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Résumé 

 

                 La douleur est une expérience perceptive comportant de nombreuses dimensions. 

Ces dimensions de douleur sont inter-reliées et recrutent des réseaux neuronaux qui traitent 

les informations correspondantes. L’élucidation de l'architecture fonctionnelle qui supporte 

les différents aspects perceptifs de l'expérience est donc une étape fondamentale pour notre 

compréhension du rôle fonctionnel des différentes régions de la matrice cérébrale de la 

douleur dans les circuits corticaux qui sous tendent l'expérience subjective de la douleur. 

Parmi les diverses régions du cerveau impliquées dans le traitement de l'information 

nociceptive, le cortex somatosensoriel primaire et secondaire (S1 et S2) sont les principales 

régions généralement associées au traitement de l'aspect sensori-discriminatif de la douleur. 

Toutefois, l'organisation fonctionnelle dans ces régions somato-sensorielles n’est pas 

complètement claire et relativement peu d'études ont examiné directement l'intégration de 

l'information entre les régions somatiques sensorielles. Ainsi, plusieurs questions 

demeurent concernant la relation hiérarchique entre S1 et S2, ainsi que le rôle fonctionnel 

des connexions inter-hémisphériques des régions somatiques sensorielles homologues. De 

même, le traitement en série ou en parallèle au sein du système somatosensoriel constitue 

un autre élément de questionnement qui nécessite un examen plus approfondi. Le but de la 

présente étude était de tester un certain nombre d'hypothèses sur la causalité dans les 

interactions fonctionnelle entre S1 et S2, alors que les sujets recevaient des chocs 

électriques douloureux.  Nous avons mis en place une méthode de modélisation de la 

connectivité, qui utilise une description de causalité de la dynamique du système, afin 

d'étudier les interactions entre les sites d'activation définie par un ensemble de données 

provenant d'une étude d'imagerie fonctionnelle. Notre paradigme est constitué de 3 session 

expérimentales en utilisant des chocs électriques à trois différents niveaux d’intensité, soit 

modérément douloureux (niveau 3), soit légèrement douloureux (niveau 2), soit 

complètement non douloureux (niveau 1). Par conséquent, notre paradigme nous a permis 
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d'étudier comment l'intensité du stimulus est codé dans notre réseau d'intérêt, et comment la 

connectivité des différentes régions est modulée dans les conditions de stimulation 

différentes.  

 

        Nos résultats sont en faveur du mode sériel de traitement de l’information 

somatosensorielle nociceptive avec un apport prédominant de la voie thalamocorticale vers 

S1 controlatérale au site de stimulation. Nos résultats impliquent que l'information se 

propage de S1 controlatéral à travers notre réseau d'intérêt composé des cortex S1 

bilatéraux et S2. Notre analyse indique que la connexion S1→S2 est renforcée par la 

douleur, ce qui suggère que S2 est plus élevé dans la hiérarchie du traitement de la douleur 

que S1, conformément aux conclusions précédentes neurophysiologiques et de 

magnétoencéphalographie. Enfin, notre analyse fournit des preuves de l'entrée de 

l'information somatosensorielle dans l'hémisphère controlatéral au côté de stimulation, avec 

des connexions inter-hémisphériques responsable du transfert de l'information à 

l'hémisphère ipsilatéral. 

 

Mots-clés :  douleur, cortex somatosensoriel, IRMf, connectivité, causalité 
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Abstract 

 

           Pain is a perceptual experience comprising many dimensions. These pain dimensions 

interrelate with each other and recruit neuronal networks that process the corresponding 

information. Elucidating the functional architecture that supports different perceptual 

aspects of the experience is thus, a fundamental step to our understanding of the functional 

role of different regions in the cerebral pain matrix that are involved in the cortical circuitry 

underlying the subjective experience of pain. Among various brain regions involved in the 

processing of nociceptive information, primary and secondary somatosensory cortices (S1 

and S2) are the main areas generally associated with the processing of sensory-

discriminative aspect of pain. However the functional organization in these somatosensory 

areas is not completely clear and relatively few studies have directly examined the 

integration of information among somatic sensory regions. Thus, several questions remain 

regarding the hierarchical relationship between S1 and S2, as well as the functional role of 

the inter-hemispheric connections of the homologous somatic sensory areas. Likewise, the 

question of serial or parallel processing within the somatosensory system is another 

questionable issue that requires further investigation. The purpose of the present study was 

to test a number of causal hypotheses regarding the functional interactions between S1 and 

S2, while subjects were receiving painful electric shocks. We implemented a connectivity 

modeling approach, which utilizes a causal description of system dynamics, in order to 

study the interactions among activation sites defined by a data set derived from a functional 

imaging study. Our paradigm consists of 3 experimental scans using electric shock stimuli, 

with the stimulus intensity changing from moderately painful (level 3), to slightly painful 

(level 2), and to completely non-painful (level 1) during the final scan. Therefore our 

paradigm allowed us to investigate how stimulus intensity is encoded within our network of 

interest, and how the connectivity of the different regions is modulated across the different 

stimulus conditions.  
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Our result is in favor of serial mode of somatosensory processing with 

thalamocortical input to S1 contralateral to stimulation site. Thus our results implicates that 

pain information is propogated from S1 contralateral through our network of interest 

comprising of bilateral S1 and S2. Our analysis indicates that S1→S2 connection is 

modulated by pain, which suggests that S2 is higher on the hierarchy of pain processing 

than S1, in accordance with previous neurophysiological and MEG findings. Lastly, our 

analysis provides evidence for the entrance of somatosensory information into the 

hemisphere contralateral to the stimulation side, with inter-hemispheric connections 

responsible for the transfer of information to the ipsilateral hemisphere.   

 

 

Keywords : Pain, Somatosensory cortex, fMRI, Connectivity, Causality 
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Chapter 1- Pain Processing 

Pain is a complex phenomenon and is recognized as a multidimensional experience 

comprising sensory, affective, motivational and cognitive components. These pain 

dimensions and their interactions involve spinal pathways and brain networks that transmit 

and process nociceptive information (1). The sensory-discriminative aspect of pain 

perception consists of stimulus localization, recognition of its painful nature, evaluation of 

its temporal features as well as quantification of its intensity. Psychophysical studies often 

distinguish between pain sensation and pain unpleasantness (pain affect), and these 

components are represented at least partly in separate regions of the brain. The affective-

motivational component includes the emotional aspect of the experience, such as fear and 

annoyance, and it has a key role in the behavioral response to potential tissue damage. 

Another characteristic that subserves pain affect, aside from the immediate unpleasantness, 

is called the secondary pain affect and relates to emotional feelings concerning long-term 

implications of having pain (1). The meaning of these sensory and affective dimensions of 

pain is dependent upon the contextual and psychological factors, and various studies show 

that activation in pain areas can be highly modulated by cognitive factors like attention and 

previous exposure to the painful stimulus ((1) , (2)). At the cortical level, growing evidence 

from the physiological and imaging literature shows an extended network of pain-

processing areas among which the most commonly observed sites includes primary (S1) 

and secondary somatosensory cortices (S2), anterior cingulate cortex (ACC), as well as 

insula, frontal and prefrontal cortices (3). It is a widely held idea that S1 and S2 contribute 

to the sensory aspects of nociceptive processing, however the relative contribution of each 

and their functional organization have been in dispute. In this chapter, Section 1-1 presents 

a brief review of the literature on the main ascending pathway of the nociceptive system 

from the spinal cord to the various cortical areas that receive and process noxious 

information; section 1-2 reviews supporting evidence from clinical, neurophysiological and 

imaging studies for the involvement of S1 and S2 in pain perception. Section 1-3 consists 

of a short discussion on the functional organization and interactions between S1 and S2 and 
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a short review of the assumption in our hypothesis, which is discussed in detail in section 1-

4 and section 1-5. 

Section 1-1: Afferent Pain Pathways 

Propagation of pain is initiated with a peripheral stimulus (mechanical, electrical, 

thermal, or chemical) activating specific receptors called nociceptors, which are widely 

found in the skin, visceral organs, and muscles. These first-order afferent fibers consist of 

small-diameter thinly mylinated A-Delta or unmylinated C fibers that have their cell bodies 

within the dorsal root ganglia and their axon terminals in the dorsal horn of the spinal cord. 

These first-order neurons form synapses with second-order neurons distributed within the 

dorsal horn of the spinal cord. The second-order neurons in the dorsal horn are classified 

into 3 distinct categories, and the organization of the ascending pathways depends upon 

them (4).  

Group 1- Nociceptive Specific (NS) neurons respond exclusively to noxious stimuli 

and are located in superficial layers of the dorsal horn, especially in lamina I. They receive 

inputs from A-Delta and C fibers, and their receptive fields show somatotopic organization 

mostly in Lamina I (4).  

Group 2- Wide Dynamic Range (WDR) neurons respond to both noxious and 

innocuous stimuli and are located in deep dorsal horn (Laminae IV-V) (4). They are 

activated by A-Delta, A-Beta, and C fibers and code for stimulus intensity across the entire 

range of sensation. 

Group 3- Non-Nociceptive neurons (NN) respond to innocuous stimuli and are 

activated by A-Delta, and A-Beta fibers. 

The axons of the second-order neurons decussate and form afferent bundles that 

ascend through the anterolateral and dorsolateral funiculus, relaying nociceptive 
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information to structures of the brain stem (reticular formation of medulla, PAG, etc) and 

thalamus. This pathway, called the spinothalamic tract (STT), is one of the principal 

ascending tracts of the spinal cord.  The dorsolateral STT carries information mainly from 

Lamina I of the dorsal horn (as well as V-VI (1)) and terminates in the medial nuclei of 

thalamus, whereas axons from anterolateral STT originate from deep layers of the dorsal 

horn and project to lateral nuclei of thalamus (5). The terminations of the spinothalamic 

tracts in different thalamic nuclei (and the cortical projections from these nuclei to the 

cortex) form different circuits for pain processing. The projections to cortex from cells in 

medial and lateral thalamic nuclei are known as the medial and lateral pain systems, 

respectively, which operate in a parallel manner.   

The lateral system which is believed to be primarily involved in the sensory 

discriminative aspect of pain processing, includes the lateral nuclear complex of thalamus, 

consisting of ventropostero-lateral (VPL), ventropostero-medial (VPM) and ventropostero-

inferior (VPI) nuclei that project collectively to S1 and S2 cortex (4). VPL and VPM 

mainly consist of WDR type neurons, while NS neurons predominate in VPI nuclei. 

Animal studies have shown that VPI projects to S2 cortex while VPL projects to S1 cortex 

(5). These neurophysiological data show that stimulus characteristics are evaluated in the 

lateral system by WDR neurons of S1, which encode for the intensity of the stimulus, and 

by NS neurons of S1, which code for the spatial and temporal properties of the stimulus. 

Nociceptive neurons in S2 have been reported to mainly code for the temporal structure of 

the stimulus (4). 

The medial nociceptive system consists of projections from medial thalamic nuclei 

to limbic structures like the insula and the anterior cingulate cortex. The cingulate cortex 

has been implicated in the attribution of emotional significance to the painful stimulus, in 

the regulation of emotional responses to noxious stimuli, and in the integration of cognitive, 

affective, and attentional responses (4). In brief, the medial pain system relates to affective-

motivational dimensions of pain perception and is involved in processing cognitive, 
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behavioral and autonomic reactions to noxious stimulation. Apart from the specific research 

articles cited above, the reader may consult a general review of this literature by Kandel et 

al (6) for additional information.   

Section 1-2: Involvement of Primary and Secondary 

Somatosensory areas in pain perception 

Somatosensory areas S1 and S2 are the two principal cortical areas that are thought 

to be implicated in the processing of both noxious and innocuous tactile stimuli. S1 in 

monkeys consists of 4 separate cytoarchitectonically defined areas; areas 3a, 3b, 1 and 2, 

with a somatotopic representation of the contralateral body surface in each architectonic 

field (6). S2 is located in parietal operculum in the upper bank of Sylvain fissure just 

inferior and lateral to S1. Converging lines of evidence from clinical and experimental 

studies indicate that S1 and S2 are involved in nociception and especially in sensory-

discriminative aspects of pain perception; this evidence is discussed below. 

Neurophysiological evidence from non-human primates shows that neurons in S1 

receive input evoked by noxious stimuli. These nociceptive neurons encode for stimulus 

intensity by their firing rates (7), and their peak discharge frequency is significantly 

correlated with the monkey’s speed for detecting increases in the noxious level of thermal 

stimulation (7). The intensity-encoding property has also been observed for WDR neurons 

of VPL that project to S1 (8). Various studies demonstrated a detailed somatotopic 

organization within S1, which implicates the role of this region in encoding the spatial 

localization of the pain stimulus. Localization is important for sensory processing as well as 

for the quick orientation of attention to, and withdrawal of the body part from, the source of 

nociceptive stimulation – processes needed to prevent or limit potential tissue damage.  

In contrast to S1, animal studies show that only small populations of S2 neurons are 

responsive to noxious stimuli, while the majority of neurons in S2 respond to innocuous 
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somatic stimuli. Some evidence from animal and human studies suggests separate 

representations of pain and touch in the parietal operculum (9). It has been demonstrated in 

primates that S2 nociceptive neurons have large receptive fields and are not capable of a 

precise encoding of stimulus intensity. They are responsive to bilateral as well as 

contralateral stimulation of the body and receive their inputs from NS neurons of VPI, 

which show the same response characteristics. It has been argued that because S2 projects 

to limbic areas via the insula, it might have a role in pain learning and memory (5). It has 

been discussed by Schnitzler (5) that, for the tactile system S2 is involved in feature 

extraction such as roughness discrimination (6) and detection of object size. Also lesion 

studies show that ablation of the S2 region impairs recognition of object shape (10). 

Additionally evidence suggesting that S1 and S2 are reciprocally connected to each other 

((11), (12)) implies a functional interdependence between the two in pain processing. 

However, the role of S1-S2 interactions in pain has not yet been explored specifically. 

Aside from neurophysiological studies, multiple case reports in clinical and lesion 

studies demonstrate an essential role of S1 and particularly S2 in normal pain perception. 

Potagas et al (13) reported a case of a woman who had episodic pain in the right side of her 

body, which was associated with a lesion in the white matter of the parietal operculum. 

Pain disappeared, after the surgical removal of the tumor. Greenspan et al (14), report a 

patient whose impairments in both pain and tactile perceptions (higher mechanical and heat 

thresholds and poor ability to discriminate roughness on the hand) were associated with a 

tumor located near the posterior insula and parietal operculum contralateral to the 

perceptual deficits. After surgery, the patient’s somatic deficits disappeared, which again 

suggest the essential role of S2 in the normal experience of pain and tactile perception. 

Ploner et al (15) report a case of a patient who described an unpleasant feeling following 

noxious stimulation but could neither localize the stimulus nor recognize its noxious nature; 

association of these symptoms with an ischemic lesion that included S1 and S2 implicates 

these areas in sensory-discriminative processing of noxious information and suggests that 

affective pain processing, which remained at least partly intact, likely involves regions 
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outside the somatosensory cortices. In a recent study by Greenspan et al (16), 6 patients 

with lesions in the parasylvain cortex (parietal operculum, and posterior insula) were tested 

for their pain sensitivity. Their results show that the 4 patients with lesions involving the 

posterior parietal operculum showed elevated thresholds for mechanical- and heat-evoked 

pain on the contralateral side, whereas the 2 subjects with lesions in posterior insula 

showed no pain threshold alterations. However these 2 patients exhibited deficits in 

motivational and affective response to pain (as indicated by a cold pain tolerance test), 

which suggests a role of posterior insula in pain affect. Another observation in this line of 

investigation is an experiment by Dong et al (17), involving awake monkeys, which 

showed that damage induced in the left posterior parietal cortex changes the monkey’s pain 

sensibility on the contralateral face. Thus, lesion studies generally provide at least some 

support for a role of parietal cortices, including S1 and S2, in pain processes. 

Some studies have proposed that nociceptive input into S1 may have more to do 

with modulation of tactile sensation. The information that is being conveyed by the 

different somatosensory sub-modalities of touch, thermal sensation and pain interrelate 

with each other to some extent. The influence of touch on pain perception has been 

addressed in 1965 by Melzac and Wall in their “Gate Control Theory of Pain”, which 

asserts that the fibers conveying innocuous touch information can interfere with nociceptive 

signals and therefore inhibit pain perception. Apkarian et al (18) described the opposite 

interaction, the effect of pain on touch perception, which they called the “Touch Gate”, 

arguing that the presence of heat-induced pain can significantly diminish tactile sensation. 

In their study, they compared the simultaneous presentation of noxious heat and vibrotactile 

stimulus on the right hand with the presentation of the vibrotactile stimulus alone, 

measuring the vibrotactile thresholds before, during and after application of the painful 

heat. The results show increased vibratory thresholds and decreased tactile sensitivity, 

during and after painful thermal stimulation. Increases in vibratory thresholds occurred 

around subject’s pain thresholds, which indicated that activation of nociceptors indeed 

diminish the encoding of vibrotactile inputs.  It has been argued that this effect might be 
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cognitive in nature, that attentional mechanisms might interfere with the perception of 

tactile sensation; however, this can be possibly ruled out by the observation that the tactile 

and painful stimulus must be within the same ipsilateral sites for the heat-induced pain to 

inhibit vibrotactile sensation (19).  

Imaging studies generally report significant increases of cereberal blood flow (CBF) 

in the parietal operculum associated with painful stimulation. But early imaging studies 

reported inconsistent results on the role of S1 in pain perception. In a PET study by Talbot 

et al (20), a noxious heat stimulus applied sequentially to 6 spots on the forearm was 

associated with significant activation in the contralateral S1, presumably in response to the 

evoked pain. In a similar experiment by Jones et al (21), a heat stimulus presented to a 

single spot on the dorsal hand failed to produce significant activation in S1. In a subsequent 

PET study by Apkarian et al (22), putting the subject’s fingers in hot water led to decreased 

activity in S1. More recently, Timmerman et al (23) used fMRI to demonstrate a high 

correlation between S1 activity and both the intensity of noxious stimulation and the pain 

ratings evoked by that noxious stimulation; these results are in line with many of the more 

recent studies, which further support the involvement of S1 for intensity encoding of 

noxious stimuli.  

Various arguments have been proposed by Bushnell and colleagues (2) to explain 

inconsistencies in the early imaging studies, most notably the uncontrolled but significant 

modulation of S1 activity by cognitive factors like attention and suggestions. They note that 

when attention is directed away from a painful stimulus, the activity in S1 is significantly 

reduced.  Carrier et al (24)scanned subjects while they performed psychophysical tasks in 

which they had to attend to, and detect, small changes in either the noxious thermal 

intensity or the auditory tonal frequency of simultaneously presented stimuli. Pain intensity 

was rated lower and SI activity was reduced during the auditory, compared to the thermal, 

task.  In studies from the same research group, Hofbauer et al ((25),(26)) observed that 

changes in the perceived intensity of pain, produced through hypnotic suggestions (a 
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cognitive manipulation), are directly correlated with activity in S1; however, suggestion-

induced changes in pain unpleasantness, performed in a second hypnosis experiment by 

Rainville et al (27), were correlated with activity in ACC, but not in the activity of S1.   

Altogether these results suggest that the activation in S1 is highly dependent on cognitive 

factors like attention or suggestion, and changes in S1 activity are associated with changes 

in the subject’s perception of pain intensity. 

If S1 and S2 are indeed involved in pain and tactile perception, the time course of 

pain-evoked and tactile-evoked activity in the somatosensory cortices should reflect the 

ongoing perception of those stimuli. Chen et al (28), tested this hypothesis in an experiment 

consisted of the presentation of noxious heat and innocuous brush stimuli of the same 

duration (9 sec).  Analyses of the time course of activation in S1 and S2, revealed 

remarkable differences in the temporal domain with tactile-related activity peaks 

immediately upon stimulation and then habituates whereas the pain evoked activity has a 

slower onset, and keeps rising towards an eventual peak that occurs 8 sec after the stimulus 

offset. Thus the study confirms the hypothesis that activity in S1, evoked by noxious 

stimuli, is temporally correlated with the continuing perception of pain that follows 

stimulus offset, whereas tactile perception occurs around the stimulus offset. 

Altogether the experimental data from neurophysiological studies, clinical 

observations of brain lesions, and evidence from the brain imaging literature, implies an 

important role of the somatosensory cortices in the experience of pain. This evidence for a 

contribution of both S1 and S2 in pain, motivated us to study the interactions between these 

areas in the processing of noxious information. Our hypothesis and the assumption 

underlying it, is discussed in the following section. 
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Section 1-3: Hierarchical organization of S1 and S2 

Anatomical studies show that S1 is linked with S2 via intracortical reciprocal 

connections ((11), (12)). Pain and tactile information may therefore be conveyed to S2 

through an indirect or serial path from the thalamus via S1.  However as discussed in the 

previous sections, various studies of non-human primates suggest that S1 and S2 both 

receive direct projections from the thalamus, and it is likely that they are hierarchically 

organized in a parallel thalamocortical processing network. But as discussed in the previous 

section there are segregated nociceptive pathways from the spinal cord to S1 and S2, and 

the different thalamic nuclei that project to S1 and S2 have different response 

characteristics. Therefore they convey different information to S1 and S2. Since the 

response characteristics of nociceptive neurons of S1 and S2 are quite different, it is 

possible that input to S1 would be sufficient for the processing of one aspect of pain (ex; 

sensory discriminative aspect). Though if the stimulation paradigm triggers dimensions of 

pain other than intensity encoding, then the parallel thalamocortical input to S2 may 

perhaps be essential for the perception of pain that results from the interactions of various 

dimensions. This is one of the ideas that we wanted to address in this study through causal 

modeling of regional interactions. 

Thus, functional organization in the somatosensory cortex is a matter of dispute, and 

relatively few studies directly examined integration of information between somatic 

sensory regions; this includes the hierarchical relationship between S1 and S2, as well as 

inter-hemispheric connections of the homologous somatic sensory areas. The purpose of 

this study was to test some causal hypotheses on the interactions between S1 and S2, while 

subjects were receiving painful electric shocks. We systematically tested a set of models of 

integration between S1 and S2 including intra-and inter-hemispheric connections in the 

context of pain. 
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                                  Figure 1-1. Intrinsic connection between S1 and S2 

Based on the organization of the cortical somatosensory system, we postulated 

intrinsic connections among these sensory areas as shown in Figure 1-1. Then we tested a 

set of hypotheses based on: 1) which connections in this intrinsic network are modulated by 

the painful stimulus and 2) where the direct effect of noxious stimulus is most likely to 

occur and thus cause a change in the activity of the somatosensory regions by propagating 

its effect throughout the network. The complete description of the operational hypotheses is 

provided in chapter 2. As depicted in Figure 1-1, we assumed intra-cortical connections 

between S1 and S2 in both hemispheres as well as inter-hemispheric connections between 

homologous areas of S1 and S2. This section provides background from anatomical, 

neurophysiological, imaging, MEG and sensory evoked potential studies in support of such 

assumptions. The rest of this section is organized into sub-section 1-3-1 (describing intra-

hemispheric connections) and sub-section 1-3-2 (which describes the inter-hemispheric 

connections). 

 

Section 1-3-1: Intra-hemispheric connections between S1 and S2  

1-3-1-1:  Increase in the complexity of Receptive Fields 

The notion of sequential sensory processing implies the processing of gradually 

more complex sensory features of the stimulus in a hierarchical order of cortical areas. This 
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implies neurons with more complex receptive field characteristics in the hierarchy of 

processing flow.  

Various single-cell recording studies in the somatosensory cortex have confirmed 

that there is a systematic increase in the complexity of neuronal receptive field’s (RF) 

properties along the rostro-caudal axis of the post-central gyrus ((29), (30)). Iwamura et al 

(31) observed that the complexity of RF of the hand region increases from area 3b to area 1 

and 2 and towards the upper bank of intraparietal sulcus. Likewise, Duffy and Burchfiel 

(32) demonstrated in extracellular recordings from area 5 of monkeys, performed while 

manipulating multiple joints of one or more limbs, that the RF of cells in area 5 are 

sensitive to multi-joint limb manipulation, while neurons in the lower order processing 

regions only show sensitivity to single-joint manipulations. The number of bilateral RF 

neurons also increases towards the caudal part of the post central gyrus (33).  

Also various studies had shown that the RF properties of bilateral neurons in S2 are 

even more complex than S1 ((34), (33)). In a study by Fitzgerald  et al (35), it has been 

demonstrated that most S2 hand-region neurons have multidigit RFs, suggesting that S2 is 

of a higher order than area 3b (which primarily has single-digit RFs) and therefore that S2 

has a role in integrating information across separate digits. 

All together these data imply a sequential mode for sensory processing, with S2 at a 

higher order of the hierarchy for the processing of more complex details of stimulus 

features. However this notion has not been tested in the pain system, and although earlier 

studies show nociceptive neurons in S1 and S2, they did not test for a possible increase in 

the complexity of nociceptive neurons across these areas. 

1-3-1-2:  Ablation studies 

Anatomical studies in monkeys ((11), (12)) reveal that architectonic fields in S1 are 

interconnected and that S1 and S2 are connected to each other in a reciprocal organized 
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manner.  The question of whether tactile or noxious input to S2 comes via an anatomical 

pathway from S1 or from direct projections from thalamus can be tested through 

inactivation of S1 or S2 by surgical ablation methods or reversible cooling procedures; 

specifically, one can test whether inactivation of S1 affects S2 responsiveness or vice versa. 

Localized cooling provides a method for selective and reversible block of synaptic 

transmission within particular regions of the cerebral cortex (36). A summary of such 

ablation studies using both methods is discussed below. 

Various cooling-induced ablation experiments on cats provide evidence for a 

parallel processing scheme. In anesthetized cats, Turman et al (37), investigated whether 

the inactivation of the distal forelimb region within S1 effect S2 responsiveness. The results 

indicate 20% of S2 neurons showed a reduction in their activation level, but that the 

majority of S2 neurons (80%) revealed no change at all in their response level. Although 

the observed reduction in the minority of the population can be attributed to the removal of 

facilitatory influences exerted via the intra-cortical connections between S1 and S2, the 

majority survived the inactivation, which implies a parallel mode of processing as the main 

mechanism. The reverse procedure was employed in another study by Turman et al (38), 

who examined the responsiveness of neurons in the distal forelimb region of S1 after the 

inactivation of the corresponding region of S2 through a cooling-induced procedure. 

Approximately 60% of S1 neurons were unaffected by S2 inactivation but the remaining 

40% displayed some reduction in their response level. A similar study by Murray et al (36), 

in rabbits tested the effect of S1 inactivation on the neuronal activity in S2 (within the distal 

forelimb and hindlimb region) evoked in response to tactile stimulation. The vast majority 

(93%) of S2 neurons were unaffected by S1 inactivation, while only 7% showed a 

reduction in their response level. Thus, the ablation studies conducted in lower mammals, 

like cats and rabbits, provide similar results in favour of parallel processing of 

somatosensory information. 
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In contrast, studies in monkeys provide evidence for a serial processing scheme.  

Garaghaty et al (39) partially ablated the hand representation in area 3a and 3b of marmoset 

monkeys, and then recorded from S2 regions after the lesion. Their results showed that the 

somatotopically corresponding areas in S2 were no longer responsive to cutaneous 

stimulation of hand but other areas of S2, representing other body parts, remained 

responsive to tactile stimulation.  In a similar study, Burton et al (40) ablated the hand 

representation in primary somatosensory cortex (S1) of Macaca monkeys and recorded in 

ipsilateral second somatosensory cortex (S2) a year later. They found that significant 

portions of the S2 hand area were unresponsive to cutaneous stimulation of the hand, which 

suggests that S2 responses depend heavily on inputs from S1 for its activation even after 

such a long period following S1 ablation.  

As discussed in section 1-2, S1 comprises of 4 cytoarchitectonic subdivisions; areas 

3a, 3b, 1, and 2, with each area responsible for processing different components of 

somatosensory information. Areas 3b and 1 process mainly cutaneous inputs, whereas the 

other two process information from afferents coming from “deep” body tissues such as 

muscle (area 3a) and joints (area 2) (6). Pons et al (41) investigated the relative influence of 

each of these S1 areas on the responsiveness of neurons in the hand representation in S2 of 

macaques, using ablations of the hand representations in areas 3a, 3b, 1, and 2 in different 

combinations. Their results show that ablation of areas 3b and 1 resulted in S2 responsivity 

to only deep stimulation because only deep input were provided for S2, whereas ablation of 

3a and 2 yeilded strong S2 responses only to cutaneous inputs as the result of the absence 

of deep inputs. Combined ablation of cortical areas 1 and 2 only altered the ratio of 

cutaneous to deep receptive fields, but S2 neurons were still responsive to both cutaneous 

and deep input because area 3a and 3b relay the corresponding information to S2 hand 

region. The same was true for the combined ablation of 3a and 3b. It is interesting to reflect 

that other than the hand representation in S2, other areas remained intact in their 

responsivity to either cutaneous or deep stimulation. 
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Since several studies showed that in simian primates S2 responsiveness was 

abolished by surgical ablation of S1 and that S1 responses were significantly diminished 

following S2 lesions, these results seem to be in favour of hierarchical processing of 

somatosensory information in the parietal cortex. However results from studies in cats and 

rabbits are more in favour of parallel processing, suggesting that there may be fundamental 

differences between simian primates and other mammalian species in the organization of 

thalamo-cortical systems. It has been hypothesized by Pons et al (41) that there might have 

been an evolutionary shift from parallel processing in general mammals to serial 

organization in higher primates. In humans, evoked potential studies provide further 

information on this issue as discussed in the following subsection. 

1-3-1-3:  Evoked Potential Studies 

If the flow of somatosensory processing is serially organized, cortical responses in 

S1 and S2 should perhaps show considerable differences in their response latency to 

somatic stimulation. Various studies have used magnetoencephalography (MEG) or 

electroencephalography (EEG) to record sensory evoked potentials in an attempt to 

elucidate temporal relationships among the various cortical areas in the post-central gyrus 

in response to noxious and innocuous stimulation. These methods allow the localization of 

cortical sources as well as measurement of the time taken for the signal transfer in the 

brain.  

Although some MEG studies show simultaneous activation of S1 and S2 

(implicating a parallel mode of sensory information processing in S1 and S2), other studies 

contradict this idea. The reason for this controversy across studies may reflect the weak 

activation magnitude of S1 and thus the difficulty to find early S1 activity (42).  It has been 

further argued by Inui et al (42) that the weakness of S1 activity might be explained by the 

weaker stimulus intensity of noxious stimulation used in some studies. Since the level of 

activity of S1 nociceptive neurons has been shown to encode stimulus intensity, activation 
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by low intensity stimuli may be more difficult to detect with this method. In contrast, since 

S2 neurons may play roles other than intensity encoding, S2 responses may be easier to 

detect at lower stimulus intensity.  

Activation latencies of the various somatosensory areas following application of 

transcutaneous non-painful electrical stimulation has also been studied using MEG by Inui 

et al (30). The results show a significant shift of onset latency from area 3b to areas 1, 5 and 

S2 respectively. Although these results may imply a sequential mode of processing, one 

possible alternative explanation is that all these activations come directly from the thalamus 

and the observed response latency can be attributable to the different conduction velocities 

from the thalamus (as discussed by Inui et al in (30)). However, it has been shown in 

animals by Salami et al (43) that the latencies of thalamocortical afferents that convey 

information from the thalamus to multiple cortical areas are almost the same, irrespective of 

the distance. 

MEG recordings following application of painful and non-painful electrical 

stimulation to the hand have been analyzed to identify the source location and activation 

latencies within S1 and S2. Using this technique, Inui et al (42) found that the source 

locations for activation sites evoked by noxious and innocuous stimulation were relatively 

similar in S1 and S2, except that innocuous stimulation activated 2 sources in S1. Those 2 

sources in S1 had a short latency (<40 msec) and originated in area 3b and in area 1. Early 

activity following noxious stimulation was localized only in area 1, and in this case, the 

latency was longer than 85 msec (longer latencies for pain-evoked cortical activation are 

explained by the slower conduction velocities of peripheral nociceptive afferents, rather 

than differences in cortical interconnections).  S2 activation always followed S1 activity. 

Relative to S1 peaks, the onset latency of S2 responses were delayed by 29 ms and 35 ms 

following noxious and innocuous stimulation, respectively. Because of the significant 

difference in onset latency between S1 and S2, these results strongly favor serial processing 

for both nociceptive and tactile information. The response delays from S1 to S2 were 
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almost the same between innocuous (35 ms) and noxious stimulation (29 ms), which 

suggests that information from S1 to S2 is being transmitted through similar pathways, 

consistent with the dynamics of cortico-cortical connections. 

In another study by Kitamura et al (44), which focused on cortical responses to 

noxious stimulation, MEG was used to record somatosensory evoked magnetic fields (SEF) 

associated with ‘weak’ and ‘strong’ painful transcutaneous electrical stimulation delivered 

to the left sural nerve at the ankle. Early deflections (< 100 ms in latency) were located in 

S1 contralateral to the stimulated nerve, which was identified in both weak and strong 

stimulation sessions. A middle latency component (> than 100 ms) was also found in 

bilateral S2 and cingulate cortex – but only in the strong stimulation condition (two sources 

were described, one with a latency of 150 msec and the second with a latency of 250 msec). 

Following in this line of study, Kakigi et al (45) investigated SEF after stimulation applied 

to various body parts in five normal subjects. In agreement with the results from lower limb 

stimulation (44), stimulation of the right and left posterior tibial nerves at the ankle in all 

subjects resulted in early activation in the foot area of S1. Small middle-latency deflections 

were clearly identified in two subjects in the second somatosensory cortex (S2) in both 

hemispheres with 100 ms latency. The same temporal order of activation was also found 

following upper limb stimulation of the median nerve at the wrist or fingers. In conclusion, 

all these studies indicate that, following a painful stimulation, S1 is initially activated, and 

then S2 is activated with a delay of 30-50 msec, depending on the stimulation site.  

In brief, section 1-3-1 addressed the issue of intra-hemispheric connections of S1 

and S2. Section 1-3-1-1, discussed the increase in the complexity of neuronal RFs from S1 

to S2, consistent with the notion that S2 is a higher order processing unit. In section 1-3-1-

2, some ablation studies have been reviewed, which show that in higher order primates 

normal S1 and S2 activity is dependent upon their reciprocal interactions. And lastly the 

evoked potential studies described in subsection 1-3-1-3 showed that S2 is activated later 

than S1, which suggests that the dominant flow of information is from S1 to S2, in favour 
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of a serial processing scheme. In what follows (section 1-3-2), the inter-hemispheric 

connections in the somatosensory cortex are discussed. 

Section 1-3-2: Inter-hemispheric callosal connections 

1-3-2-1: Anatomical studies 

The Corpus Callosum (CC) is the main fiber tract that mediates communication 

between homotopic regions of somatosensory cortex. Anatomical investigations reveal that 

the macaque’s homologues of human S1 and S2 have dense callosal connections ((46),(47)) 

.These early studies found that the distribution of callosal fibers is not uniform, with 

midline structures of body representation (head, trunk, tail and proximal limb regions) 

having dense callosal connection and the distal limb regions having fewer commissural 

fibers (46).  As discussed in previous sections, S1 contains multiple somatotopic 

representations of the body surface, which are defined by individual architectonic fields, 

and these early studies also report that even within the connected zones, the density of 

callosal connections varies, with increasing density across areas 3b, 1 and 2 (46). Likewise, 

even within each architectonic field, the representations of hand and foot have fewer 

callosal connections than face and trunk (46).  

Recent studies, perhaps with the benefit of more sensitive anatomical techniques, 

describe callosal connections for peripheral body parts, in addition to those for midline 

structures, which were emphasized in the initial reports. In a study by Iwamura et al (31), a 

large number of neurons with bilateral RF have been found in the digit regions within the 

upper bank of the intraparietal sulcus. The RF of these neurons show very complex 

characteristic compare to neurons in the anterior part of post central gyrus that projects to 

them (31), which implicates the hierarchical processing of somatosensory information. 

These bilateral neurons could not be found after lesioning the postcentral gyrus in the 

opposite hemisphere. This suggests that bilaterality is the result of a transfer of 
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somatosensory signals from the contralateral hemisphere via callosal connections.  In a 

more recent study, Iwamura and colleagues ((33),(48)) describe a significant number of 

neurons with bilateral RFs in the hand, digits and lower extremity areas within the caudal 

part of post central gyrus in the awake monkey. Likewise, Taoka et al (49) found bilateral 

RFs in the hindlimb region of postcentral somatosensory cortex mostly in areas 2 and 5. 

The ipsilateral input for these bilateral receptive fields possibly reaches the cortex via 

callosal fibers from the contralateral site. Iwamura et al (48) also demonstrate that callosal 

connections are more dense and bilateral activity becomes more widespread and complex in 

S2 and in the caudal parietal areas.  This finding again supports the notion that these areas 

are involved in higher-order stages of processing of somatosensory information. 

In general, data from experiments on non-human primates ((46),(47)) strongly 

support the hypothesis that callosal connections are responsible for sensory activation of 

ipsilateral cortical sites after sensory afferent activity is relayed from the homologous 

somatic sensory area. In human subjects, latency studies have shown that ipsilateral 

activation that is elicited by tactile stimulation is delayed relative to the homototopic 

contralateral activation by a time lag corresponding to the interhemispheric transmission 

time (50). Therefore it is quite probable that anatomical and functional organization of the 

human and non-human primate somatosensory cortices would be similar. 

1-3-2-3:  Studies on Callosotomized and Acallosal patients 

The idea that peripheral sensory information from ipsilateral body sites reaches the 

ipsilateral hemisphere through commissural fibers of the corpus callosum can be 

investigated by studying the callosotomized patients (surgical section of some part or all of 

the corpus callosum) and acallosal individuals (individuals born without corpus callosum). 

Studying the patterns of cortical activation by imaging modalities as well as examining the 

performance of these patients in tasks that require interhemispheric integration of sensory 

inputs allows testing the contribution of the CC to this function. 
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Fabri et al (51) described a fMRI study in which 6 healthy and 3 callosotomized 

patients (complete callosotomy) were tested for their cortical responses to tactile and 

mechanical painful stimulation (pricking the palm with a sharp probe). The results show 

contralateral S1 and bilateral S2 activation in response to noxious stimuli in both patients 

and normal controls. The ipsilateral S2 response in the patients may implicate ipsilateral 

pathways or extra-callosal fibers conveying nociceptive information across hemispheres. 

The tactile condition only evoked contralateral activation in S1 and S2 in the patients but 

bilateral activation in S2 and contralateral S1 in the control group. This demonstrates that 

the inter-hemispheric transfer of non-nociceptive information depends more heavily on the 

integrity of the CC. 

In another study Fabri et al (50) reported an fMRI experiment conducted on 12 

callosotomized and 12 control subjects. Subjects received unilateral tactile stimulation, 

which consisted of brushing the subject’s palm and finger with a rough sponge. Three 

callosotomized subjects had a total resection of CC and nine had a partial resection only. 

Consistent with their late study, discussed above, results showed that unilateral tactile 

stimulation provoked contralateral activation in S1 and bilateral activation in S2 cortices in 

normal subjects. In the 3 split-brain patients and 7 of the partial callosotomy subgroup, 

there was a complete absence of S1 and S2 activation in the ipsilateral hemisphere, but 

contralateral activation was similar to those obtained in normal subjects. Activation in S2 of 

the ipsilateral hemisphere was observed only in two patients with intact splenium and 

posterior body of the CC.  

In a very recent study, Duquette et al. (52) tested two acallosal, one callosotomized, 

and six healthy control subjects in an fMRI study investigating cortical responses to both 

tactile and painful stimulation. Their paradigm consisted of 3 experimental runs of tactile 

stimulation (brushing of the subject’s calf) and 3 runs of thermal stimulation (noxious heat 

and innocuous warm stimuli). Bilateral tactile activation was found in S1 and S2 in some 

control and acallosal subjects but ipsilateral activation was not observed in the 
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callosotomized subject. This result suggests a reorganization of the touch system in 

acallosal subjects and the existence of compensatory mechanisms that may be responsible 

for the bilateral activation in these patients with a compromised CC. But consistent with 

previous reports, in the pain condition, all subjects including the callosotomized patient 

showed bilateral activation in at least 2 pain areas (S2, ACC, and/or in Insula). Bilateral 

activation in the callosotomized patient may indicate the potential independence of the pain 

system from callosal connections; however, since the study only included one 

callosotomized patient, their result cannot be generalized to normal subjects, as this could 

also reflect plasticity in the callosotomized patient. 

Fabri et al (53) recently investigated the relative contributions of different portions 

of CC for the transfer of tactile information. Anatomical studies on non-human primates 

had previously indicated that the CC is topographically organized with anterior fibers 

connecting the frontal lobes and the posterior fibers connecting temporal, parietal and 

occipital lobes (54). Consequently patients with a lesion at different locations of the CC 

should show deficits reflecting this organization. Consistently, Fabri et al (53) reported that 

callosotomized patients with resection in the posterior part of CC show tactile-evoked 

activations only in the contralateral hemisphere while patients with an intact posterior 

callosal body (PCB) show bilateral tactile-related activation like normal subjects. Aside 

from the imaging results, their neuropsychological data are also interesting. The “Tactile 

Naming Test” evaluates the participant’s ability to name tactile stimuli that are presented 

only to the left hand – i.e. evaluates the ability of tactile-related processing to transfer from 

the hemisphere contralateral to stimulation to the opposite hemisphere where it can be 

accessed by left-lateralized language areas. The results show that only the patients with 

intact PBC performed well, obtaining high scores in this test. This provides support for the 

notion that the interhemispheric fibers running through the posterior portion of CC are 

necessary to convey tactual information to the left hemisphere where its description can be 

verbalized 
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In section 1-3-2, we have provided a brief overview of the inter-hemispheric 

communication between homologous somatosensory cortices. Section 1-3-2-1 discussed 

some of the anatomical studies in support of callosal connections, and Section 1-3-2-2, 

reviewed imaging studies on callosotomized and acallosal patients. In brief these studies 

show the absolute absence of tactile-related activation or partial lack of pain-related 

activation in the ipsilateral S1 and S2 for callosotomized, while for normal subjects 

bilateral S2 activation has been observed. These results emphasize the role of CC for 

conveying the noxious and innocuous information to the ipsilateral regions. However, since 

in the pain condition, ipisilateral activation has been observed in some regions within the 

pain matrix in callosotomized patients, one other possibility would be that thalamocortical 

projections directly relay nociceptive input to the ipsilateral sites in these patients. But this 

possibility must be treated with caution, since it is based on very limited lesion data, 

therefore more conclusive evidence awaits additional studies of callosotomized patients and 

a more detailed analysis of neuronal networks of nociceptive processing. Causal modeling 

which we implemented in this study to investigate the nociceptive processing within the 

somatosensory cortex in normal subjects, tries to address the question of callosal transfer of 

information from a causal perspective. The mathematical detail of this modeling is 

discussed in the next chapter. 

 

 

 

 

 



 

Chapter 2- Dynamic Causal Modeling 

Section 2-1: Introduction 

Usually the main focus of neuroimaging studies is functional localization, in which 

a particular brain region is associated with a specific function. However this definition of 

functional localization is incomplete, since a cortical area does not work in isolation but is 

related to a particular cortical circuitry involved in achieving a specific sensory, perceptual, 

affective, cognitive or executive function. Recent approaches to functional integration 

model interactions among various specialized areas in order to study functional 

architecture. 

The numerous approaches that have been developed to study functional integration 

can be categorized into two main groups: functional connectivity and effective 

connectivity.  The approaches grouped under the term functional connectivity attempt to 

explain the activity in one area in relation to activity elsewhere by looking at correlations 

between the two. However a correlation between the two regions does not necessarily 

constitute direct evidence for integration between the two, since the correlation might be 

due to the involvement of a third structure which feeds into the two regions of interest, thus 

causing the correlation between them.  

The other group of approaches to the study of functional integration, effective 

connectivity, is focused on the causal influence that one neuronal population applies over 

the other. Integration among various regions is usually better explained and defined 

conceptually in terms of effective connectivity. The approach being described and used 

here; “Dynamical Causal Modelling” (DCM) belongs to this class of modelling. DCM is a 

method proposed by Friston et al (55) to test causal hypotheses about integration among 

specialized brain regions using functional imaging data. DCM models interactions among 

neuronal populations at a regional cortical level using fMRI time series.  The aim of this 

kind of modeling is to estimate the parameters associated with the strength of the 

connections among brain regions and to examine how that coupling is influenced by 
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changes in an experimental context (56). In general, by using DCM, one can hypothesize 

which pathway has been activated by experimental manipulation, as opposed to a cortical 

region that might be identified using a conventional General Linear Model (GLM) analysis 

(56).   

The following Section 2-2, provides a general introduction to system theory.  

Section 2-3 contains a complete description of the methodology together with a discussion 

of the assumptions and limitations of DCM. Section 2-4 describes the Bayesian scheme for 

the estimation of model parameters. The chapter finishes with a discussion of the different 

criteria used for model selection (Section 2-5). 

Section 2-2: A general introduction to System theory 

The dynamics of the brain and the interactions among its various regions can be 

framed from a “System” Perspective. In general, a system is a set of elements that interact 

with each other in a temporal manner (57). Assume a system that has n elements with a 

time-varient property ix  associated with each element. Each of these constituent elements 

ix )1( ni <<  is called a state variable. The state vector of the system is a vector of all state 

variables: )](),...,([ 1 txtxx nt = . The change in any state vector in time can be predicted 

from the current and past causal interactions among system’s elements. This can be defined 

by a set of ordinary differential equations. 
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In order to specify the if in the formula above, a set of parameter θ is needed. The 

function if  also depends upon the input to the system. Therefore the changes in the state 

variables caused by these inputs (u ) evolve temporally depending upon the pattern of 

interaction among system’s elements (57). The equation above should therefore be 

modified as follows: 
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The model provided by this equation describes the causal interactions of the system 

elements and external inputs of a dynamic system in time. One assumption in the model 

above is that the inputs (u ) are independent from each other; otherwise, the relation among 

inputs should be further explained by a differential equation like equation 2-1 (57). 

If the brain is considered as a system, the different cortical regions can be regarded 

as system elements, whose causal interactions we wish to understand. The input vector u 

would then be the experimental manipulations, such as sensory inputs or changes in 

instructions (e.g., attention). DCM, which is a system-based hypothesis-driven application, 

is described in the next section. 

Section 2-3: Dynamic Causal Modeling 

In this approach the brain is described as a multiple input - multiple output system 

where the inputs correspond to experimental manipulations and outputs are the regional 

brain responses measured by neuroimaging techniques such as the fMRI-derived regional 

blood oxygenation-dependent (BOLD) signal. The causal interactions among cortical areas 

are parameterized in order to explain the regional BOLD measurements obtained by the 

scanner. DCM utilizes a causal model by which neuronal activity in a given region causes 
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changes in neuronal activity in other regions in the model (via a pattern of interregional 

connections) and in its own activity by local self-regulatory connections (58). Additionally, 

any of these connections can be modulated by sensory inputs and contextual variables, such 

as a cognitive set (e.g. attention) implemented in the experimental design (58). The 

system’s parameters are not known, thus in brief DCM is a system identification 

procedure using a Bayesian scheme to estimate the parameters associated with each 

connection in the hypothesized model.  

DCM implements two models to test a causal hypothesis. The first is a model of 

neural dynamics that takes into account the intrinsic connectivity among various regions 

and the modulation in connectivity in response to experimental manipulations. This model 

constitutes the hypothesis. The second model is a hemodynamic model, which translates 

neural activity to hemodynamic response. The algorithm starts with a prior range that the 

parameters are likely to lie within and the aim of DCM is to adjust both the dynamic and 

hemodynamic parameters of the model in an iterative manner such that the estimated 

BOLD signals are maximally similar to the experimentally measured BOLD signals. The 

estimated parameters are then used to infer the strength of connection among the modeled 

regions. 

Details of the Dynamic Causal Technique are reviewed in greater depth below, in 

sections that discuss the neuronal dynamic model (Section 2-3-1) and the hemodynamic 

model that relates neuronal activity to BOLD signal (Section 2-3-2). 

Section 2-3-1: Description of the neuronal dynamic model in DCM 

DCM implements a differential equation to describe the neural dynamics in a 

system of L  interacting cortical regions. The neural state vector ]...[ 1 LZZZ =  describes the 

neuronal states at each region. The neuronal states are not direct neurophysiological 
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measurements but they characterize the mean activity of a region’s entire neuronal 

population (57).   

The “hidden” neural dynamics can then be defined by any differential equation:    

),,(
.

θuzFz =                                                                 (2-3)             (55)  

F is a nonlinear function that expresses the influence induced upon each region by 

activity z in all L brain regions and by external input u . θ  , is the parameter set of the 

model, which has to be estimated and whose value is required to infer the strength of 

coupling among regions.  

The Taylor expansion of Equation 2-3 would be: 
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If we neglect the higher order terms, equation 2-4 would be simplified as: 
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Where ju  is the thj  input (either stimulus or cognitive set) that enters the system 

and propagates through interregional connections. Matrix A contains fixed connectivity 

among the modeled regions, which is intrinsic to the network of areas and exists in the 

baseline condition of the experimental design. However, since it is a state that is changed as 

a function of the experimental manipulations, this intrinsic coupling may be specific to each 

experiment (55) and dependent on the context of experimental design. mBB ,...,1   
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parameterize the modulation of intrinsic connections by any experimental manipulations. 

Lastly matrix C depicts the strength of direct driving inputs to the modeled system (e.g., 

sensory stimulus). The units of all parameters are in hertz (HZ), and thus the inference for 

strong connection relates to an influence that is expressed quickly in time (55).  

],,[ CBA jC =θ  is the connectivity or coupling matrix that constitute the hypothesis and we 

wish to identify.     

A main conceptual aspect of DCM concerns the ways experimental inputs should 

enter the model and cause neuronal responses. Based on the description of dynamics of the 

interacting regions, the inputs can cause responses in one of two ways (56): 

1) They can act directly on some specific anatomical regions, as specified in matrix C. 

2) They can evoke a response through modulation of coupling among different anatomical 

regions, as specified in matrix B. 

It is interesting to note that conventional analysis of fMRI data (e.g., GLM) 

supposes that all inputs have direct access to all brain regions. Thus, conventional analysis 

assumes that activations observed in all regions are caused directly by experimental inputs, 

whereas in DCM analysis the modeler specifies the regions in which the inputs might apply 

their direct effect and how that effect might be propagated by modulation in the intrinsic 

connectivity pattern. 

To further demonstrate how the underlying neuronal response in each region ( z ) is 

estimated according to this model, an example is given in Figure 2-1. This figure shows an 

hypothesis of a network comprising of 5 regions ( 1z  to 5z ) with 2 inputs ( 1u and 2u ). Input 

1, is a stimulus acting directly on region 1, while the 2nd input which is a cognitive set, 

modulates the connection from region 2 to 4 as well as region 3 to 2. 
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           Figure 2-1. Model of neural dynamic (55) (figure is taken with permission) 

Therefore in Equation 2-6 below (written in a matrix format) the non-zero elements 

in matrix A, B, and C specify the modeler’s hypothesis about the structure of the neural 

network involved. In this way the modeler decides which connections are likely to be 

present, where the modulation is expected to act, and where it is probable for the direct 

effect of inputs to exert an effect. After estimation of the parameters, which is discussed in 

section 2-4, a statistical method is used to determine which of the modeled connections 

(parameters) are necessary and sufficient to evoke the observed BOLD response. 
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Section 2-3-2: Hemodynamic model in DCM 

As we are dealing with fMRI data, the neuronal activity in each region described in 

the previous section should be translated to a hemodynamic signal. Therefore the model 

describing the neuronal dynamic should be combined with another model that relates the 

neuronal activity with the BOLD signal. The hemodynamic model used in DCM is 

basically a Single Input Single Output (SISO) system with neuronal activity z as input and 

the BOLD signal as output. This biophysical model describes the physiological changes 

accompanying neuronal activation.  

The hemodynamic signal is an indirect measurement of the neural activity. It is a 

consequence of a series of indirect effects relating to the changes in some physiological 

factors (59): 1) changes from neuronal activity z  to the changes to cerebral blood flow f ; 

2) changes in f  to changes in cerebral blood volume v ; 3) changes in f  and v  to changes 

in cerebral oxygen consumption rate; and 4) changes in oxygen consumption rate leading to 

the changes in the venous deoxyhemogolobin content q . There are 4 equations with 5 

hemodynamic parameters in total that describe this model which are discussed by Stephan 

et al in (60).  

Section 2-4: Rephrasing the problem in the Bayesian Inference 

Scheme 

Based on the combined neurodynamic and hemodynamic model, the BOLD signal 

of each region can be predicted if the values of the coupling parameters are known. 

According to the Bayesian scheme, the value of the connectivity and hemodynamic 

parameters ( Cθ , Hθ ) is initialized at some prior range, which is empirically derived. These 

constraints which are defined with a Gaussian distribution (called a prior distribution), 

eventually form a posterior distribution according to Bayes’ Rule.  Subsequently, the 
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parameters are updated through an iterative procedure, so as to minimize the difference 

between the predicted and actual time courses. The inference about the intrinsic or 

modulatory connectivity is based on the posterior density that is obtained according to 

Bayesian estimation.  

                     (2-7)             (58) 

 

       In the equation above, y stands for data, m  for model and θ  for parameter. The 

parameter vector which we are aiming to identify is ],[ HC θθθ =  . The next section 

provides a short description of the priors in DCM followed by a discussion of the 

maximization algorithm used for the estimation of the Posterior distribution.  

Section 2-4-1: Priors  

Based on the constraints that are described in this section, a prior distribution for 

each connection in A and jB  and C is assigned, which takes the form of a normal 

distribution. ],,[ CBA jC =θ  is the connectivity or coupling matrix that we wish to identify. 

),0()( aik vNAp =  

),0()( b
j

ik vNBp =  

),0()( cim vNCp =  
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1-Prior on the self connections   

In DCM, one assumption is that the self connections for all brain regions have the 

same prior probability distribution (56). According to the neurodynamic model in DCM, 

the neural signal decays with an exponential function. As discussed by Friston (56), the 

prior distribution for the self-connection is constrained to have a half-life of approximately 

500 ms, falling in the range of 300 ms to 2 s (The time required for the neural signal to 

reaches half of its total duration is called the half-life of neural transient.). This is shown in 

Figure 2-2.                                                                                             

 

  Figure 2-2. Prior distribution of self connection (56) (figure is taken with permission) 

2-Priors for the stability of the system    

It is evident that neuronal activity cannot diverge to infinite values. Therefore in the 

absence of inputs, the dynamic must return to a stable mode. The prior variance av  is set to 

guarantee stability (58). The coupling parameters have a prior distribution with zero mean 

(58), so the value of the posterior parameters would shrink towards zero (the mean), based 

on the prior variance av  (58). 
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3-Hemodynamic priors 

           The mean and variance of the 5 hemodynamic parameters, have been empirically  

derived (56). 

Table 2-1. Prior on biophysical parameters (56) (table is taken with permission) 

 

                           

Section 2-4-2: Estimation of the parameter posteriors 

As mentioned previously, according to Bayes’ rule, the posterior distribution is 

equal to the likelihood times the prior divided by evidence ( m  stands for model), 

)|(

)|().,|(
),|(

myp

mpmyp
myp

θθθ =                                                    (2-8)          (58) 

Taking logs gives: 

)|(log)|(log),|(log),|(log mypmpmypmypl −+== θθθ      (2-9) 

The parameters that maximize the objective function l  can be found using a Gauss-

Newton optimization scheme (58). The goal of this optimization is to estimate the mean 
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and covariance of the posterior density. This posterior density is required to infer about the 

strength of the connections.  

Section 2-4-3: Hyper parameters of the error covariance 

Error covariance should consist of what is left over after everything has been 

explained by the model. But since the algorithm starts with priors and then moves to the 

posterior density that minimizes the error, it is obvious that until the very last iterations, 

error covariance might perhaps consist of some patterns. In other words, when the model 

does not match the data completely, the error is not random noise, but can instead be 

written in terms of specific parameters. 

One very simple example of hyper-parameters is when ICov 2)( σε = . In this case, 

error covariance does not consist of noise but rather has a variance of σ . In DCM, the error 

covariance is assumed to have the following form: 

kk QQQCov λλλε +++= ...)( 2211                                            (2-10)     (56) 

Where variance componentsQ  model the error through some hyper parameters λ . 

Section 2-4-4: Expectation Maximization Algorithm (EM) 

The optimization procedure which is discussed by Penny et al in (58) is called the 

EM algorithm and consists of 2 steps. In the E step, the mean and covariance of the 

parameters are being updated while the hyper-parameters of the error covariance are kept 

constant, and in the M step, the mean and covariance of the parameters are kept constant 

and the hyper-parameters are updated (58). The model parameters are initialized to the 

mean of the prior distribution and the EM procedure is performed iteratively until the 

maximum posterior density of the parameters (the most likely parameters, given the data) is 

obtained (58). 
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Section 2-4-5: Interpretation of the result  

The posterior probability density of the parameters ),|( myp θ , given the data )( y  

and model )(m , is thus obtained through the EM algorithm. After each parameter is 

characterised by a Gaussian distribution with a mean ( θη ) and covariance, its mean can be 

compared statistically against a chosen threshold γ. This threshold can be chosen as a 

function of the expected half-life of the neural process (e.g. γ = (ln 2) / τ) (61). Therefore, 

using one model, the modeler can say with what probability a parameter exceeds the 

threshold. Usually, a 90% confidence threshold is used to infer that a specific connection 

exists in the model. 

 

                                          Figure 2-3-posterior probability density 

Section 2-5: Comparison of different models 

Within the framework of the Bayesian scheme, the modeler can compare the 

competing hypotheses and conclude which of the several alternative models is optimal, 

given the data. Basically the comparison between the 2 models is decided using the Bayes 

factors. Given models im = and jm = , the Bayes factors comparing model i  to model j  

are defined as the ratio of model evidences (58): 

)|(

)|(

jmyp

imyp
Bij =

==                                                          (2-11) 
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Where )|( jmyp =  is the evidence for model j . 

It has been discussed by Penny et al (58) that, as in classical statistics a cut-off value 

of 0.05 is conventionally used (p<0.05); likewise some threshold (Bayes Factor of 3) is 

used in DCM analysis for model comparison. The table below is used for the interpretation 

of the Bayes factors comparing one model versus the other. 

              Table 2-2. Interpretation of Bayes Factors (58) (table is taken with permission) 

 

 

There are different criteria for comparing the competing hypotheses and deciding 

which model provides the best explanation of the data.  An absolute model fit is one of the 

criteria often taken into account when assessing model goodness. However, in order to get 

the smallest possible error (absolute model fit), the number of parameters in the model 

should be increased, resulting in increased model complexity and therefore over-fitting the 

data. This notion is depicted in the Figure 2-4.  Thus, in order to explain the data properly 

there should be an optimal balance between accuracy and complexity. 

The model evidence can be decomposed into 2 terms: accuracy, which quantifies 

model fit, and complexity, which explains the redundancy of model parameters. 

)()()|(log mComplexitymAccuracymyp −=                           (2-10)            (58)  
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Since there is no analytical solution for model evidence, approximations are 

required (58). For DCM the two approximations that are often used are: Bayesian 

Information Criterion (BIC) and Akaike Information Criteria (AIC) (58). 

The best model (The one with the highest evidence) should show a good 

compromise between accuracy and complexity. This is depicted by the middle graph in the 

Figure 2-4 below. Generally, BIC favors simple models, while AIC favors complex models 

(58); this can lead to disagreement between the two. Penny et al. (58) have suggested a 

conservative strategy, which is to calculate the Bayes factors according to BIC and AIC 

criterion and to make a final decision if both factors agree (58). 

   

  Figure 2-4. Model fit versus model complexity (65) (figure is taken with permission) 
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Chapter 3- Hypotheses  

This chapter summarizes all hypotheses that were tested in this study. In total, we 

performed 3 series of modeling. Series #1 included bilateral S1 and S2 (4-Region network), 

series #2 included only contralateral S1 and bilateral S2 (3-Region network), and series #3 

contained only contralateral S1 and S2 (2-Region network).  

Section 3-1 describes the 12 hypotheses for the 4-Region network, which includes 

the intrinsic, modulatory and extrinsic connectivity patterns of activity. Since not all 

subjects showed bilateral activation in S1 and S2, additional models were tested including 

3-Region and 2-Region networks (see section 3-2). 

Section 3-1: Hypotheses for 4-Region network 

With the aim of testing causal hypotheses of interactions between S1 and S2 in the 

context of pain, we systematically tested a set of 12 models of integration between S1 and 

S2, including inter- and intra-hemispheric connections, using data recorded while subjects 

were receiving painful stimuli (electric shock) on their right leg. We divided our models 

into 4 categories based on candidate locations of pain modulation within the modeled 

systems. The following subsections contain a description of the intrinsic connectivity 

pattern, as defined for our DCM analysis (section 3-1-1), a discussion of the 4 categories 

based on where modulation may occur within the intrinsic network (section 3-1-2), and a 

discussion of the extrinsic influence of painful stimulation for the 3 models per category 

(section 3-1-3).  

Section 3-1-1: Intrinsic Connectivity   

Because of the reciprocal nature of inter-hemispheric connections through the corpus 

callosum, we assumed the presence of a reciprocal callosal connection between 
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homologous regions of S1 and S2 in all the models that we tested for intrinsic connectivity 

(Figure 3-1).  Furthermore, since the anatomical relation between S1 and S2 has been well 

established, we also assumed reciprocal connections between S1 and S2 within each 

hemisphere. (The self-connection in each region is one of the assumptions of DCM: see 

Chapter 2 for discussion).  

                                            

                                   Figure 3-1. Intrinsic Connectivity 

Section 3-1-2: Modulatory Connectivity 

We tested 4 categories of models based on where we hypothesized that pain would 

modulate the intrinsic connectivity pattern. In the Category 1 we tested the hypothesis that 

only the left (contralateral) side of the network (S1L-S2L) would be modulated during the 

period that subjects were receiving painful stimuli. This modulatory effect is depicted by 

the blue arrows in the Figure 3-2. Since self-connection is one of the assumptions of DCM, 

we assumed that the modulation of pain would also influence the self-connections in all 

categories. 

                                               

 Figure 3-2. Category 1- Modulatory Connectivity (Black lines represent the intrinsic 
network and Blue lines represent the modulatory connectivity) 
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For Category 2, we added S2L-S2R reciprocal modulatory connectivity to that 

described in Category 1 (with self modulatory connectivity in S2R). We systematically 

added S1R-S2R for Category 3 and S1L-S1R for Category 4. Thus Category 4 consists of a 

model in which modulation occurs everywhere in the intrinsic network (Figure 3-3). 

               

Figure 3-3. Modulatory connectivity: Category 2, Category 3, and Category 4 (from left to 
right respectively)    

 

          The value of a modulatory parameter is added to the value of the intrinsic connection 

it refers to.  Therefore, a negative modulatory value means that there is a context or 

sensory-specific reduction in the strength of the endogenous connection.  

      

Section 3-1-3: Extrinsic connectivity 

Each of the 4 categories consists of 3 models in which we tested where the direct 

effect of the nociceptive stimulus would enter the model. In a conventional General Linear 

Model (GLM) analysis it is assumed that the external input has direct access to all regions 

in the brain, whereas in causal modeling we can test this directly by modeling all possible 

cases.  The first model hypothesized a direct effect of pain only in S1L, whereas in the 

second model, we hypothesized a direct effect of pain in S1L and S2L. In the third model, 

we tested direct input to S1L, S2L and S2R; therefore this model directly tested whether the 
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thalamo-cortical input to S2 is redundant, given the input coming from S1, or if it is indeed 

necessary to explain the data.  This driving effect of the pain stimulus is depicted with a red 

arrow in Figure 3-4 which shows one of the 12 tested models: model 1, category 1. All 12 

models in the 4-Region network hypothesis are depicted in figure 3-5 

                                     

                                       Figure 3-4. Model 1 of Category 1  

 

Section 3-2: All the Models Tested 

This section provides a summary of all the series of modeling. Eleven subjects 

participated in the study, and three levels of stimulation were applied:  Level-3 (moderately 

painful), Level-2 (slightly painful), and Level-1 (non-painful). Details about the stimulation 

paradigm and the 3 levels of stimulation are provided in chapter 4 (Methods).  In order to 

test a series of connectivity models we extracted the regional time courses based on the 

criteria that are described in section 4-5. If no voxel met these criteria for one of the regions 

during a subject’s functional run, that subject was excluded from the 4-Region network 

DCM analysis. Since not all subjects showed bilateral activation in S1 and S2, additional 

models were tested including 3-Region and 2-Region network (see below). 
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Series #1:  4-Region network 

For the Level-3 pain dataset, all 4 regions were clearly activated across all subjects, 

however, for the Level-2 pain condition there was no activity for S1R for 2 subjects, and 

for the Level-1 run, S1R activity was not observed in many subjects. We therefore tested 

the 4-Region network hypothesis for both Level-3 (11 subjects) and Level-2 pain sessions 

(9 subjects), but not for the Level-1 condition. The 12 models for this series of modeling 

have already been described in section 3-1 and depicted in figure 3-5. 

Series #2:  3-Region network 

In order to confirm whether S1R contributes to a prediction of responses of the 

regions in the network or if it simply introduces redundant information, we also tested a 

series of 3-Region network hypothesis (excluding S1R) for all the functional runs. This 

resulted in 6 possible models per subject (see Figure 3-6). 

Series #3:  2-Region network 

As will be shown in Chapter 5, for the Level-1 stimulus condition a bayesian 

comparison across the six models in the 3-Region network did not provide any winning 

model, which may suggest that S2R provides unnecessary information for response 

estimation across the network, for this dataset. Since fMRI activity was also relatively weak 

for the ipsilateral sites for both S1 and S2 (low t-values in the GLM results), we tested a 

series of 2-Region network for only the Level-1 stimulus condition by considering only 

contralateral regions. This resulted in 2 models per subject with inputs to S1L or both S1L 

and S2L. The 2-Region network hypothesis is shown in Figure 3-7. 
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   Model 1                          Model 2                                 Model 3 

            

 Model 4 Model 5 Model 6 

         

 Model 7 Model 8 Model 9 
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 Model 10 Model 11 Model 12 

              

Figure 3-5. Models 1 to 12 (left to right, top to bottom) in the 4-Regions modeling;    
Models 1-3 belongs to Category 1, Model 4-6 belongs to Category 2, Models 7-9 belongs 
to Category 3, and Models 10-12 belongs to Category 4. Thin black lines represent intrinsic 
connectivity, Thick blue lines represent modulatory connectivity and Red lines represent 
extrinsic influence of pain on the network. 
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 Model 1 Model 2 Model 3 

       

 Model 4 Model 5 Model 6 

      

Figure 3-6. Models 1 to 6 (left to right, top to bottom) in the 3-Regions modeling;         
Model 1-3 belongs to Category 1, and Models 4-6 belongs to Category 2. Thin black lines 
represent intrinsic connectivity, Thick blue lines represent modulatory connectivity, and 
Red lines represent the extrinsic influence of pain on the network. 

 

 

 

 

 

 

 

 

 



 

 

58

 

 Model 1   Model 2 

          

Figure 3-7. Models 1 and 2 (left to right) in the 2-Region modeling;                   
Thin black lines represent intrinsic connectivity, Thick blue lines represent modulatory 
connectivity and Red lines represent the extrinsic influence of pain on the network. 
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Chapter 4- Methods 

Section 4-1: Subjects 

Eleven healthy volunteers participated in the study (three males and eight females; 

mean age 26.9 years; SD, 4.7). Prior to the scanning sessions, all participants were 

familiarized with the stimuli and the pain evaluation procedure in an MRI simulator. The 

Research Ethics Board of the “Centre de recherche de l’Institut de gériatrie de Montréal” 

approved the study. All participants gave written informed consent and received a 

compensation of 50$ for the brain imaging session. 

Section 4-2: Stimulation Paradigm 

Transcutaneous electrical stimulation was delivered with a Grass S48 square-pulse 

stimulator (Astro-Med Inc., West Warwick, RI, USA) connected to a custom-made 

constant-current stimulus-isolation unit. The stimulator was equipped with a custom-made 

RF filter preventing artefacts in fMRI data. The stimulation consisted of a 30 ms train of   

ms pulse, delivered on degreased skin over the retro-maleolar path of the right sural nerve 

by means of a pair of 1  custom made surface electrodes (interelectrode distance: 2 cm). 

Individual RIII reflex thresholds were determined using the staircase method. Stimulus-

level determination and RIII reflex thresholds were performed after positioning the 

participant in the scanner and before the acquisition of functional images. In each 

functional scan, 40 stimuli were delivered with a pseudo-random ISI of 6, 9, 12 or 15s. The 

electrical stimuli were synchronized to the image acquisition with a script running in E-

Prime (Psychology Software Tools, Inc., Pittsburgh, PA, USA). 

Three levels of stimulation were applied; Level-3 (moderately painful), Level-2  

(slightly painful), and Level-1 (non-painful) in a randomized order and subjects did not 
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perform any task during the scanning sessions.  For Level-3, noxious stimulus intensity was 

set to 150% (mean ± SD: 15.3 ± 4.5 mA) of the RIII reflex threshold to evoke a robust RIII 

response, which was felt as moderately painful. For Level-2, noxious stimulation was 

performed at lower stimulus intensity and was set to 120% of RIII reflex threshold (12.5 ± 

4.4 mA), which was felt as slightly painful. For Level-1, innocuous stimulus intensity was 

set to 80% of RIII threshold. 

Section 4-3: fMRI acquisition parameters 

Imaging data were acquired at “Unité de neuroimagerie fonctionnelle” of the 

“Centre de recherche de l’Institut de gériatrie de Montréal” on a 3T Siemens Trio scanner 

(Munich, Germany) using a CP head coil. The head of the participant was stabilized in a 

comfortable position using a vacuum bag. Participants were instructed to refrain as much as 

possible from moving throughout the imaging session and were given earplugs to reduce 

the noise from the scanner. The anatomical scans were T1-weighted high-resolution scans 

[repetition time (TR): 13 ms; echo time (TE): 4.92 ms; flip angle: 25°; field of view: 256 

mm; voxel size: 1 x 1 x 1.1 mm]. The functional scans were collected using a blood oxygen 

level-dependent (BOLD) protocol with a T2*-weighted gradient echo-planar imaging 

sequence (TR: 3.0 s with an inter-volume delay of 500 ms; TE: 30 ms; flip angle: 90°; 64 x 

64 matrix; 130 volume acquisitions). Electrical stimuli were always administered during the 

inter-volume delay, thereby avoiding any potential contamination of fMRI images by 

shock-induced artefacts or potential contamination of EMG recordings by RF-pulse 

artefacts. The scanning planes were oriented parallel to the anterior-posterior commissure 

line and covered the entire brain from the vertex of the cortex to the first segments of the 

spinal cord (41 contiguous 5-mm-thick slices; voxel size, 3.44 x 3.44 x 5 mm). 
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Section 4-4: GLM Analysis 

The brain imaging data were analyzed using SPM2 

(http://www.fil.ion.ucl.ac.uk/spm/) running in Matlab version 7.1. Pre-processing included 

slice-time correction and realignment. Anatomical and functional images were then 

spatially normalized to a standard stereotaxic space using the MNI template. Subsequently, 

functional images were spatially smoothed using a Gaussian kernel twice the voxel size 

(FWHM: 7 x 7 x 10 mm) and temporally filtered using a high-pass filter with a cut-off 

period of 128s.  They were then corrected for serial autocorrelation using the AR(1) 

correction implemented in SPM. For each participant, stimulus-related activity was 

identified with an event-related design by convolving a vector of the onset timings for each 

stimulus with a canonical hemodynamic response function (hrf). The general linear model 

was used to model the effects of interest.  

Group analyses were conducted using random-effect models with contrast images of 

individual-subject effects. The responses evoked by noxious stimulation were assessed by a 

random-effect one-sample t-test, using images of stimulus-evoked responses from each 

subject. This analysis provided a non-specific map of cerebral responses to noxious 

stimulation and confirmed that the electrical stimulus produced a brain activation pattern 

consistent with previous pain imaging studies.  

Section 4-5: ROI definition 

In a DCM analysis the first step is to extract the time-series of BOLD measurements 

from the regions of interest (ROIs) identified in the GLM analysis. These are the time 

courses that we wish to estimate based on the causal model described in chapter 2. The 

ROI’s have been selected based on the GLM group maps and anatomical landmarks, which 

are discussed in this section. 
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The group analysis showed significant shock-evoked activation in bilateral S1 and 

S2. The activation maps of each individual for each stimulation level were then thresholded 

at p<0.05 to identify activated voxels within the target anatomical structures and in the 

vicinity of the group activation peak. The peak activation voxel in each area and for each 

run was selected as the center of the ROI. Time-course data were determined by the 

average of the first eigenvariates of the stimulus-evoked GLM responses across voxels 

contained within a radius of 5mm from the center of the ROI. To insure that the target 

regions were consistently selected across subjects, we used strict anatomical landmarks to 

select the ROIs (the coordinates of the ROIs of each subject are given in the Appendix). For 

S1, we searched for activated voxels in the putative foot area within the superior part of the 

post central sulcus, including the posterior part of the paracentral lobule in the medial 

surface of the hemisphere. For S2 we looked in the parietal operculum at the bottom of the 

post-central gyrus, including the posterior part of the dorsal bank of Sylvian fissure. 

If no voxel met these criteria for one of the regions in a subject’s functional run, that 

subject was excluded from the 4-Regions DCM analysis. Since not all subjects showed 

bilateral activation in S1 and S2, additional models were tested including 3-Region and 2-

Region networks, as discussed in Chapter 3. 

Section 4-6: DCM Analysis 

DCM analysis was performed using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/).  

Based on the hypotheses discussed in Chapter 3, we first specified the connectivity patterns 

including intrinsic, modulatory and extrinsic patterns for each of the models. For model 

specification, slice-time correction has also been taken into account, by entering the precise 

time at which each region was scanned based on the slice acquisition order, sampling time, 

and the spatial coordinates of each region in each subject. The next step was to make the 

model estimation.  
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For the model estimation, we used a default threshold (γ) of zero (as discussed in 

Section 2-4-5). This default threshold corresponds to the time of regional communication 

(τ) of   (γ = (ln 2) / τ). Our aim was to test whether each connection in our model 

contributes to predict the regional responses. In simple terms, we asked a generic question 

about whether neural processing was happening at all (i.e. γ > 0) for each regional 

interaction that we modeled in our network. Those regional connections are represented by 

coupling parameters. The next step involved estimating the corresponding probability that 

each connection would exceed the threshold.  

The 2nd level analysis evaluated whether the connections were expressed 

consistently across the subjects. For this we used a classical between-subjects analysis, 

applying a one-sample t test to the corresponding posterior estimates of each parameter 

across all subjects (62). Our statistical threshold was p<0.05.  The estimated time courses 

for each region per subject were also extracted for the 2nd level analysis. At the next level 

we performed a model comparison per subject. The Bayes factors for each comparison per 

subject, was extracted from the Matlab output.  

For model comparison, we used the BIC criterion to select the optimal model across 

subjects for all 3 levels of stimulation (see Chapter 5 for results). However as discussed in 

Chapter 2, Penny et al (58) suggest that the optimal model should have a good balance 

between model accuracy and complexity, and the well established BIC and AIC criteria 

favor simplicity and accuracy, respectively (62). Since there might be disagreement 

between the two criteria, they have suggested another conservative strategy, which 

calculates the Bayes factors associated with BIC and AIC criteria and makes a final 

decision only if both factors agree (58). Thus for each comparison per subject we also 

extracted the Bayes factors based on this conservative criterion. However, our results show 

that this criterion could be relied upon to make a conclusion in favor of one model only for 

Level-3 scans (this result is given in the Appendix, Table A-1). For Level-2 and Level-1, 

there was disagreement for many subjects between BIC and AIC, and thus no firm 
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conclusion could be made for model selection (in these cases there is no Bayes factor as the 

output of the model comparison, since BIC and AIC disagree). Thus, for all classes of 

modeling (4-Region, 3-Region and 2-Region network) we only report the BIC model 

comparison in the results (Chapter 5) 

An established convention for favouring one model versus another is when the 

value of BF comparing the two is greater than 3. Thus for each subject in the group, we first 

computed pair-wise comparisons between all models. Since it is likely that the optimal 

model will vary to some degree across subjects, the decision based on Bayesian Model 

Selection for the group’s optimal model has been made using the following 2 measures as 

proposed by Stephan et al (62). 

1- Group Bayes Factor (GBF): A GBF has been computed across subjects by 

multiplying the individual BF (62). Thus the first measure for a group’s optimal model is 

when the GBF is greater than 3. 

2- Positive Evidence Ratio (PER):  However, the GBF can not be relied upon if 

there exists strong outliers (a subject with very high BF). In such cases, an additional 

complementary measure has been proposed (62), which looks at whether the BF passed the 

threshold for positive evidence for either of the compared models. This is simply a ratio of 

the number of subjects that pass the BF criterion of 3 for the two compared models. 
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Chapter 5 – Results 

 

Overall we tested a series of twelve 4-Region models for Level-3 and Level-2 pain 

sessions, a series of six 3-Region models for Level-3, Level-2 and Level-1 sessions, and 

finally a series of two 2-Region models only for the Level-1 dataset. 

This chapter contains a description of the results of the group GLM analysis 

(Section 5-1), followed by the results of the optimal group model selection for the DCM 

analysis (Section 5-2).  Section 5-3 summarizes the estimated network of the optimal group 

model, and Section 5-4 describes the optimal model in terms of the power of its estimation 

of the regional time series in the model. Lastly, the 2nd level analysis of the connectivity 

parameters is reviewed in Section 5-5. 

Section 5-1: GLM results 

In this section, the GLM results of the random effect analysis for Level-3, Level-2 

and Level-1 are shown in Figures 5-1, 5-2, and 5-3 respectively. Figures 5-1 and 5-2 

demonstrate the bilateral S1 and S2 activity in the group maps (threshold of 0.01, FDR 

corrected) for Level-3 and Level-2 pain sessions.  For Level-1 (the non-painful condition), 

the threshold for the group t maps is 0.05 (FDR corrected) in Figure 5-3, since a threshold 

of 0.01 would not reveal any regional activation. However, the regional time courses have 

been extracted using each subject’s functional t maps, based on the criteria discussed in 

chapter 4. 
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 Figure 5-1. Group t-map of GLM results for Level-3 stimulation (Threshold of 0.01 FDR 
corrected). Arrows indicate sites of significant activation in S1 and S2, contralateral (c) and 
ipsilateral (i) to the stimulated site (right sural nerve). 

 

 

 

 

Figure 5-2. Group t map of GLM results for Level-2 stimulation (Threshold of 0.01 FDR 
corrected). Arrows indicate sites of significant activation in S1 and S2, contralateral (c) and 
ipsilateral (i) to the stimulated site (right sural nerve). 
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Figure 5-3. Group t map of GLM results for Level-1 stimulation (Threshold of 0.05 FDR 
corrected). Arrows indicate sites of significant activation in S1 and S2, contralateral (c) and 
ipsilateral (i) to the stimulated site (right sural nerve). 

Section 5-2: Group Model Comparison 

A systematic comparison of each model against every other model demonstrated 

that the first 3 models (Category 1) provided the best prediction of network activity (very 

high Bayes Factors comparing Category 1 versus the rest of the models). In this section the 

results of the optimal model selection for the group analysis for Level-3, Level-2 and 

Level-1 session are discussed in Sections 5-2-1, 5-2-2 and 5-2-3, respectively. The 2 

measures, Group Bayes Factor (GBF) and the Positive Evidence Ratio (PER) (discussed in 

Chapter 4), have been utilized for the optimal group model selection. 

5-2-1- Level-3 condition  

Based on the BIC criterion, Model 1 proved to be superior across all model 

comparisons using the Level-3 pain dataset for both 4-Region and 3-Region modeling. This 

optimal group model is discussed in section 5-3.  The results of this model comparison are 

shown in Tables 5-1 and 5-2 respectively; the majority of subjects show high Bayes factors 
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when comparing Model 1 to the rest of the models, which is indicative of consistency 

across subjects. 

Table 5-1. Bayes Factors comparing Model 1 versus all the other 4-Region models, Level-3 
condition. Comparison is for each subject (Subject 1-11), and across all subjects using the 
GBF and PER (Bayes Factors greater than 3 are highlighted) based on the BIC criterion. 

 

 

Table 5-2.  Bayes Factors comparing Model 1 versus all the other 3-Region models, Level-
3 condition. Comparison is for each subject (Subject 1-11) and across all subjects using the 
GBF and PER (Bayes Factors greater than 3 are highlighted) based on the BIC criterion. 

 

 

5-2-2- Level-2 condition 

As was the case for the Level-3 condition, Model 1 proved to be superior (based on 

the BIC criteria) across all our model comparisons using the Level-2 pain dataset for both 

4-Region and 3-Region modeling, as depicted in Tables 5-3 and 5-4, respectively. As is 

clear from the PER values, data from the majority of subjects agreed in favor of Model 1. 
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Table 5-3.  Bayes Factors comparing Model 1 versus all the other 4-Region models, Level-
2 condition. Comparison is for each subject (Subject 1-11), across all subjects using the 
GBF and PER (Bayes Factors greater than 3 are highlighted), based on the BIC criterion. 
(No stimulus-evoked activity was detected on the ipsilateral S1 in subjects 1 and 7 in the 
conventional GLM analysis with a P-value < 0.05 uncorrected) 

 

 

Table  5-4: Bayes Factors comparing Model 1 versus all the other 3-Region models, Level-
2 condition. Comparison is for each subject (Subject 1-11), across all subjects using the 
GBF and PER (Bayes Factors greater than 3 are highlighted), based on the BIC criterion. 

 

 

5-2-3- Level-1 condition 

As mentioned earlier, many of our subjects lacked ipsilateral activation of S1 for the 

Level-1 condition, thus the 4-Region models could not be tested for this dataset. The group 

result of model comparisons for the 3-Region models for this dataset is depicted in Table 5-

5. When Model 1 is compared with Model 2 and Model 3, the result is not consistent across 

subjects, and for many subjects no model is preferred for this comparison. Thus the group 

result could not provide any superior model. This leads us to exclude ipsilateral regions 

completely. We therefore tested a set of 2-Region models only for the Level-1 sessions. As 



 

 

70

 

is shown in Table 5-6, for the 2-Region modeling, Model 1 is superior to Model 2 except in 

the case of 1 subject.  

Table 5-5. Bayes Factors comparing Model 1 versus all the other 3-Region models, Level-1 
condition. Comparison is for each subject (Subject 1-11), across all subjects using the GBF 
and PER (Bayes Factors greater than 3 are highlighted), based on the BIC criterion.  (No 
stimulus-evoked activity was detected on the ipsilateral sites in subjects 7 and 9 in the 
conventional GLM analysis with a P-value < 0.05 uncorrected) 

 
 

Table 5-6:  Bayes Factors comparing Model 1 versus Model 2 (2 Regions models), Level-1 
condition. Comparison is for each subject (Subject 1-11), across all subjects using the GBF 
and PER (Bayes Factors greater than 3 are highlighted), based on the BIC criterion. (No 
stimulus-evoked activity was detected on the ipsilateral sites in subjects 7 and 9 in the 
conventional GLM analysis with a P-value < 0.05 uncorrected.) 

 

Section 5-3: Group results for the optimal model 

This section summarizes the group results for the estimated optimal group model. 

As discussed in Chapter 2, after the optimal model had been selected, we computed the 

posterior estimates of the coupling parameters associated with each connection in the 

model. Those values exceeding the 90% confidence threshold were deemed significant. In 

this section the optimal group model in each dataset (the intrinsic and modulatory 

connections that exceeded the threshold) is depicted in Figures 5-4, 5-5, and 5-6, for 4-

Region, 3-Region and 2-Region models, respectively 

A noteworthy feature of the optimal selected model is the direct influence of the 

stimulation on S1L, which suggests that other inputs to S2L and S1R provide redundant 
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information for response estimation. As depicted in Figures 5-4 and 5-5, the patterns of 

connectivity are similar for 4-Region and 3-Region models for both Level-3 and Level-2 

pain stimulation. It is also interesting that the patterns of intrinsic connectivity are less 

complex for Level-2, compared to Level-3, with Level-2 lacking the S2L to S1L intrinsic 

connection. The direction of the intra-hemispheric connections is also similar, which is 

always from the contralateral side to the ipsilateral side, and within the ipsilateral side only 

from S1R to S2R. 

As for Level-1, which is a non-painful session, the pattern of modulatory 

connectivity is less complex compared to Level-3 and Level-2, with a lack of self 

modulatory connections for both SIL and S2L. Thus, there is a consistent increase in the 

degree of complexity in the network architecture from Level-1 to Level-3, a finding which 

accords with the idea that the more intensely painful the stimulus, the more communication 

there is among regions in the network, thus requiring a greater number of connections. It is 

also interesting to note that, with the exception of the self-modulatory connections of S1L 

and S2L, the only other connection that is modulated by the painful stimulation is from S1L 

to S2L. This is also true for the non-painful stimulation (Level-1). Thus, this result implies 

that the connection from S1L to S2L plays the main role in conveying noxious and 

innocuous inputs across the network. 

                    

                             Level-3                                                   Level-2 

Figure 5-4.  Optimal model for the 4-Region analysis for Level-3 and Level-2 stimulation 
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                                Level-3                                                Level-2 

Figure 5-5.  Optimal model for the 3-Region analysis for Level-3 and Level-2 stimulation 

 

            

Figure 5-6. Optimal model for the 2-Region analysis for Level-1 stimulation 

 

Section 5-4: Estimated BOLD signal 

As discussed in Chapter 2, the goal of DCM analysis is to estimate the time courses 

of each region in the model, based on the neurodynamic and hemodynamic models by 

tuning the model parameters, so that the estimated time courses would be as similar as 
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possible to the actual time courses. In this section the results of the correlation between the 

estimated time courses and the actual time courses for the preferred model (Model 1) are 

shown to reflect the consistency in response estimation across subjects. An example of the 

predicted versus the actual time courses for the four regions is depicted in Figure 5-7.  

The results for the correlation between the estimated and actual time courses across 

subjects and for all 3 level of stimulation are shown in Tables 5-7 to 5-11. Non-significant 

values (p<0.05) are noted as “*n.s.”. 

 

 

 

Figure 5-7. Observed (Blue) Vs Predicted (Red) time course for the 4-Region Model-1 in 
subject 1 (Level-1 dataset) 
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Level-3 Condition 

For Level-3 scans in the 3-Region models, none of the subjects exceeds the 

threshold of 0.05; but in the 4-Region models, only subjects 4 and 10 failed to reach the 

threshold of 0.05 for S1R and S2R, respectively. 

Table 5-7. Corr Coef- 4-Region models            Table 5-8. Corr Coef- 3-Region models                  
Level-3 condition (Non-significant values (p<0.05) are noted as “*n.s.”)                            

                     
  

Level-2 Condition 

For the Level-2 sessions, all the correlations for all the subjects attained the 

significance threshold of 0.05, except for one case; Subject 4, S1R (Tables 5-9 and 5-10). 

Table 5-9. Corr Coef- 4-Region models         Table 5-10. Corr Coef- 3-Region models 
Level-2 Condition (Non-significant values (p<0.05) are noted as “*n.s.”) 
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Level-1 Condition 

For the Level-1 condition, all correlations in all subjects were significant, with the 

exception of two cases; S1L for Subject 11 and S2L for Subject 3 (Table 5-11).  

Table 5-11. Corr Coef- 2-Region models, Level-1 Condition (Non-significant values 
(p<0.05) are noted as “*n.s.”) 

  
 

Section 5-5: Second Level analysis of model parameters 

Once the optimal model was selected, we next tested the consistency of the modeled 

connections across subjects. We therefore have done a classical between-subject analysis 

by performing a one sample t test to posterior estimates of the intrinsic and modulatory 

parameters across subjects. For these second-level analyses, we adopted a threshold of p-

uncorrected < 0.05. The results for all classes of modeling are summarized in this section. 

4-Region models 

For the Level-3 stimulus condition in the 4-Region models, no parameters failed to 

meet the significance threshold of p<0.05. This means that the values associated with all 

connections from the 1st level analysis (group posterior estimates; section 3-5) were 

expressed consistently across subjects. Thus, the 2nd level analysis for the Level-3 condition 

confirms the group posterior estimate shown in Figure 5-4. 
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For the Level-2 stimulation, the only connection in the group posterior estimate that 

failed to reach the significance threshold of 0.05 was the intrinsic connection S1L-S2L (the 

non significant values are highlighted in the tables). This means that not all the subjects had 

the same intrinsic parameter associated with this connection. 

 

Table 5-12.   Intrinsic and Modulatory Connectivity Parameters (4-Region models) from 
left to right. Mean and Standard Deviation (STD) of the intrinsic and modulatory 
parameters across subjects, and the t test across each parameter. Those values that did not 
reach the threshold of 0.05 are highlighted.    

     

 

3-Region models 

In the 3-Region modeling for the Level-3 condition, the only existing connection in 

the group posterior estimate that failed to reach the significance threshold of 0.05 was the 

S1L self modulatory connection. For the Level-2 condition, in the intrinsic network, S1L-

S2L and in the modulatory network, only the S1L self-modulatory connection failed to 

reach statistical significance. 
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Table 5-13. Intrinsic and Modulatory Connectivity Parameters (3-Region models) from left 
to right. Mean and Standard Deviation (STD) of the intrinsic and modulatory parameters 
across subjects, and the t test across each parameter. Values that did not reach the threshold 
of 0.05 are highlighted. 

       

     
       

2-Region models 

In the 2-Region modeling for the Level-1 stimulus dataset, all the connections in the 

group posterior estimate (depicted in figure 5-6) except the self-modulatory connection in 

S1L, were expressed consistently across subjects. 

Table 5-14. Intrinsic and Modulatory Connectivity Parameters (2-Region modesl) from left 
to right. Mean and Standard Deviation (STD of the intrinsic and modulatory parameters 
across subjects, and the t test across each parameter. Values that did not reach the threshold 
of 0.05 are highlighted. 
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Chapter 6- Discussion and conclusion 

 

The goal of causal modeling is to obtain information about the neuronal network 

that supports a perceptual aspect of a cognitive function. Since S1 and S2 are believed to be 

implicated in the sensory discriminative aspect of pain perception, we tested the 

interactions between these regions in the context of pain. The serial or parallel processing 

within the somatosensory cortex is a debatable issue which we tried to address in this study. 

We also tackled the issue of hemispheric transfer of information within the somatosensory 

cortex, which has not been studied by any causal modeling approach. Our paradigm 

consisted of 3 runs with intensity changing from non painful (Level-1) to slightly painful 

(Level-2) and lastly to a moderately painful session (Level-3). Therefore our paradigm 

allowed us to investigate how the intensity of a cutaneous stimulus is encoded in our 

network of interest, and how the modulation of regional connections in response to our 

experimental stimulation would differ across conditions. Our results show a difference 

between painful and non-painful conditions, with the non-painful condition demonstrating 

connectivity between only contralateral somatosensory regions, while the painful 

conditions showed clear evidence of connectivity both within and between contralateral and 

ipsilateral somatosensory areas. 

Section 6-1-1: Serial versus parallel processing scheme 

As shown in Figures 5-4 to 5-6 in Chapter 5, the superior model has only a direct 

sensory input to the left primary somatosensory cortex (S1L), contralateral to the site of 

stimulation; this implies that parallel inputs to the secondary somatosensory cortices (S2L 

and S2R) provide redundant information for response estimation. This means that, based on 

the causal model utilized for studying the dynamics of the system (as described in Chapter 

2), the direct input to S1L is sufficient for the estimation of time series in our network of 
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interest, which is in accordance with the serial mode of processing. It is important to note 

that our result does not rule out the possibility that thalamocortical projections convey 

nociceptive information to S2, but it suggests that although S2 might receive direct input 

from thalamus, this input does not contribute to information processing within our network 

of interest in the context of our paradigm. However if our stimulation paradigm changes, 

for example if we incorporate the simultaneous application of noxious electrical and 

thermal stimulation, the demand for more information processing may require the 

contribution of existing thalamocortical projections to S2 in the causal interactions among 

regions.   

 

 

Figure 6-1. Ascending pain pathways (1) (figure is taken with permission) 

A potential limitation of this study, which will be discussed in section 6-2, is the 

limited number of regions that can be included in DCM modeling. As discussed in Chapter 

1, pain is a multidimensional experience with different areas devoted to processing 

different components of the experience. Thus if the experimental paradigm manipulates 

different aspects of pain, such as unpleasantness or expectation, different pain areas might 



 

 

80

 

be more or less active depending on their function. For example, the insula and ACC are 

important areas that are implicated in the affective dimension of pain.  Price’s model of 

nociceptive processing (Figure 6-1) indicates that both insula and ACC receive projections 

from S2. So, we might speculate that if these pain areas were included in our model and if 

the experimental paradigm were to manipulate pain unpleasantness rather than intensity, 

then other input to S2 might play a crucial role in response estimation. 

Section 6-1-2: Inter-hemispheric communication in somatosensory 

regions 

Our results show inter-hemispheric connection from the contralateral to ipsilateral 

side, which suggest that the electrical stimulation first activated the contralateral side and 

that the information was then conveyed to the ipsilateral hemisphere, likely through callosal 

fibers. This finding is consistent with anatomical studies ((11),(12)) that showed the 

existence of inter-hemispheric callosal pathways.  It is interesting to reflect that the 

direction of information flow from the side contralateral to the stimulation to the opposite 

hemisphere is in accordance with major anatomical pathways.  

Studies on callostomized and split-brain patients ((50), (53), (52), (51)), show 

bilateral S1 and S2 activation, which implies the existence of some compensatory 

mechanism, likely through direct thalamocortical projections to the ipsilateral hemisphere. 

Again our result simply implies that although this compensatory pathway might exist in 

normal subjects, the information provided by this pathway is redundant and secondary to 

the information coming from the contralateral side. 

Section 6-1-3: Increase in network complexity during pain  

The intrinsic coupling, which forms the connectivity in the baseline condition, is a 

state that is specific to each experiment and perturbed as a result of experimental 

manipulations (55). Regarding intrinsic connectivity, our results show that during the 
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Level-3 stimulus condition there is a reciprocal connection between S1 and S2 in the 

contralateral hemisphere. This reciprocal connection between S1 and S2 has been 

confirmed by anatomical ((11),(12)), ablation ((37),(40),(39),(36)), and evoked-potential 

studies ((44),(30),(42)) as discussed in Chapter 1, so our result is consistent with previous 

work on S1-S2 interactions. It is also interesting to note that as the intensity of the painful 

stimulus is reduced from Level-3 to Level-2, the complexity of the network is also reduced, 

with only an intrinsic connection from S1 to S2 in Level-2 rather than a reciprocal 

connection. 

As regards modulatory connectivity, our results indicate that pain only modulates 

the contralateral pathways – the S1L-S2L connection as well as self-connections on S1L 

and S2L. As discussed in Chapter 1, response-latency studies ((44),(30),(42)) have shown 

that S2 is activated later than S1, indicating that S2 is higher on the hierarchy of pain 

processing than S1. This implies that the information flow should be from S1 to S2, which 

is consistent with our findings. For the pain conditions (Level-3 and Level-2), the pattern of 

modulatory connectivity was identical, but for the non-painful condition (Level-1), a 

similar pattern was observed but with a lack of self-modulatory connections in S1 and S2. 

Like the intrinsic connectivity, we observed an increase in the complexity of causal 

interactions from the non-painful to the painful conditions for the modulatory connectivity. 

This finding is reasonable, since the pain condition activates both nociceptive and non-

nociceptive fibers, while in the non-painful condition the nociceptive fibers have not been 

activated by the electrical stimulation. So a less complex cortical network is the result of a 

smaller amount of information being conveyed in the non-painful condition compared to 

the pain condition. 

 Moreover, pain is a more complex sensory modality with many perceptual 

dimensions. Different components of pain interact with each other, for example, the 

emotional component can alter the sensory component and vice versa (63). Thus, as the 

noxious stimulus induces an emotional response, there should be accordingly more 
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complexity in the neuronal network to support the enhanced processing required by the 

emotional event, compared to the non-painful condition. In the visual system it has been 

shown by Vuilleumier et al (64) that a lesion in the amygdala eliminates the enhanced 

activation that typically occurs in the visual cortex in response to emotional facial 

expressions. The amygdala plays a central role in emotional regulation and has many 

connections with different areas, including the visual and somatosensory areas. It has been 

argued (64) that the increase in neuronal activity in visual areas in normal subjects reflects 

the higher demand on perceptual analysis caused by the feedback connection from 

amygdala. Making an analogous comparison with the visual system, we might therefore 

hypothesize that the emotional component of the pain stimulus would require a boost in the 

perceptual processing, likely through causal connections from emotional processing regions 

like the amygdala to somatosensory areas. The flow of this extra information to the 

somatosensory regions compared to the nonpainful condition would require more 

processing in these areas, which supposedly would be reflected by more causal interaction 

among these regions. 

Overall, our results favour the serial mode of processing noxious information, and 

the intrinsic pattern that we hypothesized in our network accords with previous studies on 

S1-S2 interactions and transcallosal connections. Our results shed new light on causal 

influences within the somatosensory areas, by showing that the modulation of pain occurs 

in the S1-S2 connection as well in as self-connections in S1 and S2 within the contralateral 

hemisphere. Our results also show a more complex neuronal network in the somatosensory 

regions that reflects the enhanced demand for information processing required by the 

noxious compared to the innocuous stimulus. 

Section 6-2: Limitations 

DCM considers the brain as an input-output system. By disturbing the system with 

designed inputs, measured BOLD responses (outputs) are used to estimate the various 
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parameters that govern the evolution of brain states (neuronal activity in each region). As 

discussed in Chapter 2, DCM utilizes two models for estimating the unknown parameters. 

The first model is a neuronal model of interacting cortical regions with 

neurophysiologically meaningful parameters. This neuronal model tries to describe how the 

neuronal responses are caused. Effective connectivity is turned into parameters in terms of 

connections among brain regions; causality is inherent in the equations that characterize the 

model.  However since our knowledge of the brain’s dynamic is limited, future 

investigation should increase the accuracy of the model as well as refine the description of 

the causal influences of one region upon another.  The second model is a biophysical model 

of the neurovascular responses that convert the neural dynamics into hemodynamics. 

Although this model has been validated by physiological experiments, the assumptions 

underlying this model need further consideration (60), and the exact relation between a 

neurophysiological process and the resulting BOLD response remains unknown.  

A further drawback to the neural dynamic model is the limitation to the number of 

regions that can be included in the models. Published work on DCM usually includes 3 to 4 

regions in each model. Validation studies show that DCM does not provide a good estimate 

of regional time courses when the number of regions in the model exceeds five. For this 

reason we did not add more regions like the insula, ACC or PFC in our model, and we did 

not test a network including all pain regions. DCM still needs a more precise dynamic 

model of regional interactions when the number of regions is more than five.  However 

future studies examining the dynamics of the brain should help us to apply DCM to more 

regions in the pain matrix, for example, testing the interactions between S1, S2, ACC, and 

insula as described by Price (1) in figure 6-1. 

Another limitation of DCM, is its temporal resolution. Two factors place a 

limitation on DCM modelling in this regard: the TR (Repetition Time) of any acquisition 

does not match the neurophysiological timing of the neuronal responses, and the 

hemodynamic model and the parameters inherent in the biophysical model are empirically 
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derived. Another potential timing problem for the application of DCM is the temporal shift 

between regional time series because of multi-slice acquisition. This problem has been 

corrected in SPM5, which permits the timing that each region has been scanned to be 

entered according to the slice acquisition order.  

Lastly, the main limitation of our pain paradigm was the presentation of different 

stimulus intensities in different scanning sessions rather than in a single session. Here we 

analyzed the results of the 3 sessions separately and compared them qualitatively. 

Presenting the 3 levels of intensity in a random order in a single session would have 

allowed us to look at the contrast between them and to compare them quantitatively. 

However the disadvantage of a random paradigm would have been the difficulty in 

analyzing differences in intrinsic connectivity across sessions, especially those resulting 

from clear cognitive differences between the subject’s expectations of pain and non-pain 

conditions. 

Section 6-3: Future directions 

As discussed by Friston ((55, 56)), the best experimental design for DCM is a 

multifactorial design with at least one factor controlling sensory-evoked responses and 

another factor manipulating the context in which the effects of the sensory-evoked 

responses are propagated throughout the system. This contextual factor can modulate the 

latent or intrinsic coupling among areas.  

A future design well suited to DCM analysis would be a block design with separate 

blocks of heat pain, randomly presented, in which subjects would be instructed to direct 

their attention towards or away from the pain stimulus. This design would permit the 

contrast between attended versus unattended blocks to examine which connections are 

modulated by this cognitive variable. Other cognitive manipulations like suggestion (26) 

can also be implemented in a block design. For example another potential study would be 
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to investigate the difference between suggestion and attentional modulation in a network 

including ACC, S1 and S2, with one session consisting of attentional modulation and 

another session controlling suggestion towards increasing or decreasing pain. 

One of the main findings of this study was the hemispheric transfer of information 

from the left hemisphere (contralateral to the stimulation site) to the homologous regions 

within the ipsilateral hemisphere. It would be interesting test whether the direction of 

transcallosal connections are dependent on hemispheric dominance. This can be simply 

implemented in a randomly distributed group of left- and right-hand subjects by an event-

related or block design, where the stimulation site would randomly change from left to 

right. Since callosal connections are believed to be denser in the midline structures, one 

future design well suited for this investigation would be a random application of electrical 

stimulation or heat pain to the trunk or face. Another future study in this line of 

investigation could be DCM modeling in the same network of S1 and S2, conducted in 

split-brain and callosotomized patients, in order to assess connectivity relationships 

associated with the bilateral stimulus-related BOLD responses observed in some of these 

patients in the absence of direct inter-hemispheric connections.  By including left and right 

sensory thalamus within DCM models, one could test the hypothesis that these sub-cortical 

(and spinal pathways) convey information to the ipsilateral hemisphere in the absence of 

inter-hemispheric fibers. 

 

 

 

 

 

 



 

 

86

 

Conclusion 

We implemented a causal modeling approach to study the integration among 

bilateral somatosensory areas S1 and S2 in the context of pain. Our Paradigm consisted of 3 

scanning sessions with intensity changing from non painful (Level-1) to slightly painful 

(Level-2) and lastly to a moderately painful session (Level-3), which allowed us to 

investigate how the intensity was encoded in our network of interest, and how the 

modulation of regional connections by our experimental stimulation would differ across 

conditions. We tested a series of hypotheses assessing how nociceptive input is relayed and 

propagated within our network of interest. Our hypotheses tackled three questions; first the 

issue of serial versus parallel processing in the somatosensory cortex, second the 

hierarchical relationship between S1 and S2, and lastly inter-hemispheric connections of the 

homologous somatic sensory areas. 

Among the various models tested, the optimal model contradicted the notion of 

parallel processing, implying that parallel inputs to S2L and S2R provide redundant 

information for response estimation and do not contribute to processing the information in 

our network of interest, in the context of our paradigm. For both intrinsic and modulatory 

connectivity we observed an increase in the complexity of causal interactions from 

nonpainful to painful condition. The optimal model indicates modulation in the S1-to-S2 

connection, which suggests that S2 is higher on the hierarchy of pain processing than S1, in 

accordance with previous neurophysiological and MEG findings. Lastly, conventional 

functional imaging studies often show bilateral somatosensory activation, but cannot reveal 

the direction of information flow between hemispheres.  Results from our DCM analysis of 

the functional data support the anatomical evidence that suggested the entrance of 

somatosensory information into the hemisphere contralateral to the stimulation side, with 

inter-hemispheric connections responsible for the transfer of information to the ipsilateral 

hemisphere.   
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Annexe 

 

Table A-1. Bayes Factors comparing Model 1 versus all the other 4-Region models, Level-
3 condition. Comparison is for each subject (Subject 1-11), and across all subjects using the 
GBF and PER (Bayes Factors greater than 3 are highlighted) based on the conservative 
strategy proposed by Penny et al (58). 

 

 

 

 

 

Table A-2. ROI coordinates for each subject, Level-3 condition. 
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Table A-3. ROI coordinates for each subject, Level-2 condition. Empty highlighted spaces 
indicate that no activation could be found in the GLM analysis which has been described in 
chapter 5. 

 

 

 

 

Table A-4. ROI coordinates for each subject, Level-1 condition. Empty highlighted spaces 
indicate that no activation could be found in the GLM analysis which has been described in 
chapter 5. 

 

 


