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Résumé 

Le diabète maternel est un facteur de risque majeur pour le développement de  

malformations congénitales. Dans le syndrome de l’embryopathie diabétique, 

l’exposition prolongée du fœtus à de hautes concentrations ambientes de glucose 

induit des dommages qui peuvent affecter plusieurs organes, dont les reins. Les 

malformations rénales sont la cause de près de 40 pourcent des cas d’insuffisance 

rénale infantile. L’hyperglycémie constitue un environnement utérin adverse qui nuit 

à la néphrogenèse et peut causer l’agenèse, la dysplasie (aplasie) ou l’hypoplasie 

rénale. Les mécanismes moléculaires par lesquels les hautes concentrations 

ambientes de glucose mènent à la dysmorphogenèse et aux malformations demeurent 

toutefois mal définis. 

Le diabète maternel prédispose aussi la progéniture au développement d’autres 

problèmes à l’âge adulte, tels l’hypertension, l’obésité et le diabète de type 2. Ce 

phénomène appelé ‘programmation périnatale’ a suscité l’intérêt au cours des 

dernières décennies, mais les mécanismes responsables demeurent mal compris.  

Mes études doctorales visaient à élucider les mécanismes moléculaires par 

lesquels le diabète maternel ou un environnement in utero hyperglycémique affecte la 

néphrogenèse et programme par la suite la progéniture a développer de 

l’hypertension par des observations in vitro, ex vivo et in vivo. Nous avons utilisé les 

cellules MK4, des cellules embryonnaires du mésenchyme métanéphrique de souris, 

pour nos études in vitro et deux lignées de souris transgéniques (Tg) pour nos études 

ex vivo et in vivo, soient les souris HoxB7-GFP-Tg et Nephrin-CFP-Tg. Les souris 

HoxB7-GFP-Tg expriment la protéine fluorescente verte (GFP) dans le bourgeon 

urétérique (UB), sous le contrôle du promoteur HoxB7. Les souris Nephrin-CFP 

expriment la protéine fluorescente cyan (CFP) dans les glomérules, sous le contrôle 

du promoteur nephrin spécifique aux podocytes. 

Nos études in vitro visaient à déterminer si les hautes concentrations de glucose 

modulent l’expression du gène Pax2 dans les cellules MK4. Les cellules MK4 ont été 

traitées pendant 24h avec du milieu contenant soit 5mM D-glucose et 20mM 

D-mannitol ou 25mM D-glucose et avec ou sans antioxydants ou inhibiteurs de p38 

MAPK, p44/42 MAPK, PKC et NF-kB. Nos résultats ont démontré que le D-glucose 

élevé (25mM) augmente la génération des espèces réactives de l’oxygène (ROS) dans 

les cellules MK4 et induit spécifiquement l’expression du gène Pax2. Des analogues 
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du glucose tels le D-mannitol, L-glucose ou le 2-Deoxy-D-glucose n’induisent pas 

cette augmentation dans les cellules MK4. La stimulation de l’expression du gène 

Pax2 par le D-glucose dans les cellules MK4 peut être bloquée par des inhibiteurs des 

ROS et de NF-kB, mais pas par des inhibiteurs de p38 MAPK, p44/42 MAPK ou 

PKC. Ces résultats indiquent que la stimulation de l’expression du gène Pax2 par les 

concentrations élevées de glucose est due, au moins en partie, à la génération des 

ROS et l’activation de la voie de signalisation NF-kB, et non pas via les voies PKC, 

p38 MAPK et p44/42 MAPK. 

Nos études ex vivo s’intéressaient aux effets d’un milieu hyperglycémique sur la 

morphogenèse de la ramification du bourgeon urétérique (UB). Des explants de reins 

embryonnaires (E12 à E18) ont été prélevés par micro-dissection de femelles 

HoxB7-GFP gestantes. Les explants ont ensuite été cultivés dans un milieu contenant 

soit 5mM D-glucose et 20mM D-mannitol ou 25mM D-glucose et avec ou sans 

antioxydants, catalase ou inhibiteur de PI3K/AKT pour diverses durées. Nos résultats 

ont démontré que le D-glucose stimule la ramification du UB de manière spécifique, 

et ce via l’expression du gène Pax2. Cette augmentation de la ramification et de 

l’expression du gène Pax2 peut être bloquée par des inhibiteurs des ROS et de 

PI3K/AKT. Ces études ont démontré que les hautes concentrations de glucose 

altèrent la morphogenèse de la ramification du UB via l’expression de Pax2. L’effet 

stimulant du glucose semble s’effectuer via la génération des ROS et l’activation de 

la voie de signalisation Akt. 

Nos études in vivo visaient à déterminer le rôle fondamental du diabète maternel 

sur les défauts de morphogenèse rénale chez la progéniture. Dans notre modèle 

animal, le diabète maternel est induit par le streptozotocin (STZ) chez des femelles 

HoxB7-GFP gestantes (E13). Les souriceaux ont été étudiés à différents âges 

(naissants et âgés de une, deux ou trois semaines). Nous avons examiné leurs 

morphologie rénale, nombre de néphrons, expression génique et les événements 

apoptotiques lors de cette étude à court terme. La progéniture des mères diabétiques 

avait un plus faible poids, taille et poids des reins, et possédait des glomérules plus 

petits et moins de néphrons par rapport à la progéniture des mères contrôles. La 

dysmorphogenèse rénale observée est peut-être causée par l’augmentation de 

l’apoptose des cellules dans la région du glomérule. Nos résultats ont montré que les 

souriceaux nés de mères diabétiques possèdent plus de podocytes apoptotiques et 

plus de marquage contre la caspase-3 active dans leurs tubules rénaux que la 
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progéniture des mères contrôles. Les souriceaux des mères diabétiques montrent une 

augmentation de l’expression des composants du système rénine angiotensine (RAS) 

intrarénal comme l’angiotensinogène et la rénine, ainsi qu’une augmentation des 

isoformes p50 et p65 de NF-kB. Ces résultats indiquent que le diabète maternel 

active le RAS intrarénal et induit l’apoptose des glomérules, menant à une altération 

de la morphogenèse rénale de la progéniture. 

 En conclusion, nos études ont permis de démontrer que le glucose élevé ou 

l’environnement in utero diabétique altère la morphogenèse du UB, qui résulte en un 

retard dans la néphrogenèse et produit des reins plus petits. Cet effet est dû, au moins 

en partie, à la génération des ROS, à l’activation du RAS intrarénal et à la voie NF-kB. 

 Nos études futures se concentreront sur les mécanismes par lesquels le diabète 

maternel induit la programmation périnatale de l’hypertension chez la progéniture 

adulte. Cette étude à long terme porte sur trois types de progénitures : adultes nés de 

mères contrôles, diabétiques ou diabétiques traitées avec insuline pendant la gestation. 

Nous observerons la pression systolique, la morphologie rénale et l’expression de 

divers gènes et protéines. Nous voulons de plus déterminer si la présence d’un système 

antioxydant (catalase) peut protéger la progéniture des effets néfastes des ROS causés 

par l’environnement in utero hyperglycémique. Les souris Catalase-Tg expriment la 

catalase spécifiquement dans les tubules proximaux et nous permettrons d’explorer 

notre hypothèse sur le rôle des ROS dans notre modèle expérimental de diabète 

maternel. 

Mots-clés: diabète maternel; hyperglycémie; néphrogenèse; système rénine 

angiotensine; Pax2; apoptose; espèces réactives de l’oxygène; programmation 

périnatale 
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Abstract 

Maternal diabetes is a major risk factor for congenital malformations. When the 

fetus is exposed to high, sustained, ambient glucose levels, widespread fetal damage 

may affect multiple organs, including the kidneys, evoking diabetic embryopathy 

syndrome. Renal malformations account for up to 40% of childhood renal failure 

cases. Hyperglycemia constitutes an adverse in utero environment that dynamically 

impairs nephrogenesis, resulting in renal agenesis, dysplasia, aplasia or hypoplasia. 

However, the molecular mechanisms by which high, ambient glucose levels lead to 

renal dysmorphogenesis and birth defects have not yet been delineated. 

Maternal diabetes also programs the offspring to develop other problems later in 

life, such as hypertension, obesity and type 2 diabetes. This phenomenon, called 

‘perinatal programming’, has attracted worldwide attention in recent decades, yet the 

mechanisms by which it occurs are incompletely understood. 

 My PhD studies are designed to elucidate the underlying molecular pathways by 

which maternal diabetes or hyperglycemic environments in utero impair 

nephrogenesis and subsequently make the offspring develop perinatal programming of 

hypertension in vitro, ex vivo and in vivo. We employed mouse embryonic metanephric 

mesenchyme cells, namely MK4 cells, for our in vitro experiments, and 2 transgenic 

(Tg) mouse lines, Hoxb7-GFP-Tg and Nephrin-CFP-Tg mice, for ex vivo and in vivo 

investigations. Hoxb7-GFP-Tg mice specifically express green fluorescent protein 

(GFP) in ureteric buds (UB), driven by the Hoxb7 promoter. Nephrin-CFP-Tg mice 

express cyan fluorescent protein (CFP) in glomeruli, driven by the podocyte-specific 

nephrin promoter. 

 In our in vitro studies, we examined whether high glucose alters Pax2 gene 

expresson in MK4 cells. The cells were treated with either 5 mM D-glucose plus 20 

mM D-mannitol or 25 mM D-glucose media with or without reactive oxygen species 

(ROS) blockers (DPI, rotenone), and inhibitors of p38 mitogen-activated protein 

kinase (MAPK) (SB203580), p44/22 MAPK (PD98059), protein kinase C (PKC) 

(GF109203X), or nuclear factor kappa B (NK-kB) (PDTC) for 24-hr incubation. Our 

data showed that high D-glucose (25 mM) increased ROS generation and specifically 

induced Pax2 gene expression, but not other glucose analogs such as D-mannitol, 

L-glucose or 2-deoxy-D-glucose in MK4 cells. The stimulatory effect of high 

D-glucose on Pax2 gene expression could be blocked by ROS and NF-kB inhibitors in 



 

 

vii 

MK4 cells but not by inhibitors of p38 MAPK (SB203580), p44/22 MAPK 

(PD98059), and PKC (GFX) in MK4 cells. These data indicated that the stimulatory 

effect of high glucose on Pax2 gene expression is mediated, at least in part, via ROS 

generation and activation of NF-κB, but not via the PKC, p38 MAPK and p44/42 

MAPK signalling pathways. 

 In our ex vivo studies, we investigated the influence of a high-glucose milieu on 

UB branching morphogenesis. Kidney explants (E12 to E18) were microdissected 

from timed-pregnant Hoxb7-GFP mice and cultured with either 5 mM D-glucose plus 

20 mM D-mannitol or 25 mM D-glucose media with or without ROS blockers (DPI, 

rotenone), catalase and phosphoinositide-3-kinase (PI3K)/AKT inhibitor at different 

time points, depending on the experiment. We found that high D-glucose specifically 

stimulated UB branching in a time-dependent manner. High D-glucose stimulation of 

UB branching morphogenesis was mediated via Pax2 gene expression. High 

D-glucose-induced UB branching and Pax2 gene expression could be blocked by ROS 

and PI3K/AKT inhibitors. These studies demonstrated that high glucose alters UB 

branching morphogenesis via Pax2 gene and protein expression. The stimulatory effect 

of high glucose seems to be mediated via ROS generation and activation of the AKT 

signalling pathway.   

In our in vivo studies, we explored the fundamental role of maternal diabetes on 

renal morphogenesis impairment in offspring. In our experimental model, maternal 

diabetes was induced by streptozotocin in pregnant Hoxb7-GFP mice at embryonic 

day 13. The offspring were examined at several time points after birth (neonatal, 1 

week, 2 weeks, and 3 weeks) with follow-up of kidney morphology, nephron number, 

gene expression, and apoptotic events in this short-term postnatal experiment. We 

observed that the offspring of diabetic mice had lower body weight, body size, kidney 

weight, small volume of glomeruli and a reduced number of nephrons in comparison 

to non-diabetic control offspring. Renal dysmorphogenesis may have been the result of 

increased cell apoptosis in glomeruli. Our findings showed that the offspring of 

diabetic mice displayed significantly more apoptotic podocytes as well as augmented 

active caspase-3 immunostaining in renal tubules compared to control mice offspring. 

Diabetic mice offspring presented heightened expression of intrarenal 

renin-angiotensin system (RAS) components, such as angiotensinogen and renin, with 
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upregulation of p50 and p65 NF-kB isoforms. These data indicated that maternal 

diabetes activates the intrarenal RAS and induces glomerular apoptosis, resulting in 

impairment of renal morphogenesis in diabetic offspring. 

 In conclusion, our findings indicated that a high-glucose milieu in utero or 

maternal diabetic alters UB morphogenesis, culminating in retardation of 

nephrogenesis with smaller kidney size. The underlying mechanism(s) is mediated, at 

least in part, via ROS generation and activation of the intrarenal RAS and NF-kB 

pathways. 

 In the future, we aim to investigate the underlying mechanism(s) of how maternal 

diabetes induces perinatal programming of adult hypertension in offspring in vivo. 

This long-term postnatal study will be undertaken in 3 groups: adult offspring (20 

weeks) of control mice, adult offspring of diabetic pregnant mice, and adult offspring 

of insulin-treated, diabetic, pregnant mice. We will follow-up by tracking 

hypertension, kidney morphology, and gene expression. Furthermore, we also plan to 

determine whether an antioxidant system (catalase) can protect against an 

hyperglycemic environment in utero that affects embryonic organogenesis via an 

increase in ROS generation. Catalase-Tg mice that specifically overexpress catalase 

in proximal tubules will be tested. Such Tg mice with catalase overexpression 

represent a model for exploring our hypothesis on the role of ROS in gestational 

diabetes.  

 

Keywords : maternal diabetes, hyperglycemia, nephrogenesis, renin-angiotensin 

system, Pax2, Apoptosis, perinatal programming 
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CHAPTER 1 : MATERNAL DIABETES 

1. Maternal Diabetes or Gestational Diabetes Mellitus  

Diabetes during pregnancy is associated with an increased risk of maternal and 

neonatal morbidities. Maternal diabetes includes pre-gestational diabetes mellitus 

(PGDM) and gestational diabetes mellitus (GDM). PGDM refers to pre-existing 

diabetes (Type 1 or Type 2) when women become pregnant. GDM occurs only 

during pregnancy.  

  

1.1. PGDM 

PGDM is defined as carbohydrate intolerance diagnosed prior to pregnancy. 

About 0.2-0.5% of all pregnancies are complicated by PGDM and are associated 

with adverse maternal and neonatal outcome (1;2). 

  

1.2. GDM 

GDM is formally defined as any degree of carbohydrate intolerance with onset 

or first recognition during pregnancy (3). It is classically diagnosed by oral glucose 

challenge during weeks 24-28 of gestation (4), because insulin resistance increases 

during the second trimester of pregnancy, and glucose levels will rise in women who 

do not have the ability to produce enough insulin to adapt to this resistance. GDM is 

a problem that affects a significant number of women during pregnancy. It could 

have lasting health impacts on both mother and fetus (as discussed below).  

  

1.3. Prevalence and Epidemiological Studies of GDM 

GDM affects 3-10% of pregnancies, depending on the population studied, and 

ranges from 1% to 14% among different racial/ethnic groups (5). Most commonly, it 

has been demonstrated that GDM complicates nearly 5-7% of all pregnancies, 
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accounting for more than 200,000 pregnancies annually in the U.S.A. (5;6). Several 

studies have provided evidence to support the assertion that the prevalence of GDM 

is strongly related to race, as consistently higher rates have been reported in 

African-Americans, Native Americans, Hispanics, Pacific islanders, and South and 

East Asians (7-10). In a Los Angeles survey, Baraban et al. (11) observed that the 

prevalence of GDM increased from 14.5 cases per 1,000 women in 1991 to 47.9 

cases per 1,000 women in 2003. In another study, it was estimated that, between 

1994 and 2002, among women of varied ethnic/racial backgrounds living in 

Colorado, the overall prevalence of GDM doubled from 2.1% in 1994 to 4.1% in 

2002 (12). The prevalence of GDM was 12.8% among James Bay Cree women in 

northern Quebec in 1995-96 (13). 

 

1.4. Risk Factors Related to GDM  

The traditional and most common risk factors for GDM include high maternal 

age, obesity, parity, previous delivery of a child weighing more than 9 lbs at birth or 

with birth defects, stillbirth (fetus death in uterus), previous pregnancy with GDM, 

impaired glucose tolerance, and family history of diabetes. These and other reported 

risk factors are summarized in Table 1-1 (7). Being overweight or obese before 

pregnancy has also been associated with a high prevalence of GDM (14;15). Some 

studies have revealed a positive correlation between increasing pre-pregnancy body 

mass index (BMI) and the augmented rate of GDM (16;17). In a meta-analysis, the 

risk of developing GDM doubled in overweight women (BMI 25.0-30.0 kg⁄m2), 

quadrupled in obese women (BMI 30.0-35.0 kg⁄m2), and rose 8-fold in women with 

severe obesity (BMI >35.0 kg⁄m2) (18). Women with a history of GDM have an 

heightened risk of recurrent GDM in subsequent pregnancies. It has been found that 

GDM recurs in 30-69% of subsequent pregnancies after a pregnancy with GDM 
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(19). MacNeill et al. (20) demonstrated that the rate of GDM recurrence was 35.6% 

in a retrospective, longitudinal study performed in Nova Scotia, Canada. In addition, 

twin pregnancy has also been associated with a high prevalence of GDM (21). 

 

Table 1-1. Risk Factors for Gestational Diabetes (7). 

 

 

1.5. Pathophysiology of GDM 

The precise mechanisms underlying GDM remain unknown. Chronic insulin 

resistance is a central element in the pathophysiology of GDM. Insulin resistance 

during pregnancy stems from various factors, including alteration of placental 

steroid and peptide hormone levels (e.g., estrogens, progesterone), human placental 

lactogen (hPL) and human placental growth hormone (hPGH) (22). During the 2nd 

and 3rd trimesters of pregnancy, rising estrogen and progesterone levels confer 
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increasing tissue insulin resistance, contributing to the disruption of glucose-insulin 

balance (23). hPL, the key hormone mediating insulin resistance in pregnancy, is 

produced by the placenta, affects fatty acid and glucose metabolism, promotes 

lipolysis, and decreases glucose uptake (24). However, hPL increases up to 30-fold 

during normal pregnancy and induces insulin release from the pancreas in pregnancy 

(25). Brelje et al. (25) reported that hPL stimulated the growth of pancreatic islets 

and insulin secretion during pregnancy, suggesting that it influences beta-cell 

function and peripheral tissue sensitivity to insulin.  

 hPGH is another major hormone that may be involved in the pathogenesis of 

insulin resistance during pregnancy (26). It increases 6- to 8-fold during pregnancy 

and replaces normal pituitary growth hormone in the maternal circulation (24). 

hPGH overexpression in transgenic (Tg) mice causes severe peripheral insulin 

resistance (27). It has been demonstrated that the cytokine tumor necrosis 

factor-alpha (TNF-α), produced in the placenta, is one of the potential mediators of 

insulin resistance during pregnancy (28). Incubation of human tissue explants, such 

as the placenta and adipose tissue, in different glucose concentrations, showed that 

women with GDM release greater amounts of TNF-α in response to a glucose 

stimulus than those with normal glucose tolerance (29). Kirwan et al. (30) 

determined that TNF-α levels were higher in women with GDM than in those with 

normal glucose tolerance in late pregnancy. TNF-α levels were inversely correlated 

with insulin sensitivity. Studies have also disclosed increased circulating levels of 

leptin and decreased adiponectin in women with GDM (31;32). Autoimmune 

destruction of pancreatic beta cells is another potential cause of GDM. Type 1 

diabetes mellitus (T1DM) resulting from pancreatic beta cell destruction is 

characterized by circulating immune markers against pancreatic islets, such as 

anti-islet cell antibodies or beta cell antigens, such as glutamic acid decarboxylase. 
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A small minority of women with GDM have been shown to present the same 

markers in their circulation, indicating that they most likely have inadequate insulin 

secretion due to autoimmune destruction of pancreatic beta cells (33;34). 

  

1.6. Maternal diabetes Complications 

Maternal diabetes complications affecting mother and fetus have been well 

demonstrated. This risk is largely related to high blood glucose and its consequences. 

Maternal complications include preterm labor and T2DM development, among 

others. Fetal complications comprise congenital anomalies, macrosomia, etc. 

 

1.6.1. Maternal Complications of Maternal Diabetes 

 The maternal complications of maternal diabetes are diabetic retinopathy, 

diabetic nephropathy (DN), hypertension, preterm labor, infections, cesarean section, 

T2DM development, and so on. 

  

1.6.1.1. Diabetic Retinopathy 

Diabetic retinopathy is one of the diabetic microangiopathy complications 

generally occurring in T1DM and T2DM. It is the result of microvascular retinal 

changes. Hyperglycemia-induced pericyte death and basement membrane thickening 

lead to incompetence of the vascular walls. This damage changes the formation of 

the blood-retinal barrier and makes the retinal blood vessels more permeable. 

Studies have demonstrated worsening of retinopathy in diabetes during pregnancy 

(35;36). The risk factors for diabetic retinopathy during pregnancy include the 

duration of diabetes mellitus, metabolic control before and during pregnancy, and 

the presence of coexisting hypertension, as summarized in Table 1-2 (37). 
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Table 1-2. Risk factors for worsening of diabetic retinopathy during pregnancy 

 
  

1.6.1.2. DN 

DN is one of the diabetic complications generally occurring in T1DM and 

T2DM. DN, the leading cause of end-stage renal disease (ESRD), complicates 

approximately 5% of insulin-dependent diabetic pregnancies (38). Normal 

pregnancy is marked by increases of approximately 30-50% in the glomerular 

filtration rate (GFR) and proteinuria. Generally, women with underlying 

nephropathy can expect varying degrees of renal function deterioration during 

pregnancy. For example, an elevated GFR accompanying pregnancy may cause 

microvascular renal injury leading to glomerular changes; enhanced protein 

excretion can also cause renal damage. Kitzmiller et al. (39) reviewed 35 

pregnancies complicated by nephropathy and found that proteinuria increased in 

69% of all cases with a decline in 65% of them after delivery. Other complications, 

including preeclampsia, premature labor and hypertension, are all significantly more 

common in women with DN during pregnancy. The prevalence of preeclampsia in 

pregnant women with T1DM is higher than in pregnant women without diabetes 

(40). Pregnancy-induced hypertension is also twice more frequent in patients with 

T1DM than in non-diabetic women (41). Kidney disease can significantly raise the 

risk of high blood pressure problems during pregnancy. 

 

  



 

 

7

1.6.1.3. Hypertension 

Hypertensive disorders complicating 5-10% of all pregnancies (42) are classified 

into 4 categories, as recommended by the National High Blood Pressure Education 

Program Working Group on High Blood Pressure in Pregnancy: 1) chronic 

hypertension, 2) preeclampsia-eclampsia, 3) preeclampsia superimposed on chronic 

hypertension, and 4) gestational hypertension (43). Like pregnancy-induced 

hypertension, GDM is also relatively common and affects 3-5% of pregnancies (44). 

Chronic hypertension complicates nearly 1 in 10 diabetic pregnancies, and diabetic 

pregnant women with underlying renal or retinal vascular disease are at high risk 

(45). Women with diabetes and preexisting chronic hypertension are prone to 

developing preeclampsia. Preeclampsia and gestational hypertension are obviously 

more frequent in women with GDM. In a large population-based cohort in 

Washington State reported by Bryson et al. (46), GDM was more common in each 

of the pregnancy-induced hypertension case groups than in the controls. Another 

cohort study of 10,666 women in Sweden disclosed a significantly increased risk of 

preeclampsia among mothers with GDM compared to mothers without GDM (47). 

In Canada, a cohort study in Alberta showed that women with GDM are at 2-fold 

higher risk of presenting with preeclampsia than normal pregnant women (48). 

Recently, Lykke et al. (49) demonstrated that women who had severe preeclampsia 

in a first pregnancy ran a 7.58-fold increased risk of subsequent hypertension 

compared to women with no hypertensive disorder. 

  

1.6.1.4. Development of T2DM 

 GDM affects nearly 5 to 7% of all pregnancies and increases the risk for women 

with a history of GDM of developing T2DM later in life. The factors that are 

associated with T2DM include increased BMI, history of impaired glucose tolerance, 
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gestational age at diagnosis of GDM, and insulin use during pregnancy. During 

pregnancy, women with GDM display metabolic abnormalities similar to those of 

people with T2DM, such as insulin resistance and reduced beta cell compensation 

(50). In a population-based study assessing all deliveries in the province of Ontario, 

Canada, Feig et al. (51) found that T2DM developed within 9 years after the index 

pregnancy in 18.9% of women with a history of GDM compared to 2.0% of women 

without GDM (Figure1-1) (51). 

  

Figure 1-1 Cumulative incidence rate of diabetes mellitus (51) 

 

Recently, in their meta-analysis of cohort studies, Bellamy et al. (52) reported 

an approximately 7.5-fold increased risk of T2DM in women who had gestational 

diabetes during pregnancy. In addition, Järvelä et al. (53) showed that about 10% of 

Finnish women with a history of GDM will incur diabetes over the next 6 years, and 

nearly half of them acquire T1DM while the other half develop T2DM. Their 

findings revealed that a small percentage of women with GDM may suffer from 



 

 

9

T1DM postpartum. Taken together, the relationship between GDM and the risk of 

T2DM suggests that GDM can serve as a window to T2DM predisposition. 

1.6.1.5. Premature Labor 

Premature labor is defined as the beginning of labor before 37 weeks of 

gestation. Premature labor continues to be the leading cause of perinatal morbidity 

and mortality. It is estimated that approximately 6% of infants in the general 

population are born prematurely (54). Preterm labor occurs in approximately 12% of 

pregnancies and is the leading cause of neonatal mortality in the United States (55). 

Most women with GDM have normal labor and delivery but some with GDM may 

experience early or premature labor due to overstretching of the uterus by a 

macrosomic fetus or too much amniotic fluid (56). The rate of premature labor is 4 

to 5 times higher among pregnant women with GDM compared to the general 

population (40). In addition, the preterm delivery rate is significantly higher in 

pregnant women with PGDM than in a control population (57;58). 

  

1.6.1.6. Infection 

 Women with GDM have twice the number of urinary tract infections compared 

to women without GDM (22). This increased incidence of infection is thought to 

result from the high amount of glucose in urine during pregnancy. Nowakowaka et 

al. (59;60) found that the prevalence of fungi in the vagina is significantly higher in 

diabetic pregnant women with poor glycemic control compared to the controls. 

  

1.6.1.7. Cesarean Section   

An increasing number of newborns are being delivered by cesarean section, and 

GDM is among the high risk factors. Pregnancy weight gain, an important and 

modifiable risk factor for GDM, is also independently associated with elevated rates 
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of cesarean delivery (61). In the Tunisian population, Denguezli et al. (62) showed 

that the total cesarean rate was significantly higher in diabetic pregnancies (50.2%) 

than in the control group (28.2%). Fetal macrosomia was significantly correlated 

with the risk of cesarean delivery in diabetic women. In fact, women with diabetes 

often have macrosomic babies, and delivery can be difficult for both babies and 

mothers. In addition, the odds of requiring cesarean delivery can be much higher 

when babies are found to be macrosomic. Siggelkow et al. (63) noted a significantly 

higher number of secondary cesarean sections in the macrosomic group (27.4 vs. 

16.7% in the normal-weight group; P<0.002). Furthermore, complications, such as 

preterm labor and infections, may also increase the risk of cesarean delivery. 

 

1.6.2. Impact of Maternal Diabetes Complications on the Progeny 

 The maternal diabetic environment in utero has a serious impact on the fetus, 

neonate, child and adult, as shown in Figure 1-2 (64). I will briefly review the 

short-term (perinatal) and long-term complications that occur in the offspring of 

diabetic mothers (ODMs). 

  

 

Figure 1-2. Short- and long-term complications in the offspring of diabetic mothers 

(modified from Weintrob et al.: J Diabetes Complications) (64) 
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1.6.2.1. Short-term Impact of maternal diabetes Complications on ODMs  

1.6.2.1.1. Macrosomia 

   Fetal macrosomia is defined as birth weight of more than 4,000 g (8 lb, 13 oz) or 

birth at greater than the 90th percentile for gestational age. Based on these definitions, 

macrosomia affects 1-10% of all deliveries (65). Macrosomia arises in 

approximately 20% of GDM pregnancies with prevalence rates ranging from 10% to 

32% in Caucasian populations (66). Among North American Pima Indians, a 

population with high diabetes prevalence in pregnancy, fetal macrosomia rates as 

high as 80% have been found in women with GDM, 94% in those with impaired 

gestational glucose tolerance, 43% in those with pre-gestational diabetes, and 23% 

in women who were nondiabetic (67). Fetal macrosomia is associated with high 

perinatal morbidity, including shoulder dystocia, birth trauma, and neonatal 

asphyxia (68). 

Maternal diabetes is the most common cause of macrosomic babies. Augmented 

maternal plasma glucose levels produce fetal hyperglycemia, resulting in fetal 

hyperinsulinemia and elevated insulin-like growth factor values, which stimulate 

glycogen synthesis, fat deposition, and excessive fetal growth. Apart from glycemic 

control, various other factors, such as maternal overweight and obesity are likely to 

influence macrosomia. Olmos et al. (69) reported that the macrosomia in the infants 

of type-1 pregestational diabetics is mostly due to suboptimal glycemic control. On 

the other hand, the macrosomia in type-2 pregestational diabetic patients, who 

already have a near-optimal glycemic control, is related to maternal pre-pregnancy 

overweight/obesity. 
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1.6.2.1.2. Microsomia 

Fetal microsomia is defined as birth weight of less than 2,500 g (5 lb, 8 oz) or 

birth at less than the 10th percentile for gestational age. Some babies are small due to 

genetics, but most microsomic babies are small because of fetal growth problems 

occurring during pregnancy. Although most fetuses of diabetic mothers exhibit fetal 

macrosomia, fetal microsomia is significantly more frequent in pregnancies 

complicated by preexisting T1DM. A high frequency of intrauterine growth 

restriction (IUGR) has been demonstrated in 44% of fetuses from T1DM mothers, 

compared to 3% in the controls (70;71). In Pima Indians, maternal diabetes during 

pregnancy usually produces low birth weight (LBW) infants (72). Fetal microsomia 

carries an increased risk of morbidity and mortality both in the perinatal period and 

in later life. IUGR fetuses tend to have more congenital malformations at birth and 

are at heightened risk of cardiovascular complications, T2DM, and ESRD in later 

life (73;74). In African-Americans, LBW rates are 2.3 times greater than in 

Caucasians, with severe LBW being 3.1 times higher and paralleling the increased 

risk of ESRD (75).  

 Many microsomic babies have a condition called IUGR. Severe maternal 

diabetes is associated with IUGR, resulting from nutrient limitation associated with 

chronic maternal hypertension, advanced diabetic retinal or renal vasculopathy 

(76-78). The elevated glucose concentration in the mother, accompanying 

hyperglycemia in the fetus, leads to degranulation of the fetal β-cells, resulting in 

fetal hypoinsulinemia. Severe hyperglycemia in maternal rats results in 

hyperglycemia and hypoinsulinemia of the fetuses and IUGR. IUGR is most 

commonly caused by reduced uteroplacental circulation or by maternal malnutrition. 

Increased IUGR rates in women with diabetic vasculopathy are likely due to 

impaired and decreased uterine blood flow (79). 
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1.6.2.1.3. Stillbirth 

Stillbirth is the death of a baby still in the uterus. Every year, about 25,000 

babies are stillborn in the U.S.A. (80). Dunne et al. (81) reported a high rate of 

stillbirth in PGDM. Similarly, Goldenberg et al. (82) found that the rate of stillbirths 

was no different in women with either T1DM or GDM, but it was 5-fold higher in 

women with T2DM.  

  The pathophysiology of stillbirth in diabetic pregnancies is unclear. It is generally 

accepted that unexplained stillbirths in diabetic pregnancies are associated with poor 

glycemic control. Rackham et al. (83) reported that women with pregestational 

diabetes have higher risk of stillbirth, which was related to mean daily blood glucose 

values. Stillbirth can also result from severe placental insufficiency and fetal growth 

restriction, especially in the presence of maternal vascular complications. 

            

1.6.2.1.4. Birth Defects  

Birth defects, also called “congenital anomalies” or “congenital abnormalities”, 

are defined as aberrations of structure, function, or body metabolism present in a 

baby at or before birth and affecting many organs. The prevalence of birth defects is 

1-2% in the general population (45). In the U.S.A., 1 in 33 infants is born with a 

birth defect, the leading cause of infant deaths (84). The etiologies of most birth 

defects remain unknown. Environmental substances in utero that evoke birth defects 

are called teratogens, including alcohol, certain drugs/medications, cigarette 

smoking, and hyperglycemia. Hyperglycemia is a prominent teratogen for birth 

defects in diabetic pregnancies (85). When the fetus is exposed to high, sustained 

glucose concentrations, widespread damage to the fetus may affect multiple organs, 

including the cardiovascular, nervous, skeletal and urogenital systems, resulting in 

diabetic embryopathy syndrome (86). Experimental studies have shown a positive 
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correlation between the level of hyperglycemia during embryogenesis and the risk of 

birth defects (87). Cardiac anomalies occur 4 to 5 times more frequently in infants of 

diabetic mothers than in those of control mothers. The risk of neural tube defects in 

diabetic pregnancies is nearly 3 times greater than in control pregnancies (88). There 

is approximately a 200-fold increase in the rate of caudal regression syndrome (CSR) 

in diabetic offspring compared to control offspring (89). Clinical studies have 

reported high rates of congenital malformation in T1DM and T2DM pregnancies 

(90;91). GDM has also been associated with birth defects (91;92). The risk of birth 

defects is 2-4 times higher in PGDM compared to 3% in the general population. 

Becerra et al. (93) noted that infants of mothers with GDM who required insulin 

during the 3rd trimester of pregnancy were 20.6 times more likely to have major 

cardiovascular system defects than infants of non-diabetic mothers. Hemoglobin 

A1c (HbA1c) levels are a direct measure of glucose control in diabetic mothers: 

high HbA1c values are predictive of risk for congenital complications (94). Recently, 

Reece et al. (95) observed high HbA1c levels in association with an increased rate of 

infants with major malformations, indicating that birth defects correlate very 

strongly with blood glucose levels (Figure 1-3). It has been shown that good 

glycemic control in diabetic mothers reduces the prevalence of birth defects to that 

in the general population (96).  
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Figure 1-3. Blood glucose levels correlate inversely to birth defect risk (adapted 

from Reece EA: J Matern Fetal Neonatal Med) (95) 

 

In addition, some women diagnosed with GDM for the first time may actually 

have undiagnosed T2DM. Pre-pregnancy obesity, which is a risk for T2DM, has 

been found to be associated with birth defects (97). Maternal obesity and diabetes 

appear to increase the risk of birth defects through shared causal mechanisms. 

Studies have also shown that maternal smoking and alcohol intake during pregnancy 

are significant environmental causes of birth defects (98;99).  

 

1.6.2.1.5. Perinatal Morbidity 

 Perinatal morbidity in diabetic pregnancies has decreased since the discovery of 

insulin in 1922. However, current perinatal mortality rates in ODMs remain high 

compared to the general population. I will briefly review several perinatal 

morbidities that occur in ODMs. 

  

1.6.2.1.5.1. Neonatal Hypoglycemia 

 Neonatal hypoglycemia, defined as blood glucose values less than 40 mg/dl in 
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the baby in the first few days after birth, is a common neonatal problem in ODMs 

(100). The causes of neonatal hypoglycemia are many, such as premature birth, 

small or large for gestational age, maternal diabetes, and maternal hypertension, 

occurring more frequently in infants of diabetic mothers (IDMs). The most common 

risk factor for hypoglycemia in IDMs is hyperinsulinemia, a condition in which 

plasma insulin concentration exceeds 30 pmol/L. The pancreas of IDMs produces 

extra amounts of insulin in response to the high blood glucose levels of mothers 

with poorly-controlled diabetes mellitus. Since glucose supply from the mother is no 

longer present when the baby has been delivered, extra insulin remains and blood 

glucose can drop too low (hypoglycemia). About 10-25% of all IDMs have transient 

hypoglycemia during the first 4-6 hours after delivery. The frequency of neonatal 

hypoglycemia has been found to increase significantly if the maternal glucose level 

is greater than 90 mg/dl during delivery (101).   

      

1.6.2.1.5.2. Other Neonatal Metabolic Problems  

In addition to hypoglycemia, hypocalcemia and hypomagnesemia have been 

demonstrated to affect infants of women with T1DM (102). Neonatal hypocalcemia 

is a frequent event in the first hours of life of newborns from mothers with diabetes 

mellitus. Strict blood glucose control of diabetes during pregnancy seems to reduce 

the risk of neonatal hypocalcemia. Poor diabetic control leads to glucose excretion 

in urine with consequently increased urinary loss of magnesium, followed by low 

maternal blood magnesium concentration. Maternal hypomagnesemia causes fetal 

hypomagnesemia with consequent impairment of neonatal parathormone secretion, 

resulting in abnormally low calcium levels in blood of the fetus (103). 
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1.6.2.2. Long-term Impact of Maternal Diabetes Complications on ODMs 

 The long-term impact of maternal diabetes complications on ODMs has been 

well studied in animal models and clinical trials. There is increasing evidence that 

maternal diabetes augments the high risk for ODMs of developing obesity and 

diabetes mellitus later in life (104). 

    

1.6.2.2.1. Obesity 

According to the World Health Organization (WHO), obesity is defined as BMI 

>30 kg/m2 (105). In 2005, the WHO reported that at least 400 million adults are 

obese. The increasing prevalence of overweight and obese children is a major health 

problem. Gestational and perinatal factors have been shown to influence weight 

gained in childhood. Silverman et al. (106;107) demonstrated that the offspring of 

mothers with PGDM or GDM had a high BMI and developed childhood obesity in 

comparison to their controls. In another study, the offspring of Pima Indian mothers 

who had diabetes during pregnancy also had significantly higher body weight at 5 to 

19 years of age compared to the controls (108;109). These findings strongly suggest 

that the intrauterine diabetic environment raises the risk of obesity in childhood and 

early adulthood. 

  

1.6.2.2.2. Diabetes Mellitus  

 In utero exposure to high maternal glucose concentrations is a risk for the 

long-term development of diabetes mellitus in ODMs (110), but the underlying 

mechanisms remain unclear. Both insufficient insulin production and insulin 

resistance are important factors for long-term diabetes mellitus in ODMs. The 

insulin secretion response is defective and glucose tolerance is impaired in the adult 

offspring of mothers with T1DM (111). The offspring of mothers with T2DM or 
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GDM tend to develop insulin resistance or T2DM. Hunter et al. (112) showed that 

the offspring of mothers with T2DM were overweight with a trend towards reduced 

insulin sensitivity compared to normal controls. Pettitt et al. (113) studied the 

prevalence of T2DM among Pima Indians aged 20-24 years and found that 1.4% of 

non-ODMs developed T2DM versus 45% of ODMs. Similarly, among Pima Indian 

youth aged 5-19 years, about 40% of ODMs developed T2DM (114).  

  

1.6.2.2.3. Perinatal Programming 

Evidence indicates that many adult diseases originate from events that happen in 

utero (115). Exposure to alterations in the intrauterine and early postnatal nutritional, 

metabolic, and hormonal environment may predispose to diseases in later life (116). 

However, exposure of the embryo to either genetic influences or environmental 

changes during a critical period of development can evoke adaptive responses that 

have a significant impact on its physiology and metabolism. In the next section, I 

will discuss perinatal programming, perinatal programming-related hypotheses, 

clinical and experimental investigations of perinatal programming, and possible 

mechanisms. 
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CHAPTER 2: PERINATAL PROGRAMMING 

2.1. Perinatal Programming 

The concept that intrauterine and perinatal events can influence organ function 

later in life is called perinatal programming (117). Blood pressure, renal function, 

and general health later in childhood and adult life may be affected mostly before 

birth or during the perinatal period by the intrauterine and perinatal environment 

(118). 

  

2.2. Perinatal Programming-related Hypotheses 

2.2.1. Barker’s Hypothesis 

In the late 1980s, Barker et al. (119) reported the association between poor living 

standards and ischemic heart disease after a detailed geographic comparison of 

infant mortality in Britain between 1921 and 1925 and death in adults due to 

ischemic heart disease and coronary artery disease between 1968 and 1978. This led 

them to suggest that high infant mortality may be due to poor growth in utero, and 

insufficient fetal growth may be associated with the development of cardiovascular 

disease in adulthood. They observed that birth weight was inversely correlated with 

blood pressure and the frequency of cardiovascular diseases in adult life. Their 

findings became the basis for Barker’s hypothesis, also known as the “fetal origins 

of adult disease” (120). The underdevelopment of organs and tissues affects 

metabolism in the fetus, and the consequences are reflected in adult homeostasis and 

health. Epidemiological studies in humans have established correlations between 

impaired intrauterine growth and an increased incidence of cardiovascular, 

metabolic, and other diseases in later life (121). Barker et al. (122;123) showed a 

relationship between LBW or slow growth during infancy and the risk of impaired 

glucose tolerance or T2DM in adults.  
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2.2.2. Brenner’s Hypothesis  

In the late 1980s, Brenner et al. (124) postulated that deficiency in glomerular 

filtration surface area might be associated with essential hypertension. This 

hypothesis was based on observations in animal models that surgical ablation of 

kidney tissue or reductions in filtration surface area as a result of chronic kidney 

disease can cause hypertension. As illustrated in Figure 2-1, many studies (125;126) 

support their hyperfiltration hypothesis, in which a decrease in renal mass − either 

due to low nephron endowment or renal mass diminution because of renal disease or 

surgery − elicits glomerular hyperfiltration. Lower numbers of glomeruli lead to a 

higher single nephron GFR. Such hyperfiltering glomeruli spontaneously develop 

focal glomerulosclerosis, particularly after injury. Numerous studies have reinforced 

this hypothesis of “low glomerular endowment” (127;128). 

  

Figure 2-1. Hyperfiltration hypothesis (modified from Schreuder et al.: Kidney Int) 

(129) 
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2.2.3 The “Thrifty Phenotype” Hypothesis 

The “thrifty phenotype” hypothesis proposed by Hales and Barker (130;131) 

suggests that the epidemiological associations between poor fetal and early 

post-natal growth and the increased risk of developing T2DM and metabolic 

syndrome result from the effects of poor nutrition in early life, which produce 

permanent changes in glucose-insulin metabolism (Figure 2-2) (131). In adapting, 

the fetus and infant have to be nutritionally “thrifty”, to increase fuel availability. 

For example, the fetus is programmed to store nutrients such as fat. If poor nutrition 

continues throughout life, these adaptations are not detrimental. On the other hand, 

if nutrition is improved in adulthood, the ability of the pancreas to maintain 

carbohydrate homeostasis is exceeded, causing adult insulin resistance, glucose 

intolerance, and finally T2DM. 

 
Figure 2-2. Original diagram of the “thrifty phenotype” hypothesis (131)   
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2.3. Clinical and Experimental Evidence of Perinatal Programming 

2.3.1. Clinical Studies of Perinatal Programming 

Epidemiological investigations in humans have shown that the offspring of 

obese mothers are at heightened risk of obesity and diabetes. Fetuses of obese 

women manifest increased obesity, insulin resistance, and have elevation in markers 

of inflammation. Catalano et al. (132) demonstrated that the fetuses of obese 

mothers had greater percent body fat and insulin resistance than those of lean 

women. Adults with LBW are at risk of chronic diseases, including high blood 

pressure, cardiovascular disease and chronic kidney disease. The Kidney Early 

Evaluation Program (USA) with 12,364 participants, whose mean age was 49.1 

years, established that men with LBW or high birth weight (HBW) had a 

significantly greater prevalence of chronic kidney disease, but there was no 

association among women (133). A Norway cohort study of 2,183,317 participants 

with a mean age of 21.2 years revealed that men and women with LBW had a high 

prevalence of ESRD (RR 1.7) and women with HBW had a high risk of ESRD (RR 

2.3) (134). The population-based Nord Trøndelag Health Study of 7,457 Norwegian 

adults aged 20 to 30 years reported a significant association between IUGR and 

reduced renal function in men with LBW (121). Recently, White et al. (135), in a 

systematic review of observational studies on birth weight and chronic kidney 

disease (CKD), determined that LBW is associated with an increased risk of 

decreased kidney function and kidney failure.   

 

2.3.2. Experimental Studies of Perinatal Programming 

Various animal models have been tested to examine the effects of IUGR on 

chronic adult diseases. The most common animal models of LBW and fetal 

programming of adult diseases are maternal nutrient restriction, uteroplacental 
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insufficiency, maternal glucocorticoids and experimentally-induced maternal 

diabetes. When total maternal food intake was limited to 50% of daily needs during 

pregnancy and lactation, adult prenatal restriction offspring presented increased 

microalbuminuria, decreased GFR, and hypertension (136). A low-protein diet is 

one of the most extensively studied models of early growth restriction. The male 

offspring of rat dams fed a low-protein diet during pregnancy and lactation 

developed impaired glucose tolerance at age 15 months and diabetes with insulin 

resistance at 17 months (137). The female offspring of rat dams fed a low-protein 

diet during pregnancy and lactation manifested hyperglycemia and impaired glucose 

tolerance at age 21 months (138). In a model of uteroplacental insufficiency induced 

by uterine vessel ligation that restricted fetal growth, the offspring were born small 

and glomeruli number was reduced at age 6 months without glomerular hypertrophy 

and glomerular hypertrophy was seen at age 18 months (139). Streptozotocin 

(STZ)-induced maternal diabetes is the most common model for studying the effects 

of gestational diabetes in the offspring. Low-dose STZ administration causes mild 

gestational diabetes and fetal macrosomia, whereas high-dose STZ elicits insulin 

deficiency and diabetes-associated growth restriction. The offspring of STZ-diabetic 

pregnant rats have low body weight and insulin resistance in adulthood (140). 

 

2.4. Possible Mechanisms of Perinatal Programming  

Numerous large studies have confirmed the relationship between LBW and high 

blood pressure. The number of nephrons is reduced in patients and animals with 

LBW (141;142). According to Brenner’s hypothesis, low nephron numbers may 

lead to arterial blood pressure elevation. LBW can be the consequence of numerous 

prenatal events. IUGR is certainly one of the mechanisms of LBW. Recent 
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experiments have confirmed the effect of IUGR on the development of hypertension 

in adults (143) . 

 

2.4.1. LBW and Low Nephron Numbers 

Infants who weigh 2,500 g or less at birth are classified by the WHO as having 

LBW. 7.8% of all infants born in the U.S.A. had LBW (144). LBW and IUGR often 

occur in disadvantaged communities and have been associated with higher risks of 

adult cardiovascular disease, hypertension, diabetes mellitus, and kidney disease 

(145). LBW is often accompanied by low glomeruli numbers and is associated with 

hypertension in adulthood (146-148). Renal disease may also be related to LBW as 

children less than 1,500 g at birth have an increased risk of renal tubular 

abnormalities at 7-8 years of age (149). Moderate LBW (<2,500 g) has been linked 

with renal disease in Australian Aboriginals (150). A study of thirty-five neonates 

who died within 2 weeks of birth showed that neonates with LBW had lower 

nephron numbers compared to those with normal birth weight (151). A study of 

autopsied kidneys revealed that LBW was associated with low nephron numbers in 

both African-Americans and Caucasians (141).  

 

2.4.2. Low Nephron Numbers and Hypertension  

In 1988, Brenner et al. (124) reported an inverse relationship between total renal 

filtration surface area and the risk of hypertension in rats. Reduced nephron numbers 

have been advocated as an explanation for the relationship between LBW and 

hypertension in later life. In an autopsy study specifically designed to examine the 

association between low nephron numbers and hypertension in West European 

adults, Keller et al. (152) found that 10 accident victims who were known to be 

hypertensive had lower glomeruli numbers and larger glomerular volume than 
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non-hypertensive controls. The development of albuminuria, hypertension, and renal 

failure in children with oligomeganephronia (OMN) (153) and the low number of 

nephrons in Australian Aboriginals also support the correlation between low 

nephron endowment and renal disease (150). On the other hand, in a mostly urban 

community from Senegal, low glomerular numbers or large glomerular volume was 

not correlated with hypertension and arteriosclerosis-associated kidney disease (154). 

In experimental models, congenital nephron deficiency is tied to the development of 

renal disease and hypertension in postnatal life. In a rat model, maternal iron 

deficiency led to offspring with reduced nephron numbers and hypertension in 

adulthood (155).  Fibroblast growth factor receptor 2 (FGFR2) mutant mice 

manifested decreased nephron numbers in utero and later developed hypertension 

and chronic renal failure in adulthood (142). 

  

2.4.3. Possible Mechanisms of Low Nephron Numbers Associated with Intrauterine 

Alteration 

2.4.3.1. Genetic Influence 

The genetic factors leading to low nephron endowment associated with 

hypertension in humans have not been completely identified. Congenital OMN, 

characterized by low nephron numbers, glomeruli with twice the normal size, and a 

tendency towards sclerosis, was correlated with heterozygous paired box gene 2 

(Pax2) mutations (156). Zeier et al. (157) reported that patients with congenital 

OMN had hypertension and a modest reduction of glomerular filtration. Suzuki et al. 

(158) found that body growth was retarded and mean blood pressure elevated in 

hypoplastic kidney (HPK) rats, a potential model of human OMN. Mice 

heterozygous for glial cell-line-derived neurotrophic factor (GDNF), that is essential 
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for kidney development, were born with 30% fewer nephrons than wild type mice 

and developed high arterial pressure in old age (159;160). 

 

2.4.3.2. Nutrition 

It is now widely accepted that maternal nutrition during pregnancy affects fetal 

growth and results in offspring with hypertension later in life (161;162). Maternal 

malnutrition is one of the causes of IUGR/LBW. In a Dutch famine cohort, people 

who were small at birth had high blood pressure in later life (163). Eriksson et al. 

(164) concluded that the development of hypertension was associated with reduced 

fetal growth and catch-up growth in early childhood in a Finnish cohort. Restriction 

of maternal protein intake during pregnancy in the rat produced offspring that 

developed hypertension in adulthood. Langley-Evans et al. (165) reported a 13% 

deficit in nephron numbers in rats exposed to a low-protein diet in utero, and these 

animals subsequently incurred elevated mean arterial blood pressure. Wood et al. 

(166;167) suggested that maternal dietary protein restriction may increase arterial 

blood pressure in the offspring later in life by decreasing the number of nephrons at 

birth, resulting in hypertension in adulthood. Similar observations have been made 

in other animal models. Low maternal caloric intake can reduce nephron numbers, 

cause glomerular hypertrophy and lead to postnatal glomerular fibrosis. Gilbert et al. 

(168) found that a 50% diminution of maternal calorie intake lowered nephron 

numbers by 11%, heightened angiotensin-converting enzyme (ACE) expression in 

the renal cortex, augmented medullary angiotensin II (Ang II) subtype 2 receptors 

(AT2R), and evoked metabolic dysregulation in sheep offspring. McGarvey et al. 

(169) noted that decreased maternal calcium intake during pregnancy can cause 

preterm delivery and adult hypertension. Crocker (170) reported that low potassium 

produced decreased ureteral bud branching, failure of nephron induction, and 
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occasional cystic dilatations of the ureteral bud in human embryonic kidneys organ 

culture. 

 

2.4.3.3. Vitamin A Deficiency  

Vitamin A (retinol) and its analogs (retinoids) are important regulators of cell 

proliferation, differentiation, immune function, and apoptosis (171). In the early 

1950s, Wilson et al. (172) demonstrated that maternal vitamin A deficiency resulted 

in renal hypoplasia that could be prevented by vitamin A administration to pregnant 

rats, indicating its direct involvement in kidney development. Studies on retinoic 

acid receptor (RAR) knockout mice revealed the specific role of vitamin A in renal 

organogenesis (173). In rats, maternal vitamin A deficiency was associated with the 

reduction of nephron numbers in the offspring (174). In addition, Goodyer et al. 

(175) observed a close correlation between nephron numbers and circulating vitamin 

A levels in humans. Maternal vitamin A deficiency leads to renal hypoplasia in 

native newborn Indians compared to their Canadian counterparts (175). 

 

2.4.3.4. ROS 

Free radicals are atoms or groups of atoms with one or more unpaired electrons 

and can be formed when oxygen interacts with certain molecules. Thus, oxygen 

plays a major role as an oxidant in the form of superoxide (O2−), hydroxyl (OH−), 

peroxyl (R–OO−) radicals and their derivatives, named reactive oxygen species 

(ROS) (176). Oxidative stress, an imbalance between the production of ROS and the 

antioxidant defense mechanisms of a cell or tissue, leads to lipid peroxidation, RNA 

and DNA rupture, and oxidation of proteins including inactivation of many enzymes. 

The mechanisms by which oxidative stress mediates hypertension and 

cardiovascular disease are not clear. Animal studies show that oxidative stress 
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affects blood pressure and renal disease. Clinical trials have established that 

antioxidant supplementation improves blood pressure and cardiovascular outcomes 

in humans (177;178). Oxidative stress programming from mother to fetus may be 

mediated directly by modulation of gene expression or indirectly through the effects 

of certain oxidized molecules. Epidemiological studies indicate that poor fetal 

growth is associated with elevated oxidative stress in maternal plasma and 

erythrocytes (179;180). Gupta et al. (181) demonstrated that intrauterine 

malnutrition is associated with significant oxidative stress in 

small-for-gestational-age neonates born at term to undernourished mothers. Indeed, 

oxidative stress may be the trigger for in utero programming of hypertension. 

Franco et al. (182) showed that intrauterine under-nutrition enhances oxidative stress, 

resulting in endothelium dysfunction and, consequently, hypertension. 

   

2.4.3.5. Apoptosis 

Several studies have determined that apoptosis plays an important role in kidney 

development and in the pathogenesis of fetal programming. The offspring of 

pregnant rats fed a low-protein diet had LBW and low kidney weight at birth, low 

nephron numbers, higher systolic blood pressure, and increased apoptosis in 

glomeruli, interstitial cells, proximal tubule, and distal tubule cells (183). Rat 

embryonic day 13 (E13) metanephroi in embryos of mothers given a low-protein 

diet during pregnancy present increased metanephric apoptosis with a reduced 

number of progenitor cells during kidney development (184). Uteroplacental 

insufficiency, which causes IUGR, significantly diminishes nephron numbers while 

augmenting Bcl-2-associated X protein (Bax) and tumor protein 53 (p53) mRNA 

expression in IUGR kidneys (185). It has been postulated that the observed increase 

in apoptosis may be due to downregulation of anti-apoptotic factors, such as Pax2. 
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In Pax2 promoter-Bax Tg mice, loss of Pax2 anti-apoptotic activity accounts for the 

reduced ureteric bud (UB) branching seen in renal-coloboma syndrome (RCS), 

indicating that heightened UB apoptosis may be a key process responsible for a 

decreased number of nephrons (186). 

 

2.4.3.6. RAS 

All components of the RAS, expressed in the developing kidney, play an 

important role in nephrogenesis (187). RAS suppression by ACE inhibitors leads to 

renal abnormalities in both structure and function. Ang II receptor blockade also 

causes renal maldevelopment. In newborn Sprague-Dawley rat pups, administration 

of the AT1R antagonist losartan from days 1 to 12 of postnatal life reduced the 

number of nephrons and caused hypertension (188). Several animal model studies of 

fetal programming have shown that the lowered expression of RAS components 

during nephrogenesis is associated with low nephron numbers and hypertension in 

later life (166;167;189). Growth-retarded infants have small kidneys, elevated cord 

blood renin levels (190) and heightened renin gene expression in the kidneys (191), 

suggesting that the intrarenal RAS may be elevated after IUGR. In another maternal 

animal model, ewes were undernourished between days 28 and 77 of gestation, 

which resulted in increased AT1R expression in the kidneys of lambs at birth (192). 

In addition, gender may play a role in programming. Wood et al. (167;193) 

demonstrated that modest maternal dietary protein restriction in rats reduced 

nephron numbers in both males and females but hypertension developed only in 

adult male offspring. Renal renin protein and Ang II levels declined by 50-65% in 

males but not in females. 
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2.4.3.7. Glucocorticoids 

Fetal exposure to maternal glucocorticoids is associated with programming of 

hypertension in the offspring (194). In human pregnancy, glucocorticoids are used 

primarily in the management of women at risk of preterm delivery to advance fetal 

maturation and decrease neonatal morbidity and mortality (195). Ortiz et al. 

(196;197) reported that dexamethasone administration to pregnant rats during 

gestation resulted in a 17% reduction of nephron numbers in the offspring, and 

increased blood pressure in adult life.  

 

2.4.3.8. Social/Behavioral    

Excessive alcohol consumption in pregnancy may induce fetal alcohol syndrome 

(FAS) characterized by craniofacial dysmorphology, growth restriction, and 

intellectual dysfunction (198). Studies of children diagnosed with FAS have 

demonstrated that some of them have renal malformations (199). Recently, in a 

sheep model, fetal exposure to alcohol during the latter half of gestation caused a 

11% decrease of nephron numbers (200). 
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CHAPTER 3: NEPHROGENESIS OR KIDNEY DEVELOPMENT 

3. Nephrogenesis or Kidney Development 

The kidneys are one of the main excretory and homeostatic organs of the body. 

These paired, bean-shaped organs regulate the composition and volume of body 

fluids, and eliminate metabolic waste products. The internal structures of the 

kidneys include an outer cortex and an inner medulla (Figure 3-1)(201). 

 

Figure 3-1. Kidney structure (201) 

 

The nephron is the basic structural and main functional unit of the kidney. There 

are approximately 300,000 to 1 million nephrons per kidney in humans, and 11,000 

nephrons per kidney in mice (202). The nephron consists of a renal tubule and a 

renal corpuscle (Figure 3-2) (203). The renal corpuscle is composed of a glomerulus 

and Bowman's capsule, which surrounds the glomerulus. The renal tubule is the 

portion of the nephron containing tubular fluid that is filtered through the 

glomerulus. After wastes pass through the renal tubule, the filtrate continues to the 

collecting duct system, which is the end of the nephron. 
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Figure 3-2. Simple diagram of the kidney nephron (203) 

 

In mammals, kidney development, also called nephrogenesis, progresses 

sequentially in 3 main stages, as seen in Figure 3-3 (204). The first 2 stages of 

rudimentary kidney development lead to the formation of transient structures, the 

pronephros and mesonephros, and the third stage results in the formation of the 

metanephric kidney, which is the permanent kidney. Compared to other organ 

systems, the excretory system develops quite late in embryogenesis. Metanephric 

kidney development occurs at E28 in humans and at E10.5 in mice. 

 

Figure 3-3. Schematic representation of kidney development (204) 
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3.1. Pronephros 

The pronephros, the most basic of the 3 excretory organs that develop in 

vertebrates, corresponds to the first stage of kidney development. It arises from the 

portion of the intermediate mesoderm at E22 in humans or at E8.0 in mice, and then 

completely degenerates through massive apoptosis (205;206). The pronephros is a 

segmented organ that consists of pronephric tubules originating from the 

nephrogenic cord and the pronephric duct. Pronephric tubules and the pronephric 

duct form at the cranial end of the intermediate mesoderm and fuse to form the 

pronephros. Early regulators have been studied during pronephros formation, 

including functionally-redundant paired-box homeotic transcription factors, such as 

Pax2 and Pax8, zinc finger transcription factor GATA-binding protein 3 (GATA3), 

which belongs to a family of transcription factors that bind to a GATA consensus 

motif (A/TGATAA/G), and the LIM class homeodomain transcription factor, LIM 

homeobox protein 1 (Lim1). Pax2 and Pax8, co-expressed in nephric duct 

precursors at E8.5 in mice, are essential for the initiation of pronephros and 

mesonephros development (207). GATA3 is expressed in nephric duct precursors, 

starting at E8.5 in mice and is a putative direct target of Pax2 and Pax8 (208). In 

mice, Lim1 is initially expressed in the intermediate mesoderm at E7.5 and becomes 

restricted to the nephric duct at E9.5 (209). Direct targets of Lim1 in the nephric 

duct are not known, and Pax2 expression is not dependent on Lim1 function (210). 

 

3.2. Mesonephros 

The mesonephros is the second type of excretory organ to develop in vertebrates. 

It is composed of the mesonephric duct (also called the Wolffian duct (WD)), 

mesonephric tubules, and associated capillary tufts. The mesonephric duct grows 

caudally, reaches the mesonephric mesenchyme (MM) and induces mesonephros 
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formation. The mesonephros is the permanent kidney in fish and amphibians, but 

atrophies in reptiles, birds, and mammals. In humans, the mesonephros begins 

development at E26. In mice, it starts degenerating at E10.5, and almost all of the 

tubules undergo apoptosis within 24 hours and disappear in a caudal to cranial 

direction (211). A number of genes, such as Pax2, Pax8, Wilms’ tumor suppressor 1 

(WT-1), Forkhead box c 1 (Foxc1), and Sine oculis homeobox homolog 1 (Six1), 

have been implicated in different aspects of mesonephric development 

(207;212;213). 

 

3.3. Metanephros 

The metanephros is the third, and permanent, excretory organ to develop in 

vertebrate embryos. The metanephric kidney begins to develop at E28 in humans or 

at E10.5 to E11 in mice. It develops from 2 major structures, UB and the MM. There 

are 2 key processes in kidney nephrogenesis: UB branching morphogenesis and 

mesenchyme-to-epithelial transformation (MET). Kidney development begins when 

the WD, which is the precursor of UB, grows caudally, and elongates to generate 

UB at its extreme caudal end. As illustrated in Figure 3-4 (214), UB grow into the 

loosely-organized mesenchyme. Through secreted signals, the MM induces the UB 

to elongate further and grow into the blastema, branching and giving rise to the 

collecting system. At the same time, the UB prompts the adjacent surrounding 

mesenchymal cells to aggregate and condense around their tips. The condensed 

mesenchyme proliferates rapidly and differentiates into early-polarized epithelial 

structures, such as renal vesicles, comma- and S-shaped bodies. Metanephric tubules 

lead to formation of the glomerulus, proximal tubule, loop of Henle, and distal 

tubule. The fusion of developing metanephric tubules to a UB branch completes 

nephron formation. 
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Figure 3-4. Reciprocal induction in mammalian kidney development (214) 

 

3.4. Gene Regulation 

At present, the Kidney Development Database website lists more than 300 genes 

known to be involved in nephrogenesis (URL address http:// 

www.ana.ed.ac.uk/anatomy/database/kidbase/kidhome.html). Although kidney 

development has been studied for more than half a century, understanding the 

molecular control of nephrogenesis is still in its infancy. Animal experiments, 

especially on Tg mouse models and explants of rodents, have identified several 

genes that are important in kidney development, but their relevance in humans 

remains to be demonstrated. For example, as shown in Table 3-1 (215), GDNF, 

rearranged during transfection proto-oncogene (Ret), Pax2, and WT-1 are all crucial 

in murine renal organogenesis. Genes of the Wnt family, including Wnt4, are also 

known to be essential in UB branching. Sal-like 1 (Sall1), a mammalian homologue 

of the Drosophila region-specific homeotic gene spalt (sal), plays an important role 

in renal development (216). In addition, members of the bone morphogenetic protein 
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(Bmp) family of secreted factors, such as Bmp4 and Bmp7, have been implicated as 

anti-apoptotic factors for the MM (217;218). So far, the Pax2/GDNF/c-Ret pathway 

has been identified as the most critical for kidney development. 

 

Table 3-1. Selection of genes in kidney development (modified from Piscione et al.: 

Differentiation) (215)   

 

 

3.4.1. Pax2/Pax8 and Lim1: Earliest Markers of Nephrogenesis 

As discussed below (see Section 3.6), Pax2 is a transcription factor that belongs 

to the family of “paired domain” proteins, and is involved in organogenesis. During 

kidney development, Pax2 is first detected in the nephrogenic cord in the 

metanephric region at E9.5 in mice and then in the MM at E10.0. Pax2 is strongly 

expressed in UB when it emerges from the WD and invades the MM. In Pax2 

mutants, the nephric duct does not reach the cloaca, Ret expression is absent, and the 

duct starts to degenerate by E12.5, resulting in the failure of UB formation and 

metanephros development (219). Pax2 is detected in early epithelial structures, the 
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comma- and S-shaped bodies, which differentiate into glomeruli and the proximal 

portions of emerging nephrons. Indeed, Pax2 is required for 

mesenchyme-to-epithelium conversion in kidney development. Kidney explant 

cultures treated with Pax2 antisense oligonucleotides fail to express some epithelial 

markers, and the tubulogenesis of mesenchymally-derived structures is blocked 

(220). Pax8 is also present during pro-, meso-, and metanephros development. Pax2 

and Pax8 together are essential for pro- and mesonephros formation. Mouse 

embryos lacking both Pax2 and Pax8 fail to form the pronephros or any later nephric 

structures and to express the early kidney-specific genes c-Ret and Lim1 (207). In 

mice, Lim1 is initially expressed in the intermediate mesoderm at E7.5 but becomes 

restricted to the nephric duct primordium by E9.5 (209). Direct targets of Lim1 in 

the nephric duct are not known, and Pax2 expression is independent of Lim1 

function (221). 

 

3.4.2. UB Outgrowth Requires Signaling: WT-1, Eyes-absent-1 (Eya1) and the 

GDNF/c-Ret Pathway  

WT-1 is one of the most investigated transcriptional regulators in the developing 

kidney. It encodes a zinc finger-containing nuclear protein that is essential for 

kidney and urogenital development. During renal development in mice, WT-1 is 

initially expressed throughout the nephrogenic cord as early as E9.0 and is also 

detected at a low level in the MM prior to UB outgrowth at E10.5 (222). WT-1 is 

upregulated when the mesenchyme begins to form epithelial condensates around UB 

tips. In WT-1 null mice, the UB fail to form and the MM, which appears to be 

morphologically normal, undergoes apoptosis at E11.0 (223). In adult kidneys, 

WT-1 expression is restricted to glomerular podocytes, which form the filtration 
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barrier within the glomerulus. WT-1 is therefore important for normal podocyte 

function (224).  

Eya1, a mammalian homologue of the Drosophila eyes-absent gene, encodes a 

transcriptional co-activator that can complex with other transcription factors to 

induce the expression of target genes (225). In developing mice kidneys, Eya1 is 

first detected in the nephrogenic cord at E8.5, and it is only expressed in the MM at 

E11.5 (226). In mice, Eya1 deficiency (Eya1-/-) results in the absence of UB 

outgrowth and the failure in the formation of a morphologically-distinct population 

of MM (227). Eya1-/- mice kidneys display an early loss of the GDNF signal in the 

nephrogenic cord, but Pax2 is present in the remaining blastema cells, indicating that 

it functions either upstream or independently of Eya1 (226). The first indication that 

the GDNF/c-Ret developmental pathway is crucial for metanephric development 

came from an analysis of c-Ret knockout mice (228). GDNF, a distant member of 

the transforming growth factor-beta (TGF-β) superfamily, is a potent neurotrophic 

factor for neurons of the central nervous system (CNS) and is essential for renal 

development (229). During kidney development in mice, GDNF is expressed in the 

nephrogenic cord at E9.5, but becomes restricted to the MM at E10.5. GDNF family 

ligands signals through a unique multicomponent receptor complex consisting of 

glycosyl-phosphatidylinositol (GPI)-anchored coreceptor (Gfrα1–4) as a ligand 

binding component and RET receptor tyrosine kinase as a signaling component 

(230). During early kidney development, Ret and Gfrα1 are expressed all along the 

WD, while GDNF is expressed only in the MM. GDNF binds to the Ret receptor, 

activates Ret and then induces UB outgrowth. GDNF signaling is important to 

induce UB outgrowth from the WD and to promote its early growth and branching. 

GDNF mutations result in renal aplasia. In humans, 5-10% of cases of renal 

agenesis are found to be linked with GDNF mutations (231). Ret encodes a 
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transmembrane receptor of the tyrosine kinase (TK) family of proteins and is 

required for kidney morphogenesis. In the developing kidney, Ret is initially 

expressed on the mesonephric duct and early UB, and later its expression is 

restricted to UB branch tips (232). Mice with a c-Ret null mutation exhibit severe 

renal dysplasia or agenesis as a result of defective UB outgrowth (228). In humans, 

30% of cases of renal agenesis are found to be associated with Ret mutations (231). 

 

3.4.3. The Wnt Pathway  

Wnts have been implicated in epithelial-mesenchymal interactions (233). The 18 

Wnt genes identified in mice encode secreted glycoproteins that bind to the cell 

surface and the extracellular matrix (ECM) (234). Wnt signaling via the canonical 

β-catenin pathway has been shown to be involved in UB branching (235). A number 

of Wnts which signal through the canonical β-catenin pathway are present in the 

developing metanephros, including Wnt6, Wnt7b, and Wnt9b in the collecting duct 

system, and Wnt4 in early nephron precursors (236). Wnt-4 plays an essential role 

in kidney development and is expressed in condensing MM cells very soon after UB 

induction, persisting in comma- and S-shaped bodies (237). Wnt-4 acts during MET 

and is required for tubulogenesis in the metanephric kidney. In Wnt4-deficient mice, 

epithelial renal vesicles fail to form, resulting in small kidneys consisting of 

undifferentiated MM interspersed with ureter branches. In addition, homozygous 

Wnt4 mutation pups die of renal failure within 24 hours of birth (237). In Wnt9b 

mutant embryos, down-regulation of Wnt-11 and GDNF expression prior to 

morphological appearance of the branching defect indicates a later requirement for 

Wnt9b in the regulation of secondary branching (238). 
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3.5. Renal Malformations 

Human renal malformations are the main causes of ESRD in children less than 5 

years of age (239). They include multiple ureters, renal agenesis (the absence of 

kidneys), renal hypoplasia (reduced kidney size), and renal dysgenesis (kidneys 

containing abnormal structures) (240;241). Developmental abnormalities of the 

kidneys are various, and mutations of genes expressed in the developing kidney 

cause congenital abnormalities in humans, as shown in Table 3-2 (242). 

 

Table 3-2. Congenital abnormalities and gene defects identified in patients (242) 
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3.5.1. Renal Agenesis 

   Renal agenesis is a medical condition in which one or both kidneys fail to 

develop in the fetus and are absent at birth. Bilateral renal agenesis, the failure of 

both kidneys to develop during gestation, has a frequency of 1 in 30,000 newborns 

(242). Unilateral renal agenesis, the absence of 1 kidney in the fetus, occurs in 1 in 

5,000 newborns (242). Children with unilateral renal agenesis have considerably 

higher chances of developing hypertension (243). Renal agenesis seems to be 

associated with a failure of GDNF-Ret signaling. GDNF activation in the MM is 

controlled by several regulators: Eya1, Six1, Six4, and Pax2. A number of recent 

studies have shown that mice deficient in Eya1, Six1, Six4, or Pax2 lack kidneys 

(212;227;244;245). Some authors suggest that nephronectin, an ECM protein, is also 

important for maintaining GDNF expression. Mice lacking nephronectin fail to 

express GDNF and to develop kidneys (246). 

    

3.5.2. Multiple Ureters   

Duplex ureters are the most common malformations of the urinary tract. In a 

normal urinary tract, each kidney is connected to 1 ureter, and drains urine into the 

bladder. Patients with a duplex collecting system have 2 ureters for 1 kidney that 

drain independently into the bladder, rather than 1 ureter for each kidney. Gene 

targeting experiments have identified several genes, including Foxc1, Slit 

homologue 2 (Slit2), and its receptor, Roundabout homologue 2 (Robo2), that are 

required to prevent ectopic UB formation. Mutations in these genes lead to 

expansion of GDNF expression and cause ectopic ureters (247;248). The receptor 

tyrosine kinase antagonist sprouty 1 (Spry1) is essential for early kidney 

development and is also important for limiting branching during kidney 
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development (249). Spry1−/− embryos have supernumerary UB, resulting in the 

development of multiple ureters and multiplex kidneys (250). 

 

3.5.3. Renal Dysgenesis 

   Renal dysgenesis, the consequence of disordered renal tissue differentiation, 

culminates in a form of dysplasia with or without cysts, hypoplasia or hypodysplasia 

(251). Renal dysplasia is characterized by the existence of primitive mesenchymal 

structures, which are remnants of the collecting duct or some other UB surrounded 

by absent or abnormally-differentiating MM (252). Pax2 or Wnt4 mutations may 

cause renal dysplasia, originating from the inhibition of mesenchymal-to-epithelial 

conversion or UB formation occurring at an ectopic site on the WD (253). 

 

3.5.4. Renal Hypoplasia 

   Renal hypoplasia is a medical condition in which an abnormally small kidney 

that is morphologically normal has either a reduced number of nephrons or smaller 

nephrons. In humans, the average number of nephrons ranges from 300,000 to 1 

million in each kidney, and there is a correlation between nephron number and the 

risk of developing hypertension (254). A defect in the rate of UB branching is the 

most common cause of renal hypoplasia. Studies have shown that RCS, a congenital 

disease characterized by optic nerve coloboma, renal hypoplasia and diminished 

nephron number, is due to heterozygous mutations of the Pax2 gene (255). Retinoic 

acid is important to maintain Ret expression in UB, so deficiency of vitamin A, a 

precursor of retinoic acid, is well known to elicit renal hypoplasia (174). In rats, 

early in utero exposure of fetuses to hyperglycemia causes a 10-35% decrease in 

nephron numbers (256). 
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3.5.5. OMN 

   Congenital OMN, characterized by a low number of nephrons, glomerular 

hypertrophy and a tendency towards glomerularsclerosis, is a model of nephron 

under-endowment (153). OMN has been reported in 2 siblings, indicating a genetic 

background (257). In addition, Salomon et al. (156) found heterozygous Pax2 

mutations in 3 patients with OMN, confirming the critical role of Pax2. 

 

3.5.6. Polycystic Kidneys 

   Polycystic kidneys are a genetic disorder that is characterized by the presence of 

multiple cysts. The cysts are numerous and fluid-filled, causing massive kidney 

enlargement. Mutations in PKD1 (polycystic kidney disease 1), PKD2, and PKHD1 

(polycystic kidney and hepatic disease 1) evoke polycystic kidneys (258). 

    

3.6. Pax2 Pathways 

   Renal malformations account for about 40% of renal failure in childhood 

(259;260). To date, most human and experimental studies have focused on the 

phenotype, with only a few investigating the mechanism(s). Pax2 was first cloned 

and characterized by Peter Gruss’s group in 1990 (261). It plays an essential role in 

nephrogenesis. Pax2 mutations cause increased apoptosis and are associated with 

renal hypoplasia (186;262). Homozygous null Pax2 (Pax2-/-) mice lack kidneys, 

ureters, and genital tracts (219). In humans and mice, heterozygous Pax2 mutations 

elicit kidney, eye, and CNS abnormalities, constituting RCS. (263). 

  

3.6.1. Pax Proteins and Gene Structure 

The murine Pax gene family was first identified on the basis of sequence 

homology with the Drosophila segmentation gene (264). Pax proteins are a family 
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of 9 proteins that contain a highly homologous 128 amino acid “paired” domain 

(265), originally identified in Drosophila paired protein (Prd) (266). Pax proteins 

can be divided into 4 groups based on a paired-box DNA-binding domain, with or 

without an octapeptide coding region and/or homeodomains, as shown in Figure 3-5 

(267). In addition to the “paired” domain, Pax genes have 2 other conserved 

sequences, the helixed homeodomain, an additional DNA binding motif, and the 8 

amino acid octapeptide motif, an additional conserved domain (267). Based on 

similarities of molecular structure, the 9 Pax genes are divided into 4 groups: Pax1 

and Pax9 belong to Group 1; Pax2, Pax5 and Pax8 comprise Group 2; Pax3 and 

Pax7 are members of Group 3; and Pax4 and Pax6 make up Group 4 (Figure 3-5) 

(267). 

Figure 3-5. The Pax protein family (modified from Mansouri et al.: Cell 

Differentiation) (267) 
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3.6.2. Pax Genes in Organogenesis 

All Pax proteins are expressed in different tissues during development. Pax1 is 

present in the thymus and a mutation of Pax1 gene causes reduced thymus size (268). 

Pax2 is expressed in the eyes, ears, and kidneys during embryonic development; 

heterozygous Pax2 expression in the mouse (Pax2+/-) is associated with kidney 

hypoplasia (255). Pax3 is found in the limb muscle, neural tube and neural crest. Its 

mutation leads to Waardenburg syndrome, a rare genetic disorder most often 

characterized by varying degrees of deafness, minor defects in structures arising 

from the neural crest, and pigmentation anomalies (269). Pax4 is a master gene for 

pancreatic development; Pax4-/- mice lack most pancreatic cells (270). Pax5 is 

expressed in the thymus and is involved in regulating B cell proliferation (271). 

Pax6, a highly conserved gene that controls eye development, is required for optic 

cup development (272). Pax7, expressed in somites and muscle, plays an important 

role in skeletal muscle formation (273;274). Pax8 is detected in the kidneys and 

thyroid; Pax8-/- mice die from a thyroid defect quickly after weaning (275). Pax9 

plays an important role in tooth development; heterozygous mutations in Pax9 have 

been shown to be associated with human tooth agenesis (276). Nine Pax genes have 

been described in humans and mice. The expression of Pax genes in many tissues 

during embryogenesis is associated with their critical roles during development. 

Mutations in 5 genes, Pax2, Pax3, Pax6, Pax8 and Pax9, cause human congenital 

abnormalities, as summarized in Table 3-3 (277). 
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Table 3-3. Abnormalities in humans and mice with heterozygous Pax gene 

mutations (277) 

 

3.6.3. Pax2 Mutations Cause Human RCS 

Pax2 is expressed in the eyes, ears, CNS, and urogenital system during 

embryogenesis. In the kidneys, Pax2 is expressed in the early stages of 
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mescenchymal to epithelial differentiation, proceeding to form the glomerulus, and 

is also detected in UB and at low levels in the collecting duct, renal pelvis and ureter. 

Pax2 mutations cause a special autosomal dominant human condition, RCS, a 

multisystem developmental disorder involving optic nerve colobomas and renal 

hypoplasia/insufficiency (278). Eight different mutations have been identified in the 

various exons of Pax2 gene. Exon 2, in the N-terminal portion of the paired box 

domain, is the most frequent site of mutation in RCS patients (263). Patients with 

Pax2 mutations often have small kidneys with reduced size of the renal pelvis and 

renal cortex. Renal disease in patients with Pax2 mutations is usually progressive. 

Renal cortical biopsies from RCS patients show mesangial fibrosis and 

glomerulosclerosis (Figure 3-6) (278). Fletcher et al. (279) reported that RCS 

patients seem to display the mild hypertension in adulthood.  

 

 

Figure 3-6. Renal cortical biopsy from a RCS patient (278) 

3.6.4. Animal Models of Pax2 Mutations  

Three different Pax2 mutant mice have been reported: Kidney and retinal defect 

(Krd) mice (280), Pax21Neu mice (281), and Pax2 knockout mice (219). The mutation 
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in Krd mice is transgene-induced with approximately 7 cM chromosomal deletion 

that includes the Pax2 locus on chromosome 19. Krd/+ mice have kidney defects, 

including aplastic, hypoplasic and cystic kidneys. Homozygosity (Krd-/-) results in 

early embryonic lethality (280). Pax21Neu mice have a single point mutation, a G 

insertion with a string of 7 G’s in exon 2, in the Pax2 gene. Heterozygous Pax21Neu 

mice present reduced kidney size, renal agenesis and cystic kidneys. Homozygous 

mutant Pax21Neu mice die at or soon after birth, and lack ureters, kidneys, and other 

parts of the genital tract (281). Pax2 knockout mice contain a neomycin cassette 

between exon 1 and exon 2, inducing the deletion of intervening DNA. Pax2 

heterozygous mice (Pax2+/-) exhibit a renal phenotype similar to that of homozygous 

mutant Pax21Neu mice, including smaller kidneys, renal agenesis, delayed ureters and 

renal cysts. Pax2 homozygous knockout (Pax2-/-) newborn mice lack kidneys, 

ureters and genital tracts (219). 

 

3.6.5. Pax2 in Kidney Development 

Experimental studies have demonstrated that Pax2, necessary for kidney 

development, is highly expressed in the UB as it undergoes branching 

morphogenesis. There was fewer UB tips and less branching in Pax21Neu+/- mutant 

mice (277). Porteous et al. (262) demonstrated that kidney hypoplasia is associated 

with increased apoptosis of UB cells, with a reduced number of UB branches in the 

fetal kidneys of Pax21Neu+/- mutant mice. Similarly, another study revealed a striking 

decrease in UB branching at E13.5 in metanephric kidneys from heterozygous Pax2 

mutant mice (Figure 3-7) (282). Taken together, these experiments indicate that 

Pax2 is essential for UB branching. 
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Figure 3-7. (A) Wild type kidney, (B) Pax21Neu+/- mutant kidney (282) 

  

Torres et al. (219) reported that during mesonephros development, Pax2 

mutations cause renal defects, not only in WD and ureter formation, but also in 

tubule formation. In contrast, in Pax2-/- embryos, metanephric development simply 

does not occur since the UB is absent. Additionally, Pax2-null mutant mice (Pax2-/-) 

fail to develop any kidneys, ureters and genital tracts (Figure 3-8 C and D), whereas 

heterozygous Pax2 mutations (Pax2+/-) produce smaller kidneys (Figure 3-8 B). 

 

Figure 3-8. Analysis of urogenital system defects in Pax2 mutant mice (A-D). 

Whole mounts of dissected complete urogenital systems at E17.5 in male (A, C) and 

female (B, D) homozygous and heterozygous mutants and wild type fetuses (219) 
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In summary, Pax2 is an essential regulator of genitourinary axis development in 

mammals. Inappropriate or dysregulated Pax2 expression is associated with a number of 

malignancies and dysplasia, indicating that Pax2 plays an important role in cell growth 

and differentiation. 

 

3.7 The GenitoUrinary Development Molecular Anatomy Project (GUDMAP ) 

The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is a 

consortium of laboratories working to provide the scientific and medical community 

with tools to facilitate research on the kidney and urogenital tract (UGT) (283). The 

GUDMAP aims to chronicle gene expressions during the development and 

maturation of the murine genitourinary tract and to create tools for the scientific 

community to examine the biological function of these genes (283). There are three 

components to the GUDMAP: (1) providing ontology of the cell types during 

urogenital tract development and the molecular hallmarks of those cells. 

Whole-mount in situ hybridization (WISH) is being used as a low-resolution 

approach to map gene expression domains and identify patterns that are diagnostic 

of specific anatomic regions or individual cell types. The WISH data also provide an 

excellent prescreen for further high-resolution section in situ hybridization (SISH) 

analysis. SISH and immunohistochemistry (IHC) provide high-resolution 

approaches that enable gene activity to be mapped at single-cell or near-signal-cell 

resolution within a tissue. (2) generating novel mouse strain. The generation of 

novel mouse strains is an important part of GUDMAP initiative. The consortium 

goal has been to identify cell-type or anatomic regions of interest within the UGT by 

the expression of a specific gene. The consortium goal is to generate 30 to 40 new 

mouse lines. (3) The Web-based GUDMAP Database. The Web-based GUDMAP 

database has been publicly accessible since April 2006. The Web-based GUDMAP 
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database includes primary WISH, SISH, IHC, microarray-based transcriptional 

profiling, mouse strain characterization data together with subsequent follow-up 

analyses of these data set, and information regarding methods, research tools, and 

community resources relevant to the UGT. The complete ontology for the 

genitourinary tract has been incorporated into the GUDMAP anatomy database 

(http://www.gudmap.org) (284). That database interface presents different views of 

the ontology according to the requirements of the user. The ontology will also be 

used in the EuReGene Renal Genomics Project (EuReGene) 

(http://www.euregene.org) and will be used to update the EMAP ontology used by 

the GXD (http://www.informatics.jax.org/mgihome/GXD/aboutGXD.shtml) (284). 
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CHAPTER 4: MATERNAL DIABETES MODULATES NEPHROGENESIS 

4. Maternal Diabetes Modulates Nephrogenesis 

Maternal diabetes has an adverse influence on intrauterine growth of the fetus, 

which is attributable to exposure of the mammalian embryo to an abnormal 

metabolic environment. When the fetus is exposed to high, sustained concentrations 

of peripheral glucose during the first 6 to 8 weeks of gestation in humans, 

widespread fetal damage may result in diabetic embryopathy, which is characterized 

by a multitude of congenital birth defects, including neural tube, heart, urogenital 

system, skeleton and alimentary tract defects and CRS (86). Also referred to as 

caudal dysplasia and sacral agenesis syndrome, CRS is a rare congenital defect 

characterized by absence of the sacrum and defects of variable portions of the lumbar 

spine in association with anomalies of different systems (285). The pathogenesis of 

RCS is unclear. It is diagnosed in only 0.1 to 0.25 of 10,000 normal pregnancies, but 

its prevalence is 200-250 times higher in diabetic pregnancies, occurring in up to 1% 

of pregnancies in diabetic women (286). Up to 22% of CRS cases in women are 

associated with either T1DM or T2DM, making it the most characteristic fetal 

abnormality of diabetic embryopathy (287). 

 

4.1. Clinical Phenotypes or Outcome 

As described in Section 1.6.2.1, 2 opposite abnormal situations regarding fetal 

growth are clinically associated with maternal diabetes (Figure 4-1). Fetal 

macrosomia is a common problem characterized by baby overgrowth, often in mild 

maternal hyperglycemia characterized by blood glucose values 20% higher than 

normal. Early pancreatic endocrine cells can be detected during the 7th and 8th weeks 

of human embryonic development. Pancreatic beta islets mature in the last quarter of 

gestation and are thus very sensitive to changes in glucose (288;289). High maternal 
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glucose levels are transmitted to the fetus by placental flow, causing fetal 

hyperinsulinemia, which, in turn, mediates accelerated fuel utilization, adipose 

tissue accumulation and excessive growth.  

In contrast, maternal diabetes with severe hyperglycemia often leads to 

microsomic babies. This phenotype is referred to as fetal restriction or IUGR. 

Severe maternal hyperglycemia during pregnancy creates a rich glucose 

environment, and fetuses are confronted by very high glucose concentrations, 

inducing fetal beta cell hypertrophy and/or hyperplasia. These cells then become 

depleted of insulin and often appear to be disorganized. The degranulated cells are 

incapable of insulin secretion, and their exhaustion results in fetal hypoinsulinemia. 

Fetal hypoinsulinemia and reduced numbers of insulin receptors on target cells 

culminate in decreased fetal glucose uptake (147). 

 

Figure 4-1. Two opposite, abnormal fetal growth situations associated with maternal 

diabetes 

 

4.2. Possible Mechanisms in Maternal Diabetes Modulating Nephrogenesis 

Diabetic mellitus is a major risk factor for congenital malformations. When the 

fetus is exposed to high, sustained ambient glucose levels, widespread fetal damage 
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may affect multiple organs, including the kidneys (diabetic embryopathy). The 

kidneys appear to be one of major organs targeted by diabetic embryopathy. 

Hyperglycemia constitutes an adverse uterine environment that dynamically and 

adversely impairs nephrogenesis, resulting in renal agenesis, dysplasia or aplasia 

(incomplete differentiation, often with cysts) and hypoplasia. However, the 

molecular mechanisms by which high, ambient glucose levels lead to renal 

dysmorphogenesis and birth defects have not yet been delineated. There is some 

experimental evidence, however, that hyperglycemia plays a significant role in this 

process (Figure 4-2) (95). 

 

Figure 4-2. Hypothetical model of diabetes-induced embryopathy (95) 

 

4.2.1. Hyperglycemia 

Diabetes mellitus is a metabolic disorder in which hyperglycemia damages 

several organ systems, including blood vessels, nerves, muscles, eyes, and kidneys 

(290). The 4 main hypotheses associated with diabetic complications caused by 

hyperglycemia were summarized by Brownlee’s group (291). They are: increased 

polyol pathway flux; augmented advanced glycation end-products (AGEs); 
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activation of protein kinase C (PKC) isoform; and heightened hexosamine pathway 

flux (Figure 4-3) (291). 

 

Figure 4-3. Potential mechanisms of hyperglycemic damage (291) 

 

4.2.1.1. Hyperglycemia and Renal Malformations    

Metabolic alterations in the diabetic mother have adverse effects on 

embryogenesis. Congenital malformations of various organs, including the kidneys, 

occur with increased frequency in the offspring of diabetic mothers (292).  

Experimental studies suggest that hyperglycemia is a major teratogen in diabetic 

pregnancies (293). Clinical investigations have demonstrated a positive correlation 

between hyperglycemia and fetal malformations (87), whereas good blood glucose 

control of diabetic mothers during this time period decreases the rate of fetal 

dysmorphogenesis (96). The mechanisms of hyperglycemia-induced renal 

malformation are not clearly defined. Amri et al. (256) postulated that 

hyperglycemia in utero impairs nephrogenesis in rats, resulting in a reduced number 

of nephrons in the kidneys of 14-day-old pups. Similarly, E13 embryos exposed to 

30 mM D-glucose for 1 week show decreased metanephric size. The UB tips are 
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swollen, their branches are deformed and thickened, and their tips blunted (Figure 

4-4) (294). 

    

   Figure 4-4. Light micrographs depicting the effect of a high glucose enviroment on 

the morphology of murine embryonic metanephros  

 

   Kanwar et al. (295) found that increased apoptosis in E13 metanephroi treated 

with 30 mmol/L D-glucose when compared to 5mmol/L D-glucose, Moreover, 

apoptosis was observed in the kidneys of newborn and 1-week-old mice pups from 

diabetic mothers. Taken together, hyperglycemia impairs kidney development in 

utero.   

 

4.2.2. ROS 

ROS include free radicals, such as superoxide (·O2
−), hydroxyl (·OH-), and 

peroxyl (·R-OO-), and non-radical species, such as hydrogen peroxide (H2O2) and 

hydrochlorous acid (HOCl) (296). There are a number of enzymatic and 

non-enzymatic sources of ROS in the diabetic kidney, such as xanthine oxidase 

(XO), peroxidase, nitric oxide synthase, nicotinamide-adenine dinucleotide 

phosphate (NADPH) oxidase, AGEs and glucose auto-oxidation (297). Oxidative 

stress is increased in diabetes, and ROS overproduction is a direct consequence of 

hyperglycemia. Excessively high ROS levels lead to protein, lipid and DNA damage. 

ROS can activate transcription factors, such as nuclear factor kappa B (NF-kB) and 
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activated protein-1 (AP-1), signaling transduction cascades (PKC) and 

mitogen-activated protein kinases (MAPK), which result in ECM accumulation, 

glomerular mesangial expansion and tubulointerstitial fibrosis (298). Nam et al. (299) 

reported that stimulated ROS is significantly higher with NF-kB and AP-1 

up-regulation in diabetic patients with DN than in diabetic patients without DN. Ha 

et al. (300) demonstrated that the antioxidant taurine effectively inhibits membrane 

translocation of PKC and PKC  in STZ-induced diabetic rat glomeruli, indicating 

that ROS activate PKC in the diabetic kidney as well. These observations suggest 

that increased ROS induced by hyperglycemia act as intracellular messengers and 

integral glucose signaling molecules in DN. 

 

4.2.2.1. Hyperglycemia and ROS  

The embryo appropriates both aerobic and anaerobic metabolic pathways during 

early development (301). Embryos grow under a relatively low oxygen 

concentration at E7.5-9.5 in mice and E9-11 in rats (302), and high oxygen levels 

are toxic to them (303). Developing embryos seem to be very sensitive to high ROS 

levels, especially during early organogenesis. Maternal hyperglycemia causes 

sustained ROS generation with depletion of antioxidants (304). In diabetic 

environments or hyperglycemia, increased ROS production leads to embryonic 

dysmorphogenesis, and ROS scavenging enzymes can reduce the rate of 

abnormalities in cultured E10.5 rat embryos (305). Hyperglycemia induces 

embryonic malformations in rats because of glutathione (GSH) depletion, as GSH 

ester supplementation decreases the formation of free oxygen radical species, 

virtually normalizing growth retardation and embryonic dysmorphogenesis (306). A 

hyperglycemic environment in utero affects the embryo by increasing ROS, leading 
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to genetic variations and damage caused by oxidative stress, with excessive 

apoptosis and impaired organogenesis (307). 

  

4.2.3. Apoptosis  

Apoptosis plays an important role in the morphogenesis of various systems. Proper 

regulation of apoptosis is essential for normal nephrogenesis and to maintain normal 

renal function in adulthood (308). The kidney mesenchyme is divided into 2 types: 

the MM and the stromal mesenchyme (SM). The MM gives rise to parts of the 

nephron from Bowman’s capsule to the distal tubule, while the SM does not 

differentiate into nephrons or the collecting duct system. Most undifferentiated SMs 

differentiate into interstitial cells. Early in the developing kidney, the uninduced 

MM is programmed for apoptosis to prevent it from converting to epithelia and then 

differentiating (308). The undifferentiated SM undergoes apoptosis to free space for 

the expanding loops of Henle (309). On the other hand, an imbalance of apoptosis in 

kidney development causes abnormal kidney morphology. Bcl-2, an anti-apoptotic 

gene, is normally expressed in the UB, metanephric cap tissue, and primitive tubular 

structures at El2 in mice (310). Sorenson et al. (311) demonstrated that 

bcl-2-deficient mice develop small kidneys, contain far fewer nephrons and have 

smaller nephrogenic zones in newborns, resulting from excessive apoptosis within 

the developing metanephric kidney. Mice carrying a Pax2 (1Neu) mutation show 

exaggerated apoptosis with reduced UB branching (262). In adult kidneys, apoptosis 

is normally observed at low levels, but can increase because of hyperglycemia or 

oxidative stress due to disease.  
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4.2.3.1. Hyperglycemia and Apoptosis 

Both acute and chronic hyperglycemia cause oxidative stress and trigger tubular 

and glomerular cells into apoptosis, producing DN (296;312). Recent studies have 

demonstrated that loss of podocytes is an early feature of DN (313). For example, 

Susztak et al. (314) showed that podocyte apoptosis increases with the onset of 

hyperglycemia in Ins2Akita mice with T1DM and in Leprdb/db mice with obesity and 

T2DM. Hyperglycemia can also induce mesangial cell apoptosis, eliciting ECM 

accumulation. High glucose evokes ROS-dependent apoptosis in mesangial cells via 

Bax-mediated mitochondrial permeability and subsequent cytochrome c release 

(315). Functional and structural changes in renal proximal tubular cells (RPTCs) are 

associated with DN progression. Liu et al. (189) observed that high glucose evokes 

ROS generation and apoptosis in both rat immortalized renal proximal tubular cells 

and STZ-induced diabetic mice. Antioxidant administration to animals has 

protective effects that attenuate DN development (316). The antioxidant taurine 

inhibits high glucose-induced ROS formation and apoptosis in human renal tubule 

cells (317). 

 

4.2.4. The NF-kB Pathway 

NF-kB was first discovered as a factor bound to the k light-chain 

immunoglobulin enhancer in nuclei of B lymphoid lineage (318). Emerging 

evidence demonstrates that the NF-kB signaling pathway is important in the control 

of cell growth, differentiation, the immune response, inflammation, and the stress 

response (319). Indeed, NF-kB is a regulator of programmed cell death, either by 

apoptosis or necrosis, since it possesses both pro- and anti-apoptotic qualities (320). 

The NF-kB family has 5 proteins: RelA (p65), RelB, Rel, NF-kB1 (p50), and 

NF-kB2 (p52). Each NF-kB family member may form homo- or heterodimers. As 
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depicted in Figure 4-5 (321), activated NF-kB is a heterodimer, which usually 

consists of p65 and p50 or p52 and RelB. Without specific extracellular signal 

stimulation, NF-kB is sequestered in the cytoplasm as an inactive heterodimer 

composed of subunits p50 and p65 complexed with the inhibitory protein IkB. 

Stimuli, such as hyperglycemia, elevated free fatty acids, ROS, and ultraviolet 

irradiation, trigger a cascade of serine kinase that activate IkB kinase (IKK) 

phosphorylation leading to IkBa dissociation from the NFkB heterodimers, and 

degradation in the cytoplasm. The released NF-kB heterodimer is translocated to the 

nucleus and then regulates the expression of a large number of genes (322). 

 

Figure 4-5. The NF-kB pathway (modified from Evans et al.: Endocr Rev) (321) 

 

An important role of NF-kB in epidermal homeostasis and the development of 

skin appendages has been reported recently. The crucial involvement of NF-kB in 

embryonic development was demonstrated by Beg et al. (323) in IkBa-deficient 

mice in 1996. These animals exhibit severe runting and skin defects in the first days 

after birth, with major skeletal deformities. Mice heterozygous for IKKγ have skin 

lesions with granulocyte infiltration, keratinocyte apoptosis and abnormal 
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development of teeth, eyes, and hair (324). Such results underscore the importance 

of NF-kB in both embryonic development and normal tissue growth. 

 

4.2.4.1. Hyperglycemia and the NF-kB Pathway 

   The transcription factor NF-kB is a major intracellular target of hyperglycemia 

(325). Peripheral blood mononuclear cells isolated from patients with DN show a 

positive correlation with NF-kB activation (326), which is associated with 

inflammatory processes, and an increase in NF-kB nuclear translocation has been 

documented in human DN (327). Schmid et al. (328) established that 

NF-kB-regulated genes are up-regulated in progressive DN, emphasizing the 

importance of the hyperglycemia-activated NF-kB pathway in human DN. Kuhad et 

al. (329) found that after 8 weeks of STZ-induced diabetes, rats manifest significant 

alterations in renal function, and the active p65 subunit of NF-kB can be detected in 

nuclear lysates of diabetic rat kidneys. 

 

4.2.4.2. Oxidative stress and the NF-kB Pathway 

It is well known that NF-kB is critically involved in the oxidative stress response. 

Oxidative stress is a frequent component of aging, immune disorders, inflammatory 

diseases, metabolic diseases, and cancers. When ROS are formed intracellularly, 

NF-kB is up-regulated, leading to the expression of cytokines, chemokines, cellular 

adhesion molecules, and inflammatory enzymes that activate the immune and 

inflammatory system. Increased oxidative stress and subsequent NF-kB activation 

have been linked to the development of late diabetic complications. Hofmann et al. 

(326;330) found a correlation between NF-kB activity and the severity of 

albuminuria in DN. Patients with diabetes also show significant suppression of 

NF-kB activation during treatment with the antioxidant thioctic acid (α-lipoic acid). 
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These obvervations confirm that hyperglycemia-induced diabetic complications 

result from the oxidative stress-mediated NF-kB pathway, causing cellular damage. 

In T1DM, pancreas-specific ROS production is critical in the signal transduction 

response by activating NF-kB (331;332). 

 

4.2.4.3. Apoptosis and the NF-kB Pathway  

NF-kB is a major player that coordinates innate and adaptive immunity, cellular 

proliferation, apoptosis and development (333). It has been shown that H2O2 induces 

apoptosis through NF-kB activation (334). Ang II elicits podocyte apoptosis via 

extracellular signal-regulated kinase pathway activation and subsequent NF-kB 

translocation (335). Schneider et al. (336) observed that NF-kB promotes apoptosis 

in focal cerebral ischemia. These observations suggest that NF-kB activation 

regulates apoptosis. The mechanisms associated with NF-kB-mediated apoptosis are 

not clear, and the role of p53 and c-Myc induction through NF-kB has been studied 

(337). 

 

4.2.4.4. The NF-kB and Protein 53 or Tumor Protein 53 (p53) Pathways  

Both the NF-kB and p53 pathways can be stimulated (338). As discussed above, 

hyperglycemia activates the NF-kB pathway and induces apoptosis mediated by p53. 

The mechanisms of hyperglycemia-induced apoptosis mediated by the NF-kB and 

p53 pathways are poorly defined. Studies have demonstrated that NF-kB-binding 

sites are present in the promoter regions of p53 (339), and p53 expression can be 

activated by NF-kB (340). Thus, NF-kB may play a role in p53 regulation in 

response to certain types of stress (341). Gilli et al. (342) established that NF-kB is 

an intracellular pathway triggered by glutamate and leads to apoptosis in which p53 

induction lies downstream of NF-kB activation. Nakai et al. (337) provided 
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additional support for the view that NF-kB activation contributes to p53 induction 

and subsequent apoptosis in an excitotoxic model of Huntington’s disease. 

 

4.2.5. The p53 Pathway 

Exposure to cellular stress can trigger the tumor suppressor p53, a 

sequence-specific transcription factor, to elicit cell growth arrest or apoptosis. 

p53-mediated apoptosis was first reported in 1991 by Yonish-Rouach et al. (343). In 

mammalian cells, p53 can activate both the extrinsic and intrinsic apoptotic 

pathways. The extrinsic apoptotic pathway is induced by transmembrane proteins, 

such as Fas, DR5, and p53 apoptosis effector related to PMP-22, activating caspases, 

including caspase-8 and caspase-3, which provoke apoptosis. The intrinsic apoptotic 

pathway is controlled by the Bcl-2 family of proteins, which releases cytochrome c 

from the mitochondria. p53 stimulates apoptosis through cytochrome c and 

procaspase-3 (Figure 4-6) (344). Several events can regulate p53 gene expression 

and activity, including post-translational modification and protein-protein 

interactions in cells. Phosphorylation of the amino acid serine 15 (Ser15), which 

increases p53 stability and apoptosis, is one of the important mechanisms that 

regulates p53 protein level and activity (345). Several kinases, including ataxia 

telangiectasia mutated kinase, A-T-related kinase, and dsDNA-activated protein 

kinase, initiate signaling pathways through p53 phosphorylation at Ser15 (346). 
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Figure 4-6. A model of p53-mediated apoptosis (344) 

4.2.5.1. Hyperglycemia and the p53 Pathway  

The mechanisms of apoptosis evoked by hyperglycemia have been investigated. 

Growing evidence has defined the induction of apoptosis by p53 (347). Studies 

support the idea that p53 can elicit apoptosis by directly signaling the mitochondria 

(348) and prompting cytochrome c release (349). It has been shown that p53 

provokes apoptosis under conditions of cellular stress, including hyperglycemia and 

ROS (350;351). Ortega-Camarillo et al. (352) demonstrated that hyperglycemia 

promotes apoptosis in RINm5F cells, the insulin-secreting cell line, via an increase 

in ROS production, and is associated with p53 mobilization to the mitochondria. 

Fiordaliso et al. (353) have reported that hyperglycemia induces myocyte apoptosis 

by activating p53. In addition, Keim et al. (354) showed that high glucose heightens 

p53 expression and activates Bax expression, downstream of p53, in mouse 

blastocysts.   

 

4.2.5.2. The p53 Pathway and Kidney Development  

p53 in humans is encoded by the TP53 gene and expressed during kidney 

development. Carev et al. (355) observed that p53 is neither expressed in the 

mesonephros nor in the metanephros, but can be found in the coelomic epithelium 
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during the 5th and 6th weeks of development. p53-positive cells appear in the 

mesonephros for the first time at the beginning of the 7th developmental week, 

except in the WD and Bowman’s capsule. During the 8th and 9th weeks of human 

kidney development, p53 is detected in all structures of the developing metanephros, 

indicating its importance in the morphogenesis of both the collecting system and 

nephrons (Table 4-1) (355). 

Table 4-1. Immunoreactivity to specific antibodies in the human mesonephros and 

metanephros during the 7th, 8th and 9th developmental weeks 

 

 

4.2.5.3. The p53 Pathway and Renal Malformation 

Apoptosis plays an important role in nephrogenesis, a process that requires 

structural formation and reformation. p53 is an active component of the apoptosis 

cascade and appears during kidney development (355). p53 Tg mice present 

defective differentiation of the UB and hypoplastic kidney due to increased 

apoptosis in the undifferentiated mesenchyme, resulting in smaller kidneys and 

about half the normal number of nephrons, with compensatory hypertrophy of the 



 

 

66

glomeruli (356). Lichnovsky et al. (357) showed that p53 overexpression can cause 

defects in human kidney development. As IUGR influences the formation of 

nephrons, it has been suggested that apoptosis excessively clears progenitor cells 

during renal development. However, apoptosis is found to be altered by IUGR (185). 

Baserga et al. (358) demonstrated impaired renal function in the IUGR rat kidney 

that they attributed to increased p53 phosphorylation at Ser15. 

4.2.6. The Intrarenal RAS 

The RAS is well-known to play an important role in blood pressure regulation, 

renal hemodynamics, and fluid and electrolyte homeostasis (359). Angiotensinogen 

(Agt), the sole substrate and a precursor of Ang, is released from the liver and 

secreted into the circulation. Circulating plasma renin cleaves Agt to form the 

decapeptide Ang Ι, which is converted to the octapeptide Ang II by ACE, a 

membrance-bound metalloproteinase. Ang II interacts with 2 types of receptors, 

AT1R and AT2R. Most of its physiological effects are mediated through AT1R. In 

addition to classical RAS components, several new constituents have been 

discovered in recent years. ACE2, a homologue of ACE, converts Ang I to Ang 1-9 

and Ang II to Ang 1-7 (360). Mas proto-oncogene is a receptor for Ang 1-7 (361). In 

addition, (pro)renin receptors, which bind and activate renin and prorenin in tissues, 

has been discovered recently (362).  

 

Figure 4-7. The RAS (363)      
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4.2.6.1. The Intrarenal RAS and Kidney Development 

The Intrarenal RAS plays a fundamental role in kidney development. All RAS 

components are expressed in the metanephric kidney of rodents (Table 4-2) (204). 

Intrarenal RAS activity is high during fetal and neonatal life and declines during 

postnatal maturation. Schutz et al. were the first to demonstrate the presence of all 

RAS components in very early human development (364). In humans, Agt 

expression is first found in immature tubules as early as E30 and persists throughout 

embryonic life; renin mRNA expression is detected in the mesonephros and is 

confined to the juxtaglomerular (JG) apparatus in the metanephros at E25-27. ACE 

appears at nearly E30 and is expressed in proximal tubules; AT1R mRNA is 

expressed in glomeruli around E25-27, and AT2R mRNA is evident in the 

undifferentiated mesenchyme from E23-24 (364). As shown in Table 4-2, RAS 

components are expressed during metanephric kidney development in rats and in 

mice.  

 

Table 4-2. Expression of RAS components during metanephric kidney development 

(204) 
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Immunohistochemistry has demonstrated that Agt and AT1 are expressed in the 

UB and SM in mice at E12 (204). Ang II stimulates UB branching via AT1R 

activation in vitro (365). In ex vivo studies, exogenous Ang II increases UB 

branching but can be blocked by the AT1R antagonist candesartan (366). These 

findings show that Ang II stimulates UB branching morphogenesis via AT1R. 

AT2R is important in organogenesis as it is abundantly expressed in fetal tissues of 

mice (367), rats (368) and primates (369). Zhang et al. documented that Ang II 

stimulates Pax2 expression via AT2R in the metranephric kidney (370). AT2R 

mutant mice exhibit ureteral budding and duplicated collecting systems (371). Such 

observations suggest that AT2R expression may be important in embryological 

development of the urinary tract. In addition, the major Ang II fraction present in 

renal tissues, including the proximal tubules, renal interstitium, and renal lymph, is 

generated from Agt produced locally by RPTCs (372-374). Renin is secreted by JG 

cells and delivered to the renal interstitium. ACE is localized in proximal tubules, 

distal tubules, the collecting ducts and renal endothelial cells. Therefore, all 

components necessary to generate intrarenal Ang II are present along the nephron. 

Ang II is important in the regulation of renal blood flow, glomerular filtration, and 

tubular sodium reabsorption. In addition, ACE2, a new member of the RAS, express 

in the kidney on the luminal surface of tubular epithelial cells (360). Alenina et al. 

(375) reported that Mas mRNA is abundant in mouse renal cortex. The role of the 

ACE2-Ang-(1-7) –Mas axis in kidney development and UB branching 

morphogenesis remains to be determined. However, ACE2 homology collectrin is 

expressed in the UB branches as early as E13 in the mouse (376). 
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4.2.6.2. The Intrarenal RAS and Renal Malformation 

The genetic interruption of RAS components in mice causes a series of 

abnormalities in development of the ureters, renal pelvis and papilla (377-382). Agt, 

renin, ACE or AT1R deficiency in mice results in vascular thickening, interstitial 

fibrosis, reduced ability to concentrate urine and specific UB/collecting system 

changes, including atrophy of the papilla and medulla with hydronephrosis (Table 

4-3) (204). In addition, AT2R gene deletion in mice causes congenital abnormalities 

of the kidney and urinary tract (371). Chen et al. (383) studied the effect of AT2R 

deficiency on renal malformations and showed that a lack of AT2R alters the 

expression of Pax-2 and N-Myc genes during nephrogenesis.   

Table 4-3. Effect of genetic RAS inactivation in mice on renal collecting system 

development (204) 

 

 

The RAS has been reported to be associated with abnormal kidneys and 

decreased nephron numbers in experimental studies. Woods et al. (167) showed that 

suppression of RAS components, such as renin and Ang II, in the developing 

fetus/newborn leads to impaired renal development and lower nephron numbers at 

birth, culminating in adult hypertension in a maternal protein restriction model. 
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4.2.6.3. Hyperglycemia and the Intrarenal RAS  

There is evidence of an association between the development of diabetes and 

RAS activation. However, clinical and experimental studies have demonstrated that 

ACE inhibitors and AT1R blockade may have potent beneficial effects by delaying 

cardiac disease in diabetes mellitus (384-387). Increased renin expression has been 

found in proximal tubules from STZ-induced diabetic rats, and renin expression 

after insulin treatment completely regressed to control values, suggesting intrarenal 

RAS activation by hyperglycemia (388). Liu et al. (189) have shown that apoptosis 

in proximal tubules in DN is exacerbated by Agt overexpression. Yoo et al. (389) 

noted that high glucose induces Agt mRNA and protein expression in cultured 

podocytes via the PKC pathway, and increased Agt and AT1R expression is also 

seen in podocytes of diabetic glomeruli. It has been established that the effect of 

maternal diabetes is associated with consequent hyperglycemia and impaired 

cardiovascular function in the offspring (390). Wichi et al. (391) determined that 

hyperglycemia during pregnancy produces long-lasting hypertension in male 

offspring with enhanced tissue ACE activity.  
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CHAPTER 5: EXPERIMENTAL APPROACHES 

5.1 In Vitro Studies 

5.1.1 cell line 

MK4 cells representing late embryonic MM undergoing epithelial conversion 

were created from Tg mice with Simian Virus 40 T-antigen gene driven by the Hoxa 

11 promoter (392). As illustrated in Figure 6-1 (392), MK4 cells are smaller, more 

polygonal or epithelial in shape with a cobblestone-like appearance at confluence. 

Morphologically, they represent a later stage of nephrogenesis when mesenchymal 

cells are converting to epithelia. MK4 cells express several gene characteristics of 

MM cells undergoing epithelial conversion, including E-cadherin, Wnt4, Pax8, Pax2, 

Cadherin-6, collagen IV, and LFB3 (392). In the present studies, mouse MK4 cells 

were tested as in vitro models and cultured in normal glucose or high glucose either 

with or without inhibitors of signaling pathways. They were obtained from Dr. 

Steven Potter (Children’s Hospital Medical Center, Cincinnati, OH, USA).  

 

Figure 5-1 MK4 cell morphology (392) 
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5.1.2 Brief description of different glucose analogues 

We have employed the four glucose analogs including D-glucose, L-glucose, 

D-Mannitol and 2-Deoxy-D-glucose in our studies in vitro and ex vivo. 

Figure 5-2 The structure of D-gluocse, L-glucose, D-Mannitol and 

2-Deoxy-D-glucose 

(1) D-glucose is the right-handed form of glucose (C6H12O6) and plays a major role 

in biologically active and function as a source of energy and metabolic intermediates. 

D-glucose is synthesized in the liver and kidneys from non-carbohydrate 

intermediates, such as pyruvate and glycerol, by a process known as 

gluconeogenesis;  Through glycolysis and later in the reactions of the citric acid 

cycle (TCAC), glucose is oxidized to eventually form CO2 and water, yielding 

energy sources, mostly in the form of ATP. In our studies, we have demonstrated 

that high D-glucose (25mM) as compared normal glucose (5mM) specifically 

induced Pax2 gene expression in MK4 cells. 

(2) L-glucose is an enantiomer of D-glucose with mirror-image form. It does not 

occur naturally in higher living organisms and cannot be metabolized in the 

biochemical process known as glycolysis. In our studies, we have observed that 
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there is no any stimulatory effect of L-glucose on Pax2 gene expression indicating 

that the stimulatory effect of D-(+) glucose on Pax2 expression in MK4 is specific. 

(3) D-Mannitol: D-Mannitol is a sugar alcohol and derived by reduction of 

d-fructose or of d-mannose. D-Mannitol is widely used in the food and 

pharmaceutical industries because of its unique functional properties. D-Mannitol is 

non-cariogenic and has a low caloric content and often used as a sweetner or 

laxative. D-mannitol is used as an osmotic diuretic agent because that it could be 

filtered in the glomerulus, but cannot be reabsorbed. Their presence leads to an 

increase in the osmolarity of the filtrate. In our studies, we have added the 

supplement of D-mannitol (20 mM) into 5 mM glucose DMEM to maintain constant 

isotonicity or osmolality as in 25mM glucose DMEM. Our data indicates that the 

stimulatory effect of high glucose level on Pax2 expression in MK4 is via the 

specific D-glucose effect, not the osmolality stress effect. 

(4) 2-Deoxy-D-glucose: 2-Deoxy-D-glucose is a glucose molecule which has the 

2-hydroxyl group replaced by hydrogen, so that it cannot undergo further glycolysis. 

2- Deoxy-D-glucose is uptaken by the glucose transporters of the cell. Therefore, 

cells with higher glucose uptake have also a higher uptake of 2- Deoxy-D-glucose. 

In our studies, we have observed that there is no any stimulatory effect of 

2-Deoxy-D-glucose on Pax2 gene expression. 

 

5.2. Ex Vivo Studies  

5.2.1. Animals 

Hoxb7-GFP mice specifically express GFP in UB driven by the Hoxb7 promoter 

(393). This model is interesting in that real-time observation of UB development is 

possible under fluorescence microscopy because GFP permits direct study of the 

branching process. As seen in Figure 6-2 (393), GFP is expressed throughout the 
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WD and each branch of the UB, but not in the surrounding MM or its epithelial 

derivatives throughout kidney development. As GFP can be easily visualized in 

living tissue, we can follow the dynamic pattern of UB growth and branching 

morphogenesis in organ culture to directly investigate the UB branching 

morphogenesis pattern under nondiabetic and diabetic conditions ex vivo. In the 

present studies, murine Hoxb7-GFP mice served as an in vitro model. They were 

obtained from Dr. Frank Costantini (Department of Genetics and Development, 

Columbia University Medical Center, New York, NY, USA).  

 
Figure 5-3. GFP expression in UB derivatives of Tg fetuses at E12.5 through E16.5 

(393) 

 

5.2.2. Metanephric Organ Culture 

Kidney explants (E12 to E18) were microdissected from timed-pregnant mice. 

GFP-positive metanephroi were photographed immediately after isolation (time 0) 

and were individually cultured in normal glucose or high glucose either with or 

without inhibitors of signal pathways at different time points.    
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5.3. In Vivo Studies  

5.3.1. Animals 

In our in vivo experiments, we investigated 2 Tg mice lines: Hoxb7-GFP mice 

(as described above) and Nephrin-CFP mice. Nephrin-CFP mice were obtained from 

Dr. Susan Quaggin (University of Toronto, Toronto, ON). As shown in Figure 6-3, 

Nephrin-CFP mice specifically express Cyan fluorescent protein (CFP) in glomeruli 

driven by the podocyte-specific nephrin promoter. Nephrin-CFP mice allow us to 

follow the glomerular morphogenesis pattern during nephrogenesis under 

nondiabetic and diabetic conditions ex vivo.  

 

Figure 5-4. Glomerular isolation under dissecting microscopy. EDG: early 

developing glomeruli (late S shape/early capillary loop); CLG: capillary loop 

glomeruli; MG, mature glomeruli 

 

5.3.2. Maternal Diabetes Animal Models 

5.3.2.1. STZ Injection  
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STZ has been generally administered to induce T1DM, based on its efficiency in 

selectively destroying pancreatic beta cells (394). This method has been employed 

to elucidate the effect of maternal diabetes on fetal growth and development. The 

phenotype of the offspring is associated with the STZ dose given during pregnancy 

(395). Low-dose STZ results in mid-maternal diabetes, and fetal macrosomia (396). 

On the other hand, high-dose STZ induces insulin deficiency diabetes and fetal 

microsomia (397). 

 

5.3.2.2. BioBreeding (BB) Diabetes-prone Rats  

The BB rat is a model of spontaneous T1DM development. Experimental study 

of spontaneous autoimmune T1DM in BB rats has shown that the effects of severe 

hyperglycemia on the BB rat pancreas and fetal growth in utero are similar to the 

metabolic conditions induced by STZ injection to create a severely hyperglycemic 

environment (398). Eriksson et al. (399) demonstrated that the offspring of 

spontaneously diabetic BB/E rats had smaller kidneys than those of non-diabetic 

controls. 

 

5.3.2.3. Ins2 Akita Mice 

The Ins2 Akita mouse is an autosomal dominant mutant T1DM model. 

Experimental studies in Ins2 Akita mice have shown that maternal T1DM does not 

cause cardiac hypertrophy or triglyceride accumulation in the fetal heart, possibly 

because genes controlling fatty acid uptake are down-regulated (400). 
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5.3.2.4. Non-obese Diabetic (NOD) Mice 

The NOD mouse, with spontaneous development of beta cell failure, may also 

serve as a model of maternal diabetes with fetal hyperinsulinemia and macrosomia 

(401;402). 

 

5.3.2.5. Heterozygous Leprdb/+ Mice 

The db/db mouse is one of the models of T2DM. Heterozygous leptin 

receptor-deficient (Leprddb/+) mice develop spontaneous glucose intolerance during 

pregnancy, and the offspring of these mothers heterozygous for the leptin receptor 

(Leprdb/+) are macrosomic (403). The offspring of heterozygous Leprdb/+ mothers 

have HBW compared to the controls, as depicted in Table 6-1 (404). Heterozygous 

Leprdb/+ mice are a good model to study the fundamental role of maternal diabetes in 

HBW and modulation of renal morphogenesis in their offspring. 

 

Table 5-1. Average fetal birth weight and litter size of wild type (+/+) and 

heterozygous db/+ mothers (404).  

 
 

5.3.2.6. Rich Diet-induced Rats 

A rich diet (cafeteria type with 33% standard food for rats, 33% sweetened 

condensed milk, 7% sucrose and 27% water) primes the Wistar rat to develop GDM. 

Rich diet-induced rats are another experimental model used to demonstrate glucose 
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intolerance in mothers during pregnancy, emphasizing that obesity is one of the 

most important risk factors for GDM. 

 

5.3.3. Our Maternal Diabetes Animal Models 

In our laboratory, we generate maternal diabetes animal models by a single 

intraperitioneal (IP) STZ injection at a dosage of 150 mg/kg at E13 in Hoxb7-GFP 

mice. Compared to low-dose STZ, a single high-dose STZ creates a severely high 

glucose environment in utero, resulting in fetal microsomia (146;294). On the other 

hand, our model of severe maternal diabetes does not represent the phenotypes 

commonly found in humans in industrialized countries, or gestational diabetes with 

mild hyperglycemia control and fetal macrosomia. 
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CHAPTER 6: OBJECTIVES OF THE PRESENT STUDIES 

Rationale: Diabetes mellitus is a major risk factor for congenital malformations. 

When the fetus is exposed to high, sustained, ambient glucose levels, widespread 

fetal damage may affect multiple organs, including the kidneys. Infants born to 

women with both PGDM and GDM have a relatively high risk of congenital 

malformations. Renal malformations account for 40% of childhood renal failure. 

Hyperglycemia constitutes an adverse in utero environment that dynamically 

impairs nephrogenesis, resulting in absent kidneys, small kidneys, or too few 

nephrons. Experimental studies have demonstrated that hyperglycemia in diabetic 

women triggers ROS production which causes oxidative stress. Oxidative stress 

somehow increases apoptosis and activates the apoptosis-inducing signaling 

pathway. However, the molecular mechanisms by which high ambient glucose 

levels lead to renal dysmorphogenesis and birth defects have not yet been delineated. 

Therefore, the objectives of the present studies are:   

   

(1) To investigate whether high glucose alters Pax2 gene expression in the mouse 

embryonic MM (MK4 cells in vitro) 

(2) To demonstrate the influence of a high-glucose milieu on UB branching 

morphogenesis (ex vivo) 

(3) To dissect the fundamental role of maternal diabetes in renal morphogenesis 

impairment in offspring (in vivo) 
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7.1 Abstract  

Diabetic mellitus confers a major risk of congenital malformations, and is 

associated with diabetic embryopathy, affecting multiple organs including the 

kidney. The DNA paired box-2 (Pax-2) gene is essential in nephrogenesis. We 

investigated whether high glucose alters Pax-2 gene expression and aimed to 

delineate its underlying mechanism(s) of action using both in vitro (mouse 

metanephric mesenchymal cells (MK4) and ex vivo (kidney explant from 

Hoxb7-GFP mice) approaches. Pax-2 gene expression was determined by RT-PCR, 

Western blotting, and immunofluorescent staining. A fusion gene containing the 

full-length 5’-flanking region of the human Pax-2 promoter linked to a luciferase 

reporter gene, pGL-2/hPax-2, was transfected into MK4 cells with or without 

dominant negative IκBα (DN IκBα) co-transfection. Fusion gene expression level 

was quantified by cellular luciferase activity. Reactive oxygen species (ROS) 

generation was measured by lucigenin assay. Embryonic kidneys from Hoxb7-GFP 

mice were cultured ex vivo. High D(+) glucose (25 mM), compared to normal 

glucose (5 mM), specifically induced Pax-2 gene expression in MK4 cells and 

kidney explants. High glucose-induced Pax-2 gene expression is mediated, at least 

in part, via ROS generation and activation of the NF-kB signaling pathway, but not 

via PKC, p38 mitogen activated protein kinase (MAPK) and p44/42 MAPK 

signaling. 

 

7.2 Introduction 

Diabetic mellitus confers a major risk factor for congenital malformations. When 

the fetus is exposed to sustained high ambient glucose, widespread fetal damage 

may affect multiple organs including kidney (diabetic embryopathy)[1;2].  Infants 
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born to women with pre-gestational insulin-dependent diabetes mellitus have a 

10-fold relative risk of congenital malformations, and those born to women with 

gestational diabetes have a five-fold relative risk. Both the diabetic mother and her 

fetus are at risk for significant morbidity and mortality, even in the 21st century 

[3;4].  

Renal malformations account for approximately 40 percent of childhood renal 

failure [5;6]. During kidney development, two major events, ureteric bud (UB) 

branching and mesenchymal-to-epithelial transformation control the main thrust of 

renal morphogenesis. When the normal pattern of nephrogenesis is interrupted, 

kidney abnormalities, such as renal agenesis, renal dysplasia or aplasia, may ensue 

[6-8]. 

Kanwar et al. [9] recently reviewed the mechanisms that appear to be involved 

in diabetic embryopathy, pointing out that high glucose increases damage to DNA 

and the extracellular matrix (ECM) via reactive oxygen species (ROS); high glucose 

inhibits COX-2, resulting in PGE2 deficiency; and high glucose may induce 

transcription factors and proto-oncogenes. Kanwar et al. also demonstrated that 

renal-specific oxidoreductase is closely linked to renal morphogenesis in a high 

glucose milieu [10]. However, the molecular mechanisms by which high ambient 

glucose levels lead to renal dysmorphogenesis and birth defects have not yet been 

delineated [9-11]. 

ROS have been proposed as a major factor in the pathogenesis of diabetic 

nephropathy [12;13]. Increased ROS generation by high glucose directly damages 

DNA and also alters the expression of ECM glycoproteins [14-16]. Additionally, 

kidney related key proto-oncogenes and transcription factors such as GDNF, cRet 

and Pax-2 may be altered in diabetic embryopathy [9], although clear experimental 
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evidence is presently lacking. The paired-box 2 (Pax-2) gene is a “kidney-specific” 

master gene that is expressed in both UB and mesenchymal cell lineages, normally 

optimizing UB branching and mesenchymal-to-epithelial transformation in kidney 

development [17-19]. Mutations in the Pax-2 gene cause increased apoptosis 

[20-22], associated with renal hypoplasia [20;23;24]. For instance, homozygous null 

Pax-2 mice fail to form any kidneys, ureters and genital tracts [25]. In humans and 

mice, heterozygous Pax-2 mutations cause kidney, eye, and central nervous system 

abnormalities, constituting a syndrome called renal-coloboma syndrome (RCS) 

[26;27]. The mechanism by which reduced Pax-2 expression leads to decreased UB 

branching and subsequently to a reduced number of nephrons in patients with RCS 

seems to be highly related to UB lineage apoptosis [28]. It appears that regulation of 

UB cell survival by activation of Pax-2 regulated factors such as Naip (neuronal 

apoptosis inhibitory protein) and Wnt-4 will be powerful determinants of congenital 

nephron endowment [28-31]. 

The transcription factor nuclear factor kappa B (NF-kB) is a major intracellular 

target in hyperglycemia and oxidative stress [32;33]. NF-kB plays a critical role in 

mediating immune and inflammatory responses and apoptosis. It is also associated 

with a number of chronic diseases including diabetes and atherosclerosis [34;35]. 

In the present study, we investigated whether there is a link between 

hyperglycemia and Pax-2 gene expression that might influence kidney development. 

We employed in vitro and ex vivo approaches and observed that high glucose (25 

mM D-glucose) as compared to normal glucose (5 mM D-glucose) specifically 

induced Pax-2 gene expression in MK4 cells and kidney explants, with ROS 

generation and the NF-kB pathway certainly being involved as underlying 

mechanisms.  
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7.3 Materials and Methods 

Reagents  

Normal glucose (5 mM D-glucose Dulbecco’s modified Eagle’s medium 

(DMEM) (Cat. #12320) was purchased from Invitrogen Inc. (Burlington, Ontario, 

Canada). D(+)-Glucose, L-glucose, D-mannitol, 2-deoxy-d-glucose, diphenylene 

iodinium (DPI), rotenone, GF109203X, PDTC,  xanthine oxidase (XO) and 

hypoxanthine were purchased from Sigma-Aldrich Canada Ltd. (Oakville, ON, 

Canada). SB203580, PD98059 were obtained from CalBiochem (San Diego, CA, 

USA). Mouse anti-β-actin monoclonal antibody (clone AC-15) and rabbit polyclonal 

anti-Pax-2 antibody were purchased from Sigma-Aldrich Canada Ltd. (Oakville, ON, 

Canada) and Covance (Richmond, CA, USA), respectively. The luciferase activity 

assay kit was purchased from Promega (Fisher Scientific, Montreal, QC, Canada). 

Hoxb7-GFP mice were obtained from Dr. Frank Costatini (Department of Genetics 

and Development, Columbia University Medical Center, NY, NY, USA) [36;37], 

and the 4.2-kb ApaI/NcoI fragment of the human PAX2 promoter (AF515729)  was 

a generous gift from Dr. Michael Eccles (Department of Pathology, University of 

Otago, Dunedin, New Zealand) [20;38]. MK4 cells were from Dr. S. Steven Potter 

(Division of Developmental Biology, Children's Hospital Medical Center, 

Cincinnati, OH, USA) [39]. Dominant negative IκBα (DN IκBα) plasmid 

(pcDNA3.1/DN IkBa) from Dr. John S.D. Chan (CHUM-Hôtel-Dieu, Montreal, QC, 

Canada), was produced by PCR-based site-directed mutagenesis in Serines 32 and 

36 in the N terminal regulatory domain of IκBα (NM_010907) to resist 

phosphorylation. DN IκBα can bind the p50 and p65 subunits complexed in an 

inactive form, preventing p50 and p65 from translocating to the nucleus for further 

action. 
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Depleted fetal bovine serum (dFBS, depleted of endogenous steroid and thyroid 

hormones) was prepared by incubation with 1% activated charcoal and 1% AG 1 X 

8 ion-exchange resin (Bio-Rad Laboratories, Inc., Richmond, CA, USA) for 16 to 

24 hous at room temperature, as described previously [40;41]. Though endogenous 

steroid and thyroid hormones have been removed from FBS, the purpose of adding 

1% dFBS into either 5mM glucose or 25 mM DMEM after rendering them 

quiescent with serum free medium is to support the cells during the additional 24 

hour experimental period until harvested, as demonstrated previously [40;41]. 

 

Culture of MK4 Cells 

The MK4 cell line is representative of late embryonic mesenchymal 

mesenchyme (MM) as it undergoes mesenchymal to epithelial conversion [39]. 

MK4 cells are relatively polygonal or epithelial in shape and express genes typical 

of late mesenchyme, including Pax-2, Pax-8, Wnt-4, Cadherin-6, Collagen IV, and 

LFB3 (REF) [39]. In the present study, MK4 cells were cultured in normal glucose 

DMEM (pH 7.45), supplemented with 5% FBS, 100 U/ml of penicillin and 100 

µg/ml of streptomycin in 95% air and 5% CO2 at 37ºC.  

 

Ex vivo Embryonic Kidney Culture 

Embryonic kidneys were isolated from timed pregnant HoxB7-GFP mice at 

embryonic stage E16 [36;37] under sterile conditions and cultured either in normal 

glucose or high glucose DMEM supplied with 1% dFBS. These mice specifically 

express the green fluorescence protein (GFP) in the UB driven by the Hoxb7 

promoter. Each kidney explant was cultured in 1 ml of medium in a separate well of 
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a 24-well plate for up to 24 hours in the presence or absence of DPI (10-6 M), 

rotenone (10-6 M) and H2O2 (10-5 M).    

 

Immunofluorescence Studies 

MK4 cells were grown to 70 to 80% confluence in two-chamber slides, and then 

synchronized with overnight serum-free medium. After culture in either normal 

glucose or high glucose DMEM for 24 hours, cells were processed for 

immunofluorescence investigation as reported previously [40;41]. 

Immunofluorescence images were recorded with a Olympus 1X71 Microscope 

(CARSEN, ON, CA).  The images are presented at 400 X magnification.  

 

Western Blotting  

Western blots were performed as in previous studies [40;41]. Briefly, small 

aliquots (20-50 μl) of homogenized cell sample were subjected to 10% SDS-PAGE 

and then transferred onto a PVDF membrane (Hybond-P, Amersham Pharmacia 

Biotech, Canada). The membrane was first blotted for anti-Pax-2 and then re-blotted 

for β-actin. The relative densities of the Pax-2 vs β-actin bands were measured by 

computerized laser densitometry.  

 

ROS Generation 

ROS production was quantified by the lucigenin method [42;43]. After 

overnight culture in serum-free medium to render them quiescent, cells were 

incubated in either normal  glucose or high glucose DMEM containing 1% 

depleted FBS for periods of 15 mins to 2 hours. Cells were then  trypsinized, 

collected by centrifugation, and the pellet washed in modified Krebs buffer 

containing NaCl (130 mM), KCl (5 mM), MgCl2 (1 mM), CaCl2 (1.5 mM), K2HPO4 
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(1 mM) and Hepes (20 mM), pH 7.4. After washing, the cells were resuspended in 

Krebs buffer with 1 mg/ml bovine serum albumin (BSA), and cell concentration was 

adjusted to 1×107 in 900μl buffer. To measure ROS production, the cell suspension 

was transferred to plastic tubes and assessed in a luminometer (LB 9507, Berthold, 

Wildbad, Germany). The final value, RLU (related light unit) of ROS generation 

was normalized by protein concentration of the samples. 

 

RT-PCR for Pax-2 mRNA  

Total RNA was prepared from cultured cells according to the manufacturer’s 

protocol using TRIZOL (Invitrogen Inc.) [40;41]. First strand cDNA was 

synthesized with the Super-Script preamplification system (Invitrogen Inc.). We 

employed the following forward and reverse primers: forward primer 5' TTT GTG 

AAC GGC CGG CCC CTA 3', and the reverse primer 5' CAT TGT CAC AGA 

TGC CCT CGG 3'; these correspond to the nucleotide sequences N+622 to N+642 

and N+902 to N+922 of Pax-2 cDNA [40;41]. For internal control, we deployed 

primers specific for mouse β-actin [44] (forward and reverse primers 5' ATG CCA 

TCC TGC GTC TGG ACC TGG C 3' and 5' AGC ATT TGC GGT GCA CGA 

TGG AGG G 3', corresponding to nucleotide sequences N+600 to N+622 and 

N+1179 to N+1203 of mouse β-actin cDNA (X03672)). 

 

Real Time-Polymerase Chain Reaction (qRT-PCR) 

qRT-PCR were performed as in previous studies [40]. In brief, first-strand 

cDNA was produced from 2 ug of random hexamer primed total RNA using 

Super-Script pre-amplification system (Invitrogen). Relative quantitation by 

real-time PCR was carried out using iQTM SYBR@ Green Supermix Kit (Bio-Rad 

Laboratories, Mississauga, ON, Canada) and MiniOpticonTM Real-Time PCR  
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Detection System (Bio-Rad), following the protocol described by the supplier. PCR 

reactions in triplicate underwent 40 cycles of 95 oC for 20 s, 60 oC for 20 s, 72 oC for 

20 s, and 79 oC for 5 s in the thermal cycler. The parameter CT (threshold cycle) 

value was measured to determine starting copy number of target genes using the 

standard curve. Lower value of CT indicates higher amount of PCR products. We 

employed the following forward and reverse primers for Pax-2: forward primer 5' 

ACA TCA AAT CAG AAC AGG GGA AC 3', and the reverse primer 5' CAT GTC 

ACG ACC AGT CAC AAC 3'; these correspond to the nucleotide sequences 

N+1319 to N+1341 and N+1453 to N+1473 of Pax-2 cDNA (NM_003990). For 

internal control, we deployed primers specific for mouse β-actin (forward and 

reverse primers 5' CGT GCG TGA CAT CAA AGA GAA 3' and 5' GCT CGT TGC 

CAA TAG TGA TGA 3', corresponding to nucleotide sequences N+704 to N+724 

and N+820 to N+840 of mouse β-actin cDNA [NM_007393]) [40].  

 

Luciferase Assay for High Glucose Effect on Pax-2 Gene Promoter Activity  

We have constructed a fusion gene, pGL-2/hPax-2, containing a full length 

5’-promoter of 4.2-kb ApaI/NcoI fragment of the human PAX2 promoter 

(AF515729) [20;38] inserted into luciferase reporter pGL-2 basic vector (Promega), 

and performed transient transfection of this fusion gene into MK4 cells  by 

Lipofectamine 2000 (Invitrogen Inc.), while pGL-2 basic vector serving as control. 

IκBα is an inhibitor of   NF-κB. To study the effect of DN IκBα on high glucose 

induced Pax-2 promoter activity, we transiently cotransfected both plasmids: 

pGL-2/hPax-2 and pcDNA3.1/DN IkBa, into MK4 cells, while both pGL-2 and 

pcDNA3.1 basic vector served as controls. MK4 cells grown in 12-well plates were 

transfected with 1.5 μg of each plasmid. After a 24 hours stimulation with high 

glucose medium with or without ROS inhibitors, cells were harvested and the 
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luciferase activity was quantified by Luciferase assay kit (Promega) according to the 

protocol from the supplier with renilla luciferase as an internal control.  

 

Statistical Analysis 

Statistical significance between experimental groups was analyzed initially by 

student’s t test or by 1-way ANOVA followed by the Bonferroni test as appropriate.  

Three to four separate experiments were performed for each protocol. Data are 

expressed as means ± SD. A probability level of P  0.05 was considered 

statistically significant.  

 

7.4 Results 

High Glucose Stimulates Pax-2 Expression in MK4 cells 

MK4 cells were incubated in media containing 1% dFBS and 25 mM different 

glucose analogues such as D-Glucose, D-Mannitol, L-glucose or 

2-Deoxy-D-Glucose. After incubation for 24hours, cells were harvested and 

analyzed for Pax-2 mRNA (RT-PCR) and protein (Western blotting) levels. As 

shown in Figure 1, high glucose stimulated the Pax-2 mRNA expression (Figure 1A, 

RT-PCR) and protein (Figure 1B: Western blotting) in a dose-dependent manner 

from 5mM to 25mM with a maximal effect at 25mM D-glucose. To maintain 

constant isotonicity or osmolality, 5-mM glucose media was supplemented with 

D-mannitol (20 mM) (final concentration) in additional studies. Figure 2 indicates 

that high glucose as compared to normal glucose specifically induced Pax-2 gene 

expression, while other glucose analogs such as D-Mannitol, L-glucose or 

2-Deoxy-D-Glucose in MK4 cells had no effect, suggesting that the effect of high 

D(+)-glucose medium is specific (Figure 2A: RT-PCR; Figure 2B: Western Blot). 

Moreover, Pax-2 immunostaining with intranuclear appearance was induced by high 
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glucose, consistent with the fact that Pax-2 is a nuclear transcription factor (Figure 3) 

[40;41;45]. Pax-2 expression was normalized by β-actin. The 24-hour incubation 

period was used for all subsequent studies.  

 

p38 MAPK, p44/42 MEK and PKC Inhibitors Fail to Block the High Glucose Effect 

on  Pax-2 Gene Expression  in  MK4 Cells 

Figure 4A and 4B reveal that inhibitors of p38 MAPK (SB203580), P44/42 

MEK (PD98059) and PKC (GFX) could not block the stimulatory effect of high 

glucose on Pax-2   mRNA and protein expression in MK4 cells, suggesting that 

p38 MAPK, p44/42 MEK and PKC signaling are not involved in mediating the 

stimulatory influence of high glucose on Pax-2 gene expression. 

 

ROS Generation and Pax-2 Gene Expression in MK4 Cells 

 We observed that MK4 cells after 15 minutes incubation in high 

glucose medium, ROS generation began to increase in MK4 cells, and 

this elevation lasted 60 minutes (Figure 5A). These data indicate that 

high glucose induced ROS generation in MK4 cells. In order to confirm 

that ROS directly regulate Pax-2 gene expression, we performed studies 

involving the xanthine oxidase (XO) system. Superoxide generated from 

the XO system directly stimulates Pax-2 gene expression in MK4 cells 

in a dose-dependent manner (Figure 5C, 5D and 5E).  

 

Inhibitors of NADPH Oxidase, Mitochondrial Electron Transport Chain Complex I, 

and NF-kB Pathway Block the Stimulatory Effect of High Glucose on  Pax-2 Gene 

Expression  in  MK4 Cell. 
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 The stimulatory effect of high glucose on ROS generation was inhibited in the 

presence of DPI and rotenone, but not PDTC (Figure 5B). Figure 6 shows that 

inhibitors of NADPH oxidase (DPI), mitochondrial electron transport chain complex 

I (rotenone), and NF-kB pathway (PDTC) block the stimulatory action of high 

glucose on Pax-2 expression in MK4 cells. These data suggest that the stimulatory 

effect of high glucose on Pax-2 gene expression is mediated via ROS generation and 

the activation of NF-kB signaling pathway in MK4 cells. 

 

High Glucose Effect on Pax-2 Gene Expression in Kidney Explants from 

Hoxb7-GFP mice 

In order to confirm our in vitro observation, we adapted an ex vivo   model 

using embryonic kidney explants. Embryonic kidneys at E16 gestation from 

Hoxb7-GFP mice were isolated and cultured ex vivo as shown in Figure 7A. After 

culturing the explants for 24 hours in either normal glucose (5mM) or high glucose 

(25mM) DMEM with or without ROS inhibitors, high glucose stimulated Pax-2 

mRNA and protein expression. The high glucose effect was blocked by ROS 

inhibitors, as illustrated in Figure 7B and 7C. We have also tested H2O2, an 

important source of O2
•−, and observed that exogenous H2O2 at 10-5 M stimulates 

Pax-2 gene expression modestly; however, in combination with high glucose, the 

H2O2 stimulatory effect is enhanced substantially as shown in Figure 7 E (qRT-PCR) 

and 7F (Western blot). 

 

High Glucose Effect on Pax-2 Gene Promoter Activity 

 Transient transfection of pGL-2/hPax-2 in MK4 cells followed by culturing in 

high glucose medium stimulated Pax-2 gene promoter activity, compared to 

culturing the cells in normal glucose medium. The stimulatory effect of high glucose 
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was inhibited in the presence of inhibitors of ROS and NF-kB signaling pathway 

(Figure 8A). Moreover, after co-transfection with pcDNA3.1/DN IκBα, high 

glucose-induced Pax-2 promoter activity was abolished, which suggests that NF-κB 

is involved in Pax-2 transcription stimulated by high glucose (Figure 8B). These 

data demonstrate that the stimulatory effect of high glucose on Pax-2 gene 

expression occurs at the transcriptional level via ROS activation of the NF-kB 

signaling pathway. 

 

7.5 Discussion 

 The present studies demonstrate that high glucose stimulates Pax-2 gene 

expression in mouse embryonic metanephric mesenchymal (MM) cells and 

embryonic kidney explants. The stimulatory effect of high glucose on Pax-2 gene 

expression is mediated, at least in part, via ROS generation and activation of NF-kB 

signaling pathway. 

During embryogenesis, embryonic stem cells must proliferate dynamically and 

precisely in order to form functional organs. Additionally, apoptosis and 

proliferation is involved.  Any interruption or error caused by the surrounding 

environment or misleading signals involved in gene regulation can elicit aberrant 

organogenesis and may even be lethal. For example, in renal morphogenesis, certain 

undifferentiated MM must undergo apoptosis to make room for UB branching [7;8]. 

Diabetes constitutes an adverse in utero environment that may impair nephrogenesis. 

For example, a high glucose milieu can result in an abnormal pattern of UB 

branching evoking duplex ureters or cystic kidneys; reduced populations of nascent 

nephrons, resulting in hypoplasia; increased apoptosis in mesenchyme and UB 

epithelium, resulting in renal agenesis, aplasia or dysplasia [46-49]. Nielsen et al. 

reported that the prevalence of renal malformations such as renal agenesis and 
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congenital abnormalities of kidney and urinary tract (CAKUT) have a strong 

association with pre-gestational maternal diabetes, more than cardiovascular 

congenital abnormalities or multiple congenital abnormalities [50].  

Renal-specific genes are also clearly important for accurate nephrogenesis.  

The “kidney-specific” master gene Pax-2 is necessary for initial signaling of the 

Wolffian duct (WD) to optimize UB branching and mesenchymal-to-epithelial 

transformation [19;26]. Pax-2-null mice fail to form any kidneys, ureters and genital 

tracts [25]. In humans and mice, heterozygous Pax-2 mutations cause kidney, eye, 

and central nervous system abnormalities, constituting a syndrome called 

renal-coloboma syndrome (RCS) [26;27].  

To the best of our knowledge, high ambient glucose has not been reported 

previously to regulate Pax-2 gene expression and its underlying mechanism(s) of 

action in embryonic kidney cells.  In the present study, we employed both in vitro 

(MK4 cells) and ex vivo (kidney explants) approaches to explore this potential 

interaction.  As our data indicate, high D(+) glucose (25mM) specifically and 

dose-dependently stimulated Pax-2 gene expression in MK4 cells, while other 

glucose analogs such as D-mannitol, L-glucose and 2-deoxy-D- glucose had no 

effect.  A similar stimulatory action of high glucose was also observed in our 

kidney explant system. Additionally, high glucose ambience increases ROS 

generation in MK4 cells, and this was blocked by ROS inhibitors, not by NF-kB 

inhibitors. These data are consistent with our previous observation that high glucose 

induces ROS generation in immortalized renal proximal tubular cells [42;43]. In 

order to confirm that ROS directly regulate Pax-2 gene expression, we examined the 

effect of the xanthine oxidase (XO) system.  Indeed, superoxide generated from the 

XO system directly stimulates Pax-2 gene expression in MK4 cells in 

dose-dependent manner; another important source of O2
•−, H2O2 at 10-5 M stimulates 
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Pax-2 gene expression modestly; however, in combination with high glucose, the 

H2O2 stimulatory effect is enhanced substantially in E16 kidney explants. 

Brownlee [12;13] has suggested that the underlying mechanisms regarding high 

glucose as an inducer of kidney damage, indicating that excessive ROS generation 

and then subsequent PKC and NF-kB activation are the key elements in tissue injury. 

Other studies have revealed that both p38 MAPK and p44/42 MAPK signaling 

pathways may also be involved in hyperglycemia-induced ROS generation in 

proximal tubular cells [42;43] and mesangial cells [51;52]. To determine whether 

p38 MAPK, p44/42 MAPK and PKC signaling is involved in mediating the high 

glucose effect on Pax-2 gene expression, inhibitors of these signaling pathways were 

tested. Our data disclosed that SB203580, PD98059 or GFX could not blocked the 

high glucose action on Pax-2 gene expressions at both protein and mRNA levels, 

suggesting that both p38 MAPK, p44/42 MAPK and PKC signaling pathways are 

not involved. In contrast, we observed that the stimulatory effect of high glucose on 

Pax-2 gene expression was blocked in the presence of DPI, rotenone and PDTC in 

both in vitro and ex vivo studies, indicating that high glucose on Pax-2 gene 

expression is mediated, at least in part, via ROS generation and activation of the 

NF-kB signaling pathway.  

 NF-kB is one of the major intracellular targets of hyperglycemia [13;35]. It is 

present in the cytoplasm as an inactive heterodimer, consisting of the p50 and p65 

subunits complexed with IkB and it is activated through a common pathway, which 

involves the phosphorylation-induced proteasome-mediated degradation of the 

inhibitory subunit, IkB. Upon stimulation, a serine kinase cascade is activated 

leading to the phosphorylation of IkB and dissociating from the NF-κB heterodimer. 

This event primes IkB as a substrate for ubiquitination and subsequent degradation 

in the cytoplasm. The NF-kB heterodimer is then translocated to the nucleus and 
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regulates the expression of a large number of genes including growth factors (e.g., 

vascular endothelial growth factor (VEGF)), pro-inflammatory cytokines 

(e.g.,TNF-α and IL-1β), RAGE, adhesion molecules (e.g., vascular cell adhesion 

molecule-1) [34;35]. The enzyme that phosphorylates IκB is IκB kinase (IKK), a 

heterotrimeric complex consisting of two catalytic subunits, IKKα (also called IKK1) 

and IKKβ (also called IKK2), and a regulatory subunit, IKKγ [53;54].  In order to 

further understand the underlying mechanisms of the NF-kB pathway involved in 

high glucose induced Pax-2 gene expression, we tested DN IκBα which can bind the 

p50 and p65 subunits complexed in an inactive form, preventing p50 and p65 from 

translocating to the nucleus. Our data in MK4 cells demonstrate that high glucose 

stimulates Pax-2 promoter activity at a transcriptional level, which may be blocked 

by both ROS and NF-kB inhibitors. After cotransfection with DN IκBα, Pax-2 

promoter activity induced by high glucose is abolished, suggesting that NF-κB is 

involved in glucose-induced stimulation of Pax-2 transcription. Using the sequence 

searching software AliBaba2.1 (www.gene-regulation.com), we have now identified 

several NF-κB binding motifs including 6 of GGrmwkyCCC and 2 of 

GGGGmyTyy located in a full length of 5’-promoter region of Pax-2 (AF515729). 

Additional studies are ongoing to address the underlying molecular mechanisms.  

 Taken together, these data demonstrate that the stimulatory effect of high 

glucose on Pax-2 gene expression is mediated, at least in part, via ROS generation 

and activation of the NF-κB signaling pathway, but not via the PKC, p38MAPK and 

p44/42 MAPK signaling pathways. This indicates that modifying these pathways 

might be important in further understanding diabetic embryopathy. 
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ABBREVIATIONS: CAKUT, congenital abnormality of kidney and urinary tract; 

DMEM, Dulbecco’s modified Eagle’s medium; DN IkB, Dominant negative IκBα; 

DPI, Diphenyleneiodonium Chloride; Erk (extracellular signal-regulated kinase); 

dFBS, depleted fetal bovine serum; FBS, fetal bovine serum; GFP, green florescent 

protein; MAPK, mitogen activated protein kinase; MK4, mouse late embryonic 

mesenchymal epithelial cells; MM, metanephric mesenchyme; NF-kB, nuclear 

factor kappa B; PKC, protein kinase C; Pax, paired homeobox gene; ROS, reactive 

oxygen species; UB, ureteric bud; WD, Wolffian duct. 
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7.8 Legends and Figures 
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Figure 7-1 High glucose dose-dependent effect. High D(+) glucose up-regulates 
Pax-2 gene expression in a dose-dependent manner in MK4 cells analyzed by 
RT-PCR (A) and Western blot (B). After synchronized with serum free medium 
overnight, the quiescent cells were incubated in DMEM with 1% dFBS containing 
final glucose concentration from 5mM to 25mM for 24 hours, whereas D-mannitol 
was supplemented to maintain constant isotonicity or osmolality; (C) Relative 
densities of Pax-2 were normalized to ß-actin. The normalized Pax-2 level in cells 
incubated in 5 mM glucose was considered to be the control (100%).  Each point 
represents the mean ± SD of 3 independent experiments. *, P 0.05; **, P 0.01; 
***, P 0.005.  
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Figure 7-2 High glucose specifical effect. Pax-2 gene expression is specifically 
stimulated by high D(+) glucose (25mM), not by other glucose analogs such as 
L-Glucose, D(+)-Mannitol or 2-Deoxy-D-Glucose in MK4 cells analyzed by 
RT-PCR (A) and Western blot (B). The quiescent cells were incubated in DMEM 
with 1% dFBS containing different glucose analogs in 25mM as final concentration 
for 24 hours; (C) The relative densities of Pax-2 were normalized to ß-actin. The 
normalized Pax-2 level in cells incubated in 5 mM glucose was considered the 
control (100%).  Each point represents the mean ± SD of 3 independent 
experiments. *, P 0.05; **, P 0.01; ***, P 0.005.  
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Figure 7-3 Pax-2 immunofluorescence staining. High glucose up-regulatPax-2 
expression in MK4 cells as shown by immunofluorescence staining (A) (original 
magnification x 400). Quiescent cells were incubated in either 5 mM or 25mM 
D-glucose DMEM containing 1% dFBS for 24 hours; (C) The normalized Pax-2 
level in cells incubated in 5 mM glucose was considered the control (100%). Each 
point represents the mean ± SD of three independent experiments. *, P 0.05; **, P 
0.01; ***, P 0.005. 
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Figure 7-4 p38 MAPK, p44/42 MAPK, and PKC inhibitor effect. Effect of 
SB203580, PD98059 and GFX on Pax-2 gene expression stimulated by high glucose 
in MK4 cells as analyzed by RT-PCR (A) and western blot (B); Quiescent cells 
were incubated in either 5 mM or 25mM D-glucose DMEM containing 1% dFBS 
for 24 hours with or without inhibitors; (C) The relative densities of the Pax-2 were 
normalized to the ß-actin. The normalized Pax-2 level in cells incubated in 5 mM 
glucose was considered as the control (100%).  Each point represents the mean ± 
SD of 3 independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005.  
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Figure 7-5 High glucose induced ROS on pax-2 gene expression. High glucose 
time dependently stimulates ROS generation in MK4 cells (A), that is blocked by 
ROS inhibitors, but not NF-kB inhibitors (B) analyzed by lucigenin assay. Moreover, 
superoxide generated from xanthine oxidase (XO) system (Figure 5C) directly 
stimulates Pax-2 gene expression in MK4 cells in a dose-dependent manner, shown 
here as  analyzed by real-time PCR (Figure 5D) and western blot (Figure 5E); (A) 
Quiescent cells were incubated in either 5 mM glucose DMEM or 25 mM 
containing 1% dFBS for periods of 15 mins to 2 hours, then trypsinized and assayed. 
The final value of ROS generation was normalized by the protein concentration of 
sample. At the 15-min incubation point, basal ROS generation was, RLU/ug/ul : 
1817 ± 84.35 vs 2250.85 ± 90.40 in 5mM and 25 mM glucose medium, respectively; 
(B) Quiescent cells were incubated in either 5 mM glucose DMEM or 25 mM 
containing 1% dFBS with or with inhibitors for periods of 30 min, then trypsinized 
and assayed. The normalized ROS generation in cells incubated in 5 mM glucose 
was considered the control (100%); (C) superoxide generated from the xanthine 
oxidase (XO) system was detected by lucigenin assay; (D+E) Quiescent cells were 
incubated in 5 mM glucose DMEM containing 1% dFBS with or with XO system 
for 24 hours. Each point represents the mean ± SD of three independent experiments. 
*, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 7-6 Inhibitory effect of ROS and NF-kB inhibitors. The inhibitory effect 
of PDTC, DPI and rotenone on Pax-2 gene expression upregulated by high glucose 
in MK4 cells analyzed by RT-PCR (A) and Western Blot (B); Quiescent cells were 
incubated in either 5 mM or 25mM D-glucose DMEM containing 1% dFBS for 24 
hours with or without inhibitors; (C) The relative densities of Pax-2 were compared 
with ß-actin. The normalized Pax-2 level in cells incubated in 5 mM glucose was 
considered the control (100%).  Each point represents the mean ± SD of 3 
independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 7-7 High glucose effect on Pax-2 gene expression ex vivo. Ex vivo study. 
Kidney explant isolated from Hoxb7-GFP mice on embryonic day 16 (A); The 
inhibitory effect of DPI and rotenone on Pax-2 gene expression was upregulated by 
high glucose in renal explant analyzed by RT-PCR (B) and Western Blot (C), 
respectively; (D) The relative densities of Pax-2 were compared with ß-actin. The 
normalized Pax-2 level in cells incubated in 5 mM glucose was considered the 
control (100%); H2O2 effect on Pax-2 gene expression analyzed by qRT-PCR (E) 
and Western blot (F), respectively.  Each point represents the mean ± SD of 3 
independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 7-8 High glucose effect on the full length of 5’-franking region of Pax-2 
promoter activity in MK4 cells. High glucose effect on the full length of 
5’-franking region of Pax-2 promoter activity in MK4 cells. MK4 cells grown in 
12-well plates were transiently transfected with 1.5 μg of pGL-2/hPax-2 plasmid by 
Lipofectamine 2000, with pGL-2 basic vector serving as control (A); DN IKBa 
effect on high glucose induced Pax-2 promoter activity. MK4 cells were transiently 
co-transfected with 1.5 μg of each pGL-2/hPax-2 and pcDNA3.1/DNIKBa plasmid 
by Lipofectamine 2000, while pcDNA3.1 plasmid serving as the control (B).  
Promoter activity was measured by luciferase assay kit with renilla luciferase as an 
internal control after 24 hours stimulation by high glucose with or without inhibitors. 
The final value of Pax-2 promoter activity was normalized by the protein 
concentration of sample. Normalized Pax-2 promoter activity in cells incubated in 5 
mM glucose was considered the control (100%). Each point represents the mean ± 
SD of 3 independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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8.1 Abstract 

Renal malformations are a major cause of childhood renal failure. During the 

development of the kidney, ureteric bud (UB) branching morphogenesis is critical 

for normal nephrogenesis. In the present studies, we investigated whether renal UB 

branching morphogenesis is altered by a high ambient glucose environment and 

studied underlying mechanism(s). Kidney explants isolated from different periods of 

gestation (E12 to E18) from Hoxb7- green fluorescent protein (GFP) mice were 

cultured for 24 hours in either normal D-glucose (5mM) or high D-glucose (25mM) 

medium with or without various inhibitors. Alterations in renal morphogenesis were 

assessed by fluorescence microscopy.  Paired-homeobox 2 (Pax-2) gene expression 

was determined by real time-quantitative polymerase chain reaction (RT-qPCR), 

western blotting and immunohistology. Our results revealed that high D-glucose 

(25mM) specifically stimulates UB branching morphogenesis via Pax-2 gene 

expression, while other glucose analogs such as D-mannitol, L-glucose or 

2-Deoxy-D-glucose had no effect. The stimulatory effect of high glucose on UB 

branching was blocked in the presence of catalase and inhibitors of  NADPH 

oxidase, mitochondrial electron transport chain complex I, and Akt signaling. 

Moreover, in in vivo studies, it appears that high glucose induces, via Pax-2 (mainly 

localized in UB), acceleration of UB branching but not nephron formation. Taken 

together, our data demonstrate that high glucose alters ureteric bud branching 

morphogenesis.  This occurs, at least in part, via ROS generation, activation of Akt 

signaling, and upregulation of Pax-2 gene expression. 

 

8.2 Introduction 

Maternal diabetes mellitus (DM) constitutes a major risk factor for congenital 

malformations in the offspring. When the fetus is exposed to sustained levels of high 
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ambient glucose, widespread fetal damage may develop, affecting multiple systems, 

including cardiovascular, nervous, skeletal and urogenital systems-- a condition 

called diabetic embryopathy.1;2 Infants born to women with pre-gestational diabetes 

have a 10-fold risk of congenital malformations, and those born to women with 

gestational diabetes have a 5-fold relative risk of congenital malformations. Both the 

diabetic mother and her fetus are at risk for significant morbidity and mortality, even 

in the 21st Century.3;4 Of those congenital malformations seen in offspring of 

pre-gestational maternal diabetes, renal malformations such as renal agenesis and 

congenital abnormalities of kidney and urinary tract (CAKUT) are most prevalent.5  

Renal morphogenesis involves complex events in which many genes interact to 

coordinate the formation of the final kidney. Abnormalities occur when the normal 

pattern of nephrogenesis is interrupted. In humans, the fetal kidneys begin to 

develop at 5 weeks gestation; renal glomeruli, at 8-9 weeks; and tubular function, 

after the 14th week. The full complement of nephrons (between 200,000 and well 

over 1 million) has formed by approximately 36 weeks of gestation; no further 

nephrons are formed after this time. 6;7 However, rodents, which have a gestation 

period in the range of 19-21-days, continue nephrogenesis postnatally-- until ~10 

days after birth. DM constitutes an adverse in utero environment that may impair 

nephrogenesis in both human and experimental animal models, resulting in renal 

agenesis, dysplasia or aplasia and hypoplasia.8-11 We have initiated investigations 

concerning the interaction between high glucose and paired-homeobox 2 (Pax-2) 

gene expression in renal development. As a “kidney-specific” master gene, Pax-2 is 

expressed in both UB and metanephric mesenchyme (MM) lineages, normally 

optimizing UB branching and mesenchymal-to-epithelial transformation in kidney 

development. 12-14 Mutations in the Pax-2 gene cause increased apoptosis, 15-17 

associated with renal hypoplasia. 15;18;19  We recently reported that high D(+) 
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glucose (25mM), as compared to normal glucose (5mM), specifically induced Pax-2 

gene expression in both in vitro (mouse metanephric mesenchymal cells (MK4) and 

ex vivo (kidney explant from Hoxb7-GFP (green fluorescent protein) mice) 

models.20;21 High glucose-induced Pax-2 gene expression is mediated, at least in part, 

via reactive oxygen species (ROS) generation and activation of the NF-kB signaling 

pathway, but not via protein kinase C (PKC), p38 mitogen activated protein kinase 

(MAPK) and p44/42 MAPK signaling. 22 

The present work is designed to demonstrate the influence of a high glucose 

milieu on UB branching morphogenesis and its underlying mechanism(s) using real 

time in an ex vivo model. Additional in vivo studies that complement the ex vivo studies 

are also included. Our results indicate that high glucose stimulates UB branching via 

ROS generation and Pax-2 gene expression. We conclude that the stimulatory effect 

of high glucose is mediated, at least to some extent, via activation of NADPH 

oxidase and mitochondrial oxidative metabolism and stimulation of Akt signaling 

pathway.   

 

8.3 Results 

High D-Glucose Stimulates UB Branching in Time-Dependent Manner 

Kidney explants isolated from timed-pregnant mice at E13 were cultured either 

in normal (5 mM) D-glucose DMEM plus 20 mM D-mannitol (left kidney) or high 

(25mM) D-Glucose DMEM (right kidney) supplemented with 1% dFBS up to 96 

hours with fresh medium changed every 24 hours. As seen in fluorescent 

microscopic sequential images, as comparing to 5 mM Glucose (Figure 1A (A2-A6) 

and 1B (B2-B6)), 25 mM D-Glucose (Figure 1C (C2-C6) and 1D (D2-D6)) 

stimulates UB branching morphogenesis in time-dependent manner. Since a 

stimulatory effect of high glucose is present after 24 hours of incubation, we used 24 
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hours of stimulation for subsequent studies. By carefully measuring the diameter of 

metanephroi cultured from 0 to 96 hours (Figure 1E), we have found that high 

glucose reduced the size of metanephroi in a time-dependent manner. 

 

High D-Glucose Specificity on UB Branching Morphogenesis  

E13-kidney explants were incubated in media containing 1% dFBS and 25 mM 

different glucose analogues such as D-Mannitol, L-glucose, 2-Deoxy-D-glucose or 

D-glucose. After incubation for 24hours, high D-glucose (Figure 2A-a) specifically 

stimulates UB branching morphogenesis by fluorescent microscopy, while other 

glucose analogs such as D-Mannitol (Figure 2A-b), L-glucose (Figure 2A-c) or 

2-Deoxy-D-glucose (Figure 2A-d) had no effect. Moreover, high D-glucose 

stimulates UB branching in a dose-dependent manner (Figure 2B). To maintain 

constant isotonicity or osmolality, 5-mM glucose media was supplemented with 

D-mannitol (20 mM final concentration) in additional studies. High glucose 

stimulated a greater than 2-fold increase of UB tip numbers as compared to normal 

glucose (Figure 3A+B). This increase in UB branching is induced by high 

D-glucose (25mM), but not by other glucose analogs.  

 

High Glucose Stimulated Pax-2 Gene Expression 

 High glucose increased Pax-2 gene and protein expression-- mRNA (RT-qPCR, 

Figure 4A) and protein (Western Blot, Figure 4B)-- as compared to normal glucose 

in E18-kidney explants. Immunohistological staining indicated that the upregulation 

of Pax-2 is localized mainly to the UB (Figure 4C). These data indicate that high 

glucose stimulation of UB branching morphogenesis is mediated via Pax-2 gene 

expression. 
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Inhibitors of NADPH Oxidase and Mitochondrial Electron Transport Chain 

Complex I Block the Stimulatory Effect of High Glucose on  Pax-2 Gene 

Expression and UB Branching ex vivo 

 It is apparent that inhibitors of NADPH oxidase (DPI, 10-6 M) and 

mitochondrial electron transport chain complex I (rotenone, 10-6 M) block the 

stimulatory action of high glucose on Pax-2 expression (Figure 5) and UB branching 

morphogenesis (Figure 6) in E14-kidney explants. These data indicate that the 

stimulatory effect of high glucose is mediated, at least in part, via NADPH oxidase 

activation and ROS generation,  

 

High Glucose-induced ROS Generation on UB Branching and Pax-2 Gene 

Expression 

 We have previously reported that H2O2 modestly increases Pax-2 gene 

expression. However, this stimulatory effect of H2O2 was significantly enhanced in 

the presence of high glucose in E16-kidney explants. 22 The question has been raised 

about whether H2O2 also directly modulates UB branching. Indeed, exogenous H2O2 

at 10-5 M could trigger UB branching morphogenesis, particularly in the presence of 

high glucose in E13-kidney explants (Figure 7 A-E). Our data also indicate that high 

glucose activates the total ROS generation in E18 Kidney explants (Figure 7F). 

Moreover, high glucose induced UB branching in E12-kidney explants could be 

partially blocked by catalase (250 U) and completely abolished by Akt Inhibitor IV 

(a cell-permeable benzimidazole compound that inhibits Akt 

phosphorylation/activation by targeting the ATP binding site of a kinase upstream of 

Akt, but downstream of PI3K) at concentration of 10-6 M (Figure 8). Similar results 

were also found in Pax-2 mRNA and protein expression (Figure 9). These data 

indicate that high glucose evokes ROS generation and upregulates Pax-2 gene 
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expression via Akt signaling, and subsequently stimulates UB branching 

morphogenesis. 

 

The Effect of Gestational Diabetes on Offspring Neonatal Kidney 

We have employed STZ to induce gestational diabetes in the pregnant mother at 

E13.23-29 Figure 10A shows our experimental protocol in detail. As may be seen the 

newborn offspring of STZ-diabetic dams remained significantly smaller and lighter 

(average 20% less body weight (g)) as compared to offspring of control dams 

[Figure 10B (control vs STZ (g): 1.414 ± 0.11 vs 1.03 ± 0.07)]. Most impressively, 

kidneys of the diabetic offspring were significantly smaller and growth retarded as 

compared to the kidneys of control offspring (Figure 10C). 

 

Pax-2 Expression in Neonatal Kidney in Vivo  

We have evaluated the Pax-2 gene expression analyzed by immunohistological 

staining (Figure 11A and B), qRT-PCR (Figure 11C) and western blot (Figure 11D) 

in neonatal kidney of both control and diabetic dams.  Our data indicated that 

maternal hyperglycemia via Pax-2 (mainly localized in UB) appears to accelerate 

UB branching but not nephron formation in neonatal kidney of diabetic dams.  

 

8.4 Discussion 

In the present study, we observed that high glucose alters UB branching 

morphogenesis via Pax2 gene expression. The high glucose effect appears to be 

mediated, at least in part, via ROS generation and activation of the PI3K-AKT 

pathway.  

Maternal diabetes creates a high-risk intrauterine environment that has been 

directly linked to the development of congenital renal abnormalities, including 
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caudal regression syndrome, which is highly associated with renal agenesis and 

abnormalities of the kidney and urinary tract.8-11 These anomalies have been noted 

as either isolated events or as part of multiple malformation syndromes that are more 

common in offspring of maternal diabetes. The incidence appears to be proportional 

to the degree of maternal hyperglycemia.  For example, in the human, a high 

glucose ambient environment throughout pregnancy (pregestational diabetes) is 

present prior to embryonic development, which may result in a fetus with markedly 

teratogenic features that may include the caudal regression syndrome. In 

experimental animal, Hoxb7-GFP mice in our hand, if the pregnant dams are 

exposed to STZ before the budding process, in which the wolffian duct becomes UB, 

the dams are barely able to deliver. We have observed the same consequences- 

teratogenic embryos including caudal regression syndrome with renal agenesis 

under those conditions. Based on the timing found in the literature 26;27 and our own 

experiences, we induced gestational diabetes by STZ injection at E13, and we have 

successfully managed to obtain small litters of offspring from diabetic dams. Since 

the budding process is already completed prior to E13, from day E13 to birth, it 

seems likely that the high glucose ambient environment may impair the 

nephrogenesis. 

To date, most human and experimental studies on gestational diabetes have 

focused on the phenotype, but only in a few instances, on the mechanism(s). Most 

maternal diabetes-related kidney explant studies, however,  based on long culture 

time (average 4 to 6 days) revealed that hyperglycemia dose-dependently reduces 

the size of the metanephros, UB branching dymorphogenesis and the population of 

nascent nephrons.26;27;30 This observation has been questioned, since the ideal 

observation time of the recognized architectural “pattern” of UB tree is between 

18-48 hours.31 In the current project, studies were designed to resolve potential 
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ambiguities arising from specific protocols or to examine UB morphogenesis under 

conditions that allow direct comparison to previous studies. 32;33 

In order to understand the effect of high glucose per se on renal UB 

development and its underlying molecular mechanisms, we used Hoxb7-GFP-Tg 

mice 20;21 as a model with which we would be able to monitor UB branching under 

normal or high glucose condition ex vivo. By employing sequential images, we have 

observed that E13-kidney explant cultured in high D(+) glucose (25mM) condition 

display more UB branching as compared to normal glucose medium (5 mM). A 

stimulatory effect was obvious at 24 hours post-exposure. Moreover, high D(+) 

glucose specifically triggers UB branching morphogenesis and increased UB tip 

numbers in a dose-dependent manner,  while other glucose analogs such as 

D-mannitol, L-glucose and 2-deoxy-D- glucose had no effect.  We previously 

reported that high glucose specifically induces Pax-2 gene expression via ROS 

generation in E16 kidney explants from Hoxb7-GFP mice. 22 In the current study, 

we have observed that high glucose elevated total ROS generation and triggered UB 

branching morphogenesis. It appears that the stimulatory effect of high glucose 

could be blocked by ROS inhibitors such as DPI and rotenone. Although the Pax-2 

gene is expressed in both UB and MM lineages,12;34-39 our immunohistological 

staining data have clearly revealed that the greatest upregulation of Pax-2 by high 

glucose is in the area of the UB. Meanwhile, in order to clarify the direct functional 

impact of ROS on UB branching morphogenesis, we have also tested H2O2, an 

important source of superoxide (O2
•−), and observed that exogenous H2O2 at 10-5 M 

stimulates UB branching morphogenesis; however, in combination with high 

glucose, the H2O2 stimulatory effect is enhanced substantially, the similar response 

pattern as Pax-2 gene expression. 22 Taken together, our data suggest that high 

glucose induced ROS generation has a functional impact on UB lineage ex vivo. 
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Evidence indicates that the high glucose-ROS-PI3K/Akt-NF-κB pathway 

appears to be a major signaling pathway that almost covers all major renal cell 

types.40-45 This scenario has been postulated as that by which high glucose leads to 

kidney damage.40-45  Indeed, a study 46 suggests that down-regulation of Pax-2 

expression correlates with a decreased Akt phosphorylation and an enhanced 

sensitivity to renal endothelial cell apoptosis both in vivo and in vitro, suggesting 

that Pax-2 promotes angiogenesis, likely via survival, proliferation, invasion, and 

cell organization via the PI3K/Akt-dependent pathway. Thus, we hypothesize that 

the pathway, high glucose ROS Akt NF-κB Pax-2 is involved in impairment 

in the UB lineage induced by high glucose. Indeed, our data suggest that high 

glucose action on UB branching morphogenesis as well as on Pax-2 gene expression 

could be completely abolished by Akt inhibitors, but partially blocked by catalase. 

The reason for this partial blocking effect may be due to the fact that catalase could 

only convert H2O2 into H2O, but has no effect on other species such peroxynitrites, 

hydroxyl radicals, etc. Indeed, more studies are needed to elucidate the action of 

other ROS.  

We used STZ to induce gestational diabetes in an in vivo model to generate a 

high ambient glucose environment during pregnancy. We observed that this 

impaired UB branching morphogenesis in E13 pregnant Hoxb7-GFP mice. This in 

vivo strategy avoids the limitations imposed by using ex vivo studies. Our data 

indicate that the body weight (in grams) of neonate offspring from diabetic mother 

remained significantly lower and smaller (average 20% less) than control animals. 

Renal morphology revealed that kidneys of diabetic offspring showed growth 

retardation. However, it appears that high glucose via Pax-2 (mainly localized in UB) 

could accelerate UB branching but not nephron formation, but at the same time, high 

glucose also triggers cell apoptosis in both UB and nephron, which we believe is the 
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major mechanism by which renal function is ultimately affected in diabetic offspring 

over time (our long time follow-up study). 

In summary, our data demonstrate that high glucose alters UB branching 

morphogenesis via Pax-2 gene and protein expression. The stimulatory effect of 

high glucose appears to be mediated via ROS generation and activation of the Akt 

signaling pathway.  

 

8.5 Concise methods 

Reagents  

Normal glucose medium (5 mM D-glucose Dulbecco’s modified Eagle’s 

medium (DMEM; Cat. #12320)) was purchased from Invitrogen Inc. (Burlington, 

Ontario, Canada). D(+)-Glucose, L-glucose, D-mannitol, 2-deoxy-d-glucose, 

diphenylene iodinium (DPI), rotenone, H2O2, catalase and 

5-(2-Benzothiazolyl)-3-ethyl-2-[2-(methylphenylamino)ethenyl]-1-phenyl-1H-benzi

midazolium iodide (Akt Inhibitor IV), were purchased from Sigma-Aldrich Canada 

Ltd. (Oakville, ON, Canada). Mouse anti-β-actin monoclonal antibody (clone 

AC-15) and rabbit polyclonal anti-Pax-2 antibody were purchased from 

Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada) and Covance (Richmond, CA, 

USA), respectively.  

Animals 

We used the murine Hoxb7-GFP model 20;21 [obtained from Dr. Frank Costantini 

(Department of Genetics and Development, Columbia University Medical Center, 

NY, NY, USA) ], which is useful for studying alterations in UB branching 

morphogenesis, as the GFP permits direct observation of the branching process.  

This is especially useful for studying adverse in utero development as in diabetic 

mellitus. Hoxb7-GFP mice express GFP driven by the Hoxb7 promoter throughout 
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the Wolffian duct (WD) and UB epithelium but not in the surrounding MM or its 

epithelial derivatives, allowing UB branching morphogenesis to be visualized in real 

time during growth of the kidney, either in organ culture or in fixed tissue.20;21  We 

used these features for the direct study of UB branching morphogenesis pattern under 

non-diabetic and diabetic conditions ex vivo. 

Animal care in these experiments met the standards set forth by the Canadian 

Council on Animal Care, and the procedures utilized were approved by Institutional 

Animal Care Committee of the CHUM. Hoxb7-GFP mice were housed under 

standard humidity and lighting conditions (12 hour light-dark cycles), and were 

allowed free access to standard mouse chow and water ad libitum. Timed-pregnant 

mice aged 8-10 weeks were used in all experiments. Vaginal wet mounts were made 

to determine the estrous cycles of the mice. On the evening before estrus, female 

mice were housed overnight with male mice; the presence of spermatozoa in a 

vaginal smear the next morning was defined as day 1 of pregnancy.  

 

Metanephric Organ Culture 

Embryos (E12 to E18) were dissected aseptically from timed-pregnant mice, and 

the metanephroi were isolated under sterile conditions.22 GFP-positive metanephroi 

were photographed immediately after isolation (time 0) and were individually 

cultured either in 1 ml of normal glucose (5mM glucose) or high glucose (25mM 

glucose) DMEM supplied with 1% dFBS, 100 U/ml of penicillin and 100 µg/ml of 

streptomycin in 95% air and 5% CO2 at 37ºC in separate wells of a 24-well plate for 

different time periods, depending on the experiment. For example, we constantly 

monitored and recorded every 8 hours the sequential images of UB branching in 

metanephroi cultured either in normal glucose or high glucose DMEM supplied with 

1% dFBS condition up to 96 hours with fresh medium changed every 24 hours. 
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Based on initial results a 24-hour incubation period was subsequently used for the 

rest of our experiments. The surface area of cultured metanephroi either in 5mM or 

25mM glucose DMEM from time 0 to time 96 hours was measured by QCapture 

Pro 5.1 image analysis program provided in Olympus 1X71 Microscope (CARSEN, 

ON, CA). 

To address the variability in embryonic kidney size and in UB branching 

patterns among conceptuses, the effect of different treatments on UB branching was 

studied in  kidneys  from the same fetus; for example, the left kidney was 

incubated with normal glucose and the right kidney, with high D-glucose or 

L-glucose; or the left kidney was incubated with high D-Glucose and right kidney, 

with high D-Glucose in the presence or absence of DPI (10-6 M), rotenone (10-6 M), 

catalase (250 U) and Akt inhibitor (10-6 M).    

 Sequential images of branching UB were recorded with a Olympus 1X71 

Microscope (CARSEN, ON, CA). Quantitative assessment of UB branching in each 

treatment group was performed by manually counting the number of UB tips at time 

0 and at 24 hours.  

Western Blotting  

 

Western blots were performed as in previous studies. 22;47;48 Briefly, small 

aliquots (20-50 μl) of homogenized kidney explant sample were subjected to 10% 

SDS-PAGE and then transferred onto a PVDF membrane (Hybond-P, Amersham 

Pharmacia Biotech, Canada). The membrane was first blotted for anti-Pax-2 and 

then re-blotted for β-actin. The relative densities of the Pax-2 vs β-actin bands 

were measured by computerized laser densitometry.  
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Real-Time -Quantitative Polymerase Chain Reaction (RT-qPCR) 

RT-qPCR was performed as reported previously. 22;47 In brief, first-strand cDNA 

was produced from 2 g of random hexamer primed total RNA using Super　 -Script 

preamplification system (Invitrogen). Relative quantitation by real-time PCR was 

carried out using iQTM SYBR@ Green Supermix Kit (Bio-Rad Laboratories, 

Mississauga, ON, Canada) and MiniOpticonTM Real-Time PCR  Detection System 

(Bio-Rad), following the protocol described by the supplier. PCR reactions in 

triplicate underwent 40 cycles of 95 oC for 20 s, 60 oC for 20 s, 72 oC for 20 s, and 

79 oC for 5 s in the thermal cycler. The parameter CT (threshold cycle) value was 

measured to determine starting copy number of target genes using the standard 

curve. Lower value of CT indicates a higher amount of PCR products.  We 

employed the following forward and reverse primers: forward primer 5' 

ACATCAAATCAGAACAGGGGAAC 3', and the reverse primer 5' 

CATGTCACGACCAGTCACAAC 3'; these correspond to the nucleotide sequences 

N+1319 to N+1341 and N+1453 to N+1473 of Pax-2 cDNA (NM_003990). For 

internal control, we deployed primers specific for mouse β-actin (forward and 

reverse primers 5' CGTGCGTGACATCAAAGAGAA 3' and 5' 

GCTCGTTGCCAATAGTGATGA 3', corresponding to nucleotide sequences 

N+704 to N+724 and N+820 to N+840 of mouse β-actin cDNA (NM_007393)). 47   

 

Immunohistochemistry 

Kidney explants were fixed in 4% paraformaldehyde in phosphate-buffered 

saline (PBS) (Fisher Scientific, Nepean, ON, Canada) after 24 hours in culture and 

then paraffin-embedded. Kidney sections of 5 µm were deparaffinized in xylene and 

rehydrated. Immunohistochemical examination was performed by the standard 

avidin–biotin–peroxidase complex method (ABC Staining System, Santa Cruz 
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Biotechnologies, Santa Cruz, CA, USA). Endogenous peroxidase was inhibited in 

1% hydrogen peroxide–methanol for 10 min at room temperature and followed by 

trypsin treatment for 10 min in a moist chamber at 37°C. After serum blocking, the 

sections were incubated with primary anti-Pax-2 polyclonal antibody diluted 1:100 

overnight at 4°C humidity chamber; then, biotinylated secondary antibody was 

added, followed by the addition of preformed ABC reagents supplied by the ABC 

kit. The Pax-2 protein was visualized by color development with 3, 

3'-diaminobenzidine tetrahydrochloride. All sections were counterstained with 

hematoxylin, dehydrated, and covered with glass coverslips.  

 

ROS Generation 

ROS production was monitored by the lucigenin method with minor 

modifications. 22;49;50 ROS generated in E18 kidney explant were normalized with 

protein concentration and expressed as relative light units (RLU) per mg protein. 

 

In vivo Study 

We induced gestational diabetes in pregnant Hoxb7-GFP mice with an 

intraperitoneal injection of streptozotocin (STZ,150 mg/kg body weight (BW)) at 

E13.23-29 Maternal glucose concentration (mM) was carefully monitored by 

Accu-Chek Compact Plus Blood Glucose Meter (Roche Diagnostics, Laval, QC, 

Canada) (Figure 10 A). Newborn birth weight (BW) was carefully recorded, as 

shown in Figure 10B. Hematoxylin/eosin (H/E) staining was used to review renal 

morphology, whereas Dolichos Biflorus Agglutinin-FITC (DBA-FITC, Vector 

Laboratories) staining for UB identification 15 in 5 µm of paraformaldehyde 

(4%)-fixed-paraffin-embedded kidney sections under a light microscope (Figure 
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10C). Pax-2 expression was analyzed by immunohistological staining, qRT-PCR 

and western blot as mentioned above (Figure 11). 

Statistical Analysis 

Statistical significance between experimental groups was analyzed initially by 

Student’s t test or by 1-way ANOVA followed by the Bonferroni test as appropriate.  

Three to four separate experiments were performed for each protocol. Data are 

expressed as means ± SD.  A probability level of P  0.05 was considered 

statistically significant.  
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ABBREVIATIONS: CAKUT, congenital abnormality of kidney and urinary tract; 

DMEM, Dulbecco’s modified Eagle’s medium; dFBS, depleted fetal bovine serum; 

DPI, diphenylene iodinium, an inhibitor of NADPH oxidase; FBS, fetal bovine 

serum; GFP, green florescent protein; MAPK, mitogen activated protein kinase; 

MK4, mouse late embryonic mesenchymal epithelial cells; MM, metanephric 

mesenchyme; NF-kB, nuclear factor kappa B; Pax, paired homeobox gene; PKC, 
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protein kinase C; PI3K, phosphatidylinositol 3-kinase; ROS, reactive oxygen species; 

UB, ureteric bud; WD, Wolffian duct. 
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8.8 Legends and Figures 

 
 

 

 

Figure 8-1 High D-Glucose Stimulates UB Branching in Time-Dependent 
Manner. Kidney explants isolated from time-pregnant mice at E13 stage were 
cultured either in normal (5mM) D-glucose DMEM (left kidney) or high (25mM) 
D-Glucose DMEM (right kidney) supplied with 1% dFBS up to 96 hours with fresh 
medium changed every 24 hours. The UB branching morphogenesis sequential 
images were recorded by fluorescent microscope.  A(1-6) (2X magnification) and 
B (1-6) (10 magnification)  representative the kidney explant were cultured in 
5mM Glucose supplemented with 20 mM D-mannitol DMEM to maintain constant 
isotonicity or osmolality, whereas C (1-6) (2X magnification) and D (1-6) (10 
magnification) in 25mM Glucose DMEM. The sequential images were recorded by 
every 24 hours. E shows that high ambient glucose reduced the surface area of 
cultured metanephroi in a time-dependent manner. 
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Figure 8-2   High D-Glucose on UB Branching Morphogenesis. Figure 2A 
shows the specificity of the effect of glucose analogs on UB branching. E13 kidney 
explants were incubated in media containing 1% dFBS and 25 mM different glucose 
analogues such as D-Glucose (a), D-Mannitol (b), L-glucose (c) or 
2-Deoxy-D-Glucose (d) for 24 hours. The images were recorded by fluorescent 
microscope (2X and 10X magnification); Figure 2B shows the D-glucose 
dose-dependent effect on UB branching from 5mM to 30mM in E13 kidney explant 
(2X magnification). 
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Figure 8-3 High D-Glucose stimulates UB Branching Morphogenesis. (A) 
E13 kidney explants were incubated either in 5mM glucose (left kidney) or 25 mM 
glucose DMEM (right kidney) containing 1% dFBS for 24 hours. The images were 
recorded by fluorescent microscope (2X, 4X and 10X magnifications). (B) 
Quantification of UB numbers. Kidney explants incubated in 5 mM glucose were 
considered the control (100%). Each point represents the mean ± SD of three 
independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-4  High glucose up-regulates Pax-2 expression in E18 kidney explant 
analyzed by (A) RT-qPCR; (B) western blot; and (C) immunohistological staining 
(20X and 32X magnification). The normalized Pax-2 level in explant incubated in 5 
mM glucose was considered the control (100%). Each point represents the mean ± 
SD of three independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-5 The inhibitory effect of DPI and rotenone on Pax-2 gene 
expression in E16 kidney explants. E16 kidney explants were cultured in either 5 
mM glucose or 25 mM glucose DMEM with or without DPI (10-6 M) and rotenone 
(10-6 M) for 24 hours. The Pax-2 gene expression was analyzed either by (A) 
RT-qPCR or (B) western blot, respectively. The relative densities of Pax-2 were 
compared with ß-actin. The normalized Pax-2 level in kidney explants incubated in 
5 mM glucose was considered the control (100%); Each point represents the mean ± 
SD of 3 independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-6 The inhibitory effect of DPI and rotenone on UB branching 
morphogenesis stimulated by high glucose.  E14 kidney explants were incubated 
either in 5mM glucose (A) or 25 mM glucose DMEM (B) in the absent or present of 
DPI (10-6 M) (C) and rotenone (10-6 M) (D) for 24 hours. The images were recorded 
by fluorescent microscope (2X and 10X magnifications). (E) Quantification of UB 
numbers. Kidney explants incubated in 5 mM glucose were considered to be 
controls (100%). Each point represents the mean ± SD of three independent 
experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-7   H2O2 effect on UB branching morphogenesis in E13 kidney 
explants. E13 kidney explants were incubated either in 5mM glucose (A and B) or 
25 mM glucose DMEM (C and D) with or without H2O2 (10-5 M) for 24 hours. The 
images were recorded by fluorescent microscope (10X magnifications). (E) 
Quantification of UB numbers. Kidney explants incubated in 5 mM glucose were 
considered as controls (100%). (F) ROS generation was assessed by lucigenin 
method, and the final value of ROS generation was normalized by the protein 
concentration of sample. The normalized ROS generation in cells incubated in 5 
mM glucose was considered as the control (100%). Each point represents the mean 
± SD of three independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-8.  The inhibitory effect of catalase and AKT inhibitor on UB 
branching morphogenesis in E12 kidney explants. E12 kidney explants were 
incubated either in 5mM glucose (A) or 25 mM glucose DMEM (B) in the absent or 
present of Catalase (250 U) (C) and AKT inhibitor (10-6 M) (D) for 24 hours. The 
images were recorded by fluorescent microscope (2X and 10X magnifications). (E) 
Quantification of UB numbers. Kidney explants incubated in 5 mM glucose was 
considered the control (100%). Each point represents the mean ± SD of three 
independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-9. The inhibitory effect of catalase and AKT inhibitor on Pax-2 gene 
expression in E17 kidney explants. E17 kidney explants were cultured in either 5 
mM glucose or 25 mM glucose DMEM with or without Catalase (250 U) and AKT 
inhibitor (10-6 M) for 24 hours. The Pax-2 gene expression was analyzed either by 
(A) RT-qPCR or (B) western blot, respectively. The relative densities of Pax-2 were 
compared with ß-actin. The normalized Pax-2 level in kidney explants incubated in 
5 mM glucose was considered the control (100%); Each point represents the mean ± 
SD of 3 independent experiments. *, P 0.05; **, P 0.01; ***, P 0.005. 
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Figure 8-10. In vivo studies on the effect of maternal diabetes on the neonatal 
kidney of the offspring. Figure 10 A shows a representative mouse in our 
experimental protocol in detail. Diabetic-STZ newborn offspring remained 
significantly smaller and lighter (average 20% less (g)) as compared to control 
animals, as shown in Figure 10B (control vs STZ (g): 1.414 ± 0.11 vs 1.03 ± 0.07). 
Kidney of diabetic offspring was significantly smaller and growth retarded (H&E 
staining and DBA staining) compared to control (Figure 10C). 
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Figure 8-11. In vivo Pax-2 expression in neonate kidneys. Pax-2 
immunohistological staining in newborn kidney of offspring: Control (A, 2X and 
10X magnification) and STZ (B, 2X and 10X magnification). Pax-2 gene expression 
in neonatal kidney was analyzed by qRT-PCR (C) and western blotting (D). The 
normalized Pax-2 level in control-neonate-kidney was considered as 100%; each 
point represents the mean ± SD of 3 independent experiments. *, P 0.05; **, P 
0.01; ***, P 0.005. 
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9.1 Abstract 

 Maternal diabetes leads to an adverse in utero environment but whether 

maternal diabetes impairs nephrogenesis is unknown. Diabetes was induced with 

streptozotocin in   pregnant diabetic Hoxb7-green fluorescent protein mice   at 

embryonic day 13, and the offspring were euthanized at several time points after 

birth. Compared with offspring of non-diabetic controls, offspring had lower body 

weight, body size and kidney weight, and nephron number.  The observed renal 

dysmorphogenesis may be the result of increased apoptosis, because 

immunohistochemical analysis revealed significantly more apoptotic podocytes, as 

well as increased active caspase-3 immunostaining in the renal tubules compared 

with control mice. Regarding potential mediators of these differences, offspring of 

diabetic mice had increased expression of intrerenal angiotensinogen and renin 

mRNA, upregulation of NF-kB isoforms p50 and p65 and activation of the NF-kB   

pathway. In conclusion, maternal diabetes impairs nephrogenesis, possibly via 

enhanced intrarenal RAS activation and NF-kB signaling.   

 

9.2 Introduction 

Diseases such as maternal diabetes create an adverse in utero environment that 

may impair the process of embryogenesis, thus predisposing infants of low birth 

weight (LBW) to subsequent increased risk of future disease 1-5. The developing 

kidney appears particularly sensitive to a high glucose milieu, exposure to which 

may result in congenital renal malformations, i.e., renal agenesis, dysplasia or 

hypoplasia. 6-9  

Intrauterine growth retardation, defined as birth weight below the 10th percentile 

for gestational age, is associated with a reduction in nephron number. 10 Although 

the so-called "thrifty phenotype" hypothesis suggesting that LBW is linked to 
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perinatal programming, 10;11 the underlying mechanisms whereby nephron number 

may be affected and/or nephron function altered, are not yet completely delineated.  

The NF-kB pathway has been reported to be a major intracellular target in 

hyperglycemia and oxidative stress, 12;13 and its two functional pathways 

(canonical-classical and noncanonical) have been studied in the diabetic kidney. 14-16 

Five members of the NF-kB family have been identified: NF-kB1 (p50/p105), 

NF-kB2 (p52/p100), RelA (p65), RelB, and c-Rel. It appears that RelA (p65) and 

p50, in particular, can contribute to p53-, tumor necrosis factor-a (TNF-a)- and 

reactive oxygen species (ROS)-mediated cell apoptosis 17-21 There is a growing 

consensus that a high glucose milieu and diabetes-induced activation of the NF-kB 

pathway has a functional impact on the course of diabetic nephropathy. 15;16;22;23 

However, the underlying mechanisms of NF-kB signaling in impairing renal 

morphogenesis are not well understood.  

Deficiency, mutation or abnormal expression of genes of the intrarenal renin 

angiotensin system (RAS) during organogenesis in experimental animal models 

often leads to abnormal kidneys, 12;24-28 with a decrease in ultimate nephron numbers. 

29-36 Studies including ours have demonstrated that intrarenal RAS activation plays a 

key role in the development of hypertension and renal injury in diabetes. 37-40 In a 

model of experimental diabetes in the rat Lee et al reported a functional interaction 

between NF-kB (in particular, the p65 subunit) and the Ang II type I receptor 

(AT1-R).23 Given these data, we hypothesize that, in diabetes, enhanced intrarenal 

RAS activation and NF-kB signaling are two key elements intimately involved in 

the process of apoptosis in nascent nephrons, ultimately leading to nephron 

deficiency.  
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9.3 Results 

Neonatal Offspring from Control- and Diabetic -Hoxb7-GFP-Tg Mothers 

The body length of neonatal offspring of STZ-induced diabetic mothers was 

significantly smaller as compared to those from control mothers (control vs diabetic 

neonate offspring in length (cm): 2.54  0.27 vs 2.03  0.25), as shown in Figure 

1(A+B). 

 

Biological Parameters  

 Offspring from diabetic mice remained significantly smaller and lighter 

(average 20% less) than control offspring during the entire suckling period. Figure 

2A shows body weight (BW) for control vs STZ offspring (1.414 ± 0.11 vs 

1.03 0.07 g (p≤ 0.001) in neonate; 3.744 0.90 vs 3.00 1.01 g (p≤ 0.05) in 1 week; 

6.93 1.32 vs 5.71 1.11 (p≤ 0.001)  2 week old; 12.12 1.16 vs 9.79 2.07 (p≤ 

0.001)  3 week old animals), and Figure 2B indicates the ratio of kidney weight 

(KW) to BW, suggesting that kidneys of diabetic offspring are relatively large for 

their BW.  

 

Renal Morphology, Nephron Number and Glomerular Volume in Neonatal Kidneys   

  H&E stained sections of whole-mount neonatal kidneys indicated that 

offspring from diabetic pregnant mice had smaller kidneys with smaller glomeruli 

size as compared to the kidneys of control offspring (Figure 3A). Meanwhile, we 

have found that the glomerular volume (VG) of young diabetic offspring from 

neonate to 2 week-old is persistently less than one of control animals (Figure 3B).  

By carefully counting the number of nephrons, we have observed that neonatal 

nephron number in diabetic offspring is significantly lower than in control animals 
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(average 40% less) [control vs diabetic neonate offspring in number: 3,038 ± 175.52 

(N=6) vs 1,862 ± 128.74 (N=5) (p≤ 0.001)] (Figure 3C).. 

 

STZ Toxicity Effect 

STZ is an unstable product with a biological half-life in cell culture medium of 

approximately 19 minutes (www.sigmaaldrich.com). Since STZ administration does 

not induce diabetes 100% of the time, we had the opportunity to examine 

nephrogenesis in fetuses of STZ-exposed animals with or without diabetes. We 

performed additional experiments to determine whether STZ could affect 

nephrogenesis in Nephrin-CFP-Tg mice in vivo. We have observed that renal 

damage (kidney size and number of glomeruli forming) appeared to be dependent on 

the level of maternal hyperglycemia (Figure 4A) but independent of STZ 

administration (Figure 4B) or the length of exposure to STZ (from 0 to 5 days 

(Figure 4C)). Thus, we feel that it is unlikely that a small amount of STZ (if it 

crosses the placenta) exerts toxicity in the fetus in utero in our model. 

 

Apoptosis in Kidneys of Diabetic Offspring 

 TUNEL assay revealed that apoptotic cells appear to be increased in the 

collapsed nephron region in neonates and 1 week-old offspring of diabetic mothers 

as compared to control offspring at the same ages (Figure 5A). Double 

immunostaining with anti-Wilms tumor-1 (WT-1) and anti-active cleaved caspase-3 

antibody indicates that glomerular podocytes undergo apoptosis, which ultimately 

results in nephron collapse (Figure 5B). Similarly, we have observed augmented 

cleaved caspase-3 immunostaining in renal tubule of offspring of diabetic mothers 

from neonate to 3-weeks of age as shown in Figure 6. Taken together, these data 

suggest that high glucose milieu creates an adverse in utero environment that 
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dynamically triggers nascent nephron apoptosis during nephrogenesis, consequently 

resulting in dysmorphogenesis with small kidneys. 

Activation of the Intrarenal RAS and NF-kB pathways in Diabetic Offspring 

RT-qPCR assays revealed that high glucose milieu in utero is capable of 

affecting intrarenal RAS gene expression in kidneys of offspring of diabetic dams; 

in particular, ANG and renin mRNA expression was persistently upregulated from 

the neonatal period to 3 weeks of age (Figure 7). Immunohistochemical examination 

of renal sections confirmed that augmented ANG protein expression is generally 

localized to the proximal tubule region in kidneys of offspring of diabetic mother 

(Figure 8), whereas cells positive for renin appear in a glomerular or tubular position 

in offspring of diabetic mothers rather than in the juxtaglomerular apparatus as in 

normal offspring (Figure 9). Moreover, we have observed that the p50 and p65 

subunits of NF- B were up-regulated and translocated from the cytosol to the 

nucleus in the proximal tubules of offspring from diabetic mother (Figure 10A).  In 

gel mobility shift assays (GMSA), we have found that NF-kB activation is more 

elevated in the neonatal kidneys of offspring from diabetic mothers compared to the 

offspring of control dams (Figure 10B). Taken together, our data indicate that a 

hyperglycemic environment in utero reduces kidney size and triggers apoptosis of 

nascent nephrons, possibly via the activation of the intrarenal RAS and NF-kB 

pathways. 

 

9.4 Discussion 

In the present work we aimed to delineate the functional role of maternal 

diabetes in modulating renal morphogenesis in their offspring and to study their 

underlying mechanisms. Our data indicate that a hyperglycemic environment in 
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utero reduces kidney size and triggers nascent nephron apoptosis via intrarenal RAS 

activation and NF-Kβ signaling. 

Maternal diabetes presents an environmental challenge in utero and may 

fundamentally and dynamically impair the process of embryogenesis, thus 

predisposing to low birth weight (LBW). 1-5 By comparing the global phenotypes 

displayed in young offspring of control and diabetic mothers, we have observed that 

LBW pups with small kidneys are frequent in the offspring of diabetic dams. In the 

kidneys, we observed that glomeruli are smaller and that there are a relatively low 

number of nephrons; there is evidence of nephron collapse in these kidneys.  These 

findings may constitute the genesis of low glomerular endowment. 

In the 1980s Brenner and associates hypothesized that “low glomerular 

endowment” or “fewer numbers of nephrons” are a risk factor for hypertension and 

ESRD in adulthood. 41-44 In principle, decreased nephron number leads to renal 

hyperfiltration (higher filtration pressure and an increased glomerular filtration rate 

(GFR) per glomerulus). Consequently, later in life, pressure natriuresis curves shift, 

leading to increase in blood pressure (BP), thereby enhancing the risk of injury due 

to hypertension and ESRD. Although outcomes such as LBW, small kidneys, fewer 

nephron numbers resulting from an adverse intrauterine environment that might 

predispose to future hypertension are known, the mechanisms by which this occurs 

remain incompletely delineated. 

Increased apoptosis in the blastocyst, and later, in embryonic kidnesy, has been 

reported in rodent embryos developing in diabetic dams.45-50 We would suggest  

that apoptosis, in particular differential apoptosis of specific renal lineages during 

nephrogenesis, induced by a high glucose milieu, is the major mechanism by which 

renal function is ultimately affected in diabetic offspring over time. The activation 
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of intrarenal RAS and NF-kB pathways are two key mechanisms that appear critical 

in the apoptosis induced by an intrauterine high glucose milieu.  

In normal nephrogenesis, apoptotic events occur normally throughout renal 

organogenesis until the formation of the final kidney is complete. For example, the 

undifferentiated stromal mesenchyme either becomes interstitial cells or is destined 

undergo apoptosis to make space for the expanding loops of Henle; in contrast the 

differentiated metanephric mesenchyme (MM) normally undergoes epithelialization 

as a result of mesenchymal-to-epithelial transformation and becomes the proximal 

portion of the nephron 51;52. However, under certain circumstances, for example, in 

maternal diabetes, if the resultant high glucose milieu triggers apoptotic events in 

cells that do not normally undergo apoptosis (e.g., differentiated mesenchymal 

mesenchyme), nephron formation may be altered and result in nephron collapse. 

Indeed, our data suggest that a high glucose milieu in utero retards renal 

morphogenesis by inducing a significantly higher number of apoptotic podocytes in 

the developing glomeruli and inducing a high level of capase-3 activity in the renal 

tubule, perhaps via activation of NF-kB pathways and the intrarenal RAS.   

Based on our observations and those of others, we propose that high 

glucose-induced cell apoptosis resulting in nephron collapse in diabetic offspring 

may be due to several factors. First, although the NF-kB pathway has been reported 

as a major intracellular target in hyperglycemia and oxidative stress, 12;13;53 the 

expression pattern of NF-kB in the kidneys of diabetic adults  is still controversial, 

14-16 Regarding the offspring of diabetic mothers, the functional impact of NF-kB 

pathways on apoptosis is unknown. We observed that NF-kB pathway is 

upregulated in kidneys of diabetic offspring.  Further, p50 and p65 subunits of 

NF- B were markedly upregulated, and these subunits were translocated from the 

cytosol to the nucleus in proximal tubular cells of diabetic offspring. Linking this 
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observation to apoptosis, a first possibility might be that NF-kB activation evokes 

several pro- and anti-apoptotic genes including Fas (CD95), TRAIL receptors (DR4, 

5 and 6), the death-inducing ligands FasL, TNFa and TRAIL, tumor suppressor p53, 

Bcl-xL and Bcl-xS, 17;19 which could lead to apoptosis  of proximal tubular cells, 

consequently resulting in nephron collapse and, ultimately, in nephron deficiency.  

Secondly, the intrarenal RAS, which has been extensively linked to 

diabetes-induced apoptosis in both human 54 and experimental animal models, 55 

may play a role.  ANG and renin are major contributors to the production of Ang II, 

the most physiologically active peptide of the RAS. We have observed that the 

expression of ANG and renin are dramatically activated and correlate with apoptotic 

events in kidneys of offspring of diabetic mother. Additionally, the cells that express 

renin, mainly in the renal juxtaglomerular apparatus 56-58 in the kidneys of the 

normal offspring, are found in the  glomerular or tubular region in kidneys of 

offspring from diabetic mother.  This shift in renin expression together with 

increased mANG expression might be capable of stimulating increased local Ang II 

formation, which  could contribute to the observed increase in glomerular or 

tubular apoptosis;  Finally, the cross-talk between NF-kB pathways and the 

intrarenal RAS 23;59 may be fundamentally associated with nephron deficiency. 

In conclusion, our present results demonstrate that maternal diabetes impairs 

renal development and induces nascent nephron cell apoptosis via enhanced 

intrarenal RAS activation and NF-κB signaling 

 

9.5 Material and Methods 

Animals  

For these present in vivo studies we employed two fertile transgenic mouse (Tg) 

lines that have normal phenotype: Hoxb7- green fluorescent protein (GFP)-Tg 
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(Hoxb7-GFP-Tg) and Nephrin- cyan fluorescent protein (CFP)-Tg 

(Nephrin-CFP-Tg). Hoxb7-GFP-Tg mice were kindly provided by Dr. Frank 

Costantini (Columbia University Medical Center, NY, NY, USA), 60;61 which have 

been used to study ureteral bud branching in nephrogenesis. 53 Nephrin-CFP-Tg mice, 

which have CFP expression driven by the podocyte-specific nephrin promoter in 

glomeruli, were obtained from Dr. Susan Quaggin (University of Toronto, Toronto, 

ON, Canada). 62; these mice permit us to follow glomerular development during 

nephrogenesis.  

Animal care in this set of studies met the standards set forth by the Canadian 

Council on Animal Care, and the procedures utilized were approved by the 

Institutional Animal Care Committee of the CHUM. Mice were housed under 

standard humidity and lighting conditions (12 hour light-dark cycles) and were 

allowed free access to standard mouse chow and water ad libitum. Timed-pregnant 

hoxb7-GFP mice aged 8-10 weeks were used in all experiments. Vaginal wet 

mounts were made to determine the estrous cycles of the mice. On the evening 

before estrus, female mice were housed overnight with male mice; the presence of 

spermatozoa in a vaginal smear the next morning was defined as day 1 of 

pregnancy.  

 

Animal Model and Experimental Design  

Based on our previous report 63 as well as those of others, 64-70 maternal diabetes 

was induced by a single intraperitoneal injection of streptozotocin (STZ, Sigma) at a 

dose of 150 mg/kg of body weight (BW) at E13 gestation age in Hoxb7-GFP mice. 

Meanwhile, we have performed pilot studies regarding STZ potential toxicity effect 

on nephron formation in Nephrin-CFP mice. 
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Offspring from diabetic Hoxb7-GFP pregnant mice were euthanized at 4 time 

periods after birth (N=24 at each time point): neonates, 1-week, 2-weeks and 

3-weeks; Offspring from non-diabetic pregnant mice at same time point were used 

as controls.  

 

Isolation of Metanephroi 

Post-STZ embryos were micro-dissected aseptically from timed-pregnant 

Nephrin-CFP mice (E16 and E18), and the metanephroi were isolated under sterile 

conditions as previous report.53;63  Glomerular images and quantification in 

nephrin-CFP-Tg were analyzed by fluorescence microscopy (Nikon Eclipse TE 

2000-S Microscope, Montreal, QC, CA). 

 

Biological Parameters, Renal Morphology Review & Renal Endowment 

Measurement (Mean Glomerular Volume (VG) and N:  

Biological parameters such as kidney weight, body weight and body length were 

carefully monitored during the entire suckling period. Hematoxylin/eosin (H/E) 

staining was used to review renal morphology; 63 We measured glomerular size 

using an estimate of mean glomerular volume (VG) and also quantitated nephron 

number. VG was determined by the method of Weibel and Gomez 71 with the aid of 

an image analysis software system (Motics Images Plus 2.0, Motic, Richmond, BC, 

Canada). The VG was estimated by the mean glomerular tuft area (AT) derived from 

the light microscopic measurement of 30 random sectional profiles of glomeruli 

from each group (n=6 animals per group) using the formula: Vg =β/k x AT
1.5, where 

β = 1.382 (shape coefficient for spheres) and k = 1.1 (size distribution coefficient). 

Quantification of nephron number was adapted from J.F. Bertram’s method using 

serial sections. 72  
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Real-Time -Quantitative Polymerase Chain Reaction (RT-qPCR) 

RT-qPCR [iQTM SYBR@ Green Supermix Kit and MiniOpticonTM Real-Time 

PCR machine (Bio-Rad Laboratories, Mississauga, ON, Canada)] was performed as 

reported previously 36;53.  The forward and reverse primers corresponding to mouse 

(m) angiotensinogen (mANG), mouse renin (mRen) and β-actin cDNA  36;53 in 

RT-qPCR assays were as follows: mANG forward primer (5’- CCA CGC TCT CTG 

GAT TTA TC-3’) and reverse primer (5’- ACA GAC ACC GAG ATG CTG TT-3’) 

(NM_007428); mRen forward primer (5’- CTG GCC AAG TTT GAC GGT GTT-3’) 

and reverse primer (5’- GTG TCC ACC ACT ACC GCA CAG -3’) (BC061053); 

β-actin forward primer (5’- CGT GCG TGA CAT CAA AGA GAA -3’) and reverse 

primer (5’- GCT CGT TGC CAA TAG TGA TGA -3’) (NM_007393).  

 

Terminal Transferase-Mediated Deoxyuridine Triphosphate (dUTP) Nick 

End-labeling (TUNEL) Assay 

Paraffin-embedded kidney sections (5 µm) fixed in 4% paraformaldehyde were 

deparaffinized in xylene and rehydrated. Apoptosis quantified with a TUNEL kit 

(La Roche Biochemicals, Laval, QC, Canada) according to the supplier’s 

instructions. 

 

Immunohistochemistry and Immunofluorescent staining 

 Paraffin-embedded kidney sections (5 µm) fixed in 4% paraformaldehyde were 

deparaffinized in xylene and rehydrated. Immunohistochemical examination for 

ANG, renin, caspase-3 and NF-kB pathway (p50 and p65) was performed by the 

standard avidin-biotin-peroxidase complex method (ABC Staining System, Santa 

Cruz Biotechnologies, CA, USA).39;73 The primary antibodies used include a 

polyclonal anti-ANG antibody 39;73 (gift from Dr. John S.D. Chan, CHUM-Hôtel 
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Dieu Hospital, Montreal, QC, Canada) in a 1:100 dilution; anti-Wilms tumor-1 

(WT-1) (clone 6F-H2, Dako Cytomation, Carpinteria, CA, USA) in 1:100 dilution; 

anti-cleaved caspase-3 polyclonal antibody (Cell Signaling, USA) in a 1:100 

dilution; a polyclonal NF-kB pathway antibody (p50/p65, Santa Cruz 

Biotechnologies, CA, USA) in 1:100 dilution; and a polyclonal anti-renin antibody 

(Cat.#: RDI-rtreninabm) (Research Diagnostics Inc., Concord, MA, USA) in a 1:500 

dilution. 

 

Gel Mobility Shift Assay (GMSA)  

Nuclear protein extracts were prepared from neonatal kidneys of control and 

diabetic offspring. GMSAs were performed as described previously, 74;75 employing  

32P-labeled NF-κB  probes [NF-κB consensus oligonucleotide: C1 (5' – AGT TGA 

GGG GAC TTT CCC AGG C – 3') and C2 (5' –GCC TGG GAA AGT CCC CTC 

AAC T– 3'); NF-κB mutant oligonucleotide: M1 (5' – AGT TGA GGC GAC TTT 

CCC AGG C – 3') and M2 (5' –GCC TGG GAA AGT CGC CTC AAC T– 3')] 

(Cat.# SC-2505 and SC-2511, Santa Cruz Biotechnologies, CA, USA). 

 

Statistical Analysis 

Statistical significance between experimental groups was analyzed initially by 

Student’s t test or by 1-way ANOVA followed by the Bonferroni test as appropriate.  

Three to four separate experiments were performed for each protocol. Data are 

expressed as means ± SD.  A probability level of P  0.05 was considered 

statistically significant.  
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ABBREVIATIONS: CFP, cyan fluorescent protein; GFP, green fluorescent protein; 

GFR, glomerular filtration rate; H/E, hematoxylin/eosin; LBW, low birth weight;  

mANG, mouse angiotensinogen; MM, metanephric mesenchyme; mRen, mouse 

rennin;  NF-kB, nuclear factor kappa B; RAS, renin-angiotensin system; ROS, 

reactive oxygen species; RT-qPCR, real-time-quantitative polymerase chain reaction; 

STZ, streptozotocin;  Tg, transgenic mouse; TNF-a, tumor necrosis factor-a; 

TUNEL, terminal Transferase-mediated deoxyuridine triphosphate (dUTP) nick 

end-labeling.  
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9.8 Legends and Figures 

 

 

 

Figure 9-1 Image of representative newborn Hoxb7-GFP mice from 
non-diabetic and diabetic mother.  The offspring of diabetic mother are 
significantly smaller than one of non-diabetic mother (control). 
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Figure 9-2 Physical parameters in offspring of Hoxb7-GFP-Tg Mice. Offspring 
from diabetic mother had significantly lower body weight (20% less on average) 
than control offspring during the entire suckling period (Neonate to 3 weeks of age) 
(A); The ratios of kidney weight (KW) to BW in offspring from diabetic mother 
were also significantly higher than control offspring (B).  (Blue bar: control 
offspring; purple bar: offspring from diabetic mother). *, P 0.05; **, P 0.01.  
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Figure 9-3 Renal Morphology and VG Measurement. (A) Hematoxylin & Eosin 

(HE) staining indicates that kidney and glomerular size of neonatal offspring from 

diabetic mother are apparently smaller as compared control offspring. (control 

neonate in blue frame; neonate from diabetic mother in red frame; Magnification, 

20X and 60X). (B) Quantification of VG value in control and diabetic offspring from 

neonate to 3 week-old. The y axis shows the percentage of VG value compared to 

control animal (100%). [Blue bar: control offspring (Neonate: N=9; 1week-old: 

N=12; 2 week-old: N=9; 3week-old: N=8); Red bar: Diabetic offspring (Neonate: 

N=8; 1week-old: N=8; 2 week-old: N=7; 3week-old: N=8)]. **, P 0.01; (C) 

Quantification of neonatal nephron number. The y axis shows the percentage of 

nephron number compared to control animal (100%). [Blue bar: control offspring 

(Neonate: N=6); Red bar: Diabetic offspring (Neonate: N=5). ***, p≤ 0.001)]. 
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Figure 9-4 STZ toxicity studies in Nephrin-CFP-Tg mice. Figure 3A show that 
E16 embryonic kidney isolated from pregnant mice with three different maternal 
hyperglycemic levels: normal (6.0 mmol), mild (14.3 mmol) and severe (24.9 mmol) 
after 3 days of STZ administration (150 mg/kg, ip, at E13). Figure 4B depicts E16 
embryonic kidneys isolated from pregnant mice in normal maternal glucose range 
with or without administration of STZ at E13.  Figure 4C shows E16 and E18 
embryonic kidneys isolated from pregnant mice in normal maternal glucose level 
with STZ administration at E13 (Magnification, 2X and 4X).  

 

 

 

 

 

 



 

 

176

 

 

 

Figure 9-5 Apoptotic assay (TUNEL, Figure 5A) in kidneys of offspring from 

non-diabetic and diabetic mothers. Neonate (C0 and D0); offspring at 1-week old 

(C1 and D1); offspring at 2-weeks old (C2 and D2); and offspring at 3 week-old (C3 

and D3) (Magnification 60X); Figure 5B shows the double immunostaining of 

WT-1 (a) and active caspase-3 expression (b) as well as a merged image (c) in 

neonatal kidneys of offspring from non-diabetic and diabetic mothers. 

(Magnification 60X). 

 

 

 

 

 



 

 

177

 

 

 

 

Figure 9-6 Active caspase-3 expression in kidneys of offspring from 

non-diabetic (control) and diabetic mothers: neonate (C0 and D0); offspring at 

1-week old (C1 and D1); offspring at 2-weeks old (C2 and D2); and offspring at 3 

week-old (C3 and D3) (Magnification 60X). 
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Figure 9-7 Mouse ANG and renin  mRNA expression assayed by RT-qPCR.  
Figure 7A and Figure 7B show that the expression levels of ANG and renin mRNA 
mRNA, respectively, in kidneys of offspring from non-diabetic and diabetic mothers 
aged from neonate to 3 week-old. **, P 0.01; ***, P 0.001. 
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Figure 9-8 ANG protein expression in kidneys of offspring from non-diabetic 

(control) and diabetic mothers: neonate (C0 and D0); offspring at 1-week old (C1 

and D1); offspring at 2-weeks old (C2 and D2); and offspring at 3 week-old (C3 and 

D3) (Magnification 60X) 
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Figure 9-9  Renin protein expression in kidneys of offspring from 

non-diabetic (control) and diabetic mothers: neonate (C0 and D0); offspring at 

1-week old (C1 and D1); offspring at 2-weeks old (C2 and D2); and offspring at 3 

week-old (C3 and D3) (Magnification 60X). 
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Figure 9-10 NF-kB expression and localization as well as activation in neonate 
kidneys from control and diabetic mothers. (A) Expression and localization of 
two isoforms of NF-kB, p50 and p65, were displayed by immunostaining 
(Magnification 60X); (B) GMSA assay. The labeled DNA probe (0.1 pmol) was 
incubated without (lane 1) or with BSA (10 μg) (lane 2) or renal nuclear protein(s) 
(N.P., 10 μg each) of neonatal kidney (lanes 3-8) in the presence of 0.3 units of poly 
dI-dC.  Renal N.P. from neonatal control (line 3, 5 and 7) and diabetic offspring 
(line 4, 6, 8) is incubated with consensus NF-κB DNA cold probe (line 3 and 4), 
consensus NF-κB DNA probe (line 5 and 6) and mutant NF-κB DNA probe (line 7 
and 8), respectively. 
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CHAPTER 10: DISCUSSION 

Maternal diabetes creates a high-risk intrauterine environment that has direct 

implications in congenital malformations, including congenital renal abnormalities. 

Hyperglycemia constitutes an adverse in utero environment that dynamically 

impairs nephrogenesis, resulting in an abnormal pattern of UB branching and 

reduced nephron numbers. As a “kidney-specific” master gene, Pax2 is absolutely 

required for initial signaling of the WD to optimize UB branching and 

mesenchymal-to-epithelial transformation. Pax-2-null mice fail to form any kidneys, 

ureters and genital tracts. In humans and mice, heterozygous Pax2 mutations cause 

kidney, eye, and CNS abnormalities constituting RCS. During my PhD studies, I 

have focused on the influence of hyperglycemia on nephrogenesis and delineated the 

fundamental role of maternal diabetes in modulating renal morphogenesis and gene 

expression in the offspring. 

In studies in virto, our data demonstrated that high glucose induced Pax2 gene 

and protein expression in MK4 cells. The stimulatory effect of high glucose on Pax2 

expression is mediated, at least in part, via ROS generation and activation of the 

NF-kB signal pathway, but not via the PKC, p38MAPK, and p44/42 MAPK 

signaling pathway,  

In studies ex vivo, our data indicated that high glucose alters UB branching 

morphogenesis via Pax2 gene and protein expression. The stimulatory effect of high 

glucose seems to be mediated via ROS generation and activation of the Akt signal 

pathway. 

In studies in vivo, our data indicated that the offspring of diabetic dams had 

lower body weight, body size, kidney weight, nephron number and smaller size of 

glomerular volume as compared with the offspring of nondiabetic controls. Our 
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results demonstrate that maternal diabetes impairs renal development and induces 

nascent nephron cell apoptosis via enhanced intrarenal RAS activation and NFkB 

signaling.   

   

 

10.1. To Investigate Whether High Glucose Alters Pax2 Gene Expression in the 

Mouse Embryonic MM (MK4 Cells) 

Our laboratory is particularly interested in Pax2, a transcription factor that acts 

as a “kidney-specific” master gene. As noted in Section 3.6, Pax2 is essential for 

kidney development. Mice deficient in Pax2 fail to develop an urogenital system 

(219), whereas Tg mice overexpressing Pax2 develop multicystic dysplastic kidneys 

(405). In the present studies, we investigated whether high glucose alters Pax2 gene 

expression and aimed to delineate its mechanism of action in mouse embryonic 

mesenchymal epithelial cells (in vitro) and kidney explants from Hoxb7-GFP mice 

(ex vivo).    

 

10.1.1. Hyperglycemia Induces Pax2 Gene Expression 

To the best of our knowledge, high glucose has not been demonstrated to 

regulate Pax2 gene expression and its underlying mechanism in embryonic kidney 

cells. In the present studies, we employed both MK4 cells and kidney explants to 

examine the effect of high glucose on Pax2 gene expression. MK4 cells were 

incubated for 24 hours in medium that contained 25 mM of different glucose 

analogues, such as D-mannitol, L-glucose, 2-deoxy-glucose and D-glucose. As our 

data indicated, high D-glucose (25 mM) specifically and dose-dependently 

stimulated Pax2 gene expression in MK4 cells (Figure 7-1, page 104) but other 

glucose analogs, such as D-mannitol, L-glucose and 2-deoxy-glucose, had no effect 
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(Figure 7-2, page 105), suggesting that the action of high D-glucose (25 mM) is 

specific. Moreover, immunofluorescence staining showed that high glucose induces 

Pax2 gene expression, consistent with the fact that Pax2 is a nuclear transcription 

factor (Figure 7-3, page 106). To confirm our in vitro data, we adopted an ex vivo 

model using embryonic kidney explants from Hoxb7-GFP mice. We observed a 

similar stimulatory effect of high glucose on Pax2 gene expression in our kidney 

explant system (Figure 7-7, page 110).  

 

10.1.2. High D-glucose Induces ROS Generation in MK4 Cells 

Although detailed mechanism(s) by which high D-glucose regulates Pax2 gene 

expression are far from clear, we hypothesize that it does so via ROS generation. As 

a result, high D-glucose induces ROS generation in MK4 cells (Figure 7-5A, page 

108). These outcomes were suppressed by ROS blockers, such as inhibitors of 

NADPH oxidase (DPI) and mitochondrial electron transport chain complex I 

(rotenone), but not by NF-kB inhibitors (PDTC) (Figure 7-5B, page 108). It is 

unclear whether ROS directly regulate Pax2 gene expression. XO, a form of 

xanthine oxidoreductase that generates ROS, is an enzyme that catalyzes the 

oxidation of hypoxanthine to xanthine and can further catalyze the oxidation of 

xanthine to uric acid (406). We employed XO (Figure 7-5C, page 107) to examine 

the effect of ROS generation on Pax2 gene expression. Indeed, superoxide generated 

from the XO system directly stimulated Pax2 gene expression in MK4 cells (Figure 

7-5D and -5E, page 108). To confirm our in vitro data, E16 kidney explants were 

isolated and cultured for 24 hours in either normal glucose or high glucose with or 

without H2O2. Our results showed that H2O2 directly stimulated Pax2 gene 

expression in E16 kidney explants (Figure 7-7E and -7F, page 110). In diabetic 

environments or hyperglycemia, increased ROS generation leads to embryonic 
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dysmorphogenesis. Our findings prompted us to ask an interesting question: does 

high D-glucose regulate Pax2 gene expression via ROS generation? The data 

revealed that ROS inhibitors, such as DPI and rotenone, can block the stimulatory 

effect of high glucose on Pax2 expression in MK4 cells (Figure 7-6, page 109). To 

confirm our in vitro results, we adopted an ex vivo model of embryonic kidney 

explants from Hoxb7-GFP mice. We noted that the ROS inhibitors DPI and 

rotenone blocked the similar stimulatory effect of high glucose on Pax2 gene 

expression in our kidney explant system (Figure 7-7, page 110). Our observations 

also demonstrated that high glucose stimulated Pax2 promoter activity at the 

transcriptional level, which could be blocked by ROS inhibitors (Figure 7-8A, page 

111). Taken together, they disclosed that the stimulatory effect of high glucose on 

Pax2 gene expression was suppressed by ROS inhibitors in both in vitro and ex vivo 

studies, indicating that high glucose regulated Pax2 gene expression via ROS 

generation.     

10.1.3 High D-glucose Induces Pax2 Gene Expression via Activation of the 

NF-kB Pathway  

According to Brownlee’s hypothesis, the mechanisms underlying 

hyperglycemia-induced kidney damage include excessive ROS generation with 

subsequent PKC and NF-kB activation (291;312). Other investigations have 

demonstrated that both the p38 MAPK and p44/22 MAPK signaling pathways may 

be involved in hyperglycemia-induced ROS generation in RPTCs (407;408) and 

mesangial cells (409;410). To determine if the p38 MAPK, p44/22 MAPK and PKC 

signaling pathways are involved in the stimulatory effect of high glucose on Pax2 

expression, inhibitors of p38 MAPK (SB203580), p44/22 MAPK (PD98059) and 

PKC (GFX) were tested. Our data showed that p38 MAPK, p44/42 MAPK and PKC 

inhibitors could not block the stimulatory action of high glucose on Pax2 mRNA 
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and protein expression in MK4 cells (Figure 7-6, page 108), suggesting that the p38 

MAPK, p44/42 MAPK and PKC signaling pathways are not involved in the effect 

of high glucose on Pax2 gene expression. NF-kB, one of the major intracellular 

targets of hyperglycemia, can be stimulated by hyperglycemia and activate the 

expression of downstream genes. In the present studies, we observed that a NF-kB 

inhibitor (PDTC) could block the stimulatory effect of high glucose on Pax2 

expression in MK4 cells (Figure 7-6, page 108). We identified several 

NF-kB-binding motifs, including 6 of GGrmwkyCCC and 2 of GGGGmyTyy 

located in a full length 5’-promoter region of Pax2 (AF515729), using Alibaba2.1 

sequence searching software (www.gene-regulation.com). We transiently 

transfected a human PAX2 promoter into MK4 cells. Our data demonstrated that 

high glucose stimulated Pax2 promoter activity at the transcriptional level, which 

could be blocked by NF-kB inhibition (Figure 7-8A, page 111). To further 

understand the mechanisms underlying the NF-kB pathway involved in high 

glucose-induced Pax2 gene expression, we tested DNIκBα  which binds the 

subunits p50 and p65 complexed in an inactive form, preventing them from 

translocating to the nucleus. After co-transfection with DNIκBα into MK4 cells, 

Pax2 promoter activity induced by high glucose was decreased (Figure 7-8B, page 

111), suggesting that NF-κB is involved in high glucose-induced stimulation of 

Pax2 transcription activity. Taken together, our findings confirmed that high 

D-glucose evokes Pax2 gene expression via activation of the NF-kB pathway, but 

not via the p38 MAPK, p44/42 MAPK and PKC signaling pathways 

 

10.1.4. Conclusion 

The stimulatory influence of high glucose on Pax-2 gene expression is mediated, at 

least in part, via ROS generation and activation of the NF-κB signaling pathway, but 
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not via the PKC, p38 MAPK and p44/42 MAPK signaling pathways, as shown in 

Figure 10-1. 

  

Figure 10-1 In vitro working diagram 

 

10.2. To Demonstrate the Influence of a High-glucose Milieu on UB Branching 

Morphogenesis 

The mechanisms of hyperglycemia-induced renal malformation are not clearly 

understood. Kanwar et al. (411) reported that E13 embryos exposed to 30 mM 

glucose showed reduced metanephroi size, suggesting that hyperglycemia alters 

nephrogenesis. In our in vitro studies, we demonstrated that the stimulatory effect of 

high glucose on Pax2 gene expression is mediated, at least in part, via ROS 

generation and activation of the NF-κB signaling pathway, but not via the PKC, p38 

MAPK and p44/42 MAPK signaling pathways. Our ex vivo experiments were 

designed to examine the influence of a high-glucose milieu on UB branching 

morphogenesis and its underlying mechanism in Hoxb7-GFP-Tg mice as a model 

with which we would be able to observe UB development under fluorescence 

microscopy, as described in Section 5.2.1. 
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10.2.1. High D-glucose Stimulates UB Branching in a Time-dependent Manner 

Kidney explants were isolated from time-pregnant mice at E13, and then 

cultured in either normal or high D-glucose for up to 96 hours with fresh medium 

changed every 24 hours. As seen in sequential fluorescence microscopic images, 

high D-glucose stimulated UB branching in a time-dependent manner in comparison 

to normal D-glucose (Figure 8-1A, -1B, -1C, and -1D, page 136). We also carefully 

measured metanephroi diameter and found that high glucose reduced it, also in a 

time-dependent manner (Figure 8-1E, page 136), indicating that high glucose 

diminished metanephroi size by apoptosis. Other maternal diabetes-related kidney 

explant studies also demonstrated that hyperglycemia decreased metanephros size, 

induced UB branching dysmorphogenesis and diminished the population of nascent 

nephrons (256;294;295). 

 

10.2.2. High D-glucose Specifically Stimulates UB Branching 

Growth and branching of the epithelial ureteric tree are critical for metanephros 

development. Current methods of UB branching analysis are mostly qualitative. 

Cullen-McEwen et al. (412) noted that the ideal observation time of the recognized 

architectural “pattern” of the UB tree is between 18 and 48 hours. Based on our 

results (Figure 8-1, page 136), the stimulatory effect of high glucose occurs after 24 

hours of incubation; hence, we undertook 24 hours of stimulation in subsequent 

studies. E13 kidney explants were incubated for 24 hours in medium that contained 

25 mM of different glucose analogues, such as D-mannitol, L-glucose, 

2-deoxy-glucose and D-glucose. High D-glucose (25 mM) specifically and 

dose-dependently stimulated UB branching and increased UB tip numbers (Figure 

8-3, page 138), but other glucose analogues, such as D-mannitol, L-glucose and 

2-deoxy-glucose, had no impact (Figure 8-2, page 137). 
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10.2.3. Stimulatory Effect of High D-glucose on UB Branching Morphogenesis is 

Mediated via Pax2 Gene Expression 

We noted increased Pax2 gene expression in MK4 cells and kidney explants, 

indicating an effect of high D-glucose. Although Pax2 was detected in both UB and 

MM lineages, immunohistological staining pointed to Pax2 up-regulation by high 

D-glucose in the area of the UB (Figure 8-4C, page 139). To prove that 

hyperglycemia in utero triggers Pax2 gene expression, we injected STZ to induce 

gestational diabetes in an in vivo model to generate a high-glucose environment 

during pregnancy. Our data revealed increased Pax2 expression mainly localized in 

UB in diabetic neonate kidneys compared to the controls (Figure 8-11, page 146). 

Taken together, these findings suggest that high-glucose stimulation of UB 

branching morphogenesis is mediated via Pax2 gene expression.  

  

10.2.4. ROS-induced UB Branching Morphogenesis 

We reported that high glucose specifically prompts Pax2 gene expression via 

ROS generation in MK4 cells and E16 kidney explants from Hoxb7-GFP mice. We 

then attempted to clarify the direct functional impact of ROS on UB branching. We 

found that H2O2 directly increased UB branching in E13 kidney explants (Figure 8-7, 

page 142). Our results raised an interesting question: does high glucose induce UB 

branching morphogenesis via ROS generation? In E14 kidney explants, high 

D-glucose elicited UB branching, and inhibitors of NADPH oxidase (DPI) and 

mitochondrial electron transport chain complex I (rotenone) blocked the stimulatory 

effect of high glucose on UB branching morphogenesis (Figure 8-6, page 141). 

Catalase is a common enzyme found in nearly all living organisms exposed to 

oxygen, where it catalyzes the decomposition of H2O2 to water and oxygen (2 H2O2 

→ 2 H2O + O2) (413). Morever, high glucose-induced UB branching in E12 kidney 
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explants could be partially blocked by catalase (Figure 8-8C, page 143). To prove 

that hyperglycemia in utero evokes ROS production, we administered STZ to 

produce gestational diabetes in an in vivo model to generate a high-glucose 

environment during pregnancy. We isolated E19 kidney explants from the offspring 

of normal and diabetic mothers, and then measured ROS production. According to 

our unpublished data on E19 kidney explants from a gestational diabetes model, 

ROS levels were increased in diabetic compared to control kidneys (Figure 12-1, 

page 206). Taken together, our results indicate that a hyperglycemic environment in 

utero affects UB branching morphogenesis by an increment in ROS production.  

 

10.2.5. High Glucose Stimulates UB Branching via AKT Signaling 

Evidence shows that PI3K/AKT pathway activation plays a crucial role in 

intracellular signaling leading to hyperglycemia-induced endothelial cell apoptosis 

(414;415). Indeed, Fonsato et al. (416) demonstrated that down-regulation of Pax2 

expression correlated with decreased AKT phosphorylation, suggesting that Pax2 is 

involved in renal tumor angiogenesis via the PI3K/AKT pathway. Therefore, we 

pose the interesting question: is high D-glucose-regulated Pax2 gene expression via 

the PI3K/AKT pathway involved in impairment of the UB lineage? As our results 

show, high glucose-induced UB branching in E12 kidney explants could be blocked 

by AKT inhibitor IV (Figure 8-8D, page 143). AKT inhibitor IV suppressed the 

stimulatory effect of high glucose on Pax2 expression in E17 kidney explants 

(Figure 8-9, page 144). Indeed, our data indicate that the stimulatory action of high 

glucose on UB branching and Pax2 gene expression is completely abolished by 

AKT inhibitor, suggesting that high D-glucose-regulated Pax2 gene expression via 

the PI3K/AKT pathway is involved in impairment of the UB lineage. 
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10.2.6. Conclusion 

Our findings demonstrated that high glucose alters UB branching morphogenesis 

via Pax2 gene and protein expression. The stimulatory impact of high glucose seems 

to be mediated via ROS generation and activation of AKT signaling pathway, as 

illustrated in Figure 10-2.  

  

Figure 10-2 ex vivo working diagram 

 

10.3. To Delineate the Fundamental Role of Maternal Diabetes in Modulating 

Renal Morphogenesis in the Offspring 

Diabetes is associated with a high rate of congenital malformations, including 

urogenital abnormalities (417;418). These congenital malformations result from 

developmental defects in early organogenesis. Our in vitro and ex vivo studies have 

demonstrated that high glucose alters Pax2 gene expression and UB branching 

morphogenesis. Furthermore, our data showed that high glucose reduced 

metanephroi size in a time-dependent manner. A study in E13 kidney explants 

exposed to high glucose for 1 week confirmed our results (294). Moreover, Kanwar 

et al. (295) reported that apoptosis was increased in E13 metanephroi incubated in 

high glucose for 4 days. On the basis of our observations and those of others, we 
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suggested that high glucose induced UB branching dysmorphogenesis, and at the 

same time, it also triggered cell apoptosis in both UB and nephrons, causing their 

collapse. We hypothesized that apoptosis is the major mechanism by which renal 

function is ultimately affected in ODMs over time (our in vivo follow-up study). In 

our in vivo short-term experiments, we aimed to dissect the fundamental role of 

maternal diabetes in modulating renal morphogenesis in the offspring and to 

investigate their underlying mechanisms. 

 

10.3.1. STZ-induced Gestational Diabetes Model and STZ Toxicity  

In our in vivo study, we created a high-glucose in utero environment in pregnant 

dams by IP STZ injection (150 mg/kg) at E13, as shown in Figure 9-3. After 2 days 

of treatment, we implanted insulin minipills in diabetic pregnant dams to normalize 

blood glucose. We, therefore, had 3 groups: the offspring of non-diabetic pregnant 

mice serving as controls, the offspring of diabetic pregnant mice, i.e., diabetic 

offspring, and the offspring of insulin-treated pregnant mice, i.e. treated offspring. 

Offspring kidneys were harvested at 4 time points after birth: neonatally, at 1 week, 

2 weeks and 3 weeks of age. We followed-up by looking at kidney morphology, 

nephron number, gene expression, and apoptotic events in control and diabetic 

offspring in this short-term postnatal study. One of our ongoing experiments will 

examine the fundamental role of maternal diabetes in modulating renal 

morphogenesis in the offspring of insulin-treated, pregnant mice.    
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Figure 10-3. Experimental design of short-term in vivo study 

 

STZ-induced diabetes has been employed to elucidate the effect of maternal 

diabetes on fetal growth and development. It has been demonstrated that exposure to 

intrauterine diabetes may be an important cause of both impaired renal function and 

hypertension in the offspring (419;420). In these experiments, diabetes was induced 

before pregnancy, avoiding the possible effect of STZ on the embryos. On the other 

hand, our diabetic animals were induced during pregnancy. In fact, Tay et al. (421) 

demonstrated that even with careful optimization of STZ dosing, acute tubular 

necrosis was superimposed. To determine whether STZ could affect nephrogenesis, 

we performed additional experiments in Nephrin-CFP mice. We injected STZ IP 

(150 mg/kg) at E13 in our Nephrin-CFP mice. We followed-up by examining 

kidney size and nephron number by fluorescence microscopy in E16 kidneys 

isolated from pregnant mice with 3 different maternal hyperglycemic levels after 3 

days of STZ administration. We observed that kidney size and glomeruli number 

seemed to depend on the level of maternal hyperglycemia (Figure 9-4A, page 175). 
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Furthermore, we also isolated E16 kidneys from pregnant mice in normal maternal 

glucose with or without STZ administration at E13. Our data showed that STZ had 

no toxic effect on the kidney embryos (Figure 9-4B, page 175). Since STZ did not 

induce hyperglycemia in 100% of our cases, we isolated E16 and E18 kidneys from 

pregnant mice with normal maternal glucose levels and STZ administration at E13. 

Our data disclosed that kidney size and the number of glomeruli formed seemed to 

be independent of STZ administration or the length of exposure to STZ (Figure 

9-4C, page 175). Taken together, we believe it is unlikely that a small amount of 

STZ exerts toxicity in fetuses in utero in our model. 

 

10.3.2. LBW is Associated with Maternal Diabetes 

As described above, clinically, 2 opposite abnormal situations of fetal growth are 

associated with maternal diabetes, as illustrated in Figure 10-4. In our studies, we 

adapted an experimental model of severe maternal diabetes, which provides a 

hyperglycemic environment in utero. We are focusing on a model of fetal restriction 

because LBW is often accompanied by fewer glomeruli and perinatal programming 

in adulthood. A study of STZ-induced diabetes rat models also showed that the 

mean body weights of offspring from STZ mothers were decreased by about 10% 

compared to the controls (422). Microsomic babies were found among the offspring 

of diabetic mothers (Figure 9-1, page 172), which could be explained by IUGR. 

Severely diabetic dams displayed dehydration, and severe hyperglycemia in the 

mothers actually decreased uterine blood flow, which greatly affected the transport 

of nutrients to the fetus. Our severely diabetic dams presented dehydration and 

sickness, resulting in maternal undernutrition. Fetal IUGR can occur in response to 

maternal undernutrition (423). From birth to weaning (3 weeks), the offspring of 

diabetic mothers manifested significantly reduced body weight in comparison to 
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control offspring (Figure 9-2, page 173). Our data indicated that severe maternal 

hyperglycemia and decreased uteroplacental blood flow caused fetal malnutrition 

and delayed fetal growth. 

 

Figure 10-4. Maternal diabetes working model 

 

The relationship between LBW and nephron number has been well-documented. 

Manalich et al. (151) counted glomeruli in coronal sections of the renal cortex in 35 

neonates and found fewer nephrons in the kidneys of newborns with LBW. Next, we 

were interested in evaluating nephron endowment in our in vivo model. 

 

10.3.3. Hyperglycemia Delays Renal Formation   

Sustained exposure of the fetus to high glucose concentrations may result in 

diabetic embryopathy characterized by a multitude of congenital birth defects, 

including renal system anomalies (86). Kanwar et al. (411) have demonstrated that 

exposure to hyperglycemia in utero impairs nephrogenesis in mice, leading to 

reduced kidney size. Another study in STZ-induced diabetes rat models showed that 
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the kidneys from STZ fetuses were slightly smaller than those of their normal 

counterparts (422). To confirm that hyperglycemia impairs nephrogenesis, 

hematoxylin/eosin (HE) staining was used to view renal morphology, and Dolichos 

Biflorus Agglutinin-FITC staining was undertaken for UB identification. Less UB 

branching and a smaller cortex zone with small size glomeruli were observed in the 

kidneys of ODMs (Figure 8-10C, page 145). We also noted that the offspring of 

diabetic dams had smaller kidneys with reduced average glomerular volume (Figure 

9-3A, page 174) and 40% fewer nephrons on average (Figure 9-3C, page 174) 

compared to control offspring. We found that glomerular volume (VG) was 

persistently lower in ODMs from birth until the age of 2 weeks (Figure 9-3B, page 

174) compared to control animals. The glomerular volume (VG) in 3 week-old 

offspring from diabetic mice was not significantly different as compared to that 

from nondiabetic mice (Figure 9-3B, page 174). Neverthless, the trend to catch up 

glomerular volume at the age of 3 weeks indicated adaptation to a greater GFR per 

glomerulus (hyperfiltration), resulting from reduced nephron endowment. 

Glomerular enlargement seems to be associated with compensatory hypertrophy in 

the face of nephron deficit. Lower birthweights or intrauterine growth retardation 

undoubtedly contributes to lower nephron number. Reduction in kidney mass with 

increasing age suggests that many missing nephrons have been lost over life. 

Although, we did not demonstrate any data on the nephron number at age of 3 

week-old, we believe it is impossible that the nephron number are recovered at age 

of 3 week-old. Several studies have demonstrated that exposure to high glucose in 

utero increases the synthesis of ECM components in developing kidneys (422;424). 

Although we did not report any results on glomerular hypertrophy in ODMs, we 

believe that glomerular assessment in the offspring may show hypertrophy. Taken 



 

 

197

together, our data indicate that exposure to hyperglycemia in utero delays or retards 

renal formation. 

 

10.3.4. Nascent Nephron Hypoplasia is Due to Apoptosis 

More than a decade ago, Brenner et al. (124) proposed the hypothesis that a low 

nephron number at birth is associated with essential hypertension and a tendency to 

progressive loss of renal function after renal injury. Apart from genetic factors, 

maternal hyperglycemia or maternal diabetes during pregnancy seems to play an 

important role in the pathogenesis of fewer nephrons (425). In experimental animals, 

STZ-induced diabetes during pregnancy leads to a highly significant reduction of 

nephron numbers in ODMs (117;256). This nephron deficit may be a risk factor for 

the development of chronic renal disease and hypertension in adulthood. Our results 

showed that the neonatal kidneys of ODMs had 40% fewer nephrons on average 

compared to the controls (Figure 9-3C, page 174). Furthermore, in the study Amri et 

al. (256), nephrons were counted by glomeruli isolation, whereas in our experiments, 

we adapted Bertram’s protocol, which necessitates cutting whole kidneys into serial 

sections each of 7 microns. We stained each slide with HE and took pictures of 

every 10th section. After carefully counting the glomeruli on each section, we could 

mathematically extrapolate the total number of nephrons in the kidneys. We 

postulated that nascent nephron hypoplasia is due to rapid apoptosis, resulting from 

maternal hyperglycemia observed in glomerular cells. Studies have demonstrated 

that a high-glucose milieu triggers increased apoptosis in diabetic embryopathy 

(426;427). In our investigations, apoptosis was detected by more than one method, 

such as TUNEL assay and active caspase-3 staining. The most important finding 

was increased apoptosis in embryonic kidneys in diabetic pregnant dams, indicating 

augmented apoptosis in embryos exposed to a diabetic milieu. In normal 
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nephrogenesis, apoptosis is normal and necessary during kidney development in 

association with cell proliferation and differentiation. We observed more apoptotic 

cells in already-differentiated MM, specifically in the collapsed nephron region in 

neonatal and 1-week-old kidneys (Figure 9-5C, page 176). Furthermore, we found 

increased activation of caspase-3 in the kidneys of ODMs compared to control 

animals (Figure 9-6, page 177). We noted significantly increased active caspase-3 in 

renal tubules, possibly proximal tubules. During normal nephrogenesis, formation of 

the rodent kidney is complete by 2 weeks after birth. In the newborn kidney, the 

tubules are still differentiating, so that augmented active caspase-3 may localize in 

either collecting tubules or UB. Different cell types play different functional roles in 

the glomerulus. Excessive apoptosis of any cell type can lead to abnormal renal 

function in the diabetic condition. Studies have demonstrated that early loss of 

podocytes underlies filtration barrier deterioration in DN (428), and suggested that 

podocyte apoptosis represents a novel, early mechanism leading to DN (314). We 

also used double fluorescent staining for WT-1 and active caspase-3 antibodies to 

show that glomerular podocytes undergo apoptosis under hyperglycemia in 

developing glomeruli (Figure 9-5B, page 176). Our data indicate that exposure to 

hyperglycemia in utero triggers podocyte apoptosis during nephrogenesis, resulting 

in a low nephron number at the time of birth. 

 

10.3.5. Effect of Hyperglycemia and Intrarenal RAS Activation on Renal Damage 

The intrarenal RAS plays a fundamental role in nephrogenesis. All components 

of the RAS are expressed in the metanephric kidney in rodents during kidney 

development. As noted in Section 4.2.6.2, genetic interruption of RAS components 

in mice elicits a series of renal malformations. Evidence suggests activation of the 

intrarenal RAS in DN. Both clinical and animal studies have demonstrated that 
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activation of the intrarenal RAS contributes to tubular apoptosis in DN (316;429). 

We wanted to show that the RAS in hyperglycemia in utero triggers increased renal 

damage by apoptosis. We observed that Agt and renin, 2 major contributors to Ang 

II production, are up-regulated in the kidneys of ODMs (Figures 9-7, 9-8 and 9-9, 

page 178-180). Cells in the JG apparatus are responsible for secreting renal renin in 

the normal kidney, but cells positive for renin staining appear to be localized in the 

glomeruli or tubular region in the kidneys of ODMs. Specifically, this shift in renin 

expression with increased Agt expression might be capable of stimulating local Ang 

II formation, contributing to heightened RAS activation. Our data revealed that 

cleaved active caspase-3 immunostaining is increased in the proximal tubules of 

ODMs with strong staining density of Agt mostly in the proximal tubule portion of 

the diabetic offspring kidney. There was a strong correlation between apoptosis and 

RAS activation in the same cells, suggesting that RAS activation is associated with 

apoptotic events causing renal damage.  

 

10.3.6. Effect of Hyperglycemia and NF-kB Activation on Renal Damage 

The NF-kB pathway has been reported to be a major intracellular target in 

hyperglycemia and oxidative stress (325;430). Since we demonstrated that high 

glucose induced Pax2 gene expression through the NF-kB pathway, we wanted to 

investigate if NF-kB involvement in hyperglycemia in utero triggers increased 

apoptosis and renal damage. The mechanisms associated with NF-kB-mediated 

apoptosis are not clear. However, there is evidence that NF-kB activation regulates 

apoptosis (431). Up-regluation of subunits p50 and p65 has been reported in tubular 

epithelial cells of proteinuric kidneys (327). By immunohistochemistry, we 

demonstrated up-regulation of subunits p50 and p65 in the kidneys of offspring born 

to diabetic mothers, and these subunits were translocated from the cytosol to the 
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nucleus in the RPTCs of ODMs (Figure 9-10A, page 181). We believe that the 

NF-kB pathway regulates apoptosis in proximal tubules. By gel motility shift assay, 

we showed that NF-kB activation was greater in the neonatal kidneys of ODMs 

compared to their controls (Figure 9-10B, page 181). Our data indicated that a high 

glucose environment in utero triggers the apoptosis of nascent nephrons, possibly 

via activation of the NF-kB pathway.    

 

10.3.7 Conclusion 

Our findings demonstrated that maternal diabetes impairs renal development and 

induces nascent nephron cell apoptosus via intrarenal RAS and NF-kB signaling, as 

shown in Figure 10-5.  

 
Figure 10-5. In vivo working diagram 
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In summary, the adverse environment created in utero by maternal 

hyperglycemia obstructs kidney development in the offspring and increases 

vulnerability of the kidneys exposed to different pathological processes in adult life. 

Our results have shown that high D-glucose elevates Pax2 gene expression and 

apoptosis in MK4 cells; high D-glucose alters UB branching morphogenesis; 

glomerular podocytes undergo apoptosis and components of the intrarenal RAS are 

overexpressed in the kidneys of ODMs. 

In utero exposure to diabetes could cause lower nephron number and induced 

hypertension and renal disease in adult offspring. The offspring of diabetic rats 

displayed elevated systolic blood pressure and renal failure. Our ongoing long-term 

in vivo research will study if nephron underendowment induced by maternal 

diabetes is a major mechanism of the perinatal programming of hypertension as 

illustrated in Figure 10-6 as our working model. 

  

 

Figure 10-6 Our working model. 
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CHAPTER 11: RESEARCH PERSPECTIVES 

11.1 MATERNAL DIABETES AND PERINATAL PROGRAMMING 

11.1.1. Maternal Diabetes and Perinatal Programming 

Gestational diabetes or hyperglycemia occurring during pregnancy is linked with 

an increased risk of complications not only in mothers but also in their offspring. 

Accumulating evidence, from both animal studies and epidemiological data, 

indicates that fetal beta cell hyperplasia and hyperinsulinemia induce irreversible 

changes leading to heightened risk of T2DM, obesity, cardiovascular disease and 

hypertension in adulthood (432). 

 

11.1.2. Maternal Diabetes Related to the Development of Obesity 

Excessive growth has been reported in the offspring of women with diabetes 

during pregnancy, including both GDM and PGDM (433). The offspring of Pima 

Indian women with pre-existent T2DM and GDM presented fetal macrosomia, and 

were larger and heavier at every age compared to the offspring of non-diabetic 

women (434). Weiss et al. (435) showed that the offspring of women with T1DM 

had significantly higher BMI by age 5-15 years compared to those of control women. 

The Growing Up Today Study in 9- to 14-year-old white, non-Hispanic children 

disclosed that among 465 subjects whose mothers had GDM, 17.1% were at risk of 

being overweight and 9.7% were overweight in early adolescence (436). The 

mechanisms by which intrauterine exposure to maternal diabetes increases the risk 

of offspring obesity are not entirely understood. At age 5-9 years, the offspring of 

Pima women with diabetes or impaired glucose tolerance during pregnancy have 

higher fasting insulin concentrations than those of women with better glucose 

tolerance during pregnancy, indicating that relative hyperinsulinemia may be a 

precursor of childhood obesity (437). Also, leptin, a hormone secreted by adipocytes 
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and the placenta, seems to be a potential mechanism for later development of 

obesity in offspring exposed to diabetes in utero (438). These findings suggest that 

exposure to a diabetic environment in utero increases the risk of obesity in 

childhood and early adulthood. 

 

11.1.3. Maternal Diabetes Induces Impaired Glucose Tolerance, Insulin 

Resistance and T2DM in the Offspring  

Several clinical studies have disclosed that exposure to maternal diabetes in 

utero raises the risk of metabolic syndrome, including glucose intolerance, insulin 

resistance, and T2DM in the offspring in later life (439). Impaired glucose tolerance 

is one of the long-term complications in ODMs (107). In a study in Germany, the 

prevalence of impaired glucose tolerance was increased in the offspring of mothers 

with pre-existent T1DM and GDM (440). Dabelea et al. (441) reported that among 

Pima Indians, there was significantly more T2DM in the 5-34-year-old offspring of 

diabetic women than in those of nondiabetic women. In populations with a high 

prevalence of diabetes in pregnancy, such as North American Pima Indians, a 

U-shaped curve has been found, with high rates of diabetes also occurring in those 

who had HBW ( 4,500 g) (72). Wei et al. (442) confirmed a U-shaped correlation 

between birth weight and the risk of T2DM, which also afflicated those who 

weighed 4,500 g at birth in Taiwan. Segar et al. (443) showed that exposure to a 

hyperglycemic milieu during the last third of gestation results in insulin resistance in 

the offspring of STZ-induced diabetic rats. The ODMs of STZ-induced diabetic rats 

had impaired glucose tolerance compared to their controls (420). These findings 

indicate that exposure to an intrauterine diabetic environment heightens the risk of 

metabolic syndrome, including glucose intolerance, insulin resistance, and T2DM in 

the offspring in later life.      
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11.1.4. Maternal Diabetes Related to the Development of Hypertension and 

Renal Disease 

Associations between exposure to maternal diabetes and offspring blood 

pressure have been examined (444). In utero exposure to diabetes can cause lower 

body weight and induce cardiovascular abnormalities in adult offspring (390). A 

study in Chicago showed that the offspring of diabetic mothers had significantly 

higher systolic and mean arterial blood pressure than those of nondiabetic controls 

(433). Another investigation, in 42 Pima Indians aged 7-11 years, established that 

intrauterine exposure to diabetes is a significant determinant of high systolic blood 

pressure during childhood (445). Project Viva, a recent cohort study in 1,238 

mother-child pairs, revealed that children with intrauterine exposure to GDM had 

higher systolic arterial blood pressure at age 3 years than the controls (446). In Pima 

Indians, the offspring of mother who had diabetes during pregnancy were at higher 

increased risk of elevated albuminuria (447). Amri et al. (256) demonstrated that 

fetuses exposed in utero to hyperglycemia had a 13% decline in birth body weight 

and a 10-35% decrease in nephron numbers. The ODMs of STZ-induced diabetic 

rats had elevated systolic blood pressure, increased glomerular area, and reduction in 

the GFR and renal plasma flow (RPF) compared to the offspring of nondiabetic 

mothers (448). Magaton et al.(420) showed that ODMs had increased systolic blood 

pressure, glomerular hypertrophy, a decreased GFR from age 2 months, and a 

diminution of Ang 1-7 concentration, indicating early functional kidney impairment. 

Rocha et al. noted that, in comparison to control groups, ODMs had hypertension 

from 8 weeks onwards, glomerular hypertrophy from 3 months, a significantly 

decreased GFR and RPF from 3 months, and a reduction in glomeruli number in 

12-month-olds (419). These findings suggest that exposure to a hyperglycemic 
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environment in utero increases the risk of renal disease and hypertension in later 

life. 

 

11.1.5. Possible Mechanism(s) of Maternal Diabetes in Perinatal Programming 

of Hypertension  

Exposure to maternal diabetes in utero may induce irreversible changes leading to 

an heightened risk of T2DM, obesity, cardiovascular disease and hypertension in 

adult life. One of the best known renal mechanisms involved in perinatal 

programming of hypertension may be the reduction of nephron numbers in patients 

and animals models as a function of birth weight or IUGR (141;449). Diabetes is 

associated with a high frequency of congenital malformations, including urogenital 

abnormalities. These congenital malformations result from developmental defects 

occurring in early organogenesis. Studies have demonstrated that maternal diabetes 

is a novel risk factor for inborn nephron deficits. Congenital nephron deficiency is a 

risk factor for chronic renal disease and hypertension progression in adulthood. 

Multiple mechanisms are involved in maternal diabetes impacting nephron 

deficiency, such as hyperglycemia, ROS, apoptosis, and NF-kB. As described in 

Section 4.2, hyperglycemia in utero impairs nephrogenesis, culminating in a 

reduced number of nephrons. Furthermore, the crucial role of high glucose-induced 

apoptosis in experimental DN has been demonstrated. Kanwar et al. (295) have 

reported that in vitro exposure of metanephroi to high glucose concentration 

increases apoptosis. The intrarenal RAS is another important candidate. As 

described in Section 4.2.6, deficiency, mutation or the abnormal expression of 

intrarenal RAS genes during organogenesis in experimental models often results in 

abnormal kidneys, with a reduction in nephron numbers. It has been demonstrated 

that intrarenal RAS activation plays a key role in the development of hypertension 
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in diabetes (450). A study of maternal low-protein diets showed that renal AT1R 

expression was increased after IUGR in rats (451). Animal experiments have 

documented heightened renal renin expression in experimental DN, suggesting that 

hyperglycemia activates the intrarenal RAS (388). In rats, hyperglycemia in utero 

produces long-lasting hypertension in the male offspring with enhanced tissue ACE 

activity (391).  

    

 11.1.6. Effects of Perinatal Programming by Hyperglycemia in Adult 

Offspring of Diabetic Mothers (Age 20 Weeks) 

Population studies reporting the multiple long-term consequences of maternal 

hyperglycemia explain the concept of perinatal programming. Rasch et al. (452) 

established a link between the RAS and perinatal programming and adult 

cardiovascular diseases, such as hypertension. However, the mechanisms of 

programming remain unclear. The long-term part of our project will investigate the 

effects of perinatal programming by hyperglycemia in utero on diabetic adult 

offspring (age 20 weeks), as shown in Figure 11-1 as our experimental design in this 

long-term in vivo study.  

 Figure 11-1 Experimental design of our long-term in vivo study 
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 Brochu et al. (453) reported that the offspring of rats born with IUGR presented 

differences in the development of hypertension and plasma renin activity between 

male and female adults, suggesting the importance of gender in outcomes during 

adulthood after IUGR. It would, therefore, be appropriate to separate the results of 

our future long-term study by sex. Our short-term experiment showed that the body 

weight of diabetic offspring was lower than that of control offspring. In our 

preliminary investigations, we found that the body weight of diabetic adult offspring 

was lower than that of control adult offspring, in both males and females, as seen in 

Figures 11-2 and 11-3.   

 

Figure 11-2. Body weight of male adult offspring 

 

Figure 11-3. Body weight of female adult offspring 
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According to Barker’s hypothesis, LBW is inversely correlated with blood 

pressure. As discussed in Section 11.1.4, exposure to a diabetic environment in 

utero can cause lower body weight and induce cardiovascular abnormalities in adult 

offspring. Our preliminary studies pose interesting questions as to whether adult 

diabetic offspring develop hypertension. Our short-term experiments showed that 

hyperglycemia in utero impaired the intrarenal RAS and induced the apoptosis of 

glomerular cells, resulting in low nephron numbers in ODMs. According to 

Brenner’s hypothesis, low nephron numbers lead to glomerular hyperfiltration, 

culminating in glomerular hypertrophy. We postulate that compensatory glomerular 

hypertrophy is a gradual predisposition to hypertension in ODMs Thus, we can 

check the progression of renal failure (decreased GFR and elevated albuminuria) in 

offspring exposed to hyperglycemia in utero, as illustrated in Figure 11-4 as our 

working model.  

   
Figure 11-4. Our working model for long-term in vivo study 
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11.2. Underlying Mechanism by Which NF-kB Promotes Apoptosis via the p53 

Pathway in UB and MM Lineages 

Increased apoptosis in diabetic embryopathy has been reported both ex vivo and 

in vivo. Hyperglycemia-induced apoptosis is one of the major mechanisms affecting 

renal morphology. The high-glucose environment in diabetes mellitus has been 

linked to ROS generation, followed by apoptosis, and to a number of cytokines and 

cytokine-like factors. We previously observed in vitro that high glucose specifically 

induced Pax2 gene expression in MK4 cells and kidney explants via ROS generation 

and the NF-kB pathway. We also discerned that high glucose increased cell 

apoptosis in MK4 cells due to ROS generation (454). Linking this finding to 

apoptosis, a first possibility might be that NF-kB activation evokes proapoptotic 

genes, including p53, which could lead to apoptosis of RPTCs. In our preliminary 

studies, we noted that high D-glucose stimulates NF-kB (p50/p65) gene expression 

in MK4 cells, as seen in Figure 11-5.  

 

Figure 11-5. High D-glucose stimulates NF-kB (p50/p65) gene expression in MK4 

cells  
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We also found that high D-glucose stimulates p53 phosphorylation (Ser15) and p53 

translocation in MK4 cells, as depicted in Figure 11-6. 

 

Figure 11-6. High D-glucose effect on p53 gene in MK4 cells 

The mechanisms of hyperglycemia-induced apoptosis mediated by the 

NF-kB-induced p53 pathway are not clear. p53 Tg mice show smaller kidneys and 

nephron deficiency resulting from increasing apoptosis in the undifferentiated 

mesenchyme (356). Studies have demonstrated that NF-kB-binding sites are present 

in the promoter regions of p53 (339), and NF-kB can activate p53 expression (340). 

Our preliminary experiments raise interesting questions: 1) does high D-glucose 

stimulate apoptosis via the NF-kB pathway in MK4 cells? 2) does high D-glucose 

have an impact on the p53 gene (phosphorylation or translocation) via the NF-kB 

pathway in MK4 cells? We are interested in studying the underlying mechanism by 

which NF-kB promotes apoptosis via the p53 pathway in UB and MM lineages in 

MK4 cells, as shown in Figure 12-3 as our working model. We also want to 

investigate the short-term in vivo model to demonstrate whether p53 expression and 

NF-kB (p50/p65) gene expression are up-regulated in the kidneys of diabetic 

offspring.  
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Figure 11-7. Our working model 

 

11.3. To Determine Whether an Antioxidant System (Catalase) can Protect 

against the Effects of Hyperglycemia in utero on Embryonic Organogenesis 

Affected by Increased ROS generation 

Studies suggest that antioxidants can reverse high glucose-induced renal damage 

(455). In an investigation of diabetic embryopathy, Ryu et al. (456) established that 

ROS are increased in rat embryos with congenital malformations. Oxidative damage 

is high in diabetic culture medium, and nitric oxide protects against 

diabetes-induced teratogenicity in a dose-dependent manner. Our laboratory showed 

that ROS play a role in nephrogenesis both in vitro and ex vivo. Using E19 kidney 

explants from a gestational diabetes model, our unpublished data indicate that ROS 

generation occurs in diabetic kidneys compared to control kidneys (Figure 12-1, 

page 206). Our data demonstrate that catalase partially blocks high glucose-induced 

UB branching in E12 kidney explants. Our unpublished findings suggest that 
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catalase inhibits the stimulatory effect of high glucose on Pax2 gene expression 

(Figure 12-2, page 207). Brezniceanu et al. (316) reported that catalase 

overexpression attenuated ROS and apoptosis stimulation in the kidneys of diabetic 

mice in vivo. In their other study, they (457) showed that db/db mice developed 

obesity, hyperglycemia, hypertension, and albuminuria but db/db rCAT-Tg mice 

had normal blood pressure compared to db/db mice. These results raise interesting 

questions: 1) could an antioxidant system (catalase) protect against the effects of an 

hyperglycemic environment in utero on embryonic organogenesis impacted by an 

increase in ROS generation? 2) could an antioxidant (catalase) prevent the perinatal 

programming of hypertension in an hyperglycemic environment in utero? In the 

future, we are going to study catalase Tg mice to investigate the pathogenesis of 

nephropathy resulting from maternal diabetes. Catalase Tg mice were developed by 

Dr. John S.D. Chan’s laboratory. These animals specifically overexpress catalase in 

proximal tubules driven by kidney androgen-regulated protein promoter 2 (KAP2), 

as illustrated in Figure 11-8.  

 
Figure 11-8. KAP2-rCAT construct (adapted from Brezniceanu et al.: Kidney Int 

2007) (316) 

This Tg mouse model with antioxidant enzyme overexpression will serve to 

explore our hypothesis on the role of ROS in gestational diabetes, as shown in 

Figure 11-9 as our experiment design.  

. 
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Figure 11-9. Our experiment design.  

Thus, we can check whether an increase in the antioxidant defense system will 

protect against heightened ROS production in kidneys exposed to an hyperglycemic 

environment in utero and attenuate apoptosis in gomerular or proximal tubules, as 

depicted in Figure 12-10 (our working model). In addition, we will be able to 

establish if this antioxidant defense system will normalize the effect of high glucose 

on UB branching morphogenesis after ROS generation by crossing Hoxb7/GFP 

mice with Catalase Tg mice. 

 

Figure 11-10. Our working model 
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Figure 12-1. Hyperglycemia in utero induced ROS generation in E19 kidney 

explants. The whole E19 kidney explants were isolated from the offspring of 

either control mice or streptozotocin (STZ)-induced diabetic mice (mildly diabetic 

dam (BG=15.4 mM) and severely diabetic dam (BG=25.2mM).) ROS generation 

was assessed by lucigenin mothod, and the final value of ROS generation was 

normalized by the protein concentration of sample.  
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Figure 12-2. Catalase inhibits the stimulatory effect of high glucose on Pax2 

gene expression in MK4 cells. After synchronized with serum free medium 

overnight, the quiescent cells were incubated in either 5mM or 25mM D-glucose 

DMEM with or without Catalase or AKT inihibitor containing 1% dFBS for 24 

hours. 
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Figure 12-3 Inhibitory effect of diphenylene iodinium (DPI) and rotenone on 

Pax-2 gene expression in E16 kidney explants. E16 kidney explants were cultured 

in 5 mM glucose DMEM with or without DPI (10-6 M) and rotenone (10-6 M) for 

24 h. The Pax-2 gene expression was analyzed by Western blot. 
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Figure 12-4 The effect of catalase and AKT inhibitor on UB branching 

morphogenesis in E13 kidney explants. E13 kidney explants were incubated in 5 

mM glucose DMEM in the absence or presence of catalase (250 U) and AKT 

inhibitor (10-6M) for 24 h. The images were recorded by fluorescence microscope.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

218

 

Figure 12-5 Analysis of Caspase-3 activity .Caspase-3 activity was measured with 

a commercially available kit according to the manufacturer’s instructions (Medical 

and Biological Laboratories,Woburn, MA, USA) . The MK3 cells were incubated in 

DMEM with 1% dFBS containing either 5mM glucose or 25mM glucose for 24 h 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

219

CHAPTER 13 : REFERENCES 

 

Reference List 

 

 1.  Melamed N, Chen R, Soiberman U, Ben-Haroush A, Hod M, Yogev Y. 

Spontaneous and indicated preterm delivery in pregestational diabetes 

mellitus: etiology and risk factors. Arch.Gynecol.Obstet. 2008;278:129-34. 

 2.  Gunton JE, McElduff A, Sulway M, Stiel J, Kelso I, Boyce S et al. Outcome 

of pregnancies complicated by pre-gestational diabetes mellitus. Aust.N.Z.J 

Obstet.Gynaecol. 2000;40:38-43. 

 3.  Metzger BE, Coustan DR. Summary and recommendations of the Fourth 

International Workshop-Conference on Gestational Diabetes Mellitus. The 

Organizing Committee. Diabetes Care 1998;21 Suppl 2:B161-B167. 

 4.  Brody SC, Harris R, Lohr K. Screening for gestational diabetes: a summary 

of the evidence for the U.S. Preventive Services Task Force. Obstet.Gynecol. 

2003;101:380-92. 

 5.  Engelgau MM, Herman WH, Smith PJ, German RR, Aubert RE. The 

epidemiology of diabetes and pregnancy in the U.S., 1988. Diabetes Care 

1995;18:1029-33. 

 6.  Cheng YW, Caughey AB. Gestational diabetes: diagnosis and management. 

J Perinatol. 2008;28:657-64. 



 

 

220

 7.  Ben-Haroush A, Yogev Y, Hod M. Epidemiology of gestational diabetes 

mellitus and its association with Type 2 diabetes. Diabet.Med. 

2004;21:103-13. 

 8.  King H. Epidemiology of glucose intolerance and gestational diabetes in 

women of childbearing age. Diabetes Care 1998;21 Suppl 2:B9-13. 

 9.  Thorpe LE, Berger D, Ellis JA, Bettegowda VR, Brown G, Matte T et al. 

Trends and racial/ethnic disparities in gestational diabetes among pregnant 

women in New York City, 1990-2001. Am J Public Health 2005;95:1536-9. 

 10.  Shen JJ, Tymkow C, MacMullen N. Disparities in maternal outcomes among 

four ethnic populations. Ethn.Dis. 2005;15:492-7. 

 11.  Baraban E, McCoy L, Simon P. Increasing prevalence of gestational diabetes 

and pregnancy-related hypertension in Los Angeles County, California, 

1991-2003. Prev.Chronic.Dis. 2008;5:A77. 

 12.  Dabelea D, Snell-Bergeon JK, Hartsfield CL, Bischoff KJ, Hamman RF, 

McDuffie RS. Increasing prevalence of gestational diabetes mellitus (GDM) 

over time and by birth cohort: Kaiser Permanente of Colorado GDM 

Screening Program. Diabetes Care 2005;28:579-84. 

 13.  Rodrigues S, Robinson E, Gray-Donald K. Prevalence of gestational diabetes 

mellitus among James Bay Cree women in northern Quebec. CMAJ. 

1999;160:1293-7. 

 14.  Torloni MR, Betran AP, Horta BL, Nakamura MU, Atallah AN, Moron AF 

et al. Prepregnancy BMI and the risk of gestational diabetes: a systematic 

review of the literature with meta-analysis. Obes.Rev. 2009;10:194-203. 



 

 

221

 15.  Kumari AS. Pregnancy outcome in women with morbid obesity. Int.J 

Gynaecol.Obstet. 2001;73:101-7. 

 16.  Ogonowski J, Miazgowski T, Kuczynska M, Krzyzanowska-Swiniarska B, 

Celewicz Z. Pregravid body mass index as a predictor of gestational diabetes 

mellitus. Diabet.Med. 2009;26:334-8. 

 17.  Callaway LK, Prins JB, Chang AM, McIntyre HD. The prevalence and 

impact of overweight and obesity in an Australian obstetric population. 

Med.J Aust. 2006;184:56-9. 

 18.  Chu SY, Kim SY, Schmid CH, Dietz PM, Callaghan WM, Lau J et al. 

Maternal obesity and risk of cesarean delivery: a meta-analysis. Obes.Rev. 

2007;8:385-94. 

 19.  Major CA, deVeciana M, Weeks J, Morgan MA. Recurrence of gestational 

diabetes: who is at risk? Am J Obstet.Gynecol. 1998;179:1038-42. 

 20.  MacNeill S, Dodds L, Hamilton DC, Armson BA, VandenHof M. Rates and 

risk factors for recurrence of gestational diabetes. Diabetes Care 

2001;24:659-62. 

 21.  Rauh-Hain JA, Rana S, Tamez H, Wang A, Cohen B, Cohen A et al. Risk 

for developing gestational diabetes in women with twin pregnancies. J 

Matern.Fetal Neonatal Med. 2009;22:293-9. 

 22.  Gilmartin AB, Ural SH, Repke JT. Gestational diabetes mellitus. 

Rev.Obstet.Gynecol. 2008;1:129-34. 



 

 

222

 23.  Barros RP, Morani A, Moriscot A, Machado UF. Insulin resistance of 

pregnancy involves estrogen-induced repression of muscle GLUT4. Mol.Cell 

Endocrinol. 2008;295:24-31. 

 24.  Handwerger S, Freemark M. The roles of placental growth hormone and 

placental lactogen in the regulation of human fetal growth and development. 

J Pediatr.Endocrinol.Metab 2000;13:343-56. 

 25.  Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M et al. 

Effect of homologous placental lactogens, prolactins, and growth hormones 

on islet B-cell division and insulin secretion in rat, mouse, and human islets: 

implication for placental lactogen regulation of islet function during 

pregnancy. Endocrinology 1993;132:879-87. 

 26.  Alsat E, Guibourdenche J, Couturier A, Evain-Brion D. Physiological role of 

human placental growth hormone. Mol.Cell Endocrinol. 1998;140:121-7. 

 27.  Barbour LA, Shao J, Qiao L, Pulawa LK, Jensen DR, Bartke A et al. Human 

placental growth hormone causes severe insulin resistance in transgenic mice. 

Am J Obstet.Gynecol. 2002;186:512-7. 

 28.  Chen HL, Yang YP, Hu XL, Yelavarthi KK, Fishback JL, Hunt JS. Tumor 

necrosis factor alpha mRNA and protein are present in human placental and 

uterine cells at early and late stages of gestation. Am J Pathol. 

1991;139:327-35. 

 29.  Coughlan MT, Oliva K, Georgiou HM, Permezel JM, Rice GE. 

Glucose-induced release of tumour necrosis factor-alpha from human 



 

 

223

placental and adipose tissues in gestational diabetes mellitus. Diabet.Med. 

2001;18:921-7. 

 30.  Kirwan JP, Hauguel-De MS, Lepercq J, Challier JC, Huston-Presley L, 

Friedman JE et al. TNF-alpha is a predictor of insulin resistance in human 

pregnancy. Diabetes 2002;51:2207-13. 

 31.  Kautzky-Willer A, Pacini G, Tura A, Bieglmayer C, Schneider B, Ludvik B 

et al. Increased plasma leptin in gestational diabetes. Diabetologia 

2001;44:164-72. 

 32.  Williams MA, Qiu C, Muy-Rivera M, Vadachkoria S, Song T, Luthy DA. 

Plasma adiponectin concentrations in early pregnancy and subsequent risk of 

gestational diabetes mellitus. J Clin.Endocrinol.Metab 2004;89:2306-11. 

 33.  Petersen JS, Dyrberg T, Damm P, Kuhl C, Molsted-Pedersen L, Buschard K. 

GAD65 autoantibodies in women with gestational or insulin dependent 

diabetes mellitus diagnosed during pregnancy. Diabetologia 

1996;39:1329-33. 

 34.  Catalano PM, Tyzbir ED, Sims EA. Incidence and significance of islet cell 

antibodies in women with previous gestational diabetes. Diabetes Care 

1990;13:478-82. 

 35.  Lauszus F, Klebe JG, Bek T. Diabetic retinopathy in pregnancy during tight 

metabolic control. Acta Obstet.Gynecol.Scand. 2000;79:367-70. 

 36.  Temple RC, Aldridge VA, Sampson MJ, Greenwood RH, Heyburn PJ, 

Glenn A. Impact of pregnancy on the progression of diabetic retinopathy in 

Type 1 diabetes. Diabet.Med. 2001;18:573-7. 



 

 

224

 37.  Dinn RB, Harris A, Marcus PS. Ocular changes in pregnancy. 

Obstet.Gynecol.Surv. 2003;58:137-44. 

 38.  Landon MB. Diabetic nephropathy and pregnancy. Clin.Obstet.Gynecol. 

2007;50:998-1006. 

 39.  Kitzmiller JL, Brown ER, Phillippe M, Stark AR, Acker D, Kaldany A et al. 

Diabetic nephropathy and perinatal outcome. Am J Obstet.Gynecol. 

1981;141:741-51. 

 40.  Evers IM, de Valk HW, Visser GH. Risk of complications of pregnancy in 

women with type 1 diabetes: nationwide prospective study in the 

Netherlands. BMJ 2004;328:915. 

 41.  Hiilesmaa V, Suhonen L, Teramo K. Glycaemic control is associated with 

pre-eclampsia but not with pregnancy-induced hypertension in women with 

type I diabetes mellitus. Diabetologia 2000;43:1534-9. 

 42.  Walker JJ. Pre-eclampsia. Lancet 2000;356:1260-5. 

 43.  http://emedicine.medscape.com/article/261435-overview.  2009.  

Ref Type: Report 

 44.  Kjos SL, Buchanan TA. Gestational diabetes mellitus. N.Engl.J Med. 

1999;341:1749-56. 

 45.  http://www.emedicine.com/med/topic3249.htm#section~AuthorsandEditors.  

2009.  

Ref Type: Report 



 

 

225

 46.  Bryson CL, Ioannou GN, Rulyak SJ, Critchlow C. Association between 

gestational diabetes and pregnancy-induced hypertension. Am J Epidemiol. 

2003;158:1148-53. 

 47.  Ros HS, Cnattingius S, Lipworth L. Comparison of risk factors for 

preeclampsia and gestational hypertension in a population-based cohort 

study. Am J Epidemiol. 1998;147:1062-70. 

 48.  Xiong X, Saunders LD, Wang FL, Demianczuk NN. Gestational diabetes 

mellitus: prevalence, risk factors, maternal and infant outcomes. Int.J 

Gynaecol.Obstet. 2001;75:221-8. 

 49.  Lykke JA, Langhoff-Roos J, Sibai BM, Funai EF, Triche EW, Paidas MJ. 

Hypertensive pregnancy disorders and subsequent cardiovascular morbidity 

and type 2 diabetes mellitus in the mother. Hypertension 2009;53:944-51. 

 50.  Xiang AH, Peters RK, Trigo E, Kjos SL, Lee WP, Buchanan TA. Multiple 

metabolic defects during late pregnancy in women at high risk for type 2 

diabetes. Diabetes 1999;48:848-54. 

 51.  Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes 

mellitus after diagnosis of gestational diabetes. CMAJ. 2008;179:229-34. 

 52.  Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus 

after gestational diabetes: a systematic review and meta-analysis. Lancet 

2009;373:1773-9. 

 53.  Jarvela IY, Juutinen J, Koskela P, Hartikainen AL, Kulmala P, Knip M et al. 

Gestational diabetes identifies women at risk for permanent type 1 and type 



 

 

226

2 diabetes in fertile age: predictive role of autoantibodies. Diabetes Care 

2006;29:607-12. 

 54.  Bar-Hava I, Barnhard Y, Scarpelli SA, Orvieto R, Ben R, Divon MY. 

Gestational diabetes and preterm labour: is glycaemic control a contributing 

factor? Eur.J Obstet.Gynecol.Reprod.Biol. 1997;73:111-4. 

 55.  http://emedicine.medscape.com/article/260998-overview.  2009.  

Ref Type: Report 

 56. 

 http://www.upmc.com/HealthAtoZ/patienteducation/Documents/gestation_

Diabetes.pdf.  2009.  

Ref Type: Report 

 57.  Lapolla A, Dalfra MG, Di CG, Bonomo M, Parretti E, Mello G. A 

multicenter Italian study on pregnancy outcome in women with diabetes. 

Nutr.Metab Cardiovasc.Dis. 2008;18:291-7. 

 58.  Mimouni F, Miodovnik M, Siddiqi TA, Berk MA, Wittekind C, Tsang RC. 

High spontaneous premature labor rate in insulin-dependent diabetic 

pregnant women: an association with poor glycemic control and urogenital 

infection. Obstet.Gynecol. 1988;72:175-80. 

 59.  Nowakowska D, Kurnatowska A, Stray-Pedersen B, Wilczynski J. Species 

distribution and influence of glycemic control on fungal infections in 

pregnant women with diabetes. J Infect. 2004;48:339-46. 

 60.  Nowakowska D, Kurnatowska A, Stray-Pedersen B, Wilczynski J. 

Prevalence of fungi in the vagina, rectum and oral cavity in pregnant diabetic 



 

 

227

women: relation to gestational age and symptoms. Acta 

Obstet.Gynecol.Scand. 2004;83:251-6. 

 61.  Paramsothy P, Lin YS, Kernic MA, Foster-Schubert KE. Interpregnancy 

weight gain and cesarean delivery risk in women with a history of 

gestational diabetes. Obstet.Gynecol. 2009;113:817-23. 

 62.  Denguezli W, Hemdane S, Faleh R, Laajili H, Saidan Z, Haddad A et al. 

Prevalence and risk factors of cesarean section in a population of Tunisian 

diabetic pregnant women. Tunis Med. 2007;85:935-40. 

 63.  Siggelkow W, Boehm D, Skala C, Grosslercher M, Schmidt M, Koelbl H. 

The influence of macrosomia on the duration of labor, the mode of delivery 

and intrapartum complications. Arch.Gynecol.Obstet. 2008;278:547-53. 

 64.  Weintrob N, Karp M, Hod M. Short- and long-range complications in 

offspring of diabetic mothers. J Diabetes Complications 1996;10:294-301. 

 65.  http://emedicine.medscape.com/article/262679-overview.  2009.  

Ref Type: Report 

 66.  Orskou J, Kesmodel U, Henriksen TB, Secher NJ. An increasing proportion 

of infants weigh more than 4000 grams at birth. Acta Obstet.Gynecol.Scand. 

2001;80:931-6. 

 67.  Pettitt DJ, Knowler WC, Baird HR, Bennett PH. Gestational diabetes: infant 

and maternal complications of pregnancy in relation to third-trimester 

glucose tolerance in the Pima Indians. Diabetes Care 1980;3:458-64. 



 

 

228

 68.  Berard J, Dufour P, Vinatier D, Subtil D, Vanderstichele S, Monnier JC et al. 

Fetal macrosomia: risk factors and outcome. A study of the outcome 

concerning 100 cases >4500 g. Eur.J Obstet.Gynecol.Reprod.Biol. 

1998;77:51-9. 

 69.  Olmos PR, raya-Del-Pino AP, Gonzalez-Carvello CA, Laso-Ulloa P, 

Hodgson MI, Irribarra V et al. Near-optimal glycemic control in Chilean 

women with pregestational type-2 diabetes: persistent macrosomia relates to 

maternal pre-pregnancy overweight. Diabetes Res.Clin.Pract. 

2009;85:53-60. 

 70.  Pedersen JF, Molsted-Pedersen L. Early fetal growth delay detected by 

ultrasound marks increased risk of congenital malformation in diabetic 

pregnancy. Br.Med.J (Clin.Res.Ed) 1981;283:269-71. 

 71.  Petersen MB, Pedersen SA, Greisen G, Pedersen JF, Molsted-Pedersen L. 

Early growth delay in diabetic pregnancy: relation to psychomotor 

development at age 4. Br.Med.J (Clin.Res.Ed) 1988;296:598-600. 

 72.  McCance DR, Pettitt DJ, Hanson RL, Jacobsson LT, Knowler WC, Bennett 

PH. Birth weight and non-insulin dependent diabetes: thrifty genotype, 

thrifty phenotype, or surviving small baby genotype? BMJ 1994;308:942-5. 

 73.  Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET et 

al. Microalbuminuria and lower glomerular filtration rate at young adult age 

in subjects born very premature and after intrauterine growth retardation. J 

Am Soc Nephrol 2005;16:2762-8. 



 

 

229

 74.  Saenger P, Czernichow P, Hughes I, Reiter EO. Small for gestational age: 

short stature and beyond. Endocr.Rev. 2007;28:219-51. 

 75.  Lopes AA, Port FK. The low birth weight hypothesis as a plausible 

explanation for the black/white differences in hypertension, 

non-insulin-dependent diabetes, and end-stage renal disease. Am J Kidney 

Dis. 1995;25:350-6. 

 76.  Moore TR. Fetal growth in diabetic pregnancy. Clin.Obstet.Gynecol. 

1997;40:771-86. 

 77.  Haeri S, Khoury J, Kovilam O, Miodovnik M. The association of 

intrauterine growth abnormalities in women with type 1 diabetes mellitus 

complicated by vasculopathy. Am J Obstet.Gynecol. 2008;199:278-5. 

 78.  Hopp H, Vollert W, Ebert A, Weitzel H, Glockner E, Jahrig D. [Diabetic 

retinopathy and nephropathy--complications in pregnancy and labor]. 

Geburtshilfe Frauenheilkd. 1995;55:275-9. 

 79.  Rosenn BM, Miodovnik M. Medical complications of diabetes mellitus in 

pregnancy. Clin.Obstet.Gynecol. 2000;43:17-31. 

 80.  http://www.cdc.gov/ncbddd/bd/stillbirths.htm.  2009.  

Ref Type: Report 

 81.  Dunne FP, Avalos G, Durkan M, Mitchell Y, Gallacher T, Keenan M et al. 

ATLANTIC DIP: Pregnancy outcome for women with pre-gestational 

diabetes along the Irish Atlantic seaboard. Diabetes Care 2009. 



 

 

230

 82.  Goldenberg RL, Kirby R, Culhane JF. Stillbirth: a review. J Matern.Fetal 

Neonatal Med. 2004;16:79-94. 

 83.  Rackham O, Paize F, Weindling AM. Cause of death in infants of women 

with pregestational diabetes mellitus and the relationship with glycemic 

control. Postgrad.Med. 2009;121:26-32. 

 84.  Correa A, Gilboa SM, Besser LM, Botto LD, Moore CA, Hobbs CA et al. 

Diabetes mellitus and birth defects. Am J Obstet.Gynecol. 2008;199:237-9. 

 85.  Pavlinkova G, Salbaum JM, Kappen C. Maternal diabetes alters 

transcriptional programs in the developing embryo. BMC.Genomics 

2009;10:274. 

 86.  Chugh SS, Wallner EI, Kanwar YS. Renal development in high-glucose 

ambience and diabetic embryopathy. Semin.Nephrol 2003;23:583-92. 

 87.  Eriksson UJ, Cederberg J, Wentzel P. Congenital malformations in offspring 

of diabetic mothers--animal and human studies. Rev.Endocr.Metab Disord. 

2003;4:79-93. 

 88.  Reece EA, Homko CJ. Prepregnancy care and the prevention of fetal 

malformations in the pregnancy complicated by diabetes. 

Clin.Obstet.Gynecol. 2007;50:990-7. 

 89.  Langer O. Ultrasound biometry evolves in the management of diabetes in 

pregnancy. Ultrasound Obstet.Gynecol. 2005;26:585-95. 



 

 

231

 90.  Suhonen L, Hiilesmaa V, Teramo K. Glycaemic control during early 

pregnancy and fetal malformations in women with type I diabetes mellitus. 

Diabetologia 2000;43:79-82. 

 91.  Schaefer-Graf UM, Buchanan TA, Xiang A, Songster G, Montoro M, Kjos 

SL. Patterns of congenital anomalies and relationship to initial maternal 

fasting glucose levels in pregnancies complicated by type 2 and gestational 

diabetes. Am J Obstet.Gynecol. 2000;182:313-20. 

 92.  Martinez-Frias ML, Frias JP, Bermejo E, Rodriguez-Pinilla E, Prieto L, Frias 

JL. Pre-gestational maternal body mass index predicts an increased risk of 

congenital malformations in infants of mothers with gestational diabetes. 

Diabet.Med. 2005;22:775-81. 

 93.  Becerra JE, Khoury MJ, Cordero JF, Erickson JD. Diabetes mellitus during 

pregnancy and the risks for specific birth defects: a population-based 

case-control study. Pediatrics 1990;85:1-9. 

 94.  Kyne-Grzebalski D, Wood L, Marshall SM, Taylor R. Episodic 

hyperglycaemia in pregnant women with well-controlled Type 1 diabetes 

mellitus: a major potential factor underlying macrosomia. Diabet.Med. 

1999;16:702-6. 

 95.  Reece EA. Obesity, diabetes, and links to congenital defects: a review of the 

evidence and recommendations for intervention. J Matern.Fetal Neonatal 

Med. 2008;21:173-80. 

 96.  Dunne F, Brydon P, Smith K, Gee H. Pregnancy in women with Type 2 

diabetes: 12 years outcome data 1990-2002. Diabet.Med. 2003;20:734-8. 



 

 

232

 97.  Waller DK, Shaw GM, Rasmussen SA, Hobbs CA, Canfield MA, Siega-Riz 

AM et al. Prepregnancy obesity as a risk factor for structural birth defects. 

Arch.Pediatr.Adolesc.Med. 2007;161:745-50. 

 98.  Malik S, Cleves MA, Honein MA, Romitti PA, Botto LD, Yang S et al. 

Maternal smoking and congenital heart defects. Pediatrics 

2008;121:e810-e816. 

 99.  DeRoo LA, Wilcox AJ, Drevon CA, Lie RT. First-trimester maternal alcohol 

consumption and the risk of infant oral clefts in Norway: a population-based 

case-control study. Am J Epidemiol. 2008;168:638-46. 

 100.  Maayan-Metzger A, Lubin D, Kuint J. Hypoglycemia Rates in the First 

Days of Life among Term Infants Born to Diabetic Mothers. Neonatology. 

2009;96:80-5. 

 101.  Landon MB, Gabbe SG. Diabetes and pregnancy. Med.Clin.North Am 

1988;72:1493-511. 

 102.  Demarini S, Mimouni F, Tsang RC, Khoury J, Hertzberg V. Impact of 

metabolic control of diabetes during pregnancy on neonatal hypocalcemia: a 

randomized study. Obstet.Gynecol. 1994;83:918-22. 

 103.  Banerjee S, Mimouni FB, Mehta R, Llanos A, Bainbridge R, Varada K et 

al. Lower whole blood ionized magnesium concentrations in hypocalcemic 

infants of gestational diabetic mothers. Magnes.Res. 2003;16:127-30. 

 104.  Simeoni U, Barker DJ. Offspring of diabetic pregnancy: long-term 

outcomes. Semin.Fetal Neonatal Med. 2009;14:119-24. 



 

 

233

 105.  WHO. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html.  2009.  

Ref Type: Report 

 106.  Silverman BL, Rizzo TA, Cho NH, Metzger BE. Long-term effects of the 

intrauterine environment. The Northwestern University Diabetes in 

Pregnancy Center. Diabetes Care 1998;21 Suppl 2:B142-B149. 

 107.  Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose 

tolerance in adolescent offspring of diabetic mothers. Relationship to fetal 

hyperinsulinism. Diabetes Care 1995;18:611-7. 

 108.  Pettitt DJ, Baird HR, Aleck KA, Bennett PH, Knowler WC. Excessive 

obesity in offspring of Pima Indian women with diabetes during pregnancy. 

N.Engl.J Med. 1983;308:242-5. 

 109.  Pettitt DJ, Knowler WC, Bennett PH, Aleck KA, Baird HR. Obesity in 

offspring of diabetic Pima Indian women despite normal birth weight. 

Diabetes Care 1987;10:76-80. 

 110.  Franks PW, Looker HC, Kobes S, Touger L, Tataranni PA, Hanson RL et 

al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima 

Indian offspring. Diabetes 2006;55:460-5. 

 111.  Sobngwi E, Boudou P, Mauvais-Jarvis F, Leblanc H, Velho G, Vexiau P et 

al. Effect of a diabetic environment in utero on predisposition to type 2 

diabetes. Lancet 2003;361:1861-5. 

 112.  Hunter WA, Cundy T, Rabone D, Hofman PL, Harris M, Regan F et al. 

Insulin sensitivity in the offspring of women with type 1 and type 2 diabetes. 

Diabetes Care 2004;27:1148-52. 



 

 

234

 113.  Pettitt DJ, Aleck KA, Baird HR, Carraher MJ, Bennett PH, Knowler WC. 

Congenital susceptibility to NIDDM. Role of intrauterine environment. 

Diabetes 1988;37:622-8. 

 114.  Dabelea D. The predisposition to obesity and diabetes in offspring of 

diabetic mothers. Diabetes Care 2007;30 Suppl 2:S169-S174. 

 115.  Ingelfinger JR. Pathogenesis of perinatal programming. 

Curr.Opin.Nephrol Hypertens. 2004;13:459-64. 

 116.  Plagemann A. Perinatal programming and functional teratogenesis: impact 

on body weight regulation and obesity. Physiol Behav. 2005;86:661-8. 

 117.  Ingelfinger JR, Woods LL. Perinatal programming, renal development, and 

adult renal function. Am J Hypertens. 2002;15:46S-9S. 

 118.  Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology 

of adult hypertension and progressive renal injury. Am J Kidney Dis. 

1994;23:171-5. 

 119.  Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic 

heart disease in England and Wales. Lancet 1986;1:1077-81. 

 120.  Barker DJ. The fetal and infant origins of disease. Eur.J Clin.Invest 

1995;25:457-63. 

 121.  Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW. Effect 

of intrauterine growth restriction on kidney function at young adult age: the 

Nord Trondelag Health (HUNT 2) Study. Am J Kidney Dis. 2008;51:10-20. 



 

 

235

 122.  Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson 

JS. Fetal nutrition and cardiovascular disease in adult life. Lancet 

1993;341:938-41. 

 123.  Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 

(non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia 

(syndrome X): relation to reduced fetal growth. Diabetologia 1993;36:62-7. 

 124.  Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less 

of one, more the other? Am J Hypertens. 1988;1:335-47. 

 125.  Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the 

progressive nature of kidney disease: the role of hemodynamically mediated 

glomerular injury in the pathogenesis of progressive glomerular sclerosis in 

aging, renal ablation, and intrinsic renal disease. N.Engl.J Med. 

1982;307:652-9. 

 126.  Brenner BM, Humes HD. Mechanics of glomerular ultrafiltration. N.Engl.J 

Med. 1977;297:148-54. 

 127.  Moritz KM, Singh RR, Probyn ME, Denton KM. Developmental 

programming of a reduced nephron endowment: more than just a baby's birth 

weight. Am J Physiol Renal Physiol 2009;296:F1-F9. 

 128.  Kett MM, Bertram JF. Nephron endowment and blood pressure: what do 

we really know? Curr.Hypertens.Rep. 2004;6:133-9. 

 129.  Schreuder MF, Nauta J. Prenatal programming of nephron number and 

blood pressure. Kidney Int. 2007;72:265-8. 



 

 

236

 130.  Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: 

the thrifty phenotype hypothesis. Diabetologia 1992;35:595-601. 

 131.  Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br.Med.Bull. 

2001;60:5-20. 

 132.  Catalano PM, Presley L, Minium J, Hauguel-de MS. Fetuses of obese 

mothers develop insulin resistance in utero. Diabetes Care 2009;32:1076-80. 

 133.  Li S, Chen SC, Shlipak M, Bakris G, McCullough PA, Sowers J et al. Low 

birth weight is associated with chronic kidney disease only in men. Kidney 

Int. 2008;73:637-42. 

 134.  Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth 

weight increases risk for end-stage renal disease. J Am Soc Nephrol 

2008;19:151-7. 

 135.  White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T et al. Is 

low birth weight an antecedent of CKD in later life? A systematic review of 

observational studies. Am J Kidney Dis. 2009;54:248-61. 

 136.  Almeida JR, Mandarim-de-Lacerda CA. Maternal gestational 

protein-calorie restriction decreases the number of glomeruli and causes 

glomerular hypertrophy in adult hypertensive rats. Am J Obstet.Gynecol. 

2005;192:945-51. 

 137.  Petry CJ, Dorling MW, Pawlak DB, Ozanne SE, Hales CN. Diabetes in old 

male offspring of rat dams fed a reduced protein diet. Int.J Exp.Diabetes Res. 

2001;2:139-43. 



 

 

237

 138.  Fernandez-Twinn DS, Wayman A, Ekizoglou S, Martin MS, Hales CN, 

Ozanne SE. Maternal protein restriction leads to hyperinsulinemia and 

reduced insulin-signaling protein expression in 21-mo-old female rat 

offspring. Am J Physiol Regul.Integr.Comp Physiol 2005;288:R368-R373. 

 139.  Moritz KM, Mazzuca MQ, Siebel AL, Mibus A, Arena D, Tare M et al. 

Uteroplacental insufficiency causes a nephron deficit, modest renal 

insufficiency but no hypertension with ageing in female rats. J Physiol 

2009;587:2635-46. 

 140.  Holemans K, Aerts L, Van Assche FA. Evidence for an insulin resistance 

in the adult offspring of pregnant streptozotocin-diabetic rats. Diabetologia 

1991;34:81-5. 

 141.  Hughson M, Farris AB, III, Douglas-Denton R, Hoy WE, Bertram JF. 

Glomerular number and size in autopsy kidneys: the relationship to birth 

weight. Kidney Int. 2003;63:2113-22. 

 142.  Poladia DP, Kish K, Kutay B, Bauer J, Baum M, Bates CM. Link between 

reduced nephron number and hypertension: studies in a mutant mouse model. 

Pediatr.Res. 2006;59:489-93. 

 143.  Keijzer-Veen MG, Dulger A, Dekker FW, Nauta J, van der Heijden BJ. 

Very preterm birth is a risk factor for increased systolic blood pressure at a 

young adult age. Pediatr.Nephrol 2010;25:509-16. 

 144.  Martin JA, Kochanek KD, Strobino DM, Guyer B, MacDorman MF. 

Annual summary of vital statistics--2003. Pediatrics 2005;115:619-34. 



 

 

238

 145.  Fang J, Madhavan S, Alderman MH. The influence of maternal 

hypertension on low birth weight: differences among ethnic populations. 

Ethn.Dis. 1999;9:369-76. 

 146.  Holemans K, Aerts L, Van Assche FA. Fetal growth restriction and 

consequences for the offspring in animal models. J Soc Gynecol.Investig. 

2003;10:392-9. 

 147.  Holemans K, Aerts L, Van Assche FA. Lifetime consequences of abnormal 

fetal pancreatic development. J Physiol 2003;547:11-20. 

 148.  Holemans K, Aerts L, Van Assche FA. Fetal growth and long-term 

consequences in animal models of growth retardation. Eur.J 

Obstet.Gynecol.Reprod.Biol. 1998;81:149-56. 

 149.  Monge M, Garcia-Nieto VM, Domenech E, Barac-Nieto M, Muros M, 

Perez-Gonzalez E. Study of renal metabolic disturbances related to renal 

lithiasis at school age in very-low-birth-weight children. Nephron 

1998;79:269-73. 

 150.  Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF. 

Reduced nephron number and glomerulomegaly in Australian Aborigines: a 

group at high risk for renal disease and hypertension. Kidney Int. 

2006;70:104-10. 

 151.  Manalich R, Reyes L, Herrera M, Melendi C, Fundora I. Relationship 

between weight at birth and the number and size of renal glomeruli in 

humans: a histomorphometric study. Kidney Int. 2000;58:770-3. 



 

 

239

 152.  Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in 

patients with primary hypertension. N.Engl.J Med. 2003;348:101-8. 

 153.  Drukker A. Oligonephropathy: from a rare childhood disorder to a possible 

health problem in the adult. Isr.Med.Assoc.J 2002;4:191-5. 

 154.  McNamara BJ, Diouf B, Hughson MD, Douglas-Denton RN, Hoy WE, 

Bertram JF. Renal pathology, glomerular number and volume in a West 

African urban community. Nephrol Dial.Transplant. 2008;23:2576-85. 

 155.  Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ. Effect 

of maternal iron restriction during pregnancy on renal morphology in the 

adult rat offspring. Br.J Nutr. 2003;90:33-9. 

 156.  Salomon R, Tellier AL, ttie-Bitach T, Amiel J, Vekemans M, Lyonnet S et 

al. PAX2 mutations in oligomeganephronia. Kidney Int. 2001;59:457-62. 

 157.  Zeier M, Tariverdian G, Waldherr R, Andrassy K, Ritz E. Acrorenal 

syndrome in an adult--presentation with proteinuria, hypertension, and 

glomerular lesions. Am J Kidney Dis. 1989;14:221-4. 

 158.  Suzuki H, Tokuriki T, Kamita H, Oota C, Takasu M, Saito K et al. 

Age-related pathophysiological changes in rat oligomeganephronic 

hypoplastic kidney. Pediatr.Nephrol 2006;21:637-42. 

 159.  Cullen-McEwen LA, Drago J, Bertram JF. Nephron endowment in glial 

cell line-derived neurotrophic factor (GDNF) heterozygous mice. Kidney Int. 

2001;60:31-6. 



 

 

240

 160.  Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF. 

Nephron number, renal function, and arterial pressure in aged GDNF 

heterozygous mice. Hypertension 2003;41:335-40. 

 161.  Campbell DM, Hall MH, Barker DJ, Cross J, Shiell AW, Godfrey KM. 

Diet in pregnancy and the offspring's blood pressure 40 years later. Br.J 

Obstet.Gynaecol. 1996;103:273-80. 

 162.  Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V. Maternal nutrition 

in early and late pregnancy in relation to placental and fetal growth. BMJ 

1996;312:410-4. 

 163.  Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, 

Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease 

in later life: an overview. Mol.Cell Endocrinol. 2001;185:93-8. 

 164.  Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D. Fetal and 

childhood growth and hypertension in adult life. Hypertension 

2000;36:790-4. 

 165.  Langley-Evans SC, Welham SJ, Jackson AA. Fetal exposure to a maternal 

low protein diet impairs nephrogenesis and promotes hypertension in the rat. 

Life Sci. 1999;64:965-74. 

 166.  Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by 

maternal protein restriction: role of nephrogenesis. Kidney Int. 

2004;65:1339-48. 



 

 

241

 167.  Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein 

restriction suppresses the newborn renin-angiotensin system and programs 

adult hypertension in rats. Pediatr.Res. 2001;49:460-7. 

 168.  Gilbert JS, Lang AL, Grant AR, Nijland MJ. Maternal nutrient restriction 

in sheep: hypertension and decreased nephron number in offspring at 9 

months of age. J Physiol 2005;565:137-47. 

 169.  McGarvey ST, Zinner SH, Willett WC, Rosner B. Maternal prenatal 

dietary potassium, calcium, magnesium, and infant blood pressure. 

Hypertension 1991;17:218-24. 

 170.  Crocker JF. Human embryonic kidneys in organ culture: abnormalities of 

development induced by decreased potassium. Science 1973;181:1178-9. 

 171.  Bhat PV, Manolescu DC. Role of vitamin A in determining nephron mass 

and possible relationship to hypertension. J Nutr. 2008;138:1407-10. 

 172.  WILSON JG, ROTH CB, WARKANY J. An analysis of the syndrome of 

malformations induced by maternal vitamin A deficiency. Effects of 

restoration of vitamin A at various times during gestation. Am J Anat. 

1953;92:189-217. 

 173.  Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P et 

al. Function of the retinoic acid receptors (RARs) during development (II). 

Multiple abnormalities at various stages of organogenesis in RAR double 

mutants. Development 1994;120:2749-71. 



 

 

242

 174.  Lelievre-Pegorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T 

et al. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. 

Kidney Int. 1998;54:1455-62. 

 175.  Goodyer P, Kurpad A, Rekha S, Muthayya S, Dwarkanath P, Iyengar A et 

al. Effects of maternal vitamin A status on kidney development: a pilot study. 

Pediatr.Nephrol 2007;22:209-14. 

 176.  Ornoy A. Embryonic oxidative stress as a mechanism of teratogenesis with 

special emphasis on diabetic embryopathy. Reprod.Toxicol. 2007;24:31-41. 

 177.  Fassett RG, Coombes JS. Astaxanthin, oxidative stress, inflammation and 

cardiovascular disease. Future.Cardiol. 2009;5:333-42. 

 178.  Martina V, Masha A, Gigliardi VR, Brocato L, Manzato E, Berchio A et al. 

Long-term N-acetylcysteine and L-arginine administration reduces 

endothelial activation and systolic blood pressure in hypertensive patients 

with type 2 diabetes. Diabetes Care 2008;31:940-4. 

 179.  Peuchant E, Brun JL, Rigalleau V, Dubourg L, Thomas MJ, Daniel JY et 

al. Oxidative and antioxidative status in pregnant women with either 

gestational or type 1 diabetes. Clin.Biochem. 2004;37:293-8. 

 180.  Roberts JM, Lain KY. Recent Insights into the pathogenesis of 

pre-eclampsia. Placenta 2002;23:359-72. 

 181.  Gupta P, Narang M, Banerjee BD, Basu S. Oxidative stress in term small 

for gestational age neonates born to undernourished mothers: a case control 

study. BMC.Pediatr. 2004;4:14. 



 

 

243

 182.  Franco MC, Dantas AP, Akamine EH, Kawamoto EM, Fortes ZB, Scavone 

C et al. Enhanced oxidative stress as a potential mechanism underlying the 

programming of hypertension in utero. J Cardiovasc.Pharmacol. 

2002;40:501-9. 

 183.  Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult 

hypertension in the rat. Kidney Int. 2001;59:238-45. 

 184.  Welham SJ, Wade A, Woolf AS. Protein restriction in pregnancy is 

associated with increased apoptosis of mesenchymal cells at the start of rat 

metanephrogenesis. Kidney Int. 2002;61:1231-42. 

 185.  Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH. 

Uteroplacental insufficiency increases apoptosis and alters p53 gene 

methylation in the full-term IUGR rat kidney. Am J Physiol 

Regul.Integr.Comp Physiol 2003;285:R962-R970. 

 186.  Dziarmaga A, Clark P, Stayner C, Julien JP, Torban E, Goodyer P et al. 

Ureteric bud apoptosis and renal hypoplasia in transgenic PAX2-Bax fetal 

mice mimics the renal-coloboma syndrome. J Am Soc Nephrol 

2003;14:2767-74. 

 187.  Guron G, Friberg P. An intact renin-angiotensin system is a prerequisite 

for normal renal development. J Hypertens. 2000;18:123-37. 

 188.  Woods LL, Rasch R. Perinatal ANG II programs adult blood pressure, 

glomerular number, and renal function in rats. Am J Physiol 

1998;275:R1593-R1599. 



 

 

244

 189.  Liu F, Brezniceanu ML, Wei CC, Chenier I, Sachetelli S, Zhang SL et al. 

Overexpression of angiotensinogen increases tubular apoptosis in diabetes. J 

Am Soc Nephrol 2008;19:269-80. 

 190.  Konje JC, Bell SC, Morton JJ, de CR, Taylor DJ. Human fetal kidney 

morphometry during gestation and the relationship between weight, kidney 

morphometry and plasma active renin concentration at birth. Clin.Sci.(Lond) 

1996;91:169-75. 

 191.  Kingdom JC, Hayes M, McQueen J, Howatson AG, Lindop GB. 

Intrauterine growth restriction is associated with persistent juxtamedullary 

expression of renin in the fetal kidney. Kidney Int. 1999;55:424-9. 

 192.  Whorwood CB, Firth KM, Budge H, Symonds ME. Maternal 

undernutrition during early to midgestation programs tissue-specific 

alterations in the expression of the glucocorticoid receptor, 

11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii 

receptor in neonatal sheep. Endocrinology 2001;142:2854-64. 

 193.  Woods LL, Ingelfinger JR, Rasch R. Modest maternal protein restriction 

fails to program adult hypertension in female rats. Am J Physiol 

Regul.Integr.Comp Physiol 2005;289:R1131-R1136. 

 194.  Seckl JR, Benediktsson R, Lindsay RS, Brown RW. Placental 11 

beta-hydroxysteroid dehydrogenase and the programming of hypertension. J 

Steroid Biochem.Mol.Biol. 1995;55:447-55. 

 195.  Seckl JR. Prenatal glucocorticoids and long-term programming. Eur.J 

Endocrinol. 2004;151 Suppl 3:U49-U62. 



 

 

245

 196.  Ortiz LA, Quan A, Weinberg A, Baum M. Effect of prenatal 

dexamethasone on rat renal development. Kidney Int. 2001;59:1663-9. 

 197.  Ortiz LA, Quan A, Zarzar F, Weinberg A, Baum M. Prenatal 

dexamethasone programs hypertension and renal injury in the rat. 

Hypertension 2003;41:328-34. 

 198.  Sant'Anna LB, Tosello DO, Pasetto S. Effects of maternal ethanol intake 

on immunoexpression of epidermal growth factor in developing rat 

mandibular molar. Arch.Oral Biol. 2005;50:625-34. 

 199.  Taylor CL, Jones KL, Jones MC, Kaplan GW. Incidence of renal 

anomalies in children prenatally exposed to ethanol. Pediatrics 

1994;94:209-12. 

 200.  Gray SP, Kenna K, Bertram JF, Hoy WE, Yan EB, Bocking AD et al. 

Repeated Ethanol Exposure During Late Gestation Decreases Nephron 

Endowment in Fetal Sheep. Am J Physiol Regul.Integr.Comp Physiol 2008. 

 201.  http://health.allrefer.com/.../kidney-anatomy.html.  2009.  

Ref Type: Report 

 202.  Nyengaard JR, Bendtsen TF. Glomerular number and size in relation to 

age, kidney weight, and body surface in normal man. Anat.Rec. 

1992;232:194-201. 

 203.  www.ivy-rose.co.uk/Topics/Urinary_System_Neph...  2009.  

Ref Type: Report 



 

 

246

 204.  Yosypiv IV, El-Dahr SS. Role of the renin-angiotensin system in the 

development of the ureteric bud and renal collecting system. 

Pediatr.Nephrol 2005;20:1219-29. 

 205.  Vetter MR, Gibley CW, Jr. Morphogenesis and histochemistry of the 

developing mouse kidney. J Morphol. 1966;120:135-55. 

 206.  Saxen L, Sariola H. Early organogenesis of the kidney. Pediatr.Nephrol 

1987;1:385-92. 

 207.  Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M. Nephric 

lineage specification by Pax2 and Pax8. Genes Dev. 2002;16:2958-70. 

 208.  Grote D, Souabni A, Busslinger M, Bouchard M. Pax 2/8-regulated Gata 3 

expression is necessary for morphogenesis and guidance of the nephric duct 

in the developing kidney. Development 2006;133:53-61. 

 209.  Kobayashi A, Kwan KM, Carroll TJ, McMahon AP, Mendelsohn CL, 

Behringer RR. Distinct and sequential tissue-specific activities of the 

LIM-class homeobox gene Lim1 for tubular morphogenesis during kidney 

development. Development 2005;132:2809-23. 

 210.  Pedersen A, Skjong C, Shawlot W. Lim 1 is required for nephric duct 

extension and ureteric bud morphogenesis. Dev.Biol. 2005;288:571-81. 

 211.  Smith C, Mackay S. Morphological development and fate of the mouse 

mesonephros. J Anat. 1991;174:171-84. 

 212.  Kobayashi H, Kawakami K, Asashima M, Nishinakamura R. Six1 and 

Six4 are essential for Gdnf expression in the metanephric mesenchyme and 



 

 

247

ureteric bud formation, while Six1 deficiency alone causes 

mesonephric-tubule defects. Mech.Dev. 2007;124:290-303. 

 213.  Sainio K, Hellstedt P, Kreidberg JA, Saxen L, Sariola H. Differential 

regulation of two sets of mesonephric tubules by WT-1. Development 

1997;124:1293-9. 

 214.  8e.devbio.com/sample/html/figures14.html.  2009.  

Ref Type: Report 

 215.  Piscione TD, Rosenblum ND. The molecular control of renal branching 

morphogenesis: current knowledge and emerging insights. Differentiation 

2002;70:227-46. 

 216.  Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, 

Copeland NG et al. Murine homolog of SALL1 is essential for ureteric bud 

invasion in kidney development. Development 2001;128:3105-15. 

 217.  Dudley AT, Robertson EJ. Overlapping expression domains of bone 

morphogenetic protein family members potentially account for limited tissue 

defects in BMP7 deficient embryos. Dev.Dyn. 1997;208:349-62. 

 218.  Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL. 

Haploinsufficient phenotypes in Bmp4 heterozygous null mice and 

modification by mutations in Gli3 and Alx4. Dev.Biol. 1997;188:235-47. 

 219.  Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple 

steps of urogenital development. Development 1995;121:4057-65. 



 

 

248

 220.  Rothenpieler UW, Dressler GR. Pax-2 is required for 

mesenchyme-to-epithelium conversion during kidney development. 

Development 1993;119:711-20. 

 221.  Pedersen A, Skjong C, Shawlot W. Lim 1 is required for nephric duct 

extension and ureteric bud morphogenesis. Dev.Biol. 2005;288:571-81. 

 222.  Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB. The 

expression of the Wilms' tumour gene, WT1, in the developing mammalian 

embryo. Mech.Dev. 1993;40:85-97. 

 223.  Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D et 

al. WT-1 is required for early kidney development. Cell 1993;74:679-91. 

 224.  Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, Zabel B. 

Nuclear localization of the protein encoded by the Wilms' tumor gene WT1 

in embryonic and adult tissues. Development 1993;119:1329-41. 

 225.  Jemc J, Rebay I. The eyes absent family of phosphotyrosine phosphatases: 

properties and roles in developmental regulation of transcription. 

Annu.Rev.Biochem. 2007;76:513-38. 

 226.  Sajithlal G, Zou D, Silvius D, Xu PX. Eya 1 acts as a critical regulator for 

specifying the metanephric mesenchyme. Dev.Biol. 2005;284:323-36. 

 227.  Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient 

mice lack ears and kidneys and show abnormal apoptosis of organ primordia. 

Nat.Genet. 1999;23:113-7. 



 

 

249

 228.  Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. 

Defects in the kidney and enteric nervous system of mice lacking the 

tyrosine kinase receptor Ret. Nature 1994;367:380-3. 

 229.  Durbec P, Marcos-Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara 

K, Suvanto P et al. GDNF signalling through the Ret receptor tyrosine kinase. 

Nature 1996;381:789-93. 

 230.  Takahashi M. The GDNF/RET signaling pathway and human diseases. 

Cytokine Growth Factor Rev. 2001;12:361-73. 

 231.  Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal 

aplasia in humans is associated with RET mutations. Am J Hum.Genet. 

2008;82:344-51. 

 232.  Pachnis V, Mankoo B, Costantini F. Expression of the c-ret 

proto-oncogene during mouse embryogenesis. Development 

1993;119:1005-17. 

 233.  Lin Y, Liu A, Zhang S, Ruusunen T, Kreidberg JA, Peltoketo H et al. 

Induction of ureter branching as a response to Wnt-2b signaling during early 

kidney organogenesis. Dev.Dyn. 2001;222:26-39. 

 234.  Pleasure SJ. An arrow hits the Wnt signaling pathway. Trends Neurosci. 

2001;24:69-71. 

 235.  Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS et al. Canonical 

WNT/beta-catenin signaling is required for ureteric branching. Dev.Biol. 

2008;317:83-94. 



 

 

250

 236.  Merkel CE, Karner CM, Carroll TJ. Molecular regulation of kidney 

development: is the answer blowing in the Wnt? Pediatr.Nephrol 

2007;22:1825-38. 

 237.  Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation 

of metanephric mesenchyme in the developing kidney regulated by Wnt-4. 

Nature 1994;372:679-83. 

 238.  Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays 

a central role in the regulation of mesenchymal to epithelial transitions 

underlying organogenesis of the mammalian urogenital system. Dev.Cell 

2005;9:283-92. 

 239.  Ehrich JH, Rizzoni G, Brunner FP, Fassbinder W, Geerlings W, Mallick 

NP et al. Renal replacement therapy for end-stage renal failure before 2 years 

of age. Nephrol Dial.Transplant. 1992;7:1171-7. 

 240.  Lynch SA, Wright C. Sirenomelia, limb reduction defects, cardiovascular 

malformation, renal agenesis in an infant born to a diabetic mother. 

Clin.Dysmorphol. 1997;6:75-80. 

 241.  Woolf AS. Multiple causes of human kidney malformations. 

Arch.Dis.Child 1997;77:471-3. 

 242.  Schedl A. Renal abnormalities and their developmental origin. 

Nat.Rev.Genet. 2007;8:791-802. 

 243.  Seeman T, Patzer L, John U, Dusek J, Vondrak K, Janda J et al. Blood 

pressure, renal function, and proteinuria in children with unilateral renal 

agenesis. Kidney Blood Press Res. 2006;29:210-5. 



 

 

251

 244.  Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required 

for the early organogenesis of mammalian kidney. Development 

2003;130:3085-94. 

 245.  Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple 

steps of urogenital development. Development 1995;121:4057-65. 

 246.  Linton JM, Martin GR, Reichardt LF. The ECM protein nephronectin 

promotes kidney development via integrin alpha8beta1-mediated stimulation 

of Gdnf expression. Development 2007;134:2501-9. 

 247.  Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 

(Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the 

kidney and urinary tract. Development 2000;127:1387-95. 

 248.  Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin 

GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single 

site. Dev.Cell 2004;6:709-17. 

 249.  Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini 

FD et al. Branching morphogenesis of the ureteric epithelium during kidney 

development is coordinated by the opposing functions of GDNF and 

Sprouty1. Dev.Biol. 2006;299:466-77. 

 250.  Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R 

et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney 

induction. Dev.Cell 2005;8:229-39. 

 251.  Glassberg KI, Stephens FD, Lebowitz RL, Braren V, Duckett JW, Jacobs 

EC et al. Renal dysgenesis and cystic disease of the kidney: a report of the 



 

 

252

Committee on Terminology, Nomenclature and Classification, Section on 

Urology, American Academy of Pediatrics. J Urol. 1987;138:1085-92. 

 252.  Maizels M, Simpson SB, Jr. Primitive ducts of renal dysplasia induced by 

culturing ureteral buds denuded of condensed renal mesenchyme. Science 

1983;219:509-10. 

 253.  Glassberg KI. Normal and abnormal development of the kidney: a 

clinician's interpretation of current knowledge. J Urol. 2002;167:2339-50. 

 254.  Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in 

patients with primary hypertension. N.Engl.J Med. 2003;348:101-8. 

 255.  Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A et al. A 

common variant of the PAX2 gene is associated with reduced newborn 

kidney size. J Am Soc Nephrol 2007;18:1915-21. 

 256.  Amri K, Freund N, Vilar J, Merlet-Benichou C, Lelievre-Pegorier M. 

Adverse effects of hyperglycemia on kidney development in rats: in vivo and 

in vitro studies. Diabetes 1999;48:2240-5. 

 257.  Moerman P, van DB, Proesmans W, Devlieger H, Goddeeris P, Lauweryns 

J. Oligomeganephronic renal hypoplasia in two siblings. J Pediatr. 

1984;105:75-7. 

 258.  Wilson PD. Mouse models of polycystic kidney disease. 

Curr.Top.Dev.Biol. 2008;84:311-50. 



 

 

253

 259.  Ardissino G, Dacco V, Testa S, Bonaudo R, Claris-Appiani A, Taioli E et 

al. Epidemiology of chronic renal failure in children: data from the ItalKid 

project. Pediatrics 2003;111:e382-e387. 

 260.  Seikaly MG, Ho PL, Emmett L, Fine RN, Tejani A. Chronic renal 

insufficiency in children: the 2001 Annual Report of the NAPRTCS. 

Pediatr.Nephrol 2003;18:796-804. 

 261.  Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P. Pax2, a new 

murine paired-box-containing gene and its expression in the developing 

excretory system. Development 1990;109:787-95. 

 262.  Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L et al. 

Primary renal hypoplasia in humans and mice with PAX2 mutations: 

evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/- mutant 

mice. Hum.Mol.Genet. 2000;9:1-11. 

 263.  Eccles MR, Schimmenti LA. Renal-coloboma syndrome: a multi-system 

developmental disorder caused by PAX2 mutations. Clin.Genet. 

1999;56:1-9. 

 264.  Bopp D, Burri M, Baumgartner S, Frigerio G, Noll M. Conservation of a 

large protein domain in the segmentation gene paired and in functionally 

related genes of Drosophila. Cell 1986;47:1033-40. 

 265.  Gruss P, Walther C. Pax in development. Cell 1992;69:719-22. 

 266.  Treisman J, Harris E, Desplan C. The paired box encodes a second 

DNA-binding domain in the paired homeo domain protein. Genes Dev. 

1991;5:594-604. 



 

 

254

 267.  Mansouri A, Hallonet M, Gruss P. Pax genes and their roles in cell 

differentiation and development. Curr.Opin.Cell Biol. 1996;8:851-7. 

 268.  Wallin J, Eibel H, Neubuser A, Wilting J, Koseki H, Balling R. Pax1 is 

expressed during development of the thymus epithelium and is required for 

normal T-cell maturation. Development 1996;122:23-30. 

 269.  Tassabehji M, Newton VE, Leverton K, Turnbull K, Seemanova E, Kunze 

J et al. PAX3 gene structure and mutations: close analogies between 

Waardenburg syndrome and the Splotch mouse. Hum.Mol.Genet. 

1994;3:1069-74. 

 270.  Sosa-Pineda B. The gene Pax4 is an essential regulator of pancreatic 

beta-cell development. Mol.Cells 2004;18:289-94. 

 271.  Nutt SL, Eberhard D, Horcher M, Rolink AG, Busslinger M. Pax5 

determines the identity of B cells from the beginning to the end of 

B-lymphopoiesis. Int.Rev.Immunol. 2001;20:65-82. 

 272.  Pichaud F, Desplan C. Pax genes and eye organogenesis. 

Curr.Opin.Genet.Dev. 2002;12:430-4. 

 273.  Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, 

Tajbakhsh S et al. Pax3 and Pax7 have distinct and overlapping functions in 

adult muscle progenitor cells. J Cell Biol. 2006;172:91-102. 

 274.  Relaix F, Rocancourt D, Mansouri A, Buckingham M. A 

Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 

2005;435:948-53. 



 

 

255

 275.  Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland 

require Pax8 gene function. Nat.Genet. 1998;19:87-90. 

 276.  Wang Y, Wu H, Wu J, Zhao H, Zhang X, Mues G et al. Identification and 

functional analysis of two novel PAX9 mutations. Cells Tissues.Organs 

2009;189:80-7. 

 277.  Eccles MR, He S, Legge M, Kumar R, Fox J, Zhou C et al. PAX genes in 

development and disease: the role of PAX2 in urogenital tract development. 

Int.J Dev.Biol. 2002;46:535-44. 

 278.  Schimmenti LA, Cunliffe HE, McNoe LA, Ward TA, French MC, Shim 

HH et al. Further delineation of renal-coloboma syndrome in patients with 

extreme variability of phenotype and identical PAX2 mutations. Am J 

Hum.Genet. 1997;60:869-78. 

 279.  Fletcher J, Hu M, Berman Y, Collins F, Grigg J, McIver M et al. 

Multicystic dysplastic kidney and variable phenotype in a family with a 

novel deletion mutation of PAX2. J Am Soc Nephrol 2005;16:2754-61. 

 280.  Keller SA, Jones JM, Boyle A, Barrow LL, Killen PD, Green DG et al. 

Kidney and retinal defects (Krd), a transgene-induced mutation with a 

deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 

1994;23:309-20. 

 281.  Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft 

E et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 

mutation in a family with renal-coloboma syndrome and results in 



 

 

256

developmental defects of the brain, ear, eye, and kidney. 

Proc.Natl.Acad.Sci.U.S.A 1996;93:13870-5. 

 282.  Dziarmaga A, Eccles M, Goodyer P. Suppression of ureteric bud apoptosis 

rescues nephron endowment and adult renal function in Pax2 mutant mice. J 

Am Soc Nephrol 2006;17:1568-75. 

 283.  McMahon AP, Aronow BJ, Davidson DR, Davies JA, Gaido KW, 

Grimmond S et al. GUDMAP: the genitourinary developmental molecular 

anatomy project. J Am Soc Nephrol 2008;19:667-71. 

 284.  Little MH, Brennan J, Georgas K, Davies JA, Davidson DR, Baldock RA 

et al. A high-resolution anatomical ontology of the developing murine 

genitourinary tract. Gene Expr.Patterns. 2007;7:680-99. 

 285.  Boulas MM. Recognition of caudal regression syndrome. Adv.Neonatal 

Care 2009;9:61-9. 

 286.  Juliana Leite. Caudal regression syndrome 

http://www.thefetus.net/page.php?id=94.  2006.  

Ref Type: Report 

 287.  Stroustrup SA, Grable I, Levine D. Case 66: caudal regression syndrome in 

the fetus of a diabetic mother. Radiology 2004;230:229-33. 

 288.  Fowden AL, Forhead AJ, Coan PM, Burton GJ. The placenta and 

intrauterine programming. J Neuroendocrinol. 2008;20:439-50. 

 289.  Fowden AL, Hill DJ. Intra-uterine programming of the endocrine pancreas. 

Br.Med.Bull. 2001;60:123-42. 



 

 

257

 290.  Lee HB, Ha H, Kim SI, Ziyadeh FN. Diabetic kidney disease research: 

where do we stand at the turn of the century? Kidney Int.Suppl 

2000;77:S1-S2. 

 291.  Brownlee M. The pathobiology of diabetic complications: a unifying 

mechanism. Diabetes 2005;54:1615-25. 

 292.  Nielsen GL, Norgard B, Puho E, Rothman KJ, Sorensen HT, Czeizel AE. 

Risk of specific congenital abnormalities in offspring of women with 

diabetes. Diabet.Med. 2005;22:693-6. 

 293.  Moley KH, Chi MM, Manchester JK, McDougal DB, Lowry OH. 

Alterations of intraembryonic metabolites in preimplantation mouse embryos 

exposed to elevated concentrations of glucose: a metabolic explanation for 

the developmental retardation seen in preimplantation embryos from diabetic 

animals. Biol.Reprod. 1996;54:1209-16. 

 294.  Kanwar YS, Nayak B, Lin S, Akagi S, Xie P, Wada J et al. Hyperglycemia: 

its imminent effects on mammalian nephrogenesis. Pediatr.Nephrol 

2005;20:858-66. 

 295.  Kanwar YS, Akagi S, Nayak B, Sun L, Wada J, Xie P et al. Renal-specific 

oxidoreductase biphasic expression under high glucose ambience during 

fetal versus neonatal development. Kidney Int. 2005;68:1670-83. 

 296.  Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y 

et al. Normalizing mitochondrial superoxide production blocks three 

pathways of hyperglycaemic damage. Nature 2000;404:787-90. 



 

 

258

 297.  Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit 

in kidney disease in diabetes. Diabetes 2008;57:1446-54. 

 298.  Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and 

stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. 

Endocr.Rev. 2002;23:599-622. 

 299.  Nam JS, Cho MH, Lee GT, Park JS, Ahn CW, Cha BS et al. The activation 

of NF-kappaB and AP-1 in peripheral blood mononuclear cells isolated from 

patients with diabetic nephropathy. Diabetes Res.Clin.Pract. 2008;81:25-32. 

 300.  Ha H, Yu MR, Choi YJ, Lee HB. Activation of protein kinase c-delta and 

c-epsilon by oxidative stress in early diabetic rat kidney. Am J Kidney Dis. 

2001;38:S204-S207. 

 301.  Kobayashi-Miura M, Shioji K, Hoshino Y, Masutani H, Nakamura H, 

Yodoi J. Oxygen sensing and redox signaling: the role of thioredoxin in 

embryonic development and cardiac diseases. Am J Physiol Heart 

Circ.Physiol 2007;292:H2040-H2050. 

 302.  New DA, Coppola PT. Effects of different oxygen concentrations on the 

development of rat embryos in culture. J Reprod.Fertil. 1970;21:109-18. 

 303.  Djurhuus R, Svardal AM, Thorsen E. Toxicity of hyperoxia and high 

pressure on C3H/10T1/2 cells and effects on cellular glutathione. Undersea 

Hyperb.Med. 1998;25:33-41. 

 304.  Reece EA, Homko CJ, Wu YK, Wiznitzer A. The role of free radicals and 

membrane lipids in diabetes-induced congenital malformations. J Soc 

Gynecol.Investig. 1998;5:178-87. 



 

 

259

 305.  Eriksson UJ, Borg LA. Diabetes and embryonic malformations. Role of 

substrate-induced free-oxygen radical production for dysmorphogenesis in 

cultured rat embryos. Diabetes 1993;42:411-9. 

 306.  Trocino RA, Akazawa S, Ishibashi M, Matsumoto K, Matsuo H, 

Yamamoto H et al. Significance of glutathione depletion and oxidative stress 

in early embryogenesis in glucose-induced rat embryo culture. Diabetes 

1995;44:992-8. 

 307.  Akazawa S. Diabetic embryopathy: studies using a rat embryo culture 

system and an animal model. Congenit.Anom.(Kyoto) 2005;45:73-9. 

 308.  Koseki C, Herzlinger D, al-Awqati Q. Apoptosis in metanephric 

development. J Cell Biol. 1992;119:1327-33. 

 309.  Sainio K, Nonclercq D, Saarma M, Palgi J, Saxen L, Sariola H. Neuronal 

characteristics in embryonic renal stroma. Int.J Dev.Biol. 1994;38:77-84. 

 310.  Novack DV, Korsmeyer SJ. Bcl-2 protein expression during murine 

development. Am J Pathol. 1994;145:61-73. 

 311.  Sorenson CM, Rogers SA, Korsmeyer SJ, Hammerman MR. Fulminant 

metanephric apoptosis and abnormal kidney development in bcl-2-deficient 

mice. Am J Physiol 1995;268:F73-F81. 

 312.  Brownlee M. Biochemistry and molecular cell biology of diabetic 

complications. Nature 2001;414:813-20. 

 313.  Menini S, Iacobini C, Oddi G, Ricci C, Simonelli P, Fallucca S et al. 

Increased glomerular cell (podocyte) apoptosis in rats with 



 

 

260

streptozotocin-induced diabetes mellitus: role in the development of diabetic 

glomerular disease. Diabetologia 2007;50:2591-9. 

 314.  Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive 

oxygen species cause apoptosis of podocytes and podocyte depletion at the 

onset of diabetic nephropathy. Diabetes 2006;55:225-33. 

 315.  Kang BP, Urbonas A, Baddoo A, Baskin S, Malhotra A, Meggs LG. IGF-1 

inhibits the mitochondrial apoptosis program in mesangial cells exposed to 

high glucose. Am J Physiol Renal Physiol 2003;285:F1013-F1024. 

 316.  Brezniceanu ML, Liu F, Wei CC, Tran S, Sachetelli S, Zhang SL et al. 

Catalase overexpression attenuates angiotensinogen expression and 

apoptosis in diabetic mice. Kidney Int. 2007;71:912-23. 

 317.  Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento 

G et al. Taurine prevents apoptosis induced by high ambient glucose in 

human tubule renal cells. J Investig.Med. 2002;50:443-51. 

 318.  Sen R, Baltimore D. Multiple nuclear factors interact with the 

immunoglobulin enhancer sequences. Cell 1986;46:705-16. 

 319.  Pereira SG, Oakley F. Nuclear factor-kappaB1: regulation and function. 

Int.J Biochem.Cell Biol. 2008;40:1425-30. 

 320.  Plantivaux A, Szegezdi E, Samali A, Egan L. Is there a role for nuclear 

factor kappaB in tumor necrosis factor-related apoptosis-inducing ligand 

resistance? Ann.N.Y.Acad.Sci. 2009;1171:38-49. 



 

 

261

 321.  Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and 

stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. 

Endocr.Rev. 2002;23:599-622. 

 322.  Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor 

in chronic inflammatory diseases. N.Engl.J Med. 1997;336:1066-71. 

 323.  Beg AA, Sha WC, Bronson RT, Baltimore D. Constitutive NF-kappa B 

activation, enhanced granulopoiesis, and neonatal lethality in I kappa B 

alpha-deficient mice. Genes Dev. 1995;9:2736-46. 

 324.  Schmidt-Ullrich R, Aebischer T, Hulsken J, Birchmeier W, Klemm U, 

Scheidereit C. Requirement of NF-kappaB/Rel for the development of hair 

follicles and other epidermal appendices. Development 2001;128:3843-53. 

 325.  Mohamed AK, Bierhaus A, Schiekofer S, Tritschler H, Ziegler R, Nawroth 

PP. The role of oxidative stress and NF-kappaB activation in late diabetic 

complications. Biofactors 1999;10:157-67. 

 326.  Hofmann MA, Schiekofer S, Isermann B, Kanitz M, Henkels M, Joswig M 

et al. Peripheral blood mononuclear cells isolated from patients with diabetic 

nephropathy show increased activation of the oxidative-stress sensitive 

transcription factor NF-kappaB. Diabetologia 1999;42:222-32. 

 327.  Mezzano S, Aros C, Droguett A, Burgos ME, Ardiles L, Flores C et al. 

NF-kappaB activation and overexpression of regulated genes in human 

diabetic nephropathy. Nephrol Dial.Transplant. 2004;19:2505-12. 



 

 

262

 328.  Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F et 

al. Modular activation of nuclear factor-kappaB transcriptional programs in 

human diabetic nephropathy. Diabetes 2006;55:2993-3003. 

 329.  Kuhad A, Chopra K. Attenuation of diabetic nephropathy by tocotrienol: 

involvement of NFkB signaling pathway. Life Sci. 2009;84:296-301. 

 330.  Hofmann MA, Schiekofer S, Kanitz M, Klevesath MS, Joswig M, Lee V et 

al. Insufficient glycemic control increases nuclear factor-kappa B binding 

activity in peripheral blood mononuclear cells isolated from patients with 

type 1 diabetes. Diabetes Care 1998;21:1310-6. 

 331.  Lamhamedi-Cherradi SE, Zheng S, Hilliard BA, Xu L, Sun J, Alsheadat S 

et al. Transcriptional regulation of type I diabetes by NF-kappa B. J Immunol. 

2003;171:4886-92. 

 332.  Mollah ZU, Pai S, Moore C, O'Sullivan BJ, Harrison MJ, Peng J et al. 

Abnormal NF-kappa B function characterizes human type 1 diabetes 

dendritic cells and monocytes. J Immunol. 2008;180:3166-75. 

 333.  Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive 

oxygen species: fifteen years later. Biochem.Pharmacol. 2006;72:1493-505. 

 334.  Vollgraf U, Wegner M, Richter-Landsberg C. Activation of AP-1 and 

nuclear factor-kappaB transcription factors is involved in hydrogen 

peroxide-induced apoptotic cell death of oligodendrocytes. J Neurochem. 

1999;73:2501-9. 



 

 

263

 335.  Zhang H, Ding J, Fan Q, Liu S. TRPC6 up-regulation in Ang II-induced 

podocyte apoptosis might result from ERK activation and NF-{kappa}B 

translocation. Exp.Biol.Med.(Maywood.) 2009. 

 336.  Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger 

M. NF-kappaB is activated and promotes cell death in focal cerebral 

ischemia. Nat.Med. 1999;5:554-9. 

 337.  Nakai M, Qin ZH, Chen JF, Wang Y, Chase TN. Kainic acid-induced 

apoptosis in rat striatum is associated with nuclear factor-kappaB activation. 

J Neurochem. 2000;74:647-58. 

 338.  Perkins ND. Integrating cell-signalling pathways with NF-kappaB and 

IKK function. Nat.Rev.Mol.Cell Biol. 2007;8:49-62. 

 339.  Sun X, Shimizu H, Yamamoto K. Identification of a novel p53 promoter 

element involved in genotoxic stress-inducible p53 gene expression. 

Mol.Cell Biol. 1995;15:4489-96. 

 340.  Wu H, Lozano G. NF-kappa B activation of p53. A potential mechanism 

for suppressing cell growth in response to stress. J Biol.Chem. 

1994;269:20067-74. 

 341.  Royds JA, Dower SK, Qwarnstrom EE, Lewis CE. Response of tumour 

cells to hypoxia: role of p53 and NFkB. Mol.Pathol. 1998;51:55-61. 

 342.  Grilli M, Memo M. Possible role of NF-kappaB and p53 in the 

glutamate-induced pro-apoptotic neuronal pathway. Cell Death.Differ. 

1999;6:22-7. 



 

 

264

 343.  Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. 

Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited 

by interleukin-6. Nature 1991;352:345-7. 

 344.  Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis - the p53 network. J 

Cell Sci. 2003;116:4077-85. 

 345.  Appella E, Anderson CW. Post-translational modifications and activation 

of p53 by genotoxic stresses. Eur.J Biochem. 2001;268:2764-72. 

 346.  Pauklin S, Kristjuhan A, Maimets T, Jaks V. ARF and ATM/ATR 

cooperate in p53-mediated apoptosis upon oncogenic stress. 

Biochem.Biophys.Res.Commun. 2005;334:386-94. 

 347.  Sansome C, Zaika A, Marchenko ND, Moll UM. Hypoxia death stimulus 

induces translocation of p53 protein to mitochondria. Detection by 

immunofluorescence on whole cells. FEBS Lett. 2001;488:110-5. 

 348.  Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA. Influence 

of induced reactive oxygen species in p53-mediated cell fate decisions. 

Mol.Cell Biol. 2003;23:8576-85. 

 349.  Schuler M, Bossy-Wetzel E, Goldstein JC, Fitzgerald P, Green DR. p53 

induces apoptosis by caspase activation through mitochondrial cytochrome c 

release. J Biol.Chem. 2000;275:7337-42. 

 350.  Bonini P, Cicconi S, Cardinale A, Vitale C, Serafino AL, Ciotti MT et al. 

Oxidative stress induces p53-mediated apoptosis in glia: p53 

transcription-independent way to die. J Neurosci.Res. 2004;75:83-95. 



 

 

265

 351.  Ito K, Nakazato T, Yamato K, Miyakawa Y, Yamada T, Hozumi N et al. 

Induction of apoptosis in leukemic cells by homovanillic acid derivative, 

capsaicin, through oxidative stress: implication of phosphorylation of p53 at 

Ser-15 residue by reactive oxygen species. Cancer Res. 2004;64:1071-8. 

 352.  Ortega-Camarillo C, Guzman-Grenfell AM, Garcia-Macedo R, 

Rosales-Torres AM, valos-Rodriguez A, Duran-Reyes G et al. 

Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in 

RINm5F cells. Mol.Cell Biochem. 2006;281:163-71. 

 353.  Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B et al. 

Hyperglycemia activates p53 and p53-regulated genes leading to myocyte 

cell death. Diabetes 2001;50:2363-75. 

 354.  Keim AL, Chi MM, Moley KH. Hyperglycemia-induced apoptotic cell 

death in the mouse blastocyst is dependent on expression of p53. 

Mol.Reprod.Dev. 2001;60:214-24. 

 355.  Carev D, Krnic D, Saraga M, Sapunar D, Saraga-Babic M. Role of mitotic, 

pro-apoptotic and anti-apoptotic factors in human kidney development. 

Pediatr.Nephrol 2006;21:627-36. 

 356.  Godley LA, Kopp JB, Eckhaus M, Paglino JJ, Owens J, Varmus HE. 

Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric 

bud and possess small kidneys. Genes Dev. 1996;10:836-50. 

 357.  Lichnovsky V, Kolar Z, Murray P, Hlobilkova A, Cernochova D, 

Pospisilova E et al. Differences in p53 and Bcl-2 expression in relation to 



 

 

266

cell proliferation during the development of human embryos. Mol.Pathol. 

1998;51:131-7. 

 358.  Baserga M, Hale MA, Ke X, Wang ZM, Yu X, Callaway CW et al. 

Uteroplacental insufficiency increases p53 phosphorylation without 

triggering the p53-MDM2 functional circuit response in the IUGR rat kidney. 

Am J Physiol Regul.Integr.Comp Physiol 2006;291:R412-R418. 

 359.  Manrique C, Lastra G, Gardner M, Sowers JR. The renin angiotensin 

aldosterone system in hypertension: roles of insulin resistance and oxidative 

stress. Med.Clin.North Am 2009;93:569-82. 

 360.  Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N et 

al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) 

converts angiotensin I to angiotensin 1-9. Circ.Res. 2000;87:E1-E9. 

 361.  Santos RA, Ferreira AJ. Angiotensin-(1-7) and the renin-angiotensin 

system. Curr.Opin.Nephrol Hypertens. 2007;16:122-8. 

 362.  Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. Pivotal 

role of the renin/prorenin receptor in angiotensin II production and cellular 

responses to renin. J Clin.Invest 2002;109:1417-27. 

 363.  Burns KD. The emerging role of angiotensin-converting enzyme-2 in the 

kidney. Curr.Opin.Nephrol Hypertens. 2007;16:116-21. 

 364.  Schutz S, Le Moullec JM, Corvol P, Gasc JM. Early expression of all the 

components of the renin-angiotensin-system in human development. Am J 

Pathol. 1996;149:2067-79. 



 

 

267

 365.  Iosipiv IV, Schroeder M. A role for angiotensin II AT1 receptors in 

ureteric bud cell branching. Am J Physiol Renal Physiol 

2003;285:F199-F207. 

 366.  Yosypiv IV, Schroeder M, El-Dahr SS. Angiotensin II type 1 

receptor-EGF receptor cross-talk regulates ureteric bud branching 

morphogenesis. J Am Soc Nephrol 2006;17:1005-14. 

 367.  Kakuchi J, Ichiki T, Kiyama S, Hogan BL, Fogo A, Inagami T et al. 

Developmental expression of renal angiotensin II receptor genes in the 

mouse. Kidney Int. 1995;47:140-7. 

 368.  Ciuffo GM, Viswanathan M, Seltzer AM, Tsutsumi K, Saavedra JM. 

Glomerular angiotensin II receptor subtypes during development of rat 

kidney. Am J Physiol 1993;265:F264-F271. 

 369.  Zemel S, Millan MA, Feuillan P, Aguilera G. Characterization and 

distribution of angiotensin-II receptors in the primate fetus. J 

Clin.Endocrinol.Metab 1990;71:1003-7. 

 370.  Zhang SL, Moini B, Ingelfinger JR. Angiotensin II increases Pax-2 

expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 

2004;15:1452-65. 

 371.  Oshima K, Miyazaki Y, Brock JW, III, Adams MC, Ichikawa I, Pope JC. 

Angiotensin type II receptor expression and ureteral budding. J Urol. 

2001;166:1848-52. 



 

 

268

 372.  Navar LG, Lewis L, Hymel A, Braam B, Mitchell KD. Tubular fluid 

concentrations and kidney contents of angiotensins I and II in anesthetized 

rats. J Am Soc Nephrol 1994;5:1153-8. 

 373.  Siragy HM, Howell NL, Ragsdale NV, Carey RM. Renal interstitial fluid 

angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and 

renin inhibition. Hypertension 1995;25:1021-4. 

 374.  Wilcox CS, Dzau VJ. Effect of captopril on the release of the components 

of the renin-angiotensin system into plasma and lymph. J Am Soc Nephrol 

1992;2:1241-50. 

 375.  Alenina N, Xu P, Rentzsch B, Patkin EL, Bader M. Genetically altered 

animal models for Mas and angiotensin-(1-7). Exp.Physiol 2008;93:528-37. 

 376.  Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K et al. 

Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel 

homolog of ACE2 and is developmentally regulated in embryonic kidneys. J 

Biol.Chem. 2001;276:17132-9. 

 377.  Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K et al. 

Nephrogenesis and renovascular development in angiotensinogen-deficient 

mice. Lab Invest 1996;75:745-53. 

 378.  Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T et al. 

Gene targeting in mice reveals a requirement for angiotensin in the 

development and maintenance of kidney morphology and growth factor 

regulation. J Clin.Invest 1995;96:2947-54. 



 

 

269

 379.  Takahashi N, Lopez ML, Cowhig JE, Jr., Taylor MA, Hatada T, Riggs E et 

al. Ren1c homozygous null mice are hypotensive and polyuric, but 

heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 

2005;16:125-32. 

 380.  Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H et al. 

Murine double nullizygotes of the angiotensin type 1A and 1B receptor 

genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. 

J Clin.Invest 1998;101:755-60. 

 381.  Esther CR, Jr., Howard TE, Marino EM, Goddard JM, Capecchi MR, 

Bernstein KE. Mice lacking angiotensin-converting enzyme have low blood 

pressure, renal pathology, and reduced male fertility. Lab Invest 

1996;74:953-65. 

 382.  Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF et al. Reduced 

growth, abnormal kidney structure, and type 2 (AT2) angiotensin 

receptor-mediated blood pressure regulation in mice lacking both AT1A and 

AT1B receptors for angiotensin II. Proc.Natl.Acad.Sci.U.S.A 

1998;95:15496-501. 

 383.  Chen YW, Tran S, Chenier I, Chan JS, Ingelfinger JR, Inagami T et al. 

Deficiency of intrarenal angiotensin II type 2 receptor impairs paired homeo 

box-2 and N-myc expression during nephrogenesis. Pediatr.Nephrol 2008. 

 384.  Bichu P, Nistala R, Khan A, Sowers JR, Whaley-Connell A. Angiotensin 

receptor blockers for the reduction of proteinuria in diabetic patients with 



 

 

270

overt nephropathy: results from the AMADEO study. Vasc.Health Risk 

Manag. 2009;5:129-40. 

 385.  AlHabib KF, Hersi A, AlFaleh H, Kurdi M, Arafah M, Youssef M et al. 

The Saudi Project for Assessment of Coronary Events (SPACE) registry: 

design and results of a phase I pilot study. Can.J Cardiol. 

2009;25:e255-e258. 

 386.  Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor 

blocker valsartan in chronic heart failure. N.Engl.J Med. 2001;345:1667-75. 

 387.  Kim S, Wanibuchi H, Hamaguchi A, Miura K, Yamanaka S, Iwao H. 

Angiotensin blockade improves cardiac and renal complications of type II 

diabetic rats. Hypertension 1997;30:1054-61. 

 388.  Zimpelmann J, Kumar D, Levine DZ, Wehbi G, Imig JD, Navar LG et al. 

Early diabetes mellitus stimulates proximal tubule renin mRNA expression 

in the rat. Kidney Int. 2000;58:2320-30. 

 389.  Yoo TH, Li JJ, Kim JJ, Jung DS, Kwak SJ, Ryu DR et al. Activation of the 

renin-angiotensin system within podocytes in diabetes. Kidney Int. 

2007;71:1019-27. 

 390.  Holemans K, Gerber RT, Meurrens K, De CF, Poston L, Van Assche FA. 

Streptozotocin diabetes in the pregnant rat induces cardiovascular 

dysfunction in adult offspring. Diabetologia 1999;42:81-9. 

 391.  Wichi RB, Souza SB, Casarini DE, Morris M, Barreto-Chaves ML, 

Irigoyen MC. Increased blood pressure in the offspring of diabetic mothers. 

Am J Physiol Regul.Integr.Comp Physiol 2005;288:R1129-R1133. 



 

 

271

 392.  Valerius MT, Patterson LT, Witte DP, Potter SS. Microarray analysis of 

novel cell lines representing two stages of metanephric mesenchyme 

differentiation. Mech.Dev. 2002;112:219-32. 

 393.  Srinivas S, Goldberg MR, Watanabe T, D'Agati V, al-Awqati Q, Costantini 

F. Expression of green fluorescent protein in the ureteric bud of transgenic 

mice: a new tool for the analysis of ureteric bud morphogenesis. Dev.Genet. 

1999;24:241-51. 

 394.  Wilson GL, Leiter EH. Streptozotocin interactions with pancreatic beta 

cells and the induction of insulin-dependent diabetes. 

Curr.Top.Microbiol.Immunol. 1990;156:27-54. 

 395.  Vuguin PM. Animal models for small for gestational age and fetal 

programming of adult disease. Horm.Res. 2007;68:113-23. 

 396.  Caluwaerts S, Holemans K, van BR, Verhaeghe J, Van Assche FA. Is 

low-dose streptozotocin in rats an adequate model for gestational diabetes 

mellitus? J Soc Gynecol.Investig. 2003;10:216-21. 

 397.  Han J, Xu J, Long YS, Epstein PN, Liu YQ. Rat maternal diabetes impairs 

pancreatic beta-cell function in the offspring. Am J Physiol 

Endocrinol.Metab 2007;293:E228-E236. 

 398.  Verhaeghe J, Peeters TL, Vandeputte M, Rombauts W, Bouillon R, Van 

Assche FA. Maternal and fetal endocrine pancreas in the spontaneously 

diabetic BB rat. Biol.Neonate 1989;55:298-308. 



 

 

272

 399.  Eriksson UJ, Bone AJ, Turnbull DM, Baird JD. Timed interruption of 

insulin therapy in diabetic BB/E rat pregnancy: effect on maternal 

metabolism and fetal outcome. Acta Endocrinol.(Copenh) 1989;120:800-10. 

 400.  Lindegaard ML, Nielsen LB. Maternal diabetes causes coordinated 

down-regulation of genes involved with lipid metabolism in the murine fetal 

heart. Metabolism 2008;57:766-73. 

 401.  Bevier WC, Jovanovic-Peterson L, Formby B, Peterson CM. Maternal 

hyperglycemia is not the only cause of macrosomia: lessons learned from the 

nonobese diabetic mouse. Am J Perinatol. 1994;11:51-6. 

 402.  Formby B, Schmid-Formby F, Jovanovic L, Peterson CM. The offspring of 

the female diabetic "nonobese diabetic" (NOD) mouse are large for 

gestational age and have elevated pancreatic insulin content: a new animal 

model of human diabetic pregnancy. Proc.Soc Exp.Biol.Med. 

1987;184:291-4. 

 403.  Lambin S, van BR, Caluwaerts S, Vercruysse L, Vergote I, Verhaeghe J. 

Adipose tissue in offspring of Lepr(db/+) mice: early-life environment vs. 

genotype. Am J Physiol Endocrinol.Metab 2007;292:E262-E271. 

 404.  Ishizuka T, Klepcyk P, Liu S, Panko L, Liu S, Gibbs EM et al. Effects of 

overexpression of human GLUT4 gene on maternal diabetes and fetal 

growth in spontaneous gestational diabetic C57BLKS/J Lepr(db/+) mice. 

Diabetes 1999;48:1061-9. 



 

 

273

 405.  Winyard PJ, Risdon RA, Sams VR, Dressler GR, Woolf AS. The PAX2 

tanscription factor is expressed in cystic and hyperproliferative dysplastic 

epithelia in human kidney malformations. J Clin.Invest 1996;98:451-9. 

 406.  Harrison R. Structure and function of xanthine oxidoreductase: where are 

we now? Free Radic.Biol.Med. 2002;33:774-97. 

 407.  Hsieh TJ, Fustier P, Wei CC, Zhang SL, Filep JG, Tang SS et al. Reactive 

oxygen species blockade and action of insulin on expression of 

angiotensinogen gene in proximal tubular cells. J Endocrinol. 

2004;183:535-50. 

 408.  Hsieh TJ, Fustier P, Zhang SL, Filep JG, Tang SS, Ingelfinger JR et al. 

High glucose stimulates angiotensinogen gene expression and cell 

hypertrophy via activation of the hexosamine biosynthesis pathway in rat 

kidney proximal tubular cells. Endocrinology 2003;144:4338-49. 

 409.  Hayashida T, Schnaper HW. High ambient glucose enhances sensitivity to 

TGF-beta1 via extracellular signal--regulated kinase and protein kinase 

Cdelta activities in human mesangial cells. J Am Soc Nephrol 

2004;15:2032-41. 

 410.  Tuttle KR, Johnson EC, Cooney SK, Anderberg RJ, Johnson EK, Clifton 

GD et al. Amino acids injure mesangial cells by advanced glycation end 

products, oxidative stress, and protein kinase C. Kidney Int. 2005;67:953-68. 

 411.  Kanwar YS, Pan X, Lin S, Kumar A, Wada J, Haas CS et al. Imprinted 

mesodermal specific transcript (MEST) and H19 genes in renal development 

and diabetes. Kidney Int. 2003;63:1658-70. 



 

 

274

 412.  Cullen-McEwen LA, Fricout G, Harper IS, Jeulin D, Bertram JF. 

Quantitation of 3D ureteric branching morphogenesis in cultured embryonic 

mouse kidney. Int.J Dev.Biol. 2002;46:1049-55. 

 413.  Chelikani P, Fita I, Loewen PC. Diversity of structures and properties 

among catalases. Cell Mol.Life Sci. 2004;61:192-208. 

 414.  Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY et al. High 

glucose-induced apoptosis in human vascular endothelial cells is mediated 

through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented 

by PI3K/Akt/eNOS pathway. Cell Signal. 2006;18:391-9. 

 415.  Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY et al. High 

glucose induces human endothelial cell apoptosis through a phosphoinositide 

3-kinase-regulated cyclooxygenase-2 pathway. 

Arterioscler.Thromb.Vasc.Biol. 2005;25:539-45. 

 416.  Fonsato V, Buttiglieri S, Deregibus MC, Puntorieri V, Bussolati B, 

Camussi G. Expression of Pax2 in human renal tumor-derived endothelial 

cells sustains apoptosis resistance and angiogenesis. Am J Pathol. 

2006;168:706-13. 

 417.  Fuhrmann K, Reiher H, Semmler K, Fischer F, Fischer M, Glockner E. 

Prevention of congenital malformations in infants of insulin-dependent 

diabetic mothers. Diabetes Care 1983;6:219-23. 

 418.  Martinez-Frias ML, Bermejo E, Rodriguez-Pinilla E, Prieto L, Frias JL. 

Epidemiological analysis of outcomes of pregnancy in gestational diabetic 

mothers. Am J Med.Genet. 1998;78:140-5. 



 

 

275

 419.  Rocha SO, Gomes GN, Forti AL, do Carmo Pinho FM, Fortes ZB, de 

Fatima CM et al. Long-term effects of maternal diabetes on vascular 

reactivity and renal function in rat male offspring. Pediatr.Res. 

2005;58:1274-9. 

 420.  Magaton A, Gil FZ, Casarini DE, Cavanal MF, Gomes GN. Maternal 

diabetes mellitus--early consequences for the offspring. Pediatr.Nephrol 

2007;22:37-43. 

 421.  Tay YC, Wang Y, Kairaitis L, Rangan GK, Zhang C, Harris DC. Can 

murine diabetic nephropathy be separated from superimposed acute renal 

failure? Kidney Int. 2005;68:391-8. 

 422.  Van Huyen JP, Viltard M, Nehiri T, Freund N, Belair MF, Martinerie C et 

al. Expression of matrix metalloproteinases MMP-2 and MMP-9 is altered 

during nephrogenesis in fetuses from diabetic rats. Lab Invest 

2007;87:680-9. 

 423.  McMillen IC, Adams MB, Ross JT, Coulter CL, Simonetta G, Owens JA 

et al. Fetal growth restriction: adaptations and consequences. Reproduction. 

2001;122:195-204. 

 424.  Kanwar YS, Liu ZZ, Wallner EI. Influence of glucose on murine 

metanephric development and proteoglycans: morphologic and biochemical 

studies. Lab Invest 1997;76:671-81. 

 425.  Gross ML, Amann K, Ritz E. Nephron number and renal risk in 

hypertension and diabetes. J Am Soc Nephrol 2005;16 Suppl 1:S27-S29. 



 

 

276

 426.  Fraser RB, Waite SL, Wood KA, Martin KL. Impact of hyperglycemia on 

early embryo development and embryopathy: in vitro experiments using a 

mouse model. Hum.Reprod. 2007;22:3059-68. 

 427.  Gareskog M, Cederberg J, Eriksson UJ, Wentzel P. Maternal diabetes in 

vivo and high glucose concentration in vitro increases apoptosis in rat 

embryos. Reprod.Toxicol. 2007;23:63-74. 

 428.  Satchell SC, Tooke JE. What is the mechanism of microalbuminuria in 

diabetes: a role for the glomerular endothelium? Diabetologia 

2008;51:714-25. 

 429.  Kumar D, Robertson S, Burns KD. Evidence of apoptosis in human 

diabetic kidney. Mol.Cell Biochem. 2004;259:67-70. 

 430.  Mercurio F, Manning AM. NF-kappaB as a primary regulator of the stress 

response. Oncogene 1999;18:6163-71. 

 431.  Dutta J, Fan Y, Gupta N, Fan G, Gelinas C. Current insights into the 

regulation of programmed cell death by NF-kappaB. Oncogene 

2006;25:6800-16. 

 432.  Garcia Carrapato MR. The offspring of gestational diabetes. J Perinat.Med. 

2003;31:5-11. 

 433.  Silverman BL, Rizzo T, Green OC, Cho NH, Winter RJ, Ogata ES et al. 

Long-term prospective evaluation of offspring of diabetic mothers. Diabetes 

1991;40 Suppl 2:121-5. 



 

 

277

 434.  Pettitt DJ, Nelson RG, Saad MF, Bennett PH, Knowler WC. Diabetes and 

obesity in the offspring of Pima Indian women with diabetes during 

pregnancy. Diabetes Care 1993;16:310-4. 

 435.  Weiss PA, Scholz HS, Haas J, Tamussino KF, Seissler J, Borkenstein MH. 

Long-term follow-up of infants of mothers with type 1 diabetes: evidence for 

hereditary and nonhereditary transmission of diabetes and precursors. 

Diabetes Care 2000;23:905-11. 

 436.  Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. 

Maternal gestational diabetes, birth weight, and adolescent obesity. 

Pediatrics 2003;111:e221-e226. 

 437.  Pettitt DJ, Bennett PH, Saad MF, Charles MA, Nelson RG, Knowler WC. 

Abnormal glucose tolerance during pregnancy in Pima Indian women. 

Long-term effects on offspring. Diabetes 1991;40 Suppl 2:126-30. 

 438.  Koistinen HA, Koivisto VA, Andersson S, Karonen SL, Kontula K, 

Oksanen L et al. Leptin concentration in cord blood correlates with 

intrauterine growth. J Clin.Endocrinol.Metab 1997;82:3328-30. 

 439.  Martin-Gronert MS, Ozanne SE. Experimental IUGR and later diabetes. J 

Intern.Med. 2007;261:437-52. 

 440.  Plagemann A, Harder T, Kohlhoff R, Rohde W, Dorner G. Glucose 

tolerance and insulin secretion in children of mothers with pregestational 

IDDM or gestational diabetes. Diabetologia 1997;40:1094-100. 



 

 

278

 441.  Dabelea D, Pettitt DJ. Intrauterine diabetic environment confers risks for 

type 2 diabetes mellitus and obesity in the offspring, in addition to genetic 

susceptibility. J Pediatr.Endocrinol.Metab 2001;14:1085-91. 

 442.  Wei JN, Sung FC, Li CY, Chang CH, Lin RS, Lin CC et al. Low birth 

weight and high birth weight infants are both at an increased risk to have 

type 2 diabetes among schoolchildren in taiwan. Diabetes Care 

2003;26:343-8. 

 443.  Segar EM, Norris AW, Yao JR, Hu S, Koppenhafer SL, Roghair RD et al. 

Programming of growth, insulin resistance and vascular dysfunction in 

offspring of late gestation diabetic rats. Clin.Sci.(Lond) 2009;117:129-38. 

 444.  Cho NH, Silverman BL, Rizzo TA, Metzger BE. Correlations between the 

intrauterine metabolic environment and blood pressure in adolescent 

offspring of diabetic mothers. J Pediatr. 2000;136:587-92. 

 445.  Bunt JC, Tataranni PA, Salbe AD. Intrauterine exposure to diabetes is a 

determinant of hemoglobin A(1)c and systolic blood pressure in pima Indian 

children. J Clin.Endocrinol.Metab 2005;90:3225-9. 

 446.  Wright CS, Rifas-Shiman SL, Rich-Edwards JW, Taveras EM, Gillman 

MW, Oken E. Intrauterine exposure to gestational diabetes, child adiposity, 

and blood pressure. Am J Hypertens. 2009;22:215-20. 

 447.  Nelson RG, Morgenstern H, Bennett PH. Intrauterine diabetes exposure 

and the risk of renal disease in diabetic Pima Indians. Diabetes 

1998;47:1489-93. 



 

 

279

 448.  Rocco L, Gil FZ, da Fonseca Pletiskaitz TM, de Fatima CM, Gomes GN. 

Effect of sodium overload on renal function of offspring from diabetic 

mothers. Pediatr.Nephrol 2008;23:2053-60. 

 449.  Ingelfinger JR. Disparities in renal endowment: causes and consequences. 

Adv.Chronic.Kidney Dis. 2008;15:107-14. 

 450.  Sachetelli S, Liu Q, Zhang SL, Liu F, Hsieh TJ, Brezniceanu ML et al. 

RAS blockade decreases blood pressure and proteinuria in transgenic mice 

overexpressing rat angiotensinogen gene in the kidney. Kidney Int. 

2006;69:1016-23. 

 451.  Sahajpal V, Ashton N. Renal function and angiotensin AT1 receptor 

expression in young rats following intrauterine exposure to a maternal 

low-protein diet. Clin.Sci.(Lond) 2003;104:607-14. 

 452.  Rasch R, Skriver E, Woods LL. The role of the RAS in programming of 

adult hypertension. Acta Physiol Scand. 2004;181:537-42. 

 453.  Battista MC, Oligny LL, St-Louis J, Brochu M. Intrauterine growth 

restriction in rats is associated with hypertension and renal dysfunction in 

adulthood. Am J Physiol Endocrinol.Metab 2002;283:E124-E131. 

 454.  Zhang SL, Chen YW, Tran S, Liu F, Nestoridi E, Hebert MJ et al. Pax-2 

and N-myc regulate epithelial cell proliferation and apoptosis in a positive 

autocrine feedback loop. Pediatr.Nephrol 2007;22:813-24. 

 455.  Huang JS, Chuang LY, Guh JY, Huang YJ, Hsu MS. Antioxidants 

attenuate high glucose-induced hypertrophic growth in renal tubular 

epithelial cells. Am J Physiol Renal Physiol 2007;293:F1072-F1082. 



 

 

280

 456.  Ryu S, Kohen R, Samuni A, Ornoy A. Nitroxide radicals protect cultured 

rat embryos and yolk sacs from diabetic-induced damage. Birth Defects 

Res.A Clin.Mol.Teratol. 2007;79:604-11. 

 457.  Brezniceanu ML, Liu F, Wei CC, Chenier I, Godin N, Zhang SL et al. 

Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic 

mice overexpressing catalase in renal proximal tubular cells. Diabetes 

2008;57:451-9. 

 

 

 


