ISSN 0709-9231

CAHIER 8724

Some Additional Specification Tests for
Generalized Method of Moments Estimators
with Macro-Economic Applications
Part I ; Theory

by
Eric Ghysels?

and
Alastair Hal]z

1 Département de sciences économiques and Centre de recherche et
développement en économique, Université de Montréal,

?  Department of Economics and Business, North Carolina State
University,

September 1987

Cette étude a été Publiée griace a une subvention du fonds F.C.A.R. pour
1'aide et 1le soutien i 1la recherche, Ce cahier a également été publie
par le Centre de recherche et développement en économique (Publication
#2687), :




RESUME

Plusieurs nouveaux tests de spécification pour la méthode
généralisée des moments sont présent&s dans ce papier. Le premier test
est du type Chow pour la stabilité des coefficients des &quations
d'Euler. Ce test est inspiré par la critique de Lucas. Un deuxidme test
développé dans le papler est un test d'englobement par une représentation
vectorielle autorégressive. Ce test est basé sur une comparaison de la
structure sous—jacente estimée par un processus vectoriel autorégressif,
sans contrainte, avec ce méme processus estimé conjointement avec les
équations d'Euler. Plusieurs applications macroéconomiques sont aussi

présentées.

Mots-clés: méthode généraliééé des moments, test du type Chow, modéles

vectoriels autorégressifs, principe d'englobement.
# % & ABSTRACT * * %

In this paper several additional GMM specification tests are
studied. A first test is a Chow-type test for structural parameter
stability of GMM estimates. The test is inspired by the fact that "taste
and technology" parameters are uncovered. The second set of specifica-
tion tests "are VAR‘Enéompassing tests, It is assumed that the DGP has a
finite VAR representation. The moment restrictions which are suggested
by economic theory and exploited in the GMM procedure represent one
possible characterization of the DGP. The VAR 1s a different but com-
patible characterization of the same DGP. The 1idea of the VAR
Encompassing tests 1is to compare parameter estimates of the Euler
conditions and VAR representations of the DGP obtained separately with
parameter estimates . of . the Euler conditions and VAR representations
obtéined 7joint1y.,’ There are several ways 'to construct joint systems
which are disédséed in the paper. Several applications are also

discussed.

Key words: generalized method of moments, Chow-type tests, Vecot

autoregressive models, encompassing principle.




1. INTRODUCTION

Both Lucas (1976) and Sims (1980) have had a profound impact on
the way macroeconomists conduct empirical research. Lucas criticized the
existing strategies for econometric analysis of macroeconomic time series
and argued that parameters of traditional econometric models are not
invariant with respect to shifts in policy regimes. 1In response to that
criticism several inference strategies for "taste and technology " struc-
tural parameters were suggested. Hansen's (1982) generalized method of
moments (henceforth GMM) instrumental variables procedure 1is among the
most notable ones. Sims (1980), on the other hand, contended that stan-
dard strategies for econometric analysis make incredible identification
assumptions and suggested finite order vector autoregressive (henceforth
VAR) models as an alternative style of empirical macroeconomics., In this
paper several specification tests are introduced for GMM Euler conditions
estimators which are built on the insights and arguments presented by

Lucas and Sims in their seminal papers.

A first test is very much in the spirit of Chow's (1960) classi-
cal test for the equality between sets of coefficients in linear regres-
sions. A Chow-type test for structural stability of parameter estimates
obtained via the GMM procedure is presented. The desire to uncover
structural parameters which are assumed to be invariant across time,
regimes, etc. inspired the development of the test statistic. The
testing procedure may also be useful for verifying commonly made
assumptions about temporal aggregation across agents imbedded in the

representative agent model.

The second test 1is a VAR-Encompassing test and is designed
according to the Encompassing Principle discussed by Mizon and Richard
(1986). 1t is assumed that {xt} is a stationary and ergodic multivariate
data generating process (henceforth DGP). This assumption corresponds to
Hansen's (1982) original development of GMM. It is also assumed that
economic theory suggests moment restrictions of the following nature

E(f(xt, B)) = 0, Since {xt} is ergodic and stationary it is known to
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have a Wold decomposition moving average representation. The DGP has g
VAR representation when some additional assumptions are satisfied. The
moment restrictions, if they are valid, represent one possible charac-
terization of the DGP, while the VAR is a characterization of the linear-
ly indeterministic part of the same DGP. The 1idea of the VAR Encom-
passing tests is to compare parameter estimates of Euler conditions ang
VAR representations of the DGP obtained separately with parameter estji-
mates of the Euler conditions and VAR representations obtained jointly.
There are several ways to construct joint systems which are discussedvin
this paper. The major motivation for using a VAR representation is, ag
Sims (1980) emphasized, to benefit from an inference strategy which does
not strictly involve any strong identification assumptions which féré
typical for “structural” approaches. Specification tests solely de-
pending on Euler Conditions moment functions are conditional on the model
specification. Newey (1985), for instance, showed that tests for viola-
tion of Euler conditions may fail to detect misspecification asymptoti-
cally. In contrast, a VAR representation always exists, glven a set of
well-known assumptions are satisfied, and will be consistently estimated

without misspecification provided the error process is general enough.

A comparison of the VAR-Encompassing'testing procedure with soﬁe
of the recently developped calibration methods and “backwards” .solution
methods for nonlinear rational expeetations models proposed by Siﬁe
(1984) is also presented. It is important to emphasize that a VAR Encom-
passing test does not “"attempt to solve" Euler conditions. A direct link
between moment restrictions and VAR representations is usually difficult
to make, unless Euler conditions are linear and can be solved explicitly
as Hansen and Sargent (1980) demonstrated. In general, when Euler condi:
tions are nonlinear one expects that the DGP has nonlinear time series
properties. 1In such cases one can view the VAR as the linear part of a

Volterra series expansion of the DGP.

'The organization of the paper is as follows: in section 2 the

Ik

Chow-type test is presented. The VAR Encompassing test is discusse@ in
section 3. Section 4 concludes the paper with a discussion 'of KSPG
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possible extensions of the proposed tests and a discussion of the macro-
economic applications which will be presented in Part IT of this paper.

A mathematical appendix contains the proofs.
2, A CHOW-TYPE GMM TEST STATISTIC

The Lucas critique has led some econometricians to redirect their
attention toward estimation of structural “taste and technology” para-
meters. The idea to make inference about such parameters led to the
formulation of Euler conditions estimators such as GMM. A natural ques-
tion to consider, although ignored so far, 1s'to test whether the para-
meters uncovered from such models are indeed invariant across policy
regimes, time, etc. We propose a Chow-type GMM test for structural

stability of parameter esttimates.
The sample is split into two parts, namely:

Sample 1: t =k - n, + 1, k - n

1 +2’ LR ] 9 k

1

Sample 2: t=k+ 1, k + 2,,.. » k+n

2

The subsamples are assumed to be sufficiently large for asymptotic theory
to be wvalid. As 1in Hansen (1982), it 1is assumed that the following
orthogonality conditions suggested by economic theory hold:

E(f(x,, B)) = 0 (2.1)

The regularity conditions on f and the stochastic process X listed in
Hansen (1982) are assumed to hold, except for stationarity and ergodi-
city. 1Instead one of the following three regularity conditions will be
used in this paper: ‘

Assumption 2.1: (M-dependence (Anderson, 1958)) The process X, is an

M-dependent process.

Assumption 2,2: (Mixing conditions (White and Domowitz, 1984)).
The process X satisfies:




a) 3 finite constants 5, 6 >0and r > 1 such that Vt:
E (|£x,, B3] “))< 5

b) x, is mixing with either @(m) of size
2r/(2r-1) or c(a) of size 2r(r-1), r>1

Assumption 2,3: (Finite order AR) The process X, is stationary and

ergodic and has a finite order Vector autoregressive representation,

Assumptions 2.1 and 2.2 will be used in this section while 2.3 will be in
the next section. With the regularity conditions holding in each sub~-
sample onehobtains estimates él from sample 1 and 52 from sample 2, If
Bi = plim Bi, n,* @ then the structural constancy can be expressed as

follows
Ho: Bl= Bz (2.2a)

Ha: Bl¢ Bz (2.2b)
Following Hansen's notation one can define, under the null hypothesis,

the matrices A%, D, S (see appendix) as well as the covariance matrix

across samples:

k+n
- -3 k -3 2 4
S=E(ln® 1 £6x,0] [0y ) Ex,, 8)) (2.3)
t=k-nl+1 t=k+l

The Chow-type GMM test is based on the following theorem:

Theorem 2.4: Under the null hypothesis (2.2a) BI—BZ 4 N (o,V) where the

covariance matrix V ig given by:

V=2 {[A*D]'IA* [s + §]A*'[A*D]'1'} (2.4)
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When X, satigsfles assumption 2.1 the test statistic

C, = (8, By V(B B,) ) (2.5)
is an asymptotically exact test with X distribution and £ degrees of
freedom where & = dim B. The test statistic is based on consistent esti-
mates of A*¥, D and S over the entire sample and S = 0. Under assumption
2.2 the test with S = 0 1is asymptotically conservative, i.e. the test

statistic 1s always at least as large as the true statistic using the

actual value of S.

Proof: see appendix.

The results stated in theorem 2.4 indicate that the covariance
across samples vanishes when the X, process satisfies the conditions
formulated under assumption 2.1 The matrix S will be bounded but nonzero
under the less restrictive mixing conditions in assumption 2.2. The
relative magnitudes of S and S in finite samples is worthy of further
investigation. The latter is a subject of future research which should

determine how conservative the test is under assumption 2.2 (see Ghysels
and Hall (1987b)).

The Chow-type GMM test could be used to test stability when a
major policy shift occured during the sample or simply as a routine test
by splitting the actual samples in two halfs. It is important to have
sufficient data left in the subsamples to rely on the asymptotic proper-
ties of the test. For that matter it’is also important to better under-
stand the features of the test statistic in small samples. A study in
the spirit of Tauchen's (1986) small sample evidence on GMM estimators
could provide insights on this matter. Some of this research is current-
ly in progress (see Ghysels and Hall (1987b)). It is also important to
emphasize that there is more to the Chow-type test than. just a test for
policy-invariance. Most of the applications of GMM estimators were in
the context of representative agent models. Unless some specific pre-
ference structures apply, such as suggested by Gorman (1953), we know

that the parmeters of representative models depend on the heterogeneity




of preferences and endowments across agents.! To the extent that there
1s that heterogeneity, a Chow-type test may be able to reveal it. Hence,
a Chow-type test 1s a GMM specification test for structural invariance
with regard to changing policy regimes, income distributions, distribu~
tion of preferences, etc. In that regard the Chow-type test distin-
guishes a GMM procedure where the estimated parameters are purely
"nuissance parametérs“, as Hansen (1986) recently suggested, from a GMM
set-up where beyond the validity of the moment restrictions there 1is a

structural interpretation of the parameters.

3. VAR ENCOMPASSING TESTS

To derive the VAR Encompassing tests it will be assumed that the
DGP satisfies assumpton 2.3, Consequently, x, has a finite order VAR

representation:

X, = A(L) X1 + €, (3.1)

where A(L) 1s a matrix polynomial of order P 1n the lag operator L and €
is an uncorrelated sequence of innovations. As will be made clear later
in this section, it should be noted here that although the €, Process is
linearly indeterministic, since it is the Wold decomposition innovation
process, it may stilllhave a nonlinearly predictable part. In fact the
inverse of the matrix polynomial A(L), defined in (3.1), may be con-
sidered as the linear part of a Volterra series expansion (see Volterra
(1959)) for the nonlinear time serles representation of the vector
process Xy o The dimension of the X, process will be denoted dx and it
will be assumed that the vector « represents the unknown parameters of
A(L) in (3.1) which has dimension da = p X d:. Equation (2.1) which
represents the moment restrictions emerging from the Euler conditions,
and equatioh (3.1) are two different but compatible characterizations of

the DGP. The following notation will be introduced to facilitate the

presentation:




E(xesB) =e) (x s BIB Z, (3.2)

P where Zt is the set of instruments used in the GMM procedure, ele is the
error process generated by the Fuler conditions and k » 1. Consider now

the following three GMM procedures:

(1) Disjoint orthogonality conditions:

glljt(xtﬂc’ BY= e Gy BI® Xy, (3.3)
8¢ (Xe» @) = (x, = A(L) % )@ Xy, (3.4)

D D
with E glt(xt+k, B) =E th(xt. a) =0

L t ! ' .
Xlt (1 X X svee xt-r) for some r such that
l+rxdp> d
x B
| - ' ' '
X2t (1 X X[ ) eeee xt_s) for some s > p
and in addition with
'_ Dl Dl
8. = (814 85,)
o= n—1X“gD ;P = n—1§‘ oP
- H
“n t=1 t in t=1 it
(2) Joint orthogonality conditions with VAR instruments:
v o * :
B ey @, B) = e (x, BI® AT X, (3.5)
V = —
&)t (ch"‘)= (x,= A(L) x,_1)® X, _, (3.6)

v v
vith Eg;, (X 4> @» B) = E 8y (Xpp @) =0

T

A"(L) = dtag (1 ALY, ... , A(L))




v
and in addition with definitionms for gy » g/ and g';, which are
similar to the disjoint system. '

(3) Joint orthogonality conditions with nonlinear innovation restric-

tions:

N _ *

glt(xt+k’ a, B) = elt(xt“‘k’ 5) @A (L) xlt (3'7)
B (kpy8) = (g™ ALY x) & Xpy (3.8)

N N
with Eg1t (xt+k’ a, B) = Egzt (xt+1, a) =0

N
and in addition with definitions for’gﬁ, gg and 8in which are similar
to the disjoint system.

The first system is called disjoint because it consists of the vector
functions of two separate M procedures, the first yielding Euler condi-
tions parameter estimates ED and the second ylelding VAR parameter esti-
mates Qpe The vector OD stacks both together, i.e. @' = (BD aD) The
second system, in contrast, is not disjcint since the VAR polynomial
matrices appear in the instrument set of the Euler conditions. The
second system yields parameter estimates @' = (ﬁv av) Finally, the
third system has a structure similar to the second except that the VAR
orthogonality conditions are moved one period ahead. It will become

clear later why it 1is justified to. call the third system joint with
nonlinear innovation restrictions.

Using‘again Hansen's (1982) notation and theoretical results, it
follows that @D is obtained by solving:

Dy, D o
M;n (8),) WQH - (3.9)

D D
Min (g, )' W
o 200 “2n B2n | (3.10)




Moreover, Hansen showed that the optimal weighting matrices minimizing,
in the matrix sense, the asymptotic variance-covariance matrix of the

parameter estimates are:
Wo = E[eh6,) &, 6D (3.11)
Wop = (E[ glz)t(ao) g, @) (3.12)

where 6(’) = (ﬁ(;a‘;) represent the true values. In addition:

D

~ * -1 %
op —0, = {4, Dyl Ay g, (3.13)
The following theorem establishes the relation between the first two GMM

systems:

Theorem 3.1: The GMM estimator of the Joint orthogonality conditions
with VAR instruments G)v is asymptotically equivalent to the estimator
solving the following optimization problems:

D D
Min (an)' wgn g21'1
a

-~

so that ay and @ are asymptotically equivalent, and

\'
n gln

Min (g‘l’n)' w‘l’ (3.14)

B

where WV > W‘llo almost surely with

In
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v

v v 1181
10 = (E[ glt (ao’ BO) glt (ao’ BO) ])

W

D
1

-1 \'
0) + W

v -1
(W)~ = W D

\’
WD* 0

Proof: see appendix.

The result in theorem 3.1 shows that the difference between the
disjoint system and the joint system with VAR instruments is essentially
the set of instruments used to estimate the Bo vector. The VAR para-
meters remain asymptotically unaffected although they also appear in the
g‘llt vector function. It should be pointed out, however, that the result
in theorem 3.1 is not “merely” a result emerging from a different set of
instruments, namely the VAR instruments. In order to establish the
result in theorem 3.1 it was assumed that the orthogonality conditions
(3.2) hold for instruments Zt which may be complicated nonlinear func-

tions of the information set It' In particular it is assumed that:

vV oV
E g, (8y)' =0

because of the timing of the innovation process of the VAR represen-
tation. Hence, the comparison of 5V with 5D implicitly invalidates the
orthogonality of the error process e, to a string of complicated
functions of elements of the information set It outside the range of

linear instruments, i.e. X, or A*(L)Xlt. Using theorem 3.1 and the

1t

theoretical results in Hansen (1982) which establish the asymptotic
normality of GMM estimators; one can define the first VAR Encompassing
test for the hypothesis:
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The test statistic is:

-~ -~

VB = By By L RGN TR )

2
which is asymptotically y distributed with dB degrees of freedom and
where T1 and R1 are the upper left %3x dB submatrices respectively

R I

* ~1 %
R (A, D] " A
and finally
-~ -~ d
- ]
Bp =By N(O, (T+ R)HM]HTHT + R )Y

and

The test statistic is based on the Encompassing Principle, discussed by
Mizon and Richard (1986). Indeed, under the null hypothesis that the
Euler conditions hold the joint orthogonality system with VAR instruments

should encompass the disjoint system.

It was emphasized that the results stated in theorem 3.1
crucially depend on the timing of the VAR innovations process (x - A(L)
X _ 1) The third system has the innovation process moved one period
ahead of the information set It‘ This implies that:

Bl (B0 = B ey, (o if)® A1) X Il (rpyy- ACL) 208 %y, )" # 0

Each element of this matrix is assumed, under the GMM regularity condi-
tions, to exist and to be finite. When Euler conditions are linear this
amounts to variance-covariance matrix restrictions, When Euler condi-
tions are nonlinear this amounts to saying that there are nonlinear fore-
cast functions for the VAR innovations. While, in the latter case, this

does not solve explicitly for nonlinear forecast functions for the

linearly indeterministic innovation process of the VAR, it imposes co-




-12 -

movement restrictions between the VAR innovations and nonlinear functions
of X . In general, under the null hypothesis that the economic model
yields valid moment restrictions one expects that the Euler conditions
will "contaminate” the VAR estimates by incorporating extra information

into the estimation of the VAR innovation process.

The case of linear Euler conditions has received considerable
attention ai}éady in the work of Hansen and Sargent (1980) who show that
there is a well-defined mapping between the parameter vector 50 governing
the Euler conditions and the VARMA representation of the DGP. In con-
trast, when the Euler conditions are monlinear one expects 2 nonlinear
time series model for the X, process. Hence, as pointed out before, the
VAR representation of X, only charaterizes the linearly ;ndeterministic
part of the DGP, i.e. the linear part of the Volterra series expansion of
the xi‘process? It is important to note that the analysis of the non-
linear innovations restrictions is closely related to the work by Gallant
and Tauchen (1986). In their work the (nonlinear) deviations from the
linearly indeterministic (and normally distributed) VAR innovations are
explicitly estimated via semi-ndnpafametrié (SNP) estimation techniques.
Hence Gallant and Tauchen's approach yields an explicitly formulated
probability modél‘for the VAR innovations approximated via an SNP poly~-
nomial expansion; While the approach discussed here is similar but less
ambitious in goal it has the main advantage, in contrast to SNP expan-
sions, to. be éimpler to implement, The argument 1is simply: since the
DGP is a nonlinear time series, when Euler conditions are nonlinear,
there are gains to be made from nonlinear moment' restrictions when
estimating the linearly indeterministic part. The following is assumed
to hold in order to deriye the next VAR Encompassing tests:

Assumption 3..2.: The joint system with nonlinear innovation restrictions
is overidentified. |

This assumption yields:
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estimator of the joint orthogonality conditions with nonlinear innovation

restrictions is equivalent to the asymptotic distribution of the solution

to:
.E’Eglft(@o)/as ' 0 | _‘;gu wg1: ;-ln(e;-
=0
0 dEgy, 0,)/0a " [|Wgyy  Wopl |85 (0
where B o o B

oij
N D N \" =
woii* woi’ woii* W i=1, 2

and WI: = (g gl: (812)'] )-1

Proof: see appendix.

The result in theorem 3.3 demonstrates that the VAR parameter
estimates depend onf and vice versa. The optimal .weighting matrix is no
longer block-diagonal. Hence, the system of first—order conditions is no
longer block-recursive. Using Hansen's notation one has:

- A -] % N _
Oy "0, =-[ayDy " Ag g

This result yields the following two VAR Encompassing tests for the null

hypothesis:
Ho: eN =@D Ho: ON = @V
HA: G)N#:OD HA: ON*GV

- -~ -~

VE, = 0, -0’ [('1:N + R)(wli)'l(TN + R)']'l((;D - 0y)
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~ ~

VE3 = @y -0 Tyt TMO Ty + 1) M, -6y
since

~ ~d Ny -1
Op =0y = N(O, (T R)(W)) (Ty + R)')

d c
Oy =8y = MO, (Ty + T)M) (T, + T,)")

3 are both asymptotically xz distributed

The test statistic VE2 and VE
with ¢k + %z degrees of freedom., The interpretation of the test statig-
tics in the encompassing sense is as follows: the joint system with
nonlinear innovative restrictions should encompass the system with VAR

instruments as well as the disjoint system.

The two Jjoint systems discussed so far have one essentifal 1link
across equation systems. The link is the set of instruments used to
estimate the Euler conditions parameter vector B. The VAR instrument
choice 1is not necessarily an optimal instrument choice, however, in the
sense that it does not necessarily attain the lower bound, characterized
by Hansen (1985), over an admissible set of instruments néasurable with
respect to the information set It' In fact the VAR representation is
present in the joint systems only as a particular characterization of the
DGP which always exists and, as Sims (1980) emphasized, represents an
inference strategy which does not involve any strong identification
assumptions which are typical for “structural" approaches. The 1ntrodqu
tion of the VAR representation into the joint systems comes at a “"cost"
of a loss of degrees of freedom, since the number of parameters to be
estimated increases, and it does not yleld the most efficient instrumen-
tal variables inference strategy for Euler conditions parameters. In
contrast, however, the "strength" or "benefit" of using a VAR representa-
tion is that one knows for sure that the parameter estimates of the VAR
will be consistently estimated since there 1s never any source of mis-
specification, Specification tests solely depending on Euler conditions

moment functions, i.e. f(xt, B ), do not have such properties because they
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are conditional on the model specification. Newey (1985), for instance,
showed that tests for violation of Euler conditions moment functions,
such as Hansen's (1982) test of overidentifying restrictions, may fail to
detect misspecification asymptotically against general misspecification.

With some extra complications it 1is possible to have VAR encom—
passing testing strategies which allow for optimal instrument choice.
The idea is to substitute the VAR representation of X, into the Euler
conditions instead of using the VAR representation as a set of instru-

ments. Consider the following joint system:

(4) Joint orthogonality conditions with VAR substitution:

S -
81t (Kpaper Zp @0 B) F e (ALY Xy ¥+ e poz, (.13)

g5, (x,» @) = (x, = AL) x,.1) @ Xy, (3.16)

S S
with E glt(xt+k’ z ., a, B) = Egzt(xt,a) =0

t

and in addition with definitions for gi, gi and gin

which are similar to the previous systems.

The instrument vector z, in (3.15) is left unspecified. Hence one can
use an optimal set of instruments attaining the efficiency lower bound,
or one may also use the VAR representation or any other instruments. It
should also be noted that the timing of the VAR innovations in (3.16)
coincides with the information set. Extensions of the derivaton with
(3.16) moved one period ahead are straightforward but will not be
explicitly discussed here. The presence of the VAR innovation process in
el implies that (3.15) does not represent a system of equations which
can be estimated via a GMM procedure. Under the null hypothesis that the
Euler momeBt restrictions are valid the use of estimates of €, on the
basis of L i.e. the disjoint VAR estimates, can be justified.
Replacing €, by its estimate, denoted Et(;D)’ ylelds again a well-defined
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~

GMM procedure. Hence the estimates @é = (BS' as') are obtained the usual
way. The asymptotic properties of GS’ however, are somewhat different
from the previously discussed estimators. The mean value theorem applied

to @ has an additional term because of the presence of ¢ (aD), namely:

s
- og_ .
-1 ,* § n
o -0, = [AS DS] Ag [gn + — e ao)] (3.17)
D

The notation in (3.17) is again borrowed from Hansen (1982). Further—
more, let the vector (0 1) be defined such that (aD R Y= (0 V) (Cb -
S) ) From (3.13) it follows that

~

* -1 * p
aD - ao = —(0 1)[AD DD] AD gn

= - v[a ] & g = -pg5 (3.18)

Substituting (3.18) into (3.17) finally yields:

S

- : og
* -1 ,* n S _ S
0, -0, =~ {[AS Ds] Ag + — P] g, = To8_ (3.19)
D

The null hypothesis formally tested by the VAR Encompassing test is:

HO: GS = @D (3.20)
HA: GS #F OD (3.21)

The following theorem justifies the test statistic:

iy

SRR
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The following theorem justifies the test statistic:

Theorem 3.4: Under the null hypothesis (3.20):

> ~ d S,~1
05 =0p > N(O, (Tg + R)(W)™H (Tg + R)")

The proof of the above theorem follows from Hansen's theorem 3.1.

Although the matrix Wi is block-diagonal, like WX because of the innova-

tion timing, it should be noted that ;D and ag are no longer asymptoti-
cally equivalent estimators. The latter follows from the fact that,
contrary to previous systems with VAR instruments, aEgit/bas is no longer
identically equal to zero. The test statistic is then defined as:

Ve, = 05 =0T (15 + W) g + 0166 )

which has the same asymptotic distribution as VE2 and VE3.

Several VAR Encompasing tests have been discussed now which have
more or less the same asymptotic distribution. As with the Chow test
more research needs to be done to learn more about their properties (see
Ghysels and Hall (1987b)). A few additional observations should be made
before leaving the subject, however. First, it should be noted that the
"spirit” of the VAR Encompassing test is very similar to an approach put
forward by Sims (1984) for solving nonlinear stochastic equilibrium
models “backwards". Sims in fact suggests, among other things to “esti-
méte by simulation". The latter is a strategy consisting of generating
solution paths of a nbnlinear stochastic equilibrium model in order to
have a long series of simulated data to estimate VAR models. The VAR
obtaiped this way 1is then compared to a VAR model estimated with actual
data. Our procedure 1is, in comparison computationally more efficient
since it does not involve solving Euler conditions. Sims also points out
that this approach 1is 1linked to the calibration techniques wused in
Prescott and Kydland (1982), among others. The VAR Encompassing tests

presented here may also be considered in the same,fspiritf as calibration
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techniques but are statistically more sophisticated, Second, and

finally, it should also be noted that VAR representations are used ag g
vehicule to accomplish model validation tests, It is not the purpose,
however, to find an “economic” interpretation for VAR estimates as Simg
(1980) and others have suggested. One could argue that VAR estimateg
"contaminated” by the presence of Euler conditions could serve a similar

purpose, however.

D

4. SOME MACROECONOMIC APPLICATIONS

Several appiications of the model validation tests presented here
will be presented in part II of the paper. There will be two models in
particular which will be to explored. The first is a real business cycle
model, the second a monetary equilibrium business cycle model. The pur-
pose 1s not so much to develop new models, but instead to focus on
existing models where certain structural parameters play a prominent role

in testing certain theoretical equilibrium business cycle models.

The first wmodel presented in part II is a representative agent
model with non-time-separable preferences, introduced by Eichenbaum,
Hansen and Singleton (1986), henceforth EHS, which can accommodate
equilibrium iaws of motion for labor supply, consumption, real wages and
stochastic ' interest rates. The non-time-separability introduces
nontrivial endogenous sources of dynamics which according to some real
business cycle proponents, e.g. Kydland and Prescott (1982) and Kydland
(1983), are an important ingredient in explainiﬂg the co-movements in
aggregate compen- sation and hours worked. The Chow-type of test is
particularly wuseful for addressing two questions; namely (1) to what
extent will the assumptions to rationalize a representative agent in the
presence of heterogenedus labor supply affect the interpretation of
parameters as structural and (2) to what extent are the key parameters
which were found to be significantly different from the values assumed in
several business cycle models be invariant across subsaﬁples. The second

test, the VAR Encompassing tests are also appropriate in the context of
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the real business cycle model presented by EHS. In many cases results
from VAR models have been given a real business cycle interpretation,
Examples are Sims (1980a, 1980b) who interpreted 'the contribution of
nominal interest rates in predicting industrial production as capturing
expectations about the future productivity of capital, which is in the
spirit of RBC analysis. Litterman and Welss (1985) also give an RBC
interpretation to their VAR model results.’ Moreover, Eichenbaum and
Singleton (1986) also link VAR evidence to the validation of RBC models.
The idea that'stylized facts reported via VAR parameter estimates should
drive the search for an appropriate equilibrium business cycle model can
be formulated in a formal and testable way via the VAR Encompassing

tests.

The second model studied in part II is a monetary consumption
asset price model, The money-output Ilinkage 1is introduced via a
cash-in-advance constraint very much in the spirit of theoretical models
studied by Lucas (1980, 1984), Lucas and Stokey (1984), Svensson (1985),
Townsend (1987) among others. The multi-good models of asset pricing are
analysed which were pursued empirically by Dunn and Singleton (1985),
Eichenbaum and Hansen (1985) who considered extensions of thé model in
Hansen and Singleton (1982). The model specifically concentrated on is
presented in Singleton (1986) where a non-durable versus durable goods
asset pricing model with a Clower constraint is derived and estimated.
Key parameters in such models govern substitutability of consumption
(durables, nondurabies, services) across goods and over time. The Chow
test is again relevant to uncover the potential misspecification due to
aggregation of heterogeneous consumers. It is also useful to test
invariance with regard to changes in policy regime by taking the October
1979 monetary policy shift as a benchmark. Since money plays a
determining role in real allocations in the model it is natural to use
the Chow-type test in this context. The VAR encompassing tests will also

be useful tests to uncover the potential failure of equilibrium monetéry

asset pricing models.
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APPENDIX

Proof of theorem 2.4: Based on Hansen's proof of his theorem 3.1 one has
the following result:

- * -1 %
B 1 B 1" [_AnIDgnl] Anlgn1 ® l) (a.1)
- * -1 *
B 2" B 2= - [ AnZDgnz] Anzgnz(B 2) (4.2)
where 61 minimizes g, ([3)' Wn g, (ﬁ) and
i i 1

e, =05, ©)g’

A* (D )' A' A
.- 4 , : -
" oMy ;

for 1 = 1, 2 and:

P R S i B L T

k )
-1
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n, 2 t{kﬂ t

Under Hansen's regularity conditions, it follows that:
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’ The covariance matrix of the asymptotic distribution is:
: -
* -1 * *t * -1, * -1 * k1
vela o] A s A ([ 0]+ (4, 07 4y s, (ay)
* -1, ! * -] % okt L JRP R
x{[4, D] 7} +[apD,]7 A S12(8)) ([4,0,] )
L R KUk (A.4)
¢ +[A2 D2] A, S, (A)) ([A1 D, I
I o * ' 2
Where Ai = plim Ani n=— @ 1 =1,
Di = plim Dgni n— i=1,2
'f
(s, s, ]
: S, =E|lg_ g i=1,2

i n, “n,

. )
Sij=E[gn gn] 1, =1,2 1#4
i )

« Under Ho appearing in (2.2a) the following holds:
]
i3 A* A*
- ) 5175,
j = =
Py =D, 5127 521
‘ii
i Hence, under Ho equation (2.4) in theorem 2.4 is valid, namely:
-
* o] % - X U ok ]! :
ve=2{ [0 a"[s45] ") [aD)7H) . (A.5)

* * * v -
where A1=A2=A,S=SI=SZ,D=D1=D2ands=812=821.

Equation (2.3) gives the expression for s agsuming ﬂi= B; :L=1,2. In the
remainder of the proof, we derive the properties of S. First, for arbi-

trary finite n, n, we have:
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Under assumption 2.1 sij- o Vi 1J+ This follows from the definition of an

M-dependent process. The mixing conditions presented under assumption 2,2
imply that sij is finite Vi,j. To see this the following steps are needed
(1) from White and Domowitz (1984) we have that if X, is mixing of size b,
then f(x » B) 1s also mixing of that size, furthermore (2) White and
Domowitz's results also imply that the autocovariances of X, decay at this
rate, hence E lfit jt+s ] 1s 0 (s™ ) where size in his context stands for

0(n * ) for A‘> 2r/(2r-1) for ¢ (n) mixing and O(n ) for A > 2r/(r~1) for
« (n) mixing (see assumption 2,2), Finally, the convergence of Sij

finite limit as 0,0, = = follows directly from Gallant and White (1986)
corollary 3.11,

to a

. ’ * -A
Given that K fitfjt+s*+1) is 0 ((s +1)™) and E(fitfjt+s*+k) is a

decreasing function of k, 1t may reasonably be expected that S is small rela-
tive to the variance S§. Hence, we suggest to perform ‘“conservative

inference" if x, is mixing as in White (1983) by constructing
ok o]k kY ok 1 1
cv = 4 a0 sy (a7t

Note that as S 1is symmetric, (V - CV) is positive semi~definite., Further-
more, since CV is positive definite and we assume that V is positive

definite, it follows that CV "L 1 1s positive semi-definite. Then

6176 oG -6,) ~ (5, B) V(B,- 6y < 0

Hence the test statistic; using Cv, is'always at least as large as the true
statistic with V. Consequently, rejecting with the cv matrix certainly means
rejecting with the matrix V as covariance matrix. 'The converse 1s of course

not true, i.,e., accepting with CV does not mean that the null hypothesis 1s
accepted with V, Q.E.D.

Proof of theorem 3.1: The estimator ev is obtained by minimizing the
quadratic form:
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where WZ - wV almost surely. This {is asymptotically equivalent to

solving:

Min (g ©))' W' g’ (©)
¢]

The first-order conditions for this quadratic form are:

©g, ©)'/00) W' gl ©) = 0

The asymptotic distribution of the solution to the first-order conditions
will be the same as the asymptotic distribution of the solution to:

©Fg, ©,)'/00) W' ' @) = 0
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Since the Euler conditions imply that:
H2 1t (xt+k’ Bo)®zt] for any 2. I 1t follows that:
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because gzt (ao) € It' Hence WZ is the inverse of a block-diagonal matrix.

Consequently:
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Furthermore, the gradient of the gZ function can be written as:

' v
dEg. (@ )/op" dEg, (06 )/oa'
aEgZ(@o)'* ' . 1t™ o 1t* o
0 bEggt(ao)/ba '

The Euler conditions yield the following result:

bEg‘{t(@o)/aa' = Eelt(xt+k’ Bo)® (BA*(L) Xltlaa') = Q

Hence the first-order conditions can be written as:
\' e vV -
aEglt(@o)/bs Wio 81q ©) =0

D D D
bEth (ao)/ba 'W20 gzn(a) =0

The latter yields the asymptotic equivalence of T and «
should be noted that:

v Finally, it

' \ '
(Wlo) =E 1t (eo) 1t (eo)
Because of the definition of the g‘llt functior, it follows that

V

Wy 10) "

107 = @

where Wg* 0 Q.E.D.

Proof of theorem 3.3: The proof is along the same lines as theorem 3.1's
proof. The weighting matrix is not block-diagonal because the covariance

between glft and ggt is non-zero. It should be noted, however, that

h ‘ .
because 3 A (L) X /aa ' remains a function defined on the information set.

The overidentifying restrictions assumption is necessary for the first-order

conditions to hold without g = 0 at ON




S Y S T

i
!
i
g
i

- 26 =

FOOTNOTES

Besides conditions for exact aggregation some recent work by
Polemarchakis et al (1986) has focused on approximate aggregation.
Their goal 1s to 1investigate the degree to which the demand of a
collection of von Neumann-Morgenstern agents can be approximated by
the demand of a single von Neumann-Morgenstern agent. One of the
results states that the risk tolerance of the approximate aggregator
is equal to the sum of the individual agent risk tolerances at prices
which yield constant, "riskfree", contingent consumption., This and
other results show how parameters in a GMM procedure, where exact
aggregation conditions do not hold, can depend on the distribution of

preferences and income.

It should parenthetically be noted that this procedure does not
correspond to the equation-by-equation OLS estimation of a VAR as is

usually the case,
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