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SUMMARY

Introduction: In mammals, new neurons continue to be produced throughout the adulthood in 

two brain regions: 1) the hippocampus and 2) the forebrain subventricular zone. Adult 

neurogenesis is not a stable process, and changes in response to diverse factors such as age and 

pathology. Furthermore, because changes in neurogenesis may in fact  underlie pathogenesis, 

regulating or restoring neurogenesis is seen as an important therapeutic objective. In healthy and 

diseased mice, hippocampal neurogenesis can be robustly regulated by environmental 

enrichment. However, while physical activity and environmental enrichment are  potentially 

important in the treatment of some pathologies, comparatively little is known about the 

molecular and physiological mechanisms underlying activity/environment-dependent changes in 

neurogenesis. 

Objectives and hypotheses: The primary objectives of this study are to characterize the 

neurogenesis-mediating effects of external stimuli and, in doing so, to elucidate the mechanisms 

that underlie observed changes. Using voluntary wheel running as a model, this study addresses 

two hypotheses: 1) that extended periods of physical activity can influence adult neurogenesis in 

the forebrain and the hippocampus and 2) that voluntary wheel running mediates neurogenesis 

through both running-dependent and running-independent stimuli. 

Methods: To address the first hypothesis, we used a prolonged six-week voluntary  paradigm and 

immunohistochemical analyses to characterize neural precursor activity in the subventricular 
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zone and hippocampus. To address the second hypothesis, we used a modified version of the 

above paradigm, where an additional group of mice were housed in cages with a locked running 

wheel.  

Results: With respect  to the first hypothesis, prolonged voluntary wheel running was found to 

increase neural precursor proliferation and neurogenesis in the hippocampal dentate gyrus 

relative to control animals, confirming the results of previous studies. More importantly, in this 

paradigm, proliferation in the forebrain subventricular zone was also found to be increased. In 

keeping with the second hypothesis, mice that  were housed in locked-running wheel cages 

showed an increase in hippocampal  neural precursor proliferation comparable to that of running 

animals. However, only running animals displayed increased hippocampal neurogenesis. 

Conclusions: These results allow us to draw two novel conclusions regarding the effects of 

running on neurogenesis. First, proliferation in the forebrain subventricular zone, in addition to 

proliferation and neurogenesis in the hippocampus, is subject to regulation by wheel-running. 

Second, the wheel-running environment contains diverse stimuli which can influence some 

aspects of hippocampal neurogenesis in the absence of wheel running. 

Keywords: Neurogenesis, Hippocampus, SVZ, Subventricular Zone, Running, Exercise, 

Environmental Enrichment
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RÉSUMÉ

Introduction: Chez les mammifères, la naissance de nouveaux neurones se poursuit à l’âge adulte 

dans deux régions du cerveau: 1) l’hippocampe et 2) la zone sous-ventriculaire du prosencéphale. 

La neurogenèse adulte n’est pas un processus stable et peut être affectée par divers facteurs tels 

que l’âge et la maladie. De plus, les modifications de la neurogenèse  peuvent être à l’origine des 

maladies de sorte que la régulation ainsi que le rétablissement de la neurogenèse adulte doivent 

être considérés comme d’importants objectifs thérapeutiques. Chez la souris saine ou malade, la 

neurogenèse hippocampale peut être fortement régulée par l’enrichissement environnemental 

ainsi que par l’activité physique. Cependant, lors même que l’activité physique et 

l’enrichissement environnemental pourraient contribuer au traitement de certaines maladies, très 

peu d’études porte sur les mécanismes moléculaires et physiologiques responsables des 

changements qui sont en lien avec ces stimuli. 

Objectifs et hypothèses: Les principaux objectifs de cette étude sont de caractériser les effets de 

stimuli externes sur la neurogenèse et, par le fait  même, d’élucider les mécanismes sous-jacents 

aux changements observés. En utilisant le modèle d’activité physique volontaire sur roue, cette 

étude teste les deux hypothèses suivantes: tout d’abord 1) qu’une période prolongée d’activité 

physique peut influencer la neurogenèse adulte dans le prosencéphale et l’hippocampe, et 2) que 

l’activité volontaire sur roue peut favoriser la neurogenèse à travers des stimuli dépendants ou 

indépendants de la course. 
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Méthodes: Afin de valider la première hypothèse, nous avons utilisé un paradigme incluant  une 

activité physique volontaire prolongée sur une durée de six semaines, ainsi que des analyses 

immunohistochimiques permettant de caractériser l’activité de précurseurs neuronaux dans la 

zone sous-ventriculaire et l’hippocampe.  Ensuite, pour valider la seconde hypothèse, nous avons 

utlisé une version modifiée du paradigme ci-dessous, en plaçant les animaux (souris) soit dans 

des cages traditionnelles, soit dans des cages munies d’une roue bloquée soit dans des cages 

munies d’une roue fonctionnelle. 

Résultats: En accord avec la première hypothèse, l’activité physique prolongée volontaire a 

augmenté la prolifération des précurseurs neuronaux ainsi que la neurogenèse dans le gyrus 

dentelé de l’hippocampe comparativement aux animaux témoins, confirmant les résultats 

d’études antérieures. Par ailleurs, dans ce paradigme, nous avons aussi observé de la prolifération 

acrue au sein de la zone sous-ventriculaire du prosencéphale. De plus, en accord avec la seconde 

hypothèse, les souris placées dans une cage à roue bloquée ont montré une augmentation de la 

prolifération des précurseurs neuronaux dans l’hippocampe comparable à celle observée chez les 

souris ayant accès à une roue fonctionnelle (coureurs). Cependant, seuls les animaux coureurs 

ont présenté une augmentation de la neurogenèse hippocampale. 

Conclusions:  Ces résultats nous ont  permis de tirer deux conclusions nouvelles concernant les 

effets de l’activité physique (course) sur la neurogenèse. Premièrement, en plus de la 

prolifération et de la neurogenèse dans le gyrus dentelé de l’hippocampe, la prolifération dans la 

zone sous-ventriculaire du prosencéphale peut être augmentée par l’activité physique sur roue. 
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Deuxièmement, l’environnement dans lequel l’activité physique a lieu contient différents stimuli 

qui peuvent influencer certains aspects de la neurogenèse hippocampale en l’absence d’activité 

physique sur roue (course).

Mots Clés: neurogenèse, hippocampe, ZSV, zone sous-ventriculaire, exercice, enrichissement 

environemental
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INTRODUCTION

1. Plasticity in the central nervous system

 One of the fundamental capacities of the central nervous system is to adapt  and change in 

response to its environment and to any pathology or injury. This phenomenon is broadly  known 

as plasticity. While early  neuroanatomists and neuropsychologists favored a static or pavlovian 

brain (one where every process can be effectively reduced to a conditioned “reflex”), recent 

research has provided many  examples of brain plasticity. Without plasticity, commonplace 

functions of the CNS such as the formation and consolidation of memories would not be 

possible. Furthermore, it is because of adaptive capacities that  the CNS that the brain can 

maintain or recover function in cases of pathology or injury. Simply put, without plasticity, there 

would be no thought, no cognition and no adaptation. Mechanistically, the dynamic processes of 

the CNS (i.e., plasticity) can be roughly  categorized into three basic types: 1) synaptic, 2) 

connectional and 3) neocellular.

 The first  breakthrough with respect to CNS plasticity  came about because of the 

conceptual work of Donald Hebb. In his seminal work, “The Organization of Behavior,” Hebb 

postulated that neurons that  repeatedly exchange information with one another (via firing) will 

strengthen or improve the efficiency of said communication (Hebb, 1949). In other words, “if 

neurons fire together, they wire together.” The implications of this postulate were enormous 

because Hebb linked the strengthening and weakening of synapses to behaviors like memory  and 
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learning. Effectively, the behaviorist viewpoint had been challenged, and the concept of CNS 

plasticity was born. 

 Confirmation of Hebb’s postulate about synaptic plasticity  came in the 1970s, with the 

work of Bliss and Lomo. In their 1973 study, Bliss and Lomo discovered long-term potentiation 

(LTP), i.e., the strengthening of a synapse in terms of post-synaptic evoked potential (Bliss and 

Lomo, 1973). Since this discovery, LTP has been recognized as the major physiological 

mechanism underlying learning and the formation of memories. However, a dynamic brain must 

also be able to “un-learn” or weaken connections at some synapses, and this is accomplished by 

long-term depression (LTD) which is conceptually similar to LTP. LTD was first described in the 

late 1970s by Lynch and colleagues, as a process occurring in parallel with LTP (Lynch et al., 

1977). Together, LTP and LTD permit changes in the strength of synapses throughout the brain. 

Thus, connections from one system or set of neurons can be potentiated to reflect changes in 

external stimuli and cognitive processes. This forms the mechanistic basis for how the brain 

learns and remembers.

 Another form of plasticity that is central to normal CNS function is connectional 

plasticity. The first  evidence for this phenomenon came about in the early 1960s via the work of  

Bach-y-Rita, Merzenich and Kaas (Allard et al., 1991; Bach-y-Rita, 1967; Bach-y-Rita et al., 

1969a; Bach-y-Rita et  al., 1969b; Bach-y-Rita et al., 1969c; Buonomano and Merzenich, 1998; 

Guic et al., 2008; Hickmott and Merzenich, 2002; Jenkins and Merzenich, 1987; Kaas et al., 

1983; Merzenich et al., 1987; Merzenich et al., 1984; Merzenich and Sameshima, 1993). The 

various ways in which these researchers discovered this phenomenon goes beyond the scope of 

this thesis. Suffice to say that, in response to CNS and peripheral injury, and in normal CNS 
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function, neurons can modify  the distribution of their axonal projections to innervate different 

neurons or areas. For example, in the case of Bach-y-Rita’s early studies (Bach-y-Rita et al., 

1969a), blind persons could be taught to “see” via tactile stimuli. In this case, cortical structures 

that would have normally been responsible for processing visual cues were recruited by the 

somatosensory pathways of the brain. Another example came from the work of Ramachandran, 

who described how phantom sensations were produced in amputated limbs via some re-

organization of the somatosensory and motor cortices (Ramachandran, 1993; Ramachandran et 

al., 1992). In this manner, extant structures of the brain can facilitate or replace the functions of 

damaged structures, and this has also been termed as axonal or cortical plasticity. 

 The third type of plasticity that is important for CNS function is neocellular plasticity. 

This refers specifically  to the genesis of new cells in the mature or adult brain. Adult gliogenesis 

has been described and studied for some time, and it contributes to the maintenance of normal 

CNS function and the repair of lesioned or diseased CNS tissue. However, it  has since been 

shown that the mature brain is capable of forming new neurons in specific anatomical regions 

and that these cells contribute to CNS plasticity. Adult neurogenesis and the neocellular plasticity 

of the CNS is the primary focus of this thesis, and will be discussed in greater detail throughout.
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2. Adult neurogenesis

2.1 Neurogenesis: How are neurons formed?

 Through years of experimentation and observation, researchers have learned and 

described how the diverse cells of the brain are produced. Simply  stated, neurons do not divide 

symmetrically, as might be the case for cells in other biological systems. Instead, they  originate 

from a complex system of multipotent progenitors and stem cells.

 The system of stem cells, progenitors and neuroblasts in the brain is akin to other stem 

cell systems, such as the hematopoietic system, and can be broken down into several distinct 

stages. In the developing brain, all neuronal tissue arises from the neuroepithelium, which is 

induced from embryonic stem cells. Once the framework of the neural axis is laid out, 

multipotent stem cells in the neural tube will form all the remaining neurons and glia of the 

cerebrum and spinal cord. The principal, or earliest-lineage stem cells in the developing CNS are 

the radial glia (Cameron and Rakic, 1991; Malatesta et al., 2000; Noctor et al., 2001; Noctor et 

al., 2002), which have two main roles, both dividing to produce other progenitors/daughter cells 

and providing scaffolding for subsequent migration and integration of newly  formed cells. The 

daughter cells, or transit-amplifying progenitors, will then migrate to the appropriate regions or 

layers and can expand the local population through symmetrical division. Following this, neural 

progenitors differentiate into neuroblasts or glioblasts, from which all of the diverse neurons and 

glia of the fully formed CNS will be produced.    
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2.2 The discovery of adult neurogenesis

 Adult neurogenesis is a term used to describe the process by which new neurons are 

formed in the mature brain forms new neurons. While there was always some speculation that 

the brain can form new neurons throughout adulthood, it is only  within the last 20 years that  the 

dogma of “no new neurons” has been successfully  challenged. Prominent and pioneering 

neuroanatomists like Ramon y Cajal championed the fixed and non-regenerating CNS largely 

because of the fact that neurons were never observed to be mitotic. To quote Ramon y Cajal’s 

“Degeneration and Regeneration of the Nervous System” (Ramon y Cajal, 1928): “In the adult 

centers [of the brain], the nerve paths are something fixed and immutable: everything may die, 

nothing may be regenerated.” 

 Surprisingly, some of Ramon y  Cajal’s contemporaries made observations that suggested 

that adult cell genesis in the brain, and even ongoing neurogenesis, might be a possibility. In 

1889, Wilhelm His was among the first to describe what we now call stem or germinal cells in 

the neural tube of the developing CNS (His, 1889), which spawned additional research into the 

genesis of neurons and glia by the likes of Penfield (Penfield, 1932). In 1912, Ezra Allen showed 

that, in rodents, cells surrounding the ventricular system, in the region we now call the 

subventricular zone, were undergoing mitosis well into adulthood (Allen, 1912). Further studies 

of this subventricular zone in humans (Kershman, 1938; Rydberg, 1932) suggested that this 

region could produce different types of glia well into adulthood and contribute to tumor 

formation.  In 1958, Messier, Leblond and Smart were among the first to use tritiated thymidine 

to label and identify mitotic cells in the central nervous system (Messier et al., 1958). 
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Confirming previous findings, they found large numbers of labeled, dividing subependymal cells 

and, to some surprise, occasional labeled neuron-like cell in the cortex. However, studies by 

these groups had failed to demonstrate whether any of the dividing cells were or were becoming 

true neurons, and the dogma persisted.  

 The first real breakthrough in the discovery  of adult neurogenesis came about through the 

work of Joseph Altman in the 1960s. Altman began his studies with tritiated thymidine by 

studying and describing cell genesis in response to brain injury  (Altman, 1962a; Altman, 1962b; 

Altman and Altman, 1962). He was then able to show that some labeled cells in the brain had a 

neuronal morphology or phenotype, which suggested that  adult neurogenesis was a possibility. 

Altman pursued this line of research and went on to provide some of the first characterization of 

adult neurogenesis in the subventricular zone and the hippocampus, which had not been hitherto 

considered as a possible germinal zone of adult neurons. In his seminal studies, Altman 

demonstrated with autoradiographic techniques that new cells , which appeared to be neurons, 

were being produced in the germinal zone of the dentate gyrus and the subventricular zone and 

even identified their candidate precursor or progenitor cells (Altman, 1963; Altman and Das, 

1965a; Altman and Das, 1965b). These studies also showed that the mitotic activity  in the 

germinal zones of the SVZ and the hippocampus was not stable, but decreased with age. In spite 

of this convincing evidence, his studies were met with skepticism and some hostility. Several 

years later, Michael Kaplan built on Altman’s findings and confirmed, via electron microscopy, 

that the cells labeled with thymidine were in fact neurons (Kaplan, 1985; Kaplan and Hinds, 

1977; Kaplan et al., 1985). The last of the definitive confirmations came in 1985 from Fernando 

Nottebohm (Nottebohm, 1985; Paton et al., 1985). Using songbirds as a model organism, he was 
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able to show, with a combination of techniques, that new cells were being produced in the brain 

and that these cells had electrophysiological properties of neurons. He was also the first to co-

label thymidine labeled cells with another cytological marker, which in this case was horseradish 

peroxidase that had been injected into the neurons following electrophysiological recordings. 

 In the years since these groundbreaking studies, several other researchers have 

contributed to transforming the field of neurogenesis from “anti-dogmatic” and “esoteric” to  

being widely  accepted.  Arturo Alvarez-Bullya, a student of Nottebohm, was able to describe the 

morphology  and behavior of candidate, radial glia-like stem cells in mammals in vivo (Alvarez-

Buylla et al., 1990), while Sam Weiss used a cell culture assay to establish the existence of 

neural stem cells isolated from the ventricular system in vitro (Reynolds and Weiss, 1992). 

Several important methodological strategies were also developed during this period, which 

enabled more accurate measurement of adult neurogenesis. Elizabeth Gould and Heather 

Cameron were the first to co-label thymidine-labeled cells with an immunohistochemical marker, 

namely neuron-specific enolase (Cameron et al., 1993). Fred Gage and colleagues improved on 

the labeling of dividing cells by first substituting the thymidine analog bromodeoxyuridine 

(BrdU) for tritiated thymidine (Kuhn et al., 1996) and then by using retroviral labeling of live 

cells via green fluorescent protein (GFP) (van Praag et al., 2002). Finally, confirmation of 

neurogenesis in primates came from diverse groups (Gould et  al., 1999b; Kornack and Rakic, 

1999) and definitive evidence of human hippocampal neurogenesis was provided by a landmark 

study by Eriksson and Gage (Eriksson et al., 1998).
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FIGURE 2.1 Three-dimensional schematic view of  the primary neurogenic regions in the adult mouse brain. The SVZ-

Olfactory Bulb region is outlined in dark pink. The SVZ is  shown adjacent to the contralateral lateral ventricle. The 

striatum is included in the SVZ-OB system not because it is a neurogenic region per se, but because the SVZ is found on 

the ventricular surface of  this  structure. The hippocampus is outlined in green, with a cutaway view of  the Cornu 

Ammonis and dentate gyrus structures in situ. Abbreviations: HIPPO = Hippocampus, OB  = Olfactory Bulb, ST = 

Striatum, SVZ = Subventricular Zone. © M. Bednarczyk
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3. The subventricular zone (SVZ)

3.1 Structure of the subventricular zone

 

 Current studies and literature on the SVZ have defined its basic anatomical structure. In 

humans, the SVZ consists of four layers, each of which is populated by  distinct types of cells and 

each of which serves different functions (Quinones-Hinojosa and Chaichana, 2007; Quinones-

Hinojosa et al., 2007; Quinones-Hinojosa et al., 2006). The outermost, periventricular layer 

(Layer I) of the human SVZ is formed by ependymal cells. These cells have a ciliated apical 

surface and are involved in the production and circulation of the cerebrospinal fluid (CSF). 

Consequently, this layer forms the main barrier between the ventricular system and the other 

cells of the SVZ. Proximal to the basal surface of the ependymal cell layer is the hypocellular 

layer (Layer II). As its name implies, this layer is devoid of cell bodies and significant numbers 

of resident cells. Conversely, it consists primarily of cellular processes originating from other 

layers and cells of the SVZ, such as the astrocyte-like stem cells. Adjacent to and below the 

hypocellular layer is the principal layer of constituent SVZ cells (Layer III). Astrocytes, 

astrocyte-like stem cells, neural precursors and neuroblasts can all be found in this layer. The 

final layer (Layer IV) forms the interface between the cells of the SVZ and the adjacent brain 

parenchyma. 

 The rodent SVZ, by comparison, differs slightly in its structure and cellular make-up. Of 

greatest importance is the fact that  there are only two clearly demarcated “layers” of cells, unlike 

the human SVZ. The rodent SVZ is composed of an outer layer of ependymal cells, proximal to 

the lateral ventricles, and a subependymal layer that contains all of the various neural precursors 

(Doetsch et al., 1997). 
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FIGURE 3.1 (PRECEDING PAGE) Schematic representation of the SVZ-OB  neurogenic lineage. From left to right are 

shown a cluster of  neural precursors  in situ followed by the individual cells and their lineage with corresponding 

immunohistochemical markers. Arrows represent the rostral migratory stream (RMS) and neurons correspond to mature 

interneurons in the Olfactory Bulb. © M. Bednarczyk

3.2 Subventricular zone neurogenesis

 The subventricular zone is a vestige of the embryonic germinal zone that is derived from 

the circumventricular neurogenic areas. Consequently, the manner by which new neurons are 

produced in this structure is comparable to the manner by  which new neurons are produced 

embryonically. The prevailing model of SVZ neurogenesis was first outlined in the late 1990s by 

Doetsch and Alvarez-Buylla (Doetsch et al., 1997). Using histological techniques and electron 

microscopy, these authors showed that there are is an organized cellular structure to the SVZ 

neurogenic niche, comprising four principal types of cells, which they categorized as follows: 1) 

Type A cells (neuroblasts), 2) Type B cells (astrocytes), 2) Type C cells (transit-amplifying 

progenitor cells) and 4) Type E cells (ependymal cells). In their 1999 study, this same group 

outlined the lineage, or order in which these cells are produced: Type B cells divide to produce 

Type C cells which then divide to produce Type A cells (FIGURE 3.1) (Doetsch et al., 1999a; 

Doetsch et al., 1999b). In contrast, Type E cells do not divide and are not directly involved in the 

neurogenic process, although there is some evidence to the contrary originating from Frisen and 

colleagues (Johansson et  al., 1999). It is generally  accepted, however, that Type E cells serve 

important functions in the regulation of SVZ neurogenesis.  
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 The principal stem cell in the SVZ is the Type B cell, which bears several of the 

morphological and functional hallmarks of astrocytes and radial glia. These cells reside in the 

subependymal layers of the SVZ and have processes that ensheath migrating type A cells and 

make contact  with the CSF of the ventricular system, permitting the free exchange and uptake of 

CSF-borne trophic factors. Type B cells are easily identifiable via immunohistochemistry for 

markers like GFAP, Nestin, BLBP and Pax6. The multipotent and stem cell-like nature of these 

cells was first  confirmed by Doetsch and colleagues in the late 1990s. In their 1999 studies, 

Doetsch and Alvarez-Buylla selectively ablated most neurogenesis in the SVZ through cytostatic 

treatments, which spared some of the slowly-dividing B cells. After termination of the cytostatic 

treatments, the B cells were able to regenerate themselves and to completely repopulate the 

progenitor population of the SVZ (Doetsch et al., 1999a; Doetsch et al., 1999b). Moreover, Type 

B cells have the potential to form neurospheres in vitro which can subsequently  be differentiated 

into neurons and glia, all hallmarks of a neural stem cell phenotype (Chiasson et al., 1999; 

Laywell et al., 2000; Morshead et al., 1998; Morshead et al., 1994; Reynolds and Weiss, 1992).

 The next cell in the neurogenic lineage of the SVZ is the Type C cell, or transiently-

amplifying progenitor that is produced as a result of the asymmetric division of a B cell. Type C 

cells can be identified by  their highly proliferative nature and by diverse markers of neural 

precursors, such as Pax6 (Hack et al., 2004), Mash, Ki67 and the transcription factor Dlx2 

(Doetsch et al., 2002). Consequently, Type C cells are largely responsible for the expansion of 

proliferating and still-undifferentiated neural precursors. As such, they form the largest pool of 

dividing cells in the forebrain SVZ (Doetsch, 2003b).These cells were identified 

morphologically in the same Doetsch and Alvarez-Buylla study (1997) that identified B cells. 
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 Migrating neuroblasts, or Type A cells, are the penultimate cells in the SVZ neurogenic 

lineage and are produced from Type C cells. They are relatively  small cells with two prominent 

equatorial processes and can be detected via immunohistochemistry for markers of immature 

neurons, such as DCX and PSA-NCAM. 

 Type E cells, or ependymocytes, do not actually contribute directly  to the neurogenic 

lineage according to the prevailing model. However, they do form an important interface with 

the CSF of the adjacent lateral ventricles, and could be responsible, in part, for regulating the 

activity of neural precursors in the SVZ.

 Type B, C, A and E cells are often grouped in close proximity and in small clusters 

throughout the SVZ. Together, they form the constituents of the SVZ neurogenic niche and 

interact with themselves and with the environment to regulate the rate of neurogenesis (Doetsch, 

2003a; Lim and Alvarez-Buylla, 1999). It should also be noted that, according to the prevailing 

model, all of the aforementioned cells are capable of self-renewal to some degree. The Type A 

cells will only  become post-mitotic and fully differentiated once they have left the SVZ proper, 

in the final step of the SVZ neurogenic process.

 Type A cells, after being produced, will move tangentially across the SVZ towards the 

rostral migratory stream, in which they continue to mature and differentiate and through which 

they  eventually  reach the olfactory bulb (OB). Here, they become post-mitotic and migrate out 

radially  into the glomerular or periglomerular layers to finally integrate into existing OB 

networks as fully functional neurons. The Type A cells can be identified by 

immunohistochemistry  for NeuN, GAD and Calretinin. Regardless of where they migrate to in 
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the OB, the vast majority  of SVZ-derived new neurons become GABAergic interneurons 

(FIGURE 3.1). 

 Interestingly, some of the periglomerular interneurons are also immunoreactive for 

tyrosine hydroxylase and use dopamine in addition to GABA as their neurotransmitter. Of note, 

the vast majority of incoming, newly-formed neurons will eventually die, with only a small 

proportion being conserved for a longer period of time. Because most of the cell death is 

accomplished in the OB proper, it  is assumed that the successful integration of incoming neurons 

into OB networks determines whether or not  the cells survive. Because the integration of new 

neurons into the OB occurs concomitantly  with the death of existing OB interneurons, this whole 

neurogenic process mostly serves in the lifelong turnover of the latter.  

3.3 Functions of subventricular zone neurogenesis

 

 The primary function of the SVZ is to supply  the forebrain with neural precursors and 

neuroblasts. As such, the vast majority of these nascent cells will be directed towards the OB, 

where they will participate in a life-long turnover of OB interneurons. A strong body of research 

demonstrates that this neurogenic process is crucial for the normal function of the OB, including 

tasks such as fine odor discrimination (Breton-Provencher et al., 2009; Grubb et al., 2008; 

Nissant et al., 2009; Whitman and Greer, 2009).

 It should also be noted that in the case of injury to other regions of the forebrain, 

neuroblasts (and potentially  glioblasts) that are produced in the SVZ can migrate out  of the 

rostral migratory stream and contribute to repairing damaged structures (Kim and Szele, 2008). 
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This is particularly evident with injuries or diseases where entire cortical structures are ablated, 

such as stroke (Arvidsson et al., 2002; Faiz et al., 2008; Gotts and Chesselet, 2005a; Gotts and 

Chesselet, 2005b; Gotts and Chesselet, 2005c; Kojima et al., 2010; Massouh and Saghatelyan, 

2010; Ohab et al., 2006; Yamashita et al., 2006) or traumatic brain injury (Goings et  al., 2004; 

Ramaswamy et al., 2005; Richardson et al., 2007; Salman et al., 2004). Because of this fact, 

finding ways to increase or modulate forebrain neurogenesis after injury is an important research 

and therapeutic objective (Alvarez-Buylla et al., 2000).

 However, while the SVZ neurogenic pool does provide some regenerative capacity to the 

brain, in the vast  majority of cases, newly formed “replacement” structures cannot fully 

approximate the function of the structures they replace. In cases where studies have shown a 

restoration of function (Kolb et al., 2007), it has mostly  been through indirect behavioral 

analyses, and could be attributed to connectional plasticity in the remaining healthy structures. 
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4. The hippocampus 

4.1 Structure of the hippocampal formation

 The hippocampus is a distinct, crescent-shaped structure located on the floor of the 

middle horn of the lateral ventricle. It is a bilaminar, submerged gyrus, comprising two main 

parts. The most  voluminous part  is the Cornu Ammonis, or “ram’s horn,” which is situated 

dorsally  in rodents, proximal to the surfaces of the caudal ventricular system. The Cornu 

Ammonis is populated primarily by pyramidal cells, organized into a single, curved layer. This 

layer is subdivided along its axis into three distinct regions: CA1, CA2 and CA3 (FIGURE 4.1). 

The CA3 region extends around the hippocampal sulcus into the second, smaller hippocampal 

“gyrus,” the dentate gyrus.

 The dentate gyrus is situated just below, or ventral to the Cornu Ammonis, proximal to 

the surfaces of the midbrain. The largest population of neurons in this structure forms the granule 

cell layer of the dentate gyrus. The granule cell layer is surrounded on either side by the 

molecular layer, which consists primarily  of innervating axons from the perforant path and from 

other CNS structures (FIGURE 4.1). In between the two laminae of the granule cell layer is the 

hilus, or polymorphic layer. At the interface of the hilus and granule cell layer is the subgranular 

zone, which is the primary germinal region in the hippocampus. The structure, function and 

constituent cells in this region will be discussed further in sections 4.2 and 4.3.

 The subiculum forms part of the parahippocampal gyrus and projects caudally from the 

Cornu Ammonis. The subiculum is composed of loosely  clustered pyramidal cells that receive 
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their input primarily  from the CA1 cell layer of the hippocampus proper (Andersen, 2007; 

Duvernoy, 2005; Shepherd, 2004). Consequently, the subiculum is the primary output of the 

hippocampus, and its efferent fibers project out to diverse structures of the limbic system, 

midbrain and forebrain, such as the nucleus accumbens, amygdala, hypothalamus and the 

prefrontal cortex (in humans).  

 The subiculum also forms important connections with the entorhinal cortex, which is 

located ventro-caudal to the subiculum in rodents. The entorhinal cortex is composed of several 

layers of neurons and serves as the primary interface between the structures of the cerebrum and 

the hippocampus. Its superficial layers (II and III) project to the granule cell layer of the dentate 

gyrus, to the CA3 and CA1 pyramidal cells and to the subiculum (Andersen, 2007; Duvernoy, 

2005; Shepherd, 2004). Together, this forms the main input to the hippocampus, or the Perforant 

Path. The superficial layers of the entorhinal cortex also receive the primary inputs from other 

regions of the cerebrum. The deep  layers of the entorhinal cortex (i.e., V) also receive important 

inputs from the hippocampus (FIGURE 4.1).

FIGURE 4.1 (FOLLOWING  PAGE) Hippocampal  anatomy in the rodent. Shown are coronal  and horizontal  views of  the 

hippocampus and parahippocampal structures. Note that both representations are oriented in the same rostro-caudal 

direction. Abbreviations: DG = Dentate Gyrus, Sub = Subiculum, LEC = Lateral Entorhinal Cortex, MEC = Medial 

Entorhinal Cortex. © M. Bednarczyk
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 The circuitry  of the hippocampus is unique in the CNS in terms of its complexity  and the 

functions it  supports. While it comprises many different inhibitory, extrinsic and intrinsic 

components, its basic excitatory (glutamatergic) circuitry  can be summarized as follows: 1) The 

dentate gyrus receives its input from the entorhinal cortex via the perforant path. 2) The dentate 

gyrus granule cells, in turn, innervate the CA3 pyramidal cell layer. 3) The CA3 pyramidal cells 

innervate CA1 pyramidal cells which project their axons to the subiculum. 4) Neurons in the 

subiculum project their axons to the entorhinal cortex (FIGURE 4.2) (Andersen, 2007; 

Duvernoy, 2005; Shepherd, 2004).
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FIGURE 4.2 (above) Schematic of the basic excitatory circuitry in the hippocampal formation. The hippocampus proper 

is  colored in light beige, while the entorhinal cortex/parahippocampal gyrus is colored in light green. Abbreviations: CA1 

= CA1 pyramidal cells, CA3 = CA3 pyramidal cells, DG = dentate gyrus, LEC = Lateral entorhinal cortex, MEC = Medial 

entorhinal cortex, Sub = Subiculum. © M. Bednarczyk

 

FIGURE 4.3. (FOLLOWING PAGE) Schematic representation of  the hippocampal neurogenic lineage. Cell types  are 

presented in the general order in which they are produced, from left to right. Boxes  below show the immunohistochemical 

markers that can be used to identify the specific cells. © M. Bednarczyk
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4.2 Hippocampal neurogenesis

 In the healthy CNS, hippocampal neurogenesis occurs in the subgranular zone of the 

dentate gyrus. This area is defined as a 2 to 3 cell thick region below the granule cell layer, in 

which several different types of neural precursors contribute to the formation of new granule cell 

neurons. 

 The basic plan of the hippocampal neurogenic system and lineage is comparable to that 

of the subventricular zone, in that the newborn neurons produced in the hippocampus derive 

from stem-like cells and progenitors in an almost linear fashion. However, unlike in the SVZ, 

there is some contention about specific nomenclature and the precise identity of constituent cells. 

Moreover, while the basic plan of hippocampal neurogenesis is comparable to that of the SVZ, 

there are several notable differences between these two systems, ranging from the morphology of 

precursor cells to the function of newly-formed cells.

 The current, widely-accepted model is derived from the research of many different 

groups, working to address all manner of questions about the hippocampal neurogenic lineage. In 

its simplest form, the neurogenic lineage of progenitors and precursors in the hippocampus can 

be summarized as follows: 1) Radial glia-like astrocytes (Type 1 cells), which may or may  not 

self-renew, divide slowly and asymmetrically to produce rapidly proliferating progenitors (Type 

2 cells). 2) Type 2 progenitors, multiplying at a relatively fast rate, expand in number and, in the 

latter stages, begin to differentiate into their respective lineages. Consequently, the vast majority 

of these cells will differentiate into the neuronal lineage. 3) Neuroblasts (Type 3 cells) result 

from the differentiation of Type 2 cells and will slowly migrate out of the germinal zone and 
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become post-mitotic. 4) Finally, after developing all of the phenotypic and morphological 

hallmarks of granule cell neurons, newly-formed neurons will mature fully and will integrate into 

existing granule cell structures and networks (FIGURE 4.3) (Kempermann et al., 2004a; Seri et 

al., 2004). 

 In the hippocampal subgranular germinal zone, Type 1 cells (which roughly  correspond 

to SVZ Type B cells) are considered to be the earliest progenitor or stem cells (Palmer et  al., 

1997). These cells display many of the hallmarks of radial glia and, unlike in the SVZ, have a 

distinct radial glia-like morphology (Filippov et al., 2003; Fukuda et al., 2003; Mignone et al., 

2004; Seri et  al., 2004). The early progenitor identity of Type 1 cells was first established via the 

work of the Seri and colleagues in 2001. Using retroviral labeling of GFAP+ astrocytes, they 

showed that new neurons in the granule cell layer originated from a GFAP+ progenitor, thus 

establishing that the radial-glia like astrocyte is the likely  cell of origin in the hippocampal 

neurogenic lineage (Seri et al., 2001). 

 In terms of morphology, the triangular soma of Type 1 cells is located in the SGZ and the 

cells project a long, apical process up into the upper granule cell layer and molecular layer, 

where it branches out. Much as with SVZ Type B cells, the Type 1 cells are immunoreactive for 

Nestin, BLBP and GFAP (Fukuda et al., 2003; Kempermann et  al., 2004a; Mignone et al., 2004). 

In the hippocampus, they  also co-express the transcription factor SOX2, and are negative for 

S100Beta, which is another independent marker of astrocytes. Type 1 cells proliferate slowly, 

accounting for roughly 5% of proliferating cells at any given time (Filippov et al., 2003; 

Kronenberg et al., 2003). In some studies and models, there is even an additional breakdown of 

the Type 1 cell, into the Type “1a” and “1b”, the latter representing a more active and 
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proliferative state and having a shortened horizontal, rather than radial, orientation (Seri et al., 

2004; Suh et al., 2007). 

 There is some controversy as to whether or not Type 1 cells are in fact stem cells, because 

their ability  to self-renew has not been accurately ascertained. In support of their stem cell-like 

nature, a study by Mignogne and colleagues used FACS to isolate Nestin-positive cells from the 

dentate gyrus, and these were capable of forming primary neurospheres (Mignone et al., 2004). 

However, no clonal analyses or second passages were performed and it is likely  that the 

neurospheres merely represent the expansion of unipotent precursor cells. In another study by 

Suh and colleagues (Suh et al., 2007), SOX2+ cells were shown to be capable of self-renewal in 

vivo, but, to date, this is the only study showing this in vivo potential. Indeed, some researchers, 

including van der Kooy (Seaberg and van der Kooy, 2002), even suggest that any  favorable 

findings regarding in vitro culture of hippocampal stem cells may  result from cellular 

contaminants (i.e., stem cells) originating from the SVZ.      

 What is generally  accepted is that Type 1 cells will divide to produce a more-rapidly 

proliferating daughter cell, the Type 2 cell of the hippocampal neurogenic lineage. The first 

identification of type 2 cells came about via the work of Fukuda and colleagues (2003), in an 

attempt to differentiate between the various types of Nestin-expressing cells in the SGZ (Fukuda 

et al., 2003). Indeed, this study showed that the large number of Nestin+ cells in the subgranular 

zone can be subdivided into those that express GFAP and have radial glia-like morphology and 

those that  do not. Thus, cells that are immunoreactive for Nestin but do not co-express radial 

glia-like markers were designated “Type 2” cells. These same Nestin+/GFAP- cells will divide 

more quickly than their GFAP+ counterparts, and are generally more numerous than Type 1 cells 
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in the SGZ (Filippov et al., 2003; Kronenberg et al., 2003). Moreover, the Fukuda et  al. study 

(2003) demonstrated that the electrophysiological properties of these two types of cells differ. 

Type 1 cells have astrocyte-like electrophysiological properties, whereas Type 2 cells have a 

much higher input resistance and display basic sodium currents, which is indicative of some 

neuronal-lineage differentiation.

 Morphologically, Type 2 cells are small, rapidly dividing cells with short, tangential 

processes. Immunohistochemically, they can be identified by markers such as Nestin and SOX2, 

and are basically  analogous to the transiently-amplifying progenitors, or Type C cells, in the 

SVZ. Type 2 cells can be further subdivided into Type 2a and Type 2b cells (Kronenberg et al., 

2003). While both of these subtypes are morphologically similar, they differ in their expression 

of certain neural precursor markers. For example, Type 2b cells express markers characteristic of 

neuroblasts, including DCX, PSA-NCAM  and NeuroD, which is indicative of a specification for 

a neuronal phenotype (Brandt et al., 2003; Brown et al., 2003b; Filippov et al., 2003; Francis et 

al., 1999; Kempermann et al., 2004a; Kronenberg et  al., 2003; Rao and Shetty, 2004; Seki, 

2002).  

 The final type of neural precursor in the hippocampus is the Type 3 cell. It derives from 

the Type 2 cell and is analogous to the proliferating Type A cell in the SVZ. The primary 

difference between Type 2a and Type 3 cells is that Type 3 cells no longer express Nestin. 

However, they can still be identified by  their expression of DCX, PSA-NCAM and NeuroD. It is 

during the Type 3 stage that cells become increasingly differentiated and begin to migrate from 

the germinal zone into the inner third of the granule cell layer (Brown et al., 2003b; 

Kempermann et al., 2004a). 
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 Cells up to and including the Type 3 cell all have a limited capacity  for self-renewal and 

will proliferate to some degree. Moreover, while somewhat lineage-determined, the Type 1, 2 

and 3 cells can change their lineage and eventual phenotype. At a certain point, the majority of 

Type 3 cells will exit the cell cycle, will become post mitotic and will begin maturing into 

granule cell neurons (Ambrogini et al., 2004). This period is marked by  continuing expression of 

DCX and, towards its later stages, expression of Calretinin (Brandt et al., 2003; Brown et  al., 

2003b). It is hypothesized that, during this period, newly-formed cells send out their axons and 

will begin making functional connections with neurons in the CA3 layers (Hastings and Gould, 

1999; Kempermann et  al., 2004a). Consequently, it  is during this process of maturation and 

functional integration that the cells will be recruited for survival, which eventually  leads to a 

process of terminal differentiation and elimination of unnecessary  or surplus cells (Biebl et al., 

2000; Kempermann et al., 2003; Young et al., 1999). 

 Two to three weeks after becoming post-mitotic, newly-formed cells will stop expressing 

PSA-NCAM, NeuroD and DCX, and will begin expressing NeuN. This, along with the 

substitution of Calbindin for Calretinin, marks their transition to more or less mature neurons 

(Ambrogini et al., 2004). Over a period of four to seven weeks, these new cells will begin to 

integrate functionally into the hippocampal network and with the population of local neurons, 

and will become almost entirely indistinguishable from other glutamatergic granule cells (Carlen 

et al., 2002; Jessberger and Kempermann, 2003; van Praag et al., 2002). Notably, newly-formed 

neurons of the granule cell layer have a lower threshold for LTP and display a higher propensity 

for synaptic plasticity than their older, existing counterparts (Schmidt-Hieber et al., 2004; Wang 

et al., 2000).
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4.3 Functions of adult neurogenesis in the hippocampus

 Given that the dentate gyrus forms an important interface between parahippocampal 

structures and the hippocampus, the fact  that new neurons are continuously being added to the 

DG has important implications for the function of the hippocampus. As such, neurogenesis in the 

dentate gyrus has been linked to diverse cognitive and functional properties of the hippocampus, 

including a role in learning, short-term memory formation/consolidation, in the processing of 

spatial memory and in diverse behaviors such as anxiety and fear conditioning. Research into the 

functions of hippocampal neurogenesis is still a nascent field of study and so little is known 

about the actual functions of hippocampal neurogenesis. Many of the studies on this subject 

employ behavioral tests or computational modeling, both of which have their limitations. 

However, some important progress has been made and some insight has been provided on the 

functional implications of this phenomenon (Deng et al., 2010; Kempermann, 2008; 

Kempermann et al., 2004b; Schinder and Gage, 2004). 

 With respect to the physiological functions of the hippocampus, hippocampus-dependent 

learning (e.g., learning and remembering where objects are located) is positively  correlated with 

increased survival and maturation of neuroblasts and new neurons, but  does not seem to affect 

proliferation (Epp et al., 2007; Gould et al., 1999a; Gould et al., 1999c; Leuner et al., 2004). 

Interestingly, some tasks that  depend on spatial learning, such as the Morris water maze, are 

associated with increased neurogenesis and simultaneously increased apoptosis, which suggests 

that some turnover of neurons is required in the normal spatial learning process (Dobrossy et al., 

2003; Dupret et al., 2007; Dupret et al., 2008). Moreover, an increased pool of new neurons 

27



(produced by a voluntary wheel running paradigm) is correlated with improved performance on 

the Morris water maze (van Praag et al., 1999a; van Praag et  al., 2005). In support of these 

findings, simply activating the local hippocampal networks via stimulation of the excitatory 

perforant path (which mimics normal processes that occur with hippocampal activation) is 

sufficient to drive an increase in proliferation and in neurogenesis (Bruel-Jungerman et al., 2006; 

Chun et al., 2006; Madsen et al., 2000; Malberg et al., 2000).

 Some additional, but more controversial information comes from studies that ablate 

neurogenesis to determine its behavioral and cognitive functions. The principal controversy 

arises because of the variability and mixed specificity  of using biochemical or transgenic 

approaches to ablate neurogenesis, and also because of differences in assessing behavioral or 

cognitive effects. Consequently, there are mixed and sometimes contradicting data about the 

behavioral/cognitive consequences of decreased or ablated neurogenesis. However, some 

conclusions can still be drawn from these studies, namely  that hippocampal neurogenesis may  be 

important for contextual fear conditioning (Hernandez-Rabaza et al., 2009; Snyder et al., 2009; 

Warner-Schmidt et al., 2008; Winocur et  al., 2006), spatial discrimination (Clelland et al., 2009) , 

object recognition memory  (Jessberger et al., 2009) and spatial memory (Dupret et al., 2008; 

Farioli-Vecchioli et al., 2008; Garthe et al., 2009; Jessberger et al., 2009; Zhang et al., 2008).

 Because of the unique architecture of the hippocampus, researchers have long sought to 

understand its computational function in cognition (Marr, 1971). As an example, there is a 

growing body  of research on the computational role of the hippocampus in pattern separation 

(i.e., distinguishing between single and overlapping stimuli) (Bakker et al., 2008; Leutgeb et al., 

2007; Leutgeb and Leutgeb, 2007; McHugh et al., 2007; O'Reilly  and McClelland, 1994; Rolls, 
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1996; Treves and Rolls, 1992). With the advent of more powerful computers and software 

platforms, accurate computational modeling of hippocampal function has become possible. 

Consequently, using computational modeling can provide important insight into the theoretical 

functions of hippocampal neurogenesis. By integrating hippocampal neurogenesis into 

computational hippocampal models, recent research has shown that neurogenesis is an important 

contributor to or facilitator of such functions as pattern separation, memory formation and its 

related temporal information (Aimone et al., 2006; Aimone et al., 2009; Becker, 2005; Becker 

and Wojtowicz, 2007; Chambers et al., 2004; Crick and Miranker, 2006; Weisz and Argibay, 

2009; Wiskott et al., 2006). 
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5. Molecular and physiological mediators of adult neurogenesis

 Adult neurogenesis changes readily in response to external stimuli and and pathology. 

Consequently, there must be a system of biochemical and/or physiological mediators that govern 

the dynamics of neurogenesis itself. Because the field of adult neurogenesis is still in its infancy, 

these mechanisms are not yet fully  characterized and remains poorly understood. However, there 

is a sizable volume of work on the regulation of neurogenesis that provides some insight into its 

possible mechanisms (Balu and Lucki, 2009).

 The niche, or microenvironment, in which stem cells, neural progenitors and neuroblasts 

reside is of utmost importance to the regulation of their activity. In fact, under the appropriate 

conditions, cells from most  of the CNS can be stimulated to divide and form neurons in vitro 

(Palmer et al., 1999; Palmer et  al., 1995). However, only  those cells residing within a special 

microenvironment will divide and form neurons in vivo. Conceptually, the niche forms the 

interface between the extrinsic and intrinsic mediators of neurogenesis and the neural precursors 

themselves. For the purposes of this thesis, it is important to outline how vasculature, 

innervation, secreted factors and neurotransmitters - all constituents of the “niche” - contribute to 

the regulation of neurogenesis, as they may have important implications in the activity-

dependent mediation of neurogenesis (FIGURE 5.1).

FIGURE 5.1 (FOLLOWING PAGE) A schematic representation of  the regulatory components of  the hippocampal 

neurogenic niche. Shown are the diverse innervating axons and neurotransmitter systems as well as  extant and developing 

vasculature. Note the clustering of  proliferating neural precursors in close proximity to vasculature as  well  as the 

concomitant budding and development of new vasculature. © M. Bednarczyk
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Vasculature and secreted factors 

 One can use the example of CNS neoplasia to illustrate how important vasculature is to 

maintaining proliferation and the growth of new structures. Indeed, CNS tumors are highly 

(perhaps “overly”) vascularized and some treatment strategies target their vasculature in an 

attempt to mitigate their growth. Similarly, neural stem cells and precursors in both the 

hippocampus and SVZ depend on the influence of vasculature for their proliferation, growth and 

survival. 

 Neural precursors often reside in close proximity  to blood vessels and capillaries (Fabel 

et al., 2003b; Palmer et al., 2000; Shen et al., 2008). Many of the early progenitor or stem cells in 

both neurogenic regions will directly  contact the vasculature, forming an interface between 

vascular factors and the process of neurogenesis via the neurogenic lineage. Interestingly, the 

proliferation of neural precursors and of vasculature often occurs concomitantly  (Hellsten et al., 

2004; Palmer et al., 2000), suggesting that elaboration of existing vascular networks is required 

to support increased neural precursor proliferation. This is further evidenced by the fact that 

Vascular Endothelial Growth Factor (VEGF) promotes not only angiogenesis but also promotes 

neural precursor proliferation in neurogenic systems (Cao et al., 2004; Jin et al., 2002; Schanzer 

et al., 2004). Importantly, the vasculature provides a means of entry for diverse secreted factors 

into the neurogenic niche. These secreted factors can then influence diverse aspects of the 

neurogenic process, ranging from proliferation to the survival of newly-formed cells. 

 In addition to VEGF, other trophic factors directly  influence adult  neurogenesis, such as 

EGF, FGF2, IGF-1 and BDNF. It is important to consider how these diverse factors affect 
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neurogenesis because they are produced in response to different intrinsic and external stimuli 

and, therefore, might be directly  responsible for the changes in neurogenesis seen with physical 

activity. 

 The influence of epidermal growth factor (EGF) was first demonstrated by  Reynolds and 

Weiss in being essential for the growth of neurospheres in vitro (Reynolds and Weiss, 1992). The 

actions of EGF, however, are not similar in the SVZ and hippocampus. For example, EGF does 

not appear to stimulate hippocampal precursors in vivo and in vitro (Kuhn et al., 1997; Palmer et 

al., 1995), while neural precursors in the SVZ and olfactory system react favorably to EGF 

(Gonzalez-Perez and Quinones-Hinojosa, 2010; Gonzalez-Perez et al., 2009; Kuhn et al., 1997). 

Fibroblast Growth Factor 2 (FGF2) is another mitogenic factor whose activity parallels or 

approximates that of EGF. However, FGF2 is a potent stimulator of proliferation in both the SVZ 

and Hippocampus (Kuhn et al., 1997; Palmer et al., 1999; Palmer et al., 1995; Rai et al., 2007; 

Zhao et  al., 2007). Unlike EGF and FGF2, which are secreted primarily  by cells in the germinal 

CNS microenvironments, Insulin-like Growth Factor-1 (IGF-1) is a systemic growth factor that 

arrives in the CNS via the vasculature. IGF-1 has been shown to potently  increase neurogenesis 

in the SVZ and hippocampus, via either intracranial or peripheral administration (Aberg, 2010; 

Aberg et al., 2000; Aberg et al., 2003; Hurtado-Chong et al., 2009; Lichtenwalner et al., 2001; 

Trejo et  al., 2008). Moreover, because systemic secretion of IGF-1 depends on growth hormone 

(GH), administration of GH into the periphery will also stimulate neurogenesis (Aberg et al., 

2009; Barlind et al., 2010; Johansson et al., 2008). IGF-1 may act principally by stimulating 

Brain-Derived Neurotrophic Factor (BDNF), which, on its own, has neurogenesis-stimulating 

properties in some neurogenic regions (Galvao et  al., 2008; Lee et al., 2002; Pencea et al., 2001; 
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Sairanen et al., 2005; Scharfman et al., 2005). It is also interesting to note that the actions of 

BDNF may underlie diverse processes in neuroplasticity, such as the induction of LTP (Korte et 

al., 1996a; Korte et al., 1996b; Minichiello et al., 2002).   

 There are other secreted factors that modulate neurogenesis that do not belong to the 

trophic or neurotrophic families. The two most influential types are the corticosteroids and the 

sex hormones (i.e., estrogen and testosterone). Corticosteroids are secreted systemically in 

response to stress by the adrenal cortex. As such, they have been implicated in stress-mediated 

changes in neurogenesis in the SVZ and the hippocampus (Lau et al., 2007; Qiu et al., 2007). For 

example, by performing an adrenalectomy, it  is possible to potently increase neurogenesis in the 

hippocampus (Cameron and Gould, 1994; Cameron and McKay, 1999; Cameron et al., 1998; 

Montaron et al., 1999; Montaron et  al., 2003). Conversely, stimulating corticosteroid secretion 

via stress results in decreased hippocampal neurogenesis (Ekstrand et al., 2008b; Gould et  al., 

1997). Sex hormones also have profound effects on adult neurogenesis. For example, both higher 

levels of endogenous estrogen and systemic administration of estradiol have been shown to 

modulate proliferation and neurogenesis in the hippocampus of rats (Barha et al., 2009; Barker 

and Galea, 2008; Lagace et al., 2007; Ormerod et al., 2003; Tanapat et al., 1999). Interestingly, 

factors whose secretion is mediated by estrogen levels, such as prolactin, also directly  influence 

neurogenesis independent of estrogen activity  (Shingo et al., 2003). In a manner similar to 

estrogen, both high endogenous levels and peripheral administration of testosterone have been 

shown to potentiate hippocampal neurogenesis (Brannvall et al., 2005; Spritzer and Galea, 2007). 
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Innervating axons and neurotransmitter systems

 The neurogenic niche of the hippocampus is densely innervated by axons originating 

from diverse CNS structures and neurotransmitter systems, namely the glutamatergic, 

GABAergic, acetylcholinergic, serotonergic, noradrenergic and, to a lesser extent, the 

dopaminergic (Kempermann, 2006). The SVZ niche, on the other hand, is only sparsely 

innervated when compared to the hippocampus. It is primarily  innervated (although indirectly) 

by dopaminergic neurons of the mesostriatal system (Freundlieb et al., 2006). There is some 

evidence, however, that other neurotransmitter systems, such as the serotonergic, may  influence 

neural precursors in the RMS (Diaz et al., 2009). 

 It is important to underline that different innervating axons and neurotransmitter system 

form an integral part of the regulatory mechanisms of the neurogenic niches and contribute to 

mediating or stimulating neurogenesis. The fact that neurogenesis is subject to regulation by 

innervating neurons and neurotransmitter systems provides a mechanism by which 

environmental, cognitive or behavioral stimuli can influence neurogenesis.  

 

Glutamate

 The principal excitatory  input to the dentate gyrus comes from the perforant path 

originating in the entorhinal cortex. It  is composed almost entirely of the axons of glutamatergic 

neurons, whose synapses contact dendrites and processes in the molecular layer. Glutamate acts 

directly  on NMDA receptors to induce depolarization in post-synaptic cells and, consequently, 
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influences many forms of neuroplasticity, including neurogenesis. For example, when the 

perforant path is lesioned, or when NMDA receptors are blocked, glutamatergic influence is 

decreased and there is a marked increase in hippocampal proliferation and, sometimes, 

neurogenesis (Arvidsson et al., 2001; Bernabeu and Sharp, 2000; Cameron et al., 1995; Cameron 

et al., 1998; Gama Sosa et al., 2004; Gould et al., 1994; Nacher et al., 2001; Okuyama et al., 

2004). Kainic acid (KA) receptors are another class of glutamatergic receptors whose activity 

influences adult  neurogenesis. However, unlike with glutamate and NMDA receptors, activation 

of KA receptors induces large increases in proliferation and neurogenesis (Gray and Sundstrom, 

1998; Parent et al., 1997). Interestingly, KA stimulation is often used as a form of kindling when 

studying temporal-lobe epilepsy and its epileptogenesis. Although KA increases proliferation and 

neurogenesis, the majority of newly-formed neurons and neuroblasts then become ectopic both 

in their localization and in their orientation (Parent et al., 1997), which might be one of the 

factors that contributes to epileptogenesis (Parent, 2002). 

GABA

 It stands to reason that the system of inhibitory  (GABAergic) neurons in the hippocampal 

dentate gyrus could also serve in the regulation of neurogenesis. Newly-formed neurons in the 

hippocampus use GABA as an excitatory  neurotransmitter, and GABA signaling could mediate 

their activity-dependent integration into functional hippocampal networks (Deisseroth et al., 

2004; Ge et al., 2006; Markwardt and Overstreet-Wadiche, 2008; Owens and Kriegstein, 2002). 

However, comparatively  little is known about the influence of GABA in the neurogenic process, 

which is largely due to the complexity of GABAergic innervation. Because GABAergic 
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interneurons are located throughout the dentate gyrus and adjacent structures, it is impossible to 

perform lesion studies to evaluate the effects of GABA suppression on neurogenesis. 

Consequently, the few extant studies that address the question of whether or not GABA 

neurotransmission influences neurogenesis rely  on blockade or suppression of GABA receptors 

via pharmaceuticals or transgenic animals, which is, at best, only an indirect measure of the 

influence of GABA. Still, use of a GABA antagonist has been shown to increase proliferation 

(and seizure activity) in the dentate gyrus (Jiang et al., 2003), while heterozygous deletion of the 

gamma-2 subunit of the GABA receptor (which weakens the response of the receptor) results in 

decreased survival and differentiation of newly-formed cells (Earnheart et al., 2007). 

Acetylcholine

 Acetylcholine is the principal modulatory neurotransmitter in the CNS. The dentate gyrus 

is innervated by acetylcholinergic neurons located in the septum and the nucleus basalis of 

Meynert, whose neurons form synapses primarily with dendrites and processes in the molecular 

layer of the dentate gyrus. Consequently, acetylcholine is implicated in diverse plasticity-related 

phenomena in the hippocampus, such as synaptic plasticity  and, potentially, neurogenesis. 

Lesioning of the septo-hippocampal tract (the primary  bundle of afferent acetylcholinergic axons 

to the dentate gyrus) does not seem to affect  hippocampal proliferation but decreases overall 

neurogenesis and cell survival (Cooper-Kuhn et al., 2004). This finding is supported by the fact 

that administration of donepezil, an acetylcholine esterase inhibitor (which increases levels of 
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acetylcholine), improves the survival of newly-formed neurons (Kaneko et al., 2006; Kotani et 

al., 2006). 

Serotonin

 Serotonin is another important neurotransmitter that has been implicated in the regulation 

of neurogenesis. Serotonergic innervation to the hippocampus originates in the raphe nuclei, and 

pervades structures in the molecular layer as well as at the interface of the hilus and the granule 

cell layer. Thus, serotonin can directly influence neural precursors in the germinal subgranular 

zone. It is also possible, though still unproven, that serotonin can influence forebrain 

neurogenesis, as there is some serotonergic innervation in the RMS (Diaz et al., 2009) though not 

in the SVZ proper. Consequently, increasing the concentration of serotonin in the hippocampus, 

via inhibition of serotonin re-uptake transporters, greatly increases levels of neural precursor 

proliferation in the hippocampus, but does not positively impact cell survival or differentiation 

(Banasr et al., 2004; Santarelli et al., 2003; Schmitt et al., 2007). This finding is particularly 

important because pharmaceuticals that block the re-uptake of serotonin are used for the 

treatment of depression, whose etiology might include perturbations in hippocampal 

neurogenesis. Conversely, when serotonin is depleted in the hippocampus, via lesioning of 

serotonergic afferents or via the administration of 5-HT receptor antagonists, there is a decrease 

in the proliferation of neural precursors in the dentate gyrus and the SVZ (Brezun and Daszuta, 

1999; Jha et al., 2006; Radley and Jacobs, 2002). 
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Noradrenaline and Dopamine

 The dopaminergic innervation of the hippocampus originates from the substantia nigra 

and the ventral tegmental area. In the forebrain, the striatum is a major target of the 

dopaminergic innervation from the substantia nigra. For this reason, it is likely that the adjacent 

SVZ also receives some dopaminergic innervation (Freundlieb et al., 2006). By comparison, the 

dopaminergic innervation of the dentate gyrus proper is relatively weak. However, manipulation 

of dopaminergic neurotransmission can still influence neurogenesis in both the hippocampus and 

SVZ. Depletion or blockade of the action of dopamine, via dopaminergic lesioning or cocaine 

administration, has been shown to decrease levels of proliferation in the hippocampus as well as 

the SVZ (Dominguez-Escriba et al., 2006; Hoglinger et al., 2004). Moreover, treatment with 

dopamine receptor agonists has been shown to upregulate neurogenesis in the SVZ (O'Keeffe et 

al., 2009a; O'Keeffe et al., 2009b). The noradrenergic innervation of the hippocampus, 

originating from the locus coeruleus, is not well understood in terms of its contribution to the 

regulation of adult neurogenesis. However, a number of recent studies have demonstrated that 

noradrenaline can activate, and may be required for activity-dependent  increases in the activity 

of hippocampal neural precursors (Jhaveri et al., 2010; Kulkarni et al., 2002; Veyrac et al., 2009).  
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6. Physical activity, environmental enrichment and adult neurogenesis

 The greatest contribution of research into the different forms of plasticity is that it 

provides a mechanism to explain how the environment can directly  influence the form and 

function of the CNS. Interestingly, Hebb was among the first to consider and study  the effects of 

environmental enrichment on CNS function and plasticity. Briefly, by  raising rats in different 

environments, Hebb was able to show that the environment itself had measurable effects on 

learning and memory (Hebb, 1947; Hymovitch, 1952). Hebb’s early work was subsequently 

validated by a flurry  of studies from the group of Ronsenzweig and Bennett in the 1960s, who 

showed that environmental enrichment directly influences CNS anatomy and physiology 

(Diamond et al., 1964; Diamond et al., 1972; Krech et al., 1960; Krech et al., 1962; Rosenzweig, 

1966; Rosenzweig and Bennett, 1969; Rosenzweig et al., 1967; Rosenzweig et al., 1964; 

Rosenzweig et al., 1962a; Rosenzweig et al., 1962b).

 The first evidence that adult  neurogenesis could be stimulated by an animal’s physical 

environment and the activities performed in it came from the work of Fred Gage and colleagues 

at the Salk Institute in the late 1990s. The idea that  external stimuli could influence neurogenesis 

was largely  based on older studies demonstrating that environmental complexity and the like 

could influence structural dynamics and plasticity in the hippocampus of rodents (Altman and 

Das, 1964; Cummins et al., 1977; Cummins et  al., 1973; Greenough, 1975; Juraska et al., 1985; 

Juraska et al., 1989; Rosenzweig et  al., 1978; Rosenzweig et al., 1962a; Rosenzweig et al., 

1962b; Walsh et al., 1969; Walsh et  al., 1973). In light of these data, Gage and colleagues used 

BrdU labeling to assess proliferation in mice living in an “enriched environment,” comprising 
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toys, tunnels, nesting material and, importantly, a running wheel. In their landmark study, 

(Kempermann et al., 1997) showed that animals that were exposed to such an environment had 

higher rates of neurogenesis (via survival of newly-formed cells) in the germinal zone of the 

dentate gyrus, an increased overall number of dentate gyrus granule cells increased and 

performed better in a simple Morris water maze task. Consequently, the same group expanded 

their efforts and showed that environmental enrichment could also “rescue” neurogenesis in 

senescent animals (Kempermann et al., 1998).

 Because the increases in neurogenesis that were reported were attributable to the survival 

of newly-formed cells, it was hypothesized that the actions of trophic factors could account for 

the observed effects (Craig et al., 1996; Gensburger et al., 1987; Kuhn et al., 1997; Palmer et al., 

1995; Ray et al., 1993; Reynolds et al., 1992; Tao et al., 1996). Moreover, the enriched 

environment used in their previous studies contained a running wheel, which mice were allowed 

to use ad libitum, and running or exercise has been associated with increased production, action 

and effect of circulating factors (Gomez-Pinilla et  al., 1997; Gomez-Pinilla et  al., 1998; Neeper 

et al., 1995). Given these facts, in a subsequent study, Gage and colleagues compared the 

neurogenesis-promoting effects of diverse components of the enriched environment: broad 

enrichment (as per their previous study), voluntary wheel running, yoked swimming (as a model 

of forced physical activity), and learning via the Morris water maze task (van Praag et  al., 

1999b). Remarkably, they found that swimming and learning tasks had no effect on neurogenesis 

while the enriched environment and wheel running robustly increased neurogenesis. Moreover, 

unlike environmental enrichment, wheel running was also found to increase proliferation of 

neural precursors in the germinal zone of the dentate gyrus. In a follow-up  study, published later 
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in the same year, the authors also showed that running animals faired better at learning tasks than 

their controls and that dentate gyrus granule cells (including newborn neurons) in these animals  

could produce LTP more readily (van Praag et al., 1999a). In further research into the 

electrophysiological and functional properties of newly-formed neurons, Gage’s group  also used 

retroviral GFP labeling to identify  new neurons and assess their electrophysiological properties 

in control and running mice (van Praag et al., 2002). They found that new neurons in both the 

control and running groups displayed morphological and electrophysiological properties similar 

to other, mature granule cells.

 In 2003, using tissues that were obtained from one of their more recent  studies (van Praag 

et al., 1999a), Gage’s group published another landmark article in the field of environment-

mediated neurogenesis. The specific goal of the study was to determine how an enriched 

environment and voluntary wheel running contributed to the modulation of neurogenesis in the 

hippocampus and in the SVZ/olfactory system (Brown et al., 2003a). Paralleling their other 

studies, they found that physical activity  (wheel-running) increased proliferation, cell-survival 

and neurogenesis, while environmental enrichment only increased the survival of newly-formed 

cells and neurogenesis. Surprisingly, the effects of running and environmental enrichment, which 

increased neurogenesis robustly in the hippocampus, had no apparent effect in the SVZ. The 

running paradigm did not increase SVZ proliferation, nor did it result in increased numbers of 

newly-formed neurons in the olfactory bulb. 

 The influence of Gage’s group on this subfield of research into hippocampal neurogenesis 

cannot be understated. As a result of their experiments and findings, the modulation of 

neurogenesis in the hippocampus by  physical activity  and external stimuli has become well 
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established and, to some degree, canonized. In the years since these publications, many 

additional studies have been produced that have elucidated some of the finer or more 

controversial questions about the subject. That being said, the field is still very  much in its 

infancy and there is much research to be done in order to find the underlying mechanisms and 

functions. 
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OBJECTIVES

 The primary, or global, objective of my research is to elucidate how external stimuli 

contribute to the regulation of hippocampal and forebrain neurogenesis. More specifically, my 

main focus is on the stimulus to neurogenesis that is provided by physical activity, i.e., wheel-

running. Cognizant  of the existing body of research on this subject, this thesis aims to address 

two fundamental problems or questions, namely:

1. Can forebrain neurogenesis, under the appropriate conditions, be stimulated by voluntary 

wheel running?

• Hypothesis: Extended periods of physical activity can influence adult neurogenesis 

in the forebrain and the hippocampus.

2. Does the running environment contribute to running-mediated changes in hippocampal 

neurogenesis?

• Hypothesis: Voluntary  wheel running mediates neurogenesis through both running-

dependent and running-independent stimuli

 These two question are addressed by two independent publications which I have co-

authored, and are presented here in their entirety. The implications of and finer points of these 

studies will be addressed in a general discussion that follows the articles. 
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ARTICLE 1 : Prolonged Voluntary Wheel Running Stimulates Neural Precursors in the 

Hippocampus and Forebrain of CD1 Mice.

Matthew R. Bednarczyk, Anne Aumont, Simon Décary, Raynald Bergeron and Karl J.L. 

Fernandes

Hippocampus (2009) 19:13-27

45



PREFACE

 As outlined previously, hippocampal neurogenesis is subject to important regulation by  

both environmental enrichment and wheel-running. In contrast, from one extant study on the 

matter (Brown et  al., 2003a), it would seem that neither wheel running nor environmental 

enrichment have any influence on SVZ/OB neurogenesis. However, in the Brown et al. study, 

SVZ proliferation was assessed using a running paradigm of two-week’s duration. Given that the 

effects of exercise, such as increased vasculature, might take longer than two weeks to manifest, 

it is reasonable to hypothesize that a longer running paradigm could produce changes in 

forebrain proliferation or neurogenesis. 

 In order to test this hypothesis, we devised an extended, six-week running paradigm 

utilizing individually-housed experimental animals. As such, this extended running paradigm 

would allow us not only to compare running performance with neural precursor activity, but to 

see if an extended running period has any additional influence on both hippocampal and SVZ 

neurogenesis. 
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ABSTRACT 

 Voluntary wheel-running induces a rapid increase in proliferation and neurogenesis by 

neural precursors present in the adult rodent hippocampus. In contrast, the responses of 

hippocampal and other central nervous system neural precursors following longer periods of 

voluntary physical activity are unclear and are an issue of potential relevance to physical 

rehabilitation programs. We investigated the effects of a prolonged, 6-week voluntary wheel-

running paradigm on neural precursors of the CD1 mouse hippocampus and forebrain. 

Examination of the hippocampus following 6 weeks of running revealed two to three times as 

many newly born neurons and 60% more proliferating cells when compared with standard-

housed control mice. Among running mice, the number of newly born neurons correlated with the 

total running distance. To establish the effects of wheel-running on hippocampal precursors 

dividing during later stages of the prolonged running regime, BrdU was administered after 3 

weeks of running and the BrdU-retaining cells were analyzed 18 days later. Quantifications 

revealed that the effects of wheel-running were maintained in late-stage proliferating cells, as 

running mice had two to three times as many BrdU-retaining cells within the hippocampal 

dentate gyrus, and these yielded greater proportions of both mature neurons and proliferative 

cells. The effects of prolonged wheel-running were also detected beyond the hippocampus. 

Unlike short-term wheel-running, prolonged wheel-running was associated with higher numbers 

of proliferating cells within the ventral forebrain subventricular region, a site of age-associated 

decreases in neural precursor proliferation and neurogenesis. Collectively, these findings 

indicate that (i) prolonged voluntary wheel-running maintains an increased level of hippocampal 

neurogenesis whose magnitude is linked to total running performance, and (ii) that it influences 

multiple neural precursor populations of the adult mouse brain
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INTRODUCTION

 Physical activity has diverse and widespread effects in the adult mammalian central 

nervous system (CNS). In both human and rodent experimental models, physical activity is 

associated with antidepressive alterations in mood, improved rehabilitation following physical 

trauma, prevention of age-related disease and pathology, and enhanced cognitive function 

involving various forms of learning and memory (Duman et al., 2008; Fabel and Kempermann, 

2008; Lazarov et al., 2005; Luo et al., 2007; Ma, 2008; van Praag, 2008). Given the growing 

incidence of disorders related to mood, age, and cognition, uncovering the mediators and 

molecular substrates of exercise-induced effects has become an increasingly important 

therapeutic objective.

 Multiple physiological mechanisms may mediate the effects of physical exercise on the 

CNS. These mechanisms include exercise-induced alterations in circulating hormones and other 

blood-borne factors (Koehl et al., 2008), increases in tissue vascularization (Ekstrand et  al., 

2008a), enhanced recruitment and activation of immune cells (Ziv et al., 2006), changes in 

dendritic structure (Redila and Christie, 2006; Stranahan et al., 2007) and neurophysiological 

alterations in neurons and their synapses (Farmer et al., 2004), local increases in neurotrophic 

factor expression (Fabel et al., 2003a; Gomez-Pinilla et al., 1997; Rossi et al., 2006), and the 

production of new neurons via activation of neural precursor proliferation and neurogenesis 

(Brown et al., 2003a; Kempermann et al., 2002; Kronenberg et al., 2006; Rhodes et al., 2003; 

van Praag, 2008; van Praag et al., 1999b; van Praag et al., 2005). With respect to neural 

precursor activity, adult mice given voluntary access to a running wheel for as little as 3 days 

show highly  significant increases in the total number of proliferating cells and newly born 
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neurons within the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) (Kronenberg 

et al., 2006; van Praag et al., 1999b). These newly born neurons can survive over long periods 

and will eventually integrate electrophysiologically  into the hippocampal network (Toni et al., 

2008).

 Although the forebrain subventricular zone (SVZ) is the principal reservoir of neural 

precursors in the adult rodent CNS, the neurogenic effects of short-term wheel-running on neural 

precursors appears to be specific to the hippocampus (Brown et al., 2003a). In contrast, recent 

work has shown that inactivity, via hindlimb suspension, can reduce endogenous SVZ 

proliferation in rats (Yasuhara et al., 2007), while neural precursors transplanted into the SVZ 

display  increased proliferation and migration in response to 4 weeks of enriched environmental 

conditions (Hicks et al., 2007). These findings suggest that neural precursors outside of the 

hippocampus may be susceptible to the effects of longer periods of physical

activity.

 Finding ways of stimulating endogenous CNS neural precursors is an important 

therapeutic objective. The present study  explores the impact of an extended voluntary  wheel-

running period on neural precursors of the hippocampus and forebrain. In this study, we modified 

several aspects of a commonly used physical exercise paradigm (voluntary wheel-running), 

including the mouse strain, the exercise and housing conditions, and the BrdU incorporation 

strategy. These modifications allowed us to make several relevant observations, including (i) an 

association between long-term wheel-running performance and the level of hippocampal 

neurogenesis, and (ii) a detectable effect of prolonged wheel-running on cell proliferation within 

the ventral forebrain SVZ stem cell niche.
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MATERIALS AND METHODS

Animals

 All experiments were conducted in accordance with the guidelines of the Canadian 

Council of Animal Care and were approved by  the institutional animal care committee. Twenty 

adult male CD1 mice (Charles River, Quebec) at 2 months of age were used in the evaluation of 

the exercise paradigm. Ten mice were used in each experimental series (Series A and B), 

separated into groups of five running and five control animals. Mice were housed individually in 

cages equipped only with running wheels and odometers (‘‘running’’ or ‘‘RUN’’ mice) or in 

cages of comparable dimensions that lacked a running wheel or any other form of environmental 

enrichment (‘‘control’’ or ‘‘CTL’’ mice). Both series of experimental mice ran voluntarily for a 

period of 6 weeks (40–41 days) and were supplied with food and water ad libitum. For the BrdU 

incorporation experiments, mice from Series A received three intraperitoneal injections of BrdU 

(Sigma, 50 mg/kg) at 3-h intervals 24 h prior to sacrifice. Mice from Series B received a single 

intraperitoneal injection of BrdU (50 mg/kg) following 23 days of exercise, i.e., 18 days prior to 

sacrifice.

Tissue Preparation

 Mice received a lethal dose of chloral hydrate (7%) and were then perfused transcardially 

with 25 ml of phosphate-buffered saline (PBS) followed by 40 ml of 4% paraformaldehyde. The 

brains were removed and postfixed in 4% paraformaldehyde for 2 h, and then kept in PBS at 4°C 

until sectioning. The entire forebrain and hippocampus of each animal was cut into 40-µm 
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coronal sections using a vibrating microtome (Leica VT1000S) and the tissue sections were 

stored at -20°C in an antifreeze solution (glycerol:ethylene glycol:PBS, 3:3:4).

Immunohistochemistry

 The primary antibodies used in these experiments were mouse antihuman Ki67 (1:200, 

BD Pharmingen), goat antihuman doublecortin (1:250, Santa Cruz Biotechnology, CA), mouse 

antimouse NeuN (1:200, Chemicon), and rat anti-BrdU (1:200, AbD Serotec, Oxford, UK). For 

immunohistochemical labeling of Ki67, NeuN, and doublecortin (DCX), free-floating 40-lm 

sections were washed in PBS (pH 7.4) and blocked in 10% normal goat serum (NGS) in 0.1% 

Triton-X for 2 h. Sections were then incubated at room temperature overnight in primary 

antibodies diluted in 5% NGS/0.1% Triton-X in PBS. For BrdU immunohistochemistry, sections 

were washed in PBS, rinsed in double-distilled water to remove excess buffer, and then treated 

with 2 N HCl for 40 min at  37°C to denature the DNA strands. The HCl was subsequently 

washed out in PBS and the sections then blocked for 2 h in 4% bovine serine albumin (BSA) in 

0.1% Triton-X in PBS and incubated at room temperature overnight in the rat  anti-BrdU 

antibody alone or in combination with other primary antibodies.

 For diaminobenzine (DAB)-based detection of primary  antibodies, sections were washed 

in PBS and then incubated in the appropriate biotinylated secondary antibody (Jackson Immuno 

Research, PA) for 1.5 h at  room temperature, diluted in either 5% NGS (for Ki67, NeuN, DCX) 

or 2% BSA (BrdU) in 0.1% Triton- X. Following washes, the signal was amplified using the 

avidin–biotin–peroxidase system (VectaStain ABC Kit, Vector Laboratories) for 1 h and 30 min, 

and then detected using a DAB-containing solution (0.5 mg/ml DAB, 0.015% H2O2, 0.040% 
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NiCl2 in PBS) for 1–2 min. Sections were mounted onto glass slides, dried overnight, and then 

dehydrated in a graded series of alcohol baths and coverslipped with Permount (Fischer 

Scientific). For fluorescence detection of primary  antibodies, sections were rinsed and incubated 

in appropriate secondary antibodies conjugated to either CY3 (1:400, Jackson ImmunoResearch, 

PA) or Alexa 488 (1:1,000, Molecular Probes, OR) for 1 h at room temperature. They were then 

washed, mounted on glass slides, and coverslipped with Mowiol antifade solution [13% (w/v) 

polyvinyl alcohol and 2% (w/v) DABCO in 2:1 Tris–HCl (pH 8.5):Glycerol].

Cell Counts and Statistical Analyses

 When using DAB immunohistochemistry, quantifications were performed on every sixth 

section through the hippocampus from Bregma -1.00 mm (the approximate first appearance of 

the DG) to Bregma -3.50 mm, thus encompassing a rostro-caudal distance of 2.5 mm. Tissue 

sections processed using DAB were digitized at 40X magnification using an automated system 

(NDP Scan, Hamamatsu Photonics K.K.). Digitized images were sorted according to stereotactic 

coordinates for quantification of spatial distribution. Counts were performed manually using the 

digitized images and were limited to positive cells within the SGZ/GZ of the DG. Fluorescence 

signals were imaged in z-stacks at 1-µm intervals using a motorized Olympus IX81 microscope 

and manually  counted from the digital images. Quantifications were performed by an individual 

who did not have access to the running distance data.

 DAB-labeled cells, counted on every  sixth section through the hippocampus (10 sections 

total), were transformed into stereological data by multiplying by six. All counts are expressed as 

a total number of cells in both hippocampi of each animal, except where otherwise indicated.
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 For fluorescence labeling, cells were quantified from two to four sections at comparable 

stereotactic levels across the hippocampus. The total number of BrdU-labeled cells that 

differentiated into NeuN+ neurons was obtained by multiplying the percentage of BrdU+NeuN+-

co-labeled cells by  the stereological BrdU cell counts. An estimate of the total DCX+ population 

was calculated by  taking the average number of DCX+ cells per 40-µm section and multiplying 

by 60 (the total number of sections through the rostro-caudal extent of the hippocampus).

 For comprehensive analysis of SVZ proliferation, coronal sections through the striatal 

SVZ were sorted and grouped according to preselected stereotactic coordinates (Bregma +1.20, 

+0.80, +0.40, and +0.10 mm). Counts of Ki67+ cells were made over the ventral-most  500-µm 

portion of the lateral ventricles to standardize the size and location of the regions that were 

quantified.

 Statistical analyses were performed using GraphPad Prism (Mac OS X version 5.0a). 

Data sets were tested for normality (D’Agostino and Pearson omnibus normality test) and equal 

variances (F-test), and group averages were calculated as the average total number of cells per 

animal or section. Quantifications were analyzed primarily with unpaired t-tests, with application 

of Welch’s correction, where variances differed significantly. One-way  analysis of variance 

(ANOVA) with Bonferroni or Dunnet multiple comparison post hoc analysis was used when 

testing for inter- or intragroup homogeneity. The Pearson correlation test was used to establish 

correlations between running distances and cell counts. Significance levels were set at α =  0.05, 

two-tailed.
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RESULTS

Voluntary Running Model

 In two independent series of experiments (i.e., Series A and B), 2-month-old male CD1 

mice were randomized and housed individually  for an additional 6 weeks in either standard cages 

(n = 5/experiment) or in running wheel-equipped cages (n = 5/experiment). CD1 mice are an 

outbred strain of mice chosen for these experiments to maximize inter-animal variation and 

hence the significance of any potential findings. Series A and B CD1 mice were treated 

identically  except for the timing of BrdU administration. Series A mice received BrdU injections 

24 h prior to sacrifice to identify a cohort of cells passing through S-phase of the cell cycle at the 

end of the running paradigm. Series B mice were injected with a single dose of BrdU 18 days 

prior to sacrifice (i.e., after 23 days of running) to study the survival and fate of a cohort of cells 

proliferating at an intermediate time point of the running paradigm. As shown in Figure 1A, 

running mice from Series A (nos. E1–E5) ran an average of 6.5–7.8 km per calendar day, while 

those from Series B (nos. E6–E10) ran an average of 3.5–11.4 km per calendar day. Over the 6-

week period, the cumulative distances run (‘‘running performance’’) were between 146.0 and 

468.0 km. Notably, the average daily running distances for six out of the ten runners increased 

over the duration of the exercise period while three showed no change and only one decreased 

(Figs. 1B,C and data not shown), suggesting that the mice did not lose interest in performing the 

activity over this extended period. For immunohistochemical purposes, brains of Series A and B 

mice and their standard housed controls were sectioned in the coronal plane through the 

forebrain lateral ventricles and hippocampus, as shown in Figures 1D–F.
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FIGURE 1

FIGURE 1. Overview of the prolonged voluntary wheel-running paradigm. Two separate series of  CD1 mice ran 

voluntarily for 40–41 days (Series A: R1–R5, Series B: R6–R10). (A) A box and whisker plot (mean + min/max and 

quartiles) shows that mice from Series A ran an average of  6–8 km/day, while mice from Series B ran an average of 4–12 

km/day. (B,C) A day-by-day visual summary shows that animals ran at or near the average for their respective series, 

with the exception of  one outlier (animal no. R7). Arrows denote days on which BrdU was administered to animals in the 

respective series. (D) The areas of  interest for the purposes of this study, outlined in black, include the subventricular zone 

(SVZ) (E) and the DG of the hippocampus (F). (D) Modified from www.brainmaps.org photo.
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Neurogenesis and Proliferation Remain Strongly Increased in the Hippocampal DG at the End of 

6 Weeks of Voluntary Wheel-Running

 To evaluate how DG neurogenesis is affected following 6 weeks of voluntary wheel-

running, we processed 40-µm sections through the dorsal arm of the hippocampus for 

fluorescence immunohistochemistry against DCX, a cytoskeletal-associated protein expressed by 

migratory neuroblasts and newly born neurons. Running mice consistently displayed a strong 

increase in DCX immunoreactivity  within the SGZ of the DG, involving both the number of 

DCX+ neurons and the apparent density  of DCX+ dendrites within the molecular layer (Figs. 

2D–H). Stereological quantifications revealed that the number of hippocampal DCX+ neurons/

animal increased significantly  in both Series A and B (Fig. 2A). The Series A wheel-running 

group (‘‘RUN’’) averaged 15,135 ± 932.9 standard error of mean (SEM) DCX+ cells, compared 

to 6,552 ± 412.4 SEM for their control (‘‘CTL’’) group (P = 0.0001, unpaired t-test). The Series 

B running group averaged 16,278 ± 1,772.0 SEM  DCX+ cells, compared to 8,268 ± 932.9 SEM 

for the control group (P = 0.003, unpaired t-test). These results were highly statistically 

significant, and comparison of the data from individual animals surprisingly  revealed that even 

the highest DCX counts from control animals were lower than the lowest counts from the wheel-

running group (Fig. 2B). To perform a correlation analysis of running performance versus 

neurogenesis, we combined the data from the two series as there was no statistical difference 

between control groups or between wheel-running groups (P > 0.050, unpaired t-tests followed 

by ANOVA with Bonferroni post hoc). Correlation analysis revealed that there was a statistically 

significant positive correlation between the number of DCX+ neurons per section and the total 

running performance within the running group (P = 0.023, r = 0.719, r2 = 0.547) (Fig. 2C). This 
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correlation is illustrated by  comparison of DCX expression in a median control (Fig. 2D), 

median runner (Fig. 2E), and the highest runner (Fig. 2F). Taken together, these results indicate 

that hippocampal neurogenesis is highly and reproducibly  increased in CD1 mice following this 

6-week voluntary wheel-running paradigm.

FIGURE 2. (FOLLOWING PAGE) Hippocampal neurogenesis increases with prolonged voluntary wheel-running. (A) 

The average number of  doublecortin (DCX)-positive cells per animal  in control (CTL A, B) and running (RUN A, B) mice 

from Series A and B. There are higher numbers of DCX+ cells in both Series A and B  runners when compared to their 

control animals (unpaired t-test, one-way ANOVA and Bonferroni post hoc test). (B) Quantifications of  DCX+ populations 

in individual animals from control and wheel-running groups, arranged in ascending order. (C) Correlation analysis of 

running distance versus total number of DCX+ cells per running animal. The number of  DCX+ cells  in the running mice 

was positively correlated with running performance (Pearson correlation test). (D–F) Photomicrographs of  DCX 

fluorescence immunohistochemistry in the hippocampi of  the median control (‘‘C9,’’ D), median runner (‘‘R9,’’ E), and 

the most prolific runner (‘‘R7,’’ F). Note the particularly marked increase in DCX expression in the most prolific runner. 

(G,H) Visualization of DCX+ cells in the SGZ/GZ using DAB immunohistochemistry. DCX+ cells in runners display 

greater dendritic complexity in the molecular layer than those of  control animals. Dotted line in G and H identifies the 

border between the granular zone (GZ) and molecular layer (ML). (D–F) Scale bar = 100 µm, (G, H) scale bar = 30 µm; 

*P ≤ 0.050, **P ≤ 0.010, ***P ≤ 0.001.
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 To measure the levels of cell proliferation occurring in these mice following 6 weeks of 

wheel-running, tissue sections through the hippocampus of Series B mice were processed for 

DAB immunohistochemistry against Ki67 (Fig. 3), a nuclear protein expressed in mitotically 

active cells. Quantification of the number of Ki67-expressing cells within the SGZ/GZ indicated 

that there was an average of 854.4 ± 102.8 SEM cells in control mice versus 1,374 ± 176.4 SEM 

cells in runners, an increase of 60% (P = 0.034, unpaired t-test) (Fig. 3A). Individualized data 

from exercise and control groups are shown in ascending order in Figure 3B, illustrating the 

distinct shift  to higher proliferation levels in the running mice. Changes in Ki67 expression were 

predominantly observed within the SGZ and internal granule cell layer of the DG, where 

hippocampal stem and progenitor cells reside (Kronenberg et al., 2003; Suh et  al., 2007). Ki67+ 

cells were also occasionally found in the hilus or molecular layer, although these were not 

included in the quantifications for the present purposes. Representative images of Ki67 

expression are shown in Figures 3F,G. Comparison of the data along the rostro-caudal 

stereotactic coordinates illustrates that Ki67 expression was increased over the entire 2.5-mm 

segment of the hippocampus that was studied (Fig. 3C). However, unlike with DCX, no positive 

correlation was found between the magnitude of this increase and total running performance (P = 

0.583, r = 20.334, r2 = 0.112) (Fig. 3D). To the contrary, among the runners, the highest  runner 

(no. R7) actually yielded the lowest average Ki67 counts (Fig. 3B).

 Since changes in cell cycle duration in mammalian cells are predominantly the result of 

changes in the length of the G1 phase of the cell cycle (DiSalvo et al., 1995), changes in overall 

cell cycle length can be detected as corresponding increases or decreases in the proportion of 

proliferating cells that are in S-phase. To assess the possibility  that the increased number of 
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proliferating cells observed in runners is due to an accelerated cell cycle speed, we measured the 

proportion of Ki67+ cells undergoing DNA synthesis (i.e., is in S-phase) by performing double-

label fluorescence immunohistochemistry for Ki67 and BrdU in the Series A mice that received 

three BrdU injections 1 day prior to sacrifice. A total of 60–120 Ki67+ cells were quantified from 

each of three controls and three runners. Consistent with the findings from the Series B mice 

(Figs. 3A–D), mice from the Series A running group  had more Ki67+ proliferating cells than 

their control group (data not shown). However, quantification revealed that there was no 

detectable difference in the percentage of Ki67+ cells that were BrdU-labeled (Figs. 3E,H,I). 

This suggests that  there are no sustained changes in cell cycle length associated with the major 

changes in hippocampal neurogenesis and proliferation measured following 6 weeks of 

prolonged voluntary wheel-running.

FIGURE 3. (FOLLOWING PAGE) Prolonged voluntary wheel-running increases  cell  proliferation in the hippocampus. 

(A) Quantification of  the total number of Ki67+ proliferating cells in the DG of  Series B  mice. Running animals have a 

significantly higher average number of  proliferating cells (unpaired t-test). (B) Quantifications of  Ki67+ populations in 

individual  animals from control and wheel-running groups, arranged in ascending order. (C) Rostro-caudal distribution 

of  Ki67+ cells  in control and running mice. There is a uniform increase in Ki67+ expression across all stereotactic levels. 

(D) Correlation analysis of running distance versus total number of Ki67+ cells  per running animal. The number of  Ki67+ 

cells in the running mice was not correlated with running performance (Pearson correlation test). (E) Quantification of 

the percentage of  Ki67+ cells that have incorporated BrdU 1 day after BrdU administration. There is no significant 

difference in BrdU/Ki67 co-labeling percentage between control and running animals (unpaired t-test), suggesting similar 

cell cycle lengths. (F,G) Photomicrographs of Ki67-expressing cells  in the DG of  control and running mice (arrowheads). 

(H,I) Fluorescence immunohistochemical  visualization of Ki67 and BrdU colabeling 1 day after BrdU injection. The 

majority of  Ki67+ cells are colabeled with BrdU in control and running mice. Insets show higher magnification images of 

individual  BrdU and Ki67 channels for selected cells (arrowheads). (F, G) Scale bar = 100 µm, (H, I) scale bar = 100 µm; 

*P ≤ 0.050, **P ≤ 0.010, ***P ≤ 0.001.
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Hippocampal Neural Precursors Dividing During the Latter Stage of the 6-Week Wheel-Running 

Paradigm Remain Biased Toward Proliferation and Neuronal Differentiation

 DCX is reported to be expressed for 2–3 weeks in newborn neurons (Brown et al., 2003b) 

suggesting that the DCX-expressing cells observed at the end of the 6-week running period 

(above) were born during the latter half of the wheel-running period. To more conclusively 

identify the effects of voluntary running on the fate of cells proliferating at the latter stage of the 

6-week exercise paradigm, we examined the BrdU-retaining cell population in Series B mice, 

which had been injected with BrdU after 3 weeks of running and sacrificed 18 days later (Fig. 4). 

Following sacrifice, BrdU-labeled cells were detected using DAB immunohistochemistry. 

Quantification revealed that the average number of BrdU+ cells in the hippocampi of each 

animal increased from 524.4 ± 52.74 SEM in control mice to 1,273 ± 262.0 SEM  cells in running 

mice (P = 0.049, unpaired t-test with Welch’s correction; P = 0.010, F-test) (Fig. 4A). 

Examination of the individualized animal data showed that the relatively constant number of 

BrdU-positive cells in control mice increased two to three fold in the wheel-running group (Fig. 

4B). This increase was detected along the entire 2.5-mm rostro-caudal region of the dorsal 

hippocampus (Fig. 4C). Sections from the highest  running Series B mice (nos. R7 and R6) also 

contained the highest number of BrdU+ cells (Fig. 4B). Among the running mice, there was a 

tendency toward a positive correlation between running performance and BrdU counts (P = 

0.144, r = 0.750, r2 = 0.563). While this did not reach a 5% statistical significance level with only 

five animals, the relatively low P-value suggests that analysis of a larger sample size could 

confirm this correlation. Representative photos of the DG of the median and highest BrdU+ 

animals from both the control and wheel-running groups are shown in Figures 4E–H, and 
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illustrate the more numerous BrdU+ cells in the runners. In all mice, BrdU labeling was still 

predominantly found within the DG, SGZ and internal layer of the GZ.

FIGURE 4. (FOLLOWING PAGE) Hippocampal late-stage mitotic cells produce larger numbers of 18-day BrdU-

retaining cells in running animals. (A) Quantification of the total number of  BrdU-retaining cells in the DG of  Series B 

mice. There is a significant increase in the number of BrdU-retaining cells labeled 18 days prior to sacrifice (unpaired t-

test). (B) Quantifications of  BrdU-retaining cell  populations in individual animals from control and wheel-running 

groups, arranged in ascending order. (C) Rostro-caudal  distribution of BrdU-retaining cells in control and running mice. 

There is a  uniform increase in the number of  BrdU-retaining cells across all stereotactic levels. (D) Correlation analysis  of 

running distance versus total number of BrdU-retaining cells  per running animal. A trend toward a positive correlation is 

observed, although statistical significance is  not reached (Pearson correlation test). (E–H) Photomicrographs of  BrdU-

retaining cells in the DG  of  control (E,F) and running (G,H) mice (arrowheads). Scale bar = 100 µm, *P ≤ 0.050, **P ≤ 

0.010, ***P ≤ 0.001.
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 To determine whether wheel-running altered the proportion of late-stage proliferating 

cells that differentiated into mature neurons or that remained in a proliferative state, we double-

labeled the BrdU-retaining cells with either NeuN or Ki67, respectively (Fig. 5). In sections 

double-labeled with BrdU and the mature neuronal marker NeuN, a total of 20–42 cells were 

analyzed from each control mouse and 48–171 cells from each running mouse. As expected, the 

larger pool of BrdU-retaining cells in runners produced a greater total number of BrdU+/NeuN+ 

neurons (655.2 ± 133.6 SEM vs. 163.6 ± 34.73 SEM, P = 0.024, unpaired t-test with Welch’s 

correction; P = 0.050, F-test) (Figs. 5A,B). Among the runners, there was a trend toward a higher 

number of double-labeled cells in the highest  performers (P = 0.099, r = 0.806, r2 = 0.650) (Fig. 

5C), reminiscent of the correlation between DCX expression and running performance (Fig. 2C). 

Notably, normalization of the number of BrdU+NeuN+ cells to the size of the BrdU+ 

populations revealed that the proportion of BrdU+ cells that differentiated into NeuN+ neurons 

rose from 33.35 ± 6.963% SEM  in control mice to 51.52 ± 1.707% SEM  in running mice (P = 

0.035, unpaired t-test), indicating an increased bias toward neuronal differentiation/survival (Fig. 

5D). Representative fluorescence images are shown in Figures 5F,G.

 To assess the proportion of the 18-day  BrdU-retaining cells that remained proliferative, 

sections were double-labeled for BrdU and Ki67 (Fig. 5). The total number of BrdU+ cells 

quantified from three sections from each animal varied from 15 to 40 for control mice and from 

40 to 75 for running mice. Quantifications of the percentage of BrdU+ cells that were Ki67+ are 

summarized in Figure 5E and reveal that the percentage of BrdU-retaining cells that remain 

proliferative increased from 18.58 ± 6.37% SEM in control mice to 41.40 ± 6.52% SEM  (P = 

0.037, unpaired t-test) in the runners. Thus, there is a higher proportion of hippocampal 
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precursors that continue to remain proliferative 18 days after BrdU incorporation in the runners. 

Representative fluorescence images are shown in Figures 5H,I. The effects of prolonged wheel-

running on late-stage dividing hippocampal neural precursors are summarized in Figure 6.

FIGURE 5. (FOLLOWING PAGE) Prolonged voluntary wheel-running increases neuronal differentiation and long-term 

proliferation by late-stage mitotic cells. (A) Quantification of the total number of  NeuN+ BrdU-retaining cells in the DG of 

Series B mice. There is a significant increase in the number of  neurons produced by late-stage mitotic cells in running 

animals  when compared with controls (unpaired t-test with Welch’s correction). (B) Quantifications of  NeuN+ BrdU-

retaining cell populations in individual animals from control and wheel-running groups, arranged in ascending order. (C) 

Correlation analysis of  running distance versus total number of  NeuN+ BrdU-retaining cells per running animal. A trend 

toward a positive correlation is  observed, although statistical significance is not reached (Pearson correlation test). (D) 

The percentage of  BrdU-retaining cells that colabel with NeuN in control  and running mice. The proportion of  late-stage 

mitotic cells that differentiate into neurons increases in running mice (unpaired t-test). (E) The percentage of  BrdU-

retaining cells that co-label with Ki67 in control and running mice. There is  a significantly higher proportion of BrdU 

retaining cells that co-label for Ki67 18 days after BrdU administration (unpaired t-test). (F,G) Representative 

fluorescence immunohistochemistry photomicrographs of  BrdU and NeuN co-labeling in the DG of  control (F) and 

running (G) mice. For each photomicrograph, the area of interest (arrows) is shown at higher magnification in the upper 

inset, and the corresponding area with BrdU channel removed is shown in the lower inset. The control animal 

photomicrograph (F) shows an example of  a BrdU-retaining cell  that does not co-label with NeuN. The running animal 

photomicrograph (G) shows an example of  a double-labeled cell. (H,I) Fluorescence immunohistochemical visualization of 

BrdU and Ki67 co-localization 18 days after BrdU injection. For each photomicrograph, higher magnification insets of  the 

individual  channels for the area of  interest (arrowheads) are shown. Of note is the increased proportion of BrdU-retaining 

cells that co-localize with Ki67 in running mice. (F, G) Scale bar = 50 µm, (H, I) scale bar = 50 µm; *P ≤ 0.050, **P ≤ 

0.010, ***P ≤ 0.001.
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FIGURE 6:

      

FIGURE 6. Representation of  the differentiation of late-stage mitotic cells in control and running animals. The total 

number of BrdU-retaining cells is represented in this figure as two pie charts, one for control animals and one for running 

animals. The difference in the size of  the pie charts represents  the increase in the number of BrdU-retaining cells  between 

control and running animals. Segments of  the pie charts represent different identities of  BrdU-retaining, late-stage mitotic 

cells in the DG, categorized as BrdU+/NeuN+ neurons (white), BrdU+/Ki67+ proliferating cells (gray), or unidentified 

BrdU+ cells (black). Notably, there are increased proportions of late-stage mitotic cells that differentiate into  neurons or 

that remain proliferative in running animals.
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Neural Precursors in the Ventral Forebrain SVZ Are Susceptible to the Proliferation Promoting 

Effects of Prolonged Running

 Given the robust effects of prolonged wheel-running on neural precursors within the 

hippocampus, we extended our analyses of Ki67 immunoreactivity to the forebrain stem cell 

niche located within the walls of the lateral ventricles. In standard-housed mice, the density of 

Ki67+ cells gradually  decreases along the rostro-caudal axis of the SVZ (Figs. 7A,B), as 

previously  reported by others (Doetsch et al., 1997). In light of this fact, we performed Ki67 

immunohistochemistry  on coronal sections taken at regular rostro-caudal intervals through the 

SVZ of control and wheel-running mice (Figs. 7C–J). Inspection of these sections revealed 

visually apparent differences in Ki67 expression within the ventral extension of the SVZ (Figs. 

7K,L).

 

 

FIGURE 7. (FOLLOWING PAGE) Prolonged voluntary wheel-running affects Ki67 expression in the SVZ. (A) For 

analysis of SVZ proliferation, sections were taken between rostral  and caudal stereotactic coordinates (Bregma 1.20 to 

0.10 mm) (arrows). (B) Within this region, the number of Ki67+ cells  in the SVZ normally decreases from rostral 

(arrowhead) to caudal (arrow), as shown in this horizontal section. (C–J) Forty-micrometer sections matched according to 

their stereotactic coordinates and processed for Ki67 immunohistochemistry. (K,L) Higher magnification of  these coronal 

sections following Ki67 immunohistochemistry reveals visually apparent differences in the ventral portions of the SVZ at 

the more caudal stereotactic coordinates examined (arrows). (A) Modified from www.brainmaps.org; scale bars = 500 µm.
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FIGURE 7:
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 To quantify this observation, the number of Ki67+ cells was counted in the ventral-most 

500 µm of the SVZ at two stereotactic levels, +0.80 and +0.40 mm from Bregma. Comparison of 

the raw data showed largely  overlapping levels of Ki67 expression between control and running 

mice (Fig. 8A). Nevertheless, at both levels there was an apparent shift toward higher numbers, 

as further illustrated by binning the data in frequency histograms (Figs. 8B,C). At +0.40 mm 

Bregma, the difference in number of Ki67+ cells reached statistical significance, as the average 

number of Ki67+ cells per counting area increased from 29.72 ± 1.74 SEM  to 41.54 ± 3.44 SEM 

(P = 0.007, unpaired t-test with Welch’s correction; P = 0.050, F-test). Side-by-side comparison 

of Ki67 expression in this ventral SVZ region in control and running animals confirmed that 

similar numbers of Ki67+ proliferating cells were present at Bregma +0.80 mm (Figs. 8D–I), but 

that control mice had significantly fewer Ki67+ proliferating cells at Bregma +0.40 mm (Figs. 

8J–O). We also noted that this ventral region of the lateral ventricle was often dilated in control 

but not running mice (i.e., Figs. 8D–F), an observation whose significance has yet to be 

determined. These results indicate that neural precursors within the ventral SVZ of the forebrain 

lateral ventricles of young adult  mice are susceptible to proliferation-related changes following 

prolonged wheel-running.

72



FIGURE 8: 

73



FIGURE 8. (PRECEDING PAGE) The number of  Ki67+ cells increases in the ventral portions of the caudal SVZ. (A) 

Scatter plot of  the number of Ki67+ cells in the counting area of control (CTL) and running (RUN) animals of  Series  A 

mice. A statistically significant increase is observed at 0.40-mm Bregma, which is  the more caudal level of the SVZ 

analyzed. (B,C) Frequency histograms of the data from the 0.80-mm Bregma (B) and 0.40-mm Bregma (C) levels. 

Running mice have fewer sections with low levels of Ki67+ cells at the 0.80-mm Bregma level and have a clear positive 

shift in the number of  Ki67+ cells at 0.40-mm Bregma. (D–O) Representative photomicrographs of Ki67+ cells in the 

counting area in control  (D–F, J–L) and exercising (G–I, M–O) mice at 0.80-mm Bregma (D–I) and 0.40-mm Bregma (J–

O). There is  a noticeable increase in Ki67 expression in running mice (M–O) versus control  mice (J–L) at the 0.40-mm 

Bregma level. Scale bar = 100 µm, *P ≤ 0.050, **P ≤ 0.010, ***P ≤ 0.001.

DISCUSSION

 We have investigated the consequences of a prolonged voluntary  wheel-running regime 

on neural precursors of the adult mouse hippocampus and forebrain. Our results enable us to 

draw three key conclusions: (i) Neurogenesis and proliferation remain elevated in the 

hippocampus following 6 weeks of wheel-running and the number of newly born neurons 

correlates statistically  with the total running performance over this period. (ii) The stimulating 

effect of wheel-running on hippocampal neural precursors is not transient; rather, it is maintained 

throughout the latter half of the wheel-running regime. Dividing cells tagged with BrdU 3 weeks 

into the wheel-running regime continued to produce greater proportions of mature neurons and 

proliferating cells in runners. (iii) Prolonged voluntary wheel-running can stimulate proliferating 

CNS precursors outside of the hippocampus. Mice subjected to prolonged wheel-running had 

greater numbers of proliferating cells within the SVZ stem cell niche of the ventral

forebrain.
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Characterization of a 6-Week Voluntary Wheel-Running Model in Adult CD1 Mice

 

 CD1 mice are an outbred strain of laboratory mice that are widely  used due to their 

relative genetic heterogeneity, high reproduction rates, docility, and rapid growth. The CD1 mice 

used in this study proved to be prolific yet variable runners, whose daily running distances 

ranged from 1.6 to 14.9 km. In spite of this inter-animal variability in running performance, the 

magnitude of exercise-induced changes in neurogenesis was similar across two experimental 

series that were separated in time by several months. Moreover, because our animals were 

housed individually, the inter-animal variability in running distances could be recorded and this 

permitted us to assess possible correlations between individual running distance and the changes 

in neurogenesis and proliferation. These correlation analyses revealed that the running 

performance of mice in the voluntary  running group was statistically  correlated to the total 

number of DCX-expressing cells present after 6 weeks (P = 0.050), but was not correlated to the 

number of Ki67-expressing proliferating cells (P = 0.583). It has been more difficult to show 

such correlations when using inbred C57BL/6 mice due to their consistent running performance 

(Kronenberg et al., 2006).
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Six Weeks of Prolonged Voluntary Wheel-Running Increases the Number of Newly Born Neurons 

and Proliferating Cells in the Hippocampal Dentate Gyrus

 An important and unresolved question concerning the underlying mechanisms of running-

induced adult neurogenesis is the extent to which increases result from alterations in 

hippocampal precursors (i.e., proliferation or neuronal differentiation) versus in newly generated 

neurons (i.e., survival or neuronal maturation). At the end of 6 weeks of wheel-running, there 

were two to three times as many DCX-expressing cells in the hippocampi of wheel-running mice 

when compared to control mice. This increased neurogenesis was accompanied by a 60% 

increase in Ki67+ proliferating precursors in the SGZ/GZ. Correlation analyses of wheel-running 

distances versus the number of DCX+ cells within the wheel-running group enabled us to 

conclude that running distances correlated with the number of DCX+ cells (Fig. 2C) but not with 

the number of proliferating cells (Fig. 3D). This suggests that nonproliferation based processes 

(i.e., improved cell survival or maturation) are at least partly responsible for changes in DCX 

expression. It is, however, difficult to directly compare the sizes of the newly born neuron and 

proliferating cell populations. DCX has a protracted 2- to 3-week-long expression pattern in 

dividing neuroblasts and newly born post-mitotic DG granule neurons (Brown et al., 2003b). In 

comparison, the Ki67+ population that was visualized in these experiments identifies only those 

cells proliferating at the end of the running paradigm. As such, it is possible that the more 

numerous DCX+ population could potentially  derive from higher earlier levels of proliferating 

cells.
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 Based on the above considerations, we suggest a voluntary  wheel-running model where 

mechanisms associated with increased stem/progenitor proliferative activity are activated in a 

generalized fashion in response to voluntary wheel-running, while mechanisms associated with 

improved neuronal survival/differentiation are activated in a running performance-dependent 

manner. Supporting the growing relative importance of cell survival mechanisms during 

prolonged wheel-running, Kronenberg et al. examined C57BL/6 mice following 3, 10, or 32 days 

of voluntary  wheel-running, and found that while the number of DCX+ cells progressively 

increased over the entire running period, Ki67 levels peaked at 10 days and were nearly back to 

control levels by 32 days (Kronenberg et al., 2006). These findings support  the idea that the size 

of the proliferative population rises acutely but then declines with prolonged exercise, at which 

time survival or maturation-promoting mechanisms become predominant. These survival or 

maturation-promoting mechanisms are most likely mediated by local neurotrophic support, in the 

form of growth factors such as IGF, BDNF, and VEGF (Fabel et al., 2003a; Gomez-Pinilla et al., 

1997; Li et al., 2008; Rossi et al., 2006; Zhu et al., 2006).

Hippocampal Late-Stage Mitotic Cells of the Prolonged Running Paradigm Continue to Yield 

Increased Proportions of Both Mature Neurons and Proliferative Cells

 

 Hippocampal precursors labeled with BrdU during the initial stages of an experiment will 

produce larger numbers of mature neurons in running rodents versus nonrunning rodents (van 

Praag et al., 1999a; van Praag et al., 1999b). What is less clear is whether wheel-running will 

continue to affect the progeny of mitotic precursors in the context of a prolonged running 
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paradigm. In the present study, mice from Series B were pulsed with BrdU 3 weeks after wheel-

running began to assess the fate of hippocampal precursors that are dividing during the latter half 

of the 6-week prolonged running paradigm. The total size of the BrdU-retaining population 

generated by these late-stage mitotic cells increased two to three fold in running mice by the end 

of the running regime. This increase is expected as the acute stimulating effects of wheel-running 

on the proliferating cell population (Kronenberg et al., 2006) suggests there were already more 

BrdU-incorporating cells present at the time of injection. However, analysis of the BrdU 

retaining population 18 days after injection revealed that  the proportion of BrdU-retaining cells 

that differentiated into mature, postmitotic neurons (NeuN+) increased significantly  from 33% in 

control to 52% in running mice (i.e., 1.5 fold). Similarly, the proportion of BrdU-retaining cells 

that remained proliferative (Ki67+) increased from 19% in control to 45% in runners (2.3 fold). 

This indicates that the ongoing generation of both mature neurons and proliferative precursors 

remains elevated in running animals during the latter half of our prolonged voluntary wheel-

running paradigm. Interestingly, in control animals, 48% of the 18-day  BrdU-retaining cells was 

neither proliferating nor mature neurons (Fig. 6). We speculate that  this population consists of 

post-mitotic DCX+ cells that have not yet expressed NeuN, non-proliferating glial progeny, and 

quiescent stem-like cells (Suh et al., 2007). The size of this population decreased to only  7% of 

the population following prolonged wheel-running, concomitant with the increase in the NeuN+ 

and Ki67+ populations.
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The Adult Forebrain SVZ Is Susceptible to the Effects of Prolonged Exercise

 An issue with wide-ranging implications is whether behavioral modifications such as 

physical exercise or environmental enrichment are capable of influencing neural precursor 

activity in regions outside of the hippocampus. Our examination of cell proliferation in the 

forebrain SVZ revealed increased numbers of Ki67+ cells in the ventral aspect of the caudal SVZ 

in prolonged wheel-running mice. These data indicate that neural precursors in the SVZ are 

susceptible, directly or indirectly, to the effects of prolonged voluntary exercise.

 Previous studies have yielded contradictory findings concerning the ability  of SVZ 

precursors to respond to physical exercise and environmental enrichment. An earlier study by 

Brown et al. showed that mice examined after 2 weeks of voluntary  running had increased neural 

precursor proliferation within the hippocampus but not within the lateral ventricle SVZ (Brown 

et al., 2003a). In contrast, Yasuhara et al. reported that the endogenous levels of proliferation in 

both the SVZ and hippocampus are diminished following 2 weeks of hindlimb suspension in 

rats, a model of inactivity, which suggests that baseline levels of SVZ proliferation may be 

influenced by  physical activity (Yasuhara et  al., 2007). In another study, Hicks et al. found that 

neural precursors transplanted into the rat SVZ displayed more proliferation and migration if the 

rats were housed in an enriched environment (Hicks et al., 2007). Likewise, Komitova et al. 

demonstrated that, in a cortical infarct model, the stroke-induced decrease in SVZ proliferation 

and neurogenesis could be prevented by post-stroke environmental enrichment (Komitova et al., 

2005a; Komitova et al., 2005b). Direct comparison of our findings with these previous studies is 

precluded for a variety of methodological reasons, including our focus on the ventral SVZ and 
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differences in species (rat vs. mouse), exercise periods (2 vs. 6 weeks), and proliferation 

detection approaches (multi-day  BrdU incorporation vs. Ki67 expression). Given the positive 

correlation between running performance and the size of the increase in hippocampal 

neurogenesis, it is also possible that there is a minimum running performance threshold that must 

be crossed before detectable changes can occur within the SVZ.

 It is important to note that increased numbers of Ki67+ cells in the SVZ may not 

necessarily indicate a direct, exercise-induced stimulation of proliferation. In a previous study by 

Luo et al. (2006), it was demonstrated that the SVZ of CD1 mice decreases in thickness with age, 

resulting in gradual decreases in proliferation and neurogenesis primarily  within the ventral SVZ 

(Luo et al., 2006). Given the modest running-induced shift in counts of Ki67-expressing cells in 

the ventro-caudal SVZ over our 6-week paradigm, it is possible that the increase in Ki67 

expression represents a prevention of age-related decline in SVZ proliferative activity rather than 

a direct stimulation. Supporting this, a model of exercise-induced prevention of age-related 

changes to neural precursors has been proposed for hippocampal neural precursors (Kronenberg 

et al., 2006). Another formal possibility  is that the ventrally located changes in Ki67+ cells that 

we have measured are the result of an alteration in neuroblast migration patterns. SVZ 

neuroblasts are highly  migratory, undergoing rostrally directed chain migration within the walls 

of the lateral ventricles, until they merge into the rostral migratory  stream toward the olfactory 

bulb (Doetsch and Alvarez-Buylla, 1996; Doetsch et al., 1997). Differentiating among these 

possibilities will require further experimentation.

 The mechanism by which physical exercise might actually influence SVZ proliferation is 

also unclear. However, a flurry  of recent studies has demonstrated that SVZ stem cells reside 
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within a vascular niche (Mirzadeh et al., 2008; Shen et al., 2008; Tavazoie et al., 2008) as has 

previously  been reported for proliferative cells in the hippocampus (Palmer et al., 2000). 

Proximity to vasculature increases the probability  that neural precursors can be directly 

influenced by circulating exercise-induced systemic factors and, in the case of the hippocampus, 

endorphins appear to represent one of these systemic factors (Koehl et al., 2008).

CONCLUSIONS

 Consistent and prolonged periods of exercise have numerous beneficial effects with 

respect to CNS, cardiovascular and overall health and well-being. Here we established a model 

of prolonged voluntary wheel-running using CD1 mice. We showed that hippocampal neural 

precursors continue to display increased levels of neurogenesis after long-term exercise, and that 

there is a correlation between total long-term exercise performance and the level of hippocampal 

neurogenesis. Moreover, we demonstrated that the effects of prolonged physical activity on 

neural precursors are not limited to the hippocampus, but can influence regions such as the SVZ. 

These findings have important implications for the development of stem cell-based strategies for 

the treatment of CNS pathologies and degenerative diseases and suggest that appropriate 

behavioral modifications may be an important component of stem cell-based approaches to CNS 

repair. Further study of exercise and enrichment-related neurogenesis will enhance our 

understanding of CNS health and function and will become an increasingly important area of 

research for our rapidly growing aging population.
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PREFACE

 In a number of important studies, both environmental enrichment and wheel running have 

been shown to increase proliferation and/or neurogenesis in the hippocampus (Brown et al., 

2003a; Kempermann et al., 1997; van Praag et al., 1999a; van Praag et al., 1999b). However, 

because wheel running alone, without any additional enrichment, can influence proliferation and 

neurogenesis, it has become the “de facto” focus of research into activity-mediated neurogenesis. 

Because of this, there is a running presumption that exercise or, at the very least, physical 

activity is solely responsible for running-induced effects on neurogenesis. Conversely, few 

researchers have considered the relative importance of the environment in which wheel running 

is performed. 

 One methodological dividing line in the current body of research into running-mediated 

neurogenesis pertains to the use of appropriate control animals as a basis of comparison. On the 

one hand, the majority  of researchers seem to favor the ubiquitous and low-cost standard 

laboratory housing as a control environment. On the other hand, a small proportion of 

researchers feel that a locked running-wheel cage is the more appropriate control environment. 

While the use of a standard housing cage is definitely  appropriate for some of these studies, there 

is also just as much justification for the use of a locked running wheel cage as a control 

environment. Simply, it is possible that the mere presence of a running wheel, which modifies 

the environment considerably, constitutes some form of environmental enrichment, which could 

influence neurogenesis independent of any physical activity. Thus, from a conceptual point of 
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view, the locked running-wheel cage is a better control environment because it minimizes the 

difference in neurogenesis that may result from simple environmental enrichment.

 To date, there is no extant study  that  directly addresses the question of whether or not the 

running wheel environment is capable of influencing hippocampal neurogenesis. Thus, we 

designed an experimental paradigm that would allow us to answer this question. By using both 

standard housed and locked running-wheel cages in addition to unlocked running wheel cages in 

a normal running paradigm, this study will be able to show if the running environment is 

sufficiently “enriching” to have an effect on hippocampal neurogenesis. Besides the obvious 

methodological implications, this study can also give important insight into how wheel-running 

itself, independent of environmental enrichment, actually modulates neurogenesis. 
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ABSTRACT

Hippocampal neurogenesis continues into adulthood in mammalian vertebrates, and in 

experimental rodent models it is powerfully stimulated by exposure to a voluntary running wheel. 

In the present study, we demonstrate that exposure to a running wheel environment, in the 

absence of running, is sufficient to regulate specific aspects of hippocampal neurogenesis. Adult 

mice were provided with standard housing, housing enriched with a running wheel, or housing 

enriched with a locked wheel (i.e., an environment comparable to that of running animals, 

without the possibility of engaging in running). We found that mice in the running wheel and 

locked wheel groups exhibited equivalent increases in proliferation within the neurogenic niche 

of the dentate gyrus; this included comparable increases in the proliferation of radial glia-like 

stem cells and the number of proliferating neuroblasts. However, only running animals displayed 

increased numbers of post-mitotic neuroblasts and mature neurons. These results demonstrate 

that the running wheel environment itself is sufficient for promoting proliferation of early lineage 

hippocampal precursors, while running per se enables newly generated neuroblasts to survive 

and mature into functional hippocampal neurons. Thus, both running-independent and running-

dependent stimuli are integral to running wheel-induced hippocampal neurogenesis.
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INTRODUCTION

 

 Neurogenesis in the adult mammalian hippocampus occurs within the dentate gyrus (DG) 

and involves a multi-step neurogenic process whose principal stages have been largely  identified 

(Kempermann et al., 2004a; Seri et al., 2004). According to the current model, adult hippocampal 

neurogenesis begins with infrequently-dividing, radial glia-like precursor/stem cells located 

within the subgranular zone (SGZ) of the DG (Fukuda et al., 2003; Seri et al., 2001; Suh et al., 

2007). When stimulated to divide, these neural precursors produce rapidly dividing progenitor 

cells that will differentiate primarily  into immature neuroblasts. Under the appropriate 

conditions, these immature neuroblasts have the potential to mature into fully  functional dentate 

granule neurons (Jessberger and Kempermann, 2003; Song et al., 2002; Toni et al., 2008; Toni et 

al., 2007; van Praag et al., 2002). While the functional roles of adult  hippocampal neurogenesis 

are still under investigation, newly  formed neurons could play a role in spatial pattern separation 

(Clelland et al., 2009), in spatial learning and spatial memory (Zhang et al., 2008), in improving 

long-term memory  or memory consolidation (Aimone et al., 2009; Bruel-Jungerman et al., 2005; 

Deng et al., 2010; Deng et al., 2009), and in the associative memory of fear and conditioning 

(Kitamura et al., 2009). 

 Remarkably, the production of adult-born hippocampal neurons is highly  sensitive to 

external manipulations, such as environmental enrichment (i.e., an environment that is 

supplemented with toys, tunnels, running wheels and cognitive stimuli) (Kempermann et al., 

1997; Nithianantharajah and Hannan, 2006). With environmental enrichment, there is a robust 

increase in neural precursor proliferation and neurogenesis that leads to an overall increase in the 
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number of granule neurons within the DG (Brown et al., 2003a; Kempermann et al., 1997). The 

neurogenesis-promoting effects of environmental enrichment have been primarily  attributed to 

physical activity, as exposure to a running wheel without additional forms of enrichment is 

sufficient to induce these effects (van Praag et al., 1999a; van Praag et al., 1999b). Exposure to a 

voluntary running paradigm has been shown to activate proliferation of early  lineage radial glia-

like stem cells (Suh et al., 2007), as well as to increase levels of a variety of neural and vascular 

growth factors within the hippocampus (Cao et al., 2004; Carro et al., 2000; Hunsberger et al., 

2007; Neeper et al., 1996). 

 In the present  study, we investigated the possibility that running wheels might promote 

neurogenesis, in part, through mechanisms that are independent of running. Specifically, we 

hypothesized that the presence of a running wheel might by itself constitute a form of 

environmental enrichment. To test  this idea, we modified a previously characterized prolonged 

voluntary wheel-running paradigm in which mice given free access to a running wheel display 

marked increases in proliferation, production of neuroblasts and mature neurons (Bednarczyk et 

al., 2009). By adding a third experimental group, with locked running wheels, we demonstrate 

here that the neurogenic effects of running wheel exposure are comprised of a running-

independent component that promotes proliferation of early lineage cells, and a running-

dependent component that promotes survival and maturation of post-mitotic neuroblasts and 

neurons. This work provides important mechanistic insight into how different aspects of 

environmental enrichment can work together to promote adult hippocampal neurogenesis. 
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METHODS

Animals and experimental model

 All experiments were conducted in accordance with the guidelines of the Canadian 

Council of Animal Care and were approved by  the animal care committee of the Université de 

Montréal. Fourteen 2-month-old adult male CD1 mice (Charles River, Senneville, Quebec, 

Canada) were used in the evaluation of the experimental paradigm. Mice were given three 

intraperitoneal injections of 5-bromo-2-deoxyuridine (BrdU, Sigma-Aldrich, Oakville, ON, 

Canada, 50 mg/kg) at 3-hour intervals and were randomized and separated into one of three 

different environments the following day: 4 mice in the control or standard cage group (herein 

referred to as “CTL” mice), 5 mice in the locked wheel cage group  (“LOC” mice) and 5 mice in 

the running wheel or “running” group (“RUN” mice). For the following days 1 to 6, mice in both 

the LOC and RUN groups were housed with the running wheels locked. At the start of the trial 

period, day 7, running wheels in the RUN group cages were unlocked. Running cages were 

outfitted with odometers and a computerized recording system to measure and record the daily 

and total running distance. All animals were provided with food and water ad libitum and nesting 

material, with no additional environmental enrichment. Mice were sacrificed on day 40, i.e., 33 

days following the start of the trial period (Figure 1a).

Tissue Preparation 

 Mice received a lethal dose of chloral hydrate (7%) and were then perfused trans-

cardially with 25 ml of phosphate-buffered saline (PBS) followed by 40 ml of 4% 
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paraformaldehyde. The brains were removed and post-fixed in 4% paraformaldehyde for 2 h, and 

then kept in PBS at 4°C until sectioning. The entire brain of each animal was cut into 40 µm 

coronal sections using a vibrating microtome (Leica VT1000S, Leica Microsystems, Richmond 

Hill, ON, Canada) and the tissue sections were stored at -20°C in an anti-freeze solution 

(glycerol:ethylene glycol:PBS 1X, 3:3:4).

Immunohistochemistry

 The primary  antibodies used in these experiments were mouse anti-human Ki67 (1:200, 

BD Biosciences, Mississauga, ON, Canada), goat anti-human Doublecortin (DCX; 1:1000, Santa 

Cruz Biotechnology, Santa Cruz, CA, USA), mouse anti-mouse Neuronal Nuclei (NeuN; 1:200, 

Chemicon, Billerica, MA, USA), rabbit anti-cow Glial Fibrillary Acidic Protein (GFAP; 1:1000, 

Dako, Glostrup, Denmark), rat anti-BrdU (1:200, AbD Serotec, Oxford, UK), rabbit anti-human 

Calretinin (1:2500, Swant, Bellinzona, Switzerland), rabbit anti-Iba1 (1:500, Wako, Osaka, 

Japan) and mouse anti-cow S100β (1:1000, Sigma-Aldrich, Oakville, ON, Canada). For 

immunohistochemical labeling of Ki67, NeuN, GFAP and DCX, free-floating 40 µm sections 

were washed in PBS (pH 7.4) and then blocked for 2h in 10% normal donkey serum (NDS)/0.1% 

Triton-X/PBS (for fluorescence-based immunohistochemistry) or 4% bovine serine albumin 

(BSA)/0.1% Triton-X/PBS (for diaminobenzidine (DAB)-based immunohistochemistry). 

Sections were then incubated at room temperature overnight in primary antibodies diluted in 

either 5% NDS or 2% BSA in PBS. For BrdU immunohistochemistry, sections were washed in 

PBS, rinsed in double-distilled water to remove excess buffer, and then treated with 2N HCl for 

40 min at 37°C to denature the DNA. The HCl was subsequently washed out in PBS and the 
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sections then blocked for 2h in 4% BSA/0.1% Triton-X/PBS. Sections were incubated overnight 

at room temperature in the rat anti-BrdU antibody (alone or in combination with other 

antibodies) diluted in 2% BSA/PBS.

 For DAB-based detection of primary antibodies, sections were washed in PBS and then 

incubated in the appropriate biotinylated secondary antibody (Jackson Immuno Research, West 

Grove, PA, USA) for 1h and 30 min at room temperature, diluted in 2% BSA/PBS. Following 

washes, the signal was amplified using the avidin–biotin–peroxidase system (VectaStain ABC 

Kit, Vector Laboratories, Burlington, ON, Canada) for 1h and 30 min, and then detected using a 

DAB containing solution (0.5 mg/ml DAB, 0.015% H2O2, 0.040% NiCl2 in PBS) for 1–2 min. 

Sections were mounted onto glass slides, dried overnight, and were then dehydrated in a graded 

series of alcohol baths and coverslipped with Permount (Fischer Scientific, Ottawa, ON, 

Canada). A subset of sections from each condition was counterstained with 0.02% Cresyl Violet 

for 25 minutes, rinsed, dehydrated in a series of alcohol baths and then coverslipped with 

Permount. 

 For fluorescence detection of primary antibodies, sections were rinsed and incubated in 

appropriate secondary antibodies conjugated to either CY3 (1:200, Jackson ImmunoResearch, 

West Grove, PA, USA) or Alexa 488, 555 or 647 (1:1,000, Molecular Probes, Invitrogen, 

Burlington, ON, Canada) diluted in 0.05% Triton-X/PBS for 40 min at room temperature. 

Sections were then washed and incubated with Hoechst 33342 nuclear counterstain (0.2 µM, 

Sigma-Aldrich, Oakville, ON, Canada) for 2 minutes. After a final wash, sections were mounted 

on glass slides and coverslipped with Mowiol anti-fade solution [13% (w/v) polyvinyl alcohol 

and 2% (w/v) DABCO in 2:1 Tris–HCl (pH 8.5):Glycerol].
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Quantification and Statistical Analyses

 When using DAB immunohistochemistry, unless otherwise noted, quantifications were 

performed on every sixth section through the entire hippocampus (10 sections total). Tissue 

sections processed using DAB were coded and were then digitized using an automated system 

(NDP Scan, Hamamatsu Photonics K.K., Bridgewater, NJ, USA) and a 40X objective and/or 

examined using differential interference contrast (DIC) microscopy with a 40X objective 

(Olympus IX81 microscope, Olympus, Markham, Ontario, Canada). Counts were performed 

manually  by a blinded individual using the digitized images and/or in real-time via DIC 

microscopy. Slide coding was only  broken after all quantifications had been completed for any 

given marker. Cell counts were converted into the approximate total number of cells by 

multiplying by six. All counts are expressed as the sum total of cells/brain counted from both 

hippocampi of each animal, except where otherwise indicated. 

 For fluorescence labeling, cells were quantified from three to four sections at comparable 

stereotactic levels, selected from the rostral, medial and caudal hippocampus. Fluorescence 

signals were imaged in z-stacks at 1 µm intervals using a motorized Olympus IX81 microscope 

and manually counted from the digital images. To assess co-localization of markers, nuclear (ho/

ki67/BrdU/NeuN) and cytoplasmic (DCX, GFAP) labels were initially visualized by epi-

fluorescence as described. Co-localization was then confirmed using a Leica TCS-SP confocal 

microscope (Leica Microsystems, Richmond Hill, ON, Canada) and a 100x objective. Nuclear 

markers were considered to be co-localized if they overlapped at all z-stack levels. Nuclear and 

cytoplasmic markers were considered to be co-expressed if the nuclear marker was enveloped by 

the cytoplasmic marker in all three dimensions. The total number of co-labeled cells (i.e., Ki67+/
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DCX+, BrdU+/NeuN+) was determined by  multiplying the percentage of co-labeled cells by the 

total number of DAB-labeled Ki67+ or BrdU+ cells. Quantification of positive cells was limited 

to cells within the SGZ/GZ of the DG.

 All data are expressed as cell counts ± standard error of the mean (SEM). Statistical 

analyses were performed using GraphPad Prism (Mac OS X version 5.0a). Data sets were tested 

for normality (D’Agostino and Pearson omnibus normality test) and equal variances (F-test), and 

group averages were calculated as the average total number of cells in both hippocampi per 

animal. Quantifications were analyzed primarily with one-way ANOVA and Tukey’s post-hoc 

test. Kruskal-Wallis one-way ANOVA with Dunn’s post hoc analysis was used when variances 

differed significantly between groups. Significance levels were set at α=0.05, two-tailed.
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RESULTS

Characterization of standard housing, locked wheel and running wheel paradigms: animal 

behavior and running performance

 Previous rodent studies have shown that enrichment of living space with toys, tunnels, 

running wheels and other objects of potential interest can promote neurogenesis within the DG 

(Brown et al., 2003a; Kempermann et al., 1997). We have previously  characterized changes 

within the DG neurogenic lineage following 6 week exposure to a voluntary running wheel 

(Bednarczyk et  al., 2009).  In order to determine whether the running wheel environment 

contributes to these changes independently of running, we modified our previous experimental 

protocol. In addition to control mice in standard housing (“CTL” mice) and running mice housed 

with unlocked running wheels (“RUN” mice), we added a third group housed with locked wheels 

(“LOC” mice) (Figure 1a). All mice were housed without any additional forms of environmental 

enrichment, only  being provided with food, water and bedding material. LOC mice had the same 

living environment as RUN mice, but could not engage in any sustained physical activity (i.e., 

running). 

 In order to compare the effects of running and locked wheel housing conditions on 

survival of newly  generated cells in the hippocampal DG, we labeled proliferating cells with 

BrdU 40 days before the time of sacrifice. Following BrdU injections, mice in the LOC and 

RUN groups were housed in an identical locked wheel environment for a period of six days 

before unlocking cages in the RUN group, in order to minimize environment-mediated effects on 

proliferation that could interfere with assessment of cell survival.
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 While behavioral analysis was not the primary focus of this study, we observed that mice 

in both the CTL and LOC groups regularly engaged in limited forms of physical activity even in 

the absence of functional running wheels (Video 1, Video 2, Supplementary  Information; see also  

Dubreucq et al., 2010). At the time of sacrifice, the weights of LOC mice (41.36±1.433g) and 

CTL mice (42.37±2.275g) were not significantly different from each other, while the weights of 

RUN mice (35.80±0.5132g) were significantly  decreased compared to both these groups 

(p<0.050, one-way ANOVA with Tukey’s post-hoc test). RUN animals ran voluntarily  for 

extended periods, averaging 8.25-12.79 km run per night, for a total of 272.4-421.9 km over the 

33 days of the experiment (Figure 1b, and Video 3, Supplementary Information). Running mice 

were generally active for the entire twelve hours of the lights-out, or nighttime period, as is 

expected for nocturnal animals (Figure 1c).

For the purposes of the present study, we sub-divided the process of hippocampal 

neurogenesis into three broad and partially overlapping phases (Figure 1d). The Proliferation 

phase (Phase 1) is defined by  the expression of the proliferation marker Ki67 and encompasses 

the steps from activated radial glia-like precursors to the initial generation of proliferative 

neuroblasts. The Neuroblast phase (Phase 2) is defined by the expression of Doublecortin 

(DCX), which is first expressed by neuroblasts during their initial proliferative stage and 

continues to be expressed for approximately  2-3 weeks into their post-mitotic period.  The 

Survival/Maturation phase (Phase 3) is defined here by the long-term retention of BrdU, and 

represents the surviving fraction of dividing cells that had been labeled prior to the start of the 

experimental paradigm. BrdU+ cells that co-label with NeuN represent newly generated mature 

neurons. Cells expressing Calretinin are newly  born post-mitotic neurons at  the Phase 2-3 

transition.
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FIGURE 1:
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FIGURE 1. (PRECEDING  PAGE) Experimental model and running performance. (a) Mice were housed in a standard 

cage, a locked running wheel  cage or an unlocked running wheel cage for the duration of the trial period. 2 month old 

CD1 mice were given three injections of  BrdU and were then randomized and separated into their respective 

environments the following day. Running wheels were locked in both the running and locked wheel groups for the 

following 6 days. At day 7, running group running wheels were unlocked and all animals were allowed to live in the 

respective environment for a  period of  33 days. (b) Mice in the running group averaged 8.25 to 12.79 km per day for the 

entire 33 day trial period. (c) Hourly running distances for a representative mouse showing that most of  the running 

activity was performed during lights-off, or nighttime hours. (d) A schematic of the neurogenic lineage cells  and their 

antigenic markers in the adult DG. We have divided this lineage into  three phases: Phase 1, cell proliferation, Phase 2, 

production of neuroblasts and Phase 3, maturation and survival of  newly-formed neurons. (BrdU= bromodeoxyuridine, 
DCX= doublecortin, GFAP= glial fibrillary acidic protein, NeuN= neuronal nuclei)

Phase 1: Proliferation is increased in both running and locked wheel mice 

 To determine the effects of housing conditions on cells in the Proliferative phase of 

hippocampal neurogenesis, we analyzed the expression of Ki67, a nuclear protein that is 

expressed by actively  proliferating cells in all phases of the cell cycle (Scholzen and Gerdes, 

2000). Immunohistochemistry  revealed that mice in both the LOC (Figure 2b) and RUN (Figure 

2c) groups displayed visually  apparent increases in the number of Ki67+ cells when compared to 

CTL mice (Figure 2a). Quantification of the number of Ki67+ cells in the DG identified a two-

fold increase in the number of proliferating cells in both these groups (Figure 2e). The number of 

cells increased from an average of 376.5±96.8 cells in CTL mice to an average of 856.8±73.6 

cells in LOC mice and 808.8±155.3 cells in RUN mice (Figure 2e). This increase only reached 

statistical significance in the locked wheel group  (P<0.050, one-way ANOVA, with Tukey’s 

post-hoc test vs. control), possibly due to the greater inter-animal variability in the RUN mice 

(Figure 2d). The dorsal and ventral regions of the DG displayed equivalent increases in Ki67+ 

cells in the LOC and RUN mice (Figure 2f).
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FIGURE 2:

FIGURE 2. Cellular proliferation is increased  in locked wheel mice. (a,b,c) Photomicrographs of  Ki67 expressing cells in 

the Cresyl-Violet counterstained dentate gyrus (DG) of control (“CTL”, a), locked wheel (“LOC”, b) and running 

(“RUN”, c) animals. Inset in (b) shows a cluster of Ki67+ cells. (d) Individualized cell proliferation data from CTL (C1-

C4; white), LOC (L1-L5; grey) and RUN (R1-R5; black) animals. (e) Quantification of  Ki67+ cells reveals a significant, 

two-fold increase in the total number of  Ki67+ cells in LOC mice when compared to CTL mice. (f) Separation of Ki67 

quantifications into dorsal (CTL, LOC, RUN-D) and ventral (CTL, LOC, RUN-V) components shows that increases in 

proliferation were uniform in both dorsal  and ventral portions of the DG in both locked and running animals. (Scale bar: 
125 µm (a,b,c); ns = P>0.050, * = P≤0.050, ** = P≤0.010,*** = P≤0.001, One-way ANOVA with Tukey post-hoc test)
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Phase 2: The total number of neuroblasts is increased in running mice but not in locked wheel 

mice 

The production of DG neuroblasts increases markedly with prolonged voluntary wheel 

running (Bednarczyk et al., 2009). We assayed the number of neuroblasts produced under our 

three housing conditions by quantifying the number of cells immunoreactive for DCX, a 

microtubule associated protein that is expressed by  newly born and migrating neuroblasts 

(Couillard-Despres et al., 2005). Photomicrographs of DCX immunohistochemistry  in the DG 

revealed a striking increase in DCX expression in RUN mice (Figure 3c) compared to CTL mice 

(Figure 3a), and that unlike for Ki67, this increase did not occur in LOC mice (Figure 3b). 

Individualized data is shown in Figure 3d. Quantifications confirmed that there was a two-fold 

increase in the number of DCX+ cells in running mice (9762±838.1 cells) and no increase in 

locked wheel mice (4171±515.4 cells) when compared with standard-housed mice (4125±435.8 

cells) (Figure 3e). The effects of running on the expression of DCX were highly statistically 

significant (P<0.001, one-way ANOVA, with Tukey’s post-hoc test vs. control), and occurred 

approximately equally in the dorsal and ventral regions of the DG (Figure 3f).
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FIGURE 3

     

FIGURE 3. The number of neuroblasts is  increased in running but not locked wheel mice. (a,b,c) Photomicrographs of 

Doublecortin (DCX) expressing cells in control (“CTL”, a), locked wheel  (“LOC”, b) and running (“RUN”, c) animals. (d) 

Comparison of  the total number of DCX+ cells from individual animals in CTL (C1-C4; white), LOC (L1-L5; grey) and 

RUN (R1-R5; black) groups. (e)  Quantification of DCX+ cells shows a significant, two-fold increase in the average 

number of  DCX+ cells in RUN animals, when compared to both LOC and CTL animals.  (f) Separation of DCX 

quantifications into dorsal (CTL, LOC, RUN-D) and ventral (CTL, LOC, RUN-V) components shows that DCX 

expression increased proportionately in dorsal and ventral  components in running animals. (Scale bar: 50 µm (a,b,c); ns = 
P>0.050, * = P≤0.050, ** = P≤0.010,*** = P≤0.001, One-way ANOVA with Tukey post-hoc test)
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Phase 3: The number of newly born neurons is increased in running mice but not in locked wheel 

mice

 In order to compare the effects of RUN and LOC housing conditions on survival of 

newly generated cells, we first quantified changes in the number of BrdU-retaining cells in the 

DG. Photomicrographs of BrdU-immunoreactive cells in the DG illustrate a marked increase in 

the number of BrdU+ cells in RUN mice (Figure 4c) when compared to both CTL (Figure 4a) 

and LOC (Figure 4b) mice. Quantifications revealed that there was a two-fold increase in the 

number of surviving, BrdU-labeled cells in RUN mice (1020.0±101.5 cells) and no significant 

increase in LOC mice (500.4±65.8 cells) when compared to CTL mice (474.0±70.7 SEM cells) 

(Figure 4e) (running vs. standard-housed mice, P<0.010, one-way ANOVA, with Tukey’s post-

hoc test). Both the dorsal and ventral regions of the DG exhibited increased numbers of BrdU+ 

cells (Figure 4f).

 To determine the percentage of BrdU-retaining cells that had differentiated into neurons, 

we co-labeled for BrdU and NeuN (a nuclear marker of mature neurons) (Figure 4g). A total of 

15-53 BrdU+ cells were counted per animal (3-4 sections/animal). Quantification revealed that a 

similar proportion of the BrdU-retaining cells had differentiated into neurons in the CTL 

(70.28±5.32%), LOC (68.31±2.14%) and RUN (67.94±3.32%) groups (Figure 4h).  Given the 

running-induced increase in the size of the BrdU-retaining population, this translated into a 

significant running-induced increase in the total number of BrdU+/NeuN+ newly  generated 

neurons in RUN mice (691.2±78.4 cells) versus CTL mice (340.9±70.5 cells) and LOC mice 

(342.9±47.8 cells) (RUN vs. CTL mice, P<0.050, one-way  ANOVA, with Tukey’s post-hoc test; 

Figure 4h). Immunofluorescence labeling for BrdU with the differentiated astrocytic marker 

S100β or the microglial marker Iba1 did not show any co-labelling with the BrdU-retaining cells 

within the DG (data not shown). 
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FIGURE 4: 
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FIGURE 4. (PRECEDING PAGE) The number  of 40-day, BrdU-retaining cells  and BrdU+/NeuN+ cells is increased in 
running but  not locked wheel mice. (a,b,c) Photomicrographs of BrdU-retaining cells in the DG  of  control (“CTL”, a), 

locked wheel (“LOC”, b) and running (“RUN”, c) animals. Note that BrdU signal was slightly overdeveloped to show the 

granule layer. Insets show select cells  (arrowheads) in greater detail. (d) Comparison of the total number of BrdU+ cells 

from individual animals in CTL (C1-C4; white), LOC (L1-L5; grey) and RUN (R1-R5; black) groups. (e) Quantification 

of  BrdU+ cells reveals a  significant, two-fold increase in the average number of BrdU+ cells in RUN animals when 

compared to both LOC wheel and CON animals. (f) Separation of  BrdU quantifications  into dorsal  (CTL, LOC, RUN-D) 

and ventral (CTL, LOC, RUN-V) components shows that BrdU expression increased proportionately in dorsal and 

ventral components in running animals. (g) Triple-labelling fluorescence immunohistochemistry for BrdU, NeuN and 

GFAP. A representative photomicrograph of a newly-formed mature neuron in the granule cell layer of the DG. Higher 

magnification insets of  the cell (arrowhead) show clear co-labeling of NeuN with BrdU. (h) There are no significant 

differences in the percentage of  BrdU+ cells that are also NeuN+ in any of  the three experimental groups (left). Because of 

the marked increase in the total number of  BrdU+ cells in running animals (“RUN”), there are significantly more BrdU+/

NeuN+ newly-formed mature neurons in this group when compared to both locked wheel (“LOC”) and control (“CTL”) 

animals  (right). (SGZ = subgranular zone. Scale bar: 50 µm (a,b,c), 25 µm (g), 10 µm (“g” insets); ns = P>0.050, *  = 
P≤0.050, ** = P≤0.010,*** = P≤0.001, One-way ANOVA with Tukey post-hoc test)

To confirm that newly born post-mitotic neurons were increased only  in the RUN group, 

as well as to ensure that our findings were not confounded by  a proliferation-induced dilution of 

BrdU, we assessed expression of the calcium binding protein calretinin (Figure 5). Calretinin is 

transiently  expressed in post-mitotic neurons at the Phase 2-3 transition (Figure 1e) (Brandt et 

al., 2003).  Calretinin-immunoreactive neurons were found within the SGZ/GZ and were more 

numerous in RUN mice than in LOC or CTL mice (Figure 5a-c). Quantification revealed that the 

number of calretinin+ neurons was 2462±360 cells in CTL mice and 1901±222 cells in LOC 

mice, and increased to 9196±493 cells in RUN mice (P<0.001, one-way ANOVA, with Tukey’s 

post-hoc test) (Figure 5d,e). This increase occurred to a similar extent in both the dorsal and the 

ventral regions of the hippocampus (Figure 5f).

 Together, these results demonstrate that  only running mice displayed an increase in 

overall cell survival and the generation of mature neurons. 
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FIGURE 5:

FIGURE 5. The number of new, immature neurons  is increased in running, but not  locked wheel mice. (a,b,c) 

Photomicrographs of Calretinin expressing cells  in control  (“CTL”, a), locked wheel (“LOC”, b) and running (“RUN”, c) 

animals. (d) Comparison of the total number of  Calretinin+ cells from individual animals in CTL (C1-C4; white), LOC 

(L1-L5; grey) and RUN (R1-R5; black) groups. (e)  Quantification of Calretinin+ cells shows a  significant, four-fold 

increase in the average number of Calretinin+ cells in RUN animals, when compared to both LOC and CTL animals. (f) 

Separation of Calretinin quantifications into dorsal (CTL, LOC, RUN-D) and ventral (CTL, LOC, RUN-V) components 

shows that Calretinin expression increased proportionately in dorsal and ventral components in running animals. (Scale 
bar: 50 µm (a,b,c); ns = P>0.050, * = P≤0.050, ** = P≤0.010,*** = P≤0.001, One-way ANOVA with Tukey post-hoc test)
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Running wheel exposure is sufficient to activate early lineage GFAP-expressing cells. 

Dividing GFAP-expressing cells located within the SGZ are neurogenic precursors/stem 

cells (Fukuda et al., 2003; Seri et al., 2001; Suh et al., 2007). To determine whether the size of 

this infrequently dividing GFAP+ population of cells increased in response to locked wheel or 

running wheel housing conditions, we quantified the percentage of 40 day BrdU-retaining SGZ 

cells that co-expressed GFAP (Figure 6a). A total of 15-53 BrdU+ cells were counted per animal 

(3-4 sections/animal). Comparison of the CTL, LOC and RUN groups showed there was no 

significant difference detected in either the percentage of BrdU+ cells that co-expressed GFAP or 

the total number of BrdU+/GFAP+ cells/brain within the SGZ (Figure 6b), suggesting that 

running wheel exposure did not expand the size of the population of GFAP+ precursor/stem 

cells.

Previous work suggests that physical activity recruits GFAP-expressing neurogenic 

progenitors into the cell cycle within the SGZ (Suh et al., 2007). To investigate whether SGZ 

GFAP-expressing cells are equally activated in our locked wheel and running wheel housing 

conditions, we performed immunofluorescence co-labeling for Ki67 and GFAP (Figure 6c). A 

total of 30-109 Ki67+ cells were counted from each animal in all three experimental groups (3-4 

sections/animal) and the relative percentage of Ki67+ cells that  were also GFAP+ was 

determined from these quantifications. While no Ki67+ cells that were GFAP+ were found in 

CTL mice, 3.85±1.34% of Ki67+ cells co-expressed GFAP in LOC mice and 7.32±2.40% of 

Ki67+ cells co-expressed GFAP in RUN mice (running vs. standard-housed conditions, P<0.050, 

one-way Kruskal-Wallis ANOVA, with Dunn’s post-hoc). There was no significant difference 

between LOC and RUN groups (P>0.050, one-way Kruskal-Wallis ANOVA, with Dunn’s post-
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hoc test Figure 6d). Conversion of these percentages into the total number of Ki67+/GFAP+ cells 

using the Ki67 quantitative data obtained earlier showed that the average number of Ki67+/

GFAP+ cells increased from 0.00 in CTL mice to 33.13±13.76 cells in LOC mice and 

61.90±24.43 cells in RUN mice. Again, there was a significant difference in the number of cells 

between CTL and RUN mice (P<0.050, one-way Kruskal-Wallis ANOVA, with Dunn’s post-hoc 

test), and no significant difference between LOC and RUN mice (P>0.050, one-way Kruskal-

Wallis ANOVA, with Dunn’s post-hoc test; Figure 6d). 

Together, these results indicate that  while none of our experimental groups underwent an 

expansion of their GFAP-expressing stem cell pool, quiescent GFAP-expressing precursors were 

activated to proliferate in similar numbers following exposure to either the locked wheel or 

running wheel. 
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FIGURE 6:

FIGURE 6. Number  and proliferation of early GFAP+ precursor cells. (a) A representative photomicrograph of a label-

retaining GFAP+ cell in the subgranular zone (SGZ) of the DG. Higher magnification insets of the cell (arrowhead) show 

clear co-labeling of  GFAP with BrdU. (b) Quantification of both the relative percentage of BrdU+ cells  that are also GFAP

+ and the average number of  BrdU+/GFAP+ cells per animal shows that there are no significant differences between any 

of  the three experimental  groups. (c) A representative photomicrograph of a proliferating  GFAP+ in the SGZ of  the DG. 

Higher magnification insets  of  the cell (arrowhead) shows a clear co-labeling of  GFAP with Ki67. (d) Quantification of  the 

relative percentage of  Ki67+ cells  that are also GFAP+ (left) reveals a significant increase between control  (“CTL”) and 

running (“RUN”) mice. Quantification of the average number of Ki67+/GFAP+ cells per animal (right) shows a 

significant increase between CTL and RUN mice. (GCL = granule cell layer, SGZ = subgranular zone. Scale bar: 25 µm 
(a,c), 10 µm (insets); ns = P>0.050, * = P≤0.050, ** = P≤0.010,*** = P≤0.001, One-way ANOVA with Tukey post-hoc test or 
one-way Kruskal-Wallis ANOVA with Dunn’s post-hoc test.)
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The Phase 1-2 transition: Locked wheel and running wheel mice generate equivalent numbers 

of proliferative neuroblasts

The above results demonstrate that mice exposed to locked wheels and running wheels 

display  similar levels of Phase 1 proliferating cells, while only running mice have elevated total 

numbers of Phase 2 neuroblasts and Phase 3 surviving cells/mature neurons. To determine 

whether LOC mice fail to generate neuroblasts or whether they generate neuroblasts that fail to 

persist, we examined the proliferative neuroblast stage (Ki67+/DCX+) at the transition from 

Phase 1 to Phase 2 of the neurogenic pathway. Ki67-expressing and DCX-expressing cells were 

identified using immunofluorescence, and a total of 30-109 Ki67+ cells were analyzed for DCX 

co-expression in each animal (3-4 sections/animal) from all three experimental groups (Figure 

7a). Quantification revealed that the percentage of Ki67+ cells that co-expressed DCX increased 

from 6.73±2.67% in CTL mice to 15.55±1.35% in LOC mice and 16.49±2.72% in RUN mice 

(CTL versus RUN mice, P<0.050, one-way ANOVA, with Tukey’s post-hoc). There was no 

significant difference between LOC and RUN animals (Figure 7b). Conversion of these 

percentages into the total number of cells/brain confirmed that  the number of Ki67+/DCX+ cells 

in CTL mice (30.68±12.00 cells) increased by a similar amount in LOC mice (131.90±13.50 

cells) and RUN mice (134.70±30.31 cells) (P<0.050, one-way  ANOVA, with Tukey’s post-hoc 

test; Figure 7b).  Conversely, the number of post-mitotic neuroblasts was 4096±428 in the CTL 

group, 4042±516 in the LOC group and 9654±832 in the RUN group. Thus, mice exposed to 

either a locked wheel environment or a running wheel exhibit a similar increase in cell 

proliferation and initially generate equivalent numbers of proliferating neuroblasts, but these 

neuroblasts do not persist post-mitotically in the absence of wheel running. 
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FIGURE 7:

FIGURE 7. Locked wheel and running mice produce equal numbers of proliferating neuroblasts. (a) A representative 

photomicrograph of proliferating neuroblasts in the SGZ of  the DG. Higher magnification insets show a cluster of  Ki67+ 

cells (arrowhead) that co-label with DCX. (b) Quantification of  the relative percentage of  Ki67+ cells  that are also DCX+ 

(left) and the average number of  Ki67+/DCX+ cells per animal (right) shows that running (“RUN”) and locked wheel 

(“LOC”) mice have identical numbers of proliferating neuroblasts. (GCL = granule cell  layer, SGZ = subgranular zone. 
Scale bar: 25 µm (a), 10 µm (insets); ns = P>0.050, * = P≤0.050, ** = P≤0.010, *** = P≤0.001, One-way ANOVA with Tukey 
post-hoc test)
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DISCUSSION

 Adult hippocampal neurogenesis can be potently  stimulated in rodents by increasing the 

complexity of the living environment, i.e., environmental enrichment. In the present study, we 

investigated how one specific form of environmental enrichment, exposure to a running wheel, 

promotes neurogenesis. Remarkably, we found that proliferation of neural precursors (Phase 1) 

was increased within the hippocampal neurogenic niche to the same degree in mice exposed to 

either locked or unlocked running wheels. This proliferating cell population contained both the 

same number of dividing GFAP-expressing stem-like cells and the same number of dividing 

DCX-expressing proliferative neuroblasts. On the other hand, the total number of post-mitotic 

DCX-expressing neuroblasts (Phase 2) and the Calretinin+ or NeuN+ neurons they  generated 

(Phase 3) were increased only  in mice housed with unlocked running wheels. These results 

suggest a model where running wheels are a source of multiple, functionally complementary, 

neurogenic stimuli: 1) running-independent stimuli that activate the early proliferative stages of 

neurogenesis and 2) running-dependent stimuli that promote survival and maturation of post-

mitotic neuroblasts into mature neurons (summarized in Figure 8).

FIGURE 8. (FOLLOWING PAGE) Model of the influence of running-independent and -dependent stimuli on hippocampal 
neurogenesis. (upper panel) In this summary figure, a representation of the three broad phases of  hippocampal 

neurogenesis is shown in comparison to where running-dependent and running-independent stimuli exert their primary 

effects. Running-independent stimuli promote increases in proliferation (Phase 1), while running-dependent stimuli 

enhance the survival and maturation of  newly-formed neuroblasts (Phase 2) and mature neurons (Phase 3). (lower panel) 

A representation of  the relative changes in the number of cells at each stage of  the neurogenic process in CTL, LOC and 

RUN mice. During the first phase, locked wheel (LOC) and running (RUN) mice display identical  increases in 

proliferation of early stem cell-like precursors, neural progenitors  and mitotic neuroblasts. As the process continues, 

however, only running mice retain a larger total number of post-mitotic neuroblasts and fully mature neurons.
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FIGURE 8:

The running wheel environment stimulates proliferation in the hippocampal dentate gyrus in the 

absence of wheel-running

 Comparison of Phase 1 proliferating cells in mice housed with locked and unlocked 

running wheels suggests that increased cell proliferation observed following running wheel 

exposure occurs entirely independently of running. Cell proliferation in the DG of locked wheel 

mice was comparable to that of running mice. In order to determine the identity of these 

proliferating cells, we co-labeled Ki67+ cells in the DG with markers for early progenitor/stem 

cells and for neuroblasts. We found that locked wheel and running mice were indistinguishable in 
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terms of the percentage and number of Ki67+/GFAP+ stem cells or Ki67+/DCX+ proliferative 

neuroblasts. Intriguingly, some of our findings are corroborated by a recent study that used 

locked wheel cages as a control environment (Fuss et al., 2009); that study also found no 

difference in Ki67 expression between running and locked wheel mice, however, the authors 

could draw no conclusions on whether the locked wheel itself increased proliferation as their 

study did not include a standard-housed control group.

 We hypothesize that  several potential mechanisms may  mediate the proliferation induced 

by the locked wheel environment. In comparison to standard cages, the locked wheel cages 

represent a source of multiple forms of cognitive stimulation. The running wheel surface and 

rungs provide numerous tactile and visual stimuli that are not present in the standard housing 

environment. Moreover, because of the arrangement of the running wheel in the cage, mice are 

also provided with “hidden” spaces around, beneath and in the running wheel, in which they 

were frequently  found to nest and burrow. The walls and hidden spaces created by the running 

wheel could result in modification of spatial maps in the hippocampus and related cortical 

structures (Derdikman et al., 2009; Lu and Bilkey, 2009), potentially necessitating changes in 

DG proliferation and neurogenesis. From a behavioral or psychological perspective, more places 

for hiding and burrowing may  also have effects on cell proliferation by helping reduce stress and 

anxiety (Czeh et al., 2001; Malberg and Duman, 2003).

 While formally possible, the effects of the locked wheel are unlikely to be due to 

exercise-related mechanisms. Mice in both the standard housing and locked wheel conditions 

engaged in apparently similar types of low intensity climbing and hanging behaviors and had no 

difference in weight, while the running mice ran up  to 13 km per night and weighed 
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approximately 17% less at  the time of sacrifice. Furthermore, the effects of running on cell 

proliferation were not greater than the effects of a locked wheel environment, as might have been 

expected if the effects of these two environments on proliferation were additive or at least 

partially dissociable. Moreover, in previous analyses of running mice, we found that the intensity 

of exercise correlated with production of DCX+ neuroblasts but not the number of Ki67+ 

proliferating cells (Bednarczyk et al., 2009). A recent study by  Dubreucq and colleagues 

(Dubreucq et al., 2010b) has provided additional evidence of exercise-independent influences of 

the running wheel environment. 

 What is the fate of the proliferating Ki67+/DCX+ neuroblasts that  are produced in locked 

wheel mice? While locked wheel mice produced the same number of mitotic neuroblasts as 

running mice, only running mice had larger numbers of post-mitotic neuroblasts and mature 

neurons. It is clear that Ki67+/DCX+ cells do not persist within the SGZ/GZ of the DG, as the 

number of BrdU-retaining cells, i.e., surviving cells, did not increase in locked wheel mice 

(Figure 4). It is also considered unlikely that these Ki67+/DCX+ cells differentiated into non-

neuronal cells that migrated out of the granule cell layer; however, in this respect, it should be 

noted that multi-potential DCX-expressing cells have recently been reported to exist within the 

adult hippocampus (Walker et al., 2007). The most likely explanation is that, in the absence of 

running-induced factors (described below), these proliferating neuroblasts fail to be recruited or 

fail to survive the transition into post-mitotic neuroblasts (Biebl et al., 2000; Young et al., 1999). 

Due to the small size of this proliferating neuroblast population (<150 cells/brain; Figure 7), it is 

likely to be difficult to identify a difference in the number of pyknotic or apoptotic cells between 

the locked wheel and running groups. However, it would be interesting to determine whether 
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treatment with cell death-inhibiting factors would increase the number of post-mitotic 

neuroblasts in locked wheel mice. 

Running-dependent mechanisms affect post-mitotic stages of the hippocampal neurogenic 

pathway

 In our study, the specific effects of running on neurogenesis were first identifiable at the 

post-mitotic neuroblast  stage (Phase 2). Our results showed that while the number of mitotic 

neuroblasts was increased equally in locked wheel and running wheel mice, the number of post-

mitotic neuroblasts and newly generated neurons was only increased in running mice. Running 

wheel animals had increased total numbers of DCX+ cells, Calretinin+ cells, BrdU+ cells and 

BrdU+/NeuN+ cells relative to both control and locked running wheel animals. 

 A variety of interrelated mechanisms may  mediate the effects of running or exercise on 

neurogenesis. Running mice have been consistently shown to have elevated levels of local and 

systemic growth factors and secreted hormones, including BDNF (Adlard and Cotman, 2004; 

Duman et al., 2008; Fuss et al., 2009), VEGF (Cao et al., 2004; Fabel et al., 2003a), IGF (Carro 

et al., 2000; Llorens-Martin et  al., 2008; Trejo et al., 2001), FGF-2 (Gomez-Pinilla et al., 1997), 

corticosterone (Fediuc et al., 2006) and endorphins (Koehl et al., 2008). Running also induces 

structural changes, such as increased vascularisation, which could increase local oxygenation, 

metabolism and delivery of secreted factors (Palmer et al., 2000; Van der Borght et al., 2009).

It is also important to note that running could have psychological consequences that 

impact on hippocampal neurogenesis. A number of studies suggest that exercise has anti-

depressive effects in rodents (Brene et al., 2007; Duman et al., 2008), and that treatment with 

115



anti-depressant drugs is correlated with increased hippocampal neurogenesis (Boldrini et  al., 

2009; Czeh et al., 2001; Malberg and Duman, 2003). Interestingly, Takahashi et al. recently 

showed that rodent intracranial self-stimulation, an autonomous method of directly  stimulating 

the pleasure centers of the brain, increased proliferation, survival and neuronal integration in the 

DG (Takahashi et al., 2009).  If running is indeed a pleasurable activity for mice, and one that 

potentially contributes to survival in the wild, then running-induced neurogenesis may reinforce 

these behaviors and the contextual memories associated with them (Kempermann, 2002; 

Kempermann, 2008). Moreover, as discussed previously, because the hippocampus plays a role 

in spatial mapping, nocturnal wheel-running (Figure 1d) may increase hippocampal neurogenesis 

through unknown mechanisms in order to accommodate a larger perceived spatial environment. 

Interestingly, a previous study (Keith et al., 2008) found that training rats in spatial navigation 

tasks could increase the pool of DCX+ neuroblasts.   

From a functional or mechanistic perspective, it  should be noted that environmental 

enrichment of laboratory raised mice may actually be a closer approximation of the normal 

mouse environment, while standard housing might be more accurately  considered as a model of 

sensory  deprivation or inactivity  (Cummins et al., 1977). In a recent study  by Hauser et al. 

(2009), it was found that wild mice did not exhibit running induced hippocampal neurogenesis 

(Hauser et al., 2009). While it is possible that this could be due to differences in strain, it also 

raises a broader question about environmental “enrichment”. For laboratory  raised mice, an 

environment equipped with a running wheel and/or toys is enrichment because these animals are 

raised in a sterile environment lacking predators or the need for survival behaviors. For wild 

mice, the same “enriched” environment is greatly deprived in terms of external stimuli and may 
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not provide the same neurogenic stimuli. More generally, if the effects of wheel-running were 

entirely  due to exercise, then different forms of exercise, performed at the same level of intensity, 

should yield comparable neurogenic increases. Unfortunately, only  a few studies have directly  or 

indirectly tested this idea (Liu et al., 2009; van Praag et al., 1999b). Additional studies are clearly 

required to understand how environmental enrichment and running enhance hippocampal 

neurogenesis.

CONCLUSIONS

 

 In this study, we demonstrate that the neurogenic effects of running wheels are mediated 

by running-dependent and running-independent mechanisms that are dissociable and functionally 

complementary. Our findings lead us to conclude that the hippocampal neurogenic pathway  is 

activated by running–independent processes that culminate in the accumulation of proliferating 

neuroblasts, and that running-dependent processes are subsequently required for the generation 

of post-mitotic neuroblasts and for their maturation into newly born neurons. A greater 

understanding of the biochemical and physiological events underlying these processes is an 

important future objective. Collectively, this work provides insight into how multiple aspects of 

environmental enrichment can collaborate to regulate adult hippocampal neurogenesis.
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GENERAL DISCUSSION 

 From the two studies presented in this thesis, one can draw two principal conclusions. 

First, animals that  are given access to a running wheel for a prolonged period display increased 

hippocampal neurogenesis and both hippocampal and SVZ proliferation. Thus, prolonged 

running paradigms can directly  influence the neurogenic process in the SVZ. Second,  animals 

that are housed in a running environment, without any sustained physical activity, display 

increases in hippocampal proliferation, but not in hippocampal neurogenesis. Thus, there are 

both running-dependent and running -independent stimuli that affect the hippocampal neurogenic 

process in different ways. 

 Because of the implications of these conclusions, it is important to discuss and 

contextualize these findings. General points of discussion were addressed in the presented 

articles. Here, I will discuss some of the more specific controversies inherent  to these studies and 

will present a general postulate about the mechanisms and reasons for running-induced increases 

in hippocampal neurogenesis.  

1. PERSPECTIVES ON AND THE IMPLICATIONS OF OUR STUDIES

Wheel running and SVZ-OB neurogenesis

 On the basis of a study by  Brown and colleagues, there is a general consensus that 

physical activity does not influence forebrain and olfactory bulb neurogenesis (Brown et al., 
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2003a). However, this study, while formidable in its own right, has several limitations in that it 

does not completely address the question of the influence of physical activity  on forebrain 

neurogenesis. 

 To briefly outline the methodology of the Brown et al. study, mice were randomized and 

housed in groups in one of three experimental environments (Control, Enriched Environment, 

Running Wheel). They received 12 daily  intraperitoneal injections of BrdU beginning on the day 

when they were separated into their experimental groups. To assay proliferation, one cohort of 

animals was sacrificed 1 day after the last injection (day 13). The remaining animals were 

allowed to continue living for a period of 43 days in order to assess cell survival and olfactory 

bulb neurogenesis.

 As a first point  of contention, the period of voluntary wheel running that was used to 

assess proliferation in this study  was of only two weeks. While this serves as an adequate 

reference for a baseline level of physical activity, it does not  approximate more robust regimes of 

physical activity  or the type of sustained activity that a wild animal would engage in in its day-

to-day  living. Thus, while a two-week running regime might not have any acute effects with 

respect to SVZ neurogenesis, it is possible that a longer running period could indeed produce 

some sort of stimulation. The second cohort of animals had run for a period of 6 weeks, but 

could not be assessed for proliferation via BrdU labeling. After a delay of 21 days from the time 

that these animals received their BrdU injections, most  of the BrdU-retaining cells would have 

migrated out of the SVZ to the olfactory  bulb. Cells retaining a signal in the SVZ proper, 

therefore, would represent surviving and immobile stem cells (or the like) rather than 

proliferating precursors. 
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 As a second point of contention, the manner in which BrdU was administered to measure 

proliferation does not necessarily give a good estimation of SVZ proliferation. Because BrdU 

was injected over the course of 12 days, on the day of sacrifice, many of the same labeled cells 

would have long since stopped proliferating. Moreover, a sizable portion of cells labeled during 

the first few days of physical activity  would have already begun to migrate out of the SVZ, thus 

reducing the overall number of BrdU-labeled cells in the SVZ proper. 

 There is, however, comparatively little that can be criticized in the finding that the 

number of newly-formed olfactory bulb neurons was not increased by  physical activity or 

environmental enrichment. These results were determined by assessing the total number of 

BrdU-labeled cells in the olfactory bulb 43 days after injection and by assessing the percentage 

of these cells that were co-labeled for NeuN, a marker of mature neurons. However, in this 

instance, there were still some lacunae which need to be addressed. With the long-term BrdU 

labeling protocol, it cannot be excluded that the number of new olfactory neurons simply 

represented surviving cells, rather than an absolute number. As previously discussed, there is a 

large surplus of neuroblasts entering the olfactory bulbs via the rostral migratory stream. The 

vast majority of these neurons will die, instead of being integrated into the olfactory bulb 

networks. Thus, in the study of Brown et al. (2003a) even if fewer surviving neurons were 

detected, this could be attributable to other factors, such as a lack of olfactory novelty or 

enrichment rather than physical activity. Moreover, because BrdU-labeling took place during the 

first 12 days of physical activity, it is possible that proliferation in the SVZ was not as high 

during these first few days in running mice and that, as a result, there were fewer proliferating 

cells to label. Consequently, there could still be higher rates of olfactory bulb neurogenesis in 
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running animals, although in this case, it would be impossible to detect with BrdU co-

localization. 

 A final point to consider with respect to the conclusions drawn by the Brown et al. study  

(2003a) is that animals were housed in groups in their respective environments. For one, with 

this arrangement, it is impossible to assess the individual activity of any particular animal. It 

becomes impossible, therefore, to correlate or link the level of physical activity with the level of 

proliferation or neurogenesis. More importantly, however, the social hierarchy that results from 

cohabitation can directly influence some aspects of hippocampal neurogenesis and the olfactory 

signals therein could influence olfactory bulb neurogenesis. Thus, these external stimuli could 

mask any changes that are occurring because of physical activity. 

 Because of these controversies, we set up an experiment to more thoroughly  assess the 

affects of physical activity on SVZ proliferation and olfactory bulb neurogenesis. In our study, 

animals were housed individually  and were allowed to run for a protracted period of 6 weeks. We 

then assessed SVZ proliferation by using Ki67, which is a robust marker of proliferation at the 

time of sacrifice. In doing so, we were able to show that, while modest, there were quantifiable 

changes in proliferation in the SVZ following this prolonged running period. 

 While the fact  that  proliferation in the SVZ can be stimulated by wheel-running is 

interesting in itself, this finding also provides some insight into the influence of exercise in the 

CNS. Basically, the increase in SVZ proliferation is small when compared to the large increase in  

hippocampal proliferation (and neurogenesis). Given that the SVZ is highly vascularized, located 

in close proximity to the lateral ventricles and is relatively devoid of innervation, it would seem 

that “exercise” (or, the structural changes and secreted factors associated with it) alone can 
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influence proliferation in this structure. On the other hand, it  is unlikely that exercise alone 

accounts for increases in proliferation and neurogenesis in the hippocampus, as, for example, 

simply  activating the excitatory perforant path is sufficient to increase proliferation and 

neurogenesis in this region (Cameron et al., 1995). Therefore, the hippocampus is likely subject 

to additional or parallel stimulation from cognitive stimuli, while the SVZ, by comparison, 

would not be heavily influenced by these. If we consider these facts on a purely  theoretical basis 

and “subtract” the influence of cognitive stimuli from both the SVZ and hippocampus, we are 

left with an entirely  exercise-dependent component. Using the relatively small increase in 

proliferation in the SVZ as a guideline, it appears that exercise by itself may have little to do 

with the large changes that are seen in the hippocampus following a wheel-running paradigm.

 The small effect of exercise in a 6-week running period (both in the SVZ and, 

hypothetically, in the hippocampus) is not particularly surprising, considering the time that it 

takes for either cognitive or exercise-dependent stimuli to exert their effects in CNS. The effects 

of cognitive stimuli are, for all intents and purposes, instantaneous. The instant that  a stimulus is 

presented to an animal, there is a broad activation in a number of CNS regions, and, if the 

stimulus is a “hippocampal-dependent” one, hippocampal activity is concomitantly  increased. 

Thus, without much delay, it should be possible to directly or indirectly stimulate neural 

precursor activity in the hippocampus. Conversely, purely exercise-dependent changes, such as 

changes in vasculature or metabolism, may  take much longer to manifest in CNS structures and 

the germinal regions of the SVZ and hippocampus. 

 Given that  it takes between 2-4 weeks for a neural precursor to produce a mature and 

integrated neuron in both the SVZ-OB and hippocampal system, a 6-week running paradigm 
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might simply not be long enough to really show changes in neurogenesis that occur as the result 

of exercise. At the time of sacrifice (after this 6-week period), it  is possible that some exercise-

related changes in vasculature or metabolism have taken place. Still, for the majority of new cells 

that have long since exited the cell cycle, it would be impossible to demonstrate any exercise-

dependent effect, as they would no longer be “subject” to direct regulation by secreted factors or 

the like. Thus, if one were to truly evaluate the effects of exercise on neural precursor activity, it 

would be wiser to design running paradigms that span over many  months, i.e., over a significant 

portion of the life of a rodent. If exercise indeed promotes systemic and local changes in 

metabolism and vasculature, it would then be easier to visualize their neurogenesis-promoting 

effects, as large numbers of cells would have been born and would have matured during this time 

in neurogenic structures. 

 

Wheel-running and hippocampal neurogenesis: What is the influence of the running 

environment?

 With respect to the second study presented in this thesis, it  is important to differentiate 

between exercise-dependent and exercise-independent effects on neurogenesis. With all of the 

possible cognitive stimuli inherent to wheel running and the wheel running environment, it 

seems reasonable to conclude that cognitive stimuli alone can, at  the very  least, influence some 

aspects of hippocampal neurogenesis. Indeed, according to our study, animals that are housed in 

a locked-cage environment produce more proliferating precursors and neuroblasts than their 

control counterparts, to a level comparable to that of running animals. Therefore, without any 
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significant amount of exercise, cellular proliferation is increased in the hippocampus. It  is 

important to note, however, that  there are numerous behavioral differences between the three 

experimental groups (CTL, LOC, RUN) and that there were confounding or contentious 

elements in our study. 

 One could reasonably argue that animals with an increased living space, such as that 

provided by a locked cage, could be “exercising” more by virtue of the fact that they  have more 

space to explore. Indeed, one study  (Koteja et al., 1999) found that animals housed in locked 

cages spend as much as one-third of their active (night) time hanging from or exploring the 

running wheel. However, lid hanging, where an animal hangs from the bars of the cage cover, is 

a common phenomenon in all types of animal housing (Steele et  al., 2007), including standard 

control cages. Hanging from a locked wheel could just be replacing, rather than supplanting the 

normal lid-hanging behavior. Moreover, wheel-running itself can be broken down into time spent 

running and time spent hanging from said running wheel. It  has been reported that mice running 

on a free wheel spend as much as one-third of that time hanging onto or from it (Koteja et al., 

1999), rather than actively  “exercising.” Furthermore, active use of a running wheel does not 

supplant normal behaviors. Rather, it takes away from the time in which an animal spends 

moving about the cage, such that the use of the running wheel is a behavior which eats into the 

time an animal would otherwise spend foraging, lid-hanging, etc.. All in all, the most robust 

measure of whether or not an animal has engaged in sustained exercise comes from the gross 

weight of the animal after the experimental period. In our study and in other reports, animals that 

are housed with a freely-rotating running wheel will consistently record a lower body  weight 

125



than their locked-wheel or standard-housed counterparts (Burghardt  et al., 2006; Koteja et al., 

1999; Swallow et al., 1999). 

 The question of whether a locked wheel, or the stimulus provided by the running 

environment, can affect CNS function has not yet been explored in great detail. However, one 

recent study hints at the fact that there are measurable differences in the complexity  of the 

standard housed, locked and unlocked running wheel environments that can manifest as 

differences in animal behavior (Dubreucq et al., 2010b). For example, mice housed in unlocked 

and locked running-wheel cages show similar levels of contextual fear and less anxiety (via a 

light/dark-box test) when compared to control animals. Moreover, mice with access to a locked 

running wheel showed less behavioral despair (via a forced swim test), although the precise 

conclusion of this type of test is somewhat controversial. It could be, then, that subtle differences 

in the environment can influence an animal’s behavior and could potentially  affect hippocampal 

proliferation or neurogenesis. 

 While the cognitive influence of a locked-wheel environment is certainly evident, it is 

also highly likely  that  wheel running is a cognitive stimulus. It is the informed opinion of this 

author that exercise, per se, could have little or nothing to do with increases in neurogenesis in 

the hippocampus and that, in fact, it is just masking the influence of more subtle stimuli, such as 

spatial memory dynamics, navigation, novelty, reward mechanisms and mood. Unfortunately, it 

is difficult to experimentally isolate “exercise” from any cognitive stimuli, such as wheel 

running, as they are all invariably connected to one another. It is imperative, therefore, that future 

studies address this fundamental question.
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 With respect to the question of “exercise” vs. “cognitive stimuli,” the types of 

controversies and questions presented here have wide-ranging implications for the field of 

human health. For example, based on current research, it would seem “reasonable” to 

recommend a regime of physical activity to persons suffering from depression, Alzheimer’s 

disease, etc. where hippocampal neurogenesis is presumed to be severely compromised. While 

there is certainly no harm in engaging in exercise, it  is entirely possible that, in humans, physical 

activity does nothing by itself to rescue or promote neurogenesis. One must remember that 

rodents and humans differ greatly  in terms of behavior and “life priorities.” To the modern, 

more-or-less sedentary human, physical activity might only be of secondary  or tertiary 

importance, rather than a function that supports “living.” This is not to say that it  could not 

influence neurogenesis, just that perhaps its effects would be minimal in comparison to those 

produced when a rodent engages in sustained physical activity. Within this realm, it  is entirely 

possible that, for a human, simply engaging in hippocampus-dependent cognitive tasks would 

suffice to stimulate neurogenesis in that structure. As such, from a therapeutic point of view, it is 

of crucial importance to study the effects of cognitive tasks and training on cellular plasticity, as 

it could prove beneficial for the treatment of certain diseases where neurogenesis is severely 

compromised.
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2. WHEEL-RUNNING AS A COGNITIVE STIMULUS AND ITS INFLUENCE ON 

NEUROGENESIS

 As outlined previously, it is highly  likely that wheel-running is itself a cognitive stimulus. 

Therefore, I hypothesize that  exercise is only  of secondary or tertiary  importance with respect to 

the mechanisms underlying increases in hippocampal neurogenesis following voluntary  wheel 

running. To date, there has been some speculation about this hypothesis (Kempermann, 2002; 

Kempermann, 2006; Kempermann, 2008). Here, I will present some candidate mechanisms that 

may  be responsible for these changes in neurogenesis as well as some novel insight into why 

neurogenesis might increase in response to wheel-running. 

Contextual memories and running: Is the brain rewarding a “good” behavior?

 Fundamentally, physical activity is primordial to the survival and success of a given 

organism. While physical activity has mainly  been relegated to a recreational activity for many 

humans, the overwhelming majority of animals depend on it for their day-to-day survival. For 

example, a wild mouse must travel over relatively long distances and forage continuously  if it is 

to find adequate sustenance. Similarly, the mouse must be capable of avoiding predation by 

finding suitable places to burrow and hide, and by fleeing at the sight of danger. Thus, engaging 

in physical activity  can be correlated with an animal’s survival and is, therefore, “rewarding” in 

and of itself.
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 The mesolimbic structures of the brain are central to reward and reinforcement in 

mammals. The most studied and most  well-known of the reward pathways is the dopaminergic 

ventral tegmental area (VTA) to nucleus accumbens pathway. Because the relationship between 

these structures and the hippocampus has not been thoroughly  studied, the hippocampus has not 

traditionally  been considered in influencing reward and reinforcement. Nonetheless, some recent 

studies have elucidated several important pathways between the hippocampus and the reward 

centers of the mesolimbic system (Cooper et al., 2006; Floresco et al., 2001; Floresco and Grace, 

2003; Floresco et al., 2003; Legault and Wise, 2001; Lisman and Grace, 2005; Samson et  al., 

1990; Thierry et al., 2000). For example, the subiculum, which interfaces with the entorhinal 

cortex and the CA1 pyramidal cells, serves as a bridge between the hippocampus and some 

reward structures, such as the nucleus accumbens and prefrontal cortex (Cooper et al., 2006). 

From this, and given the role of the hippocampus in memory consolidation, it is reasonable to 

believe that the contextual memories of particular rewards (i.e., “was this behavior good or bad 

for me; what type of behavior is better for me?”) may be processed, in part, by the hippocampus. 

Consequently, there is a growing body of evidence to suggest that the hippocampus may  be 

involved in remembering/analyzing the rewards and risks of miscellaneous behaviors (Kumaran 

et al., 2009; Okatan; Okatan, 2009; Rolls and Xiang, 2005; Tracy et al., 2001; Vanni-Mercier et 

al., 2009) and may, therefore, be an important contributor to reward mechanisms. 

 With respect to adult neurogenesis, a recent study demonstrated that intracranial self-

stimulation (ICSS), via an electrode implanted into the VTA, induced potent increases in 

hippocampal neurogenesis (Takahashi et al., 2009). The authors use physical activity, or wheel 

running, as a basis of conceptual comparison because the running-wheel behavior seems to be 
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“rewarding” for rodents and could affect mesolimbic reward structures (Belke and Hancock, 

2003; Iversen, 1993; Pierce et al., 1986; Ralph et al., 2002; Vargas-Perez et al., 2003; Wilson and 

Marsden, 1995). Indeed, without any additional impetus from experimenters, mice will run 

voluntarily  for great distances on a running wheel, as was the case in both of the studies 

presented in this thesis (Bednarczyk et al., 2009). Hypothetically, in the case of both wheel-

running and ICSS, the animal “learns” that these behaviors are “rewarding” and, potentially, the 

hippocampus accommodates these new memories via increased neurogenesis. On an 

evolutionary  level, it  seems perfectly reasonable that  the brain would “reward” such behaviors as 

running, as they  are essential for the survival of the animal. An increase in hippocampal 

neurogenesis resulting from wheel running, then, could serve as one mechanism for ensuring that  

the animal continues to perform such a behavior. 

Mechanisms of reward and reward-induced changes in neurogenesis

 

 On a mechanistic level, it is important to consider the role of certain secreted factors, 

such as the endorphins, in mitigating or, potentially, producing the rewards attributable to certain 

behaviors. It has already  been demonstrated that physical activity increases CNS levels of 

endogenous opiates, like beta-endorphins (Boecker et al., 2008), and that this directly influences 

hippocampal neurogenesis, as outlined previously  (Koehl et al., 2008). However, endorphins are 

also secreted in response to other “rewarding” activities, such as excitement, substance use/abuse 

and sexual activity and form part of the general mechanism for producing positive reinforcement 

(Le Merrer et al., 2009). In accordance with what was previously  discussed, beta-endorphins and 
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other opioids might influence the hippocampus in reward and addiction by influencing the 

contextual memories of certain pleasurable activities (Dong et al., 2006; Drake et al., 2007; Ito et 

al., 2008; Le Merrer et al., 2009; Sharifzadeh et al., 2006; Stanley et al., 1988; Tracy et al., 

2001). 

 It is also interesting to note that the endogenous cannabinoid system influences and 

serves in the reward mechanisms of the CNS (Solinas et al., 2008; Solinas et al., 2006; Zangen et 

al., 2006). Moreover, endocannabinoids directly influence neurogenesis and other CNS 

phenomena and are relevant when considering the impact of physical activity on the brain. 

Indeed, secretion of anandamide, an endogenous cannabinoid, is increased in reward situations 

(Caille et al., 2007; Kirkham et al., 2002) and in physically active humans (Sparling et al., 2003), 

and could contribute to the psychotropic effects that are described as the “runner’s 

high” (Dietrich and McDaniel, 2004; Fuss and Gass, 2010). More importantly, a recent study  

has shown that  when the CB1 receptor is knocked out (CB1-/-) in running mice, thus mitigating 

the effects of endocannabinoids, total voluntary running distances decrease significantly when 

compared to CB+/+ animals, with a resulting decrease in the total number of neuroblasts, although 

the latter is not directly  attributable to the running distances (Dubreucq et al., 2010a). To 

rationalize this view, it  seems that decreased endocannabinoid efficacy results in decreased 

volition or motivation and a consequent decrease in running performance. Supporting this 

finding, acute treatment with the CB1 receptor inverse agonist Rimonabant (SR141716) results 

in decreased daily running distances in rodents (Keeney et al., 2008). It seems plausible that 

neurogenesis contributes to this system of reward, in that, independent of external stimuli, 

cannabinoids mediate proliferation and neurogenesis in the hippocampus and can be anxiolytic 
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(Aguado et al., 2005; Jiang et al., 2005; Jin et al., 2004). Indeed, as is the case with beta-

endorphins, one study suggests that endocannabinoids are absolutely  required to produce 

running-induced increases in neurogenesis (Hill et al., 2010), although this finding is still 

somewhat controversial (Dubreucq et al., 2010a; Dubreucq et al., 2010b; Fuss and Gass, 2010). 

Thus, endocannabinoids may  be another or complementary mechanism by which running and 

hippocampal neurogenesis are influenced by rewarding or pleasurable activities (Fuss and Gass, 

2010). 

 Endorphins and endocannabinoids are some examples of how endogenous compounds 

that are secreted in response to pleasurable or rewarding activities can influence behavior, 

hippocampal function and, to some degree, neurogenesis. Cognizant of the actions of these 

compounds, and of the reward mechanisms of the brain, one could hypothesize that hippocampal 

neurogenesis and function could be influenced directly by  the reward of pleasurable activity 

itself, rather than by  complex metabolic or systemic changes. Expanding on this hypothesis, it 

would be interesting to see if other “rewarding” activities, such as sexual behavior, could also 

mediate hippocampal neurogenesis.

The influence of mood and well-being on neurogenesis

 Surprisingly, mood and feelings of well-being seem to directly  influence hippocampal 

function and neurogenesis and/or result from changes in neurogenesis. There is ample evidence 

to support that neurogenesis is perturbed in depressed animals and that stimulation of 

neurogenesis could be instrumental in successful treatment of depression via 
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pharmacotherapeutics (Duman et al., 2001; Lucassen et al., 2010a; Lucassen et al., 2010b; Sahay 

et al., 2007; Sahay and Hen, 2007). Conversely, wheel-running and environmental enrichment 

have been shown to have anti-depressive and anxiolytic effects and qualities, which coincide 

with increases in neurogenesis. Thus, a link between neurogenesis and mood (specifically 

depression) has been forged, although the causal relationship between these phenomena is still 

contested. Hypothetically, it is possible that mice and other rodents find the running activity 

pleasurable, which is likely  due to reward mechanisms and the concomitant secretion and action 

of factors such as beta-endorphins and endocannabinoids, as well as the influence of 

acetylcholinergic, noradrenergic and serotonergic innervation. 

 

Novelty as a mediator of neurogenesis

 

 As outlined previously, the hippocampus has several distinct functions within the CNS. 

While traditional neuroanatomical models tend to compartmentalize and localize cognitive 

functions to specific structures, recent research has demonstrated that this is not always the case 

in the CNS. The hippocampus and mesial temporal lobe, for example, do not just assure the 

“generation” and consolidation of declarative memories (Kumaran and Maguire, 2009). Rather, 

they  host a wide variety of cognitive functions, ranging from short-term or working memory 

(Hannula et al., 2006; Hartley et al., 2007; Olson et al., 2006a; Olson et al., 2006b) to implicit 

memory (Greene, 2007), imagination (Hassabis et al., 2007) and perception (Lee et al., 2005a; 

Lee et al., 2005b). Underlying all these phenomena, however, is the ability  to detect novelty, 
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which may turn out to be the most important characteristic or function of the hippocampus 

(VanElzakker et al., 2008). 

 Novelty  directly influences how cognitive processes are “computed” within the 

hippocampus.  As such, one can think of any stimulus as having three basic types of novelty 

inherent to it: 1) stimulus novelty (“Have I seen this stimulus before?”) 2) associative novelty 

(“Is this stimulus presented in the same configuration in which I had previously seen it?”) and 3) 

contextual novelty (“Have I seen this stimulus in this context before?”) (Brown and Aggleton, 

2001; Kumaran and Maguire, 2007a; Kumaran and Maguire, 2007b; Nyberg, 2005; Ranganath 

and Rainer, 2003). These different types of novelty, then, will affect how contextual memories 

and experience are processed not only within the hippocampus, but within other CNS structures 

as well. 

 Since neurogenesis has been implicated in hippocampal memory functions (Aimone et 

al., 2009; Deng et al., 2010; Deng et al., 2009), it would seem entirely  reasonable to assume that 

it can be affected by or can affect the processing of environmental novelty. Surprisingly, there are 

few extant studies that directly or indirectly addresses this question in vivo. In a 1999 study, 

Lemaire and colleagues showed that a behavioral trait  in rodents that increases reactivity to 

novelty is inversely correlated (although not causally  linked) to levels of hippocampal 

neurogenesis (Lemaire et al., 1999). A more recent study by Vayrac and colleagues demonstrated 

that with olfactory  enrichment, there is a strong increase in olfactory bulb neurogenesis and that 

this depends on the novelty of the experimental stimuli, rather than on the presence of said 

stimuli (Veyrac et al., 2009). Unfortunately, Veyrac and colleagues did not look at how 

hippocampal neurogenesis is affected by olfactory novelty. 
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 From these two studies, it is hard to draw a strong conclusion about how novelty might 

affect hippocampal neurogenesis. However, one can still hypothesize that the complexity and 

novelty of the running environment/behavior might directly  influence hippocampal neurogenesis. 

This rational comes from how the running animal might perceive his/her running environment. 

For example, mice that have access to a free running wheel might perceive the running activity 

as being continuously novel, in that the experience of running is completely “new” to them at 

every  opportunity (i.e., each new running period could affect the associative and contextual 

novelty of the activity). Conversely, mice in a locked wheel/control environment might, at  first, 

react to the stimulus novelty but, because the environment is more or less static, will not perceive 

any sustained contextual or associative novelty. 

  Some evidence for this hypothesis comes indirectly  from a study  by  Hauser and 

colleagues that examined the effects of wheel-running on neurogenesis in wild-caught mice 

(Hauser et al., 2009). Surprisingly, this study showed that these mice, when exposed to voluntary 

running in the laboratory setting, did not produce the same increases in hippocampal 

proliferation and neurogenesis that are seen in laboratory-raised animals, despite running 

comparatively  enormous distances. As discussed in the second article, it is possible that this 

difference could result from characteristics inherent to the strain of animals (CD1, C57 vs. Wood 

Mice). 

 A more elegant explanation, however, is that the types of stimuli that are provided by  

laboratory voluntary  wheel-running cannot compare (in terms of complexity and novelty) to 

those provided by  the natural world. The vast majority  of mice used in the experimental setting 

of laboratory research are obtained from sterile in-house colonies or via large-scale suppliers, 
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such as Charles River. In those settings, animals live a relatively  quiet and peaceful life with food 

and water being provided to them ad libitum. Moreover, they live in an environment free of 

natural predators and, to some extent, free of any significant complexity. Conversely, wild mice 

grow up and live in an environment full of natural predators and which they must constantly 

explore in order to find sustenance. It  stands to reason, therefore, that when wild mice are 

introduced to the laboratory setting, they  are suffering from a significant lack of external stimuli 

as compared to their normal living environment. When laboratory-raised animals are presented 

with a running wheel or enriched environment, there is a marked increase in all types of novelty 

from their perspective. Conversely, wild-caught animals might only perceive a transient form of 

novelty that comes from their transition to this new setting, instead of a sustained stimulus. 

Surprisingly, this perspective on “environmental un-enrichment” has been considered for quite 

some time by researchers in this discipline (Cummins et al., 1977). In this line of thinking, one 

can hypothesize that the stimulating actions of wheel running are relatively  insignificant to the 

wild-caught mouse and that, consequently, this activity provides no additional novelty  which 

could increase neurogenesis in these animals. 

Spatial memory, navigation and its influence on neurogenesis

 While reward, memory  formation and novelty are all important contributors to 

hippocampal function and neurogenesis, it is also necessary to consider how the spatial memory 

and navigation functions of the hippocampus are affected by physical activity. Basically, any 

modification of the dimensions or layout of the environment, as is the case with wheel-running 
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and/or compartmentalization, is sure to influence how the hippocampus and related structures 

process this new information. 

 Importantly, many pyramidal cells in the CA1 and CA3 regions of the Cornu Ammonis, 

as well as granule cells in the dentate gyrus, serve as place cells, i.e., cells that fire in a specific 

location within a given space (Moser et al., 2008; O'Keefe and Dostrovsky, 1971). Moreover, the 

entorhinal cortex contains grid cells, whose behavior is similar to place cells, except that they 

may fire in several different locations within a given environment (in a triangular, grid-like 

pattern), providing a “meta-representation” of said environment (Fyhn et al., 2004; Hafting et al., 

2005; Jacobs et al.; Moser et al., 2008). The activity of these two types of cells is related, as the 

entorhinal cortex ennervates and receives input from the dentate granule cells and CA pyramidal 

cells respectively. As such, place and grid cells, along with head direction cells (Sargolini et al., 

2006) and spatial view cells (Georges-Francois et  al., 1999), contribute to representing the spatial 

layout of a particular environment in the normal function of the hippocampus. The behavior of 

these diverse cells is well characterized in a static environment, but  it  is only recently  that 

researchers have studied how the firing of these cells changes when the environment itself is 

modified. In a definitive study, Moser and colleagues demonstrated that if an environment is 

compartmentalized, the firing pattern of grid cells is completely  re-organized (Derdikman et al., 

2009). Furthermore, this same group had previously demonstrated that place cells re-organize 

completely (i.e., fire in a different place) when grid cell firing is changed (Fyhn et al., 2007). 

Thus, it  would appear that compartmentalization or re-organization of an environment induces 

changes in the behavior of cells within the entorhinal cortex, pyramidal cell layer and dentate 

gyrus granule cell layer. 
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 Consequently, when an animal is exposed to a locked or unlocked running wheel cage, 

there is a significant increase in spatial complexity when compared to the standard housing cage. 

The running wheel effectively compartmentalizes the environment and adds a third, vertical 

dimension that can be explored by the animal, thus (transiently) altering grid and place cell firing 

patterns. More importantly, if an animal is actively engaged in wheel running, then, from its 

perspective, the running wheel provides an infinitely long, linear track, that may implicate or 

result in reorganization of spatial maps in the hippocampus. To date, there are a large number of 

studies that look at grid/place cell firing in freely-moving rodents, usually  in a large, open 

environment, and these results alone support a dynamic spatial representation system in the 

hippocampus. It would be interesting, however, to see if wheel running or similar activities result 

in changes in the firing and patterning of grid or place cells. 

 It is important to note that a running wheel “tricking” a rodent into thinking that the 

spatial environment has changed is a perfectly  plausible hypothesis. As it stands, grid cell firing 

does not depend on environmental stimuli or any regularity in said environment. Rather, the 

meta-representation that grid cells produce is a synthetic a priori, i.e., is innate or is limited to the 

“mind.” Therefore, it  derives from integration of many different intrinsic signals (vision, 

movement, etc.), which depend heavily  on perception. As such, if the perception of the 

environment has changed, irrespective of any “actual” changes,  then it is perfectly plausible that 

the grid/place cell firing/patterning follows suit. Some evidence for this hypothesis comes from a 

recent study  that, for the first time, described grid-cell activity  in the human brain (Doeller et al., 

2010). In order to look for grid cells, this group used fMRI in combination with a virtual 

environment (that mimics running and foraging), which was presented to the subjects as they 

138



were being imaged. Surprisingly, this study  found conclusive evidence for grid cell-like 

activation in the entorhinal cortex, the peculiarities of which go beyond the scope of this study. 

Still, by  just perceiving movement, rather than actually engaging in it, there was a significant 

activation of putative grid cell-like structures, which (indirectly) supports that perception can 

influence hippocampal activity. 

 As a result of hypothetically increased hippocampal activity resulting from changes in the 

layout of the environment, and because of a potential need to accommodate new spatial 

memories or to increase processing of said information, it is possible that new neurons must  be 

produced and integrated to maintain proper hippocampal function. However, this is still largely 

speculative and has yet to be tested.

 

139



CONCLUSIONS

 

 In summary, the studies that I have undertaken have allowed me to draw two principal 

conclusions about the regulation of adult neurogenesis by external stimuli. First, neurogenesis in 

both the forebrain and hippocampus is susceptible to regulation by  a prolonged period of 

physical activity. Second, voluntary wheel running is a complex behavior and its effects can be 

divided into running-dependent and running-independent components, both of which influence 

different aspects of adult neurogenesis in the hippocampus.

 From this work, I have gained important insight into the potential regulators of 

neurogenesis and how they may contribute to the function of the hippocampus and SVZ in the 

healthy and pathologic CNS. As such, this work has provided insight not only into the influence 

or regulation of neurogenesis in the hippocampus and SVZ, but to the large-scale functions of 

these structures in both the healthy and the pathologic CNS. 
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