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Abstract 

 

The ligand nacnacxylH (xyl = C6Me2H3) and the N-alkyl substituted diketimine 

ligands (nacnacCH(Me)PhH, nacnacBnH and nacnaciPrH) have been prepared in good yields 

except nacnaciPrH (23%) using a one-step procedure with the help of a Dean-Stark 

apparatus. Reaction of S,S-nacnacCH(Me)PhH and nacnacBnH with nBuLi in THF gave  S,S-

nacnacCH(Me)PhLi(THF) and  nacnacBnLi(THF). Attempts to brominate these THF adducts 

with N-bromosuccinimide gave instead the β-carbon substituted succinimido ligands S,S-
succnacnacCH(Me)PhH and succnacnacBnH (succ = succinimido). Chlorination with N-

chlorosuccinimide, afforded the desired product albeit with significant amounts of 

impurities. 

Reaction of these ligands with CuOtBu (or MesCu and catalytic amounts of 

CuOtBu, Mes = C6Me3H2) in the presence of Lewis bases gave (nacnacxylCu)2(μ-toluene), 

nacnacxylCuCNC6H3(Me)2, nacnacCH(Me)PhCuL (L = PPh3, PMe3, CNC6H3(Me)2, DMAP, 

lutidine, Py, MeCN), nacnacBnCuL (L = PPh3, CNC6H3(Me)2, styrene, trans-stilbene, 

phenylvinylether, acrylonitrile, diphenylacetylene), nacnaciPrCuL (L = PPh3, 

CNC6H3(Me)2, MeCN) and succnacnacCH(Me)PhCuL (PPh3, CNC6H3(Me)2, pyridine). All 

complexes are yellow and sensitive to air and moisture. There was no reaction between the 

copper precursors and the N-alkyl substituted ligands in the absence of strong Lewis bases.  

NMR studies of the complex (nacnacxylCu)2(μ-toluene) in C6D6, showed no toluene 

adduct but an equilibrium mixture of (nacnacxylCu)2(μ-C6D6) and nacnacxylCu(C6D6) in a 

ratio of 2:1. While addition of up to 50 equiv of either toluene or THF did not cause any 

significant change in the 1H NMR spectrum, addition of 2 equiv MeCN gave 

instantaneously the nacnacxylCu(MeCN) complex. In addition, (nacnacxylylCu)2(μ-C6D6) did 

not coordinate or react with N2O even after heating at 60 oC for thirteen days. 

In the presence of DPA (diphenylacetylene), reaction of nacnacBnH with CuOtBu 

yields the bridged dimer (nacnacBnCu)2(µ-DPA). Addition of excess DPA (10-12 equiv) 

converts the bridged dimer to the terminally bound complex nacnacBnCuDPA. NacnacRH 

(R = CH(Me)Ph and i-Pr) did not form complexes with olefins or with DPA. Similar 
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reactivity was observed in nacnacCH(Me)PhCu(NCMe) and nacnaci-PrCu(NCMe) complexes. 

While the terminally bound MeCN complex was isolated and characterized, equilibrium in 

solution led us to suspect the formation of a bridged acetonitrile adduct. 

Reactivity and comparative studies were performed with several copper complexes. 

Morpholine did not react with nacnacBnCu(acrylonitrile) while free acrylonitrile does. 

Olefin exchange experiment showed that acrylonitrile (an electron withdrawing olefin) 

binds stronger than the other olefins examined, showing the importance of π-backbonding 

relative to σ-donation. π-Backbonding is, however, still low when compared other 

structurally characterized transition metal styrene complexes. Complexes 

nacnacCH(Me)PhCuL (L = PPh3 and MeCN) have been employed in catalytic 

cyclopropanation of styrene and the conjugate addition of ZnEt2 to 2-cyclohexenone, but 

results indicate that the diketimine ligand is lost before it enters the catalytic cycle. Hence, 

there was no chiral induction. 

Four-coordinate copper(I) complexes of the form nacnacRCu(phen) (R = Bn, 

CH(Me)Ph and Phen = 1,10-phenanthroline, 2-Mes-1,10-phenanthroline, 2,9-dimethyl-

1,10-phenanthroline (dmp) and 2,9-diphenyl-1,10-phenanthroline (dpp)) were also 

prepared. The complexes are intensely blue in colour and intramolecular π-stacking 

interactions between one of the phenyl rings of nacnac ligand with the phenanthroline were 

observed in the solid state structures. UV-vis absorption measurements were performed in 

toluene and the MLCT bands are red-shifted relative to those of bisphenanthroline copper 

complexes. All compounds are emissive in the solid state, but 1,10-phenanthroline and 2-

Mes-1,10-phenanthroline complexes do not emit in solution. 

To buttress the π-stacking interactions, the new ligands nacnacRH (R = 

CH2C6H2(OMe)3, CH2C6F5)  and their respective copper complexes with dmp and dpp were 

prepared. For the sake of comparison, nacnaciBuCu(dmp) was prepared. While the dmp 

complexes showed enhanced π-π intramolecular interactions with both phenyl substituents 

of the diketimine ligand and the phenanthroline, dpp revealed no such interactions. The 

perfluorinated complex showed a significant blue-shift in absorption and emission spectra 

when compared to the other complexes, while the isobutyl substituted complex displayed 
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red-shifted transitions. While luminescence intensities and lifetimes were low, reduced 

Stoke shifts and comparable sharp luminescence peaks indicate reduced distortions in the 

excited state. 

Key words: copper, β-diketimine, chiral nacnac, π back-bonding, π-π intramolecular 

interactions, X-ray. 
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Résumé 

 
Le ligand nacnacxylH (xyl = C6Me2H3) et les ligands dikétimines N-alkyle substitués 

(nacnacCH(Me)PhH, nacnacBnH and nacnaciPrH) ont été préparés avec de bons rendements à 

l’exception du nacnaciPrH (23%) en utilisant un protocole en une étape et à l’aide d’un 

montage Dean-Stark. La réaction du S,S-nacnacCH(Me)PhH et du nacnacBnH avec le nBuLi 

dans le THF conduit au S,S-nacnacCH(Me)PhLi(THF) et au nacnacBnLi(THF). Les tentatives 

de bromation de ces composés par le N-bromosuccinimide conduisent plutôt aux ligands 

S,S-succnacnacCH(Me)PhH et succnacnacBnH (succ = succinimido) substitués par un groupement 

succinimido sur le carbone β.  La chloration par le N-chlorosuccinimide conduit au produit 

désiré, mais avec des impuretés.  

La réaction de ces ligands avec le CuOtBu (ou bien MesCu, où Mes = C6Me3H2, et 

une quantité catalytique de CuOtBu) en présence de bases de Lewis donne les 

(nacnacxylCu)2(μ-toluène), nacnacxylCuCNC6H3(Me)2, nacnacCH(Me)PhCuL (L = PPh3, 

PMe3, CNC6H3(Me)2, DMAP, lutidine, Py, MeCN), nacnacBnCuL (L = PPh3, 

CNC6H3(Me)2, styrène, trans-stilbene, phenylvinylether, acrylonitrile, diphenylacetylène), 

nacnaciPrCuL (L = PPh3, CNC6H3(Me)2, MeCN) et le succnacnacCH(Me)PhCuL (PPh3, 

CNC6H3(Me)2, pyridine). Tous ces complexes sont jaunes et sensibles à l’air et à 

l’humidité. En l’absence de fortes bases de Lewis, on n’observe pas de réaction entre les 

précurseurs de cuivre et les ligands N-alkyle substitués.  

Les études RMN des complexes dans le C6D6 ne présentent pas de complexe de  

toluène mais un mélange à l’équilibre du (nacnacxylCu)2(μ-C6D6) et nacnacxylCu(C6D6) 

dans une proportion de 2 pour 1. Alors que l’addition de plus de cinquante équivalents soit 

de THF, soit de toluène n’induit aucun changement des spectres RMN, l’addition de 2 

équivalents de MeCN conduit instantanément au complexe nacnacxylCu(MeCN). De plus, 

le (nacnacxylylCu)2(μ-C6D6) ne se coordone ni ne réagit avec le N2O, même après avoir été 

chauffé à 60°C pendant treize jours.  

En présence de DPA (diphenylacétylène), la réaction du nacnacBnH avec le CuOtBu 

conduit au dimère ponté (nacnacBnCu)2(µ-DPA). L’addition d’un excès de DPA (10-12 
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équivalents) transforme le dimère ponté en complexe lié en position terminale 

nacnacBnCuDPA. Les nacnacRH (R = CH(Me)Ph et i-Pr) ne forment pas de complexe ni 

avec les oléfines ni avec le DPA. Une réactivité similaire a été observée avec les complexes 

de nacnacCH(Me)PhCu(NCMe) et nacnaci-PrCu(NCMe). Tandis que le complexe lié en 

position terminale par MeCN a été isolé et caractérisé, l’équilibre en solution nous laisse 

suspecter la formation d’un complexe d’acétonitrile ponté.  

Des études de réactivité comparatives ont été menées sur quelques complexes de cuivre. La 

Morpholine ne réagit pas avec le nacnacBnCu(acrylonitrile) contrairement à l’acrylonitrile 

libre. L’expérience de l’échange d’oléfine montre que l’acrylonitrile (une oléfine électro-

attractrice) se lie plus fortement que les autres oléfines, mettant ainsi en évidence 

l’importance de la rétrodonation π  face à la donation σ. La rétrodonation π est cependant 

faible comparée aux autres complexes de styrène structurellement caractérisés. Les 

complexes nacnacCH(Me)PhCuL (L = PPh3 et MeCN) ont été employés dans la 

cyclopropanation catalytique du styrène et dans l’addition conjuguée du ZnEt2 sur la 2-

cyclohexénone, mais les résultats indiquent que le ligand dikétimine est éliminé avant son 

entrée dans le cycle catalytique. Par conséquent, il n’y a pas d’induction chirale. 

 Les complexes tétra coordinées de cuivre avec les nacnacRCu(phen) (R = Bn, 

CH(Me)Ph et Phen = 1,10-phenanthroline, 2-Mes-1,10-phenanthroline, 2,9-dimethyl-1,10-

phenanthroline (dmp) et 2,9-diphenyl-1,10-phenanthroline (dpp)) ont été synthétisés. Ces 

complexes sont d’une intense couleur bleue et des interactions d’empilement π entre l’un 

des cycles phényle des ligands nacnac et la phénanthroline ont été observées dans les 

structures à l’état solide. Les mesures en absorption UV-visible ont été effectuées dans le 

toluène et les bandes MLCT sont déplacées vers le rouge par rapport à celles des complexes 

de cuivre et bisphénanthroline. Tous ces composés émettent à l’état solide mais les 

complexes 1,10-phenanthroline et 2-Mes-1,10-phenanthroline n’émettent pas en solution.  

Pour renforcer les interactions d’empilement π, les nouveaux ligands nacnacRH (R 

= CH2C6H2(OMe)3, CH2C6F5) et leurs complexes de cuivre respectifs ont été préparés avec 

du dmp et dpp. Afin de permettre la comparaison, le nacnaciBuCu(dmp) a été synthétisé. 

Alors que les complexes dmp montrent une augmentation des interactions intramoléculaires 
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π-π avec les substituants phényle du ligand dikétimine et de la phénanthroline, les 

complexes dpp ne révèlent pas de telles interactions. Les complexes perfluorés montrent, en 

absorption et en émission, un déplacement significatif vers le bleu, alors que les complexes 

substitués par un groupements isobutyle présentent des transitions déplacées vers le rouge. 

Alors que les intensités de luminescence et les durées de vie sont faibles, les déplacements 

réduits de Stokes et les pics étroits de luminescence comparables indiquent une réduction 

des distorsions de l’état excité. 
Mots clés: cuivre, β-dikétimine, nacnac chirale, rétrodonation π, interactions 

intramoléculaires π-π, rayons-X. 
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Introduction 

 
1.1 Application of copper in organic synthesis 

Copper is one of the oldest metals known to man occurring in the same group of the 

periodic table as silver and gold. It occurs freely in nature as well as in mineral forms.1 

Copper is a relatively cheap metal, although increase in its consumption over the last 

couple of years has prompted a steady rise in its price until the global economic meltdown.2  

Copper is a good conductor of heat and electricity, ductile and malleable, making it useful 

in electronics and telecommunication. Its physical properties can be enhanced by 

combining it with other metals to form alloys. In biological systems, copper mediates 

processes such as electron transfer, metal management, oxygen transport (haemocynin) 

and, sometimes, it is involved in catalytic activivities.3 A notable example is the enzyme 

nitrous oxide reductase (N2OR), whose active site contains a tetranuclear copper center 

bridged by a sulfur atom. This enzyme catalyses the two electron reduction of N2O to 

atmospheric nitrogen.4 

Copper occurs mostly in the 0, +I and +II oxidation states. Copper(I) with d10 

electronic configuration usually forms colourless, air- and moisture-sensitive compounds 

which may disproportionate to give copper(II) and copper(0) species. Copper(II) 

compounds, on the other hand, have d9 electronic configuration. They are usually 

characterized by their blue or green colour and show more stability in air than copper(I) 

compounds. Copper(III) compounds have been postulated as intermediates in catalytic 

cycles but only few have been isolated.5 

 

Copper catalysed cyclopropanation of olefins. Cyclopropanes are three-membered ring 

cycloalkanes which occur as components in some natural products.6 Synthetic derivatives 

of cyclopropanes have been widely used as pesticides.7 In the presence of a diazo 

compound, copper compounds promote the formation of cyclopropanes from olefins. 

Recently, synthetic efforts have been based on reacting the olefin and the carbene 
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asymmetrically. A major development was the use of chiral Schiff-base copper complex 

(Figure 1.1) by Nozaki in the mid 60s to perform the reaction.8 

N

O
Cu

Ph

O
N

Ph

+

Ph

EtO2C
+

Ph

EtO2C

Ph

EtO2C

Ph

EtO2C

N2CHCO2Et

 

                                                                                       70%                           30% 

Figure 1.1: Copper catalysed cyclopropanationation of olefin.8 

A 70:30 diastereomeric ratio was obtained with only 6% ee, on which Aratani et al. 

improved later by modifying the salicyaldimine ligand.9 Since then, many chiral ligands 

have been developed which show very high activities and enantioselectivities (Figure 1.2). 
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.

 
Figure 1.2: Chiral catalyst used in copper catalyzed cyclopropanation of styrene. 

 

Though most copper catalysts used are in +2 oxidation state, the active species is 

Cu(I), generated in situ as a copper carbene ‘M=CR2’ intermediate. An example of such a 

compound was recently isolated and it proved to be active in cyclopropanation.10 

Coordination of the olefin to the carbene is then followed by formation of a four-membered 

metallacycle which undergoes reductive elimination to yield the organic products (Figure 

1.3).  

 

 

 



Chapter 1 

 

 

4

R1 R1

Cu L

Cu

N2

Cu

R2

R2R2

R1

N N
+

Cu
R1

R2

R1

H

H

 

 

Figure 1.3: Proposed mechanism for copper catalysed cyclopropanations. 

 

Aziridination. Aziridines, like cyclopropanes, are 3-membered rings in which one of the 

carbon atoms is replaced by a nitrogen atom. Such strained compounds are formed from the 

reaction of nitrenes with olefins (Figure 1.4). The aziridine units occur as components of 

natural products, such as in mitomycin which is known to have anti tumour and antibiotic 

activities.11  

  Copper-catalysed aziridination was developed by Kwartz and Khan after they 

observed that copper powder catalyses the decomposition of benzenesulfonyl azide into 

benzenesulfonamide.12 Major developments include the use of PhINTs [N-(p-

toluensulfonyliminophenyl) iodinane] as nitrene source.13 Recently, aziridination has been 

performed using copper β-diketiminato complexes.14 
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Figure 1.4: Copper catalysed aziridination of styrene.14 

 

Conjugate addition reaction. Conjugate addition of alkyl substituents to α,β-unsaturated 

carbonyl compounds (Michael acceptors) is a C-C bond forming reaction which is 

regioselective in the presence of copper source, favouring the 1,4-addition product over the 

1,2-product.15 First introduced by Kharash in 1941,16 the reaction has broad synthetic 

potential. It is employed, for example, in the synthesis of bioactive β2-amino acids.17 The 

reaction was first performed stoichiometrically using organocuprates.18 Today, Grignard 

and dialkylzinc reagents are also used as nucleophiles in the presence of catalytic amounts 

of a copper source.  

+ +

O

ZnEt2
Catalyst

O

Et

+

OHEtO

Et
+

OHEt

 

Figure 1.5: Conjugate addition of ZnEt2 to 2-cyclohexenone. 

 

A mechanism for the copper catalysed conjugate addition of ZnEt2 to enones was 

proposed by Feringa et al. (Figure 1.6).19 Transmetallation between the copper species and 

organozinc reagent followed by coordination of copper and zinc to the soft and hard part of 

the enone respectively, yields a π-complex. Such species have been characterized by 

employing rapid injection NMR techniques.20 Alkyl group transfer to the enone moiety and 

acid work-up affords the organic product. 
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Figure 1.6: Proposed mechanism for copper catalysed conjugate addition reaction. 

 

Ullmann reaction. The Ullmann reaction, otherwise known as Ullmann coupling, is 

another C-C bond-forming reaction leading to the formation of biaryls in the presence of 

stoichiometric amounts of copper. Such aryl units are common in natural products21 and are 

used as monomers for the synthesis of conductive polymers.22 It is a heterogeneous reaction 

that works well for both inter- and intramolecular substrates and tolerates functional groups 

such as nitro-, aldehyde and even esters.23 The original protocol as reported by Ullmann in 

1901 involved harsh reaction conditions and works well with electron deficient aryl halides 

leading mostly to symmetrical products.24  

 

 

Figure 1.7: Example of Ullmann the reaction.24 

 

Over the years, progress has been made in modifying and widening of the scope of 

the reaction. For example, Ziegler et al.25 have performed the reaction at ambient 

temperature with a modified copper source to obtain unsymmetrical biaryls while, Hassan 
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et al.26 replaced copper with catalytic amounts of Pd(OAc)2 in the presence of isopropanol 

as  reducing agent. Despite these developments, other coupling schemes such as Heck and 

Sonogashira reactions are preferred due to their much wider scope. 

A simple mechanism for the reaction is depicted below (Figure 1.8). The aryl halide 

undergoes oxidative addition with copper followed by comproportionation to afford aryl 

copper which then undergoes a second oxidative addition with another aryl halide. 

Reductive elimination of the Cu(III) species affords the biaryl. 

 

 

Figure 1.8: Mechanism of Ullmann coupling. 

 

1.2    β-Diketimine ligands 

 

1.2.1 General background  

Organometallic chemistry has witnessed a steady growth and the synthesis of cheap, 

easily synthesized, innocent and tunable ligands has been vital to this development. β-

Diketimines (N,N’-diaryl-2-amino-4-iminopent-2-ene or N,N’-dialkyl-2-amino-4-

iminopent-2-ene)  cleary fit this description. The coordination chemistry of β-diketiminates 

or nacnac27 was first officially reported in 1968 by McGeachin28 and Holm.29 Since then, 

their coordination chemistry has evolved with strong emphasis on the N-aryl substituted β-

diketimines. This can partly be ascribed to Brookhart’s discovery in the mid 90s, that late 

transition metal complexes of α-diimine ligands with bulky N-substituents, namely 2,6-

diisopropyl (dipp), are active in olefin polymerization and even tolerate polar substrates,30 

which was one of the limitations of the well known Ziegler-Natta catalysts.31 In 1997, 

Feldman et al. prepared nacnacdippH as an anionic version of this α-diimine ligand.32 
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Although its performance in olefin polymerization was not outstanding, the electronic and 

steric influence of the N-substituents on the metal was so remarkable that it was employed 

subsequently in biochemistry to model the active sites of metalloproteins.33 In the 

following years, new β-diketimine ligands were prepared with varying steric and electronic 

properties including some with only hydrogen atoms on the α-carbon atoms.34  

 

 

 

 

 

 

 

 

 

Figure 1.9: Publications featuring the β-diketimine ligands. 

 

1.2.2 Description of β-diketimines 

Like cyclopentadienyls (Cp) and trispyrazoylborates (Tp), β-diketimines are 

monoanionic multidentate ligands.35 They are derived from 1,3-diones. The carbon atoms 

attached to the nitrogen atoms are labeled α-carbons while the one between the imino 

groups is often referred to as the β carbon. The sub-group with Me groups on the  α carbon 

atoms are commonly called nacnac since they are the nitrogen equivalent of acetyacetonate 

(acac) (Figure 1.10, A). In the literature, the term β-diketiminates (B) and nacnac (C) are 

often used interchangeably. 
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N

R

N

R

R2 R2                                               

        A                                                      B                                                       C                   

Figure 1.10: Differentiation among 1,3-diketonate (A), β-diketiminates (B) and nacnac 

(C). 

 

Some major differences exist between acetyacetonates and β-diketimines. For 

example, in solution, acacH exists as an equilibrium mixture of keto and enol forms. The 

analogous β-diketimine ligands do not show such equilibrium behaviour and only the 

enamine forms were reported. The appearance of only one resonance for α-CH3 in a ratio 

of 6:1 with respect to the β-H indicates rapid tautomeric interconversion of the enamine 

forms (Figure 1.11) which averages out to the resonance form E (Figure 1.11).29 Form F, 

the open conformation is mostly observed when R = H or for protonated salts. 

 

                                  

           D                                 E                                 F  

Figure 1.11: Tautomerism in nacnacH (D), resonance form (E), and open conformation 

(F).  

1.2.3 Properties of β-diketimines 

 

Tunable steric and electronic properties. The electronic and the steric properties of the 

β-diketimines can be easily modified by varying the substituents of the nitrogen atoms. 

Such changes influence the preparation and the reactivity of the ligand. Variation in steric 

demands can lead to drastic geometric changes. For example, (nacnacPh)2Co is tetrahedral 

while the sterically less demanding (nacnacH)2Co is square planar.28,36  
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Electronic and steric properties can also be varied by changing the substituents on 

the β-diketimine backbone, which might influence its conformation, the coordination 

number and nuclearity of its metal complexes. β-Diketimines with unsubstituted α-carbon 

atoms may adopt the W- or open conformation in the solid state depending on the 

substituents on the β-carbon atom (Figure 1.11 F).34 Bulky groups on the backbone interact 

sterically with the N-substituents. This pushes the N-substituents towards the metal in its 

complexes, reducing the possibility for the metal to attain a high coordination number. The 

group of Holland used this strategy to generate three-coordinate Fe(I) precursors for the 

activation of molecular nitrogen.37  

 

Good spectator ligands. Like cyclopentadienyl ligands, β-diketimines are good spectator 

ligands by virtue of the strong bonds formed by the metal ion and the chelating nitrogen 

atoms.34 Such a characteristic is very important in catalysis. However, their non-innocent 

behavior should not be over-emphasized as there are some examples where β-diketiminates 

are transformed. Mostly, these are related to the high electron density on the central β-

carbon atom in the ligand backbone. Yokota et al. have described, for example, the 

oxidative degradation of (nacnacAr)2M (M = Cu(II), Zn(II) and Ar = 2,6-C6H3(Me)2)38 

while Hitchcock et al. have shown in certain β-diketiminato lanthanoid complexes that the 

methyl substituent on the ligand backbone can be deprotonated.39 

 

Stabilization of complexes in unusual oxidation states or coordination numbers. The 

β-diketimine ligand framework stabilizes complexes with unusal oxidation states and or 

unsaturated coordination geometries, such as three-coordinate Fe(I),37 Fe(II),37 Ni(I),40 

Cu(II)33 and Zn(I)41 complexes. They have also been applied in main group chemistry and 

notable examples are nacnac complexes of Al(I),42 Ga(I)43 and Mg(I).44 These complexes 

serve as electron reservoirs and as powerful reducing agents. 

 

Variable bonding modes. β-Diketimines show diverse binding to metal centers. Most 

metals bind through the two nitrogen atoms (Figure 1.12, A). Some early transition metal 

ions, due to electron deficiency, can increase their hapticity by involving all NCCCN atoms 
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in bonding (Figure 1.12, B). In this case, nacnac becomes a 6-electron donor as opposed to 

4 when the bonding is solely by the nitrogen atoms. Such complexes are usually 

characterized by out-of-plane disposition of the metal ion and the β-carbon of the nacnac 

ligand, leading to a pseudo-boat conformation with a short β-carbon-metal bond. Examples 

include the complexes (nacnac)ZrCl3
  and (nacnac)Zr(Cp)Cl2

 reported by Lappert  and 

Collins, respectively.45,46  The coordination mode C has been observed in some lanthanoid 

complexes.39 The bonding mode D is very rare. Feldman et al. while attempting to 

synthesize the complex nacnacdippPd(MeCN)2BF4 as catalyst for olefin polymerization, 

serendipituously prepared a new complex with one Pd atom bonding to the nitrogen atoms 

and another bonding to the β-carbon of the nacnac backbone.32 Another example is the 

mixed metal complex {[LiOEt2][(nacnacdippCuI)]}2
 prepared by reacting nacnacdippLi(OEt2 

with CuI.47  

                     

Figure 1.12: Different coordination modes of nacnac ligands. 

 

Economic and straightforward synthesis. Some supporting ligands such as semicorrins48 

and the bisoxazoline ligands49 structurally resemble nacnac ligands. Despite the structural 

similarity, their syntheses require cumbersome multi-step procedures. On the other hand, 

most β-diketimines are easily prepared from cheap commercially available starting 

materials in one to three steps. Most compounds are solids, generally pack well in their 

lattices and are easily purified by crystallization.37 
 

1.2.4 Synthesis of the diketimine ligands 

Double condensation of acacH with two equiv of a primary amine gives the 

diketimine. While the first condensation proceeds smoothly even in the absence of 
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activating agents, the second requires the activation of the carbonyl carbon for which 

several methods exist. 

N-aryl substituted β-diketimines. The earliest protocol employed two steps by first 

forming the mono-condensation product and subsequently refluxing it with the salt of the 

amine to propel the second condensation (Figure 1.13).29 In recent literature, most N-aryl β-

diketimines are prepared by a one-step procedure using p-TsOH in refluxing toluene with 

the help of a Dean-Stark apparatus.50 The driving force for the reaction is the azeotropic 

removal of water. HCl in refluxing ethanol is an alternative.32 

Less often observed is the use of TiCl4
51 as activating reagent, which is mostly used 

for the synthesis of α-carbon fluorinated β-diketimines. The major draw-back of this 

method is the requirement of excess amine. Fluorinated β-diketimines are also prepared by 

employing the Aza-Witting reaction.52 Another method which has been rarely used is the 

Knorr and Weiss method. It is a four-step synthesis, suitable for the preparation of very 

bulky β-diketimines.53 

 

By using the amine salt 

 

By using Dean Stark apparatus 

 

By using ethanolic HCl 
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By using TiCl4 

 

 

Aza-Wittig method 

O O

F3C CF3 +

N
N

F3C

HN

CF3

F3C CF3

F3C CF3

F3C CF3

toluene

90 oC

PPh3

   

 

Knorr and Weiss method 

 

 

Figure 1.13: Methods to prepare N-aryl substituted β-diketimines. 

 

N-alkyl substituted β-diketimines. Prior to this work, aliphatic N-substituted diketimine 

ligands were prepared only by multi-step procedures. The first step is always the 

preparation of the enaminoketone. The second step involves the use of Meerwein salt as the 

activating agent. Yields of this reaction are generally below 60%.28 The air-and moisture 
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sensitive nature of the Meerwein salt, coupled with its toxicity makes this method not 

suitable for multigram synthesis. Recently, Bradley et al. have employed Me2SO4 as 

activating agent which gave improved yields.54 Isolated reports describe the reaction of 

acetyacetone monoketal with the appropriate amine55,56 or refluxing the enaminoketone in 

MeI,57 but these methods have not been generalized. The latter method does not involve the 

addition of a second equiv of amine and its mechanism has not been clarified. 

 

Using Meerwein salt or Me2SO4 

O O O HN
H2NR 2. H2NBn

Ph

1. Et3OBF4
or Me2SO4

N HN
RR  

From the monoketal 

 

Using MeI 

 

Figure 1.14: Different methods for the preparation of N-alkyl substituted β-diketimines. 

 

1.3 β-Diketiminato copper(I) complexes 

 

1.3.1 N-Aryl substituted β-diketiminato copper(I) complexes 

β-Diketiminato compounds are now known for almost all elements in the periodic 

table. For copper, initial coordination chemistry was based on Cu(II) complexes.28,29,53,58 

Copper(I) nacnac complexes were first reported in 2001 and used in the activation of 
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dioxygen.59 Since then, more Cu(I) complexes have been prepared as models for the active 

sites of metalloproteins (Figure 1.15, A), in particular by Tolman’s group. For example, 

Lee et al. prepared the mixed Cu(I)/Cu(II) nacnacdippCuSC(Ph)2CH2C6H4NCunacnacdipp as 

model of the histidine-cysteine bridged copper array nitrite oxide reductase,60 while 

Aboelella et al. synthesized a Cu(I) thioether β-diketiminato complex to investigate the role 

of the methionine ligand in copper monooxygenases.61 A mixed CuI-GeII complex has been 

used for reactivity studies to probe the lability of the Cu-Ge bond.62 Laiter et al. also 

prepared a series of fluorinated nacnac complexes to investigate the effects of electron 

withdrawing substituents on the complexes and their use in intramolecular aerobic 

hydroxylation (Figure 1.15, B).51 Copper nacnac complexes have also been applied in 

organic transformations. Isolated Cu(I) carbene (Figure 1.15, C)63 and nitrene complexes 

have been successfully employed in cyclopropanation, aziridination and in C-H bond 

amination.64 Complexes lacking α-carbon substituents are also known with various 

substituents on the β-carbon. These complexes adopt open or close conformation, 

depending on the N-substituent and the substituent on the central carbon atom of the 

diketimine backbone, forming oligomers and in some cases, polymers which could find 

application in supramolecular chemistry (Figure 1.15, D).34 
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Figure 1.15: Examples of copper(I) diketiminato complexes. 

 

1.3.2 Preparation Copper(I) diketiminato complexes 

 

Salt metathesis. β-Diketiminate copper(I) complexes are mostly  prepared by reacting 

nacnacLi or nacnacTl with a suitable copper(I) source which include Cu(NCCH3)4PF6,34 

CuX (X = Br,63 I65), Cu(NCCH3)4CF3SO3.66 A major problem with these copper salts is 

their insolubility in common organic solvents. Also, simple reaction of nacnacLi with CuX 

does not often proceed to the desired product.46 CuBr·SMe2 has been employed as a more 

soluble copper precursor.59 
 

Protonation with the free ligand. In 2005, Dai et al. performed the cupration of nacnac 

ligand using CuOtBu63 directly with the protonated ligand, which afforded better yields 

than the reaction of nacnacTl with CuBr·SMe2. MesCu51 and (Me3SiCH2Cu)4
61,67 have also 

been used. This method has the advantage that the copper salts are soluble in most organic 

solvents and that the only by-products are volatile and can easily be removed. 
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1.3.3 N-Alkyl β-diketiminato copper(I) complexes.  

Unlike the N-aryl β-diketiminates, which are known for almost all elements in the 

periodic table, the N-alkyl β-diketiminates are less common. Copper complexes with 

simple N- alkyl substituents were employed in CVD and ALD applications.68,69 However, 

most of the complexes used for this purpose are in the +2 oxidation state. Copper(I) 

complexes with simple N-alkyl substituents such as Me and Et tend to be unstable and 

disproportionate to afford copper(II) species.68 However, in 2006, Park et al. reported 

copper(I) complexes with simple N-alkyl substituents supported by vinyltrimethylsilylane 

which were employed in CVD studies.70,71 In the same year, Thompson et al. prepared the  

nacnaciBuCu(Me3SiCCSiMe3) and used it to to demonstrate the influence of ancillary 

ligands on π backbonding.72 In 2009, Arri et al. reported the synthesis of a nacnaciPrCu-

germylene complex.73 
 

1.4 Research objective 

The coordination chemistry of the β-diketiminate ligand is broad, but mostly limited 

to the N-aryl substituted ligands. For copper(I), only three articles and one patent report N-

alkyl substituted complexes,70-73 one of them appeared in the literature while this work was 

in progress.  

The objective of this research is to explore the chemistry of N-alkyl β-diketimines 

with emphasis on their copper(I) complexes. A preliminary, but essential part of the work 

will explore the influence of the N-alkyl substituents on complex synthesis and stability. 

Afterwards, the N-alkyl substituted copper diketiminato complexes will be investigated to 

take advantage of changes introduced by the the N-alkyl substituents, namely: higher 

basicity, the option to introduce chirality and the changes in the steric environment due to 

an sp3-hybridized atom as the N-substituent. 

In more detail: 

• In chapter two, complexes with N-xylyl substituents are prepared as potential 

biomimetic models for N2O reductase. This is the only chapter not dealing with N-alkyl 

substituents and it stands somehow isolated from the rest of the work. 



Chapter 1 

 

 

18

• In the third chapter, the first chiral β-diketimine is prepared and subsequently used to 

prepare the respective copper(I) complexes. Their application in the catalytic 

cyclopropanation of styrene and 1,4-conjugate addition of ZnEt2 to 2-cyclohexenone 

will be discussed in chapter four. 

• In chapter five, copper(I) complexes with N-iPr substituents are prepared to investigate 

whether the lack of reactivity in the presence of olefins is peculiar to β-diketiminates 

with N-sec-alkyl substituents.  

• Chapters six and seven discuss nacnac copper(I) complexes with an N-Bn substituent. 

Their π backbonding characteristics will be discussed in chapter six while the ability of 

the Bn substituents to form intramolecular π stacking interactions found application in 

the synthesis of luminescent copper complexes (chapter 7). 

 

 

Figure 1.16: Working plan 
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Abstract 

The copper(I) complex {(bis-2,6-dimethylphenyl-penta-2,3-diiminato)Cu}2(μ-

toluene), 3 has been prepared and its reactivity with Lewis bases and nitrous oxide 

investigated. Complex 3 crystallizes as a toluene-bridged dimer and forms mono- and 

dinuclear benzene adducts in C6D6 solution. It does not coordinate excess THF, but reacts 

quantitatively with 2 equiv. of acetonitrile. Reaction with 2,6-xylyl isonitrile yields (bis-

2,6-dimethylphenyl-penta-2,3-diiminato)Cu(2,6-xylyl isonitrile), 6, (νCN = 2123 cm-1), 

which was characterized by an X-ray diffraction study. Complex 3 does not react with 

nitrous oxide in either C6D6 solution (5 days at 50 °C) or in diethyl ether (13 days at 

ambient temperature). 

 

1. Introduction 

Nitrous oxide, N2O, is able to oxidize unsaturated carbon-carbon bonds, albeit only 

at elevated pressures and temperatures [1-5], while reactions involving transition metal 

complexes as catalysts or reagents proceed under much milder conditions [6-17]. Although 

coordination of nitrous oxide to the metal center is probably involved in all of these 

reactions, very little is known about the coordination chemistry of nitrous oxide [18-24]. 

Recently, coordination of nitrous oxide to copper atoms has gathered additional 

interest. The crystal structure of the enzyme nitrous oxide reductase revealed a 

unprecedented Cu4S-cluster as its active center for the reduction of nitrous oxide (CuZ) [25, 

26], and a bridging coordination of nitrous oxide to two copper centers was proposed as an 

essential part of the reaction mechanism [27, 28]. We were interested in the reactivity of 

nitrous oxide with well defined mononuclear copper complexes, in particular with copper 

complexes containing an N,N'-substituted 2,4-pentane-diketiminato (= "nacnac") ligand 

(Scheme 2.1), which have been extensively studied as models for the activation of 

dioxygen in biological systems [29-34]. We report herein the synthesis and characterization 

of Cu(I) complexes carrying a bis(2,6-xylyl) nacnac ligand, which proved, however, 

unreactive towards nitrous oxide even at elevated temperatures and increased reaction 

times. 
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                                                      Scheme 2.1 

2. Results and Discussion 

 

2.1. Complex Synthesis. Several pathways have been described for the synthesis of 

(nacnac)Cu(I) complexes with varying ancillary substituents at the copper center [29, 35-

39]. Given the poor coordinative ability of nitrous oxide, we considered it necessary to 

avoid strongly coordinating ancillary ligands such as acetonitrile or olefins, thus 

eliminating the often used [Cu(NCMe)4][OTf] salt as a possible starting material. Direct 

reactions of copper iodide with 1Li(THF) or 2Li(THF) failed in our hands to give the 

desired compound. We attempted to synthesize the desired Cu(I) complex via the 

corresponding Cu(II) compounds, but neither comproportionation of the corresponding 

Cu(II) complex 1Cu(OAc) or 2CuCl [40] with copper metal, nor reduction with a methyl 

Grignard reagent, employing the known instability of Cu(II) alkyls versus reductive 

elimination, were successful. We thus turned to a protonation route using Cu(OtBu), 

introduced by Warren and coworkers as an economic and soluble starting material for the 

preparation of copper complexes [38]. Reaction of the protonated ligand 1H with Cu(OtBu) 

and recrystallisation from toluene/hexane yielded the toluene-bridged dimeric complex 

(1Cu)2(μ-toluene), 3, in 90% yield (Scheme 2.2). The preparation of derivatives of 3, i.e. 

(1Cu)2, lacking the bridging toluene molecule, as well as 1Cu(L) complexes where L is a 

more strongly coordinating ligand such as olefin, phosphine, lutidine or acetonitrile has 

been reported previously [30, 35, 37, 41].  
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Scheme 2.2 

In the absence of more strongly coordinating ligands, nacnac copper complexes 

form mono- or dinuclear complexes with the copper center coordinated either to an 

aromatic solvent or to the aromatic N-aryl substituent [36-38, 41, 42]. An X-ray diffraction 

study confirmed that here a toluene bridged dimer was obtained (Figure 2.1). Its structure is 

similar to the related compound {(bis-2,4,6-trimethylphenyl-nacnac)Cu}2(μ-toluene), 4, 

reported by Badiei et al. [38]. Complex 3 displays a trigonal coordination geometry around 

the copper atom. Bond distances in the ligand and to the metal centers are comparable to 

those found in similar compounds (Table II-1). As typically observed in nacnac copper 

olefin/arene complexes where rotation of the unsaturated ligand is possible, the coordinated 

double bond is co-planar with the mean plane of the nacnac copper fragment. Localisation 

of the double bonds in the bridging toluene molecule is evidenced by the alternation of the 

C-C distances in the aromatic ring. A comparable alternation was observed for 4, while it is 

significantly less pronounced in complexes with non-bridging arenes (Table II-1). 

Coordination of C44-C45 and C46-C47 to the copper centers results in a significant 

elongation of these bond distances in comparison to the "isolated double bond" C48-C43 

(1.405(3) and 1.404(3) Å, compared to 1.361(3) Å, respectively).  
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Figure 2.1: Crystal structure of 3. Thermal ellipsoids are drawn at the 50% probability 

level. Hydrogen atoms were omitted for clarity. 

 

Table II-1: Selected Bond Distances and Angles of 3, 4 and Related Complexes  

 3 4 a related complexes b

Cu-N [Å] 1.932(2) - 1.949(2) 1.922 - 1.942 1.903 - 1.969 

Cu-Carom. [Å] 2.055(2) - 2.084(2) 2.027 - 2.078 2.047 - 2.119 

C44-C45 [Å] 

C46-C47 [Å] 

1.405(3) 

1.404(3) 

1.402 

1.400 

1.380 - 1.402 

 

C43-C44 [Å] 

C45-C46 [Å] 

C47-C48 [Å] 

C48-C43 [Å] 

1.437(3) 

1.440(3) 

1.431(3) 

1.361(3) 

1.438 

1.436 

1.435 

1.361 

1.323 - 1.423 

N-Cu-N 98.9(1) - 100.1(1) ° 98.8 - 99.0 ° 99.2 - 100.7 ° 
a see ref. [38], b see ref. [36, 37, 41, 42] 
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1H NMR spectra of 3 in C6D6 display two sets of signals corresponding to a C2v-

symmetric nacnac ligand. No signals for coordinated toluene were detected. In analogy to 

assignments made by Badiei et al. for 4, which showed a comparable behaviour [38], we 

assign these two species to an equilibrium mixture of the benzene adducts {1Cu}2(μ-C6D6), 

5a, and 1Cu(η2-C6D6), 5b (Scheme 2.2). Irreversible loss of benzene and formation of a 

benzene-bridged dinuclear copper complex was also reported by Laitar et al., in this case 

using a fluorinated nacnac ligand [36]. The ratio of 5a and 5b remained unchanged upon 

addition of up to 50 equiv. of toluene, consistent with their assignment as benzene 

coordinated complexes. Upon dilution the NMR resonances observed at higher field 

diminishes and we thus assign this species to the dinuclear complex 5a. An equilibrium 

constant K300K = [5b]2/[5a] = 130-220 M was found over a concentration range of 2-36 mM 

3 in C6D6. As expected, no peaks originating from close contacts between the two species 

were observed in NOESY spectra of 3 in C6D6. Cross peaks due to chemical exchange 

indicate a reasonably fast interconversion at room temperature, in agreement with the fact 

that the original toluene adduct was never observed. This is in contrast to the behaviour 

described for 4, where broadened signals of the original toluene adduct were observed to 

transform slowly, overnight, into the putative benzene adducts [38]. 

 

2.2. Reactivity towards different ligands. Addition of up to 50 equiv THF to a C6D6 

solution of 3 failed to have any noticeable influence on its 1H NMR spectrum. In contrast, 

formation of the putative complex 1Cu(NCMe) was observed in the presence of 2 equiv. of 

acetonitrile, indicating as expected a strong coordination of this solvent to nacnac copper 

complexes. No attempt was undertaken to isolate 1Cu(NCMe). Addition of 2,6-xylyl 

isonitrile to 3/C6D6 led to immediate formation of a single product, which was assigned as 

1Cu{CN(Me2C6H3)}, 6. This assignment was supported by direct synthesis of 6 and its 

crystal structure analysis. The structure of 6 displays the expected trigonal coordination of 

the copper center. The η2-coordinated nacnac ligand is planar, bond distances indicate 

complete delocalisation of the double bonds in the ligand backbone and the copper atom is 

located in the mean ligand plane (∠(Cu1,N1,N2)(Cu1,N1,N2,C2-C4 = 7°). The structural 

features of 6 (Table II-2) are similar to those of analogous xylyl isonitrile complexes with 
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the bis-2,4,6-trimethylphenyl nacnac [38] or bis-2,6-diisopropylphenyl nacnac ligand [43]. 

Compound 6 resembles the former particularly in the symmetric placement of the isonitrile 

ligand (Δ(Cu-N) = 13 and 19 pm, Δ(C-Cu-N) = 6 and 9°, respectively), while the sterically 

more encumbered isopropyl substituted complex displays a more asymmetric coordination 

(Δ(Cu-N) = 34 pm, Δ(C-Cu-N) = 22°). The C-N distance (1.157(3) Å) and the N-C-C angle 

of the isonitrile (173.8(2)°) are in the middle of the range observed for metal complexes 

containing a κ-bound 2,6-xylyl isonitrile ligand (1.159(26) Å and 172(6)° [44]) and similar 

to that of the free ligand (1.160-1.161 Å [45]). The lack of significant back-bonding 

indicated by the structural data is substantiated by the stretching frequency νCN = 2123 cm-1 

observed for solutions of 6 in toluene, which is higher than that of free isonitrile (νCN = 

2119 cm-1) [46]. 

 
Figure 2.2: Crystal structure of 6. Thermal ellipsoids are drawn at the 50% probability 

level. Hydrogen atoms were omitted for clarity. 
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Table II-2  

Selected Bond Distances and Angles of 6 and other N,N'-Bis-aryl-nacnac Copper (2,6-

Xylyl Isonitrile) Complexes. 

 Ar = 2,6-Me2C6H2, 6 Ar = 2,4,6-Me3C6H2 a Ar = 2,6-iPrp2C6H3 b

Cu1 – N1 

Cu1 – N2 

1.933(2) Å 

1.946(2) Å 

1.926(2) Å  

1.945(1) Å 

1.928(2) Å 

1.962(2) Å 

Cu1 – C30 1.822(2) Å 1.814(2) Å 1.817(2) Å 

C30 – N3 1.157(3) Å 1.159(2) Å 1.158(3) Å 

C30–N3–C22 173.8(2)° 177.0(2)° 171.4(2)° 

N1–Cu1–C30 

N2–Cu1–C30 

134.0(1)° 

127.6(1)° 

135.5(1)° 

126.6(1)° 

141.8(1)° 

120.0(1)° 

∠ nacnac, 

isonitrile c 

35° 35° 45° 

a see ref. [38], b see ref. [43], c ∠ (Cu1, N1, N2, C2-C5)(C22-C29) 

 

2.3. Reactivity towards nitrous oxide. Solutions of 3 in C6D6 under 1 atm of N2O at room 

temperature displayed no changes in their NMR spectra, indicating that nitrous oxide 

coordination does not occur to a visible extent under these conditions. More surprisingly, 

however, neither any noticeable decline in the concentration of 3 (or more precisely: in the 

concentrations of 5a and 5b, obtained upon dissolution of 3 in C6D6), nor any colour 

change was observed when a solution of 3 in C6D6 was kept for 5 days in presence of an 

excess of nitrous oxide (1 atm N2O, exclusion of light, ambient temperature). After heating 

for 5 days at 60 °C, the concentration of 3 declined by 10-15%. Approximately the same 

ratio of decomposition was observed for the control experiment (nitrogen atmosphere) 

under identical conditions and we have to conclude that there is no evidence for the 

oxidation of 3 by nitrous oxide [47]. 

Given the fact that the benzene solvent displaces the bridging toluene in 3 and could 

not be replaced by added THF, we investigated reactions of 3 with N2O in diethyl ether 

solution to minimize inhibition of nitrous oxide coordination by the solvent. Solutions of 3 

in Et2O (3·10-4 – 5·10-3 M) under 1 atm of nitrous oxide (10-200 equiv) were kept under 
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exclusion of light at ambient temperatures for 6-13 days. No change of the yellowish colour 

was observed and UV/vis spectra, measured for less concentrated solutions, remained 

significantly different from those of solutions exposed to oxygen. In all experiments, 

spectral changes were comparable to those observed for control experiments under nitrogen 

atmosphere and exposure to dry oxygen resulted in an immediate colour change to dark 

brown even after prolonged storage under N2O atmosphere. We have to conclude that 3 

was not oxidised by N2O in any measurable extend.   

 

3. Conclusion 

Nitrous oxide lived up to its reputation as a "poor" ligand in its failure to coordinate 

to nacnac copper complexes under the conditions examined here. Reactions of  1Cu(L) 

with nitrous oxide in benzene or diethyl ether solutions, if they occurred at all, were too 

slow to be detected next to complex degradation (under nitrogen atmosphere and otherwise 

identical conditions appr. 1-3% per day). Further investigations, e. g. reactions of N2O with 

dinuclear copper complexes, are necessary to determine if this lack of reactivity is related 

to the fact that coordination to two copper centers is an essential part of the proposed 

mechanism of nitrous oxide reduction in biological systems [28]. 

 

4. Experimental Section 

 

4.1. General 

All reactions were carried out under nitrogen atmosphere using Schlenk or glove 

box techniques. THF was distilled from sodium/benzophenone, all other solvents were 

dried by passage through activated aluminium oxide (MBraun SPS) and de-oxygenated by 

repeated extraction with nitrogen. C6D6 was distilled from Na and de-oxygenated by three 

freeze-pump-thaw cycles. 1H [48], 2H [49], and CuOtBu [50] were synthesized as reported. 

All other chemicals were obtained from commercial suppliers and used as received. NMR 

spectra were recorded on a Bruker ARX 400MHz spectrometer and referenced to residual 

solvent (C6D5H: δ 7.15, C6D6: δ 128.02). Elemental analyses were performed by the 

Laboratoire d’Analyse Elémentaire (Université de Montréal). 
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4.2. (N,N'-bis-2,6-Me2C6H3-nacnac)Cu(OAc), ({1}Cu{OAc}) (2) 

Following the procedure published for the analogous N,N'-dimesityl complex [51], 

1H (1.50 g, 4.9 mmol) was dissolved in a mixture of methanol and dichloromethane (4:1, 

125 mL) and added drop-wise to a solution of Cu(OAc)2 (0.17 g, 4.9 mmol) in the same 

solvent mixture. On addition the originally blue solution turned light-green, dark-green and 

finally black. After stirring for 1.5 h at ambient temperature, the solvent was evaporated 

and the obtained brown precipitate washed twice with water (30 mL) and dried under 

vacuum (1.3 g, 84%). Found: C, 64.72, H, 6.59, N, 6.84. Calc. for C23H28N2O2Cu: C, 

64.56, H, 6.57, N, 6.81.  

 

4.3. {(N,N'-bis-2,6-Me2C6H3-nacnac)Cu}2(μ-C7H8) (3) 

To a mixture of 1H (3.28 g, 7.45 mmol) and CuOtBu (1.50 g, 7.50 mmol), toluene 

(20 mL) was added. After stirring for 2h, the yellow-brown solution was filtered through a 

pad of celite, concentrated to one fifth of its volume and layered with hexane (20 mL). 

Yellow crystals of 3 (2.7 g, 90%), formed after 2 days at room temperature. δΗ (C6D6): a 

mixture of a dinuclear, 5a, and a mononuclear C6D6 adduct, 5b, was observed in C6D6 

solution (see text): 5b: 6.95-7.10 (m, CArH), 4.77 (s, 1 H, CH), 2.01 (s, 12 H, ArCH3), 1.63 

(s, 6 H, C(N)CH3).  5a: 7.10-6.95 (m, CArH), 4.74 (s, 2 H, CH), 1.89 (s, 24 H, ArCH3), 1.55 

(s, 12 H, C(N)CH3). δC (C6D6): 5a: 159.62, 150.7, 130.6, 128.2 (partially obscured by 

solvent), 123.3, 93.4, 22.9 (N=CMe), 18.8 (ArMe). 5b: 159.64, 150.6, 130.7, 128.2 

(partially obscured by solvent), 123.2, 93.1, 23.2 (N=CMe), 18.9 (ArMe). Found: C, 70.56; 

H, 6.94; N, 6.73. Calc. for C49H58N4Cu2: C, 70.70; H, 6.97; N, 6.71.  

 

4.4. (N,N'-bis-2,6-Me2C6H3-nacnac)Cu{CN(2,6-Me2C6H3)} (6) 

  To a mixture of 3 (200 mg, 0.24 mmol) and 2,6-xylylisonitrile (33 mg, 0.25 mmol), 

toluene (1 mL) was added and the resulting yellow solution was stirred for 1h, layered with 

hexane (2 mL) and kept at -35 °C. Yellow crystals of 6 (124 mg, 52%) formed after 2 days. 

δΗ (C6D6) 6.41-7.16 (m, 9 H, CArH), 5.02 (s, 1 H, CH), 2.42 (s, 12 H, ArCH3), 1.77 (s, 6 

H), 1.63 (s, 6 H). δC (C6D6) 162.6, 162.5 (weak), 153.0, 134.9, 130.3, 128.4, 128.3, 127.5, 
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122.8, (one aromatic peak missing), 94.3, 22.4, 19.3, 18.0. Found: C, 71.92; H, 6.81; N, 

8.43. Calc. for C30H34N3Cu: C, 72.03; H, 6.86; N, 8.47.  

 

4.5. Reaction of 3 with N2O in C6D6 solution 

The desired complex 3 (15 mg, 0.018 mmol) was dissolved in C6D6 (0.8 mL). 

C6Me6 was added as an internal standard. The ensuing yellow solution was transferred to a 

J. Young NMR tube. Two freeze-pump-thaw cycles were performed to remove N2, and 

N2O (2 mL, 1 atm, 0.08 mmol) was introduced to the evacuated tube after warming to room 

temperature. As a control, an identical solution was prepared without addition of N2O. 

NMR tubes were kept either at room temperature or at 60 °C under exclusion of light and 

monitored by 1H NMR at room temperature. 

 

4.6. Reaction of 3 with N2O in Et2O solution 

a) A 25 mL Schlenk flask was charged with 3 (50 mg, 0.06 mmol) and Et2O (12 

mL). After two freeze-pump-thaw cycles, N2O (1 atm, 0.8 mmol) was introduced to the 

evacuated flask. For control experiments, an identical solution was left either under 

nitrogen atmosphere. The solutions were kept under exclusion of light for 5 days without 

any visible colour change. An immediate colour change to brown was observed on 

exposure to oxygen. 

b) A 25 mL Schlenk flask was charged with 12 mL of a solution of 3 in Et2O (10 

mg in 40 mL). After freeze-pump-thaw cycles, 1 atm of either nitrogen or nitrous oxide 

was introduced to the flask. Solutions were stored at ambient temperature under exclusion 

of light for up to 13 days. UV/vis spectra were recorded in regular intervals in the region of 

400-800 nm by placing the sealed Schlenk flask directly in the spectrometer. An immediate 

colour change to brown was observed on exposure to oxygen after the end of the 

measurement. 

   

4.7. Reaction of 3 with Lewis bases in in C6D6 solution 

A J. Young NMR tube was charged with 3 (15 mg, 0.018 mmol) and C6D6 (0.6-0.8 

mL). The required amount of Lewis base (THF: 1.5-75 µL, 0.02-0.9 mmol; toluene: 1.9-

95µL, 0.02-0.9 mmol; MeCN: 1.3 µL, 0.024 mmol) was added in several portions and 1H 
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NMR spectra were recorded after each addition. No changes were observed in the case of 

toluene or THF addition. Addition of MeCN lead to the formation of a new compound, 

presumably 1Cu(NCMe): δΗ (C6D6) 6.95-7.10 (m, 6 H, CArH), 4.81 (s, 1 H, CH), 2.08 (s, 

12 H, ArCH3), 1.65 (s, 6 H), 0.52 (s, 3 H, NCCH3).  

 

4.8. X-ray diffraction studies 

Crystals suitable for X-ray diffraction studies were obtained directly in the 

synthesis. Diffraction data were collected on Bruker/AXS Smart 6000 (4K) diffractometer 

(Mirror Montel 200-monochromated Cu Kα radiation, FR591 Rotating Anode). Cell 

refinement and data reduction were done using APEX2 [52]. Structures were solved by 

direct methods using SHELXS97 and refined on F2 by full-matrix least squares using 

SHELXL97 [53]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were refined isotropic on calculated positions using a riding model. Further experimental 

details are listed in Table 3.  
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Table II-3  

Details of X-ray Diffraction Studies 

 3 6 

Formula C49H58N4Cu2 C30H34N3Cu 

Mw (g/mol); F(000) 830.07; 3504 500.14; 1056 

Crystal color and form yellow bloc yellow bloc 

Crystal size (mm) 0.12 x 0.12 x 0.20 0.12 x 0.12 x 0.12 

T (K); dcalcd. (g/cm3) 150; 1.295 150; 1.233 

Crystal System orthorhombic monoclinic 

Space Group Pbca P21/c 

Unit Cell: a (Å) 21.0373(8) 12.8755(5) 

 b (Å) 14.8188(6) 11.3387(5) 

 c (Å) 27.3128(11) 19.2722(9) 

 β (°)  106.693(2) 

V (Å3); Z 8514.7(6); 8 2695.0(2); 4 

θ range (°); completeness 3.2-71.9; 0.970 3.6-72.0; 0.944 

Reflections : collected /  

independent; Rint  

98923 / 8101; 0.0594 36248 / 4991; 0.036 

μ (mm–1); Abs. Corr. 1.510; multi-scan 1.293; multi-scan 

R1(F); wR(F2) [I > 2σ(I)] 0.0345; 0.0906 0.0369; 0.1103 

R1(F); wR(F2) (all data) 0.0478; 0.0944 0.0412; 0.1135 

GoF(F2) 0.953 1.101 

Residual electron density 0.38 e-/Å3 0.25 e-/Å3 
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diketiminate ligand and its copper complexes 
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Abstract 

The chiral diketiminate ligand bis-N,N'-(2-phenyl-ethyl)-2,4-diiminopentane, 1H, 

was synthesized in good yields in a one step reaction from chiral amine and acetylacetone. 

Reaction of 1Li(THF) with N-bromosuccinimide yielded the succinimide-substituted 

ligand 2H. Copper complexes (1Cu(NCMe), 1Cu(DMAP), 1Cu(PPh3), 1Cu(2,6-xylyl 

isonitrile), 2Cu(PPh3), and 2Cu(2,6-xylyl isonitrile)) were obtained by reaction of the 

ligand with a basic copper source in the presence of coordinating Lewis bases and, for the 

most part, characterized by X-ray diffraction studies. Compared to their more common 

analogues with aromatic substituents on N, 1 and 2 seem to be more basic (1>2) and 

sterically more demanding (2>1). Their copper complexes are less stable than those of aryl-

substituted diketiminates and tend to decompose by disproportionation, most probably after 

dissociation of the coordinated Lewis base. Despite the rotational freedom around the N-R* 

bond, the complexes are sterically rigid, a necessary requirement for potential applications 

in enantioselective catalysis. 

 

Introduction 

N,N'-substituted β-diketiminato ("nacnac")1 ligands have been gaining increasing 

interest over the last decade, mainly due to their suitability as sterically crowded spectator 

ligands to stabilize coordinatively unsaturated metal centers and unusual oxidation states.2 

This rekindled interest in a ligand structure known since the 1960s is mainly due to 

Brookhart's seminal work on late metal complexes for olefin polymerization.3 β-

Diketiminates are the anionic equivalent of the N,N'-aryl substituted α-diimine ligands 

used there and research has focused, with only few exceptions, on N,N'-aryl substituted 

ligands, in particular N,N'-bis-2,6-diisopropyl-phenyl diketiminates. Copper(I) diketiminate 

complexes, for example, have been widely studied, in particular by the groups of Tolman4, 5 

and Warren,6, 7 but only selected complexes investigated for Cu ALD carried diketiminate 

ligands with aliphatic substituents on nitrogen.8 During previous work on biomimetic 

copper complexes,9 we became interested in varying the ligand framework of nacnac 

complexes by switching from aromatic to aliphatic N,N'-substituents. In addition to 

drastically changing the steric environment around the metal center, aliphatic substituents 

would be a very economic way to introduce chirality into diketiminate ligands. We report 
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here the synthesis of N,N'-bis(2-phenylethyl)-nacnacH, 1H, the first chiral nacnac ligand, 

and its copper complexes. 

 

Results and Discussion 

 

Ligand synthesis. Synthesis of β-diketimines with aliphatic N-substituents has been 

reported previously by a two step procedure.10 Simple condensation of acetylacetone with a 

primary amine yielded the mono-substituted product, 4-ketimin-propan-2-one, which is 

normally obtained in its enamine form. Condensation with a second amine required 

activation of the ketone, most commonly by alkylation with Meerwein salt or other 

alkylating reagents.10 To gain an economic and fast access to the required ligand, we 

investigated the possible one-step synthesis of aliphatic nacnac ligands. Following the 

synthetic protocol outlined for aryl-substituted diketimines,11 double condensation of 

enantiomerically pure phenylethylamine and acetylacetone was achieved in the presence of 

1 equiv. of p-toluenesulfonic acid under elimination of water with a Dean-Stark apparatus 

for 5 days. Chiral 1H was obtained in 67-70% yield for RR- and SS-1H. While this work 

was in progress, Buch and Harder reported the synthesis of SS-1H in a two-step procedure 

via alkylation of the corresponding enaminoketone in 36% yield.12 No metal complexes of 

this ligand were reported. Reaction of 1Li(THF) with N-bromosuccinimide yielded the 

succinimide-substituted ligand 2H, most probably by initial bromination at the central 

carbon atom followed by nucleophilic substitution of bromide by lithium succinimide. 
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Scheme 3.1 
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Crystals suitable for an X-ray diffraction study of SS-1H and RR-2H were obtained 

from ethanol at –20 °C (Figure 3.1, Table III-2). Ligand 1H shows the expected planar 

conformation of an imine-enamine ligand. Bond lengths in previous solid state structures of 

2-amino-4-imino-pent-2-enes13-16 ranged from apparent delocalization (ΔC-C, ΔC-N < 0.01 

Å)13 to clear bond alternation (ΔC-C = 0.08 Å, ΔC-N = 0.06 Å).16 For 1H, small differences in 

the C3-C2/C4 and C-N bond lengths (ΔC-C = 0.02 Å, ΔC-N = 0.02 Å) indicate an apparent 

delocalization (or better: disorder) of the double bonds. In agreement with this, inspection 

of the difference Fourier map yielded two maxima of electron density close to N1 and N2, 

which were assigned and refined as the disordered NH proton. Of special note is the 

orientation of the chiral N-substituent, which is rotated in a way as to orientate its hydrogen 

atom towards the methyl group of the ligand backbone. Ligand 2H displays, as expected, 

the same general geometry (Figure 3.2, Table III-2), with the methine-hydrogen towards 

the ligand backbone. In contrast to 1H, the double bonds are substantially localised as 

indicated by differences in the C3-C2/C4 and C-N bond lengths of ΔC-C = 0.06 Å and ΔC-N = 

0.05 Å and H1A was consequently located bound to N1 only. The introduction of the 

succinimide substituent in the ligand backbone did not have any notable consequences on 

the overall geometry, as evidenced by virtually unchanged bond and torsion angles (Table 

III-2). 
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Figure 3.1: Crystal structure of SS-1H. Thermal ellipsoids are drawn at the 50% 

probability level. Hydrogen atoms, except the disordered NH, were omitted for clarity. 
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Figure 3.2: Crystal structure of RR-2H. Thermal ellipsoids are drawn at the 50% 

probability level. Hydrogen atoms, except NH, were omitted for clarity. 

 

Complex syntheses. Protonation of CuOtBu with nacnacH in aromatic solvents has proved 

to be a reliable route to nacnac copper complexes.17 In contrast to aryl-substituted nacnac 

ligands, solutions of 1H and CuOtBu in benzene-d6, however, displayed only signals 

associated with the starting material in its NMR spectra, even after several days at room 

temperature. Reactions with the stronger base CuMes (Mes = 2,4,6-trimethylphenyl) also 

did not lead to any deprotonation of 1H. Reaction of CuOtBu with 1H in C6D6 can be 

achieved in the presence of coordinating ligands, such as PPh3, to form the corresponding 

copper complex (1)Cu(PPh3), 3a, (vide infra) and tert-butanol (1H NMR: δ 1.19 ppm). 
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Surprisingly, CuMes still remains inactive even in the presence of PPh3, probably due to a 

kinetically hindered attack on the CuMes-pentamer.18 CuMes could be employed as a 

copper source, however, in the presence of catalytic amounts of either tert-butanol or 

CuOtBu. We propose a catalytic cycle, where CuOtBu reacts with 1H and is regenerated by 

reaction of tert-butanol with CuMes (Scheme 3.2). While no difference in reactivity 

between CuOtBu and CuMes/CuOtBu was observed in any reaction, we found that 

products obtained by reaction with CuMes/CuOtBu were sometimes easier to isolate by 

crystallisation, probably due to the absence of large amounts of tert-butanol.  

 

Scheme 3.2 

 
 

Reaction of SS-1H with CuMes/CuOtBu or with CuOtBu in the presence of PPh3, 

MeCN,  N,N'-dimethylaminopyridine (DMAP) in toluene at room temperature yielded, 

after crystallization from toluene/hexane at –30 °C the corresponding ligand coordinated 

copper complexes SS-3a-3c in 65-80% yield (Scheme 3.2). While 3a & 3b were stable in 

the presence of excess Lewis base, solutions of 3c in benzene-d6 start to visibly decompose 

after 15 min in the presence of excess MeCN. The lack of any NMR detectable 

decomposition products (apart from small amounts of 1H) and the formation of a copper 

mirror indicate disproportionation as the most probable decomposition pathway. Analogous 

reactions in the presence of 2,6-xylyl isonitrile afforded after crystallization at –30 °C, on 

standing, or after evaporation of the volatiles only yellow precipitates, which were 
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insoluble in benzene or even DMSO. The same results were obtained in attempts to isolate 

1Cu(CNC6Me2H3), 3d, from benzene-d6 solutions, even after the NMR spectrum confirmed 

the formation of the copper complex. In one case, attempted crystallization of 3d yielded a 

crystalline product, which was identified as {(2,6-Me2C6H3-NC)Cu(OtBu)}4 by X-ray 

crystallography (Figure 3.3). Since reactions were usually complete when followed via 

NMR, we believe this to be a minor or isolated occurrence and changing the order of 

reagent addition did not result in isolation of 3d. Change of the solvent from toluene to 

ether finally allowed the isolation of 3d, although we were not able to obtain crystals 

suitable for an X-ray structure determination. Reactions of the succinimide-substituted 

ligand SS-2H under analogous conditions in the presence of PPh3 or 2,6-xylyl isonitrile 

yielded the Lewis-base coordinated complexes 2Cu(PPh3), 4a, and 2Cu(CNC6Me2H3), 4d, 

respectively.  

 
Figure 3.3: Crystal structure of {(2,6-Me2C6H3-NC)Cu(OtBu)}4. Thermal ellipsoids are 

drawn at the 50% probability level. Hydrogen atoms were omitted for clarity. 
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Since copper complexes 3 and 4 could not be obtained – in contrast to their aryl 

substituted analogues – in the absence of an additional Lewis base ligand, we decided to 

investigate the requirement of a coordinating Lewis base in more detail. Neither complex 

formation nor decomposition was observed in reactions of 1H and either CuOtBu or 

CuMes/CuOtBu in benzene-d6 in the presence of 1-hexene, styrene, diphenylacetylene, 

THF, acetone, or benzonitrile. The 1H NMR spectra of the reaction mixtures contained only 

unreacted starting materials. In the presence of acetonitrile, signals for 1Cu(NCMe), 3c, 

were observed, but the reaction did not go to completion after 1 h, even when 

CuMes/CuOtBu was employed as a copper source. After 1 h, the NMR spectra became 

difficult to interpret due to the instability of 3c. Complete conversion to the complexes 3a, 

3b & 3d and the putative complexes 3e & 3f were observed in the presence of PPh3, 

DMAP, 2,6-xylylisocyanide, pyridine or PMe3 (Scheme 3.2). The disappearance of signals 

for the starting materials was accompanied by the appearance of a new set of signals for the 

nacnac ligand which lacked a signal for the N-bonded proton and the formation of 2,4,6-

mesitylene (1H NMR: δ 2.15 ppm) and/or tert-butanol (δ 1.19 ppm). 

Salt metathesis reactions of [Cu(NCMe)4][PF6] with 1Li(THF) in the presence of 

MeCN or excess of styrene did not yield any Cu(I) complex, but strongly coloured 

suspensions. In the presence of 2,6-xylyl isonitrile, the stable complex 3d was obtained, 

albeit in lower yields than via the protonation route. On the other hand, protonation of 

CuOtBu in the presence of styrene by the less sterically demanding N,N'-bis(benzyl)-

nacnacH ligand cleanly generated the stable styrene complex (nacnacBn)Cu(styrene).19 The 

differences in reactivity towards the same Lewis base observed for electronically 

comparable, but sterically different diketiminate ligands indicate that activation of CuOtBu 

by the Lewis base is not an essential step in the reaction mechanism. Identical results 

obtained using CuMes/CuOtBu, in which tert-butanol is consistently removed from the 

reaction mixture, also rule out negative effects due to the presence of tert-butanol. 

Protonation of CuOtBu thus seems to proceed whenever the resulting copper complex is of 

sufficient stability. Consequently, salt metathesis reactions in the presence of Lewis bases 

which have proved unreactive towards CuOtBu led to decomposition.  

When reactions of 2H with CuMes/CuOtBu or CuOtBu in the presence of Lewis 

bases in benzene-d6 were followed by NMR, no reaction was observed with 1-hexene, 
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styrene, acetone, or even acetonitrile (Scheme 3.3). In the presence of 1 equiv of pyridine, 

which yielded 3c fast and quantitatively before, reaction of 2H with CuOtBu afforded the 

putative pyridine adduct 4e only in 8% conversion (compared to unreacted 2H). Further 

addition of 4 equiv pyridine increased the percentage of 4e to 23%, while addition of 2 

equiv tert-butanol decreased it back to 18%, which indicates reversible protonation 

between 2H and tert-butanol in this case. Surprisingly, no reaction at all occurred, when 

CuOtBu is replaced by the stronger base CuMes/CuOtBu. This lack of reaction might have 

kinetic rather than thermodynamic reasons, i. e. deactivation of CuMes by pyridine 

coordination (c.f. Figure 3.3). Reactions with 2,6-xylyl isonitrile and triphenylphosphine as 

Lewis bases were complete as in the case of 1H, but the reaction with triphenylphospine – 

fast in the case of 1H – took several hours to reach completion. The succinimide-

substituted ligand 2H thus proved to be slightly less reactive in complex formation than 1H 

(Table III-1). 

                                       Scheme 3.3 
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Table III-1: Relative Reactivities in the Formation of 

Complexes 3 and 4. 

L 3 4 

hexene, styrene none none 

MeCN slow none 

Pyridine fast, complete partial reaction 

PPh3 fast, complete slow, complete 

CNC6Me2H3 fast, complete fast, complete 
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Dynamic processes in solution. The coordinated Lewis base in complexes 3a-3f 

exchanges fast on the NMR time scale at room temperature with excess base present and 

only averaged signals of free and coordinated Lewis base were observed in their 1H or 31P 

NMR spectra. NMR spectra of 3a in the presence of 5 equiv of PMePh2 also displayed only 

two signals in the 31P spectra: the PPh3 signal, which was intermediate between that of 3a 

and that of free PPh3, and the signal of PMePh2, displaced from the position of the free 

phosphine. Fast exchange of phosphine ligands was further confirmed by the 1H NMR 

spectrum, which displayed only one set of signals for the nacnac ligand, slightly displaced 

from those in 3a. Analogous observations were made when 3a was reacted with 1 or 5 

equiv. of 2,6-xylyl isonitrile: only one signal set was obtained for the nacnac ligand, 

intermediate between 3a and 3d, and averaged signals were observed for coordinated and 

free Lewis bases. 31P spectra of benzene-d6 solutions of 3a in the absence of free phosphine 

did not show any change in the frequency of the coordinated PPh3 ligand when measured at 

complex concentrations of 9-23 mM. Dissociation of the phosphine ligand from 3a thus 

does not occur to a notable extent under these conditions. Taking into account that ligand 

exchange is fast on the NMR time scale even for strongly coordinating ligands such as 

isonitrile, we believe the ligand exchange to proceed by an associative mechanism. 

Solutions of 3c in C6D6 showed the presence of two signal sets, A & B, in a 2:1 

ratio for the nacnac ligand. Only one signal was observed for MeCN, corresponding to 1 

equiv acetonitrile per nacnac, as observed in the crystal structure. The ratio of A/B is 

independent from overall complex concentration. Addition of excess acetonitrile leads to 

exclusive formation of isomer A, which was assigned to 3c. The nature of species B is not 

clear at the moment. Independence from overall concentration and dependence on MeCN 

concentration suggests an equilibrium between nacnacCu(MeCN), 3c, and (nacnacCu)2(µ-

MeCN) + free MeCN, analogous to the one observed for nacnacArCu(C6D6) and 

(nacnacArCu)2(µ-C6D6).7, 9 IR-spectra of toluene solutions of 3c, however, showed one 

resonance for νCN = 2254 cm–1, which does not support a bridging acetonitrile coordination 

(free MeCN (toluene): νCN = 2259 cm–1).  

 

X-ray diffraction studies. Crystals suitable for an X-ray diffraction analysis of 3a-3c and 

4d were obtained from toluene/hexane solutions at –30 °C. Complex 3c displays a trigonal-
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planar coordination geometry with the copper atom situated close to the mean plane of the 

ligand (Figure 3.4, Table III-2). The nacnac ligand is only very slightly distorted from the 

expected planar geometry (mean deviation of all atoms from the mean plane: 0.05 Å) and 

bond distances indicate the expected delocalization of the double bonds (ΔC-C = 0.016 

Å, ΔC-N = 0.017 Å, Table III-2). Similar to the free ligand 1H, the chiral N-substituent 

orients its hydrogen substituent towards the ligand backbone. The acetonitrile ligand is 

found in a slightly bent coordination (Cu1-N3-C22: 171.5(1)°) with geometrical data 

comparable to those of other nacnac copper acetonitrile complexes (Cu-NMeCN: 1.866(3)-

1.887(5) Å, C-NMeCN: 1.122(8)-1.137(4) Å).20 Introduction of a substituted alkyl group at 

the nitrogen had noticeable consequences on the ligand structure. The average C=N-C12/20 

angle of 124.2±0.6° in 1H is comparable to the corresponding angle found in diketimines 

with aromatic N-substituents (C=N-CAr: 124±3°). Upon coordination of diketiminates to 

copper, an N-aryl substituent is pushed towards the ligand backbone (C=N-CAr: 117-122°) 

with values for CAr-N-Cu of 114-122°.21 Corresponding values of the averaged Me-N-

C12/20 and the C12/20-N-Cu angles in 3c (and as well as in 3a & 3b, vide infra) are at the 

extremes of these ranges with 118.4±1.3° and 121.7±1.6°, respectively. In comparison to 

aryl substituents, the alkyl substituent is thus bent further away from the metal center 

towards the ligand backbone. Combined with the longer than average Cu-N distances of 

1.945(1) and 1.963(1) Å in 3c (average in N-Ar substituted Cu nacnac complexes: 1.94(3) 

Å),21 this indicates that 1H should be considered sterically more bulky, at least in the ligand 

mean plane, than nacnac ligands with N-aryl substituents, such as the widely employed 

bis(2,6-diisopropylphenyl) diketiminate. An increased steric bulk of diketiminate ligands 

with secondary alkyl substituents on N was confirmed by the calculation of the aperture 

accessible for coordination to copper in the N2Cu-plane. While xylyl, mesityl and 2,6-

bisisopropylphenyl substituted diketiminate copper complexes offered an aperture of 40-

46°, a strongly reduced value of 13° was found for 1Cu (see supplementary material).  
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Figure 3.4: Crystal structure of SS-3c. Thermal ellipsoids are drawn at the 50% probability 

level. Hydrogen atoms were omitted for clarity. 
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Table III-2: Selected bond distances [Å] and bond angles [deg] for SS-1H, SS-2H, SS-3a-c, and SS-4d. 

 SS-1H RR-2H SS-3a SS-3b a SS-3c SS-4d 

N1-C2 1.335(3) 1.296(3) 1.326(2) 
1.33±0.02 

1.317(2) 1.329(4) 

N2-C4 1.312(4) 1.348(3) 1.326(2) 1.334(2) 1.329(4) 

C2-C3 1.393(4) 1.454(3) 1.406(2) 
1.40±0.03 

1.416(2) 1.416(4) 

C3-C4 1.415(4) 1.385(3) 1.411(2) 1.400(2) 1.423(4) 

N1-C12 1.455(2) 1.462(3) 1.473(2) 
1.50±0.02 

1.478(2) 1.474(4) 

N2-C20 1.455(4) 1.469(3) 1.475(2) 1.476(2) 1.482(4) 

Cu1-N1   1.972(1) 
1.96±0.04 

1.963(1) 1.930(3) 

Cu1-N2   1.983(1) 1.945(1) 1.944(3) 

Cu1-X b   2.195(1) 1.97±0.02 1.890(1) 1.813(4) 

X - Y b   1.829-1.844  1.138(2) 1.172(4) 

       

N1-Cu1-N2   97.79(5) 101.3±0.5 101.23(5) 98.09(11) 

N1-Cu1-X b   129.85(4) 
124 - 134 

120.63(5) 130.73(13) 

N2-Cu1-X b   130.37(4) 138.07(5) 130.75(14) 

Tors. C=N-CBn-H 
c 

34±10 34±2 15±12 17±29 14±26 11±1 

complex bending 
d 

  25 4±2 5 3 

C2-C3-C4 126.1(2) 125.4(2) 129.9(2) 133.7±1.8 131.1(1) 129.7(3) 

Me-C-C3 e 118.5±0.9 119.3±2.1 114.8±0.4 116±1 114.7±0.4 118±1 

C2/C4=N-C f 124.2±0.6 124.0±1.2 118.3±0.4 119±3 118.4±1.3 121±1 

Cu-N-C12/20 g   121.5±0.3 122±3 121.7±1.6 115.8±0.6 

Errors provided for averaged values indicate either the biggest deviation from the cited mean value or the 

highest 3σ, when the latter value was higher. a Averages of the geometrical data in all 4 independent 

molecules. b X, Y = P1, C22/C28/C34 (3a); N3/N6/N8/N11 (3b); N3, C22 (3c); C30, N3 (4d). c average of 

C2-N1-C12-H and C4-N2-C20-H. d angle between the least-square planes defined by C2-C4,N1,N2 and 

N1,N2,Cu1,X. e average of C1-C2-C3 and C5-C4-C3. f average of C2-N1-C12 and C4-CN2-C20. g average 

of Cu-N1-C12 and Cu-N2-C20.  

 

While the nacnac ligand in 3a retains the delocalization of the double bonds, 

coordination of triphenylphosphine instead of the sterically rather undemanding acetonitrile 

ligand to copper renders the ligand less planar (mean deviation: 0.09 Å) and significantly 

displaces the copper center from the ligand mean plane (Figure 3.5, bending angle in Table 

III-2). Despite this displacement, the phosphine is coordinated rather symmetrically (Δ(N-
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Cu-P) = 0.5°) compared to the acetonitrile ligand in 3c (Δ(N-Cu-P) = 17.5°), resulting in an 

overall higher symmetry of bond distances and angles in 3a. Interaction of the sterically 

bulky phosphine and the substituents at the nitrogen atoms resulted in an elongation of Cu-

N bond lengths by 0.02 Å and, consequently, a reduction of the N-Cu-N angle by 3°. Cu-N 

(1.972(1) & 1.983(1) Å) and Cu-P bond distances (2.195(1) Å) are longer and the out-of-

plane coordination of the phosphine ligand (bending angle in Table III-2: 25°) is more 

pronounced than in (N,N'-Ar2nacnac)Cu(PPh3) complexes (Cu-N: 1.940(2)-1.964(2) Å, 

Cu-P: 2.158(1)-2.169(1) Å, complex bending: 4-17°),5, 7, 15, 22 in agreement with an 

increased steric bulk introduced by the aliphatic substituent on N. It is noteworthy that, 

despite the steric demand of the phosphine ligand, the hydrogen atom of the 1-phenyl-ethyl 

substituent remains oriented towards the ligand backbone (see averaged torsion angle in 

Table III-2) and that averaged bond angles in the ligand did not change upon substitution of 

acetonitrile by phosphine (Me-C-C3: 114.8±0.4° (3a), 114.7±0.4° (3c); C-N-C12/22: 

118.3±0.4° (3a), 118.4±1.3° (3c)). We conclude that the steric interaction of the N-

substituent and the methyl groups of the ligand backbone governs the conformation of the 

chiral nacnac ligand and that its complexes will be sufficiently rigid to provide a controlled 

environment for potential applications. 
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Figure 3.5: Crystal structure of SS-3a. Thermal ellipsoids are drawn at the 50% probability 

level. Hydrogen atoms were omitted for clarity. 

 

The DMAP-coordinated complex SS-3b crystallizes with four independent 

molecules in the asymmetric unit, each with slightly different torsion angles (Figure 3.6). 

The structural data is of relatively low quality (due to the quality of the obtained single 

crystal) and only general structural features will be discussed (Table III-2). Coordination of 

DMAP is comparable to acetonitrile coordination in 3c in the rather unsymmetrical binding 

of the DMAP ligand (Δ(N-Cu-NDMAP)= 2-10°). The in-plane coordination of the copper 

atom (c.f. complex bending angle of 4±2° in Table III-2) and the N1-Cu1-N2 angles 

(101.3±0.5°) are also strongly comparable to those found in 3c. 
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Figure 3.6: Crystal structure of SS-3b. Only one of 4 independent molecules is shown. 

Thermal ellipsoids are drawn at the 50% probability level. Hydrogen atoms were omitted 

for clarity. The inset displays the orientation of the 4 independent molecules in the 

asymmetric unit.  

 

The lack of strong steric interactions in 4d (Figure 3.7, Table III-2) results again in 

a symmetrical coordination of the nacnac and the isonitrile ligand, with the copper atom in 

the mean plane of the complex. Cu-C and C-N distances of 1.813(4) and 1.172(4) Å, 

respectively, are at the extremes of the ranges observed in analogous copper 2,6-

xylylisonitrile complexes with Ar2nacnac ligands (Cu-C: 1.814(2)-1.822(2) Å, C-N: 

1.157(3)-1.159(2) Å).7, 9, 23 The observed reduced reactivity of 2H with CuOtBu to form 

copper complexes might be explained by an increased steric crowding of the expected 

copper complexes. Although no geometrical impact of the substitution at C3 was observed 

in the structures of the protonated ligands, it is notable in the geometry of the respective 
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copper complexes. Coordination of 1 or 2 to copper widens the C2-C3-C4 angle from 

125.4(2)-126.1(2)° in 1H and 2H to 129.9(2)-135.6(6)° in 3a-3c and 4d and reduces the 

Me-C2/4-C3 angle by 3-4° in 3a-3c (Table III-2). The presence of the succinimide 

substituent at C3, however, prevents this reduction in 4d and the Me-C2/4-C3 angle 

remains practically unchanged. As a consequence, the alkyl substituents on the nitrogen 

atoms are pushed further into the copper coordination sphere in 4d, evidenced by an 

increased average C2/4-N-C angle and a decreased average Cu-N-C12/20 bond angle 

compared to 3a-3c (Table III-2), and thus indicating an increased steric crowding around 

the copper center in this complex. 

 
Figure 3.7: Crystal structure of SS-4d. Thermal ellipsoids are drawn at the 50% probability 

level. Hydrogen atoms were omitted for clarity. 

 

Spectroscopic properties: Despite the differences observed in reactivity with CuOtBu, 

electronic influences of the aliphatic substituent in complexes 3 were subtle at best. The 

chemical displacement of the PPh3 ligand in 3a in its 31P NMR spectra (δ = 3.9 ppm) is 
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intermediate between those of (N,N'-Ar2nacnac)Cu(PPh3) complexes (Ar = Me3C6H2: 5.2 

ppm,7 Ar = Me2C6H3: 5.4 ppm,5 Ar = iPr2C6H3: 3.6 ppm22). The signal for the succinimide-

substituted complex 4a is observed at 3.6 ppm. Averaged P-C bond lengths in 3a (Table 

III-2), which should mirror the amount of Cu back-donation into PPh3,24 are slightly longer 

(1.836 Å) than in complexes with N-Ar substituents (1.829-1.834 Å),5, 7, 22 in agreement 

with increased back-donation in 3a, but the differences are hardly significant. Clearer 

indications of the electronic differences can be observed in the isonitrile complexes 3d and 

4d. The stretching frequency νCN = 2111 cm-1 of the isonitrile ligand in 3d is lower than 

frequencies observed in 2,6-xylylisonitrile complexes with N-Ar substituted nacnac ligands 

(νCN = 2121-2126 cm-1),7, 9, 23 indicating an increased, but still weak back-donation (free 

isonitrile: νCN = 2119 cm-1). Introduction of the succinimide substituent in 4d displaced νCN 

by 6 cm-1 to 2117 cm-1, in agreement with the expected electron withdrawing effect of this 

substituent.  

 

Conclusions 

Compared to its N-Ar substituted analogues, ligand 1H is somewhat more basic, but 

sterically more demanding. Introduction of a succinimide substituent in 2H slightly 

decreases its basicity, which is compensated by an increased steric crowding in complexes 

with 2. The decreased stability of complexes 3 and 4 towards disproportionation, which 

correlates with their reduced reactivity towards CuOtBu, seem to be of steric, rather than of 

electronic origin. While partial, slow conversion to the acetonitrile complex 3c and 

complete conversion to a pyridine complex 3e was observed with 1H, no acetonitrile 

complex and only partial conversion to the pyridine complex 4e was observed for the 

slightly less basic, but more bulky succinimide-substituted 2H. Formation of the 

triphenylphosphine complex, which was fast in the case of 3a, required several hours for 

4a. In further agreement with steric rather than electronic factors is the reported synthesis 

of stable vinyltrimethylsilane and bis(trimethylsilane)acetylene copper complexes of 

nacnac ligands with simple aliphatic N-substituents8 and that of (nacnacBn)Cu(styrene).19  

Overall, diketiminate ligands with chiral aliphatic substituents on nitrogen proved to be 

easily accessible and, at least in the case of 1H and its derivatives, economically very 

attractive (< $10/g). Despite the rotational freedom around the N-C* bond, the ligand 
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appears to be sufficiently rigid, as evidenced by comparable torsion angles of the 

methylbenzyl substituent in all structurally characterized complexes. Taking further into 

account the increased sterical crowding of the metal center evidenced by the structural data, 

chiral diketimines such as 1H might be interesting ligands for catalytic applications if the 

problem of complex stability in the absence of strongly coordinating ancillary ligands can 

be addressed. The effects of different ligand backbone substitutions on complex stability 

are currently under investigation. 

 

Experimental Section. 

All reactions were carried out under nitrogen atmosphere using Schlenk or 

glovebox techniques. THF was distilled from sodium/benzophenone. All other solvents 

were dried by passage through activated aluminum oxide (MBraun SPS) and de-

oxygenated by repeated extraction with nitrogen. C6D6 was distilled from Na and de-

oxygenated by three freeze-pump-thaw cycles. CuOtBu25 and CuMes26 were synthesized as 

reported. All other chemicals were obtained from commercial suppliers and used as 

received. NMR spectra were recorded on a Bruker ARX 400MHz spectrometer and 

referenced to residual solvent (C6D5H: δ 7.15, C6D6: δ 128.02) or external reference (31P, 

75% H3PO4). Elemental analyses were performed by the Laboratoire d’Analyse 

Elémentaire (Université de Montréal). 

 

2-(S-2-phenylethyl)amino-4-(S-4-phenylethyl)imino-pent-2-ene, SS-1H Acetylacetone 

(2.6 mL, 25 mmol), pTsOH (4.7 g, 25 mmol) and S-Ph(Me)CHNH2 (3.0 g, 25 mmol) were 

combined with toluene (250 mL). The resulting white suspension was refluxed for 3 h with 

the help of Dean-Stark apparatus to afford a yellow solution. After cooling to room 

temperature, a second equivalent of S-Ph(Me)CHNH2 (3.0 g, 25 mmol) was added. The 

reaction mixture was then refluxed for 5 days. On cooling to room temperature, a brown 

precipitate appeared. The suspension was added to an aqueous KOH solution (5.0 g, 0.45 

M) and stirred for 30 min. The phases were separated and the aqueous phase extracted 

twice with toluene (400 mL). The combined organic phases were dried over Na2SO4. 

Filtration and evaporation of the solvent gave a brown oil, which was dissolved in EtOH 

(10 mL). Colorless crystals formed at –20 °C after 1 day (5.2 g, 70%). 1H NMR (CDCl3 
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400MHz): δ 11.89 (bs, 1H, NH), 7.20-7.35 (m, 10H, Ph), 4.68 (q, 2H, J = 7 Hz, 

CH(Me)Ph), 4.48 (s, 1H, CH(C=N)2), 1.82 (s, 6H, Me(C=N)), 1.49 (d, 6H, J = 7 Hz 

CH(Me)Ph). 13C NMR (CDCl3 101 MHz): δ 159.7 (C=N), 146.9 (ipso Ph), 128.4 (ortho 

Ph), 126.3 (para CH(Me)Ph), 126.2 (meta Ph),  95.2 (CH(C=N)2), 55.9 CH(Me)Ph), 25.8 

(Me(C=N)), 19.5 (CH(Me)Ph). Αnal. Calcd. for C21H26N2: C, 82.31; H, 8.55; N, 9.15. 

Found: C, 81.67; H, 8.38; N, 9.14. Mp. 43.0-43.8 °C. [α]D
20 = +123(1)°·cm2/g (c = 10–3 

g/mL, toluene). 

 

2-(R-2-phenylethyl)amino-4-(R-4-phenylethyl)imino-pent-2-ene, RR-1H Following the 

same procedure as for the S-enantiomer, RR-1H was obtained in 67% yield. Αnal. Calcd. 

for C21H26N2: C, 82.31; H, 8.55; N, 9.15. Found: C, 81.99; H, 8.68; N, 9.07. [α]D
20 = –

123(1)°·cm2/g (c = 10–3 g/mL, toluene). 

 

2-(S-2-phenylethyl)amino-3-succinimido-4-(S-4-phenylethyl)imino-pent-2-ene, SS-2H. 

n-BuLi (1.5 mL, 2.9 M, 4.4 mmol) was added drop-wise over a period of 45 minutes at 

room temperature to a yellow solution of SS-1H (1.0 g, 3.3 mmol) in THF (50 mL). After 

stirring for 6 h, N-Bromosuccinimide (0.80 g, 4.5 mmol) was added and the resulting 

yellow suspension was heated for 24 h at 60 °C. The brown suspension obtained was 

cooled to room temperature, treated with 1,4-dioxane (1 mL) and stirred for a further 30 

minutes. The mixture was filtered through a pad of celite, the solvent evaporated and the 

product extracted into toluene (50 mL). Evaporation of the solvent gave a brown solid 

(0.90 g, 75%). 1H NMR (CDCl3, 400 MHz, 298 K): δ 13.20 (bs, 1H, NH), 7.19-7.32 (m, 

10H, Ph), 4.69 (q, 2H, J = 7 Hz, CH(Me)Ph), 2.76 (s, 4H, CH2C(=O)), 1.58 (s, 6H, 

MeC(=N)). 1.50 (d, 6H, J = 7 Hz, CH(Me)Ph). 13C NMR (CDCl3, 101 MHz, 298 K): δ 

178.2 (C=O), 159.0 (C=N), 146.1 (ipso Ph), 128.5 (ortho Ph), 126.6 (para Ph), 126.1 (meta 

Ph), 105.1 (C(CN)2 C), 56.3 (CHMePh), 28.0 (MeC(=N)), 25.7 (CHMePh), 14.5 

(CH2C(=O)). Anal. Calcd. for C25H33N3O2 : C, 74.41; H, 7.24; N, 10.41. Found: C, 74.27; 

H, 7.27; N, 10.29. (Analogous reactions with RR-1Li(THF) gave RR-2H). 

 

(SS-1)Cu(PPh3), 3a. SS-1H (250 mg, 0.82 mmol), mesityl copper (150 mg, 0.83 mmol), 

CuOtBu (11mg, 0.082 mmol) and PPh3 (220 mg, 0.84 mmol) were dissolved in toluene (5 
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mL) to give a yellow-brown solution. After stirring for 1 h, the solution was concentrated 

to half its volume, layered with hexane (4 mL) and kept at –35ºC. Yellow crystals formed 

after 1 day (411 mg, 80%). 1H NMR (C6D6, 400 MHz): δ 6.84-7.42 (m, 25H, CH(Me)Ph & 

PPh3), 5.01 (q, 2H, J = 7 Hz, CH(Me)Ph) , 4.84 (s, 1H, CH(C=N)2), 2.00 (s, 6H, 

MeC(=N)), 1.36 (d, 6H, CH(Me)Ph, J = 7 Hz ). 13C NMR (C6D6, 101 MHz): 

δ 164.0 (CN), 148.3 (ipso CH(Me)Ph), 134.4  (d,  JCP = 4 Hz, ortho PPh3), 129.4 (ortho or 

meta CH(Me)Ph), 128.5 (d,  JCP = 2Hz, meta PPh3), 128.1, 127.1 (ortho or meta 

CH(Me)Ph), 125.7, 96.4 (CH(C=N)2), 58.9 (CH(Me)Ph)., 25.4 (MeC(=N)), 23.7 

(CH(Me)Ph). (ipso PPh3 elusive). 31P{1H} NMR (C6D6, 75 MHz): δ 3.9. Anal. Calcd. for  

C39H40N2P1Cu: C, 74.20; H, 6.39; N, 4.44. Found C, 73.89; H, 6.52; N, 4.37. 

 

(SS-1)Cu(DMAP), 3b. CuOtBu (22 mg, 0.17 mmol), SS-1H (50 mg, 0.17 mmol), and 

DMAP (20 mg, 0.17 mmol) were dissolved in toluene (1 mL) to give a yellow solution. 

After stirring for 15 min, the solution was evaporated. The resulting yellow solid was 

suspended in toluene/hexane 1:1 (2 mL), filtered through a plug of celite and the filtrate 

kept at -30 C. Yellow crystals formed after 4 h (53 mg, 65%). 1H NMR (C6D6 400 MHz, 

298 K): δ 7.09−7.63 (m , 12H, CH(Me)Ph & ortho DMAP CH), 5.58 (bs, 2H, meta 

DMAP) 5.07 (q, 2H, J = 6 Hz CH(Me)Ph), 4.75 (s,1H, CH(C=N)2), 2.15 (s, 6H, DMAP 

Me) 2.11 (s, 6H, MeC(=N)), 1.60 (d, 6H, J = 6 Hz CH(Me)Ph). 13C NMR (C6D6 101 MHz, 

298 K): δ 162.7 (C=N), 150.0 (ortho DMAP) 149.1 (ipso Ph), 128.1 (meta Ph), 127.2 

(ortho Ph), 125.6 (para Ph), 106.9 (meta DMAP), 102.8 (para DMAP) 94.6 (CH(C=N)2), 

58.9 (CHMePh), 40.0 (DMAP Me), 26.2 (MeC(=N)), 23.1 (CHMePh). Anal. Calcd. for 

C28H35N4Cu : C, 67.68; H, 7.36; N, 11.69. Found: C, 67.24; H, 7.13; N, 11.08. 

 

(SS-1)Cu(NCMe), 3c. (1) Mesitylcopper (60 mg, 0.33 mmol), CuOtBu (4 mg, 0.03 mmol) 

and SS-1H (100 mg, 0.33 mmol) were suspended in acetonitrile (3 mL). Toluene (3 mL) 

was added until a clear solution was obtained. The solution was stirred for 1 h, 

concentrated to half its volume and kept at -35°C. Yellow crystals formed after 1 day (98 

mg, 72%). (2) SS-1H (167 mg, 0.60 mmol), CuOtBu (85 mg, 0.62 mmol) and MeCN (200 

µL) were mixed in Et2O (5 mL) to afford a yellow solution. The solution was kept at –

35°C. Yellow crystals formed after 1 day (132 mg, 55%). 1H NMR (C6D6, 400MHz, 298 
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K) δ 7.07-7.57 (m, 10H, CH(Me)Ph), 5.01 (q, 2H, J = 6 Hz CH(Me)Ph ), 4.60 (s,1H, 

CH(C=N)2), 2.02 (s, 6H, MeC(=N)), 1.78 (d, 6H, J = 6 Hz CH(Me)Ph), 0.73 (s, 3H, 

NCMe). 13C NMR (C6D6 101 MHz): δ 163.1 (C=N), 147.6 (ipso Ph), 128.2 (meta 

Ph), 127.2 (ortho Ph ), 125.8 (para 

Ph), 116.1 (ΝCCH3)  95.1 (CH(C=N)2), 59.2 (CH(Me)Ph), 27.3 (MeC(=N)), 23.0 (CH(Me)

Ph),  0.2 (ΝCCH3).  Anal. Calcd. for C23H28N3Cu : C, 67.37; H, 6.88; N, 10.25. Found: C, 

67.14; H, 7.07; N, 10.11. IR (toluene): νCN = 2254 cm–1.  

In acetonitrile-free C6D6 solutions of 3c a second isomer (B) is observed (see text): 
1H NMR (C6D6, 400MHz, 298 K) δ 7.05-7.59 (m, 10H, CH(Me)Ph), 4.92 (s,1H, 

CH(C=N)2), 4.41 (q, 2H, J = 6 Hz CH(Me)Ph ), 2.35 (bs, 6H, MeC(=N)), 1.45 (d, 6H, J = 6 

Hz CH(Me)Ph), 0.50 (s, 3H, NCMe). 13C NMR (C6D6, 101 MHz): 

δ 167.5 (C=N), 146.4 (ipso Ph), 128.6 (meta or ortho Ph), 127.1 (ortho or meta 

Ph ), 126.7 (paraPh), 116.1 (ΝCCH3)  95.1 (CH(C=N)2), 59.2 (CH(Me)Ph), 30.4 (MeC(=N

), 26.1 (CH(Me)Ph), 0.2 (NCCH3). 

 

(SS-1)Cu(CNC6H3Me2), 3d. SS-1H (100 mg, 33.0 µmol), CNC6H3Me2 (43.0 mg, 33 µmol) 

and CuOtBu (45 mg, 33 µmol) were dissolved in ether (10 mL) to afford a bright yellow 

solution. After stirring for 15 minutes, the solution was evaporated to give yellow brown 

oil (152 mg, 92%) (4 mL). 1H NMR (C6D6, 400 MHz, 298 K): δ  6.99-7.56 (m, 10H, 

CHMe(Ph)), 6.71 (t, 1H, J = 8Hz, para C6H3Me2), 6.55 (d, 2H, J = 8Hz, meta C6H3Me2), 

5.03 (q, 2H, J = 7 Hz, CH(Me)Ph), 4.71 (s, 1H, CH(C=N)2), 2.05 (s, 6H, C(=N)Me), 1.84 

(s, 6H, C6H3Me2) 1. 80 (d, 6H, J = 7 Hz, (CH(Me)Ph). 13C NMR (C6D6, 101 MHz, 298 K): 

δ 163.3 (C=N), 149.0, 134.6, 128.2, 128.1, 127.9, 127.2, 125.9, 95.6 (CH(C=N)2), 59.0 

(CHMePh), 27.6 (C(=N)Me), 23.0 (CHMePh), 18.5 (C6H3Me2). Two peaks were elusive. 

Anal. Calcd for C30H34N3Cu: C, 72.04; H, 6.85; N, 8.40. Found: C, 71.81; H, 7.01; N, 8.13. 

IR (toluene): νCN = 2114 cm-1. 

 

(SS-2)CuPPh3, 4a. SS-2H (126 mg, 0.31 mmol), CuOtBu (42 mg, 0.31 mmol) and PPh3 

(78 mg, 0.30 mmol) were dissolved in toluene (3 mL) to give a brown solution. After 

stirring for 15 min, the solution was evaporated. Addition of ether (6 mL) to the resulting 

brown oil gave a light brown precipitate. Decantation, washing with ether (6 mL) and 
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drying yielded 100 mg, (47%) of an off-white powder. 1H NMR (C6D6, 400 MHz, 298 K): 

δ 7.07-7.61 (m, 25H, CH(Me)Ph & PPh3), 5.01 (q, 2H, J = 7 Hz CH(Me)Ph), 2.09 (s, 4H, 

CH2C(=O)),  1.90 (s, 6H, C(=N)Me), 1.54 (d, 6H, J = 7 Hz, CH(Me)Ph). 13C NMR (C6D6, 

101 MHz, 298 K) δ 178.4 (C=O), 163.1 (C=N), 147.5 (ipso CH(Me)Ph), 134.2  (d,  J = 14 

Hz, ortho PPh3), 129.5 (ortho or meta CH(Me)Ph), 128.7 (d,  J = 9 Hz, meta PPh3), 127.1 

(ortho or meta CH(Me)Ph), 126.0, 98.3 (CH(C=N)2), 59.3 (CH(Me)Ph), 28.0 (CH2C(=O)), 

24.8 (MeC(=N)), 17.7 (CH(Me)Ph). Two signals missing. 31P{1H} NMR (C6D6, 75 MHz, 

298K): δ 3.6. Anal. Calcd. for  C43H43N3O2PCu:  C, 70.91; H, 5.95; N, 5.77. Found C, 

70.26; H, 5.99; N, 5.69. 

 

(SS-2)CuCN(2,6-Me2C6H3), 4d. SS-2H  (100 mg, 25.0 µmol), 2,6-xylyl isonitrile (32.0 

mg, 25 µmol) and CuOtBu (40 mg, 27 µmol) were dissolved in toluene (4 mL) to afford a 

dark-brown solution. After stirring for 15 minutes, the solution was layered with hexane (4 

mL). Dark-yellow crystals  formed after 2 days (68 mg, 47%). 1H NMR (C6D6, 400 MHz, 

298 K): δ  6.94-7.48 (m, 10H, CHMePh), 6.69 (t, 1H, J = 8 Hz, para C6H3Me2), 6.52 (d, 

2H, J = 8 Hz, meta C6H3Me2), 5.00 (q, 2H, J = 7 Hz, CH(Me)Ph), 2.01 (s, 4H, CH2C(=O)), 

1.85 (s, 6H, C(=N)Me), 1.78 (s, 6H, C6H3Me2) 1. 77 (d, 6H, J = 7 Hz, (CH(Me)Ph). 13C 

NMR (CDCl3, 101 MHz, 298 K): δ 178.2 (C=O), 159.0 (C=N), 148.3, 134.6, 127.9, 127.1, 

126.1, 97.5 (CH(C=N)2), 59.3 (CHMePh), 28.0 (MeC(=N)), 26.7 (CHMePh), 18.5 

(CH2C(=O)), 17.2 (C6H3Me2). Four peaks are elusive. Anal. Calcd for C34H37N4O2Cu: C, 

68.38; H, 6.24; N, 19.38. Found: C, 68.12; H, 6.31; N, 9.05. IR (toluene): νCN = 2117 cm-1. 
 

General experimental procedure for NMR experiments 

A vial was charged with SS-1H (10 mg, 33 µmol), CuOtBu (4-5 mg, 33-40 µmol) or 

2,4,6-mesityl copper (6 mg, 40 µmol) with catalytic amounts of CuOtBu (3-4 µmol), and 

the respective Lewis base (33-159 µmol). C6D6 (0.6-0.7 mL) was added. After shaking 

thoroughly to obtain a homogeneous solution, the content was transferred to a J. Young 

tube. 1H NMR (C6D6, 400 MHz) were taken immediately, after1 h, and - in some cases - 

after 1 day.  
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(SS-1)Cu(NCMe), 3c. δ 7.07-7.57 (m, 10H, CH(Me)Ph ), 5.01 (q, 2H, J = 6 Hz CH(Me)Ph 

), 4.60 (s,1H, CH(C=N)2), 2.02 (s, 6H, MeC(=N)), 1.78 (d, 6H, J = 6 Hz, CH(Me)Ph), 0.73 

(s, 3H, NCMe). Only 60% conversion was observed before decomposition

 

(SS-1)CuPy, 3e. δ 6.51−7.40 (m , 15H, CH(Me)Ph & Py), 4.96 (q, 2H, J = 6 Hz 

CH(Me)Ph), 4.72  (s,1H, CH(C=N)2), 2.09 (s, 6H, MeC(=N)), 1.40 (d, 6H, J = 6 Hz, 

CH(Me)Ph).  

 

(SS-1)Cu(PMe3), 3f. δ 7.10-7.53 (m, 10H, CH(Me)Ph), 4.94 (q, 2H, J = 6 Hz CH(Me)Ph), 

4.72 (s, 1H, CH(C=N)2), 2.04 (s, 6H, MeC(=N)), 1.57 (d, 6H, J = 6 Hz, CH(Me)Ph), 0.35 

(bs, 9H, PMe3).  

(SS-2)CuPy, 4e. δ 6.60−8.52 (CH(Me)Ph & Py), 4.93 (q, 2H, J = 6 Hz CH(Me)Ph), 1.86 

(s, 4H, C(=O)CH2), 1.51-1.52 (MeC(=N)), 1.38 (d, 6H, J = 6 Hz CH(Me)Ph). Several 

peaks overlap with those of 2H. 

 

X-ray diffraction studies. Diffraction data were collected on a Bruker Smart Bruker Smart 

APEX II with graphite monochromated Mo Kα radiation (3a & 3c) and a Bruker SMART 

6000, equipped with a rotating anode source and Mirror Montel 200-monochromated Cu 

Kα radiation. Cell refinement and data reduction were done using APEX2.27 Structures 

were solved by direct methods using SHELXS97 and refined on F2 by full-matrix least 

squares using SHELXL97.28 All non-hydrogen atoms were refined anisotropically. 

Hydrogen atoms were refined isotropic on calculated positions using a riding model. 

Further experimental details are listed in Table III-2 and given in the supporting 

information. Refinement of the Flack-x parameter in 1H and 2H resulted in unacceptable 

standard deviations and Friedel pairs have thus been merged prior to refinement for this 

structure.



Chapter 3  

 

65

 

Table III-3. Details of X-ray Diffraction Studies 

 SS-1H RR-2H SS-3c SS-3b SS-3a SS-4d {(RNC)Cu 

(OtBu)}4 

Formula C21H26N2 C25H29N3O2 C23H28CuN3 C28H35CuN4 C39H40CuN2P C34H37CuN4O2 C52H72Cu4N4O4 

Mw (g/mol); dcalcd. 

(g/cm3) 
306.44; 1.093 403.51; 1.218 410.02; 1.310 491.14; 1.248 631.24; 1.303 597.22;  1071.30; 1.331 

T (K); F(000) 150; 332 150; 864 150; 864 150; 2080 150; 1328 150; 1256 150; 2240 

Crystal System Monoclinic Orthorhombic Orthorhombic Monoclinic Orthorhombic Orthorhombic Orthorhombic 

Space Group P21 P212121 P212121 P21 P212121 P212121 Aba2 

Unit Cell: a (Å) 10.8574(5) 9.7805(3) 7.1000(3) 16.3922(8) 10.1345(6) 10.0461(9) 24.4180(8) 

 b (Å) 7.5650(3) 12.5052(4) 8.6253(4) 19.2373(9) 16.2516(9) 13.1703(11) 23.1746(9) 

 c (Å) 12.5158(6) 17.9988(6) 33.9399(17) 18.4203(12) 19.5435(11) 22.9287(19) 9.4477(3) 

 β (°) 115.054(2)   115.838(1)    

V (Å3); Z 931.27(7); 2 2201.4(1); 4 2078.5(2); 4 5228.0(5); 8 3218.9(3); 4 3033.7(4); 4 5346.2(3); 4 

θ range (°); 

completeness 
3.9-71.1; 0.99 4.3-75.5; 1.00 1.2-31.4; 0.97 2.7-72.7; 0.99 1.6-31.4; 0.97 3.9-72.7; 1.00 3.6-72.6; 0.99 

Refl.: collec./indep.; Rint  11088/1929; 8.8% 28674/2474; 3.2% 48406/6597; 2.6% 
68189/19992; 

4.0% 

73790/10102; 

3.5% 
39607/5976; 4.8% 34639/5249; 4.0% 

μ (mm–1); Abs. Corr. 0.483; multi-scan 0.617; multi-scan 1.062; multi-scan 1.332; multi-scan 0.758; multi-scan 1.299; multi-scan 2.133; multi-scan 

R1(F); wR(F2); GoF(F2) 
a 4.9%; 13.6%; 1.05 

3.73%; 10.4%; 

1.05 
2.7%; 6.5%; 1.08 6.1%; 17.5%; 1.0 3.1%; 6.6%; 0.95 4.5%; 10.4%; 0.94 3.6%; 8.6%; 1.02 

Flack x-parameter - - 0.019(8) 0.05(3) 0.015(6) -0.05(3) - 

Residual electron 

density 
0.15; –0.17 0.36; –0.41 0.46; –0.43 0.60; –0.39 0.30; –0.45 0.22; –0.68 0.39; –0.54 

a R1(F) based on observed reflections with I>2s(I), wR(F2) and GoF(F2) based on all data. 
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Supplementary material 

To address the respective steric bulk of the chiral ligand 1, we calculated the "in-plane 

accessible aperture" for several complexes. For this purpose, atomic coordinates (H 

excluded) of the diketiminate copper fragment in (nacnac)Cu(PPh3) complexes were used. 

A phosphorous atom in an idealized distance of 2.2 Å from the Cu center was moved in the 

N2Cu-plane. The accessible angle range before the distance of P to one of the ligand atoms 

went below the sum of the VdW-radii was considered the "in-plane accessible aperture", α. 

 
R α X-ray data 

-CH(Me)Ph 13° this work 

2,6-dimethylphenyl 40° ref. 1 

1,4,6-trimethylphenyl 41° ref. 2 

2,6-diisopropylphenyl 46° ref. 3 

vdW-radii: CAr, 1.7 Å, Caliph., 1.9 Å, P, 1.8 Å. 
Hydrogen atoms were ignored. 
 

Figure S3.1: Calculation of the lateral aperture angle in nacnacCuPPh3 complexes 
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(3) Reynolds, A. M.; Lewis, E. A.; Aboelella, N. W.; Tolman, W. B. Chem. Commun. 

2005, 2014. 
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4.1 Introduction 

Copper compounds are involved in numerous organic transformations both 

catalytically and stoichiometrically,1 and the use of chiral supporting ligands in the 

presence of prochiral substrates allows for asymmetric induction. β-Diketiminato copper 

complexes have not been much applied for this purpose. Warren applied nacnac copper 

complexes in cyclopropanation,2 oxygen transfer to an organic substrate,3 aziridination4 and 

C-H amination,5 while Sadigh and co-workers used fluorinated β-diketiminato copper 

complexes for intramolecular aerobic hydroxylation.6 To the best of my knowledge, there 

are no other cases where copper β-diketiminate complexes have been employed in organic 

synthesis.  

Chirality is easily introduced in N-alkyl substituted nacnac ligands. In chapter three, 

the synthesis of the chiral complexes S,S-nacnacCH(Me)PhCuL (L = PPh3, PMe3, 

CNC6H3(Me)2, DMAP, lutidine, Py, MeCN) was reported. The ligand framework 

structurally resembles the BOX7 and the semicorrin8 ligands, which have been employed 

successfully in catalysis, especially in the cyclopropanation of olefins (Figure 4.1).9 As a 

result, the complexes with PPh3 and MeCN as supporting Lewis bases, were employed in 

the cyclopropanation of styrene and the conjugate addition of of ZnEt2 to 2-cyclohexenone. 

For the sake of comparison, some achiral complexes were also employed. 

 

            

N N

O O

RR

R R

                     

N N

RR

R
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Figure 4.1: BOX ligand (A), semicorrin (B) and S,S-nacnacCH(Me)PhH (C). 

 

4.2 Results and Discussion 

The preparation of the catalysts (Figure 4.2)10 is described in other chapters. All 

copper complexes display a preferred conformation with the hydrogen atom of the 

CH(Me)Ph substituent oriented towards the ligand backbone in their crystal structures. 
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Chapter 1, section 1.1 might be consulted for more information on cyclopropanation and 

conjugate addition reactions. 

           
Figure 4.2: Chiral complexes used in cyclopropanation and conjugate addition reactions. 

 

4.2.1 Cyclopropanation 

Drop-wise addition of ethyldiazoacetate (EDA) to a solution of styrene with 2 mol% 

copper catalyst present gave the cyclopropanation products together with side products 4-1 

and 4-2 resulting from EDA coupling (GC/MS analysis). Similar olefins resulting from the 

coupling of diazo compounds have been reported2,11 and they account for the low yields 

observed in some cases. The results obtained in the cyclopropanation reaction are shown in 

table IV-1. 

 
 

Figure 4.3: Cyclopropanation of styrene with EDA. 
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Table IV-1: Results of cyclopropanation of styrene with EDA 

Entry Catalyst Equiv styrene T/°C drb Time/h Yield (%) 

1 no catalyst 2 25 34/66 2 20 

2 nacnacCH(Me)PhCuPPh3 2 0 34/66 2 12 

3 nacnacCH(Me)PhCuNCMe 2 25 34/66 2 26 

4 nacnacCH(Me)PhCuPPh3 1 25 34/66 2 8 

5 nacnacCH(Me)PhCuPPh3 2 25 32/68 2 75 

6 nacnacCH(Me)PhCuNCMe 5 25 34/66 2 44 

7 nacnacCH(Me)PhCuNCMe 5 60 33/67 24 51d 

8 nacnacCH(Me)PhCuPPh3 5 60 32/68 24 81c 

9 nacnacBnCu(stilbene) 5 60 32/68 24 28 

10 CuOtBu + PPh3 5 60 32/68 24 82 

11 CuOtBu + nacnacCH(Me)PhH 5 60 33/67 24 24 

12 Cu(MeCN)4PF6 5 60 33/68 24 70 

13 no catalyst 5 60 32/68 24 24 

Typical errors in repeated experiments (not shown) for dr and yields are in the range +2% and +5% respectively. aReaction conditions: 2 mol% catalyst, toluene solution. 

bYields and cis-trans ratio were determined by GC. cee = 0, determined by chiral HPLC. dee results pending.
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The cis-trans ratio is almost the same for all the entries. This was not surprising, as 

previous studies have shown that the diastereomeric ratio is mostly affected by steric 

interactions between EDA and the olefin.12 Increasing the concentration of styrene 

increases the yields. With only one equiv of styrene, there is practically no reaction (entry 

4). Temperature also has a profound influence on the reaction and only 12% 

cyclopropanation product was obtained when the reaction was performed at 0 °C (entry 2). 

At this temperature, more side products were formed. Under identical reaction condition 

but at 60 °C, the yields increased.  

Comparing entries 1 and 13 with the other entries, it is obvious that there is some 

catalytic influence. From entries 3, 6, 7 and 9, it could be seen that nacnacCH(Me)PhCuNCMe 

and nacnacBnCu(stilbene) appear to be less active than nacnacCH(Me)PhCuPPh3. This was 

unexpected, given the stronger binding of PPh3 to the coordination site required for 

catalysis. In fact, we have shown by adding 1,10-phenanthroline to a C6D6 solution of the 

complexes that the PPh3 adduct is more stable than the MeCN and stilbene adducts. While 

MeCN and stilbene are completely displaced to form nacnacCH(Me)PhCu(phen) and 

nacnacBnCu(phen) complexes, no such product was identified in the 1H NMR spectrum of a 

solution of nacnacCH(Me)PhCuPPh3  and 1,10-phenanthroline. Furthermore, a mixture of 

CuOtBu and PPh3 (entry 10) or the cationic complex Cu(MeCN)4PF6 (entry 12) gave  

activities comparable to nacnacCH(Me)PhCuPPh3, while only low activities were observed 

with mixtures of  CuOtBu and nacnacCH(Me)PhH (Entry 11). The stability of the copper PPh3 

complex, coupled with the high activity of the CuOtBu/PPh3 mixture suggest that the active 

species is [Cu(PPh3)n]+ rather than nacnacCu and that the nacnac ligand is displaced before 

the active species enters the catalytic cycle. Consequently, no chiral induction is observed 

in these reactions. Slightly lower activities of nacnacCH(Me)PhCu(NCMe) compared to 

nacnacCH(Me)PhCuPPh3 might be related to the fact that diketiminate dissociation is less 

pronounced in these cases. 
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4.2.2 Conjugate addition reaction 

The addition of alkylating agents to enones may lead either to 1,2- or 1,4-products, 

the outcome depending on the nature of the nucleophile. While organolithium and 

organomagnesium reagents favour the 1,2-product, soft nucleophiles like cuprates and 

ZnEt2 yield mostly the 1,4-addition product. ZnEt2 can be used to efficiently ethylate 2-

cyclohexenone in the presence of a chiral catalyst in order to obtain regio- and 

enantioselective reactions.  

The reaction was performed on a large scale and purified by flash chromatography 

in order to obtain pure samples for the construction of a calibration curve using dodecane 

as internal standard. In further reactions, products were identified by GC/MS, subsequent 

analyses were done using GC/FID while ee was determined by SFC (Supercritical Fluid 

Chromatography). The results are depicted in table IV-2.  

+

O

ZnEt2
Catalyst

Et2O

O

Et  
Figure 4.4 : Conjugate addition of  ZnEt2 to 2-cyclohexenone. 
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Table IV-2: Results obtained for the addition of ZnEt2 to 2-cyclohexenone. 

Entry Catalyst %Catalyst Yield 

1 no catalyst  8 

2 LH 5 6 

3 PPh3 5 10 

4 CuOtBu 5 25 

5 Cu(MeCN)4PF6 5 71 

6 CuOtBu + PPh3 5 77 

7 nacnacBnCu(styrene) 5 48 

8 nacnacCH(Me)PhCu(NCMe) 5 61b 

9 nacnacCH(Me)PhCuPPh3 5 80c 

10 nacnacBnCuPPh3 5 75 

11 nacnacCH(Me)PhCuPPh3 10 100 

Typical errors in repeated experiments (not shown) for yields are in the range +5%. aYields 

were determined by GC. bee result pending. cee = 0 (SFC). 

 

 As can be seen for entries 1-3, ZnEt2 is not a good reagent for the reaction even in 

the presence of potential ligands such as nacnac or PPh3. Copper salts alone do catalyze the 

reaction, though sluggishly (entry 4) while high activities are observed in the presence of 

[LnCu]+, where L = PPh3 or MeCN (entries 5 and 6). Diketiminate complexes nacnacRCuL 

proved to be active catalyst precursors. As observed before, higher activities were observed 

with the strongly coordinating PPh3 as the ancilliary ligand. This, combined with complete 

absence of chiral induction and general lower activities of nacnacCuL compared to [LnCu]+, 

indicate that again, the diketiminate ligand was lost before the compound enters the 

catalytic cycle. 
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4.3 Summary 

The chiral β-diketiminato copper(I) complexes do not show any chiral induction in 

the cyclopropanation of styrene with EDA or in conjugate addition of ZnEt2 to 2-

cyclohexenone. This is most likely due to the loss of the chiral ligand prior to the catalytic 

cycle. 

 

4.4  Experimental 

 

4.4.1 General  procedure for the conjugate addition reaction 

2-Cyclohexenone (300 mg, 3.0 mmol) and the catalyst, nacnacCH(Me)PhCuPPh3 (190 

mg, 0.3 mmol) were suspended in ether (5 mL). ZnEt2 in ether (5 mL) was added drop-wise 

to the yellow suspension. The resulting brown suspension was stirred for 3h and then HCl 

(20 mL, 0.1 M) was added. Ether (15 mL) was added. The reaction mixture was stirred for 

30 minutes. The etheral layer was collected, dried over MgSO4 and passed through a pad of 

silica. Evaporation of the colourless solution gave brown oils.  

 

4.4.2 General  procedure for cyclopropanation of styrene 

The catalyst (2 mol%) and styrene were dissolved in toluene (1-3 mL) to give a 

yellow solution. EDA in toluene (1-3 mL) was added drop-wise. After stirring for 2-24 h, 

the resulting brown suspension was passed through a pad of silica and analysed by GC and 

GC-MS. 
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Abstract 

Reaction of N,N’-diisopropyl-2-amino-4-iminopent-2-ene (nacnaciPrH, 1) with 

CuOtBu or mesityl copper and 10% CuOtBu in the presence of PPh3, CN(C6Me2H3) or 

MeCN afforded the Lewis base-coordinated complexes nacnaciPrCuPPh3·0.5 C6H14, 2, 

nacnaciPrCuCN(C6Me2H3), 3, and nacnaciPrCu(NCMe), 4. Compounds 2, 3 and 4 were 

characterised by single crystal X-ray diffraction studies. Compound 4 afforded two species 

in deuterated benzene in a 2:1 ratio, which were assigned to {nacnaciPrCu}2(μ-NCMe) and 

nacnaciPrCuNCMe, 4. Upon addition of 5 equiv. of MeCN the two sets collapsed into that 

of 4. No copper complexes were formed in the presence of styrene, stilbene or 

diphenylacetylene.  

 

La réaction du N,N’-diisopropyl-2-amino-4-iminopent-2-ene (nacnaciPrH, 1) avec le 

CuOtBu ou le mesityle de cuivre et 10% de CuOtBu en présence de PPh3, de CN(C6Me2H3) 

ou de MeCN a donné les complexes nacnaciPrCuPPh3·0.5 C6H14, 2, 

nacnaciPrCuCN(C6Me2H3), 3, et nacnaciPrCu(NCMe), 4. Composés 2, 3 et 4 ont été 

caractérisés par diffraction des rayons X sur monocristaux. Le spectre RMN de 4 dans C6D6 

montre deux sets de signaux avec un ratio 2:1, assignés au {nacnaciPrCu}2(μ-NCMe) et au 

nacnaciPrCuNCMe, 4. Après l'addition de 5 éq. de MeCN, seulement les signaux de 4 ont 

été observés. Aucun complexe de cuivre n'a été obtenu en présence de styrène, stilbène ou 

diphenylacétylène. 

KEYWORDS: diketiminate, copper, coordination chemistry  

MOTS CLÉS: dikétiminate, cuivre, chimie de coordination 

 

Introduction 

Brookhart's demonstration in the mid 90s that late transition metal α-diimine 

complexes of Pd and Ni were effective as catalysts in olefin polymerisation1 paved the way 

for the synthesis of the corresponding anionic diketiminate versions of these ligand 

systems.2 Since then, interest in diketiminates has continued unabatedly and β-

diketiminates represent today one of the most extensively employed nitrogen-based, 
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bidentate ligands in coordination chemistry.3 The acronym ‘nacnac’ is often used to 

describe 2-amino-4-iminopent-2-ene, which is the N-analogue of the ubiquitous 

acetylacetonate (acac). Nacnac ligands are monoanionic spectator ligands which have 

assisted in the isolation of metal complexes in unusual oxidation states and/or coordination 

numbers.4 For copper in particular, Tolman’s group used diketiminate complexes to model 

the active site of metalloproteins.5 Warren and coworkers isolated a nacnac copper carbene 

complex, which they employed in catalytic cyclopropanation, and used copper 

diketiminates for amination reactions.6-8 While most applications of diketiminate ligands 

revolve around N-aryl substituents, their N-alkyl derivatives have not been well exploited. 

For copper(I), they are limited to applications in atomic layer deposition,9 or analyses of 

copper ligand bonding.10 In continuation of previous work on diketiminate copper 

complexes with N-alkyl substituents,11, 12 we report here the syntheses and characterisation 

of N,N’-diisopropyl nacnac CuI complexes. Just prior to submission of this manuscript, Arii 

et al. reported nacnaciPrCu germylene complexes, using the same ligand.13  

 

Results and Discussion 
 

Ligand and complex synthesis. Ligand 1 has been obtained previously by a multi-step 

protocol, which is generally used to prepare N-alkyl diketiminates, either by employing 

Meerwein salt (32-60% yield)14 or dimethylsulfate (74% yield, from the aminoketone)15 as 

O-alkylating agents. We employed a one-step procedure for condensation of acetylacetone 

with isopropylamine in the presence of equimolar amounts of p-toluenesulfonic acid,16 

which afforded 1 directly, albeit in a relatively low yield of 23% after 5 days of reflux 

(Scheme 5.1). The analogous ligands nacnacBnH and nacnaciBuH, bearing primary alkyl 

groups, have been obtained in 1-2 days using the same procedure,12, 17 while 

nacnacCH(Me)PhH required 5 days.11 Longer reaction times thus seem to be necessary for 

secondary amines. Complexes 2-4 were obtained as yellow air- and moisture-sensitive 

powders or crystals in 26-84% yield by reaction of 1 in the presence of PPh3, xylyl 

isocyanide or acetonitrile either with CuOtBu, a procedure employed by Dai and Warren 

for preparing N-aryl nacnacCuI complexes,6 or with mesityl copper and catalytic amounts 
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of CuOtBu (Scheme 5.1). Mesityl copper in the absence of CuOtBu has been shown to be 

unreactive.11 Though no major differences in terms of yields were observed between the 

use of CuOtBu or MesCu/CuOtBu, the complexes crystallize easier when MesCu/CuOtBu 

was used, probably due to the smaller amounts of tert-butanol present.  

 

 
 

                                                   Scheme 5.1 

 

Compound 1 did not react with CuOtBu in the presence of styrene, stilbene or 

diphenylacetylene. Identical observations were made with copper complexes carrying the 

chiral nacnacCH(Me)Ph ligand.11 On the other hand, Cu styrene complexes are readily 

obtained with nacnacMes (Mes = 2,4,6-Me3C6H3)18 or nacnacdipp (dipp = 2,6-iPr2C6H3, see 

Exp. Section), one of the most sterically encumbered N-aryl diketiminates, as well as with 

nacnacBn or nacnaciBu.12, 17 In-plane coordination of the two carbon atoms of an olefin is 

thus possible for diketiminate ligands with aryl or primary alkyl substituents, but not if 

secondary alkyls are present on nitrogen atoms. The implied increased steric demand of 

nacnaciPr compared to nacnacdipp has to be set into contrast to observations for other 

systems. When compared to nacnacdipp, diketiminate ligands with secondary alkyl 

substituents on nitrogen allow additional intramolecular π-coordination in Ti complexes19 
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or coordination of a second nacnac to Zr.20 When considering steric congestion imposed by 

diketiminate ligands, it is thus important to differentiate between the first coordination 

sphere around the metal centre, where nacnaciPr imposes a congested environment, and 

general steric demand in the (outer) coordination sphere, where it does not. 

 

Crystal structure studies. All three compounds are monomeric and crystallize in the P21/c 

space group with copper in a distorted trigonal planar geometry. Complex 2 (Figure 5.1) 

co-crystallizes with half a molecule of hexane. The methine hydrogen atoms of the iPr 

substituent point towards the methyl groups in the ligand backbone, even in the sterically 

encumbered 2. C-N and C-C bond lengths of the diketiminate ligand are in agreement with 

complete delocalisation of the double bonds (Table V-1). Cu-N bond distances in 3 and 4 

are close to the average generally observed in nacnacCu complexes (1.94±0.06 Å)21 and 

the copper centre is found in the mean plane of the ligand. With the bulkier phosphine 

ligand in 2, longer Cu-N distances and a displacement of C3 and the copper atom by 0.1 

and 0.4 Å, respectively, out of the ligand mean plane are observed (plane defined by N1, 

N2, C2 and C4). While Cu-P and Cu-N bond distances (2.191(1) Å and 1.978(1) & 

1.983(1) Å) are comparable to those in nacnacCH(Me)PhCuPPh3
 (2.195(1) Å and 1.972(1) & 

1.983(1) Å),11 they are longer than in nacnacArCu(PPh3) complexes (2.16-2.18 Å and 1.94-

1.97 Å)7, 22-24 in agreement with increased steric bulk introduced by a secondary alkyl 

substituent on the nitrogen atoms. 
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Table V-1: Selected bond distances [Å] and bond angles [deg] 
for 2, 3 and 4. 

 2 3 4 

Cu1-N1 1.978(1) 1.939(2) 1.940(1) 

Cu1-N2 1.987(1) 1.935(2) 1.961(2) 

Cu1-X a 2.191(1) 1.822(2) 1.893(2) 

N1-C2 1.323(2) 1.332(2) 1.326(3) 

N2-C4 1.321(2) 1.331(2) 1.314(3) 

C2-C3 1.408(2) 1.407(3) 1.413(3) 

C3-C4 1.411(2) 1.407(3) 1.416(2) 

X-Y b 1.839(2) 1.161(2) 1.148(3) 

N1-Cu1-N2 97.7(1) 100.2(1) 100.6(1) 

N1-Cu1-X c 132.6(1) 130.9(1) 134.7(1) 

N2-Cu1-X c 129.4(1) 128.9(1) 124.8(1) 
a Cu1-P1 (2), Cu1-C20 (3), Cu1-N3 (4). b average of P1-C12, 

P1-C18 and P1-C24 (2), N3-C20 (3), N3-C12 (4). c N1,2-Cu1-
P1 (2), N1,2-Cu1-C20 (3), N1,2-Cu1-N3 (4). 

 

 

 

Figure 5.1: Crystal structure of 2-4. Hydrogen atoms and solvent are omitted for clarity. 

Thermal ellipsoids are drawn at the 50% probability level.  

 

2 3 4
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Spectroscopic properties. The PPh3 resonance in the 31P NMR spectrum of compound 2 in 

C6D6 was observed at δ 4.0. This value is intermediate between those of nacnacArCuPPh3 

complexes (Ar = Me3C6H2: 5.2 ppm,7 Ar = Me2C6H3: 5.4 ppm,23 Ar = iPr2C6H3: 3.6 ppm22) 

and nacnacRCuPPh3 complexes (R = Bn: 3.5 ppm,12 CH(Me)C6H5: 3.9 ppm11). While N-

aryl substituted diketiminate ligands tend to show 31P resonances at lower field, differences 

are too small to be correlated to ligand properties. Similar to the behaviour observed for 

nacnacCH(Me)PhCu(NCMe),11 which also carries a secondary alkyl substituent on N, pure 

crystals of 4 dissolved in C6D6 gave two sets of nacnac resonances in a ratio of 2:1 in its 1H 

NMR spectrum; the resonances of the major species being slightly broadened. Only one 

resonance was observed for MeCN. Fast exchange of coordinated and free Lewis base was 

observed previously in nacnacCuL complexes,11, 12, 25 and the amount of coordinated 

MeCN in the two species thus cannot be derived from NMR. Only one peak for νCN was 

observed at 2259 cm–1 in the IR spectrum of 4 in toluene solution, 5 cm–1 higher than that 

of free MeCN.26 Addition of excess MeCN (5 equiv) caused the peaks to collapse to one set 

of resonances in its 1H and 13C spectrum, belonging to the previously minor component. 

Changes in the overall concentration, on the other hand, did not affect the observed ratio, 

which rules out equilibrium (1) in scheme 5.2. Complete MeCN redistribution (eq. (2), 

Scheme 5.2) also seems unlikely, since bis(acetonitrile) complexes have not been reported 

for diketiminate copper complexes and nacnaciPrCu complexes could not be obtained in the 

absence of ancillary ligands. We thus assign the species favoured at higher acetonitrile 

concentrations to the MeCN complex nacnaciPrCuNCMe, 4, observed in the crystal 

structure, and the broadened peaks of the major species to the bridged complex 

{nacnaciPrCu}2(μ-NCMe), 4b (eq. (3), Scheme 5.2). While bridging coordination of 

acetonitrile is rare, it is not unknown.27 Monomer-dimer equilibria similar to eq. (3) have 

been observed for nacnacBnCu, which forms a diphenylacetylene bridged dimer in the solid 

state and a monomeric complex in solution when excess diphenylacetylene is present,12 and 

for nacnacArCu complexes, which display an equilibrium between a monomeric and a 

dimeric benzene-coordinated complex in solution.7, 25 While single crystal diffraction 

studies confirmed the formation of 4, we were not able to obtain satisfactory elemental 

analyses, even from crystalline material. Synthesis of 4 was reported at the time of 
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submission of this article by Arii et al. from the reaction of [Cu(NCMe)4][CF3SO3] with 

nacnaciPrLi.13 Although not discussed therein, they also observed a variable ratio of two 

products in NMR spectra of 4.28 

 
Scheme 5.2 

 

The stretching frequency νCN = 2105 cm–1 of the isocyanide ligand in 3 is the lowest 

frequency observed in 2,6-xylyl isocyanide copper complexes with either N-alkyl 

substituted (νCN = 2111-2117 cm–1)11, 12, 17 or N-aryl substituted diketiminate ligands (νCN = 

2121-2126 cm–1),7, 25, 29 indicating an increased, but still weak π back-donation (free 

isocyanide: νCN = 2119 cm–1).  

In the course of preparing compound 3, a minor side product, 5, was obtained. 1H 

and 13C NMR spectra of 5 showed resonances of the diketiminate ligand and isocyanide in 

a ratio of 1:2, which would suggest the formation of nacnaciPrCu(CNC6Me2H3)2. 

Satisfactory elemental analysis of 5, however, could not be obtained and, more importantly, 

addition of one equiv xylyl isocyanide did not transform 3 into 5. Complex 5 showed the 

same stretching frequency in its IR spectrum as 3. Taking also the low solubility of 5 in 

toluene into account, assignment as a bisisocyanide adduct seems improbable and the 

structure of 5 remains unclear.  

 

Conclusions 

Copper complexes of nacnaciPr were readily prepared if additional Lewis base was 

present to stabilize the complex. In agreement with observations made for nacnacCH(Me)Ph,11 

diketiminate ligands with secondary alkyl substituents are slightly more Lewis-basic, but 
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sterically more demanding in the first coordination sphere than diketiminates with aryl or 

primary alkyl substituents. 

 

Experimental Section 

All reactions, except ligand synthesis, were carried out under nitrogen atmosphere 

using Schlenk or glove box techniques. Solvents were dried by passage through activated 

aluminum oxide (MBraun SPS) and de-oxygenated by repeated extraction with nitrogen. 

C6D6 was distilled from Na and de-oxygenated by three freeze-pump-thaw cycles. 

CuOtBu30 and mesitylcopper31 were synthesized as reported. All other chemicals were 

obtained from commercial suppliers and used as received. Elemental analyses were 

performed at the Laboratoire d’Analyse Elémentaire (Université de Montréal). NMR 

spectra were recorded on a Bruker ARX 400 MHz spectrometer and referenced to residual 

solvent (C6D5H: δ 7.15, C6D6: δ 128.02) or external reference (31P, 75% H3PO4). 

 

NacnaciPrH, 1.14, 15 Acetylacetone (4.0 mL, 38 mmol), p-toluenesulfonic acid monohydrate 

(7.2 g, 38 mmol) and isopropylamine (6.1 mL, 76 mmol) were added to toluene (200 mL) 

and refluxed with the help of a Dean-Stark apparatus for 5 days, during which the yellow 

suspension turned brown. After cooling to room temperature, the brown precipitate formed 

was filtered. The precipitate was washed with toluene (100 mL) and transferred to a K2CO3 

solution (5 g in 100 mL of water). After stirring for 30 min, the aqueous phase was 

extracted with toluene (3x100 mL). The combined organic phases were dried over MgSO4 

and then filtered. The filtrate was evaporated to obtain brown oil (1.6 g, 23%), which was 

employed without further purification in subsequent synthesis.  
1H NMR (CDCl3, 400 MHz) δ 11.44 (bs, 1H, NH), 4.38 (s, 1H, HC(C=N)2), 3.64 (sp, J = 6 

Hz, 2H, CH(CH3)2), 1.89 (s, 6H, Me(C=N)2), 1.16 (d, J = 6 Hz, 12H, CH(CH3)2). 13C NMR 

(CDCl3, 101 MHz): δ 158.5 (C=N), 93.5 (HC(C=N)2), 46.7 (CH(CH3)2), 24.7 (CH(CH3)2 ), 

18.7 (Me(C=N)2). 1H NMR (C6D6, 400 MHz): δ 11.63 (bs, 1H, NH), 4.46 (s, 1H, 

HC(C=N)2), 3.46 (sp, J = 6 Hz, 2H, CH(CH3)2), 1.71 (s, 6H, Me(C=N)2), 1.11 (d, J = 6 Hz, 
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12H, CH(CH3)2). 13C NMR (C6D6, 101 MHz): δ 158.0 (C=N), 94.6 (HC(C=N)2), 47.0 

(CH(CH3)2), 25.1 (CH(CH3)2 ), 18.8 (Me(C=N)2).  

NacnaciPrCuPPh3·0.5 C6H14, 2. NacnaciPrH (300 mg, 1.65 mmol), mesitylcopper (301 mg, 

1.65 mmol), CuOtBu (22 mg, 0.165 mmol) and PPh3 (437 mg, 1.65 mmol) were dissolved 

in toluene (12 mL) to give a yellow-brown solution. After stirring for 1 h, the solution was 

filtered, concentrated to 1/5 of its volume and layered with hexane (5 mL). It was then kept 

at -35 ºC. Yellow crystals together with powder formed after 3 day (700 mg, 84%).  
1H NMR (C6D6, 400 MHz): 1H NMR (C6D6, 400 MHz): δ 7.66-7.02 (m, 15H, PPh3), 4.67 

(s, 1H, HC(C=N)2), 3.86 (sp, J = 6 Hz, 2H CH(CH3)2), 2.10 (s, 6H, Me(C=N)2), 0.98 (d, J 

= 6 Hz, 12H, CH(CH3)2). 13C NMR (C6D6, 101 MHz): δ 161.3 (C=N), 135.1 (d, J =30 Hz, 

ipso PPh3), 134.7 (d, J =14 Hz, ortho PPh3), 129.7 (para PPh3), 128.6 (d, J = 9 Hz, ortho 

PPh3), 95.4 (HC(C=N)2), 51.4 (CH(CH3)2), 26.7 (CH(CH3)2 ), 23.1 (Me(C=N)2). 31P NMR 

(C6D6, 75 MHz): δ 4.0. Anal. Calcd. for C29H36N2PCu: C, 68.68; H, 7.15; N, 5.52. Found: 

C, 67.85; H, 7.48; N, 4.97. 

 

NacnaciPrCuCN(C6Me2H3), 3. NacnaciPrH (200 mg, 1.10 mmol), mesitylcopper (201 mg, 

1.10 mmol), CuOtBu (15 mg, 0.11 mmol) and xylyl isocyanide (151 mg, 1.15 mmol) were 

dissolved in toluene (4 mL). The yellow-brown solution was stirred for 1 h and then 

concentrated to half its volume to afford a yellow-brown suspension. The suspension was 

filtered, the filtrate was layered with 4 mL of hexanes and kept at -35 °C. Yellow crystals 

of 3 formed after 1 day (190 mg, 46%).  
1H NMR (C6D6, 400 MHz): δ 6.75 (t, J = 8 Hz, 2H, p-CN(C6Me2H3)), 6.59 (d, J = 8 Hz, m-

CN(C6Me2H3), 2H) 4.60 (s, 1H, HC(C=N)2), 4.01 (septet, J = 6 Hz, CH(CH3)2, 2H), 2.11 (s, 

6H, Me(C=N)2), 2.08 (s, 6H, CN(C6Me2H3), 1.42 (d, 12H, J = 6 Hz CH(CH3)2). 13C NMR 

(C6D6, 101 MHz): δ 160.7 (C=N), 134.8, 94.8 (HC(C=N)2), 50.9 (CH(CH3)2). 27.5 

(CH(CH3)2), 22.3 (Me(C=N)2), 18.8 (CN(C6Me2H3)). (CN(C6Me2H3) and three aromatic 

resonances were not detected). Anal. Calcd. for C20H30N3Cu: C, 63.88; H, 8.04; N, 11.17. 

Found: C, 63.83; H, 8.11; N, 11.12. IR (toluene): νCN = 2114 cm-1.  
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The solid obtained after filtration, 5, gave: 1H NMR (C6D6, 400 MHz): δ 6.69 (t, J = 8 Hz, 

p-CN(C6Me2H3), 2H), 6.52 (d, J = 8 Hz, m-CN(C6Me2H3), 4H), 4.61 (s, 1H, HC(C=N)2) , 

4.02 (septet, J = 6 Hz, CH(CH3)2, 2H), 2.14 (s, 12H, CN(C6Me2H3), 2.08 (s, 6H, 

Me(C=N)2), 1.43 (d, 12H, J = 6 Hz, CH(CH3)2). 13C NMR (C6D6, 101 MHz): δ 160.7 

(C=N), 135.4, 128.6, 128.1, 127.8, 94.8 (HC(C=N)2), 50.8 (CH(CH3)2), 27.5 (CH(CH3)2), 

22.4 (Me(C=N)2), 18.8. (CN(C6Me2H3)). (CN(C6Me2H3) elusive). IR (toluene): νCN = 2114 

cm-1. 

 

NacnaciPrCuNCMe, 4. NacnaciPrH (75 mg, 0.41 mmol) and MeCN (41 mg, 0.82 mmol) 

were mixed and transferred to a vial containing a yellow solution of CuOtBu (69 mg, 0.41 

mmol) in toluene (2 mL). The resulting yellow-brown solution was kept at –30 ºC. 

Colourless crystals formed after 1 h together with a brown precipitate (mirror) indicative of 

decomposition. Decantation of the brown suspension gave after drying 31 mg (26%) of 

yellow crystals, 4. 

Two species were observed in C6D6 solutions of 4 (see text). 4: 1H NMR (C6D6, 400 MHz): 

δ 4.52 (s, 1H, HC(C=N)2), 4.03 (septet, J = 6 Hz, CH(CH3)2, 2H), 2.11 (s, 6H, Me(C=N)2), 

1.38-1.52 (m, 12H, CH(CH3)2), 0.57 (NCMe). 13C NMR (C6D6, 101 MHz): δ 160.6 (C=N), 

116.5 (NCMe), 65.9 (HC(C=N)2), 50.7 (CH(CH3)2), 26.9 (CH(CH3)2 ), 22.3 (Me(C=N)2) 

and 0.3 (NCMe). 4b: 1H NMR (C6D6, 400 MHz): δ 5.29 (bs, 1H, HC(C=N)2), 3.92-3.99 

(featureless septet, CH(CH3)2, 2H), 2.56 (bs, 6H, Me(C=N)2), 2.08 (s, 6H, CN(C6Me2H3) 

and 1.38-1.52 (m, 12H, CH(CH3)2) overlapping with that of 4. Elemental analysis was 

unsatisfactory with varying results (ΔC = 2-3%), which might be related to acetonitrile 

dissociation and complex decomposition. IR (toluene): νNC = 2259 cm-1. 

 

NMR scale preparation of nacnacdippCu(styrene). A vial was charged with nacnacdippH 

(dipp = 2,6-iPr2C6H3) (10 mg, 24 µmol), CuOtBu (4 mg, 30 µmol) and styrene (3 µL, 25 

µmol). C6D6 (0.6-0.7 mL) was added. After shaking thoroughly to obtain a homogeneous 

solution, the content was transferred to a J. Young tube and heated at 60 ºC for 24 h.  
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1H NMR (C6D6, 400 MHz) δ 6.35-7.21 (m, 11H, 2,6-iPr2C6H3 & styrene), 5.08 (dd, J = 9 

Hz and 14 Hz, 1H, PhHC=), 4.97 (s, 1H, HC(C=N)2), 3.48-3.56 (m, 3H, CH(CH3)2 & cis 

H2C=), 3.34 (d, J = 9 Hz, 1H, trans H2C=), 3.07 (sp, J = 7 Hz, 2H, CH(CH3)2, 1.75 (s, 6H, 

Me(C=N)), 1.33 (d, J = 7 Hz, 6H, CH(CH3)2), 1.15 (d, J = 7 Hz, 12H, CH(CH3)2), 1.09 (d, 

J = 7 Hz, 6H, CH(CH3)2). 

 

X-ray diffraction studies. Compounds were crystallized by layering a toluene solution 

with hexane at –30 °C, except for compound 4 which crystallised directly from the toluene 

solution of the reaction at –30 °C. Data sets for 2 and 3 were recorded on a Bruker SMART 

6000 with Montel 200 monochromator, while that of compound 4 was collected on a 

Bruker Microstar-Proteum with Helios optics, both equipped with a rotating anode source 

for Cu Kα radiation (λ = 1.54178 Å). Cell refinement and data reduction were performed 

using APEX2.32 Absorption corrections were applied using SADABS.33 Structures were 

solved by direct methods using SHELXS97 and refined on F2 by full-matrix least squares 

using SHELXL97.34 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms 

were refined on calculated positions using a riding model. 
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Table V-2. Details of X-ray diffraction studies 

 2 3 4 

Formula C29H36CuN2P·(C6H14)0.5 C20H30CuN3 C13H24CuN3  

Mw(g/mol); dcalcd.(g/cm3) 550.19; 1.247 376.01; 1.239 285.89; 1.277 

T (K); F(000) 150 ; 1172 150; 800 150; 608  

Crystal System Monoclinic Monoclinic Monoclinic 

Space Group P21/c P21/c P21/c 

Unit Cell: a (Å) 13.9417(4)  8.9807(3) 6.8103(1) 

 b (Å) 12.4813(4) 13.3632(4) 11.4563(3) 

 c (Å) 17.8496(6) 16.9799(5) 19.1252(3) 

 β (°) 109.348(1) 98.320(1) 94.780(1) 

V (Å3); Z 2930.60(16); 4 2016.33(11); 4 1486.97(5); 4 

θ range (°); completeness 3.36-73.61; 0.99 4.23-71.45; 0.99 4.50-67.82; 0.93 

Refl.: collec./indep.; Rint 41989/5843; 0.037 24118/3879; 0.038 23408/2512; 0.034 

μ (mm–1); abs. corr 1.72; SADABS 1.55; SADABS 1.93; SADABS 

R1(F); wR(F2); GoF(F2) a  0.0348; 0.0959; 1.052 0.0413; 0.1128; 1.00  0.0308; 0.0906; 1.067 

Residual electron density 0.68; -0.38 0.32; -0.36 0.32; -0.51 
a R1(F) based on observed reflections with I>2σ(I), wR(F2) and GoF(F2) based on all data. 
 

Supplementary data 

Supplementary data (CIF) for this article are available on the journal Web site 

(http://canjchem.nrc.ca), or, free of charge, via www.ccdc.cam.ac.uk/conts/retrieving.html 

(or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 

1EZ, U.K. (Fax: 44-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk). 
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Abstract 

N,N'-dibenzyl-4-amino-2-imino-pent-3-ene, nacnacBnH, was obtained in a one-step 

synthesis starting from benzylamine and acetylacetone. Reaction of nacnacBnH with 

CuOtBu in the presence of various Lewis bases gave the corresponding copper complexes 

(nacnacBn)CuL (L: 2, styrene; 3, η2-acrylonitrile; 4, allylphenylether; 5, stilbene, 7, 

xylylisonitrile; 8, triphenylphosphine). With diphenylacetylene (DPA) the dimeric complex 

{(nacnacBn)Cu}2(µ-DPA), 6, was obtained. In the presence of excess DPA, 6 coordinates 

additional acetylene to form the monomeric complex (nacnacBn)Cu(DPA), 6b. All 

complexes, with exception of 4 and 6b, were characterized by X-ray diffraction studies. 

Structural and spectroscopic data indicate that π back-bonding in 2-8 is still weak when 

compared to other transition metals, but stronger than in most Cu(I) complexes. Olefin 

exchange experiments indicate preferred binding of electron-deficient olefins. Reaction of 

3 with morpholine did not yield any hydroamination products, in agreement with 

significant π back-bonding towards the olefin. 

 

Introduction 

Copper(I) η2-olefin complexes are involved as intermediates or resting states in a 

number of catalytic reactions, in industrial applications, and have been investigated as bio-

mimetic model complexes for the ethylene receptor site in plants.1, 2 In the Dewar-Chatt-

Duncanson model, olefin binding consists of σ donation from the olefin into the Cu s-

orbital, with accompanying π back-bonding from the metal into the olefin π*-orbital.3 

While some theoretical studies suggest that binding of olefins to copper cations is purely 

electrostatic in nature with only marginal covalent contributions,4 others claim significant 

covalent contributions in which π back-bonding is dominant.5 Most of the recent studies, 

however, describe the bonding as mainly electrostatic, but with covalent contributions up to 

45%. Population analyses suggest π back-bonding in cationic Cu(I) olefin complexes to be 

of minor importance compared to σ donation and to account for 1/6 to 1/3 of the covalent 

bonding (Table VI-1).6 Experimental evidence on the importance of π back-bonding for the 

Cu(I) olefin bond is ambiguous.7, 8 Kamau and Jordan found that the formation constants of 

Cu(I) olefin complexes in aqueous solutions correlate with the inductive constants (F) of 
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the olefins.9 Reduced binding of electron-poor olefins was interpreted as a sign that olefin 

binding is dominated by σ donation, in agreement with the theoretical studies. Pampaloni 

et al. also reported reduced binding of olefins with electron-withdrawing substituents to 

(F3CCO2)Cu complexes.10 For Cu(I) phenanthroline complexes, on the other hand, 

divergent trends were observed when olefin binding constants were correlated with the 

Hammett parameters of the olefin substituent(s).11 Thompson, Bradley et al. reported that 

the amount of π backbonding in Cu(I) acetylene complexes can be significantly increased 

in the presence of a more basic ancillary ligand.12 We have recently started to investigate 

the chemistry of β-diketiminate ligands with aliphatic substituents on nitrogen,13 which for 

copper was only sparingly reported, mostly for ALD/CVD applications.12, 14 We report here 

the synthesis of N,N'-dibenzyl-diketiminato copper complexes, which show increased π 

backbonding and a clear preference to coordinate electron-deficient olefins. 

 

Table VI-1: Bond dissociation energy of 

Cu-olefin bonding according to calculation. 

Electrostatic 55-60% 

σ-Donation 24-38% 

π-Back donation 7-16% 

 

Results and Discussion 

 

Ligand and Complex Synthesis. N,N'-Dibenzyl-β-diketimine, 1, or other diketimine 

ligands with aliphatic N-substituents have previously been prepared employing O-

alkylation of the monocondensation product15 or the ethylene glycol monoketal of 

acetylacetone.16 We obtained 1 in high yield of 80% by direct condensation of benzylamine 

and acetylacetone in the presence of one equiv. of acid.17 Copper complexes 2-8 were 

obtained, following the procedure proposed by Dai and Warren,18 in 30-60% yield after 

crystallization by reaction of CuOtBu with 1 in the presence of the respective olefin/Lewis 

base in toluene or ether (Scheme 6.1). The use of copper mesityl as an alternative copper 

source in the presence of catalytic amounts of CuOtBu or tBuOH13 did not significantly 

change the obtained complex yields. Reaction of the lithium salt of 1 with 
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[Cu(NCMe)4][PF6] in the presence of Lewis bases yielded identical complexes, albeit in 

lower yields. Complex 2 was also obtained from reaction of the lithium salt of 1 with CuI 

and excess styrene in acetonitrile (60% yield before recrystallisation). Complexes 2-8 are 

colorless to yellow solids, which are sensitive to air, but thermally stable under inert 

atmosphere. Solutions of complexes 2, 5 and 8 in C6D6 did not decompose when heated to 

60 °C under exclusion of light over a period of 2-3 days. No reaction was observed 

between CuOtBu and 1 in the absence of Lewis bases or in the presence of acetone, 1-

hexene, or benzonitrile. Reaction in presence of acetonitrile led to decomposition products. 

We have previously shown that for the related di(methylbenzyl)diketimine ligand a lack of 

reactivity towards CuOtBu correlates with a reduced stability of the respective copper 

complex. If a salt metathesis pathway was used in these cases, only decomposition products 

were obtained.13   
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Scheme 6.1 

 

Crystal Structure Studies. The crystal structures of complexes 2, 3 & 5-8 display the 

copper center in a planar environment. As typically observed in copper(I) olefin complexes 

with bidentate supporting ligands, the multiple bond of the π ligand in 2, 3, 5 and 6 lies in 

the coordination plane of the complex. The benzyl ligands have a syn conformation in 6 & 
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8 and an anti conformation in 2, 3, 5 & 7. Both, the CS- and the C2-symmetric rotamer of 

the ligand thus seem to be of comparable energy and the ligand is free to adopt the most 

favorable conformation in each case. Extensive π interactions are observed in all 

complexes (vide infra). Strong steric interactions between the benzyl substituents and the 

coordinated Lewis base seem to be absent: (i) The coordination around the copper atom is 

very similar in all complexes and Cu-N bond lengths (1.90(1)-1.955(1) Å, Table VI-2) as 

well as N1-Cu1-N2 angles (97.9(3)-100.4(1)°) are close to the average values of reported 

diketiminato copper complexes (Cu-N: 1.94±0.06 Å, N-Cu-N: 99±3°).19, 20 (ii) The metal is 

coordinated symmetrically and a significant difference in Cu-N bond lengths was observed 

only for the phosphine complex 8, which is, however, still smaller than the average Δd(Cu-

N) of 0.03 Å in reported complexes.19, 20 (iii) The Cu-L fragment is coordinated in the plane 

of the diketiminate ligand and the small values of the complex bending angle (Table VI-2) 

do not correlate with the steric demand of the coordinated Lewis base. 
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Table VI-2: Selected bond distances [Å] and bond angles [deg] for 2, 3 and 5-8. 

 2 3 5 6 7 8 

Cu1-N1 1.917(2) 1.912(3) 1.921(1) 1.903(7) - 

1.926(6) 

1.941(1) 1.955(1) 

Cu1-N2 1.919(2) 1.908(3) 1.922(1) 1.941(1) 1.933(1) 

Cu1-

X/CH2(CHR)a,b 1.972(2) 1.960(3)  
1.948(7) - 

1.987(7) 
1.816(2) 2.159(1) 

Cu1-C(H)R(CH2) c 2.022(2) 1.989(3) 
2.014(2) & 

2.019(1) 
   

X - Y a 1.385(4) 1.388(4) 1.391(2) 
1.291(10) & 

1.308(10) 
1.159(2) 

1.825(1)- 

1.835(1) 

N1-Cu1-N2 100.0(1) 100.2(1) 100.2(1) 
97.9(3) - 

99.2(3) 
98.4(1) 100.4(1) 

Cu1-C=C-CR d 106 103 100 129 - 141   

complex bending e 10 7 4 11-17 8 3 
a C26-C27 (2); C20-C21 (3); C32-C33 (5); C28-N3 (7); P1-C20/C26/C32 (8). b Cu1-C26 (2); Cu1-C20 

(3). c Cu1-C27 (2); Cu1-C21 (3); Cu1-C32, Cu1-C33 (5). d torsion angle: Cu1-C26-C27-C20 (2); Cu1-

C20-C21-C22 (3); Cu-C33-C32-C20, Cu1-C32-C33-C26 (5). e angle between the least-square planes 

defined by C2-C4,N1,N2,Cu1 and N1,N2,Cu1,X.  

 

The olefinic bond of coordinated styrene in 2 (1.385(4) Å, Figure 6.1, Table VI-2) 

is significantly elongated compared to that of the free olefin (1.318(2) & 1.325(2)).21 

Compared to other transition metal styrene complexes the bond length is at the lower end 

of the range observed (1.35-1.48 Å),8, 20, 22-26 but is one of the longest observed in Cu(I) 

styrene complexes (1.35-1.39 Å).8, 24-26 The bending of the phenyl ligand out of the plane of 

the olefinic double bond can be taken as a measure to indicate the degree of π back-

bonding and can be described by means of the Cu-C=C-CPh torsion angle.27 The value of 

106° in 2 is higher than those observed in other copper styrene complexes (93-105°).8, 24-26 

As usually observed in monosubstituted olefin complexes, styrene is bound asymmetrically 

with the unsubstituted carbon forming a slightly shorter metal-carbon bond. Cu-C bond 

lengths of 1.972(2) and 2.022(2) Å, respectively, are again at the extreme of the ranges 

observed in other Cu(I) styrene complexes (1.97-2.05 Å and 2.00-2.11 Å, respectively).8, 24-

26 While π back-bonding will be discussed in detail below, the geometric data indicate that 

styrene is more strongly bound in 2 than in most other copper complexes. Coordination of 
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styrene to the copper center is aided by a π stacking interaction of one benzyl substituent 

(C6-C11) with the phenyl substituent on styrene. The two phenyl rings are in a coplanar 

(6°), displaced orientation with shortest contacts of 3.5 Å between the overlapping carbon 

atoms and the mean plane of the π-stacked phenyl ring.  

 
 

Figure 6.1: Crystal structure of 2. Hydrogen atoms are omitted for clarity. Thermal 

ellipsoids are drawn at the 50% probability level. The inset shows the π stacking 

interaction between styrene and one benzyl ligand. 
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Only a limited number of η2-acrylonitrile complexes have been structurally 

characterized and, with the notable exception of its (CuCl)2 adduct, in which acrylonitrile is 

found in a bridging η1-N,η2-coordination,28 they contain good π back-bonding metal 

centers, i. e. Ni(0),29, 30 Fe(0),31 Mo(0),32 and Ru(II).33 Coordination of acrylonitrile in 3 

(Figure 6.2, Table VI-1) is very comparable to the styrene coordination in 2. Cu-C bond 

lengths are shorter by 0.01-0.03 Å in 3, which might indicate a slightly stronger 

coordination. As observed for the styrene complex 2, the olefin is asymmetrically bound 

(Δd(Cu-C) = 0.03 Å). Its C=C double bond (1.388(4) Å) is longer than that of the free 

olefin (1.339(1) Å),34 comparable to the one observed in the (CuCl)2 adduct (1.38(2) & 

1.39 Å),28 but shorter than those observed in complexes of better back-bonding metals 

(1.40-1.46 Å).29-33 Although π interactions between the benzyl substituent and the electron-

poor nitrile substituent on the olefin would be possible, they are not observed in the solid 

state. In fact, the benzyl substituent is bent away from the nitrile, with an angle between 

olefin and phenyl least square planes of 20° and without any superposition of nitrile and 

phenyl substituents. The reason for this apparent repulsion is the formation of a 1D-chain 

of antiparallel nitrile substituents, parallel to the monoclinic axis and with intermolecular 

C22-N3 distances of 3.2 Å. The nitrile nitrogen is in relatively close contact (2.9 Å) to the 

copper center of an adjacent molecule, where it occupies an axial position (N3A-Cu1-X: 

82-107°). When compared to N-coordinated acrylonitrile complexes,35 including the 

(CuCl)2 adduct with acrylonitrile in a bridging coordination,28  the long Cu-N distance (3: 

2.9 Å, N-coordinated AN: 1.9-2.1 Å), the angled coordination of acrylonitrile (Cu1-N3A-

C22A, 3: 136°; N-coordinated AN: 153-180°), and the small deviation of the trigonal 

complex from planarity (bending angle in Table VI-2: 7°) indicate that the interaction is 

probably mostly electrostatic in character and of minor importance.   
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Figure 6.2: Crystal structure of 3. Hydrogen atoms are omitted for clarity. Thermal 

ellipsoids are drawn at the 50% probability level. Additional fragments were generated 

using the symmetry operations 1-x, y-0.5, 0.5-z (A) and 1-x, 0.5+y, 0.5-z (B).  

 

The coordination of trans-stilbene in 5 (Figure 6.3, Table VI-2) closely resembles 

that of styrene in 2. The olefinic bond (1.391(2) Å) is again longer than in the free olefin 

(1.32±0.02 Å),20, 36 but at the shorter end of the range observed in other transition metal 

stilbene complexes (1.41(1)-1.47(2) Å).20, 36 The main differences are the now symmetrical 

Cu-Colefin bonds, the lack of π stacking between the benzyl substituent and the phenyl 

substituent of the olefin and a 20° tilt of the olefin out of the mean diketiminate-copper 

plane. The latter two observations are caused by the formation of intermolecular, instead of 

intramolecular π interactions between stilbene and the benzyl substituent. The phenyl ring 

C6-C11 is coplanar (3°) with the stilbene of an adjacent molecule (C26A-C27A+C33A) 

with a 3.6-3.7 Å distance between the planes. The co-crystallized toluene molecule is 
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sandwiched between two benzyl substituents not involved in π stacking interactions with 

stilbene in an edge-on CH-π interaction. 

 
Figure 6.3: Crystal structure of 5. Hydrogen atoms are omitted for clarity. Thermal 

ellipsoids are drawn at the 50% level. The co-crystallized toluene molecule is disordered 

around an inversion center. The π-stacked fragment was generated by 0.5-x, 0.5+y, 0.5-z. 

 

The crystal structure of 6 (Figure 6.4, Table VI-2) contains two independent 

molecules in the unit cell. All benzyl ligands show evidence of slight rotational disorder, 

which lowers the overall quality of the structural data. In agreement with relative NMR 

intensities, the crystal structure showed 6 as the acetylene bridged dimer. While many 

transition metal complexes coordinate acetylene in a bridging fashion, copper usually 

prefers to form unbridged acetylene complexes and 6 is one of the few reported examples 

in which close copper-copper distances were not enforced by other bridging ligands.37 The 

C-C distances of the bridging acetylenes (1.29(1) & 1.31(1) Å) and the Cu-C distances 

(1.95(1)-1.99(1) Å) are comparable to those in other µ-acetylene copper complexes, while 

Cu-Cu distances (2.621(2) & 2.635(2) Å) are slightly shorter (c. f. C-C: 1.29±0.03 Å, Cu-



Chapter 6 

 

 

104

C: 1.96±0.04 Å, Cu-Cu: 2.8±0.1 Å).38 However, 6 is the only complex in this group which 

does not contain additional ligands bridging the copper centers and the Cu-Cu distances in 

6 are still well in the usual range observed for dicopper complexes in general. A possible 

explanation for the formation of 6 and why the mononuclear acetylene complex 6b is 

formed only in the presence of excess acetylene (vide infra) might be found in steric strain 

introduced between the carbon substituent on nitrogen atom and the ipso-carbon atom of 

diphenylacetylene when the latter is located in the mean ligand plane (Scheme 6.3). A 

complex comparable to 6b, (N,N'-di(iBu)diketiminato)Cu(Me3SiCCSiMe3), showed a 

strongly increased bending between the mean diketiminate-copper and acetylene-copper 

planes of 22°, which is absent in the corresponding acetylacetonate complex.12  

 

 
Figure 6.4: Crystal Structure of 6. Only one of two independent molecules in the unit cell 

is shown. Hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at the 30% 

level. 
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Structures 7 and 8 (Figure 6.5 & 6.6, Table VI-2) resemble closely those of other 

diketiminate copper complexes with a coordinated triphenylphosphine13, 39-41 or 2,6-

xylylisonitrile ligand, respectively.13, 39, 42 The isonitrile ligand in 7 is bent towards the 

benzyl groups, indicating that the syn-orientation of the benzyl substituents observed in 7 is 

caused by an attractive CH3-π interaction and not by steric repulsion. Complex 8, carrying 

the bulky triphenylphosphine group, does not show any indication of steric strain in the 

complex. The analogous complex with a chiral methylbenzyl-substituent on nitrogen 

displays a pronounced complex bending of 25° and average Cu-N and Cu-P distances (1.98 

Å and 2.20 Å, respectively)13 which are longer than those in corresponding N-aryl 

substituted diketiminate copper PPh3 complexes (Cu-N: 1.94-1.97 Å, Cu-P: 2.16-2.18 Å, 

complex bending: 4-17°).39-41 The average Cu-N distance (1.94±0.02 Å) and the Cu-P 

distance (2.159(1) Å) in 8, on the other hand, are at the short extremes of these ranges, and 

the complex bending of 8° is comparable to that observed in 2-7 and does not indicate 

pronounced steric strain. While the steric environment in diketiminate complexes generated 

by aliphatic and aromatic substituents on N is fundamentally different, diketimine ligands 

derived from secondary amines can be considered sterically more demanding than N-aryl 

substituted diketimines,13 while those derived from primary amines, such as 1, impose the 

least steric strain. 
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Figure 6.5: Crystal Structure of 7. Hydrogen atoms were omitted for clarity. Thermal 

ellipsoids are drawn at the 50% probability level. 

 

 

 
Figure 6.6: Crystal Structure of 8. Hydrogen atoms were omitted for clarity. Thermal 

ellipsoids are drawn at the 50% probability level. 
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NMR spectroscopy. While the coordinated phosphine and isonitrile ligand in 7 and 8 

exchange fast on the NMR time scale with free Lewis base present in solution, separate 

signal sets for coordinated and free olefins were observed for 2-5. EXSY spectra of 2 in the 

presence of free styrene show crosspeaks between free and coordinated styrene, indicating 

that olefin exchange – while slow on the NMR time scale – is still occurring. Reactions of 

2 or 3 with 1 equiv. of xylyl isonitrile led to complete olefin displacement and formation of 

the xylyl isonitrile adduct 8. The fast exchange observed with stronger binding Lewis bases 

is in agreement with the associative exchange mechanism proposed for these systems.13 1H 

NMR spectra of the acetylene bridged dimer 6 in the presence of excess diphenylacetylene 

displayed, next to free acetylene, a new set of signals, which were assigned to the acetylene 

coordinated monomeric complex 6b from their relative intensities (Schemes 6.2 & 6.3). On 

titration with diphenylacetylene the ratio of 6b/6 increased with increasing acetylene 

concentration and at acetylene/Cu ratios > 10 only signals of 6b and free acetylene 

remained. The coordinated olefin has only a slight influence on the chemical displacements 

of the diketiminate ligand. For example, the displacement of the central CH-carbon atom of 

the ligand in 13C NMR spectra of 2-5, which corresponds to the para-position of the 

"metallapyrimidine" cycle, remains virtually unaffected (δ = 96.6-96.9 ppm) by the 

exchange of the coordinated olefin.  

NMR spectra of the olefin complexes 2-4 indicate an apparent symmetry of the 

complex at room temperature, i.e. only one signal is observed for the diketiminate methyl 

group in 1H and 13C spectra. Rotation around the Cu-olefin bond is thus fast on the NMR 

time scale for all complexes. Variable temperature NMR experiments in toluene-d8 showed 

that olefin rotation in 2 is sufficiently slow to observe a non-symmetric complex featuring 

two methyl resonances and 4 doublets for the benzylic CH2 group below –40 °C. Rate 

constants could be extracted by simulation of the spectra and Eyring plots of the exchange 

rate constants yielded ΔH‡ = 62.3(7) kJ/mol, ΔS‡ = 49(3) J/(mol·K) (see supp. info.). While 

styrene rotation in 2 is fast at room temperature on the NMR time scale (as generally 

observed for Cu(I) styrene complexes), its barrier is the highest reported so far for Cu(I) 

styrene complexes (Table VI-3). A slightly faster rotation is observed in the comparable 

nacnacXylCu(styrene) complex of Dai and Warren (Xyl = 2,6-Me2C6H3),25 while olefin 

rotation is fast, even at 180 K, with the less Lewis-basic bipyridine ligand.26 The likewise 
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low rotation barrier in tBu2P{(Me3Si)N}2Cu(styrene)43 is not readily explained with 

electronic reasons and might be either related to decreased π back-bonding in this system44 

or to the sterically undemanding 4-membered metallacycle.  

 

Table VI-3: Olefin rotation barriers in LCuI(styrene) complexes with 

bidentate ligands L. 

LCu Styrene rotation k/k(2) a Reference 

nacnacXylCu ΔG‡
215K = 45(3) kJ/mol 50 25 

tBu2P{(Me3Si)N}2Cu ΔG‡
180K = 37.0 kJ/mol 6·104 43 

(bipyridine)Cu+ fast at 180K > 105 26 
a relative rate of styrene rotation in LCu(styrene) and 2 at the given 

temperature. 

 

One of the methyl resonances of 2 started to broaden at –60 °C, indicating another 

dynamic process such as N-Bn rotation (supplementary information, figure 6.S1), which 

was not further investigated. When heated above room temperature the two broad doublets 

of the benzylic CH2 groups start to coalesce. At the same time signals of coordinated and 

free styrene (present in 1-5% due to decomposition) started to broaden (supplementary 

information, figure 6.S3). Both observations can be traced to the olefin exchange process 

observed in EXSY spectra of 2 + free styrene at room temperature, without the need to 

invoke an enantiotopic side flip mechanism. 

While acrylonitrile prefers to bond via the nitrogen atom to harder Lewis acids45 

and displays a somewhat bridging coordination in the solid state structure of 3 (Figure 6.2), 

complex 3 shows in solution the typical features of π-coordinated acrylonitrile:30, 45, 46 the 

νCN frequency of 2225 cm–1 is marginally lower than the one observed in the free olefin 

(2230 cm-1), while N-coordination should lead to significantly increased νCN frequencies. 

As well, 13C NMR resonances of the coordinated olefin (δ = 70.6 and 54.0 ppm) are shifted 

strongly upfield compared to free acrylonitrile (δ = 136.5 and 107.4 ppm), while no 

changes or slight upfield shifts would be expected for N-coordinated acrylonitrile. 

Complexes 2, 4 & 5 also display in their 13C NMR spectra the upfield shift of the olefinic 
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resonances expected upon η2-coordination of the olefin. The acrylonitrile complex 3 

displays a dynamic process comparable to that observed for 2, and splitting of the methyl 

group was observed at low temperatures. Due to the small Δδ of 2-5 Hz, rate constants 

could not be determined for this exchange. The benzyl CH2 groups appear at low 

temperature as two coupled doublets for one CH2 group and as one broad multiplet of 

double intensity for the other, indicating a C1-symmetric complex with accidentally 

identical chemical displacements for two protons. The appearance of the benzyl groups 

remains unchanged up to 0 °C in toluene-d8. Above 0 °C all three peaks start to broaden 

and coalesce into one broad peak above 30 °C (in benzene-d6 and at lower field strength, 

one broad peak is observed for all CH2 protons already at room temperature and the 13C 

spectra is in the fast exchange region). Since olefin exchange with traces of free olefin was 

already observed at this temperature for 2 and would be expected to be even faster for 3, 

we cannot distinguish olefin exchange from olefin rotation. From the available data, 

however, we can estimate an upper barrier of k < 500 s–1 for the acrylonitrile rotation at 30 

°C. Styrene rotation at this temperature is thus at least 80 times faster than acrylonitrile 

rotation. While aryl-aryl π stacking in 2 might thus stabilize the complex, the slower olefin 

rotation in 3 and comparable rotation barriers for styrene rotation in nacnacXylCu(styrene)25 

argue that π stacking contributions to olefin binding are subtle at best. 

 

Evidence of π back-bonding. Copper(I) is generally considered a poor back-bonding 

metal center, which is in agreement with the obtained spectroscopic data. The average P-C 

carbon bond distance in 8 (1.83±0.05 Å), proposed as a measure of back-bonding into the 

phosphine ligand,47 is within the margin of experimental error identical to average P-C 

bond lengths in free PPh3 (1.826-1.835 Å).48 Elongation of P-C bonds in PPh3 is, however, 

a relatively small effect and barely statistically significant even for good back-bonding 

metal centers (e. g. average P-C bond lengths in Ni0PPh3: 1.85 Å, in Cr0PPh3: 1.84 Å).20, 49 

The νCN stretching frequency of the coordinated xylyl isonitrile ligand in 7 is observed at 

2114 cm–1, only 5 cm–1 below that of free xylyl isonitrile (2119 cm–1), and indicates rather 

weak back-bonding. Nevertheless, it is the lowest stretching frequency observed so far in 

Cu(I) xylyl isonitrile complexes (νCN = 2115-2164 cm–1).39, 42, 50 Elongation of the C=C 
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double bond of the olefin is normally considered a rather poor signifier of π back-bonding, 

since σ donation as well as π back-bonding weakens the olefinic bond. Nevertheless, we 

find a clear, if noisy, correlation of the olefinic bond length and the bending of the phenyl 

substituent out of the olefinic plane (a further indicator of the amount of 

metallacyclopropane character in olefin complexes and expressed in form of the M-C=C-

CPh torsion angle) for structurally characterized styrene complexes (Figure 6.7).8, 23-26, 51 

With free styrene21 and unsubstituted52 or substituted phenylcyclopropanes53 at the 

extremes, C=C bond lengths and the back-bending of the phenyl substituent increase 

qualitatively with the back-bonding ability of the metal center in the order Cu(I) < Pd(II) < 

Pt(II) < Re(II), Os(II), Mo(II) < Ta(III). Judging from Figure 6.7, back-bonding in 2 is still 

rather weak, but more important than in other reported Cu(I) styrene complexes.  
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Figure 6.7: Correlation between the length of the coordinated double bond and the bending 

of the phenyl substituent out of the olefinic plane in structurally characterized transition 

metal styrene complexes. Only high quality structures with R1 values lower than 5% were 

considered. Outliers with double bonds shorter than that of the free olefin are not shown. 

The torsion angle was set to 90° for styrene. For the determination of the torsion angle in 

substituted cyclopropanes, the CR2 group took the position of the metal center. In 

unsubstituted cyclopropane, both CH2 groups were used alternately. 
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  In 13C NMR spectra of 2, resonances of the olefinic carbon atoms are displaced by 

47-48 ppm towards higher field when compared to those of the free olefin. The amount of 

this displacement is a measure of the amount of charge delocalization towards the olefin, i. 

e. π back-donation.1, 8, 54, 55 In agreement with the conclusions drawn from the structural 

studies, 2 shows significant π back-bonding when compared to other copper complexes, 

but falls in the lower range of transition metal styrene complexes in general (Figure 6.8). 

The olefinic carbon atoms of the coordinated styrene in 2 show 1JCH-coupling constants of 

172 and 161 Hz, significantly higher than those in free styrene (CH(Ph): 155 Hz; CH2: 154 

and 160 Hz)56 and close to the values expected for phenylcyclopropane or phenyloxirane 

(160-180 Hz). The fast rotation around the Cu-olefin bond and the rather small upfield shift 

(Figure 6.8) indicate, however, that 2 has relatively little metallacyclopropane character.  
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Figure 6.8: Correlation between crystallographically determined lengths of the olefinic 

bond and the displacement of the benzylic carbon atom in 13C NMR spectra of transition 

metal styrene complexes.  

 

A comparison of the chemical displacements of the olefinic carbon atoms in 13C 

spectra of 2-5 in benzene-d6 is shown in table VI-4. The smallest displacement is observed 

for the stilbene complex 5, followed by allylphenylether and styrene, which show similar 

values, while the highest displacement from the values of the free olefin is observed for the 

acrylonitrile complex 3. Since higher upfield shifts are considered evidence for increased π 
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back-bonding1, 8, 54, 55 and have been found to correlate with the temperature of olefin 

dissociation in Cu(I) complexes,8 the NMR data in table VI-4 indicates that olefin binding 

is strongest for the electron-poor acrylonitrile. This is in contradiction to computational 

studies on Cu(I) olefin complexes, which predict that olefin binding can be described as 

approximately 50% electrostatic, 35% σ donation and 15% π back-bonding.6 In this 

bonding picture, one would expect a decreased binding of electron-deficient olefins, a 

situation which was experimentally confirmed by Kamau and Jordan's results of olefin 

binding to Cu+ in aqueous solution9 and partly in other studies.10, 11, 57 As a quantitative 

measure of the relative strength of olefin binding, we investigated olefin exchange 

equilibria between 2 and various olefins in benzene-d6 via 1H NMR. Acrylonitrile was 

indeed found to coordinate strongest to copper, while styrene and allylphenylether yielded 

comparable binding constants.58 No free styrene was observed even in the presence of a 

large excess of ethylvinylether, and we can only estimate the exchange constant to be lower 

than 0.01. The observed binding constants correlate well with the upfield shift of the 

olefinic carbons in their 13C NMR spectra (Table VI-4)59 and indicate a preferential binding 

of electron-poor olefins to the diketiminate copper complex investigated here. While 

acrylonitrile only binds moderately more strongly than styrene, rotation around the copper 

olefin bond was found to be significantly slower. Leaving aside possible steric 

explanations, this is in agreement with reduced σ-donor and increased π-acceptor 

properties of acrylonitrile when compared to styrene. While only the increased π back-

bonding in 3 influences the olefin rotation barrier, both affect the olefin binding strength. 

The reduced coordination constant for trans-stilbene indicates that – as is usually 

observed in copper olefin complexes – steric interactions are more important than 

electronic differences. In agreement with the importance of steric effects, diketiminate 

copper olefin complexes with ligands carrying secondary alkyl substituents on the nitrogen 

did not coordinate olefins, but do coordinate PPh3 or isonitriles.13, 60 Since acetylenes are 

generally considered to be slightly weaker σ donors, but better π acceptors than olefins, the 

weak coordination of diphenylacetylene when compared to styrene and stilbene was 

somewhat surprising. Acetylene coordination might be hindered by steric strain in the 

monomeric 6b (vide supra). Alternatively or additionally, stabilizing π-π interactions 

between the benzyl group and the olefin substituent might be present in solution for 
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complexes 2-5, which are geometrically impossible in 6b (and due to the absence of a π 

ligand also absent for ethylvinylether). While intramolecular π-π interactions were only 

observed in the crystal structure of 2, we believe them to be effective for all complexes, 

when the intermolecular interactions observed in the solid state for 3 and 5 are no longer 

possible. However, in view of the low binding constant of stilbene and the relative olefin 

rotation barriers in 2 and 3, it is improbable that π-π interactions have a dominant influence 

on the olefin binding strength. 

 

Table VI-4: Chemical displacement of coordinated olefins in 13C NMR spectra and 

equilibrium constants of olefin exchange reactions (benzene-d6, room temperature). 

complex coordinated olefin δ CH2 δ CH(R) Δ δ a [ ] [ ]
[ ] [ ]olefinstyreneCu

styreneolefinCuK
⋅−

⋅−=
ppm 

3 acrylonitrile 70.6 54.0 53-66 6.2 ± 20% b 

2 styrene 67.1 89.1 47-48 1 

4 H2C=C(H)CH2OPh 71.7 84.8 45-49 0.9 ± 20% b 

 H2C=C(H)OEt    < 0.01 

5 trans-stilbene  85.0 20 0.1 ± 15% b 

6b diphenylacetylene c   0.02 ± 20% b 
a Upfield shift relative to the free olefin in benzene-d6. δ (13C, C6D6, ppm): Styrene, 113.7 

(CH2), 137.3 (CHPh); acrylonitrile, 136.5 (CH2), 107.4 (CHCN); H2C=C(H)CH2OPh, 

116.9 (CH2), 133.8 (C(H)CH2OPh); stilbene, 105.4. b Errors cover the observed range of 

values in repeated experiments. c Under excess acetylene to ensure the absence of 6. 

 

To confirm the charge transfer from the metal onto coordinated olefin indicated by 

the spectroscopic data, we investigated the reactivity of the acrylonitrile complex 3 towards 

nucleophiles. Uncatalyzed reaction of acrylonitrile and morpholine in benzene-d6 for 24 h 

at 60 °C led to 30-50% hydroamination of acrylonitrile (Scheme 6.3). In the presence of 5 

mol-% of (insoluble) [Cu(NCMe)4][PF6], complete hydroamination was observed after 24 

h even at room temperature. Tetrakis(acetonitrile)copper thus catalyses the nucleophilic 

attack on acrylonitrile, most likely by N-coordination of acrylonitrile to copper. On the 



Chapter 6 

 

 

114

other hand, reaction of the acrylonitrile complex 3 with one equiv. of morpholine in 

benzene-d6 at 60 °C for 24 h yielded only unreacted 3 and morpholine. The presence of the 

diketiminate ligand thus not only favors η2-coordination over N-coordination of 

acrylonitrile to an extent that the complex no longer serves as a catalyst, but π back-

donation from the copper metal center into the LUMO of coordinated acrylonitrile is 

sufficient to prevent the nucleophilic attack on the coordinated double bond, which is 

feasible in the uncoordinated olefin.  

 

 
Scheme 6.3 

 

The ability of β-diketiminate ligands to favor metal-ligand back-donation has been 

previously noted by others. Holland and coworkers showed that the orbital geometry in 

three-coordinated nacnacFe complexes is ideally suited for metal-ligand π interactions61, 62 

and observed significant π back-bonding in nacnacFe(alkyne) and (nacnacFe)2(µ-N2) 

complexes.62, 63  For diketiminate copper complexes in particular, Thompson et al. 

observed significant spectroscopic differences between copper(BTMS) complexes (BTMS 

= bistrimethylacetylene) carrying either a diketonate or a diketiminate ligand, which they 

attributed to increased π back-bonding in the presence of the diketiminate ligand.12 This 

has been confirmed by a recent theoretical study of Srebro and Mitoraj: π back-donation is 

increased in diketiminate copper(BTMS) complexes, even if the diketonate complexes bind 

BTMS more strongly due to the lack of steric congestion.44 The latter is in line with our 

observations that steric differences affect olefin binding constants more strongly than 

electronic ones. Badiei and Warren calculated significant Cu-C π back-bonding for the 

mono- and dinuclear copper carbene complexes with the nacnacMes ligand (Mes = 2,4,6-

Me3C6H2) they prepared.39 Tolman and coworkers found that nacnacCu(O2) complexes 

have substantial Cu(III)-peroxo character,64, 65 while complexes such as TpCu(O2) are best 

described as Cu(II)-superoxo.65, 66 Electron donation from the nacnacCu fragment into 
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coordinated O2 is also considered to be responsible for the preferred side-on coordination 

of oxygen67 and the low oxidation power of these complexes,40 which is in line with the 

preferred π- over σ-coordination of acrylonitrile in 3 and its deactivation towards 

nucleophilic attack. In summary, the observed high degree of π back donation in 

nacnacBnCu complexes can be ascribed to a combination of different factors: (i) the 

trigonal (counting only σ bonds) coordination geometry of copper, (ii) the general ability of 

diketiminate ligands to increase electron density at the metal center in general and (iii) the 

increased Lewis basicity of N-alkyl substituted diketiminates in particular. 

 

Conclusions 

Copper(I) is a borderline case with regard to the importance of π back-donation. 

Theoretical studies of Cu(I) olefin bonding, mostly undertaken on cationic Cu(I) or CuX 

complexes, predict a net charge transfer from the olefin towards the metal. The amount of π 

back-bonding in copper complexes is however strongly influenced by the ancillary 

ligand,10, 12, 54, 68 and a bonding picture dominated by σ-donation cannot be sustained for 

neutral copper complexes with a Lewis basic ligand. Copper complexes 2-5 still have 

relatively little metallacyclopropane character and are best described as Cu(I) olefin 

complexes (as evidenced, e. g., by the free rotation around the Cu-olefin bond on the NMR 

time scale for most complexes). Nevertheless, compared to other Cu(I) complexes, the low 

νCN frequency in 8, the strong upfield shift of the 13C resonances of coordinated olefins, the 

crystallographic data, the (relatively) high barriers for olefin rotation and the preferred 

binding of electron-deficient olefins indicate that π back-bonding is strongly increased in 

the presence of the anionic dibenzyldiketiminate ligand 1. In particular for coordinated 

acrylonitrile, the deactivation towards nucleophilic attack and the slow olefin rotation 

justify to describe 3 at least partly as a Cu(III) metallacyclopropane. Further investigations 

into the role of attractive π interactions, as well as into potential applications of the 

preferential coordination of electron-deficient olefins are in progress. 
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Experimental Section 

All reactions, except ligand synthesis, were carried out under nitrogen atmosphere 

using Schlenk or glove box techniques. Solvents were dried by passage through activated 

aluminum oxide (MBraun SPS) and de-oxygenated by repeated extraction with nitrogen. 

C6D6 was distilled from Na and de-oxygenated by three freeze-pump-thaw cycles. CuOtBu 

was synthesized as reported.69 All other chemicals were obtained from commercial 

suppliers and used as received. Elemental analyses were performed by the Laboratoire 

d’Analyse Elémentaire (Université de Montréal). NMR spectra were recorded on a Bruker 

ARX 400 MHz spectrometer and referenced to residual solvent (C6D5H: δ 7.15, C6D6: δ 

128.02) or external reference (31P, 75% H3PO4). 13C and 1H assignments of coordinated 

olefins were confirmed by HMQC spectra. In the following "trans CH2" denotes the 

olefinic proton trans to the substituent on the coordinated olefins. Exchange rates were 

obtained by comparison of experimental and simulated spectra with the WINDNMR 

program.70 

 

N,N'-dibenzyl-4-amino-2-imino-pent-3-ene, nacnacBnH, 1. Acetylacetone (2.00 mL, 19.4 

mmol),  para-toluenesulfonic acid-semihydrate (3.7 g, 19.4 mmol) and benzylamine (2.25 

mL, 19.4 mmol) were suspended in toluene (40 mL) and refluxed for 1 h to afford a yellow 

solution. A second equivalent of benzylamine (2.25 mL, 19.4 mmol) was added after 

cooling to room temperature and the mixture was refluxed for 24 h with the help of a Dean-

Stark apparatus. From the obtained brown solution a brown precipitate formed upon 

cooling, which was isolated by filtration and dissolved in aqueous K2CO3 (30 g in 150 mL 

H2O). The aqueous phase was extracted with 3 x 100 mL of toluene. The combined organic 

phases were dried over Na2SO4, filtered and evaporated to give a beige solid, which was 

recrystallized from hot EtOH (4.4 g colourless needles, 82 %). 1H NMR (CDCl3, 400 MHz, 

298 K) δ 11.47 (bs, 1H, NH), 7.21 (m, 10H, Bn), 4.63 (s, 1H, HC(C=N)2), 4.45 (s, 4H, Bn 

CH2), 1.94 (s, 6H, Me(C=N)2). 13CNMR (CDCl3, 101 MHz): δ 161.1 (C=Ν), 140.8 (ipso 

Bn), 128.3 (ortho or meta Bn), 127.2 (ortho or meta Bn), 126.4 (para Bn), 95.1 

(HC(C=N)2), 50.7 (Bn CH2), 19.6 (Me(C=N)2). Anal. Calcd. for  C19H22N2:  C, 81.97; H, 

7.96; N, 10.06. Found C, 81.55; H, 8.12; N, 10.10. 
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(NacnacBn)Cu(styrene), 2. To a mixture of 1 (250 mg, 0.90 mmol), CuOtBu (120 mg, 0.88 

mmol) and styrene (200 mg, 1.80 mmol) was added toluene (5 mL) to afford a yellow 

solution. After stirring for 1 h, the solution was reduced to 1/8th of its volume and layered 

with 2 mL of hexane. A colourless powder formed after 1 day (250 mg, 63 %). 1H NMR 

(C6D6, 400 MHz, 298 K): δ 6.93-7.19 (m, 15H, Bn & styrene), 4.75-4.52 (m, 6H, CH2Ph, 

HC(C=N)2 & PhHC=),  3.45 (d, J = 14 Hz, 1H, cis H2C=), 3.19 (d, J = 9 Hz, 1H, trans 

H2C=), 1.64 (s, 6H, Me(C=N)). 13C NMR (C6D6, 101 MHz, 298 K): δ 165.1 (C=N), 143.3 

(ipso Bn),  140.1 (ipso styrene) 128.7 (ortho styrene), 128.6 (meta or ortho Bn), 126.6 

(para styrene), 126.5 (meta or ortho Bn), 126.3 (meta styrene), 125.6 (para Bn), 96.6 

(HC(C=N)2), 89.1 (1JCH = 172 Hz, PhHC=), 67.1 (1JCH = 161 Hz, H2C=), 57.3 (Bn CH2), 

21.8 (Me(C=N)). Anal. Calcd. for  C27H29N2Cu: C, 72.86; H, 6.57; N, 6.29. Found: C, 

72.84; H, 6.60; N, 6.39. Crystals suitable for x-ray were obtained from toluene solution in 

the presence of excess styrene at –35 °C. 

 

(NacnacBn)Cu(H2C=CHCN), 3. CuOtBu (137 mg, 1.0 mmol), 1 (300 mg, 1.1 mmol) and 

acrylonitrile (1.0 g, 19 mmol) were dissolved in toluene (5 mL) to give a yellow solution. 

After stirring for 15 min, the solution was evaporated to give yellow-brown oil. Hexane (6 

mL) was added and the resulting suspension was kept at -35 °C for 1 day. The supernatant 

was decanted and residual solvent removed on the vacuum line to afford a yellow powder 

(115 mg, 29%). 1H NMR (C6D6, 400 MHz, 298 K): δ 7.01-7.11 (m, 10H, Bn), 4.72 (s, 1H, 

HC(C=N)2), 4.61 (bs, 4H, Bn), 2.72-2.86 (m, 2H, =CHCN & cis H2C=), 2.39 (d, J = 9 Hz, 

1H, trans H2C=), 1.79 (s, 6H, Me(C=N)2). 13C NMR (C6D6, 101 MHz, 298 K): δ 165.1 

(C=N), 142.5 (ipso Bn), 128.8 (ortho or meta Bn), 126.7, 126.4, 105.4 (=CHCN), 96.9 

(HC(C=N)2), 70.6 (H2C=), 58.0 (=CHCN), 54.0 (Bn CH2), 21.7 (Me(C=N)2). IR (toluene): 

νCN = 2225 cm-1. Anal. Calcd. for  C22H24N3Cu:  C, 67.07; H, 6.14; N, 10.66. Found: C, 

66.25; H, 6.09; N, 10.14. Crystals obtained by layering a concentrated toluene solution 

with hexane at -35 °C were too small for X-ray diffraction studies. Good quality crystals 

were obtained, if 2 drops of DMSO were added to the toluene solution before layering with 

hexane at -35 °C for 24 h. 
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(NacnacBn)Cu(H2C=CHCH2OPh), 4. CuOtBu (137 mg, 1.0 mmol), 1 (300 mg, 1.1 mmol) 

and allylphenylether (86 mg, 1.0 mmol) were dissolved in toluene (5 mL) to give a yellow 

solution. After stirring for 15 min, hexane (5 mL) was added. The resulting suspension was 

kept at -35 °C for 1 day. The supernatant was decanted and residual solvent removed on the 

vacuum line to afford a yellow powder (300 mg 59%). 1H NMR (C6D6, 400 MHz, 298 K): 

δ 6.54-7.17 (m, 15H, Bn & OPh), 4.68-4.79 (m, 5H, Bn CH2 & HC(C=N)2), 4.00 (m, 1H, 

PhOCH2(H)C=), 3.79 (dd,  J = 3 Hz, 11 Hz, 1H, PhOCH2-), 3.49 (dd, J = 3 Hz, 11 Hz, 1H, 

PhOCH2-), 3.29 (d, J = 14 Hz, 1H, cis  H2C=), 3.16 (d, J = 9 Hz, 1H, trans H2C=), 1.87 (s, 

6H, Me(C=N)2). 13C NMR (C6D6, 101 MHz, 298 K): δ 165.3 (C=N), 159.1 (ipso OPh) 

143.0 (ipso Bn), 129.5 (ortho or meta OPh) 128.7 (ortho, or meta Bn), 126.4 (meta or ortho 

Bn), 120.8 (para, OPh), 114.9 (para Bn), 96.7 (HC(C=N)2), 84.8 (-OCH2CH=),  71.7 

(H2C=), 68.2 (-OCH2CH=), 58.2 (Bn CH2), 21.8 (Me(C=N)2). One peak (ortho or meta 

OPh) missing. Anal. Calcd. for  C28H31N2OCu:  C, 70.78; H, 6.58; N, 5.90. Found: C, 

70.36; H, 6.72; N, 5.92. 

 

(NacnacBn)Cu(trans-stilbene), 5. To a mixture 1 (200 mg, 0.72 mmol), CuOtBu (100 mg, 

0.73 mmol) and trans-stilbene (130 mg, 0.72 mmol) toluene (4 mL) was added to afford a 

yellow solution. After stirring for 15 min, the solution was layered with hexane (4 mL) and 

kept at -35 °C. Yellow crystals formed after 6 h (189 mg, 50 %). 1H NMR (C6D6, 400 

MHz, 298 K): δ 7.00-7.28 (m, 20H, Bn  & C(H)Ph), 4.92 (s, 2H, Ph(H)C=), 4.65 (s, 1H, 

HC(C=N)2), 4.59 (bs, 4H, Bn CH2), 1.70 (s, 6H, Me(C=N)2).  13C NMR (C6D6, 101 MHz) 

δ 165.0 (C=N), 143.5 (ipso Bn), 139.4 (ipso C(H)Ph), 128.8, 128.7, 126.6, 126.4, 125.7, 

96.6 (HC(C=N)2), 85.0 (C(H)Ph) 56.2 (Bn CH2), 21.7 (Me(C=N)2).  Anal. Calcd. for  

C33H33N2Cu:  C, 76.05; H, 6.30; N, 5.37. Found: C, 75.90; H, 6.45; N, 5.32. 

 

{(NacnacBn)Cu}2(µ-PhCCPh), 6. Diphenylacetylene (DPA) (64 mg, 0.36 mmol) and 1 

(100 mg, 0.36 mmol) were dissolved in ether (2 mL). CuOtBu (49 mg, 0.36 mmol) was 

dissolved in ether (4 mL) to give a yellow solution and added. After stirring for 15 min, a 

yellow precipitate formed. The mixture was filtered and the residue washed with hexane (2 

ml). Residual solvent was removed on the vacuum line to afford a yellow powder (65 mg, 

42%). 1H NMR (C6D6, 400 MHz, 298 K): δ 7.21-6.70 (m, 30H, CPh & Bn), 4.67 (s, 2H, 
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HC(C=N)2), 4.66 (bs, 8H, Bn CH2), 1.62 (s, 12H, Me(C=N)2). 13C NMR (C6D6, 101 MHz, 

298 K): δ 165.9 (C=N), 144.1 (ipso Bn), 131.2, 128.9, 128.4 (ortho or meta Bn), 127.9, 

127.2 126.7, 126.1, 101.3 (PhCCPh), 98.9 (HC(C=N)2), 58.8 (Bn CH2), 21.7 (Me(C=N)2). 

Anal. Calcd. for  C52H52N4Cu2:  C, 72.62; H, 6.09; N, 6.51. Found: C, 71.70; H, 6.30; N, 

6.45. Crystals suitable for X-ray diffraction studies were obtained from a 1:1 

toluene/hexane solution upon cooling to -35 °C. 

 

(NacnacBn)Cu(PhCCPh), 6b. In the presence of excess (> 10 equiv.) diphenylacetylene in 

C6D6 at room temperature, 6 converts completely into the monometallic complex 6b. 1H 

NMR (C6D6, 400 MHz, 298 K): δ 7.26-6.80 (m, 20H, CPh & Bn), 4.83 (s, 1H, HC(C=N)2), 

4.54 (bs, 4H, Bn CH2), 1.85 (s, 6H, Me(C=N)2). 13C NMR (C6D6, 101 MHz, 298 K): δ 

165.3 (C=N), 142.7 (ipso Bn), 129.0 (ortho or meta Bn), 128.6, 126.9, 126.6 (ortho or meta 

Bn), 126.2, 125.8, 103.9 (PhCCPh), 96.7 (HC(C=N)2), 56.7 (Bn CH2), 21.8 (Me(C=N)2). 

One resonance missing. 

 

(NacnacBn)CuPPh3, 7. CuOtBu (244 mg, 1.80 mmol), 1 (500 mg, 1.80 mmol) and PPh3 

(477 mg, 1.82 mmol) were dissolved in toluene (5 mL) to give a yellow solution which 

became brown within 5 min. After stirring for 1 h, the solvent was evaporated to yield a 

viscous, gummy residue. Washing twice with 30 mL hexanes yielded a white solid (760 

mg, 70 %). After 1 day, additional colourless crystals were obtained from the hexane wash. 
1H NMR (C6D6 400 MHz): δ 7.22-6.86 (m, 25H, PPh3 & Bn), 4.97 (s, 1H, HC(C=N)2), 

4.93 (s, 4H, Bn CH2), 2.01 (s, 6H, Me(C=N)2). 13C NMR (C6D6 101 MHz): δ 165.4 (C=N), 

144.0 (ipso Bn), 134.6 (d, J = 6 Hz, ipso PPh3), 133.8 (d, J = 4 Hz, ortho or meta PPh3), 

129.5, 128.7 (d, J = 4 Hz ortho or meta PPh3), 126.8, 125.9, 96.7 (HC(C=N)2), 58.9 (Bn 

CH2), 21.9 (Me(C=N)2) (one peak lacking). 31P NMR (C6D6, 101 MHz): 

δ 3.5.  C37H36N2PCu: Anal. calcd. C 73.67, H 6.02, N 4.69; found: C 73.82, H 6.52, N 4.91. 

 

(NacnacBn)CuCN(C6Me2H3), 8. A yellow solution of CuOtBu (80 mg, 0.60 mmol) in 

toluene (2 mL) was added to a flask containing 1 (155 mg, 0.55 mmol) and xylyl 

isocyanide (72 mg, 0.55 mmol). The resulting yellow solution was layered with hexane (4 

mL) and kept at -35°C. Yellow crystals formed after 1 day (145 mg, 53 %). 1H NMR 
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(C6D6, 400 MHz): δ 7.40 (d, J = 8 Hz, 4H, ortho Bn), 7.12 (m, 4H, meta Bn), 6.97 (t, J = 8 

Hz, 2H, para Bn), 6.69 (t, J = 8 Hz, 1H, CNArMe2), 6.52 (d, J = 8 Hz, 2H, CNArMe2), 

5.00(s, 4H, Bn CH2), 4.82 (s, 1H, HC(C=N)2), 2.02 (s, 6H, Me(C=N)2), 1.75 (s, 6H, 

CNArMe2). 13C NMR (C6D6 101 MHz): δ 164.6 (C=N), 144.4 (ipso Bn), 134.3, 128.3, 

127.9, 127.8, 127.6, 126.2, 96.0 (HC(C=N)2), 59.2, 21.9 (Me(C=N)2), 18.5 (CNArMe2). 

Anal. calcd. for C30H30N3Cu: C 71.23, H 6.40, N 8.90; Found: C 70.96, H 6.04, N 8.90. IR 

(toluene): νCN = 2114 cm–1. 

 

General experimental procedure for the exchange experiments. Complex 2 (10 mg, 11 

μmol) was dissolved in C6D6 (700 μL) and the olefin (0.5 equiv) was added. The solution 

was transferred to a J. Young tube for 1H NMR analysis. The procedure was repeated with 

1 and 2 equiv of olefin. For stilbene and diphenylacetylene peak overlap prevented the 

determination of the free olefin concentration directly form the NMR spectra. The olefin 

was thus combined with free styrene and their ratio determined by NMR (olefin/styrene = 

5-12), before complex 2 was added. The olefins were used in >5-fold excess of styrene to 2 

to assure an unchanged olefin/styrene ratio. Diphenylacetylene : [Cu] ratios were > 10, to 

avoid the presence of 6 instead of 6b. 

 

(NacnacBn)Cu(CH2=C(H)C6H5F). 1H NMR (C6D6, 400 MHz, 298 K): δ 7.23-6.37 (m, 

14H, -C6H4F & Bn), 4.43-4.75 (m, 6H, Bn CH2, =C(H)C6H4F &  HC(C=N)2), 3.32 (d, J = 

14 Hz, 1H, cis H2C=), 3.12 (d, J = 9 Hz, 1H, trans H2C=) 1.82 (s, 6H, Me(C=N)2). 

 

(NacnacBn)Cu(CH2=C(H)C6H5OMe). 1H NMR (C6D6, 400 MHz, 298 K): δ 7.23-6.53 (m, 

14H, Bn & -C6H4OMe), 4.51-4.77 (m, 6H, Bn CH2, =C(H)C6H4OMe & HC(C=N)2), 3.43 

(d, J = 14 Hz, 1H, cis  H2C=), 3.38 (s, 3H, OMe), 3.15 (d, J = 9 Hz, 1H, trans H2C=) 1.96 

(s, 6H, Me(C=N)2). 

  

X-ray diffraction studies. Diffraction data were collected on a Bruker Smart APEX II 

with graphite monochromated Mo Kα radiation (8), a Bruker SMART 6000 with Montel 

200 monochromator (3 & 5-7) and a Bruker Microstar-Proteum with Helios optics (2), both 

equipped with a rotating anode source for Cu Kα radiation. Cell refinement and data 
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reduction were done using APEX2.71 Absorption corrections were applied using 

SADABS.71 Structures were solved by direct methods using SHELXS97 and refined on F2 

by full-matrix least squares using SHELXL97.72 All non-hydrogen atoms were refined 

anisotropically. Hydrogen atoms were refined isotropic on calculated positions using a 

riding model. Further experimental details are listed in Table VI-5. 
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Table VI-5. Details of X-ray Diffraction Studies 

 2 3 5 6 7 8 

Formula C27H29N2Cu C22H24N3Cu 
C33H33N2Cu· 0.5 

C7H8 
C52H52N4Cu2 C28H30N3Cu C37H36N2PCu 

Mw (g/mol); dcalcd. 

(g/cm3) 
445.07; 1.364 393.98; 1.361 567.23; 1.300 430.03; 1.308 470.09; 1.285 6.03.19; 1.325 

T (K); F(000) 150; 936 150; 824 150; 1196 150; 1800 150; 1984 150; 632 

Crystal System Monoclinic Monoclinic Monoclinic Triclinic Monoclinic Triclinic 

Space Group P21/c P21/c P21/n P-1 C2/c P-1 

Unit Cell: a (Å) 24.5143(5) 14.3009(7) 11.353(4) 11.317(2) 17.3118(6) 11.1477(11) 

 b (Å) 5.64490(10) 6.0688(3) 11.6674(4) 11.331(2) 17.0767(6) 11.2906(11) 

 c (Å) 15.9542(3) 22.73.08(11) 21.9442(7) 36.015(7) 15.9761(5) 12.9378(13) 

 α (°)    93.520(6)  101.041(3) 

 β (°) 101.0520(10) 102.916(2) 94.6670(10) 98.623(6) 93.694(2) 107.854(2) 

 γ (°)    105.864(5)  92.613(3) 

V (Å3); Z 2166.87(7); 4 1922.88(16); 4 2897.12(17); 4 4366.7(15); 8 4878.8(3); 8 1511.8(3); 2 

θ range (°); 

completeness 
1.84-67.65; 0.949 3.17-63.66; 0.989 4.04-71.21; 0.988 1.25-68.64; 0.963 3.58-72.88; 0.992 1.69-31.34; 0.936 

Refl.: collec./indep.; Rint  21600/3224; 0.035 25535/2102; 0.07 34599/4951; 0.047 52719/5520; 0.113 36753/4212; 0.038 35181/7909; 0.023

μ (mm–1) 1.525 1.661 1.259 1.497 1.398 0.804 

R1(F); wR(F2); GoF(F2) 
a                                           

0.0347; 0.1010; 

1.045 

0.0425; 0.1058; 

0.951 

0.0376; 0.1051; 

1.073 

0.1084; 0.3258; 

0.952 

0.0362; 0.1056; 

1.075 

0.0304; 0.0858; 

1.099 

Residual electron 

density 
0.369 0.234 0.295 0.617 0.328 0.634 

a R1(F) based on observed reflections with I>2s(I), wR(F2) and GoF(F2) based on all data. 
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Supplementary material 

 

π Back-Bonding in Dibenzyl-β-diketiminato 

Copper Olefin Complexes 
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Figure 6.S1: VT NMR spectra for 2 in toluene-d8 Exchange of nacnac CH3 groups 
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Figure 6.S2: VT NMR spectra for 2 in toluene-d8 Exchange of nacnac Bn CH2 groups. 
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Figure 6.S3: VT NMR spectra for 2 in toluene-d8. Exchange of free/coordinated styrene. 

Peaks of coordinated styrene broaden slightly. For free styrene, which is present in smaller 

amounts the effect is more pronounced. 
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Figure 6.S4: Eyring plot of the styrene rotation 
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Abstract 

Diketimines N,N’-dibenzyl-2-amino-4-imino-pent-2-ene (1), S,S-N,N’-

di(phenylethyl)-2-amino-4-imino-pent-2-ene (2), N,N’-bis(3,4,5-trimethoxyphenylmethyl)-

2-amino-4-imino-pent-2-ene (3), N,N’-bis(pentafluorophenylmethyl)-2-amino-4-imino-

pent-2-ene (4) and N,N’-diisobutyl-2-amino-4-imino-pent-2-ene (5) react with CuOtBu in 

the presence of 2,9-R2-1,10-phenanthroline to give the respective neutral, tetracoordinated 

diketiminate copper(I) phenanthroline complexes 1a & 2a (R = H), 1b, 3b-5b (R = Me) 

and 1c & 3c (R = Ph). Crystal structures were obtained for all complexes except 5b and 

intramolecular π stacking between the phenanthroline ligand and one or two N-benzyl 

substituents were observed in 1a, 2a, 1b and 1c, or 3b and 4b, respectively. UV/vis 

absorption spectra show two transitions in the visible region, a diketiminate-based 

transition at 373 – 386 nm and a transition at 600 – 666 nm, tentatively assigned to an 

MLCT to phenanthroline. All complexes were weakly luminescent in the solid state at 

room temperature with lifetimes of less than 60 ns. Weak luminescence was also observed 

in solution at room temperature with λmax = 720 – 830 nm for 1b, 1c, 3b, 4b and 5b and 

short luminescence lifetimes. Intramolecular π stacking interactions, which prevent 

flattening distortions in the solid state, appear to have advantageous effects on 

luminescence intensities. 

 

Introduction 

Luminescent metal complexes find application in solar light harvesting and 

conversion, and complexes of second and third row metals, in particular Ru(II) 

polypyridines, have been among the most prominent examples. Their widespread use is, 

however, limited by a notable toxicity and, in particular, high costs. There is, thus, interest 

in cheaper and more environmentally benign metal sources as alternatives [1]. Complexes 

with a d10 electron configuration, in particular Cu(I), have been considered as potential 

candidates, since their closed shell structure prevents the non-radiative deactivation 

through low-lying MC transitions, which are prevalent with other first-row transition 

metals [2]. Copper(I) phenanthroline complexes are among the most studied copper 

complexes in this regard [2-6], following the pioneering work of McMillin and coworkers 

[7, 8]. However, these complexes do deactivate non-radiatively after irradiation by means 
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other than thermal equilibration of the MC and the MLCT levels. Bisphenanthroline 

copper(I) complexes, for example, undergo a flattening distortion in the excited state 

rendering them prone to nucleophilic attack by solvent molecule or counter ion to form a 

penta-coordinated exciplex, which deactivates via non-radiative relaxation (Chart 7.1). 

Substitution at the 2,9-positions of the phenanthroline ligand, avoiding coordinating 

solvents and excited state equilibration with organic auxiliaries have been used as 

strategies to avoid the excited state quenching [2-6].  

 
Chart 7.1 

We have previously reported the syntheses of copper(I) complexes with N-alkyl 

substituted diketiminate ligands (nacnacR) [9-11], in particular nacnacBn [10], in which 

π stacking interactions are present in most of its complexes. We envisaged that this ligand 

would allow a “sandwiched” π stacking arrangement of the phenanthroline ligand between 

the N-benzyl substituents, thus minimising excited state distortion (Chart 7.1). Due to the 

neutral nature of diketiminate copper complexes, exciplex quenching by the counter ion 

might be prevented as well. Not counting Cu(I) halogen compounds [12] and polynuclear 

complexes [13], we are aware of only one report on neutral copper phenanthroline 

complexes [14], although luminescent neutral copper complexes have been reported with 

other ligands [15-18]. 

 

Results and Discussion 

 

NacnacBn and nacnacCH(Me)Ph complexes. Reaction of diketimines 1 and 2 with CuOtBu 

[19] in the presence of the appropriate phenanthroline afforded the four-coordinated 

copper(I) complexes 1a-1d and 2a (Scheme 7.1). Complexes 1a-1d could also be obtained 

by displacement of styrene from nacnacBnCu(styrene) with phenanthroline if liberated 

styrene was removed under vacuum. Analogously, phenanthroline replaced acetonitrile in 

nacnacCH(Me)PhCuNCMe to yield 2a. Only decomposition products were observed with 
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either method when sterically bulky 2,9-di(tert-butyl)phenanthroline or 2,9-

dimesitylphenanthroline was employed. This mirrors common reactivity patterns of 

phenanthroline copper complexes: [Cu(tbp)2]+ (tbp = 2,9-di(tert-butyl)-1,10-

phenanthroline) was only synthesized indirectly by oxidation of elemental copper in the 

presence of tbp [20] after conventional methods had failed [21], while copper complexes of 

2,9-dimesitylphenanthroline have not been reported. The corresponding monosubstituted 2-

mesitylphenanthroline, on the other hand, cleanly yielded the respective copper complex 

1d. All complexes are dark-blue in colour and sensitive to air and moisture. The complexes 

are soluble in dichloromethane, toluene and THF and moderately soluble in ether [22].The 
1H NMR spectra of 1a-1c display a singlet for the benzylic protons, indicating a C2v-

symmetric structure or fast rotation around the N-CBn bond. In 1d, the benzylic protons 

split into two doublets due to the non-symmetric mesitylphenanthroline ligand. 

 
Scheme 7.1 

 

Solid-state structures of 1a-1d and 2a are displayed in Figure 7.1. Cu-N bond 

distances and N-Cu-N bond angles for the diketiminate ligand (1.959(2) – 1.981(2) Å, 

98.3(2) – 100.8(1)°, table VII-1) and for the phenanthroline ligand (1.998(2) – 2.194(1) Å, 

79.3(1) – 83.4(4)°) are in the usual range expected for these ligands (nacnac : 1.94(2) Å, 

99(1)°; phenanthroline: 2.05(4) Å, 82(1)° [23]). All structures show a common motif, with 

one phenyl ring of the benzyl (or phenylethyl) substituent in a parallel π-stacking 

arrangement with phenanthroline (angles and distances between least-square planes: 5 – 

15°, 3.0 – 3.8 Å), while the other is rotated out of a parallel arrangement. The symmetric 
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NMR spectra obtained for all complexes indicate that π-stacked and non-π-stacked rings 

interchange easily or that in solution a C2v-symmetric arrangement of both substituents is 

preferred. There are no evident structural reasons which would prevent the π stacking of 

the second N-substituent in solution. In 1a and 1d, slight intermolecular π stacking between 

two phenanthroline ligands is observed, but it seems to be a minor structural motif and is 

absent in the other structures. With the exception of 1c, N-CH2-CPh angles of 114 – 116° 

(Table VII-1) for the non-π-stacked substituent (e. g. N1-C12-C6 in 1a) are comparable to 

those observed in other nacnacBn metal complexes (Cu: 114 – 116° [10], Zr: 115° [24], Zn: 

112 – 113° [25]). Corresponding angles for the π-stacked substituent (e. g. N2-C19-C13 in 

1a) are 3 – 5° smaller, indicating a bending of the phenyl substituent towards the 

phenanthroline ligand. Analogously, the phenanthroline ligand is either placed on the 

bisector of the diketiminate ligand (1d and 2a, Figure 7.2) or angled slightly towards the π-

stacked N-substituent in 1a-1c (Figure 7.2). π Stacking between the benzyl and the 

phenanthroline substituent seems, thus, to require a slight deformation of the N-C-CPh 

angle from its equilibrium position, but appears to be a stabilizing interaction. 
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1a 1b 1c

1d 2a
 

Figure 7.1: X-ray structures of 1a-d and 2a. Thermal ellipsoids are drawn at the 50% 

probability level (30% for 2a). Hydrogen atoms were omitted for clarity. 
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Table VII-1: Selected bond distances [Å] and angles [°] for 1a-1d and 2a. 

 1a 1b 1c 1d 2a 

Cu-N1/2 1.959(2)/1.981(2) 1.963(4)/1.975(4) 1.961(2)/1.964(2) 1.958(2)/1.965(2) 1.962(2)/1.963(

2) 

Cu-N3/4 2.148(2)/2.071(2) 2.085(4)/2.092(4) 2.058(2)/2.110(2) 2.194(1)/1.998(2) 2.006(6) – 

204(6) 

N1-Cu-N2 99.3(1) 98.3(2) 100.7(1) 101.4(1) 100.8(1) 

N3-Cu-N4 78.7(1) 79.8(2) 81.3(1) 82.5(1) 83.4(4)d 

N-CH2-Cπ-Ph 
a 

111.0(3) 111.7(4) 113.3(2) 111.0(2) 110.0(2) 

N-CH2-CPh 115.6(2) 115.1(4) 110.9(2) 113.8(2) 114.8(3) 

∠ Ph – phen 
b 

5 14 7 10 15 

d Ph – phen 
c 

3.2 – 3.5 3.3 – 3.9 3.1 – 3.5 3.1 – 3.6 3.0 – 3.8 

a N-C-C angle of the π-stacked Bn substituent. b Angle between least-square planes of the π-stacked phenyl 

phenanthroline ligand. c Distances of the carbon atoms of the  π-stacked phenyl ring to the least-square plane 

nthroline ligand. 

 

1a
0°, 4°, 3°

1b
4°, 9°, 13°

1c
6°, 2°, 20°

1d
13°, 2°, 12°

2a
9°, 2°, 2°  

Figure 7.2: Rocking (top) and flattening (bottom) distortions in 1a-d and 2a. Numbers 

indicate Δθx, Δθy, and Δθz. Dotted lines indicate steric interactions. 

 
Distortions from an ideal geometry can be described using the θx, θy, and θz angles, 

introduced by White and coworkers [26]. Perfect C2v symmetry yields θx = θy = θz = 90°. A 
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rocking distortion of the phenanthroline ligand causes a deviation in θx and can be 

expressed in the form of Δθx = |90° – θx| (Figure 7.2). Analogously, a flattening of the 

complex can be expressed by θz and Δθz = |90° – θz|, where θz is roughly equivalent to the 

angle between the mean planes of the ligands. Of the investigated complexes, sterically 

least encumbered 1a displays the most symmetrical coordination. Introduction of an 

additional methyl group in 2a does not seem to influence the phenyl-phenanthroline π 

stacking interaction, but steric crowding of the phenanthroline by methyl group C21 and 

phenyl group C6-C11 (Figure 7.1) introduces a rocking distortion of Δθx = 9°. Symmetrical 

substitution of the phenanthroline ligand in 1b and 1c resulted in small rocking distortions, 

but significant complex flattening of 13° and 20°, respectively. Space-filling plots of both 

complexes indicate that vdW-contacts between the non-π-stacked phenyl ring and the 

phenanthroline substituent are responsible for this distortion. Complex 1d with the 

unsymmetrically substituted mesityl-phenanthroline ligand shows the highest rocking 

deformation (13°), probably due to attractive π stacking between the mesityl substituent 

and the diketiminate ligand. Despite the high flexibility of the benzyl substituents and the 

unsymmetrical conformation with one π-stacked phenyl ring, the complexes do not deviate 

significantly from ideal geometry. The dmp-coordinated complex 1b, for example, shows 

deviations of Δθx,y,z = 4°, 9° and 13°, while values of Δθx,y,z = 0-12°, 1-16°, and 2-18° were 

found for the symmetric [Cu(dmp)2]+ cation with different anions [26, 27].  

 

Copper dmp complexes with different diketiminate ligands. In an attempt to stabilize 

the planar, π-stacked arrangement of the phenanthroline ligand with both N-benzyl 

substituents depicted in figure 7.1, we prepared diketimines 3 and 4 with trimethoxybenzyl 

or pentafluorobenzyl N-substituents, following the protocol established elsewhere (Scheme 

7.2) [10, 28]. Ligand 3 could be further characterized by an X-ray diffraction study (Figure 

7-S1, supp. information). Ligand 4 was obtained only in purities of 85-90%, which were 

however sufficient for subsequent reactions.  
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Scheme 7.2 

 
Reaction of 3 or 4 with CuOtBu in the presence of the corresponding 

phenanthroline yielded the respective copper complexes 3b, 3c and 4b (Scheme 7.2). Their 

crystal structures showed indeed more symmetrical conformations (Figures 7.3, 7.4, and 

Table VII-2). In 3b, the second phenyl ring is now found in a more planar arrangement 

with the dmp ligand (Ph – dmp angle: 3b: 20°, 1b: 79°). In 3c, on the other hand, π 

stacking between benzyl substituents and the dpp ligand is lost and both substituents show 

phenyl – dpp angles (40°) and variations in the distances of CPh to the dpp mean plane (1.6 

Å), which are comparable to the non-π-stacked substituent in 1c (33°, 1.4 Å). Complex 4b, 

carrying perfluorinated benzyl substituents, shows the targeted sandwich-like π stacking of 

both phenyl rings, characterized by small angles between the phenyl and phenanthroline 

planes (4° and 5°) and small distance variations (0.3 Å). Both N-C-CPh angles are now 

reduced to 109.9(2)° and 110.6(2)°, respectively, a deformation apparently required for a 

planar arrangement. The somewhat more planar conformation of the second phenyl ring in 

3b compared to 1b is mirrored by a decrease of Δθz (13° in 1b, 9° in 3b) and the close 

planar arrangement of all aromatic rings in 4b resulted in a very small Δθz of 3°. Increased 

π stacking thus seems to reduce the flattening distortion in the ground state, while slightly 

increasing rocking distortions (Figure 7.4). Complex 3c, which is the only compound not 

showing any intramolecular π stacking interactions in the solid state, displayed the highest 

flattening distortion observed for all complexes (25°). Since 3c crystallized on a 
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crystallographic C2 axis, rocking and wagging distortions are consequently absent (Figure 

7.4).  

 

3b 3c 4b  
      

Figure 7.3 Crystal structures of 3b, 3c and 4b. Hydrogen atoms were omitted for clarity. 

Thermal ellipsoids are drawn at the 50% probability level.  

 

3b
15°, 7°, 9°

3c
0°, 0°, 25°

4b
16°, 4°, 3°  

Figure 7.4: Rocking (top) and flattening (bottom) distortions in 3b, 3c and 4b. Numbers 

indicate Δθx, Δθy, and Δθz. 
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Table VII-2: Selected bond distances [Å] and angles [°] 

for 3b, 3c and 4b. 

 3b 3c 4b 

Cu-N1/2 1.948(1) 

1.961(1) 

1.959(1) 

1.959(1) 

1.984(2) 

1.982(2) 

Cu-N3/4 1.985(1) 

2.136(1) 

2.060(1) 

2.060(1) 

2.148(2) 

2.052(2) 

N1-Cu-N2 100.3(1) 101.4(1) 99.3(1) 

N3-Cu-N4 111.2(1) 82.5(1) 79.6(1) 

N-CH2-CPh 111.6(1) 

113.0(1)a 

112.5(1) 110.6(2) 

109.9(2)a 

∠ Ph – phen b 13°, 20 ° 40° 5°, 4° 

d (Ph – phen) c 3.4 – 4.0 Å, 

3.0 – 3.8 Å 

3.4 – 5.0 Å 3.0 – 3.3 Å, 

3.0 – 3.3 Å 
a N-C-C angles of the π-stacked Bn substituents. b Angle 

between least-square planes of π-stacked phenyl rings and the 

phenanthroline ligand. c Distances of the carbon atoms of π-

stacked phenyl rings to the least-square plane of the 

phenanthroline ligand. 

 

UV/vis spectroscopy. For the sake of comparison, we prepared nacnaciBuCu(dmp), 5b, 

where the benzyl substituents were replaced by sterically comparable isobutyl group, 

which, however, can not undergo π stacking interactions. UV/vis absorption and emission 

spectra were recorded in toluene and, for selected complexes, in diethyl ether at room 

temperature (Table VII-3). UV/vis absorption spectra of all compounds show two distinct 

peaks above 350 nm with ε = 1200 – 12000 M–1cm–1 (Figure 7.5). One transition is located 

at λmax = 373 – 386 nm and appears as a shoulder on more intense π-π* transitions for 

several complexes (Table VII-3). A second transition of lower intensity, showing a 

distinctively asymmetric peak profile, is found at λmax = 600 – 667 nm. Both transitions are 

weaker than π-π* transitions located below 350 nm in these compounds and might be 

associated with charge-transfer transitions. The higher-energy transition is found at lower 

wavelengths than the MLCT in [CuL2]+ complexes (L = phen [29, 30], dmp [30-33], dpp 

[29-31, 34, 35]: λmax(CH2Cl2) = 440 – 460 nm, with occasional shoulders at higher 

wavelength around 540 – 580 nm). Replacing an electron-poor phenanthroline ligand with 
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an anionic, electron-rich diketiminate would not be expected to result in a hypsochromic 

shift of the metal-phenanthroline CT. N-substituent effects also argue against an 

assignment of the transition around 380 nm as a charge transfer transition towards 

phenanthroline: in the series 1b – 5b, isobutyl-substituted 5b displays the highest-energy 

transition (373 and 370 nm in toluene and Et2O, respectively), while 4b, carrying 

pentafluorobenzyl substituents, is found at the low-energy end of the observed range (386 

and 384 nm). Thus, we assign transitions around 380 nm to diketiminate-based transition, 

not involving a phenanthroline acceptor orbital. In agreement with this, 

nacnacBnCu(styrene) and (nacnacBn)2Zn show comparable transitions at 349 nm (ε = 

2.2·104 M–1cm–1) and 362 nm (ε = 2.1·104 M–1cm–1). Intense transitions in copper 

diketiminate complexes around 350 nm have been previously assigned to diketiminate π-π* 

transitions [36, 37], but relatively low molar absorption coefficients (2800 – 15000 M–1cm–

1), line widths of ≈80 nm at half maximum, and the effect on the N-substituent on λmax for 

2b – 5b would also be in agreement with a metal to diketiminate CT, normally hidden 

below π-π* transitions in this region. 

 
Table VII-3 Longest wavelength absorption and luminescence maxima for nacnacRCu(L). 
     toluene, λmax/nm (ε·M·cm) diethylether, λmax/nm (ε·M·cm) 

 R L Δθz π-stacking Absorption Emission Absorption Emission
1a Bn phen 3° moderate 382 (4448), 666 (2070) none   
2a CH(Me)Ph phen 2° moderate 377sh, 665 (1870) none   
1b Bn dmp 13° moderate 375sh, 662 (2460) 820 386 (6247), 646 (3017) 785 
3b CH2C6H2(OMe)3 dmp 9° strong 376sh, 656 (1720) 801 385 (7721), 645 (3652) 825 
4b CH2C6F5 dmp 3° very strong 386 (9560), 605 (5270) 735 384 (13469), 600 (7458) 722 
5b iBu dmp n.d. none 373 (7163), 667 (1830) 822 370 (2836), 661 (1407) 814 
1c Bn dpp 20° moderate 376 (3786), 646 (1429) 805   
3c CH2C6H2(OMe)3 dpp 25° none 377sh, 661 (1670) none   
1d Bn phenMes 12° moderate 378sh, 661 (1340) none   
Emission wavelengths are given for excitation at λmax of the longest wavelength transition. 
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Figure 7.5: UV/vis absorption spectra of 1b and 3b-5b in diethyl ether at room 

temperature. 

 
Room temperature luminescence in the solid state (λexc = 514.5 nm) was observed 

for all complexes, with emission wavelengths of 715 – 740 nm. Luminescence was weak 

and short-lived (τ < 60 ns). Overlapping emission peaks from decomposition of the air-

sensitive compounds on the surface caused high errors in the determination of λmax. For this 

reason, λmax values for solid state emission were not reported. 

Luminescence in solution was generally very weak (an exception seems to be 4b) 

and again short-lived (τ < 60 ns). While other reasons cannot be excluded, a contributing 

factor to the low luminescence intensities is certainly the low energy of the emission, 

which makes non-radiative deactivation pathways more probable. Complexes 1a, 2a, 1c 

and 1d were not luminescent in solution. Qualitative luminescence intensity did not seem 

to correlate with the observed distortions in the solid state: undistorted complexes 1a and 

2a, carrying an unsubstituted phenanthroline ligand, did not show any luminescence in 

solution. Analogous to [Cu(phenR)2]+, lack of luminescence in 1a and 2a might be related 

to distortions in the excited state rather than to ground-state distortions [2-6, 38]: despite 

their symmetrical structures, both, 1a and 2a, show evidence for easy thermal motions 

following a rocking distortion mode in their crystal structures.  
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Luminescence spectra in toluene or diethyl ether solution showed the same general 

features for all luminescent complexes, which will be discussed in detail for 3b in diethyl 

ether. Excitation of the longest-wavelength transition in 3b yielded weak emission peaks, 

the position of which depended on the excitation wavelength: excitation at λmax (646 nm) 

and above afforded an emission peak E1 at 825 nm (Figure 7.6), while excitations below 

630 nm led to an additional peak at 720 – 770 nm (E2/3). The maximum of the latter peak 

shifted to lower wavelengths in dependence of λexc (supp. inform.).  Inspection of the 

excitation spectra revealed that the asymmetric absorption peak at λmax = 646 nm consists 

of several transitions at appr. 660, 620 and 590 nm (Figure 7.7). Emission E1 (825 nm) is 

associated with excitations at 660 nm and 590 nm. Excitation at 590 nm also affords an 

emission peak at ≈720 nm (E3), which overlaps with emission at ≈770 nm (E2) obtained 

upon excitation at 620 nm. The varying proportions of overlapping E2 and E3 are most 

likely responsible for the apparent shift in peak position when the excitation wavelength is 

varied between 590 – 640 nm. Excitation of the higher-energy transition at 385 nm did not 

lead to any observable luminescence (Figure 7.8), in agreement with its assignment as a 

diketiminate-based transition, not involving a phenanthroline acceptor orbital.  
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Figure 7.6: Emission spectra of 3b with λexc = 600 nm (above) and 660 nm (below). 
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Figure 7.7: Absorption (dashed line) and excitation spectra (λem = 825 nm, solid line;  λem 

= 770 nm, dotted line) of 3b in diethyl ether. 
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Figure 7.8: Absorption spectrum (dashed line) and excitation spectrum (λem = 825 nm, 

solid line) of 3b in Et2O. The increase of intensity in the excitation spectrum around 390 

nm is due to stray light from the 2λ fraction in the excitation beam. 
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Based on the results above, the lower-energy transition in the obtained absorption 

spectra is most likely an MLCT transition to the phenanthroline ligand or a mixture of 

LLCT and MLCT transitions. Stokes shifts of 129 – 159 nm in toluene and 122 – 166 nm 

in diethyl ether solution are intermediate between those of [CuL2]+ (250 – 260 nm in 

CH2Cl2, L = dmp, dpp [29-35]) and those observed in neutral amidophosphine copper 

complexes (65 – 110 nm in C6H6), for which LLCT transitions have been proposed [16]. 

Substitution of a phenanthroline in cationic diphenanthroline copper complexes [CuL2]+ (L 

= phen, dmp, dpp [20]), which show maxima of the longest wavelength absorption at λmax 

= 440 – 460 nm (in CH2Cl2) [29-35], with a diketiminate ligand thus led to a significant 

bathochromic shift of appr. 200 nm. Although reduction of complex symmetry from D2d to 

D2 is considered to be responsible for the formation of shoulders around 540 – 580 nm for 

bisphenanthroline copper complexes [39-41], reduction to C2v symmetry does not seem to 

be the cause for the displacement of the MLCT here. Related C2v-symmetric complexes 

(acac)Cu(dmp)  (acac = acetylacetonate or derivatives), for example, display longest 

wavelength absorption maxima around 460 nm [42], very comparable to those of cationic 

bisphenanthroline complexes. Copper dmp complexes with neutral or anionic 

diphosphinesulfide ligands also display absorption maxima between 420 – 460 nm, which 

were again accompanied by shoulders at longer wavelengths (500 – 550 nm) [14]. The 

bathochromic shift of the longest wavelength transition is thus most likely due to the 

electron-donating nature of the N-alkyl substituted diketiminate ligand. The high electron-

donor characteristics of β-diketiminate ligands have been described previously [19, 43-50]. 

In particular for copper complexes, π back-bonding to ancillary ligands is significantly 

increased in the presence of N-alkyl substituted diketiminate ligands [10, 51, 52]. A 

hypsochromic shift in λmax of 60 nm when the isobutyl substituent in 5b is replaced with 

pentafluorobenzyl (4b) further supports a strong influence of the diketiminate ligand on the 

position of the absorption maximum.  

Complexes 1a-1d and 2a do not display any correlation of flattening or rocking 

distortions with λmax in their absorption spectra. The difference in π-stacking interactions 

observed in the crystal structures of 1b/c, 3b/c, and 4b and its correlation with Δθz make it 

interesting to compare the presence of these interactions with photophysical properties. 

Some qualitative indications argue that π stacking of the N-benzyl substituent and the 
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phenanthroline ligand might indeed increase luminescence intensity. Thus, no 

luminescence in solution is observed for the dpp complex 3c, where π stacking was lost in 

the crystal structure, while complexes 1c or 3b, which show moderate π stacking 

interactions, are both luminescent in solution. Complex 4b, which displays the targeted 

sandwich-like arrangement of all aryl rings, shows the highest luminescence intensity. 

However, even for 4b luminescence is weak and short-lived, and the increased intensity 

might simply be a result of its high absorption coefficient. 

While π stacking was only shown in the solid state, observed changes in λmax values 

of absorption spectra of 1b and 3b, when the solvent was changed from toluene to ether, 

are in agreement with an increase of intramolecular π stacking in the non-aromatic solvent: 

the MLCT/LLCT is displaced slightly hypsochromically, the diketiminate-based transition 

around 380 nm slightly bathochromic, and π-π* transitions of the benzyl substituent, which 

were present above 350 nm in toluene, are now found below 350 nm. On the other hand, 

complexes 4b and 5b with very strong or no possible π stacking interactions, respectively, 

show only minor changes in their absorption maxima between toluene and ether solution. 

In comparison to 5b, 13C NMR spectra of 1b-4b show a high-field shift of C10A/C10B 

(C30 and C31 in the crystal structure of 4b, Figure 7.3), which qualitatively correlates with 

the observed π stacking and might be attributed to the ring current effect of the π-stacked 

benzyl substituent. The effect is however minor (Δδ < 2 ppm) and could not be reliably 

reproduced in ether/acetone-d6 mixtures. 

 

Conclusions 

Heteroleptic diketiminate copper phenanthroline complexes can be prepared readily 

through protonation of CuOtBu by diketimines in the presence of the desired 

phenanthroline ligand. The complexes are stable and show no evidence of undergoing 

ligand redistribution reactions. Intramolecular π stacking interactions between the N-benzyl 

substituents and the phenanthroline ligand suppress complex flattening in the ground state 

and reduced Stokes shifts in solution (compared to copper bisphenanthroline complexes) 

are indicative of reduced distortions in the excited states. Comparatively sharp 

luminescence peaks with FWHM values well below 100 nm (Figure 7.6) also support the 

notion that the investigated complexes do not undergo extensive exited state distortions.  
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For comparison, typical FWHM values for [Cu(dmp2]+ complexes in solution range from 

120 – 240 nm [27, 30, 32]. 

Luminescence intensities, however, were low and lifetimes were shorter than 60 ns 

for all complexes, which might be partly due to the low energies of the emission (up to 830 

nm). We are currently investigating if luminescence properties can be improved by shifting 

the emission to shorter wavelengths or by further increasing π stacking interactions 

between N-substituents and phenanthroline. 

 

Experimental section 

All operations, except ligand synthesis, were carried out under nitrogen atmosphere 

using Schlenk or glove box techniques. Solvents were dried by passage through activated 

aluminum oxide (MBraun SPS) and de-oxygenated by repeated extraction with nitrogen. 

C6D6 was distilled from Na and de-oxygenated by three freeze-pump-thaw cycles. CuOtBu 

[53], dpp [54], monomesityl phenanthroline [55], 1 [10, 28], 2 [9, 28], and nacnaciBuH [28] 

were synthesized according literature procedures. Dmp was purchased as the hemihydrate 

and dried by allowing a solution in dry toluene to stand overnight over activated molecular 

sieves (4 Å), followed by decantation and evaporation of the solvent. All other chemicals 

were obtained from commercial suppliers and used as received. Elemental analyses were 

performed by the Laboratoire d’Analyse Elémentaire (Université de Montréal). NMR 

spectra were recorded on a Bruker ARX 400 MHz spectrometer and referenced to residual 

solvent (C6D5H: δ 7.15, C6D6: δ 128.02, CHCl3: δ 7.26, CDCl3: δ 77.0). NMR coupling 

constants are provided in Hz. UV/vis spectra were recorded on a Cary 500i UV/vis/NIR 

spectrometer in dry and oxygen-free ether or toluene using a sealable UV cell. Emission 

and excitation spectra in solution were obtained on a Cary Eclipse Fluorescence 

spectrometer. The luminescence spectra of the solid state samples were measured using a 

Renishaw 3000 imaging microscope system equipped with a CCD detector. The excitation 

source was a 514.5 nm line of Argon ion laser. All measurements were undertaken at 

ambient temperature. 

 

NacnacBnCu(phen), 1a. A flask was charged with 1 (100 mg, 0.36 mmol), CuOtBu (44 

mg, 0.33 mmol) and 1,10-phenanthroline (58 mg, 0.33 mmol). Toluene (15 mL) was added 
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and the mixture was stirred for 1 h to give a dark-green suspension. The suspension was 

filtered and the resulting dark green solution was evaporated to dryness. The residue was 

washed twice with hexane (6 mL). Residual solvent was removed under vacuum to obtain 

dark-blue powder (104 mg, 60%). 1H NMR (C6D6, 400 MHz, 298 K): δ  8.84 (d, J = 4 Hz, 

2H, phen), 7.36 (d, J = 8, 2H, phen), 7.05 (s, 2H, phen), 6.91 (d, J = 6, 4H, Bn), 6.85 (dd, J 

= 4, 8, 2H, phen), 6.73-6.76 (m, 6H, Bn), 4.83 (s, 1H, CH(C=N)2), 4.53 (s, 4H, Bn CH2), 

2.16 (s, 6H, C(=N)Me). 13C NMR (C6D6, 101 MHz, 298 K): δ 162.5 (C=N), 146.7, 144.1, 

142.9, 131.4, 128.6, 128.3, 127.0, 125.8, 125.0, 124.0, 94.3 (CH(C=N)2), 57.5 (Bn CH2), 

22.4 (C(=N)Me). Anal. Calcd for C31H29N4Cu: C, 71.45; H, 5.61; N, 10.75. Found: C, 

70.80; H, 5.74; N, 10.43. X-Ray quality crystals were obtained by slow evaporation of a 

diethyl ether solution (20 mg, 1 mL). 

 

NacnacBnCu(dmp), 1b. Preparation analogous to 1a from 1 (100 mg, 360 µmol), CuOtBu 

(49 mg, 0.36 mmol), 2,9-dimethyl-1,10-phenanthroline (84 mg, 0.36 mmol) and ether (10 

mL) gave a crude product, which was recrystallised from diethyl ether (5 mL) at -30 °C. 

Dark-blue plates formed after 1 day (72 mg, 35%). 1H NMR (C6D6, 400 MHz, 298 K): δ 

7.48 (d, J = 8 Hz, 2H, dmp 4/7), 7.18 (s, 2H, dmp 5/6), 6.94 (d, J = 8 Hz, 2H, dmp 3/8), 

6.65 (d, J = 6 Hz, 4H, Bn), 6.36-6.37 (m, 6H, Bn), 4.78 (s, 1H, CH(C=N)2), 4.38 (s, 4H, Bn 

CH2), 2.79 (s, 6H, dmp Me), 2.16 (s, 6H, C(=N)Me). 13C NMR (C6D6, 101 MHz, 298 K): δ 

161.7 (C=N), 155.5 (dmp 2/9), 143.5 (ipso Bn), 142.6 (dmp 10A/10B), 132.1 (dmp 4/7), 

128.2 (meta Bn), 126.8 (dmp 4A/6A), 126.7 (ortho Bn), 124.9 (para Bn), 124.7 (dmp 5/6), 

124.2 (dmp 3/8), 94.0 (CH(C=N)2), 57.8 (Bn CH2), 25.7 (dmp Me), 22.4 (C(=N)Me). Anal. 

Calcd for C33H33N4Cu: C, 71.45; H, 5.61; N, 10.75. Found: C, 70.80; H, 5.74; N, 10.43. 

 

NacnacBnCu(dpp), 1c. Preparation analogous to 1a from 1 (100 mg, 0.36 mmol), CuOtBu 

(49 mg, 0.36 mmol), 2,9-diphenyl-1,10-phenanthroline (128 mg, 0.36 mmol) and ether (10 

mL) afforded a dark-blue solid (143 mg, 59%). 1H NMR (C6D6, 400 MHz, 298 K): δ 8.68 

(d, J = 8, 2H, phen Ph), 7.22-7.65 (m, 16H), 6.45 (d, J = 4, 2H), 6.20-6.22 (m, 6H), 4.66 (s, 

1H, CH(C=N)2), 3.84 (s, 4H, Bn CH2), 1.91 (s, 6H, C(=N)Me). 13C NMR (C6D6, 101 MHz, 

298 K): δ 161.5 (C=N), 142.9, 140.3, 133.0, 129.9, 129.1, 129.0, 128.6, 128.5, 128.4, 

127.8, 127.5, 126.4, 124.6, 124.1, 94.0 (CH(C=N)2), 56.8 (Bn CH2), 22.9 (C(=N)Me). 

Anal. Calcd for C43H37N4Cu: C, 76.70; H, 5.54; N, 8.32. Found: C, 77.17; H, 5.44; N, 8.24. 
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Crystals suitable for a X-ray diffraction study were obtained by slow evaporation of a 

diethyl ether solution (20 mg, 1 mL). 

 

NacnacBnCu(monomesityl phenanthroline), 1d. Diketimine 1 (44 mg, 0.16 mmol) and 

CuOtBu (24 mg, 0.18 mmol) were dissolved in toluene (2 mL) to afford a yellow solution. 

A solution of 2-mesityl-1,10-phenanthroline (47 mg, 0.16 mmol) in toluene (2 mL) was 

added drop-wise to give a dark-blue suspension. After stirring for 1 h, the suspension was 

filtered and the resulting dark green solution was evaporated to dryness. The crude product 

was dissolved in Et2O (3 mL) and kept at –30 ºC. Dark-green crystals (20 mg, 20%) formed 

after 2 months. 1H NMR (C6D6, 400 MHz, 298 K): δ 8.20 (d, J = 4, 1H), 7.64 (d, J = 8, 

1H), 7.32  (d, J = 8, 1H),  7.28 (d, J = 8, 1H), 6.89-7.19 (m, 12H), 6.59 (dd, J = 4, 8, 1H), 

4.55 (d, J = 15, 2H, Bn CH2), 4.27 (s, 1H, HC(C=N)2), 3.93 (d, 2H, J = 15, Bn CH2), 2.36 

(s, 3H, Mes p-CH3), 2.17 (s, 6H, Mes o-CH3), 1.86 (s, 6H, Me(C=N)2). 13C NMR (C6D6, 

101 MHz, 298 K): δ 161.8 (C=N), 158.8, 146.1, 145.0, 144.2, 142.3, 138.4, 137.3, 135.8, 

129.9, 129.4, 128.6, 127.4 126.9, 126.8, 125.9, 125.8, 125.6, 125.4, 124.6, 105.4, 94.3 

(HC(C=N)2), 57.1 (Bn CH2), 22.0 (Mes o-CH3), 21.3 (Mes p-CH3), 20.6 (Me(C=N)2). 

Anal. Calcd for C40H39N4Cu: C, 75.15; H, 6.15; N, 8.76. Found: C, 74.82; H, 6.12; N, 8.67. 

 

SS-nacnacCH(Me)PhCu(phen), 2a. A flask was charged with SS-2 (100 mg, 330 µmol), 

CuOtBu (45 mg, 0.33 mmol) and 1,10-phenanthroline (60 mg, 0.33 mmol). Toluene (15 

mL) was added and the mixture was stirred to give a dark-blue solution. After stirring for 1 

h, the solution was concentrated to 1/5th of its volume and layered with hexane (3 mL). 

Dark-green crystals (80 mg, 44%) formed after 3 days. 1H NMR (C6D6, 400 MHz, 298 K): 

δ 8.70 (d, J = 4, 2H, phen),  7.36 (d, J = 8, 2H, phen), 7.03 (s, 1H, phen), 6.91 (d, J = 6, 4H, 

Ph), 6.85 (dd, J = 4, 8, 2H, phen), 6.55-6.57 (m, 6H, Ph), 4.98 (q, J = 6, 2H, CH(Me)Ph),  

4.73 (s, 1H, CH(C=N)2), 2.17 (s, 6H, C(=N)Me), 1.03 (d, J = 6, 6H, CH(Me)Ph). 13C NMR 

(C6D6, 101 MHz, 298 K): δ 161.5 (C=N), 149.0, 147.5, 142.6, 132.0, 129.1, 127.3, 127.1, 

126.1, 125.1, 124.2, 94.6 (CH(C=N)2), 59.0 (CHMePh), 24.0 (C(=N)Me), 23.2 (CHMePh). 

Anal. Calcd for C33H33N4Cu: C, 72.17; H, 6.06; N, 10.20. Found: C, 71.75; H, 6.19; N, 

10.24. 
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N,N’-Bis(3,4,5-trimethoxyphenylmethyl)-2-amino-4-imino-pent-2-ene, 3. 

Acetylacetone (0.4 mL, 4 mmol), p-toluenesulfonic acid monohydrate (0.7 g, 4 mmol) and 

3,4,5-trimethoxybenzylamine (1.5 g, 7.6 mmol) were suspended in toluene (175 mL) and 

refluxed under azeotropic removal of water (Dean-Stark apparatus). A white suspension 

formed immediately, which turned yellow after 6 h and finally became orange after 5 days. 

The reaction mixture was cooled to room temperature and then transferred to a solution of 

KOH (0.4 g in 150 mL H2O). The organic layer was separated and the aqueous phase was 

extracted with 2 x 100 mL of toluene. The combined organic phases were dried over 

Na2SO4, filtered and evaporated to give a yellow solid. Washing of the yellow solid with 

MeOH (15 mL) afforded 900 mg (65%) of a white solid. 1H NMR (CDCl3, 400 MHz, 298 

K) δ 6.50 (s, 4H, C6H2(OMe)3), 4.68 (s, 1H, HC(C=N)2), 4.43 (s, 4H, CH2Ar), 3.80 (s, 6H, 

p-C6H2(OMe)3), 3.68 (s, 6H, m-C6H2(OMe)3), 1.96 (s, 6H, Me(C=N)2). 13C NMR (CDCl3, 

101 MHz): δ 161.3 (C=Ν), 153.1, 138.8, 136.3, 103.6 (o-C6H2(OMe)3), 95.7 (HC(C=N)2), 

60.7 (p-C6H2(OMe)3), 55.7 (m-C6H2(OMe)3), 50.8 (CH2Ar), 19.6 (Me(C=N)2). Anal. Calcd. 

for C25H34N2O6: C, 65.48; H, 7.47; N, 6.11. Found C, 65.20; H, 7.48; N, 6.14.  X-Ray 

quality crystals were obtained by slow evaporation of a CH2Cl2 solution. 

 

N,N’-Bis(C6H2(OMe)3)-nacnacCu(dmp), 3b. Diketimine 3 (70 mg, 0.15 mmol) and 2,9-

dimethyl-1,10-phenanthroline (45 mg, 0.15 mmol) were dissolved in toluene (5 mL) to give 

a colourless solution. A solution of CuOtBu (26 mg, 0.15 mmol) in toluene 2 (mL) was 

added, affording a dark-green solution, which was stirred for 1 h, filtered and evaporated to 

dryness (109 mg, 98%). 1H NMR (C6D6, 400 MHz, 298 K): δ 7.54 (d, J = 8, 2H, dmp), 

7.20 (s, 2H, dmp 5/6), 7.01 (d, J = 8, 2H, dmp), 5.88 (s, 4H, C6H2(OMe)3), 4.78 (s, 1H, 

CH(C=N)2), 4.36 (s, 4H, NCH2), 3.54 (s, 6H, para OMe), 2.96 (s, 12H, meta OMe), 2.85 

(s, 6H, dmp Me), 2.23 (s, 6H, C(=N)Me). 13C NMR (C6D6, 101 MHz, 298 K): δ 161.3 

(C=N), 155.3 (dmp 2/9), 152.7 (meta Ar), 142.4 (dmp 10A/10B), 139.1 (Ar), 136.6 (Ar), 

132.4 (dmp 4/7), 126.8 (dmp 4A/6A), 125.0 (dmp), 124.3 (dmp), 105.6 (ortho Ar), 93.9 

(CH(C=N)2), 60.1 (para OMe), 58.2 (NCH2), 55.0 (meta OMe),  25.8 (dmp Me), 22.5 

(C(=N)Me). Anal. Calcd for C39H45N4O6Cu: C, 64.22; H, 6.22; N, 7.68. Found: C, 64.22; 

H, 6.17; N, 7.56. X-ray quality crystals were obtained by layering a toluene solution (20 

mg, 1 mL) with an equal amount of hexane and keeping the mixture at –30 °C for 3 days. 
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N,N’-Bis(C6H2(OMe)3)-nacnacCu(dpp), 3c. Preparation analogous to 3b afforded 118 mg 

(90%) of 3c, which contained approximately 15% of dpp. Recrystallisation from 

toluene/hexane at –30 °C yielded crystalline material, still contaminated however with dpp 

and elemental analyses were not satisfactory. Handpicking of a suitable crystal allowed an 

X-ray diffraction study. 1H NMR (C6D6, 400 MHz, 298 K): δ 8.86 (d, J = 8, 2H, dpp), 

7.29-7.75 (m, 12H, dpp), 7.28 (s, 2H, dpp), 5.71 (s, 4H, C6H2(OMe)3), 4.69 (s, 1H, 

CH(C=N)2), 3.77 (s, 4H, NCH2), 3.34 (s, 6H, para OMe), 2.89 (s, 12H, meta OMe), 2.85 

(s, 6H, dmp Me), 1.98 (s, 6H, C(=N)Me). 13C NMR (C6D6, 101 MHz, 298 K): δ 161.4 

(C=N), 154.2 (meta Ar), 152.3, 143.4, 139.9, 138.4, 136.4, 133.5, 129.9, 128.6, 128.2, 

127.9, 127.5, 126.0, 123.7, 119.8, 111.3 (o-C6H2(OMe)3), 93.9 (CH(C=N)2), 60.0 (para 

OMe), 57.2 (NCH2), 54.9 (meta OMe), 23.0 (C(=N)Me).  

 

N,N’-Bis(pentafluorophenylmethyl)-2-amino-4-imino-pent-2-ene, 4. To a flask 

containing pentafluorobenzylamine (310 mg, 1.6 mmol) in toluene (5 mL) were added 

acetylacetone (80 µL, 0.8 mmol) and HCl (196 µL, 12 M, 2.4 mmol) to give white 

precipitate. The mixture was refluxed under azeotropic removal of water for 5 days during 

which the reaction mixture turned yellow. By cooling to room temperature, yellow 

precipitate formed. The solvent was decanted and KOH solution (1.5 g in 5 mL of water) 

was added to the solid, followed by toluene (5 mL). After stirring for 15 min, the mixture 

was separated and the aqueous phase was extracted with toluene (5 mL). The combined 

organic phases were dried over Na2SO4, filtered and evaporated to afford 40 mg (6%) of a 

beige solid in 85-90% purity.  1H NMR (CDCl3, 400 MHz, 298 K) δ 11.08 (bs, 1H, NH), 

4.58 (s, 1H, HC(C=N)2), 4.44 (s, 4H, CH2C6F5), 1.98 (s, 6H, Me(C=N)2). 13CNMR (CDCl3, 

101 MHz): δ 161.2 (C=N), 145.1 (dm, 1JCF = 250, ortho), 140.5 (dm, 1JCF = 250), 137.5 

(dm, 1JCF = 250), 113.7 (t, 2JCF = 2, ipso), 95.9 (HC(C=N)2), 37.9 (CH2C6F5), 19.3 

(Me(C=N)2). Three aromatic peaks are missing. 19F NMR (CDCl3, 377 MHz, 298 K) δ –

144.9 (dd, J = 9, 22), –156.5 (t, J = 22), –162.9 (td, J = 9, 22).  Anal. Calcd for 

C19H12N2F10: C, 49.79; H, 2.64; N, 6.11. Found: C, 50.58; H, 2.76; N, 6.13. MS ESI-

HRMS (hexane) (m/z): [M+H]+ for C19H12N2F10 calcd. 459.0919; found 459.0915. 

 



Chapter 7  
 

 

156

N,N’-Bis(pentafluorophenylmethyl)-nacnacCu(dmp), 4b. Preparation analogous to 3b 

and recrystallisation in Et2O at -30 °C afforded black crystals after 1 day (18 mg, 56%). 1H 

NMR (C6D6, 400 MHz, 298 K): δ 7.56 (d, J = 8, 2H, dmp), 7.22 (s, 2H, dmp 5/6), 7.04 (d, 

J = 8, 2H, dmp), 4.73 (s, 1H, CH(C=N)2), 4.20 (s, 4H, NCH2), 2.92 (s, 6H, dmp Me), 2.06 

(s, 6H, C(=N)Me). 19F NMR (C6D6, 377 MHz, 298 K) δ –144.6 (dd, J = 9, 22), –160.5 (t, J 

= 22), –165.7 (td, J = 9, 22). 13C NMR (C6D6, 101 MHz, 298 K): δ 162.7 (C=N), 156.5 

(dmp 2/9), 145.0 (dm, 1JCF = 240, ortho C6F5), 141.2 (dmp 10A/10B), 140.4 (dm, 1JCF = 

180, para C6F5), 135.9 (dm, 1JCF = 240, meta C6F5), 133.6 (dmp 4/7), 126.3 (dmp 4A/6A), 

125.2 (dmp), 124.4 (dmp), 116.0 (t, 2JCF = 2, ipso C6F5), 94.5 (CH(C=N)2), 43.7 (CH2), 

25.4 (dmp Me), 22.8 (C(=N)Me). Anal. Calcd for C33H23N4F10Cu: C, 54.36; H, 3.18; N, 

7.68. Found: C, 54.73; H, 3.53; N, 7.65. 

 

NacnaciBuCu(dmp), 5b. NacnaciBuH (60 mg, 0.29 mmol), CuOtBu (39 mg, 0.29 mmol) 

and 2,9-dimethyl-1,10-phenanthroline (66 mg, 0.29 mmol) were dissolved in Et2O (4 mL) 

to give a dark-green solution. After stirring for 10 min, the solvent was evaporated and the 

residue was washed with hexane (2 x 2 mL) and dried under vacuum to yield 109 mg 

(84%) of a dark-blue solid. 1H NMR (C6D6, 400 MHz, 298 K): δ 7.55 (d, J = 8, 2H, dmp), 

7.17 (s, 2H, dmp 5/6), 7.07 (d, J = 8, 2H, dmp), 4.67 (s, 1H, CH(C=N)2), 3.12 (m, 4H, 

NCH2) 3.08 (s, 6H, dmp Me), 2.16 (s, 6H, C(=N)Me), 1.24 (sp, J = 7, 2H, CHMe2), 0.58 

(d, J = 7, 12H, CHMe2). 13C NMR (C6D6, 101 MHz, 298 K): δ 161.1 (C=N), 155.8 (dmp 

2/9), 142.6 (dmp 10A/10B), 132.4 (dmp 4/7), 127.8 (dmp 4A/6A), 125.2 (dmp), 

124.7(dmp), 93.8 (CH(C=N)2), 61.7 (NCH2), 30.8 (CHMe2), 25.8 (dmp Me), 22.9 

(C(=N)Me), 20.6 (CHMe2). Anal. Calcd for C27H37N4Cu: C, 67.40; H, 7.75; N, 11.64. 

Found: C, 67.70; H, 7.96; N, 11.32. 

 

X-ray diffraction studies 

All data sets were recorded on a Bruker SMART 6000 with Montel 200 monochromator, 

except that of compound 1b which was collected on a Bruker Microstar-Proteum with 

Helios optics, both equipped with a rotating anode source for Cu Kα radiation (λ = 1.54178 

nm). Cell refinement and data reduction were performed using APEX2 [56]. Absorption 

corrections were applied using SADABS [57]. Structures were solved by direct methods 
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using SHELXS97 and refined on F2 by full-matrix least squares using SHELXL97 [58]. 

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined on 

calculated positions using a riding model. 
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Table VII-4: 

 3 1a 2a 1c 1b 1d 3c 3b 

Formula C25H34N2O6 C31H29N4Cu C33H33N4Cu C43H37N4Cu C33H33N4Cu C40H39N4Cu C49H49N4O6Cu C39H45N4O6Cu

Mw (g/mol); dcalcd. (g/cm3) 458.54; 1.291 521.12; 1.342 549.17; 1.317 673.31; 1.312 549.17; 1.328 639.29; 1.292 853.47; 1.377 729.33; 1.361 

T (K); F(000) 175; 984 200; 1088 150; 1152 150; 1408 150; 1152 200; 672 150; 1792 150; 1528 

Crystal System Orthorhombic Monoclinic Orthorhombic Orthorhombic Monoclinic Triclinic Monoclinic Monoclinic 

Space Group Pbcn P21/n P212121 Pca21 P21/c P-1 C2/c P21/c 

Unit Cell: a (Å) 14.865(2) 12.9479(5) 11.9865(3) 19.4278(5) 14.3783(7) 10.6782(2) 24.122(2) 15.9441(3) 

 b (Å) 21.753(2) 13.3925(6) 13.2064(4) 9.2147(2) 8.7026(4) 12.4794(2) 14.137(1) 13.4855(3) 

 c (Å) 7.2959(9) 15.6737(6) 17.4969(5) 19.0384(5) 22.2668(10) 12.8421(2) 14.689(1) 16.8628(3) 

 α (°) 90 90 90 90 90 104.773(1) 90 90 

 β (°) 90 108.18(2) 90 90 98.534(2) 92.322(1) 124.751(4) 101.081(1) 

 γ (°) 90 90 90 90 90 94.659(1) 90 90 

V (Å3); Z 2359.2(5) 2578.95(18); 4 2769.73(13); 4 3408(15); 4 2755.4(2); 4 1643.63(5); 2 4115.7; 4 3558.1(1); 4 

θ range (°); completeness 
3.60-73.39; 

0.984 

3.88-72.42; 

0.994 

4.19-72.51 

0.990 

4.55-63.67; 

0.980 

3.11-67.83; 

0.991 

3.57-68.26; 

0.976 

3.84-67.85; 

0.992 

2.82-68.30; 

0.998 

Refl.: collec./indep.; Rint 
30741/2347; 

0.071 

33584/5068;    

0.045 

36033/4712; 

0.044 

45919/5514; 

0.057 

54048/4961; 

0.064 

20597/5875; 

0.032 

43433/3707; 

0.068 

45237/6505; 

0.048 

μ (mm–1) 0.753 1.391 1.321 1.180  1.190 1.207 1.295 

R1(F); wR(F2); GoF(F2) a 0.053; 0.157; 

1.06 

0.056; 0.155; 

1.02 

0.038; 0.098; 

1.04 

0.030; 0.056; 

0.89 

0.034; 0.96; 

1.12 

0.039; 0.118; 

1.11 

0.034; 0.099; 

1.07 

0.034; 0.103; 

1.07 

Residual electron density 0.23 0.78 0.29 0.20 0.32 0.23 0.26 0.31 
a R1(F) based on observed reflections with I>2s(I), wR(F2) and GoF(F2) based on all data. 
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Intramolecular π-Stacking in Copper(I) 

Diketiminate Phenanthroline complexes 
 

 
 

3 

 

Figure 7.S1: Crystal structures of 3. Hydrogen atoms were omitted for clarity. Thermal 

ellipsoids are drawn at the 50% probability level.  
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Figure 7.S2: Emission spectra upon excitation at different wavelengths in the longest 
wavelength transition of 3b. A Gaussian function was used to subtract the baseline, 
originating from stray light from the excitation beam. Intensity of E1 diminishes between 
610 and 640 nm. Emissions E2 and E3 are obtained as superimposed peaks in varying 
ratios, resulting in an apparent displacement of the obtained maximum. 
 
 
Solid state emission spectra 

Obtained emission spectra displayed asymmetric peak profiles, which could not be 

fitted with a single Gaussian function, or even a second maximum at lower wavelength 

(Δν = 50-110 nm). The relative intensities of both peaks and the peak profiles varied in 

repeated experiments (different target spots chosen on the solid) or with different 

excitation energies using the same target spot. Lower excitation energies generally 

favoured the longer-wavelength emission and we ascribed this emission tentatively to a 

decomposition of the air-sensitive compounds on the surface. Its location of the surface 

and different absorption coefficient of both species could be responsible for the variations 
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in the intensities of both peaks. The overlap of two emission (in combination with the fact 

that multiple luminescent states were observed in solution), would require rather intensive 

investigations before reliable λmax values could be extracted from the data, thus, we refrain 

from reporting λmax values for solid state emissions and limit us to the statement that all 

complexes are emissive in the solid state.  
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Figure 7.S3: Solid state emission spectrum of 4b with 5% beam intensity. 
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Figure 7.S4: Solid state emission spectrum of 4b with 100% beam intensity. 
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Conclusion and Perspectives 

N2O activation 

The toluene complex (nacnacxylylCu)2(μ-toluene), which is labile in C6D6 solution 

and forms an equilibrium mixture of bridged and terminal bound C6D6 adducts, neither 

coordinates nor reacts with N2O, even after exposure for thirteen days at 60 °C in Et2O 

solution. N2O is a poor ligand and lack of coordination is not surprising. The high stability 

of the Cu(I) complex towards N2O was less expected and might be related to the fact that at 

least two copper centers have been proposed to be involved in its activation.1 For future 

studies, systems such as the macrocyclic ligands prepared by Vela et al.2 might be worth 

investigating as they can incorporate two copper(I) centers  for N2O activation (Scheme 

8.1). 

 
Scheme 8.1 

 

Synthesis of N-alkyl β-diketimines 

N-alkyl β-diketimines are now accessible through a one-step procedure by 

condensation of acetylacetone with the appropriate amine in the presence of p-TsOH with 

the help of a Dean-Stark apparatus as opposed to multi-step procedures which most often 

employ toxic, air- and moisture sensitive activating agents such as Meerwein’s salt or 

Me2SO4. Through this novel method, the ligands can be easily prepared on a multi-gram 

scale. However, diketimine ligands with secondary alkyls as N-substituents require longer 

reaction times. 

The nacnacRH (R = alkyl) ligands were functionalized on the β-carbon by reaction 

of their lithium salts with N-bromosuccinimide. The succinimido substituted ligands were 

obtained in place of the brominated ligands. The mass spectrum showed traces of the  
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brominated ligand which is probably formed first and subsequently displaced by the 

succinimido moiety. The reaction with N-chlorosuccinimide afforded the chlorinated ligand 

in 80% purity but without the succinimide substituted ligand.3  

 

N-alkyl substituted copper(I) β-diketiminates 

β-Diketiminato copper(I) complexes with N-alkyl substituents have been prepared 

using the methods employed for N-aryl substituents,4 but supporting Lewis bases are 

required to stabilize the complexes. Another method, involving the use of MesCu and 5-

10% CuOtBu was developed and though no major difference was observed in the yields 

when either method was used, complexes prepared via the catalytic cycle crystallized more 

easily due to small amounts of HOtBu released in the reaction (Scheme 8.2). MesCu alone 

did not furnish the desired copper complexes, despite being a stronger base than CuOtBu. 

Close examination of the solution behavior of MesCu, reveals that it exists in solution as an 

equilibrium mixture of the dimer and the pentamer.5 Cupration of N-aryl β-diketimines has 

been effected with MesCu.6 Thus, the inability of MesCu to deprotonate N-alkyl β-

diketimines might be due to the ligand environment, which is completely different 

compared to the N-aryl substituted ligands, coupled with the kinetic barrier associated to 

steric bulk of MesCu or due to the lower acidity of N-alkyl substituted diketimines. 

Like most copper(I) complexes, these complexes are sensitive to air and moisture. 

They exhibit colors ranging from pale yellow to bright yellow, except the four-coordinate 

β-diketiminato copper(I) phenathroline complexes, which are dark-blue. 

 
 

Scheme 8.2: Proposed catalytic cycle for the preparation of the copper complexes. 
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Steric effects of nacnacRCuL complexes 

While nacnacBnH form complexes nacnacCuL, where L is either a κ-coordinated or 

an η2-coordinated Lewis base, ligands with secondary alkyl N-substituents 

(nacnacCH(Me)PhH and nacnaciPrH) form only complexes with ancilliary ligands in κ-

coordination. Analysis of the space-filling model of the solid state structure of 

nacnacBnCu(styrene) reveals that this is most likely related to steric interactions between 

the olefin carbon atoms and the substituents on the CN directly attached to the nitrogen 

atoms (Figure 8.1). Thus, a Me group in place of a hydrogen atom prevents any side-on 

coordination on the metal center. This is in line with behavior observed by Drouin et al. in 

the reaction of nacnacRH (R = Bn, CH(Me)Ph) with ZnEt2. While the homoleptic complex 

(nacnacBn)2Zn is formed, the bulkier secondary nacnac ligand afforded, however, only 

nacnacCH(Me)PhZnEt.7  

N N
Cu

H

H H

H

 
CN

 
  Figure 8.1: Steric interactions in copper styrene complex. 

 

N-Aryl β-diketimines, such as nacnacdippH and nacnacMesH, which are among the 

most sterically demanding N-aryl substituted ligands, form copper styrene complexes,8 

while N-alkyl substituted derivatives with secondary alkyl groups do not. In addition P-C 

bond distances in nacnacCuPPh3 complexes are longer in the N-secondary alkyl substituted 

complexes than in their N-aryl congeners (Aryl: 2.16-2.18 Å; sec-Alkyl: 2.191-2.195 

Å).4,9,10,11 This indicates that the N-sec-alkyl substituted β-diketimines are sterically more 

demanding than even nacnacdippH. On the other hand, Nikiforov et al. have demonstrated 

through intramolecular π coordination that nacnacdippH is bulkier than nacnaciPrH.12 These 

differences are most likely due to the completely different steric enviroments in N-aryl and 

N-alkyl substituted ligands. The steric interactions in the N-aryl substituted diketimines 

extend up and down as shown in their neutral α-diimine analogues,13 while that of their  
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aliphatic counterparts extend equatorially, perpendicular to the NCCCN plane (Figure 8.2). 

N-sec-Alkyl substituted β-diketimines, thus, provide steric protection close to the metal 

center but none above and below the NCCCN plane, while the reverse is true for N-aryl 

substituted β-diketimines. The ready formation of four-coordinate nacnac copper 

phenanthroline complexes even with nacnacCH(Me)Ph, supports this fact as the supporting 

Lewis bases can only be coordinated perpendicular to the NCCCN plane.  

N N

R

R

R

R           
    A           B 

Figure 8.2: Steric influence in β-diketimine ligand (A) parallel and (B) perpendicular to 

the NCCCN plane. 

 

Substituents on the β-carbon of the diketimine ligand increase the steric bulk around 

the copper center by interacting with the Me substituents on the α-carbon atoms which in 

turn pushes N-substituents towards the metal center, in the same way as bulky α-carbon 

substituents do in N-aryl substituted β-diketiminates.14,15 The geometrical changes which 

occur in nacnacCH(Me)PhCuCNC6H3(Me)2 and succnacnacCH(Me)PhCuCNC6H3(Me)2 complexes 

are illustrated below (Figure 8.3). This has a profound effect on the rate of complex 

formation (Table VIII-1). 

 

 
Figure 8.3: Geometric changes in β-carbon substituted copper complex 
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Table VIII-1: Relative reactivities in complex formation. 

Lewis bases    X = H X = succ 

olefin none none 

PhCCPh none none 

acetone none none 

THF none none 

MeCN slow, complete none 

pyridine fast, complete slow, incomplete 

DMAP fast, complete  

PPh3 fast, complete slow, complete 

CNC6Me2H3 fast, complete fast, complete 

 

At least for copper(I) complexes, steric congestion can thus be arranged in the following 

order: 

N

NH

Ph

Ph

N

NH

Ph

Ph

N

O

O

N

NH

Ar

Ar

N

NH

N

NH

Ph

Ph

N

NH

Ph

Ph

N

O

O

< < < <

 
 

Electronic effects of nacnacRCuL complexes 

Electronic differences between N-aryl and N-alkyl β-diketiminato copper 

complexes are subtle. The C-N bond distances in nacnacCuCNC6H3Me2, the chemical 

displacement of nacnacCuPPh3 in 31P NMR and the average P-C bond distances, which are 

all influenced by the amount of charge transfer to the coordinated Lewis base, are not 

significantly different (C-N: 1.157(3)-1.172(4) Å,4,16 31P NMR: 3.5-5.4 ppm4,9,13,14,16 and 

average P-C: 1.825(1)-1.839(2) Å.4,9,13,14,16 IR studies on nacnacCuCNC6H3Me2 complexes 

also show a narrow range (2105-2126 cm-1)4,13,14 for the C-N stretching frequency. While 

the variations are small, they show nevertheless a clear trend; N-aryl substituted β-

diketiminate complexes have vCN higher than the free isocynide (vCN = 2119 cm-1), N-alkyl 

substituted complexes have frequencies lower than 2119 cm-1, with secondary alkyls lower 

than primary alkyls. The electron withdrawing succinimido substituent increases vCN by 6  
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cm-1. The N-iPr substituted complex having the lowest value ever reported for 2,6-xylyl 

isocyanide copper(I) complexes (Table VIII-2).  

 

Table VIII-2: IR stretching frequencies of C-N bond in nacnac xylylisocynide copper 

complexes. 

 

N N N N
Ph

N
Ph

NN
Ph

R =

X = H H H H H H
N OO

(C-N) [cm-1] 21269 212316 21214 2117 2114 2111 2105

N-aryl N-alkyl

Cu
N N

R R

X

C

 
 

In terms of electron donor properties, diketiminate ligands can thus be arranged as 

shown in figure 8.4, based on the increase in π back donation from the metal center to the 

π* orbitals of the C-N unit in the copper complexes, indicative of the high electron donor 

properties of β-diketiminate ligands in general and N-sec-alkyl substituted β-diketiminates 

in particular. 

N

NH

Ph

Ph

N

NH

Ph

Ph

N

O

O

N

NH

Ar

Ar

N

NH

N

NH

Ph

Ph

Increasing electron richness

 
Figure 8.4: Electronic influence of various β-diketimine ligands. 
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π Backbonding 

The Lewis basic nature of N-alkyl β-diketimine ligands governs also the chemistry 

of their olefin complexes. The rotational barrier of the olefin moiety in 

nacnacBnCu(styrene) is the highest reported for copper styrene complexes. In 

nacnacBnCu(acrylonitrile) π backbonding to the coordinated olefin occurs to an extent that 

nucleophilic attack on acrylonitrile is prevented and the complex does not yield the 

hydroamination product in the presence of morpholine (Figure 8.5). The same reaction 

proceeds to 30% when free acrylonitrile and morpholine are reacted and to 100% 

conversion in the presence of catalytic amounts of Cu(CNMe)4PF6, a cationic copper 

source. 

 
 

Figure 8.5: Reaction of nacnacBnCu(acrylonitrile) complex with morpholine. 

 

Stability of copper nacnac complexes 

It has been observed in N-aryl diketiminato complexes that the β-carbon is prone to 

oxidation.17 The β-carbon attacked acrylonitrile in N-alkyl substituted nacnac ligands while 

preparing nacnacBnCu(acrylonitrile). The side product, which was only crystallographically 

characterized (Annex I), shows an acrylonitrile moiety bonded to the β-carbon, with the 

resulting ligand disposed in an open conformation. Most β-diketimines exist as the enamine 

tautomer. This side product is a rare case where the ligand adopts the diimine form (Figure 

8.6). Attempts to obtain this side product in sufficient amount for complete characterization 

were unsuccessful.  
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8.1 

Figure 8:6: Ortep representation of the solid state structure of side product obtained while 

preparing the nacnacBnCu(acrylonitrile) complex. Most H atoms have been omitted for 

clarity. Thermal ellipsoids are set at 50% probability level. Selected bond distances (Å) and 

angles (deg.) for the molecule shown: C(2)-C(3) = 1.527(2), C(3)-C(4) = 1.532(2), C(3)-

C(20) = 1.530(2), N(1)-C(2) = 1.275(2), N(2)-C(4) = 1.277(2), N(2)-C(3)-C(4) = 116.7(1), 

N(1)-C(2)-C(3) = 119.2(1), C(2)-C(3)-C(4) = 108.4(1), C(3)-C(4)-C(5) = 116.7(1). 

 

Like most copper(I) complexes, the N-alkyl substituted β-diketiminato copper(I) 

complexes are susceptible to oxygenation, to afford copper(II) species. In an attempt to 

synthesize nacnacBnCu(stilbene), the dimer [nacnacBnCu(μ-OH)]2 was serendipitously 

obtained by oxygen contamination and was characterized by X-ray diffraction studies 

(Annex 1). While similar copper complexes with N-aryl substituents have been isolated by 

reaction of the appropriate precursors with oxygen,11,14,18 this is the first time such a species 

has been isolated with N-alkyl β-diketimine ligand.  
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     8.2 

Figure 8.7: Ortep plot of the [nacnacBnCu(μ-OH)]2 complex. Most H atoms are omitted for 

clarity. Ellipsoids are drawn at 50% probability level. Selected bond distances (Å) and 

angles (deg.) for the molecule shown: Cu(1)-N(1) = 1.931(2), Cu(1)-N(2) =1.937(2) , 

Cu(1)-O(1) = 1.947(2), N(1)-Cu1-N(2) = 96.1(1), Cu(1)-O(1)-Cu(1A) = 104.9(1). 

 

The 1:1 Cu-O2
 motive is a very important unit in the field of biochemistry. While 

many such complexes with side-on coordination mode have been isolated,14,20 only one 

complex with end-on coordination mode is known.21 β-Diketimines with secondary N-alkyl 

substituents do not allow side-on coordination of supporting ligands in their copper  
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complexes and the electron richness coupled with a different steric surrounding relative to 

their N-aryl counterparts might stabilize such oxygen adducts with end-on coordination 

mode Figure (8.8). 

 
                                              A                                    B 

Figure 8.8: Known end-on TptBu,tBuCu-O2 complex (A) and proposed end-on nacnacRCu-

O2  complex (B). 

 

 A general problem in Cu(I) chemistry is its possible disproportionation to Cu(0) and 

Cu(II), which is strongly influenced by the stability of the respective complexes formed. 

Cu(I) diketiminate complexes with N-alkyl substituents tend to disproportionate more 

readily than their N-aryl analogues. This lability towards disproportionation might be partly 

related to the inability of sec-alkyl N-substituted complexes to coordinate olefins; while this 

is not a problem for N-aryl diketiminates. In the absence of additional ligands, 

intermolecular coordination of the N-aryl substituent to another Cu center is thus possible.22 

This does not explain, however, the instability of primary alkyl N-substituted complexes, 

which do coordinate olefins. 

 Another explanation involves the increased electron density properties of N-alkyl 

diketimines. The reduction potential ΔE for the disproportionation reaction (Scheme 8.3) is 

given by ΔE = ΔE(Cu/Cu+) – ΔE(Cu+/Cu2+). Increases Lewis basicity of the ligand will 

increase ΔE(Cu/Cu+) more than ΔE(Cu+/Cu2+), thus rendering the disproportionation more 

favorable. While disproportionation products were in general not characterized in detail, 
succnacnacBnCu(styrene) or  succnacnacBnCu(1-hexene) afforded crystals of the Cu(II) 

complex [succnacnacBn]2Cu which was characterized by X-ray diffraction studies (Figure 

8.9). 

 
Scheme 8.3 
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8.3 

Figure 8.9: Ortep plot of the [succnacnacBn]2Cu complex. H atoms are omitted for clarity. 

Ellipsoids are drawn at 50% probability level. Selected bond distances (Å) and angles (deg) 

for the molecule shown: Cu(1)-N(1) = 1.924(3), Cu(1)-N(2) = 1.960(3), Cu(1)-N(3) = 

1.957(3), Cu(1)-N(4) = 1.915(4), C3(1)-N(5) = 1.445(5),  C26(1)-N(6) = 1.438(5), N(1)-

Cu(1)-N(2) = 95.3(2), N(3)-Cu(1)-N(4) = 92.8(2), C(27)-N(3)-C(42) = 118.4(4), C(25)-

N(4)-C(35) = 117.8(4), C(4)-N(2)-C(19) = 121.0(4).  

 

Catalytic applications 

Despite the ease of synthesis and introduction of chirality, N-alkyl β-diketimines are 

not very suitable for catalytic applications, with Cu(I) as the central metal. No chiral 

induction was observed in cyclopropanation of styrene with ethyldiazoacetate and 

conjugate addition of ZnEt2 to 2-cyclohexenone from which it was concluded that the 

ligand is lost prior to entering the catalytic cycle. The chiral ligand and other secondary N- 
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alkyl substituted β-diketimines do not form side-on coordinated copper(I) complexes which 

are key intermediates in catalytic processes such as 1,4-conjugate addition reactions. In 

addition, Drouin et al. observed C-N bond rotation in the solid state structure of the 

complex [(nacnacCH(Me)PhZn)(μ-OC(CH3)2]2
7 and this complex failed to induce 

enantioselectivity in lactide polymerisation while El-Zoghbi et al. also observed C-N bond 

rotation and C-H bond activation in an octahedral Zr complex, which is a pathway to  

 
epimerization.22 The chiral nacnac CH(Me)Ph seems neither rigid enough, nor sufficiently 

bound to Cu(I) for the desired application. 

 

Applications as structural motifs 

Some of the complexes studied during the course of this thesis show intra- and or 

intermolecular π-stacking interactions in their solid state structures. This property has been 

exploited to stabilize nacnac copper complexes with phenanthroline ligands which are 

useful in light harvesting. Appending substituents on the N-Bn group enhances 

intramolecular π-π interactions and prevents flattening distortions of the phenanthroline 

ligand.  Absorption and emission studies show lower Stoke shifts (129-159 nm in toluene 

and 122-166 nm in diethylether) and narrow transition bands (FWHM < 100 nm), 

indicating smaller excited state distortions. Despite these, lifetimes were still lower than 60 

ns, probably due to the low energy of the transitions. Modification of the ligand framework 

with π-enhancing substituents or introducing electron-withdrawing substituents on the 

ligand backbone which will increase the donor-acceptor gap is worth investigating in the 

future. The anthranylmethyl substituent might be of special interest to equilibrate the 

excited state with an organic auxillary. 

         
 

Figure 8.10: Proposed complexes with possibly high energy MLCT transitions. 



Chapter 8 

 

178

 
In summary, many N-alkyl β-diketimines can be prepared easily by the optimized 

one-step procedure. More Cu(I) complexes supported by these ligands are now accessible, 

but they are not ideal complexes for catalytic applications: 

(i) η2-Coordinated complexes are not formed with N-sec-alkyl substitutued ligands, in 

particular nacnacCH(Me)Ph, due to steric interactions between the η2-coordinated ligand and 

the substituents on the sp3 CN atoms. Most catalytic reactions require at some point co-

planar arrangement of the metal center and the ligands for subsequent reactions to proceed, 

which might have contributed to ligand loss in the catalytic reactions investigated. 

Although all structurally characterized nacnacRCu complexes show comparable ligand 

conformations with a hydrogen substituent of the CN atom oriented towards the ligand 

backbone, results from other nacnacR metal complexes let suspect that the ligand geometry 

is not rigid enough to induce enantioselectivity. 

 (ii) The electron richness of β-diketimines and in particular N-sec-substituted β-

diketimines, renders their Cu(I) complexes very susceptible to disproportionation. Strong 

Lewis bases are required to prevent this and these block the coordination site required for 

catalytic reactions. Competition between the strong supporting ligand and diketimine for 

the copper center probably led to loss of the diketimine prior to entering the catalytic cycle. 

Appending substitents by double substitution on the β-carbon atom on the diketiminate 

backbone could be a way out to attenuate the unrequired electron density by transforming 

the anionic ligand into a neutral ligand, while keeping the general framework unchanged 

(Scheme 8.4). It should be noted that most of the limitations encountered here might be 

specific to Cu(I) and not be present with other metal complexes.  

 
 

Scheme 8.4 
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Despite their limitations in catalytic applications, N-alkyl diketimines provide an 

additional, complementary structural motif in Cu(I) chemistry. The N-substituent can 

extend 

extend far out in the mean ligand plane. In applications which aim at narrowing the 

accessible space around the metal center, i.e. a big Tolman angle of the ligand, they offer 

access to a ligand environment which can not be obtained with their N-aryl counterparts. 

One example is their application in nacnacCu(phenanthroline) complexes described in 

chapter 7. 
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Annex 1 
 

  Table I. Crystal data and structure refinement for C22 H25 N3, chapter 8 
 

 
   
      Identification code               paul13  
   
      Empirical formula                 C22 H25 N3  
   
      Formula weight                    331.45  
   
      Temperature                       150K  
   
      Wavelength                        1.54178 Å  
   
      Crystal system                    Monoclinic  
   
      Space group                       P2(1)/n    
   
      Unit cell dimensions              a = 9.7742(3)  Å    α = 900  
                                        b = 17.6962(6) Å    β = 90.060(2)0  
                                        c = 10.9336(4) Å    γ = 900  
   
      Volume                            1891.14(11)Å3  
   
      Z                                 4  
   
      Density (calculated)              1.164 Mg/m3  
   
      Absorption coefficient            0.532 mm-1  
   
      F(000)                            712  
   
      Crystal size                      0.14 x 0.12 x 0.12 mm  
   
      Theta range for data collection   4.75 to 72.39?  
   
      Index ranges                      -12 < h < 11, -20< k < 17, -13< l < 13  
   
      Reflections collected             24544  
   
      Independent reflections           3213 [Rint = 0.062]  
   
      Absorption correction             Semi-empirical from equivalents  
   
      Max. and min. transmission        0.9382 and 0.6755  
   
      Refinement method                 Full-matrix least-squares on F2  
   
      Data / restraints / parameters    3213 / 0 / 229  
   
      Goodness-of-fit on F2             0.920  
   
      Final R indices [I>2sigma(I)]     R1 = 0.0419, wR2 = 0.1053  
   
      R indices (all data)              R1 = 0.0585, wR2 = 0.1111  
 
      Largest diff. peak and hole       0.185 and -0.182 e/Å3  
 

  



 II
Table II. Bond lengths [Å] and angles [°] for C22 H25 N3  

    ______________________________________________________________________  
   
    N(1)-C(2)              1.275(2)  
    N(1)-C(12)             1.4739(18)  
    N(2)-C(4)              1.2773(19)  
    N(2)-C(19)             1.4736(19)  
    N(3)-C(22)             1.143(2)  
    C(1)-C(2)              1.511(2)  
    C(2)-C(3)              1.5273(19)  
    C(3)-C(20)             1.5302(19)  
    C(3)-C(4)              1.5316(19)  
    C(4)-C(5)              1.508(2)  
    C(6)-C(7)              1.388(2)  
    C(6)-C(11)             1.391(2)  
    C(6)-C(12)             1.511(2)  
    C(7)-C(8)              1.390(3)  
    C(8)-C(9)              1.382(2)  
    C(9)-C(10)             1.378(3)  
    C(10)-C(11)            1.390(2)  
    C(13)-C(14)            1.387(2)  
    C(13)-C(18)            1.393(2)  
    C(13)-C(19)            1.509(2)  
    C(14)-C(15)            1.393(2)  
    C(15)-C(16)            1.383(2)  
    C(16)-C(17)            1.383(2)  
    C(17)-C(18)            1.392(2)  
    C(20)-C(21)            1.5377(19)  
    C(21)-C(22)            1.469(2)  
   
    C(2)-N(1)-C(12)        117.41(13)  
    C(4)-N(2)-C(19)        118.61(12)  
    N(1)-C(2)-C(1)         126.26(13)  
    N(1)-C(2)-C(3)         119.17(13)  
    C(1)-C(2)-C(3)         114.57(13)  
    C(2)-C(3)-C(20)        113.27(12)  
    C(2)-C(3)-C(4)         108.38(11)  
    C(20)-C(3)-C(4)        113.00(12)  
    N(2)-C(4)-C(5)         126.61(13)  
    N(2)-C(4)-C(3)         116.68(13)  
    C(5)-C(4)-C(3)         116.70(12)  
    C(7)-C(6)-C(11)        118.43(15)  
    C(7)-C(6)-C(12)        121.17(14)  
    C(11)-C(6)-C(12)       120.39(14)  
    C(8)-C(7)-C(6)         120.67(15)  
    C(9)-C(8)-C(7)         120.41(16)  
    C(10)-C(9)-C(8)        119.35(16)  
    C(9)-C(10)-C(11)       120.44(16)  
    C(10)-C(11)-C(6)       120.70(16)  
    N(1)-C(12)-C(6)        111.65(12)  
    C(14)-C(13)-C(18)      118.35(14)  
    C(14)-C(13)-C(19)      121.13(14)  
    C(18)-C(13)-C(19)      120.52(14)  
    C(13)-C(14)-C(15)      120.81(15)  
    C(16)-C(15)-C(14)      120.21(15)  
    C(17)-C(16)-C(15)      119.70(15)  
    C(16)-C(17)-C(18)      119.89(15)  
    C(17)-C(18)-C(13)      121.03(15)  
    N(2)-C(19)-C(13)       110.03(12)  
    C(3)-C(20)-C(21)       110.04(12)  
    C(22)-C(21)-C(20)      112.14(12)  
    N(3)-C(22)-C(21)       178.51(17)  
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      Table III. Crystal data and structure refinement for C38 H44 Cu2 N4 O2. 
  
     
   
      Identification code               shap41  
   
      Empirical formula                 C38 H44 Cu2 N4 O2  
   
      Formula weight                    715.85  
   
      Temperature                       150 K  
   
      Wavelength                        1.54178 Å  
   
      Crystal system                    Triclinic  
   
      Space group                       P-1  
   
      Unit cell dimensions              a = 5.4783(3)  Å    α = 73.210(2)?  
                                        b = 11.8231(5) Å    β = 85.367(2)?  
                                        c = 13.4079(5) Å    γ = 87.491(2)?  
   
      Volume                            828.51(7)Å3  
   
      Z                                 1  
   
      Density (calculated)              1.435 Mg/m3  
   
      Absorption coefficient            1.893 mm-1  
   
      F(000)                            374  
   
      Crystal size                      0.25 x 0.20 x 0.16 mm  
   
      Theta range for data collection   3.45 to 67.95?  
   
      Index ranges                      -5 < h < 5, -14 < k < 14, -16 < l < 16  
   
      Reflections collected             13328  
   
      Independent reflections           2604 [Rint = 0.055]  
   
      Absorption correction             Semi-empirical from equivalents  
   
      Max. and min. transmission        0.7387 and 0.7852  
   
      Refinement method                 Full-matrix least-squares on F2  
   
      Data / restraints / parameters    2604 / 0 / 210  
   
      Goodness-of-fit on F2             1.043  
   
      Final R indices [I>2sigma(I)]     R1 = 0.0405, wR2 = 0.1120  
   
      R indices (all data)              R1 = 0.0447, wR2 = 0.1145  
   
      Largest diff. peak and hole       0.334 and -0.768 e/Å3  
  
 
 
 
 
     



 IV
Table IV. Bond lengths [Å] and angles [deg.]for C38 H44 Cu2 N4 O2  
    ______________________________________________________________________  
    Cu(1)-N(1)             1.931(2)  
    Cu(1)-N(2)             1.937(2)  
    Cu(1)-O(1)             1.9362(17)  
    Cu(1)-O(1)             1.9465(17)  
    O(1)-Cu(1)             1.9465(17)  
    O(1)-H(2)              0.9064  
    N(1)-C(4)              1.331(3)  
    N(1)-C(19)             1.465(3)  
    N(2)-C(2)              1.333(3)  
    N(2)-C(12)             1.475(3)  
    C(1)-C(2)              1.513(3)  
    C(1)-H(1A)             0.9800  
    C(1)-H(1B)             0.9800  
    C(1)-H(1C)             0.9800  
    C(2)-C(3)              1.391(4)  
    C(3)-C(4)              1.403(4)  
    C(3)-H(3A)             0.9500  
    C(4)-C(5)              1.512(4)  
    C(5)-H(5A)             0.9800  
    C(5)-H(5B)             0.9800  
    C(5)-H(5C)             0.9800  
    C(6)-C(11)             1.383(4)  
    C(6)-C(7)              1.393(4)  
    C(6)-C(12)             1.522(3)  
    C(7)-C(8)              1.394(4)  
    C(7)-H(7A)             0.9500  
    C(8)-C(9)              1.367(5)  
    C(8)-H(8A)             0.9500  
    C(9)-C(10)             1.390(4)  
    C(9)-H(9A)             0.9500  
    C(10)-C(11)            1.391(4)  
    C(10)-H(10A)           0.9500  
    C(11)-H(11A)           0.9500  
    C(12)-H(12A)           0.9900  
    C(12)-H(12B)           0.9900  
    C(13)-C(18)            1.379(4)  
    C(13)-C(14)            1.396(4)  
    C(13)-C(19)            1.524(4)  
    C(14)-C(15)            1.386(4)  
    C(14)-H(14A)           0.9500  
    C(15)-C(16)            1.368(5)  
    C(15)-H(15A)           0.9500  
    C(16)-C(17)            1.386(4)  
    C(16)-H(16A)           0.9500  
    C(17)-C(18)            1.389(4)  
    C(17)-H(17A)           0.9500  
    C(18)-H(18A)           0.9500  
    C(19)-H(19A)           0.9900  
    C(19)-H(19B)           0.9900  
   
  



 V
    N(1)-Cu(1)-N(2)         96.08(9)  
    N(1)-Cu(1)-O(1)        158.29(10)  
    N(2)-Cu(1)-O(1)         98.16(8)  
    N(1)-Cu(1)-O(1)         97.21(8)  
    N(2)-Cu(1)-O(1)        157.42(11)  
    O(1)-Cu(1)-O(1)        75.10(7)  
    Cu(1)-O(1)-Cu(1)       104.90(7)  
    Cu(1)-O(1)-H(2)        122.6  
    Cu(1) 1-O(1)-H(2)      129.1  
    C(4)-N(1)-C(19)        118.0(2)  
    C(4)-N(1)-Cu(1)        124.65(18)  
    C(19)-N(1)-Cu(1)       117.15(17)  
    C(2)-N(2)-C(12)        117.9(2)  
    C(2)-N(2)-Cu(1)        123.78(19)  
    C(12)-N(2)-Cu(1)       118.22(16)  
    C(2)-C(1)-H(1A)        109.5  
    C(2)-C(1)-H(1B)        109.5  
    H(1A)-C(1)-H(1B)       109.5  
    C(2)-C(1)-H(1C)        109.5  
    H(1A)-C(1)-H(1C)       109.5  
    H(1B)-C(1)-H(1C)       109.5  
    N(2)-C(2)-C(3)         123.9(2)  
    N(2)-C(2)-C(1)         120.0(3)  
    C(3)-C(2)-C(1)         116.1(2)  
    C(2)-C(3)-C(4)         128.6(2)  
    C(2)-C(3)-H(3A)        115.7  
    C(4)-C(3)-H(3A)        115.7  
    N(1)-C(4)-C(3)         122.9(2)  
    N(1)-C(4)-C(5)         120.8(2)  
    C(3)-C(4)-C(5)         116.3(2)  
    C(4)-C(5)-H(5A)        109.5  
    C(4)-C(5)-H(5B)        109.5  
    H(5A)-C(5)-H(5B)       109.5  
    C(4)-C(5)-H(5C)        109.5  
    H(5A)-C(5)-H(5C)       109.5  
    H(5B)-C(5)-H(5C)       109.5  
    C(11)-C(6)-C(7)        118.9(2)  
    C(11)-C(6)-C(12)       122.2(2)  
    C(7)-C(6)-C(12)        118.9(2)  
    C(8)-C(7)-C(6)         120.2(3)  
    C(8)-C(7)-H(7A)        119.9  
    C(6)-C(7)-H(7A)        119.9  
    C(9)-C(8)-C(7)         120.5(3)  
    C(9)-C(8)-H(8A)        119.7  
    C(7)-C(8)-H(8A)        119.7  
    C(8)-C(9)-C(10)        119.8(2)  
    C(8)-C(9)-H(9A)        120.1  
    C(10)-C(9)-H(9A)       120.1  
    C(11)-C(10)-C(9)       119.8(3)  
    C(11)-C(10)-H(10A)     120.1  
    C(9)-C(10)-H(10A)      120.1  
    C(6)-C(11)-C(10)       120.8(3)  
    C(6)-C(11)-H(11A)      119.6  
    C(10)-C(11)-H(11A)     119.6  
    N(2)-C(12)-C(6)        114.3(2)  
    N(2)-C(12)-H(12A)      108.7  
    C(6)-C(12)-H(12A)      108.7  
    N(2)-C(12)-H(12B)      108.7  
    C(6)-C(12)-H(12B)      108.7  
    H(12A)-C(12)-H(12B)    107.6  
    C(18)-C(13)-C(14)      118.6(3)  
    C(18)-C(13)-C(19)      122.6(2)  
    C(14)-C(13)-C(19)      118.8(3)  

    C(15)-C(14)-C(13)      120.5(3)  
    C(15)-C(14)-H(14A)     119.7  
    C(13)-C(14)-H(14A)     119.7  
    C(16)-C(15)-C(14)      120.4(3)  
    C(16)-C(15)-H(15A)     119.8  
    C(14)-C(15)-H(15A)     119.8  
    C(15)-C(16)-C(17)      119.7(3)  
    C(15)-C(16)-H(16A)     120.2  
    C(17)-C(16)-H(16A)     120.2  
    C(18)-C(17)-C(16)      120.1(3)  
    C(18)-C(17)-H(17A)     120.0  
    C(16)-C(17)-H(17A)     120.0  
    C(13)-C(18)-C(17)      120.7(3)  
    C(13)-C(18)-H(18A)     119.6  
    C(17)-C(18)-H(18A)     119.6  
    N(1)-C(19)-C(13)       113.3(2)  
    N(1)-C(19)-H(19A)      108.9  
    C(13)-C(19)-H(19A)     108.9  
    N(1)-C(19)-H(19B)      108.9  
    C(13)-C(19)-H(19B)     108.9  
    H(19A)-C(19)-H(19B)    107.7  
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Table V.  Crystal data and structure refinement for C46 H48 Cu N6 O4.  
   
   
      Identification code               paul09  
   
      Empirical formula                 C46 H48 Cu N6 O4  
   
      Formula weight                    812.45 
   
      Temperature                       150K  
   
      Wavelength                        1.54178 Å  
   
      Crystal system                    Monoclinic  
   
      Space group                       C2/c  
   
      Unit cell dimensions              a = 20.1736(6)       α = 90o  
                                        b = 9.6549(2)        β  = 102.363(1)o   
                                        c = 45.6035(10)      γ = 90o  
   
      Volume                            8676.4(4)A3  
   
      Z                                 8  
   
      Density (calculated)              1.244 mg/m3  
   
      Absorption coefficient            1.096 mm-1  
   
      F(000)                            3416  
   
      Crystal size                      0.16 x 0.12 x 0.12 mm  
   
      Theta range for data collection   1.98 to 72.62o  
   
      Index ranges                      -24 < h < 24, -11 < k < 11, -55 < l < 56  
   
      Reflections collected             56369  
   
      Independent reflections           8531, Rint = 0.175  
   
      Absorption correction             Semi-empirical from equivalents  
   
      Max. and min. transmission        0.8182 and 0.5300  
   
      Refinement method                 Full-matrix least-squares on F2  
   
      Data / restraints / parameters    8531 / 0 / 520  
   
      Goodness-of-fit on F2            0.868  
   
      Final R indices [I>2sigma(I)]     R1 = 0.0775, wR2 = 0.1690  
   
      R indices (all data)              R1 = 0.1375, wR2 = 0.1862  
   
      Extinction coefficient            0.00041(3)  
   
      Largest diff. peak and hole       0.509 and -0.493 e/A3  
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   Table VI.  Bond lengths [Å]and angle [deg.] for C46 H48 Cu N6 O4  
    ______________________________________________________________________  
    Cu(1)-N(4)             1.915(4)  
    Cu(1)-N(1)             1.924(3)  
    Cu(1)-N(5)             1.957(3)  
    Cu(1)-N(2)             1.960(3)  
    O(1)-C(20)             1.204(5)  
    O(2)-C(23)             1.207(5)  
    O(3)-C(43)             1.220(5)  
    O(4)-C(46)             1.209(5)  
    N(1)-C(2)              1.349(5)  
    N(1)-C(12)             1.480(5)  
    N(2)-C(4)              1.327(5)  
    N(2)-C(19)             1.476(5)  
    N(3)-C(20)             1.393(5)  
    N(3)-C(23)             1.402(6)  
    N(3)-C(3)              1.445(5)  
    N(4)-C(25)             1.317(5)  
    N(4)-C(35)             1.483(5)  
    N(5)-C(27)             1.343(5)  
    N(5)-C(42)             1.483(5)  
    N(6)-C(43)             1.384(6)  
    N(6)-C(46)             1.396(6)  
    N(6)-C(26)             1.438(5)  
    C(1)-C(2)              1.529(6)  
    C(2)-C(3)              1.414(6)  
    C(3)-C(4)              1.410(6)  
    C(4)-C(5)              1.508(6)  
    C(6)-C(7)              1.359(6)  
    C(6)-C(11)             1.392(6)  
    C(6)-C(12)             1.525(6)  
    C(7)-C(8)              1.385(6)  
    C(8)-C(9)              1.386(7)  
    C(9)-C(10)             1.371(7)  
    C(10)-C(11)            1.401(7)  
    C(13)-C(14)            1.386(6)  
    C(13)-C(18)            1.400(6)  
    C(13)-C(19)            1.511(6)  
    C(14)-C(15)            1.386(6)  
    C(15)-C(16)            1.387(7)  
    C(16)-C(17)            1.365(7)  
    C(17)-C(18)            1.380(6)  
    C(20)-C(21)            1.493(6)  
    C(21)-C(22)            1.514(6)  
    C(22)-C(23)            1.508(6)  
    C(24)-C(25)            1.516(6)  
    C(25)-C(26)            1.417(6)  
    C(26)-C(27)            1.408(6)  
    C(27)-C(28)            1.533(5)  
    C(29)-C(30)            1.391(6)  
    C(29)-C(34)            1.403(6)  
    C(29)-C(35)            1.518(6)  
    C(30)-C(31)            1.374(6)  
    C(31)-C(32)            1.373(6)  
    C(32)-C(33)            1.383(6)  
    C(33)-C(34)            1.368(6)  
    C(36)-C(41)            1.386(6)  
    C(36)-C(37)            1.387(6)  
    C(36)-C(42)            1.512(6)  
    C(38)-C(37)            1.373(6)  
    C(38)-C(39)            1.374(6)  
    C(39)-C(40)            1.379(7)  
    C(40)-C(41)            1.398(6)  
    C(43)-C(44)            1.514(6)  
    C(44)-C(45)            1.508(6)  
    C(45)-C(46)            1.499(6)  



 VIII
   
  
 
   N(4)-CU1-N(1)          137.39(15)  
    N(4)-CU1-N(5)           92.83(15)  
    N(1)-CU1-N(5)          110.73(16)  
    N(4)-CU1-N(2)           99.84(15)  
    N(1)-CU1-N(2)           95.26(16)  
    N(5)-CU1-N(2)          124.47(14)  
    C(2)-N(1)-C(12)        118.0(4)  
    C(2)-N(1)-CU1          125.0(3)  
    C(12)-N(1)-CU1         117.0(3)  
    C(4)-N(2)-C(19)        121.0(4)  
    C(4)-N(2)-CU1          126.5(3)  
    C(19)-N(2)-CU1         112.3(3)  
    C(20)-N(3)-C(23)       112.9(4)  
    C(20)-N(3)-C(3)        122.1(4)  
    C(23)-N(3)-C(3)        125.0(4)  
    C(25)-N(4)-C(35)       117.8(4)  
    C(25)-N(4)-CU1         127.5(3)  
    C(35)-N(4)-CU1         114.7(3)  
    C(27)-N(5)-C(42)       118.4(4)  
    C(27)-N(5)-CU1         122.2(3)  
    C(42)-N(5)-CU1         118.5(3)  
    C(43)-N(6)-C(46)       112.2(4)  
    C(43)-N(6)-C(26)       123.1(4)  
    C(46)-N(6)-C(26)       124.6(4)  
    N(1)-C(2)-C(3)         122.0(4)  
    N(1)-C(2)-C(1)         120.3(4)  
    C(3)-C(2)-C(1)         117.7(4)  
    C(4)-C(3)-C(2)         130.6(4)  
    C(4)-C(3)-N(3)         115.1(4)  
    C(2)-C(3)-N(3)         114.3(4)  
    N(2)-C(4)-C(3)         120.3(4)  
    N(2)-C(4)-C(5)         121.6(4)  
    C(3)-C(4)-C(5)         118.1(4)  
    C(7)-C(6)-C(11)        117.6(5)  
    C(7)-C(6)-C(12)        123.6(5)  
    C(11)-C(6)-C(12)       118.8(5)  
    C(6)-C(7)-C(8)         122.9(5)  
    C(7)-C(8)-C(9)         119.3(5)  
    C(10)-C(9)-C(8)        119.3(5)  
    C(9)-C(10)-C(11)       120.3(5)  
    C(6)-C(11)-C(10)       120.6(5)  
    N(1)-C(12)-C(6)        115.9(4)  
    C(14)-C(13)-C(18)      117.8(5)  
    C(14)-C(13)-C(19)      118.7(4)  
    C(18)-C(13)-C(19)      123.5(4)  
    C(15)-C(14)-C(13)      121.0(5)  
    C(14)-C(15)-C(16)      120.1(5)  
    C(17)-C(16)-C(15)      119.5(5)  
    C(16)-C(17)-C(18)      120.8(5)  
    C(17)-C(18)-C(13)      120.8(5)  
    N(2)-C(19)-C(13)       115.4(3)  
    O(1)-C(20)-N(3)        123.9(5)  
    O(1)-C(20)-C(21)       128.2(5)  
    N(3)-C(20)-C(21)       107.8(4)  
    C(20)-C(21)-C(22)      106.3(4)  
    C(23)-C(22)-C(21)      105.1(4)  
    O(2)-C(23)-N(3)        124.6(5)  
    O(2)-C(23)-C(22)       127.8(5)  
    N(3)-C(23)-C(22)       107.6(4)  
    N(4)-C(25)-C(26)       119.7(4)  
    N(4)-C(25)-C(24)       121.5(4)  
    C(26)-C(25)-C(24)      118.7(4)  
    C(27)-C(26)-C(25)      128.3(4)  

    C(27)-C(26)-N(6)       115.7(4)  
    C(25)-C(26)-N(6)       115.6(4)  
    N(5)-C(27)-C(26)       122.6(4)  
    N(5)-C(27)-C(28)       120.4(4)  
    C(26)-C(27)-C(28)      116.9(4)  
    C(30)-C(29)-C(34)      116.2(5)  
    C(30)-C(29)-C(35)      122.7(4)  
    C(34)-C(29)-C(35)      121.1(4)  
    C(31)-C(30)-C(29)      122.1(5)  
    C(32)-C(31)-C(30)      120.4(5)  
    C(31)-C(32)-C(33)      119.1(5)  
    C(34)-C(33)-C(32)      120.4(5)  
    C(33)-C(34)-C(29)      121.8(5)  
    N(4)-C(35)-C(29)       112.0(4)  
    C(41)-C(36)-C(37)      117.5(4)  
    C(41)-C(36)-C(42)      118.6(4)  
    C(37)-C(36)-C(42)      123.7(4)  
    C(37)-C(38)-C(39)      120.4(5)  
    C(38)-C(39)-C(40)      118.6(5)  
    C(39)-C(40)-C(41)      121.1(5)  
    C(36)-C(41)-C(40)      120.2(5)  
    N(5)-C(42)-C(36)       115.1(4)  
    C(38)-C(37)-C(36)      122.2(5)  
    O(3)-C(43)-N(6)        124.5(5)  
    O(3)-C(43)-C(44)       126.8(5)  
    N(6)-C(43)-C(44)       108.8(4)  
    C(45)-C(44)-C(43)      104.6(4)  
    C(46)-C(45)-C(44)      106.1(4)  
    O(4)-C(46)-N(6)        124.4(5)  
    O(4)-C(46)-C(45)       127.4(5)  
    N(6)-C(46)-C(45)       108.1(4)  
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Experimental 
succNacnacBnH. (Nacnac)BnLi(THF) (3.0 g, 68 mmol) and NBS (1.8 g, 97 mmol )  were 

mixed  in THF (150 mL) to give a yellow-brown suspension. After stirring for 24h at 60 °C 

under static vacuum a brown suspension was obtained. The reaction mixture was cooled to 

room temperature and 1, 4-dioxane (5 mL) was added to complete the precipitation of LiCl. 

After stirring for a further 30 minute, the mixture was filtered through a pad of celite. The 

resulting brown solution was evaporated to give a brown solid. The product was extracted 

in toluene (200 mL). Evaporation of the solvent gave brown solid (1.5 g, 60%). Crystals 

suitable for X-ray were grown by dissolving the brown solid in a DCM and then layering 

with equal amount of hexane. 1H NMR (CDCl3, 400 MHz, 298 K): δ 12.84 (bs, 1H, NH), 

7.20 (m, 10H, C6H5), 4.46 (s, 4H, Bn CH2), 2.84 (s, 4H, CH2C(=O)), 1.73 (s, 6H, 

MeC(=N)).). 113C NMR (CDCl3, 101 MHz, 298 K): δ 178.3 (C=O), 159.9 (C=N), 139.9 

(ipso Ph), 128.4 (ortho Ph), 127.3 (para Ph), 126.6 (meta Ph), 97.0 (C(C=N)2), 50.9 (Bn 

CH2), 28.0 (Me(C=N)2), 14.5 (CH2C(=O)). Anal. Calcd. for C23H25N3O2 : C, 73.58; H, 

6.71; N, 11.19. Found: C, 73.08; H, 6.69; N, 10.64.  

 

succNacnacBnCu(styrene) 
succNacnacBnH (100 mg, 0.29 mmol), CuOtBu (40 mg, 0.30 mmol) and styrene (94 

mg, 0.90 mmol) were dissolved in toluene (6 mL). The resulting brown solution was stirred 

for 30 minutes. The solution was evaporated and the residue washed twice with hexane (10 

mL). Residual solvent was removed on the vacuum line to obtain dark-brown solid (139 

mg, 89%). 1H NMR (C6D6, 400 MHz, 298 K): δ  7.12-7.16 (m, 10H, C6H5), 4.15-4.70 (m, 

4H, Bn CH2 & 1H, CH olefin), 3.45 (d, 1H, J = 14 Hz CH2 olefin), 3.19 (d, 1H, J = 9 Hz 

CH2 olefin) 1.92 (s, 4H, CH2C(=O)), 1.64 (s, 6H, CH3 MeC(=N)). 13C NMR (C6D6, 101 

MHz, 298 K): δ 177.7 (C=O), 164.7(C=N), 142.2 (ipso Bn),  139.6 (ipso, styrene) 129.3 

(ortho, styrene), 128.8 (meta or ortho Bn), 126.9 (para, styrene) , 126.4 (meta or ortho 

Bn), 125.7 (meta, styrene), 98.8 (C(C=N)2), 90.2 (CH, styrene), 67.1 (CH2, styrene), 58.2 

(Bn CH2), 27.9 (CH2C(=O)), 16.4 (Me(C=N)2). One peak ( para Bn) is missing. 

 

 

 

 

 



 X
succNacnacBnCu(1-hexene) 

succNacnacBn ( 100 mg, 0.29 mmol) was dissolved in toluene (6 mL) to afford a 

brown solution. 1-hexene (140 mg, 1.6 mmol) and CuOtBu (40 mg, 0.30 mmol) were 

added. After stirring for 30 min, the brown solution was layered with hexane (6 mL) and 

kept at -30 °C from which few crystals of compound 3 were obtained. 

For NMR characterization, succnacnacBnH (10 mg, 27 µmol) was dissolved in C6D6 (0.7 

mL) to afford a brown solution. 1-hexene (3.5 mg, 41 µmol) and CuOtBu (4.0 mg, 30 

µmol) were added. The resulting solution was transferred to an A. J. Young tube. 1H NMR 

(C6D6, 400 MHz, 298 K): δ  7.10-7.23 (m, 10H, C6H5) , 4.80 (s, 4H, CH2 Bn), 3.97-3.91 

(m, 1H, olefinic CH 1-hexene), 3.12 (m, 2H, olefinic CH2, 1-hexene), 1.95 (s, 4H, 

CH2C(=O)) 1.71 (s, 6H, Me(C=N)2), 1.24-0.70 (m, 9H, Butyl of 1-hexene). 13C NMR 

(C6D6, 101 MHz, 298 K): δ 177.9 (C=O), 164.8(C=N), 142.2 (ipso Bn), 128.8 (ortho Bn), 

126.5 (para  Bn), 126.3 (meta, Bn), 98.7 (C(C=N)2), 93.4 (CH, styrene), 72.3 (CH2, 

styrene), 58.7 (CH2, Bn), 33.1, 32.8.  28.0 (CH2C(=O)), 22.3,  16.5 (Me(C=N)2), 14.0. 

 

X-ray diffraction studies. Compounds 1 and 3 were crystallized from a toluene and 

dichloromethane solution at –30 °C during attempts to recrystallize 

nacnacBnCu(acrylonitrile) and succnacnacBnCu(1-hexene) or nacnacBnCu(styrene) 

respectively while compound 2 crystallized from an oxygen contaminated THF solution at 

–30 °C in the course of preparing nacnacBnCu(trans-stilbene). Data sets for 1 and 3 were 

recorded on a Bruker SMART 6000 with Montel 200 monochromator, while that of 

compound 2 was collected on a Bruker Microstar-Proteum with Helios optics, both 

equipped with a rotating anode source for Cu Kα radiation (λ = 1.54178 Å). Cell 

refinement and data reduction were performed using APEX2.1 Absorption corrections were 

applied using SADABS.2 Structures were solved by direct methods using SHELXS97 and 

refined on F2 by full-matrix least squares using SHELXL97.3 All non-hydrogen atoms were 

refined anisotropically. Hydrogen atoms were refined on calculated positions using a riding 

model. The co-crystallized solvent was identified as dichloromethane based on electron 

count but could not be resolved and was thus suppressed by application   of SQUEEZE.          
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Table VII: Details of X-ray diffraction studies 

 8.1 8.2 8.3 

Formula C22H25N3 C38H44N4O2Cu2 C46H48N6O4Cu 

Mw(g/mol); dcalcd.(g/cm3) 331.45; 1.162 715.85; 1.435 285.89; 1.277 

CCDC No 773446 773445 773447 

T (K); F(000) 150 ; 712 150; 374 150; 3416 

Crystal System Monoclinic Triclinic Monoclinic 

Space Group P21/n P-1 C2/c 

Unit Cell: a (Å) 9.7742(3) 5.4783(3) 20.1736(6) 

 b (Å) 17.6962(6) 11.8231(5) 9.6549(2) 

 c (Å) 10.9336(4) 13.4079(5) 45.6035(10) 

 α (°) 90 72.210(2) 90 

 β (°) 90.060(2) 85.367(2) 102.361(1) 

 γ (°) 90 87.367(2) 90 

V (Å3); Z 1891.14(11); 4 828.51(7); 1 8676.4(4); 8 

θ range (°); completeness 4.75-72.39; 0.86 3.45-67.95; 0.86 1.98-72.64 

Refl.: collec./indep.; Rint 24544/3213; 0.062 13326/2604; 0.055 56558/3833; 0.175 

μ (mm–1); abs. corr 0.532; SADABS 1.893; SADABS 1.096; SADABS 

R1(F); wR(F2); GoF(F2) a  0.0419; 0.1111; 0.912 0.0405; 0.1145; 

1.043 

0.0775; 0.1862; 

0.868 

Residual electron density 0.185; -0.182 0.334, -0.768 0.509; -0.493 
a R1(F) based on observed reflections with I>2σ(I), wR(F2) and GoF(F2) based on all data. 
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