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I. INTRODUCTION

Several authors have discussed recently the limited dependent
variable model [Tobin (1958) ], when there is serial correlation.between
the residual errors. Robinson (1982) has shown that the Pseudo-Maximum
Likelihood estimators obtained by maximizing the log—likelihood function
which Ignores the Serial correlation (PML1S) are consistent. Robinson shows
also that these estimators are asymptotically normally distributed and he
derives their asymptotic covariance matrix. Dagenais (1982) has derived an
expression for the 1ikelihood function of the Tobit model with first order
serial correlation, which illustrates that the computation of this function
involves the evaluation of multivariate normal integrals. The dimensions
of these integrals correspond to the length of the rumns of limit observatioms.
Testsvfor serial dependence in such models have also been discussed by
Gourieroux 2% al. (1982) and Robinson et al. (1985). Robinson et al. (1985)
note also that the above'mentioned PMLIS estimators obtained for Tobit models
with serial correlation have relatively large mean-squared errors, in finite

samples. Since, on the other hand, the computation of true maximum 1ikelihood

_ estimators is not an operational procedure in that case, unless the sample

contains only short Tuns of limit observations, it would be desirable to
have on hand an alternative estimating procedure which would be computation-
ally no more difficult than the PMLIS approach mentioned above, but could

reduce substantially the variability of the resulting estimators.




ABSTRACT

Several authors have discussed recently the limited dependent
variable regression model with serial correlation between the residuals. The
pseudo-maximum likelihood estimators obtained by ignoring serial correlation

altogether, have been shown to be consistent. We present alternative pseudo-:

maximum likelihood estimators which are obtained by ignoring serial correlatio{i

only selectively. Monte Carlo experiments on a model with first order serial f
correlation suggest that our alternative estimators have substantially lower
mean-squared errors in medium size and small samples, especially when the

serial correlation coefficient is high. The same experiments also suggest

samples. Although the paper focuses on models with only first order serial

.

of higher order is discussed briefly, in the conclusion.




The purpose of this paper is to suggest such a procedure for Tobit

models with first order serial correlation. Starting from the true likeliho§
function of the model and viewing the likelihood which ignores serial ‘
correlation as an approximation to the true function, a different approximatid
is then derived and Alternative Pseudo-Maximum Likelihood (APML) estimators

are proposed, in Section II, which maximize this latter function. Since the

asymptotic properties of the APML estimators appear to be difficult to

establish and that, moreover, small sample properties are of utmost interest,

Monte Carlo experiments are performed to compare these alternative estimators
to the PMLIS estimators, in Section III. Using the estimators of the classic;%
multiple regression model with serial correlation [Beach and MacKinnon (1978) ]
as a ‘yardstick, it is found that these new estimators behave rather well in
small samples and have substantially smaller mean-squared errors than the PMLL
estimators. Then, in Section IV, an estimator of the asymptotic covariance
matrix of the APML estimators is proposed. The Monte Carlo experiments.

suggest that the true confidence level of the intervals established with the”
above covariance matrix, assuming asymptotic normality of the APML estimators
are somewhat lower than the selected level, in medium size samples. In Sec:?a
V, a final experiment is described which suggests that the APML estimators
perform at least as well as the PMLIS estimators, in very large samples. Ing
conclusion, tﬁe extension of the proposed procedure to models involving

second or higher order serial correlation is very briefly discussed.
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II. THE SUGGESTED PROCEDURE

Let us assume the following model

(1) Yt = XtB + ut , if XtB + u, = It >Lt ,
(2) Y =L, £ X8 +u =1 sl
(3) u =P Uy t e, (-l<p<l; t=1,...,N) ,

where Yt is the limited dependent variable, Xt

explanatory variables, It is a latent variable, Lt

- variable and B is a Kx1 vector of parameters. Furthermore, the €'s are

o
N(O, oe) random variables and the u's are normally distributed with zero

mean and covariance matrix :

N-1
) 1l D eenes pN 2
2 [0 1 o 2
(4) E(u'y=) = 0" | i i =g°Q ,
81 §- :
o) ph 2 ...1 R
2 2 2
1 - = -
where u' = (ul,...,uN) and © oe/(l p7).

The unknown parameﬁers to be estimated are the elements of the

column vector §, where g' = (B', o7, P).

= As mentioned above, our suggested approach ‘consists essentially

in obtaining for the true likelihood function of the model a "closer"

approximation than the likelinood under serial independence. The

is a 1XK vector of exogenocus

is an observed exogenous




procedure can be explained by first expressiné the true likelihood function

of the model as follows :

(5) L=fap,..ox = £d) FE,1E)

where é?Yl,...,YN) is the joint mixed density and probability function associated

with the observed sample. Yl is the vector of elements contained in the subset
(Sl) of nonlimit observations(such that Yt > Lt; teSl), §2 is the vector of
elements contained in the subset (Sz) of limit observations (such that

Yt = Lt; teSo), f(§l) is the joint density of the elements of fl and

» conditional on Y._.

F(YZIYl) is the joint probability of Y2 1

Given that the residual errors ut obey a §ist onden Markov process,

if Y2 is partitioned into R runs of consecutive limit observations, such that
Y2 = (12,1""’12,R)’ where Y2,r (r = 1,...,R) designates the vector of

-~

elements of Y2 contained in the r'th rum, one may also express &£ as :

- R ~
(6) L=1 f@x Y. T OFE

teS Pe a1 2,I|Ypr’ -
1

where YDt designates the value of Y corresponding to the first nonlimit.
observation preceding Y, and f(Yt]YPt) is the conditional density of Yt,
given th. For the case where % corrnesponds to the §inst nonlimit -

observation encountered in the sample, th does not exist and in this

specific case, f(Ytlth)'is defined as : f(YF!YPt) =£(Y),

-~
4

where f(Yt) is the marginal density of Yt' In addition, F(Y

| )

2,r' " pr’ Yfr

designates the joint probability associated with the elements of Y2 -
s




conditional on the value (Ypr) of the first nonlimit observation preceding

the run of limit observations contained in Yz o and on the value (Yfr)
H]

of the first nonlimit observation following the elements in Yz e Note that
L]

in order to compute the joint probability F(§2 r‘Ypr’ Yfr)’ one must evaluate
L]

a multiple normal integral of as many dimensions as there are elements in

YZ,r'
One possible approximation of ;ﬁ is obtained by writing :
7%
(7N L = 0 £y T FEI
tsSl teS2

where, for teS f(Yt) designates the marginal density of Yt and for tsSz,

l’
F(Yt) designates the marginal probability of Y .

The PMLIS estimators of (B, 02) are obtained by maximizing

-~

JC* = In J:f.

.
-~

A closer approximation to di can be obtained by replacing in equation

(6) only the term F(YZ,rlYpr’ Y.) by :

(8) P fvo, v,y = TR )

ly__, , Y
2,r' pr’ fr teSr pr’ “fr

where Sr designates the subset of elements of Y contained in the r'th run

of nonlimit obsérvations and F(Yt]Ypr, Yfr)’ for teSr, corresponds -to the

-~

*
marginal probability of Yt’ given YPr and Yfr' In that case, & is replaced

*%k
by gﬁ;, where :
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D k% R
(9) L7 f(Yt]Y S T I Fy |y oY)
tes Pt 1 tes P
1 T
K% k%
Our APML estimators are obtained by maximizing Jf : ln.df » with respect

to the elements of 8.

*k
Note that the computation of 52 involves only one-dimensional normal

* *k
integrals, just ast . The evaluation of ae is therefore hardly more

*
costly than that of 3€ .

III. MONTE CARLO EXPERIMENTS

Given that, on the one hand, it would be difficult to analyze the

asymptotic properties of our APML estimators and that, on the other hand,

finite saméle froﬁerties are of utmost interest, Monte Carlo experiments
were #erformed to examine the biases and the mean-squared errors of our
estimators. Combarisons are made with the corresponding properties of the
PMLIS estimators, as well as with those of the estimators of the classical

. multiple regression model with serial correlation, which corresponds to the
unnealistic situation where the latent variable It would be known for all
observations. Clearly, since these last estimators [designated henceforth as
Maximum Likelihood estimators with. Latent Variables (MLLV) ] are based on a

greater amount of information, they are expected to perform better than our

APML estimators.

v




It is found in all cases that, using the MSE as a criterion, the
APML estimators perform better than the PMLIS estimators and that, in fact,
their performance is surprisingly good in comparison to that of the MLLV

estimators.

A. The Data

In order to simulate conditions which resemble those encountered in
economic analyses, the model and the data used were derived from an empirical

study performed by Dagenais (1964).

Themodel is a flexible accelerator model [Lovell (1961)3] :

10 = . . - - .
(100 I, =129+ .92C +.26C_, - .77¥ , -.758 . + uo
=TI , i < K
St c if It kt s
S =K , ifI 2K .
t t t t
Ug TP U TE )
where :
&'/Mq-[a—u’./’:m .
St = %E;pménts of North American newsprint mills, during half-year t,

in million short tons;
C = newsprint-consumption of the customers of the North American

newsprint mills, in half year t, in million tons;

Mt 1 T end of period stocks, at the mills, in million toms;
Bt 1 = end of period stocks, at the customers',in million tons;
K = capacity of North American newsprint mills, in period t.




Note that in this application the limit considered is an upper limit,

The data can be found in the Appendix!. The sample covers the period 1922,
first semester to 1960, second semester and contains 76 observations. The valy
of the B parameters shown in equation (12) are those obtained by Bussigre (1983
from the same data, with a slightly different model. The values obtained by
Bussiére for p and 02 were .7 and 5700, respectively. In the actual sample,
there are 20 limit observations corresponding to the following semiannual

periods : 1943-I to 1945—112,1947-1 to 1949-I, 1950-II to 1952-1 and

1954-II to 1956-I1I.

B. Design of the Experiments

The main set of experiments was ‘made with the 76 observations shown in
the Appendix. For each experiment, 02 was set at a given value and so was p.
Then the series of serially correlated u's were drawn at random and the values
of the latent variables were combuted. Then, the values of St were set at

min (It’ Kt).

!. The data is similar to the actual data found in Dagenais (1964) exceﬁt

for two observations,namely those referring to 1937, 2nd semester and to 1938, |

lst semester. For reasons explained in Dagenais (1964), these observations
were very abnormal and could be considered. as outliers. They were replaced
by more normal values, for performing the Present experiments.

. During World War II, the uﬁper limit imposed on production did not

actually correspond ‘to the physical capacity of the mills but to quotas
imposed by the Canadian and U.S. governments.

9
)




For each experiment, a method combining the control variate and

the two-antithetic-variate techniques was adopted, as suggested by Mikhail

i E (1972). One hundred samples were first drawn. Then for each sample, a
corresponding sample with the u vector replaced by -u was generated. For
every sample, the PMLIS, APML and MLLV estimators were computed. Control
variates were obtained for the estimators of 8 and 02 by using MLLV estimators,
assuming b to be known. A control variate was also obtained for the estimator

of p by assuming the u's to be known and applying ordinary least squares to

: equation (3).

Six different experiments (designated as experiments E-1 to E-6)

were made for p = .5, .7, .95 and R2 = .5, .95, where R2 corresponds to the

theoretical coefficient of determination of the following regression model :

(1) Y* = X*3 + ¢ s
where Y*' = (Y Vl-p2 Y,o=p Y ,..0,Y -p Y. )
1 . ? 2 1’ TN R-1 .

X!

]

‘& _2 r ' L al .
(G Vi-p", X-p XX pRp -
2, ,
R is defined as :

2
R = Blx#'y*3/(B'x*"x*8 + N Gé)

b

where x* corresponds to X* with the variables expressed in mean deviation

form.

T
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Table 1 gives the biases of the different parameters for the
three estimation procedures considered, namely PMLIS, APML and MLLV, when

the sample size is 76, for different values of p and R2.

In order to perform our experiments, the model was reparametrized

"
in terms of w = 1n ¢ and z = % 1n [(l+p)/l-o)], to avoid the recourse to

. . . 2
constrained maximization procedures. Our results concerning ¢ and p are

therefore given in terms of w and 2z, in Table 1.

One notices that the biases of the B parameters are virtually
null in the case of the MLLV procedure except for Bo, when p =..95. As
p~1, 80 becomes indeterminate in the multiple regression model with serial
correlation. Hence, it is not surprising that the results become less
accurate, when p is high, Furthermore, the estimators of z and w are

bilased downwards and in some cases, this bias is not negligible,

The biases associated with the PMLIS procedure are often relatively

large. We have underlined once all cases for which the bias is larger,

in absolute value, than 10% of the corresponding parameter. Cases for
which this percentage waé over 257 have been underlined twice and cases

for which the ?ercentage was over 507 were boxed. The PMLIS biases are in
many cases much larger than the correspondlng APML biases, as can be verifie
readllv from the |PMLIS|/[APML| column, which gives the absplufe value of

-

_the ratios of the two biases. Only for the Bt-l variable are the PMLIS

.

biases smaller than the APML biases, in three cases. These cases are.
identified by.2 * in Table 1. But the APML biases are themselves relatively

negligible, in two of these cases, being smaller than 17 of the value of the

Darameter.
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TABLE 1

BIASES (EXPERIMENTS E-1 TO E-6)

p:.5  Fi=.5 E-2 p=.5 B =.9883

jes | TOTIDERENE ) pmis | APM {%’;‘-‘-‘ﬁl MLV |variables P‘::‘;:::“ PMLIS | ARML ;%%—SH MLLV
want | 8129 4573836\ 4g.6554| 9.25 {-0.7870| comstant | B 120. 1-16.7562 | 1.517213.02 }-0.0000

8,=.92 Fo.as13| o.0499| 9.85 | 0.0013) C B =.92 -0.0281 | 0.0023 | 12.22 | 0.0000

B,=.26 -0.0296 | 15.18 {~0.0011} C . E,=.26 -0.0251 {~-0.0023 | 10.91 | 0.0000

53-——.77 -0.2174| 8.52 {~0.0001 ¥ 3= 77 .0.1036 (-0.0114 | 9.09 | 0.0000

B, =15 0.0874| -0.0533| 1.64 |~0.0004} B _, B,=-.75 0.0017 | 0.0027 | 0.63%|-0.0000

z =.55. R.A. | =0.2447{ ¥.a. {=0.0890} (1) .| z =.55 N.A. (=0.1628| NK.A. {=0,1243

w =12.47 | -0.6145] -0.2081| 2.95 |-£.1511 v =8.27 | -0.2866 |=0.2279| 1.26'{=0.1773
» pe.7  Ri=.5 E-l p=.7 R :.9658
cene| B =129, [Z345.6108) F3.5157| 4.67 | 2.8688| constant B =129, |-24.3703 | 1.1084 | 21.99 |~0.0000

B,=.92 -=0.3453| 0.0938| 3.68 | 0.0007) C_ B =.92 ~0.0366 | 0.0042| €.71 | 1.0000

B,=.26 3237) -0.0718| .51 |-0.0010f C__, B,=.26 0.0372 |~0.0019 | 17.47 | 0.0000

B=-.77 -0.2088 | 4.B4 |-0.0062| ¥ _, Byz=.77 £.1300 {-0.0163| £.03 | ©.0000
|- 8,==-75 | . 0.0332) ~0.0511| 0.65%|-0.0015| B _, B,=.75 | =0.0004 |-0.0026| C.25% 0.0000 1
P | oz =.8673 N.&. | =0,2875| R.A. [-p.2488! (1) z *.8673 R.4.  {=C.2082| X.A. [-0.1544 T
w =11.99 | ~-0.6609| -0.3530| 1.52 |-0.2684 w =8.65 | -0.4426 |=-0.3507| 1.26 |~0.2762

pe.95 Ri=.5 -6 . p=.95 F=.08 '

sau B =129. FZi2.172|005.52% | 2.63 | 2.657 | comstanz | B =125. .| ~8.5295 | 0.8845) 5.52 -0.1913
. B,=.92 -0.249| ©0.026 | 9.58 | 0.000 | C_ g =.92 -0.0146 |=~0.0003 | 4€.67 |=0.0000
vof 8y=.26 -0.025 | 9.08 | 0.000 } C__, £,=.26 0.0123 | 0.0003] 41.00 |~0.0000
8y==77 E.048| -c.005 [211.03 | 0.002 | M £,5-.77 |’ 0.0518 | 0.000774.00 ~0.0001
- =75 0.089| ~0.063 | 1.41°} 0.000 | B _, g,=-.75 0.0018 | 0.0002{ .00 | ©.0001

z =1,£318 Nobo| =0.454 | N.a. [-0.387 | (1) | z =1.8318| - K., }=0.4315)| N.h. |=L.4256

v 212,15 -1.502] -0.865 | -1.74 |{-0.770 v =8.26 | -1:2709 |=-0.8B34{ 21.44 {-Q.B54L

For computationel purposes, the model was reparamerrized in terms of ¥ =1lp ¢® and 2=.5in [Q+p)/(3=p) 3.
, I/ lA?-“-"-l corresponds to the absolute value of the ratio ¢f the PXLIS bias divided by tne APML bias.
fndiutes :’n_e cases wnere the APM_"bias is lerger than the FPIZIS bias, ir absolute value.

" 3 bias lacper than 107 cf the parameter value.
3 ‘bias larger than 25% ¢f the parameter value.

: ‘h:’gs larger that 5C% of the parameter valiue.

..




- 12 -

The APML approach underestimates w and z in all cases and the
biases are large in some cases, for z. Note, however, that in four out
of six cases, these biases are not very much larger than those found for

MLV, which does yield consistent estimators for w and z.

Table II gives, for the Same experiments, the ratios of the mean- SQuared

errors of the three estimators considered, for each parameter. The APML
estimators outperform -the PMLIS estimators in all cases. The relative
advantage of the AfML procedure over ﬁhe PMLIS procedure increases as the
serial correlation gets higher. The PMLIS approach produces especially

relatively large mean-squared errors when p = .95. 1In contrast, the APML

as p increases from .5 to .95. Given that the MLLV estimators use 1nformatlon“

that is actually unavailable in situations where the Tobit model is applied,

——since the MLLV estimators require the knowledge of the latent variables whidu

.

in reality, are unobservable for the limit observations,— rpe fact that the ™~

ratio of the MSE of the MLLV estimators over the MSE of the MLLV estimators

is, on average, of the order of 1.75, even when 0 = .95, and R2 = .5, and

of the order of 1.25 when p = .95 and R2 = .98, appears as a very good

performance.

estimators do not yield worse results, in comparison to the MLLV estimators, .

%
h

e

et

e
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RATIOS OF MEAN-SQUARED ERRORS FOR EXPERIMENTS E-1 ~ E-6

E-1 p=.5 R% =5 E-2 p=.5 R’ = .9853
MSE(PMLIS) | MSE(APML) | MSE(PMLIS) | MSE(PMLIS) | MSE(APML)| MSE(PMLIS)

MSE(MLLV) | MSE(MLLV) | MSE(APML) | MSE(MLLV) | MSE(MLLV)| MSE(APML)

constant: Bo 2.48 1.21 2.05 1.44 1.14 1.27

c, t By 2.90 1.29 2.25 2.00 1.11 1.80

C.; By 2.61 1.28 2.05 2.33 1.19 1.96

M, By 4.55 1.46 3.12 2.31 1.23 1.87

B, B, 1.34 1.32 1.01 1.79 1.32 1.36

z N.A. 3.10 N.A. N.A. 1.67 N.A.

v 6.37 1.43 bbb 1.77 1.41 1.25
E-3 p=.7 R% =5 E~4 p=.7 2% = 9658
constant: 8 | 1.9 1.42 1.37 1.46 1.08 1.34
c, : By 3.97 1.77 2.24 3.12 1.15 2.71
' 1C1 : B, 4.08 1.83 2.23 4.18 1.17 3.58
, Moy P By 6.81 1.64 4,15 4.06 1.28 3.18
. |3 : B, 1.96 1.48 1.33 3.10 1.27 2.45 ;
z N.A, 2.67 N.A. N.A. 1.57 N.A. i
| w 3.60 1.50 2.40 - | 1.83 1.38 1.33 ;
- &
| £-5 p=.95 R% =.5 -6 5=.95 R%=.98 ?
constant: 8|  1.23 1.33 0.92 1.26 1.03 1.23 j
c, 8| 11.24 1.78 6.30 9.41 1.29 7.30

C.y :8,| 10.68 1.99 5.36 10.62 1.35 7.87

M, Byl 38.10 2.17 17.55 39.45 1.17 33.73

B, B, | 12.18 2.04 5.96 15.26 1.38 11.05

z N.A. 1.49 N.A. N.A. 1.06 N.A.

w 2.22 1.35 1.64 11.90 1.05 11.34
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Table III gives, for each of the six experiments concerned, the
percentage of limit and nonlimit observations contained in the two hundred
samples generated. Table III also gives, for the limit observations, the
cumulative-distribution of observations contained in runs of different

length.

A simple inspection of Table IIT indicates that the average length
of the runs of limit observations tends to increase with p and decrease with
Rz. In experiment E~5 which is characterized by p = .95 and R2 = .5, the
sampleé that were generated contained runs of over 30 limit observations.
The fact that our procedure still performed well in such an experiment jig
reassuring. The PMLIS estimator performed rather badly in this case,  as

can be seen from Table II.

The data used for the explanatory variables in the experiments
reﬁorted in Tables I and II were highly collinear, since the determinant
of their correlation matrix is equal to 0.004. We therefore r;peated
one of the above experiments, namely E-4,after having orthogonalized the
da;a matrix and modified the B parameters accordingly. The results of this
new experiment (E-7) are reported in Table IV. 1In addition, Table IV gives
the results of two further experiments. Experiment E-8 algo repeats E-4,
with the sample.reduced to 25 observations and eﬁperiment.E—Q corresponds
again to E-4, but with p set to -.7 ins£ead of +.7. 1In E-7, the
percentage of limit obéervations was 247, and 173 of the obser&ations were
limit observations contained in runs of length greater than 4. 1In experi-
ments E-8 and £-9, the correspondinglpercentages were 347 and 157 for E-8,

247 anq 87 for E-9.
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TABLE III

FOR EXPERIMENTS REPORTED IN TABLES I AND II

PERCENTAGE OF OBSERVATIONS CONTAINED IN RUNS OF DIFFERENT LENGTHS,

] E-1 E-2 E-3 E-4 E-5 E-6
s p =.51p =.5 p =.7 p =.7 p =.95 |p =.95
i R2 =.5 R2 =.9853 R2 =.5 R2 = .9658 R2 =.5 R2 = .98
! percentage of nonlimit
observations 70.20 76.20 71.73 75.77 71.01 76.35
percentage of limit
f | observations contained
g | in runs of length greaten
§ | than or equal to : 1 29.80 23.80 28.27 24,03 28.99 23.65
2 24.56 21.79 24,92 22.24 27.68 21.96
3 19.19 | 19.22 21.64 19.81 26.28 19.95
4 14.57 16.67 19.13 16.91 25.00 16.85
5 11.02 11.88 16.05 13.33 23.63 13.88
6 8.26 6.75 14.01 9.38 22.91 10.06
7 6.68 3.39 11.29 6.42 21.41 6.15
8 5.02 2.56 9.13 5.06 20.17 5.41
o 3.60 2,14 7.50 4.55 19.12 5.25
10 2.71 1.61 7.37 3.96 17.82 5.19
11 1.79 1.16 4.79 3.10 16.57 4.99
12 1.50 0.57 3.63 2.01 15.12 3.61
13 l1.11 0.10 3.16 1.06 13.62 2.43
‘14 0.93 0.10 2.82 0.97 12.94 2.43
15 0.75 0.10 2.64 0.69 12.48 2.43
16 0.45 0.00 2.34 0.39 11.59 2,03
17 0.13 0.00 1.81 0.39 10.22 2.03
18 0.13 0.00 1.70 0.39 9.44 1.92
19 | 0.13 0.00 1.46 | 0.27 8.73 1.33
20 0.00 0.00 1.08 0.14 6.98 1.20
. 21 0.00 0.00 0.95 0.14 6.45 1.20
22 0.00. 0.00 0.67 0.00 5.48 0.51
23 0.00 0.00 0.67 0.00 5.33 0.36
24 0.00 0.00 - 0.52 0.00 5.33 0.36
25 0.00 0.00 0.36 0.00 5.01 0.36
26 0.00 0.00 0.36 0.00 5.01 0.36
ﬁ 27 | 0.00 | 0.00- | 0.19 | o0.00 4.67 | 0.36
28 0.00 0.00 0.19 0.00 4.31 0.18
29 0.00 0.00 0.19 0.00 3.39 0.00
30 0.00 0.00 0.00 0.00 1.67 0.00
31 0.00 0.00 0.00 - 0.00 1.27 0.00
32 0.00 0.00 C.00 0.00 0.66 0.00
33 0.00 0.00 0.00 0.00 0.66 0.00
34 0.00 0.00 0.00 - 0.00 0.23 0.00
35 0.00 0.00 0.00 0.00 0.23 0.00
36 0.00 0.00 0.00 0.00 0.00 0.00
kfj~._¥
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The results of these three experiments are very similar to

those of the first 6 experiments.

The APML estimators perform rather well in comparison with the MLLV
estimators and they outperform the PMLIS estimators systematically. In
particular, the MSE of the PMLIS estimators of the B's are relatively large

for experiment E-9 with the negative p.

IV. SEITING CONFIDENCE ITERVALS

An estimate of the asymptotic covariance matrix of the APML estimators
can also be obtained. Following the procedure suggested by Goldberger,
Naga and Odeh (1961), this asymptotic covariance estimator may be expressed

as @

2 & v
(12) O ol

-1
J 30N (22
36 5608 )5 ’

where 8 is the APML estimator of O, V(8) is its asymptotic covariance matrix

* K
A'\~p
. c . . . . .
estimator and Y 53 is an estimator of the asymptotic covariance matrix
. . AN - ,
of the first derivatives of A . with respect to the elements of 8. Im
HK
turn, 53 can be evaluated as follows
o
. ~fn -~ G -
s £
VIS5 = (L %)
i=1 €=8

where 4, = 7o° i) ¥ i ;




where gj corresponds to the j'th group of observations. These groups

-~

are defined with reference to the ;1 function shown in equation (8). Al1
observations for which the conditional probabilities are not separable, in

gz are elements of the same group. The total number of groups is equal to G,

Using G(é), 957 confidence intervals were obtained for each Darameter
for each of the samples generated in the first 6 experiments described
above. Then for each experiment, the proportions of confidence intervals
that contained the true parameters were calculated and are reported in
Table V. As can be verified from this Table, the confidence intervals obtained

for both the APML and the MLLV estimators are somewhat biased downwards and

somewhat erratic, with the APML estimators performing again almost as well
as the MLLV estimators. The cases where the downward biases of.the confidence
intervals are the most important are those relating to the constant term in

experiments E-5 and E-6.
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V. LARGE SAMPLE BEHAVIOR

Since no analytical derivation of the asymptotic properties of
our APML estimators is available, it is interesting to examine, through an
example, how our estimators behave when the sample gets large, in comparison

to the PMLIS estimators which have been shown to be consistent [Robinson

(1982) 1.

For this purpose, we have generated a sample of 5776 observations
with autocorrelated error terms and have observed how the values of the

APML and PMLIS estimators evolve as more and more of the 5776 observations

are taken into account.

The model used for this last experiment was that corresponding to
experiment E-4, The values of the exogenous variables appearing in equation
(12) — dincluding Ky= corresponded to those of experiment E-4, for the first

76 observations, The values of the explanatory variables for the next 76

observations corresponded again to those of the first 76 observations,Abut in
reverse order : that is, the values of the explanatory variables for
observation 77 were the same as those corresponding to observation 76

those of observation 78 corresponded to those of observation 75 ++. and
those of observation 132 corresponded to those of observation 1. Then, a

similar procedure was repeated for the third set of 76 observations, with

observatioﬂ 153 corresponding to.152, 154 to 151, etc. The Procedure was
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continued for 76 sets of 76 observations®. Then, a set of 5776 serially

correlated normal residual errors was generated and the values of the
It variable were computed. Finally, the values of Yt were derived by

comparing It with Kt'

Afterwards, the values of the APML and PMLIS estimators were

- computed using the first 76 observations, then the first 152 orservations,
etc. until the 10 first sets of 76 observations were used. Then, the
estimators were again computed after adding, each time, 2 more sets of 76
observations until the first 20 sets of observations were used.

Afterwards, 4 sets of 76 observations were added each time, for every
additional computation, until the 5776'th observation was reached. The
results are graphed, for each parameter on figures I to VII. On each graph,
the abscissa indicates the number of sets of 76 observations used to calculate
the estimators and the ordinate shows the difference between the estimates
and the true value of the parameter. The interval comprised between the
lines designated as SUP (—A—) and INF (—*=) corresponds to the 997 confidence
interval com@uted by using the estimate of the asymptotic variance of the

APML estimator obtained from ecuation (12).

By examining the graphs, it is readily seen that the difference

between the APML estimator and the true value of the Parameter always lies within.

the confidence interval, for 21l the parameters except for the parameters

- The procedure was then stopped for want of space allowed on the.computer.
Generating a greater number of observations would have required rewriting
the program. This was not considered useful since it was felt thzt using a
larger sample would not have been much more informative.
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associated with the variables Bt—l and Mt-l' -1’

For the variable B the
APML estimate always lies inside the confidence interval after the
28'th set of 76 observations has been reached. 1In the case of the Mt 1

variable, the difference between the parameter estimate and the true value

lies systematically slightly below the confidence interval until the whole

set of 5776 observations has been used.

A comparison between the consistent PMLIS estimators and the
APML estimators shows that, for all parameters except for that associated
with the variable Bt—l (namely 84) and for w, the APML estimators are closer
to the true parameter values than the PMLIS estimators, when the sample gets
large. For 64 and w, the performances of the APML and PMLIS estimators are
very similar when the sample is large, with the APML estimators very

slightly closer to the true values when the whole set of 5776 observations

is used.

This final experiment therefore suggests that even in very large
- samples, the APML estimators behave at least as favorably as the consistent
PMLIS estimators. This experiment suggests also that our covariance

estimators of the APML estimators are fairly reliasble, for large samples.
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V. CONCLUSION

We have suggested alternative pseudo-maximum likelihood estimators
for Tobit models with first order serial correlation. These alternative
estimators are not notably more costly to calculate than the pseudo-maximum‘
likelihood estimators ignoring serial correlation, but they appear to be

more efficient in terms of MSE. They also appear to behave well in large

samples.

We have also suggested a procedure for estimating the asymptotic
covariance matrix of the APML estimators and setting confidence intervals.
The true coﬁfidence levels associated with these intervals appear to be
somewhat lower than the intended levels in small samples, but the MSE
associated with these levels are not much higher than those associated
with the maximum likelihood procedure that would be applicable if the latené f

variables were always observed.

of second or higher orders. TFor example, in the case of residual errors

o K%
with a second order autoregressive scheme, the terms appearing in ;:

would be :

a) the joint marginal density of the first Two Consecutive NonLlimit (TCNL
observations;
b) the joint conditional density of 211 the nonlimit observations

preceding the TCNL mentioned in a), given these TCNL observations;




't
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c) the joint conditional density of each group of nonfimit observations
preceded by the same TCNL observations, given these TCNL observations;
d) for every limit observation preceding the first TCNL observationé,
the integral of the conditional univariate density of this limit observa-
tion, given these first TCNL observations and the other nonlimit
observatiogs that precede these first TCNL observations;
e) for every other limit observation, the integral of the conditional
univariate density of this limit observation, given the preceding TCNL
observations and the following TCNL observations (if they exist) and
given also all other nonlimit observations comprised between the above
two sets of TCNL observations (or between the preceaing TCNL and the

end of the sample).




APPENDIX

Data used for the Monte Carlo Experiments

The variables are described in Section III, above.
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