns -0.01420 to 0.01420 
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 G – protein coupled receptors represent the largest and the most diverse group of 

membrane receptors. Recent and detailed analysis of the human genome reveals over 800 

unique GPCRs (Kobilka, 2007).  These receptors are the widest source of targets for the 

pharmaceutical industry. Today, approximately one-quarter of the best-selling drugs on 

the market target GPCRs (Schultz et al., 2007). 

In the recent years a group of GPCRs called Protease – activated receptors (PAR) 

emerged as an interesting new target for pharmacological studies. It was demonstrated 

that PAR members have significant role in diverse pathophysiological processes. Among 

PAR members, PAR2 lately distinguished itself as a promising pharmacological target 

(Bunnett et al., 2003).  

Several lines of evidence suggested its active contribution in important processes 

such as cell migration, proliferation and coagulation (Bunnett et al., 2003). Bunnett et al. 

revealed that PAR2 has significant importance for the normal function of major 

physiological processes such as angiogenesis and the appropriate development of the 

cardiovascular system (Bunnett et al., 2003). Current studies showed active participation 

of PAR2 in tumorigenesis, together with Epidermal Growth Factor Receptor (EGFR) and 

Tissue Growth Factor Receptor (TGFR). PAR2 is overexpressed in different type of 

cancers such as breast cancer, colon cancer and other type of malignant transformations 

(Darmoul et al, 2004; Ge et al., 2004; Shimamoto et al., 2004). At the same time some 

data suggest its protective role in certain types of tumors causing skin cancer (Laburthe et 

al., 2004; Matej et al., 2006; Steinhoff et al., 2007). The dual role of PAR2 as 

tumorigenesis factor for some diseases and as a factor in cancer protection in other 

diseases is being intensively studied. Therefore to be able to better understand the 
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physiological role of PAR2 we need to understand its intracellular function and its 

cellular pathway.  

PAR receptors take a unique place among the other GPCRs with their mechanism 

of activation. Trypsin is the agonist of PAR2. It cleaves the N-terminus of the receptor 

and opens a new tethered ligand, which itself activates the receptor and causes an 

irreversible receptor activation. Once stimulated, the activated receptor continuously 

triggers intracellular signals. Therefore, the right coordination of lysosomal sorting is 

highly important to end PAR2 signalling. Eventual defects in this mechanism can lead to 

pathophysiological changes such as a cancer.  

For a long period of time it was an enigma how PAR2 undergoes degradation 

until a very recent study discovered the role of Rab5a and Rab11a in its intracellular 

trafficking (Roosterman et al., 2003). They established that Rab5a is required for PAR2 

endocytosis and resensitization, whereas Rab11a contributes to trafficking of PAR2 from 

the Golgi apparatus to the plasma membrane. However there are still lots of questions to 

be answered about how PAR2 signaling is being relayed in the cell. It is not clear if 

Rab5a is the only factor responsible for the endocytosis of PAR2 and if it contributes 

directly to PAR2 lysosomal degradation. It remains unclear how PAR2 is being 

transported to the nucleus as we discovered in our study.     

In the recent years significant data have been accumulated for GPCRs which 

demonstrate that under activation these receptors are being translocated from the plasma 

membrane to the nucleus (Boivin et al., 2008). Receptors such as EGFR were discovered 

to translocate from the plasma membrane to the nucleus where they function as a 

transcription factor (Lo et al., 2006).  
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  In our study we demonstrated that PAR2 is also involved in an alternative 

signalling pathway. We showed that two endogenous populations of PAR2 receptors are 

available in the cell, the first being on the plasma membrane and the second being on the 

nuclear membrane. The quantity of receptors located in the nucleus is relatively small in 

comparison with those on the plasma membrane. We have demonstrated that after 

stimulation with trypsin or its active peptide SLIGKV, PAR2 which is located in the 

plasma membrane is internalized and translocated to the perinuclear membrane (Figures 

4, 6 and 7). The process of translocation is rapid and is completed within one hour after  

receptor stimulation (Figure 4).  

The mechanisms of PAR2 translocation from the plasma membrane to the nuclear 

membrane are still not known. It is evident that two pathways for PAR2 internalization 

exist. One population of the receptors will be degraded after stimulation and the other 

will be translocated to the nuclear membrane where it will probably play a role in the 

induction of certain genes involved in cell proliferation, angiogenesis and inflammation 

processes. The presence of two different pools of PAR2 suggests that they play different 

roles. For example we have established that PAR2 nuclear translocation leads to 

increased levels of iNOS but not Tie2 (genes which are up-regulated by PAR2). Upon 

stimulation with SLIGKV, Tie2 levels are still increased when blocking unspecifically 

the intracellular trafficking with colchicine, in contsrast to the iNOS levels which are  no 

longer increased (Figure 8), although the two genes are up-reagulated by PAR2. Thus the 

question arises which trafficking proteins determine this receptor fate?    

In our study we explored the role of three proteins which belong to less well 

studied gene family of Sorting Nexins.  
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 In recent years members of this family emerged as important partners in the 

intracellular trafficking of various receptors including GPCRs. It has been discovered that 

SNX1 is involved in lysosomal degradation of PAR1 (Gullapalli et al., 2006) and in in 

vitro studies SNX1 interacts with PAR2 (Heydorn et al., 2004).  

In previous experiments in our lab it was discovered that SNX11 interacts with 

various proteins, most of them involved in cytoskeleton organisation and extracellular 

matrix (Table 5). Based on these data we presumed that SNX11 can be implicated in the 

trafficking of receptors.  

In co – immunoprecipitation assay we were able to show that a physical 

interaction between PAR2 and SNXs exists (Figure 13). We detected a strong interaction 

between SNX11 and PAR2, and significantly weaker ones between SNX1/2 and PAR2. 

Confirming that PAR2 interacts with SNXs was an important result because we were able 

to show for the first time that SNX11 has the ability to interact with GPCRs and 

particularly with PAR2 membrane receptor.  

  SNX1 and SNX2 are well explored proteins and known to have the cargo ability 

to drive the receptors to the lysosomal degradation pathway.  

At first, SNX1 was discovered to interact with EGFR and to play a role in its 

sorting to the lysosomes (Kurten et al., 1996). Later on, it has been described that SNX2 

may play an even more important role in the cellular transport of EGFR than SNX1 

(Gullapalli et al., 2004). SNX1 and SNX2 have been shown to have plasma membrane 

localization and vesicle localization (Gullapalli et al., 2004). This cellular localization 

was reconfirmed in our studies (Figure 9).  SNX1 and SNX2 have similar structure, 

possessing Phox domain and BAR domain, which allow them to dimerize (Bonifacino et  
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Table 5: SNX11 interaction partners 

 

al., 2006). SNX1 and SNX2 have been shown to play a role in retrieving PAR1 

(Gullapalli et al., 2006); this study established that SNX2 is not required for PAR1 

degradation, but can regulate PAR1 lysosomal sorting through its ability to disrupt 

endosomal localization of endogenous SNX1. 

  SNX11 shows lots of structural differences from SNX1 and SNX2. It belongs to 

a subfamily which is characterized only with a Phox domain, but not BAR domain. In 

addition the BAR domain in SNX1 and SNX2 functions as a curvature sensor, which 

allows proteins to interact with membrane structures. This could suggest that the 

intracellular function of SNX1 and SNX2 in trafficking receptors is different than that of 

SNX11.  
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  SNX11 possesses a long C-terminal. We speculate that this structure is important 

to interact directly with receptors or other proteins.  In our work we showed the 

predominant cytosolic and perinuclear distribution of SNX11. We investigated in which 

cellular compartment interaction between PAR2 and SNXs can be detected.  

In immunofluorescence assays we were able to confirm the results from co – 

immunoprecipitation and we showed co-localization of SNX1, SNX2 and SNX11 with 

PAR2 (Figures 9, 11).  The three SNXs showed different distribution pattern of co – 

localization with PAR2.  SNX1 and SNX2 together with PAR2 were predominately 

localized in the vesicles, endosomes, and also perinuclear. This pattern of co-localization 

was more pronounced for SNX1 than for SNX2. These images demonstrate remarkable 

similarity with the previous photos for endosomal co-localization of PAR2 with Rab5a 

and Rab11a (Roosterman et al., 2003). Based on these publications we speculate that in 

parallel to their interactions with PAR1, SNX1 and perhaps SNX2 are probably 

implicated in lysosomal sorting of PAR2.  

The objective of our research was to determine the genes responsible for PAR2 

nuclear translocation, and for that reason we did not concentrate further on the 

investigation of its endosomal pathway.  

As compared to SNX1 and SNX2, SNX11 co-localized with PAR2 predominantly 

in perinuclear structures and may be in the nuclear membrane. In experiments with whole 

cell and using confocal microscopy it was very difficult to confirm the nuclear co-

localization therefore we used a method for nuclei isolation, and performed 

immunofluorescence analysis. We were able to demonstrate that SNX11 also shows 

nuclear distribution. This result was confirmed in convincing manner with co-localization 
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of SNX11 with Lamin A/C, which is a marker for the nuclear envelope. SNX1 and SNX2 

failed to reveal a nuclear pattern of distribution.   

  At this stage we were able to confirm with great confidence the ability of SNX 

members to interact with PAR2. We also distinguished that SNX1 and SNX2 co-

localized with PAR2 predominately in endosomes, whereas only SNX11 localizes 

together with PAR2 in the nuclear membrane. The strength of these interactions was 

different: a much stronger interaction for SNX11 and weaker interactions for SNX1 and 

SNX2 were noted.  Now the challenge was to establish if SNX members would show the 

capability to transport PAR2 in functional studies. 

In order to evaluate the functional relationship of PAR2 and SNXs we performed 

loss of function studies. We created stable SNX1, SNX2 and SNX11 knockdown 

HEK293 cell lines. The knockdown cell lines are a powerful tool to evaluate the exact 

implication of each of the investigated SNX in the nuclear transport of PAR2. Since the 

levels of PAR2 expression are relatively low, we transfected the stable knockdown cells 

with a FLAG-PAR2-HA construct. After 30 min of stimulation with SLIGKV, intact 

nuclei were isolated and investigated with FACS and Western blot analysis. The nuclear 

translocation of PAR2 after stimulation in SNX11 knockdown cells was decreased 

twofold compared to control cells, confirming the importance of SNX11 in nuclear 

transportation of PAR2 (Figure 15). In comparison SNX1 and SNX2 knockdowns did not 

appear to demonstrate any significant implication in PAR2 nuclear translocation. We 

were thus able to demonstrate distinct regulation of PAR2 intracellular trafficking and to 

identify that SNX11 is a key factor for PAR2 nuclear localization. However does this 

make any difference in its signalling pathway? 
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 We mentioned that iNOS expression is dependent on PAR2 expression. When 

blocking unspecifically the intracellular traffick with colchicine, iNOS expression was 

decreased. Most likely the translocation of PAR2 to the nucleus was abolished (Figure 7).   

Using the knockdown cell lines we were able to investigate how each of the 

studied SNX members can influence iNOS expression after PAR2 stimulation. The 

results from the RT-PCR clearly indicated a drastic decrease of iNOS expression in 

SNX11 knockdown HEK293 cells (Figure 18). Surprisingly, the SNX1 and SNX2 

knockdown also seemed to diminish iNOS expression, though not to the same extent as 

the SNX11 knockdowns. At first glance this finding might lead to the controversial 

conclusion that SNX1 and SNX2 do not interfere with nuclear trafficking of PAR2, but 

influence iNOS expression which depends on PAR2. We mentioned before that SNX11 

and PAR2 are localized predominately in the cytosol and in the perinucleus. Therefore 

we suggest that SNX11 does not transport directly PAR2 from the plasma membrane to 

the nucleus. Instead we suggest that this is a much more complicated process. Probably 

the first stage is the internalization of the receptor where SNX1 and SNX2 play an 

important role. However they are not the only factors, as we mentioned before the 

function of Rab5a and Rab11a (Roosterman et al., 2003). Thus the single knockdown of 

SNX1 or SNX2 is perhaps not sufficient to block the first stage of PAR2 intracellular 

translocation from plasma membrane to the endosomes and consequently its nuclear 

localization. On the other hand PAR2 nuclear signalling is probably a much more specific 

process which demands fine regulation.  For that reason the role of SNX11 is possibly 

crucial. 
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  During the recent years different studies demonstrated the presence of GPCRs at 

nuclear level, but PAR2 had not been detected so far.  In the current study we discovered 

that PAR2 is localized on the plasma membrane and on the nuclear membrane. 

Stimulation of PAR2 leads to its translocation preferentially to the nuclear membrane. 

We established that the nuclear localization is part of the PAR2 signalling pathway. In 

order to determine the mechanisms involved in nuclear trafficking we examined members 

of the SNX family as promising candidates for this regulation. Our results show that 

SNX11 plays a crucial role in translocation of PAR2 to the nucleus and nuclear 

signalling. SNX1 and SNX2 are perhaps involved in the first stage of receptor 

internalization. With its role in inflammation and tumorigenesis PAR2 arises as a 

promising pharmacological target. Many aspects of PAR2 signalling  

remain unclear. Our work demonstrated that SNXs are important factors in PAR2 

intracellular trafficking.  
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 In the present study we demonstrated a role of SNX11 to traffic receptors in the 

cell. We showed its specific function to translocate PAR2 to the nuclear membrane.  Still 

many questions remain to be answered. One important issue is to understand in details 

how SNX11 functions in transporting receptors to the relevant cellular targets in the cell. 

For that reason we propose to use markers for early endosomes (EEA1), lysosomes 

(LAMP1), late endosomes (M6PR, cation-independent Mannose-6-phosphate receptor), 

Golgi and ER to search for possible localization of SNX11 in these cell compartments. 

These results will unravel at what cellular compartment SNX11 functions in receptor 

sorting. We can use the same approach for PAR2 and determine its intracellular pathway. 

Consequently we can use the knockdown cell lines of SNX1, SNX2 and SNX11 to 

establish at what point each of them abolishes PAR2 trafficking.  

As we discussed in the introduction, PAR2 is involved in numerous physiological 

processes including angiogenesis, cell migration and cancer development. Once we 

established the presence of the two populations of PAR2, it would be interesting to 

answer the question of what is the physiological role of each of these populations. In our 

study we demonstrated that SNX11 can influence significantly PAR2 nuclear trafficking. 

The knockdown cell lines of SNX11 will be interesting model to evaluate its role in 

PAR2 - induced cell migration. Revealing the mechanisms of trafficking and the 

physiological role of nuclear PAR2 can give researchers a tool for developing highly 

specific antagonists for controlling such processes as cell migration, involved in the 

development of numerous tumors. In this regard it will be important to determine what 

the binding domain is for SNX11 and PAR2 interaction. We propose that the long C – tail 
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of SNX11 plays a role in this process. Therefore it is possible to create several mutants 

and study how they influence the nuclear trafficking of PAR2.  

  It is hard to believe that SNX11 functions only in the nuclear trafficking of 

PAR2. Some receptors like EGFR have a documented nuclear trafficking, but no 

transporting protein has been identified so far. Actually the first member of SNX family, 

SNX1 was discovered as an interaction partner of EGFR. However as in the case of 

PAR1, and probably PAR2, SNX1 is responsible for its lysosomal degradation. We 

suggest that this can be a general paradigm for the function of SNX proteins and it is very 

possible that SNX11 is involved in EGFR nuclear trafficking too.    

  It is important to study SNX11 not only at cell level, but to establish what role it 

plays in tissue and organ development. For this purpose we will need animal models. In 

this respect the frog Xenopus leavis is a very useful animal model. The eggs of Xenopus 

leavis will be injected with specific morpholino sequences of SNX11, which will create 

temporary knockout of SNX11 gene expression. This will allow us to study the effect of 

SNX11 in early embryo development. When a function of a protein is studied the creation 

of loss – of – function mouse model has high value. The SNX11 deficient mice will be 

studied for any pathophysiological phenotype.  

  Our work discovered the role of SNX11 as an important factor in PAR2 nuclear 

translocation. The future investigations will allow us to identify its contribution in various 

events in intracellular trafficking. As pharmacological aspect, SNX11 will arise as an 

interesting target to modulate receptor activity.
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