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Abstract

This paper extends the standard model of self-enforcing dynamic international environmental
agreements by allowing the length of the period of commitment of such agreements to vary
as a parameter. It analyzes the pattern of behavior of the size of stable coalitions, the stock
of pollutant and the emission rate as a function of the length of the period of commitment.
It is shown that the length of the period of commitment can have very significant effects on
the equilibrium. Three distinct intervals for the length of the period of commitment are iden-
tified, across which the equilibrium and its dynamic behavior differ considerably. Whereas
for sufficiently high values of the period of commitment only self-enforcing agreements of
two countries are possible, for sufficiently low such values full cooperation can be gener-
ated. Lengths of periods of commitment between those two thresholds are characterized by
an inverse relationship between the length of commitment and the membership size of the
agreement. This suggests that considerable attention should be given to the determination
of the length of such international agreements.

Keywords: International Environmental Agreements; Global pollution; Stock pollution; Dy-
namic games
JEL classification: Q5; C73; F53

Résumé

Ce texte étend la classe des modèles dynamiques standards traitant des accords internatio-
naux sur l’environnement au cas où la durée de la période d’engagement à de tels accords est
un paramètre variable. Nous y étudions les évolutions dans le temps de la taille des coalitions
stables, du stock de pollution et du taux d’émissions en fonction de ce paramètre. Nous mon-
trons que la longueur de la période d’engagement a un effet très significatif sur l’équilibre.
En effet, trois intervalles de durée d’engagement sont identifiés pour lesquels l’équilibre et
sa dynamique diffèrent considérablement. Alors que pour des durées de la période d’enga-
gement très longues on observe des coalitions stables constituées de seulement deux pays,
si ces durées sont suffisamment courtes on peut observer la pleine coopération. Les durées
d’engagement entre ces deux extrêmes sont caractérisées par une relation inverse entre la
durée de la période d’engagement et la taille des coalitions stables. Ces faits portent à croire
qu’il faudrait accorder une attention toute particulière au choix de la durée d’engagement
lors de l’élaboration de tels accords internationaux.

Mots-clés : Accords internationaux sur l’environnement ; Pollution globale ; Pollution par les
stocks ; Jeux dynamiques
Classification JEL : Q5 ; C73 ; F53



1 Introduction

In many contexts, International Environmental Agreements (IEAs) necessarily involve

dynamic considerations. This is because they have to deal with stock pollutants and involve

interactions over time among countries. Two approaches have been adopted in modeling

such agreements. One consists in assuming that membership and emission strategies of the

signatories and non-signatories are determined once and for all at the outset, with each of the

signatories and non-signatories committing to an infinite path of emissions. Another consists

in analyzing the problem in a discrete-time framework and assuming that membership and

emission decisions are revised every period.

Those two formulations correspond to two very particular assumptions about the length

of the period of time for which the countries are required to commit. In reality the length

of the period of commitment can be an important element of negotiation and the resulting

equilibrium may well depend significantly on this length. Intuitively, one might think that

a short period of commitment could favor a larger coalition size than a longer one, since

the parties will then have the option of revising their membership and emission decisions

more frequently, after having observed the state that results at the close of the previous

agreement. The purpose of this paper is to analyze the effect of varying the length of the

period of commitment on the size and stability of such IEAs.

The model used is closely related to that of Rubio and Casino [6] and, Rubio and Ulph [5].

Rubio and Casino [6] adapt to a dynamic framework the concept of IEA introduced by

Barrett [1] and Carraro and Siniscalco [2]. They assume that at the initial date, given the

initial stock of pollutant, countries play a two stage game. In the first stage (the membership

game), anticipating the play of the game in the second stage, the countries decide non-

cooperatively whether or not to join the agreement. In the second stage (the emission

game), each non-signatory decides non-cooperatively the emission rate that maximizes its

discounted net benefit, taking as given the emission path of the other countries. Signatory

countries choose jointly their emission path, acting non-cooperatively against non-signatories



in order to maximize their aggregate discounted net benefits. Signatories also take as given

the strategy of non signatories. The coalition formed in the membership game cannot change

in the emission game. Hence countries commit to both their membership or non membership

decision and to their respective emission paths for a period of infinite length. Using numerical

simulations, they find that a two-country coalition is the only self-enforcing IEA.

Rubio and Ulph [5] extend that paper to an infinite-horizon model in a discrete-time

framework. At the outset of each period, given the stock of pollutant at the beginning of

the period, the play of the game is as in the game described above. Countries commit to

membership or non membership and to their respective emission strategies for the duration of

the period, whose length is normalized to one as is usually the case in discrete-time modeling.

The authors find that, in this context, there exists a steady-state stock of pollutant and a

corresponding steady-state IEA membership size and that, in the transition towards this

steady-state, the membership size and the stock of pollutant vary inversely.

In this paper, we adopt an infinite horizon continuous-time framework, but treat the

length of the period of commitment as a parameter that can take any strictly positive value.

It is thus possible to study the effect of exogenously varying the length of the period of

commitment on the equilibrium size of the stable coalition and stock of pollution, as well

as on their pattern of behavior over time. Except for the extreme case of a single period of

commitment of infinite length, there will be an infinite number of periods of commitment,

the length of which is exogenously given at the outset. At the begin of every period of

commitment, each country decides whether or not to adhere to the agreement. The signa-

tories then jointly decide on their emission rate for the period of commitment, while the

non-signatories make that decision unilaterally.

It is first shown analytically that non-signatories always pollute more than signatories and

that they always gain more than signatories from any agreement, irrespective of the length of

the period of commitment. Numerical simulations are then used to show that the length of

the period of commitment can have a very significant effect on the equilibrium. Two critical
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values of the length of commitment come out. A first critical value is shown to exist below

which the model generates the cooperative equilibrium at each period. Above this critical

value and below the next one, there is a negative relationship between the membership size

and the length of commitment. Above this second critical value, the only equilibrium is a

two members coalition.

As in Rubio and Ulph [5], simulations also indicate an inverse relation between member-

ship size and the pollutant stock: when starting below its steady state, the stock of pollutant

rises monotonically until it attains the steady-state, while the membership size decreases to

its steady-state. The limiting case of a single period of commitment and the open-loop

emissions strategy to which it corresponds is shown to yield, as in Rubio and Casino [6], a

coalition of only two signatories. This generates a lower gain from cooperation than that

which arises in the case of any finite length of commitment.

The remainder of this paper is organized as follows. Section 2 sets out the model. Sec-

tion 3 resolves the second stage of the game. In addition, the outcomes of the cooperative

and the non-cooperative equilibria are derived in that section. Section 4 presents the first

stage of the game. In Section 5, the importance of the choice of the length of the period of

commitment is investigated by simulation. Section 6 concludes.

2 The model

We now consider the formation of an infinite sequence of IEAs, in which countries can

make binding commitments about their emission rates and their membership decision over a

limited horizon. Define a period to be the interval of (continuous) time over which countries

can make such commitments, and let h be the length of the period. Assume an infinite

number of such periods, [0, h], [h, 2h], [2h, 3h], ..., and N identical countries, i = 1, ..., N .

Each country makes a membership decision and commits to a level of emission for each of

the intervals [0, h], [h, 2h], [2h, 3h], ...,. We will assume that one unit of production generates

one unit of emissions. Let qi denote the emissions of country i. The current aggregate
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emissions of the world is then Q =
∑N

i=1 qi.

The current stock of pollutant is denoted z(t). We assume that the amount of pollutants

emitted today by the world adds to the current stock of pollutant according to the kinematic

equation

ż(t) = Q(t)− ρz(t), ρ ∈ (0, 1) z(0) = z0, (1)

where ρ is the natural purification rate.

The stock of pollutant at each date generates damage costs for each country which we

assume to be a quadratic function of the stock: γ
2
z2, with γ positive constant. The instanta-

neous benefit function is also assumed to be quadratic in current emissions : aq− b
2
q2, where

a and b are non-negative constants. Thus the flow of net benefits to a country is given by

π(q, z) = aq − b

2
q2 − γ

2
z2. (2)

At the beginning of every period, each country determines an emission strategy for that

period. A country’s choice will depend on the beginning-of-period stock and the length of

the period h. Let qkj (zk) denote the emission strategy planned by country j for period k

when the stock of pollutant at the outset of the period is z(kh) = zk.

The model of IEA formation in each period, is a dynamic version of the model of self-

enforcing IEAs introduced by Carraro and Siniscalco [2] and Barrett [1] and the continuous-

time version of Rubio and Ulph [5]. In each period, given the initial stock, there is a

two-stage game. In the first stage (the membership game), countries first decide whether or

not to join an IEA. In the second stage (the emission game), non-signatory countries choose

their emissions for the current period non-cooperatively, while signatory countries act in a

cooperative fashion.

For example, for the period [kh, (k + 1)h], given the initial stock of pollutant of the

current period zk, countries play the two stage game at the initial date t = kh of the current

period. The membership decision which results from the membership game and the emission

strategy qkj of a given country j are thus decided at the initial date of the current period.
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For simplicity we will assume that it commits to a constant qkj for the duration of the period

k.

Countries being identical, we will also assume that there is a binomial random variable

whose realization at any given period determines whether a particular country will be among

the members or not for the period. For any stable IEA of size n in that period, the a

priori probability of any given country being a member of the coalition is n/N . Because

of the identical countries assumption, this probability is the same for all countries and is

independent of the history of membership decisions of the country. Therefore each country

has the same expected present value of current and future net benefits, which will depend

on the initial stock of pollutant of the next period. We will denote by Ψ(zk) the expected

present value of current and future net benefits of the representative country when the stock

of pollutant at the outset of the period is zk.

In each period, the second stage of the game is solved first, taking as given the set of

signatories of the membership game.

3 The second stage of the game

Consider some beginning of period date t ∈ {0, h, 2h, 3h, 4h, ...}, when the stock of pollu-

tant is z(t). Let K(S) denote the set of signatories and n the number of signatories at that

date. The current value function of a non-signatory is then

Vj(z(t)) = max
qj
{
∫ t+h

t

e−r(s−t)π(qj, z(s))ds+ e−rhΨ(z(t+ h))}, (3)

subject to (1) and (2), where r is the discount rate.

The aggregate current value function of all signatories at the same date is

VS(z(t)) = max
qi,i∈K(S)

{
∫ t+h

t

e−r(s−t)
∑

i∈K(S)

π(qi, z(s))ds+ ne−rhΨ(z(t+ h))}, (4)

again subject to (1) and (2).

The countries being identical, the value function of signatory i is Vi(z(t)) = VS(z(t))/n,

∀i ∈ K(S).
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Definition 1 In an infinite-period game defined by (3) and (4), with the length of period h,

an emission strategy for a country j is a sequence of functions qj ≡ {qkj : [kh, (k+1)h]×R+ →

R+}∞k=0, where qkj is a constant function of s ∈ [kh, kh+ h], for k = 0, 1, 2, ...

This means that at the outset of a given period, given the coalition formed in the mem-

bership game, each country chooses and commits to use a constant emission rate in the

emission game.

This continuous-time problem can be transformed into a discrete-time one. Indeed, on

a given interval [kh, (k + 1)h] the emission strategies of the players are constant and so is

the aggregate emission of the world, Q. Hence, the solution of the differential equation (1),

given the initial stock of pollutant z(kh) = zk, is:

z(t) =
Q

ρ
+ (zk −

Q

ρ
)e−ρ(t−kh) ∀t ∈ [kh, (k + 1)h]. (5)

So, at time t = (k + 1)h, the dynamic evolution of the stock of pollutant between the

outset of periods k and k + 1 is given by

z((k + 1)h) ≡ zk+1 = f(ρ, h)Q+ zke
−ρh, (6)

where f(x, h) = (1 − e−hx)/x, ∀x > 0. We adopt this notation in the remainder of this

paper. The following integral yields the net benefit function at each period, which depends

on the length of the period:∫ (k+1)h

kh

e−r(s−kh)π(q, z(s))ds =(aq − b

2
q2)f(r, h) +D(Q, zk), (7)

where D(Q, zk) = −γ
2
[(Q
ρ

)2f(r, h) + (zk − Q
ρ

)2f(r + 2ρ, h) + 2Q
ρ

(zk − Q
ρ

)f(r + ρ, h)].

Substituting (6) and (7) into (3), we obtain the Bellman equation for non-signatories:

Vj(z) = max
qj
{(aqj −

b

2
q2
j )f(r, h) +D(Q, z) + e−rhΨ(f(ρ, h)Q+ ze−ρh)}. (8)

Similarly, substitution of (6) and (7) into (4) yields the Bellman equation for all signa-

tories:

VS(z) = max
qi,i∈K(S)

{
∑

i∈K(S)

(aqi −
b

2
q2
i )f(r, h) + nD(Q, z) + ne−rhΨ(Qf(ρ, h) + ze−ρh)}. (9)
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The first-order condition for non-signatories is

f(r, h)(a− bqj) ≤ λ1Q+ zλ2 − f(ρ, h)e−rhΨ′(Qf(ρ, h) + ze−ρh), (10)

with equality holding if qj > 0 and where λ1 = γ
ρ2

(f(r, h) + f(r + 2ρ, h)− 2f(r + ρ, h)) and

λ2 = γ
ρ
(f(r + ρ, h)− f(r + 2ρ, h)).

The first-order condition for signatories is

f(r, h)(a− bqi) ≤ n[λ1Q+ zλ2 − f(ρ, h)e−rhΨ′(Qf(ρ, h) + ze−ρh)], (11)

with equality if qi > 0. In the remainder of this paper, we assume that qj is always interior,

so that equality holds in (10), but we will allow the corner solution for qi.

The left-hand side of (10) and (11) represents the current marginal benefit of pollution

(MB), which is the same for each country. The right-hand side of (10) represents the full

current marginal cost of pollution for non-signatories (MCns), while the right-hand side of

(11) represents the full current marginal cost of pollution for signatories (MCs). Hence,

an interpretation of the first-order conditions (10) and (11) is that at the equilibrium, the

current marginal benefit of each country must be no greater than its current marginal cost

of polluting, with equality holding if emissions are positive. Notice that MCs = n×MCns.

As explained in the previous section, since the countries are identical, each has a priori

the same probability n/N of being a signatory. Therefore the expected present value of

future net benefits for each country is:

Ψ(z) =
n(z)

N
Vi(z) + (1− n(z)

N
)Vj(z)

=
n(z)

N
(aqi −

b

2
q2
i )f(r, h) + f(r, h)(1− n(z)

N
)(aqj −

b

2
q2
j )

+D(Q, z) + e−rhΨ(Qf(ρ, h) + ze−ρh). (12)

Knowing Ψ enables us to derive the value function of signatories and non-signatories.

Despite the fact that n is a non-linear function of z, the quadratic form of the expression

above in z suggests a quadratic functional form for Ψ. 1

1. This non-linearity comes from the fact that feasible values of n are integers.
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Proposition 1 The differential game defined by (8) and (9) admits a quadratic functional

form Ψ(z, n) = A(n)
2
z2 + B(n)z + C(n) at the second stage of the game, with A < 0, B < 0,

and, at the equilibrium, Ψ(z) ≡ Ψ(z, n(z)) = A(n(z))
2

z2 +B(n(z))z + C(n(z)).

Proof. See Appendix.

Summing up (10) over all subscripts j for an interior solution we get:

f(r, h)[(N−n)a−bQns] = (N−n){λ1Q+zλ2−f(ρ, h)e−rh[A(Qf(ρ, h)+ze−ρh)+B]}, (13)

where Qns is the aggregate emission of non-signatories.

Likewise, summing up (11) over all subscripts i for an interior solution we get:

f(r, h)[na− bQs] = n2{λ1Q+ zλ2 − f(ρ, h)e−rh[A(Qf(ρ, h) + ze−ρh) +B]}, (14)

where Qns is the aggregate emission of signatories.

Finally, adding up side by side equations (13) and (14) and using the fact that the

aggregate emission by all countries is Q = Qs + Qns, a linear equation in Q results. Its

solution yields:

Q =
Naf(r, h) +Bf(ρ, h)e−rh(N − n+ n2) + z(N − n+ n2)(−λ2 + Af(ρ, h)e−h(r+ρ))

bf(r, h) + (N − n+ n2)λ1 − (N − n+ n2)Af(ρ, h)2e−rh
.

(15)

Using again first-order conditions (10) and (11), we find that the emissions of each non-

signatory and of each signatory respectively for an interior solution are given by:

qj = {f(r, h)a− λ1Q− zλ2 + f(ρ, h)e−rh[A(Qf(ρ, h) + ze−ρh) +B]}/bf(r, h), (16)

qi = {f(r, h)a− nλ1Q− nzλ2 + nf(ρ, h)e−rh[A(Qf(ρ, h) + ze−ρh) +B]}/bf(r, h). (17)

In the case of a corner solution for the signatories, qi = 0 and qj = Q/(N − n), with the

result that:

Q =
(N − n)af(r, h) +Bf(ρ, h)e−rh(N − n) + z(N − n)(−λ2 + Af(ρ, h)e−h(r+ρ))

bf(r, h) + (N − n)λ1 − (N − n)Af(ρ, h)2e−rh
. (18)
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Proposition 2 The current emissions by signatories are always less than the current emis-

sions by non-signatories and the resulting payoff of non-signatories is always greater than

that of signatories for n ∈ [2, N − 1].

Proof. Consider first the case of the interior solutions. Proposition 1 states that A and

B are negative numbers. Using (16) and (17), qj − qi = {(n − 1)λ1Q + (n − 1)zλ2 − (n −

1)f(ρ, h)e−rh[A(Qf(ρ, h)+ze−ρh)+B]}/bf(r, h). Because of A,B < 0, λ1, λ2 > 0 and n ≥ 2,

it is an easy matter to verify that qj > qi. Now substitute (17) in (9) and (16) in (8), to

derive

Vj − Vi = (1 + n)(qj − qi){λ1Q+ zλ2 − f(ρ, h)e−rh[A(Qf(ρ, h) + ze−ρh) +B]}/2.

Since qj > qi, A,B < 0, λ1, λ2 > 0, it follows that Vj > Vi.

In the case of a corner solution, we have qi = 0, so that Vj − Vi = (aqj − b
2
q2
j )f(r, h),

which is positive since from (16) we must have 0 < qj < a/b. �

Before solving the first stage of the game, it is useful to study the particular cases of the

non-cooperative equilibrium (n = 0) and the fully-cooperative equilibrium (n = N).

3.1 The non-cooperative equilibrium

Assume that all N countries decide non-cooperatively the emission strategy of the current

period that maximizes their discounted net benefit, taking as given the current emission

strategy of the other countries. The Bellman equation is then the special case of (8) for

which n = 0 and Ψ = Vj, and we have the following result.

Proposition 3 In the non-cooperative equilibrium, the sequence of pollutant stocks at the

outset of each period, {zk}∞k=0, converges to a steady state

z̃ =
Naf(r, h)f(ρ, h) + B̃Ne−rhf(ρ, h)2

N(λ2 − Ãf(ρ, h)e−rh) + (1− e−ρh)[bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh]
,

if and only if

R0 =
N [λ1e

−ρh − λ2f(ρ, h)] + bf(r, h)e−ρh

bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh
> −1.
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This convergence is monotone if and only if R0 > 0. The corresponding steady-state level of

emissions is given by

q̃j =
af(r, h) + B̃f(ρ, h)e−rh + z̃[−λ2 + Ãf(ρ, h)e−h(r+ρ)]

bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh
,

where Ã and B̃ are particular values of A and B from the Appendix obtained by setting

n = 0.

Proof. See Appendix.

3.2 The cooperative equilibrium

Suppose now that all the countries decide cooperatively the emission strategies of the

current period that maximizes their aggregate discounted net benefit. The Bellman equation

is then the particular case of (9) for which n = N and Ψ = VS/N = Vi. Again, the quadratic

nature of the net benefit function in each period (see equation (7)) suggests that a logical

guess for the value function is:

Vi(z) =
Ā

2
z2 + B̄z + C̄, (19)

and we have the following result.

Proposition 4 In the fully-cooperative equilibrium, the sequence of pollutant stocks at the

outset of each period, {zk}∞k=0, converges to a steady state

z̄ =
Naf(r, h)f(ρ, h) + B̄N2e−rhf(ρ, h)2

N2(λ2 − Āf(ρ, h)e−rh) + (1− e−ρh)[bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh]
.

if and only if

RN =
N2[λ1e

−ρh − λ2f(ρ, h)] + bf(r, h)e−ρh

bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh
> −1.

This convergence is monotone if and only if RN > 0. The corresponding steady-state level

of emissions is

q̄i =
af(r, h) + B̄f(ρ, h)e−rhN + z̄N [−λ2 + Āf(ρ, h)e−h(r+ρ)]

bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh
,

where Ā and B̄ are given in Appendix.

10



Proof. See Appendix.

Let us denote respectively by qc, qi, qj and qnc the current emissions respectively of

the cooperative equilibrium, the signatories, the non-signatories and of the non-cooperative

equilibrium.

Proposition 5 Assuming interior solutions we have: (i) qc ≤ qi < qj ≤ qnc; (ii) the current

aggregate emissions by all countries from any IEA (Qiea) lies between that of the cooperative

(Qc) and the non-cooperative (Qnc) equilibria for any n ∈ [2, N − 1].

Proof. To prove (i), denote by MCnc the current marginal cost of pollution of the

non-cooperative equilibrium, which, from (10), is given by

MCnc(q) = λ1Q+ zλ2 − f(ρ, h)e−rhΨ′(Qf(ρ, h) + ze−ρh),

and denote by MCc the current marginal-cost of pollution of the cooperative equilibrium,

which, from (11) is given by MCc(q) = N ×MCnc(q) ∀q. 2 With each country emitting the

same quantity q, we then have the following inequalities: MCc(q) ≥ MCs(q) ≥ MCns(q)

and MCc(q) ≥ MCs(q) ≥ MCnc(q), as illustrated in Figure 1. Invoking the fact that for

interior solutions, at the equilibrium, the marginal benefit of each country must equal its full

marginal cost and that the marginal benefit function is the same for all and is decreasing

in q, it follows that qc ≤ qi < qj and qc ≤ qi ≤ qnc as shown in Figure 1. Therefore, at

equilibrium, we have qj, qnc ≥ qi. But MCns(q) ≥ MCnc(q) ∀q ≥ qi,
3 which implies that

qj ≤ qnc.

The proof of (ii) follows from the fact that, because of the above inequalities, Qiea−Qc =

n(qi− qc) + (N − n)(qj − qc) > 0 and Qnc−Qiea = n(qnc− qi) + (N − n)(qnc− qj) > 0. Thus

we have Qc ≤ Qiea ≤ Qnc �

The results of Proposition 2 and Proposition 5 are known in the literature. They have

been shown, among others, by Rubio and Ulph [5] in their discrete-time model, with the

2. Note that MCc is the particular case of MCs obtained by setting n = N .
3. This inequality holds since MCnc(q) and MCns(q) are increasing in q, due to the fact that Ψ′ < 0.
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Figure 1: Comparison of the outcomes of the emission game.

length of the period of commitment set equal to one, and by Rubio and Casino [6], with a

period of commitment of infinite length. The two propositions show that those results hold

irrespective of the length of the period of commitment.

4 The first stage of the game

To resolve the membership game, we use the notion of stability introduced by D’Aspremont

et al. [3].

Definition 2 At the beginning of a period, if the current stock of pollutant is z, a coalition

of signatories K(S) of size n is said to be stable, or self-enforcing, if and only if

Vi(n, z) ≥ Vj(n− 1, z)

Vj(n, z) ≥ Vi(n+ 1, z).

The first inequality of Definition 2 is the internal stability condition. Its interpretation is

that a signatory country cannot be better off by leaving the coalition, given that the other

countries maintain their membership decision. The second inequality is the external stability
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condition. It means that a non-signatory cannot be better off by joining the coalition, given

that the other countries maintain their membership decision.

Unfortunately, it is not possible to check analytically the stability conditions, nor is it

possible to determine analytically the effect of the length of commitment on the size of the

stable coalitions. For this reason, we proceed by numerical simulation to illustrate the level of

cooperation that can be reached and how can it vary regarding to the length of commitment.

5 Numerical simulations: the effects of the length of commitment

In this section we present the outcome of the numerical analysis on a set of N = 20

identical countries. We use the same parameter values as Rubio and Casino [6]. 4 These are

b = 1650; a = 100000, the scale parameter; 5 γ = 0.001; r = 0.025; ρ = 0.005. 6 The model

captures the result of Rubio and Casino [6] and Rubio and Ulph [5] for some values of the

length of commitment and yields different results for others.

The simulations have been carried out for more than two thousand values of the length

of commitment. 7 What first appears clearly is that the current value function of signatories

as well as of non-signatories increases with the number of signatories, whereas the aggregate

emissions by all countries decrease as the membership size increases. Of greater interest is

the effect of the length of commitment on the equilibrium number of signatories and on the

gains from cooperation, to which we now turn.

5.1 The length of commitment and the size of self-enforcing coalitions

As concerns the size of self-enforcing coalitions, our simulations highlight two critical

values of the length of commitment, which distinguish three possible cases for the dynamic

behavior of the model. The first case corresponds to short lengths of commitment (h <

4. We do this simulation for a group of 20 countries while Rubio and Casino [6] did it for a group of 10,
but this is of no qualitative consequence for the results.

5. It is a scale parameter in the sense that, first there is a positive relation between a and the stock of
pollutant, second the coalition size is not affected by its feasible values.

6. For convenience, the simulations presented are performed for z0 = 0, as in Rubio and Casino [6]. The
simulations have been done also for numerous positive values of z0 with no impact on the results.

7. These values are obtained from the arithmetic sequence hp = hp−1 + 0.1; h0 = 0.1, p = 1, ..., 2499 .
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7.352). It is characterized by full cooperation at each period, and the steady-state stock

of pollutant and emission level are then given by Proposition 4 which characterizes the

cooperative equilibrium. 8 This is illustrated in Figure 3 for h = 1.

The second case is for lengths of commitment in the semi-open interval [7.352, 226). In

that case, simulations suggest two main results. First, there is a negative relation between the

length of the period of commitment and the number of signatories at each period. Second,

as in Rubio and Ulph [5], the stock of pollutant rises asymptotically to its steady state while

the coalition size is non-decreasing over time and converges after a finite number of periods

to its steady state. This is illustrated in Figure 3 for the case where the length of the period

of commitment is equal to h = 10. The stock rises from z0 = 0 to z34 = 1.44959×105 after 35

periods. After that, it continues to rise following the dynamic relation zk+1 = 0.992zk +1137

and converges to its steady-state z̄ = 1.69213 × 105 asymptotically. The coalition begins

with 18 signatories at the initial period then decreases and reaches its steady state after 35

periods, remaining at 10 signatories.

The third case corresponds to very large lengths of the period of commitment (h ≥ 226).

It is illustrated in Figure 3 for h = 250. The size of the coalition is n = 2 at each period

of the game and the stock of pollutant converges to its steady state asymptotically. This is

consistent with the result obtained by Rubio and Casino [6]. Those authors analyze an IEA

in the case of an open-loop emission strategy, allowing the emission strategy of countries

to vary over time, and they find that an IEA can be sustained only by a coalition of two

signatories. We have assumed that each country commits to a constant emission strategy

in each period. But we also find a two-signatories coalition in the case of the open-loop

strategy, which is obtained by equating h to the infinite planning horizon at the initial date.

Another striking outcome of the simulations is that reducing the length of commitment

8. For some lengths of periods of commitment smaller than 7.352, we may have more than one self-
enforcing IEA, the fully-cooperative equilibrium being always one of them. When this occurs we focus on
the fully-cooperative equilibrium, which is the coalition that sustains both the greatest gain to signatories
as well as to non-signatories and the lowest aggregate emissions. For lengths of commitment greater than
7.352, we do not find more than one stable coalition.
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increases the number of signatories and decreases the stock of pollutant at every instant, as

illustrated in Figure 3. 9 At every instant, the stock of pollutant resulting from the open-loop

infinite-horizon equilibrium is always greater than the stock of pollutant that result from the

adoption of a finite length of commitment.

These results can be summarized as follows. Simulation suggests two thresholds, h and

h, of the length of the period of commitment, which define the three possibilities for the

dynamic behavior. If h < h, the model exhibits a cooperative equilibrium at each period.

If the length of the period of commitment is greater than h, there is a negative relation

between the length of commitment and the number of signatories over time. Furthermore,

as in Rubio and Ulph [5], the model captures a negative relation between the membership

size and the stock of pollutant. The stock of pollutant rises and converges asymptotically

to its steady-state, while the membership size decreases and reaches its steady-state after

a finite number of periods. Lengths of commitment greater than h result in a coalition of

only two signatories as the outcome of the membership game at each period. Furthermore,

the stock of pollutant increases and converges asymptotically to its steady-state. In the case

of the open-loop emission path, as in Rubio and Casino [6], a two-members coalition is the

outcome.

The fact that the membership size increases as the length of the period of commitment

is shortened can be rationalized as follows. In a coalition of size n, the gain for an individual

insider of being an insider rather than unilaterally becoming an outsider is given by:

Ω(n, h) ≡ Vi(n, h)− Vj(n− 1, h), ∀n = 1, 2, . . . , N,

whereas the gain for an outsider of unilaterally becoming an insider is:

Λ(n, h) ≡ −[Vi(n+ 1, h)− Vj(n, h)] = −Ω(n+ 1, h), ∀n = 1, 2, . . . , N − 1.

But

sign
∂Ω(n+ 1, h)

∂h
= sign

∂Ω(n, h)

∂h
,

9. Even though Figure 3 presents this result only for h ∈ {1, 10, 250}, we obtain similar results for all the
2500 values of h used in the simulation.
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which means that

sign
∂Λ(n+ 1, h)

∂h
= −sign

∂Ω(n, h)

∂h
.

Hence, if, for a given n, decreasing the length of the period of commitment makes it more

attractive to be part of the coalition (∂Ω(n,h)
∂h

< 0) it also makes it less attractive to be outside

the coalition.

Applying Definition 2, a self-enforcing coalition of size n(h) is therefore characterized by

Ω(n(h), h) ≥ 0 and −Ω(n(h) + 1, h) = Λ(n, h) ≥ 0. Since Ω(m,h) is a smooth function

and Ω(n(h), h)Ω(n(h) + 1, h) ≤ 0, there exists a real number m(h) ∈ [2, N ] that solves the

equation Ω(m(h), h) = 0. Let I[m(h)] denote the largest integer no larger than m(h). Then,

for any given h, the equilibrium size of the coalition is n(h) = I[m(h)]. If m(h) is unique,

it follows that Ω(n(h), h) ≥ 0 and Ω(n(h) + 1, h) = −Λ(n(h), h) < 0 and therefore the

function Ω(n, h) has a strictly negative slope with respect to n at a neighborhood of m(h),

or ∂Ω(m(h),h)
∂n

< 0. 10

Differentiating totally the equation Ω(m(h), h) = 0 with respect to h, we have that:

∂m(h)

∂h
= −

∂Ω(m(h),h)
∂h

∂Ω(m(h),h)
∂n

.

It follows that in the case where m(h) is unique, if ∂Ω(m(h),h)
∂h

< 0, then ∂m(h)
∂h

< 0. But since

m(h) is decreasing in h, so is its integer part. Therefore n(h) = I[m(h)] is decreasing in h.

That ∂Ω(n,h)
∂h

is negative is verified by numerical simulation for all values of n, as illustrated

in Figure 2. This means that for any given n, reducing the period of commitment makes it

more profitable to become part of the coalition and less attractive to be an outsider. Or, put

another way, reducing the period of commitment reduces the cost of committing, the reason

being that the shorter the period of commitment, the earlier the decision can be revised.

10. As noted earlier, the solution for m(h) may in some circumstances not be unique. For the sake of the
argument, we neglect those cases here.
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Figure 2: The function Ω(n, h).

5.2 The length of commitment and the gains from cooperation

We now consider the effect of the length of commitment on the gain from cooperation. 11

It is useful to distinguish different concepts of gain. The potential gain from cooperation

(POC) is defined as the difference between the sum of the discounted net benefits from

cooperative and non-cooperative equilibrium. It is given by:

POC = Vi(N, z0, h)− Vj(0, z0, h).

The other concept of gain compares the partial cooperative equilibrium to the non-

cooperative equilibrium. Assume a coalition of n∗(z0, h) signatories. As seen in Section 3,

this results in a decrease in the emission level of signatories and in the aggregate emissions

by all countries, as compared to the non-cooperative equilibrium. But both signatories as

well as non-signatories gain from the reduction of the global emissions. The partial gain

from cooperation by signatories (PACs), defined as the difference between the sum of the

11. The simulations are done at t = 0 over h for the initial period only. But since the rates of emission at
each period depend only on the stock of pollution and not explicitly on calendar time, the qualitative results
are the same for each subsequent period.
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discounted net benefits by signatories in a stable IEA and in the non-cooperative equilibrium,

is given by:

PACs = Vi(n
∗(z0, h), z0, h)− Vj(0, z0, h).

The partial gain from cooperation by non-signatories (PACns) is defined as the difference

between the sum of the discounted net benefits by non-signatories given a stable IEA and

that in the non-cooperative equilibrium. It is given by:

PACns = Vj(n
∗(z0, h), z0, h)− Vj(0, z0, h).

The average partial gain from cooperation by all countries (PAC) is defined as the mean

of the PACs and the PACns with the respective weights n∗(z0, h)/N and 1 − n∗(z0, h)/N .

Formally, it is given by:

PAC =
n∗(z0, h)

N
PACs + (1− n∗(z0, h)

N
)PACns.

By the definition of external stability, if n∗(z0, h) = 0 no country can be made better off by

cooperating. Hence, in that case, we set PACs = PACns = PAC = 0.

In Figure 4, the top graph illustrates that POC is a decreasing function of the length of

commitment and that it has a limit which is its open-loop outcome. The bottom graph illus-

trates that the cooperative equilibrium can be attained for h ∈ (0, 7.352), while a negative

relation holds between the coalition size and the length of commitment for h ∈ [7.352, 226).

It also illustrates that the coalition size remains at two signatories for all h ≥ 226. In partic-

ular, taking the limit of n∗(z0, h) as h goes to infinity, we obtain a two-signatories coalition

as the outcome of the open-loop coalition size.

Notice that since we have the cooperative equilibrium for h ∈ (0, 7.352), the POC and

PAC are equal and decreasing in h over this interval, as illustrated by the top two graphs

of Figure 4. 12

It is interesting to note that while in the static model of Barrett [1] an IEA may result in

a significant level of cooperation only if the POC is very small, in our model this pessimistic

12. Because of a scale effect, this decrease as a function of h is not very apparent in the graphs, but it is
real.
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result need not hold for some values of the length of commitment. Indeed, as shown in

Figure 4, the length of commitment that maximizes the POC also sustains the cooperative

equilibrium.

For h > 7.352, the PACs, PACns and the PAC are all decreasing function in h as illus-

trated in Figure 5. They decrease, along with the coalition size, and each of them has a limit

which is its open-loop outcome. Because non-signatories gain more than signatories from

any cooperation, it follows that PACs ≥ PACns for all values of the length of commitment

as shown in the bottom graph of Figure 5.

In spite of the fact that we cannot claim any general result, the above suggests that for

some lengths of commitment h 6= 1 the gain from cooperation is higher than for h = 1, and

that any finite length of commitment can, for each of POC, PAC, PACs and PACns, sustain

a higher value than their open-loop outcomes obtained by letting the length of commitment

go to infinity. It is clear that the length of commitment significantly affects the size of stable

coalitions and the gains from cooperation.

Finally, it is useful to examine the relation between the initial stock of any given period

of commitment (zk), the length of commitment which maximizes the PACs (denote it h∗)

and the length of commitment which can sustain the minimum aggregate emissions (denote

it ĥ). To do this, we have first simulated 8001 values of the current stock of pollutant

following the replication zk = zk−1 + 50, k = 1, ..., 8000; z0 = 0. For each of those values,

we calculate h∗ and ĥ. The top graph of Figure 6 illustrates the fact that ĥ is a decreasing

function of the initial stock of the period of commitment. The bottom graph shows that h∗

is independent of the initial stock of pollutant of the period of commitment. Furthermore,

ĥ is always greater than h∗. These results highlight the difficulties of reconciling the private

gain from cooperation and the best protection of the environment.
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6 Conclusion

The existing literature on dynamic International Environmental Agreements has relied

on one of two approaches. The first consists in assuming that membership and emission

strategies are determined once and for all, as a function of time, at the outset of an infinite

horizon. The other consists in analyzing the problem in a discrete-time framework and

assuming that membership and emission decisions are revised at the beginning of each period,

whose length has been arbitrarily set equal to one. This paper has explored the middle ground

by treating the length of the period of commitment as a positive parameter and studying the

effect of varying this parameter on the size of stable International Environmental Agreements.

It has been shown that the length of the period of commitment can have considerable impact

on the size of stable International Environmental Agreements. The results suggest that for

very large lengths of commitment, only very small stable coalitions can be sustained. But,

below some threshold, as the length of the period of commitment is decreased, the size of

the stable coalition tends to increase. It does so until, if this length is sufficiently small, the

full cooperation equilibrium might be attained.

Since our results rest on particular functional forms and on numerical simulations, there is

no claim to generality. But they do show clearly that the length of the period of commitment

can have very significant effects on the outcome of International Environmental Agreements.

This suggests that considerable attention should be devoted to the determination of the

length of the period of commitment in discussions of this type of international treaties.

For the purpose of this paper, it has been sufficient to treat the length of commitment as

a parameter. However, how best to determine the length of commitment is another matter,

which is clearly worthy of further research.
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Appendix

Proof of proposition 1

Let us recall that the state space is R+ and the set of feasible coalitions is N =

{0, 2, 3, ..., N − 1, N}. It is after observing the length of the period of commitment and

the stock of pollutant at the outset of the period that countries make their membership

decision. Thus the decision rule is the correspondence:

n :R+ ×R+ → N

(z, h) 7→ n(z, h).

For a given i ∈ N , let us denote by Oi(h) = {z ∈ R+/n(z, h) = i}, the subset of all z

such that coalition size i occurs.

Let z denote the stock of pollutant at the outset of the current period and n denote the

current coalition size. By definition n(z, h) = n is independent of z on the subset of the state

space On(h). Q, qi, qj are hence linear functions of z if Ψ can take the special functional

form

Ψ(z, n) =
A(n)

2
z2 +B(n)z + C(n), ∀z ∈ On(h), (20)

with A(n) < 0 and B(n) < 0.

On the subset On(h), equation (12) becomes, ∀z ∈ On(h):

Ψ(z) =
n

N
(aqi −

b

2
q2
i )f(r, h) + f(r, h)(1− n

N
)(aqj −

b

2
q2
j )

+ D(Q, z) + e−rhΨ(Qf(ρ, h) + ze−ρh). (21)

Because n(z, h) = n is independent of z on the subset of state space On(h), both the RHS

and the LHS of (21) are second degree polynomial in z. Equating their coefficients yields

the following third degree polynomial in A, the coefficient of the quadratic term in (20): 13

a3A
3 + a2A

2 + a1A+ a0 = 0,

13. To do this, we use the well-known fact that equating the coefficients of two polynomials of degree two
is equivalent to equating their first three derivatives evaluated at zero.
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where

a3 =(N − n+ n2)2f(ρ, h)4e−2rh

a2 =− 2(N − n+ n2)f(ρ, h)2e−rh(bf(r, h) + λ1(N − n+ n2))− αf(ρ, h)2e−2h(r+ρ)

− 2λ2(N − n+ n2)2f(ρ, h)3e−h(ρ+2r) + γf(r + 2ρ, h)(N − n+ n2)2f(ρ, h)4e−2rh

a1 =(bf(r, h) + λ1(N − n+ n2))2 + 2αλ2f(ρ, h)e−h(r+ρ)

+ 2λ2(N − n+ n2)[λ2f(ρ, h)2e−rh(N − n+ n2)

+ f(ρ, h)e−h(r+ρ)(bf(r, h) + λ1(N − n+ n2))]

− 2γf(r + 2ρ, h)(N − n+ n2)f(ρ, h)2e−rh(bf(r, h) + λ1(N − n+ n2))

− e−rh[bf(r, h)e−ρh + (N − n+ n2)(λ1e
−ρh − λ2f(ρ, h))]2

a0 =− αλ2
2 − 2λ2

2(N − n+ n2)(bf(r, h) + λ1(N − n+ n2))

+ γf(r + 2ρ, h)(bf(r, h) + λ1(N − n+ n2))2

α =− (N − n+ n3)bf(r, h)/N − λ1(N − n+ n2)2.

Pick A to be the negative root of this polynomial. 14 For any given value of A, we can

compute:

Qp =
(N − n+ n2)(−λ2 + Af(ρ, h)e−h(r+ρ))

bf(r, h) + (N − n+ n2)(λ1 − Af(ρ, h)2e−rh)
(22)

qip =
nQp

N − n+ n2
(23)

qjp =
Qp

N − n+ n2
(24)

u =(
n2

N
qip + (1− n

N
)qjp)(λ1 − f(ρ, h)2e−rhA)− λ1Qp − λ2

+ e−rh(f(ρ, h)Qp + e−ρh)Af(ρ, h) (25)

d =bf(r, h) + (N − n+ n2)(λ1 − Af(ρ, h)2e−rh). (26)

14. Using the parameter values of section 5, for all values of h, simulation yields one negative root, the
remaining roots being either both real and positive or complex.
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Let B denote the solution of the linear equation b1B = b0, where

b1 =1 + f(ρ, h)e−rh(
n2

N
qip + (1− n

N
)qjp)− e−rh(f(ρ, h)Qp + e−ρh)

− e−rhf(ρ, h)(N − n+ n2)
u

d

b0 =Naf(r, h)u/d.

Proof of B < 0

Using (23), (24), (25) and (26) the expressions of b1 and u above become

b1 =
(
1− e−h(r+ρ)

)
+ e−rhf(ρ, h)

(
N − n+ n2

) (
λ2 − Af(ρ, h)e−h(r+ρ)

)
/d

+
bQpf(r, h)f(ρ, h)e−rh

dN(N − n+ n2)

[
N − n+ n3

N(N − n+ n2)
− 1

]
(27)

and

u = −
[
λ2 − Af(ρ, h)e−h(r+ρ)

] [
bf(r, h) +

(N − n+ n3)(λ1 − Af(ρ, h)2e−rh)

N

]
/d (28)

Since A < 0, λ1, λ2 > 0 and n ≤ N , we have u,Qp < 0, d > 0 and hence b1 > 0, due to

the fact that each of the three terms constituting the expression (27) is positive.

Since u < 0 and d > 0, we have b0 < 0. Finally B < 0, since it is the quotient of b0 and

b1, two numbers of different signs.

Given A and B, let C denote the solution of the linear equation c1C = c0, where,

c1 =
n

N
f(r, h)(aqio −

b

2
q2
io) + f(r, h)(1− n

N
)(aqjo −

b

2
q2
jo)−

1

2
λ1Q

2
o

+ e−rhf(ρ, h)Qo(B +
A

2
f(ρ, h)Qo)

c0 =1− e−rh

Qo =[Naf(r, h) +Bf(ρ, h)e−rh(N − n+ n2)]/d

qjo =[Qo + n(n− 1)
a

b
]/(N − n+ n2)

qio =− (n− 1)
a

b
+ nqjo

In the case of a corner solution, we have qi = 0, and the above proof still holds by

replacing: nm by zero for m = 2, 3; qip and qio by zero; Na by (N−n)a and qjo by Qo/(N−n)

.
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The non-cooperative equilibrium.

By combining (6) and (15) in the particular case n = 0, we obtain the dynamic evolution

of the stock in the non-cooperative equilibrium:

zk+1 = f(ρ, h)
Naf(r, h) + B̃f(ρ, h)e−rhN + zkN [−λ2 + Ãf(ρ, h)e−h(r+ρ)]

bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh
+ zke

−ρh

≡ ϕ0(zk)

The unique solution of the equation x = ϕ0(x) is:

z̃ =
Naf(r, h)f(ρ, h) + B̃Ne−rhf(ρ, h)2

N(λ2 − Ãf(ρ, h)e−rh) + (1− e−ρh)[bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh]

Hence zk+1 − z̃ ≡ ϕ0(zk)− z̃ = R0(zk − z̃) ∀ k = 0, 1, 2, 3, ..., so that zk = z̃ + (R0)k(z0 − z̃)

∀ k = 0, 1, 2, 3, ..., where:

R0 =
N [λ1e

−ρh − λ2f(ρ, h)] + bf(r, h)e−ρh

bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh
.

We have 1 > R0. Indeed, because all the parameters are non-negative and Ã < 0, we have

the following inequality:

bf(r, h)(1− e−ρh) +Nλ1(1− e−ρh) +Nλ2f(ρ, h)−NÃf(ρ, h)2e−rh > 0.

Rearranging the terms of this inequality, one gets:

bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh > N [λ1e
−ρh − λ2f(ρ, h)] + bf(r, h)e−ρh.

Dividing the LHS and the RHS of the last inequality by its LHS, one obtains 1 > R0.

The sequence zk − z̃ being a geometric progression, a necessary and sufficient condition

for zk to converge is 1 > R0 > −1. It has already been established that 1 > R0. Therefore,

if and only if R0 > −1, zk converges and its limit is z̃. It converges monotonically if R0 > 0.

The steady-state emission rate exists if and only R0 > −1 and is given by:

q̃j =
af(r, h) + B̃f(ρ, h)e−rh + z̃[−λ2 + Ãf(ρ, h)e−h(r+ρ)]

bf(r, h) +Nλ1 −NÃf(ρ, h)2e−rh
,

where Ã and B̃ are the particular values of A and B for n = 0.
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The fully-cooperative equilibrium.

Using the guess (19), each country must emit at the equilibrium

qi(z) =
af(r, h) +BNf(ρ, h)e−rh + zN(−λ2 + Af(ρ, h)e−h(r+ρ))

bf(r, h) +N2λ1 −N2Af(ρ, h)2e−rh
. (29)

Substituting this quantity in the current value function and using the envelope theorem, one

obtains:

V ′i (z) = −zγf(r + 2ρ, h)−Nλ2qi(z) + e−h(r+ρ)V
′

i (Nf(ρ, h)qi(z) + ze−ρh),∀z ≥ 0.

Equating the coefficients of the LHS and RHS of this first-degree polynomial in z, we find

that

Ā =

[
−ā1 −

√
ā2

1 − 4ā2ā0

]
/2ā2,

which is the negative root of the second degree polynomial ā2A
2 + ā1A+ ā0 = 0, where,

ā2 = N2f(ρ, h)2e−rh

ā1 = −(bf(r, h) + λ1N
2)(1− e−h(r+2ρ))− 2N2λ2f(ρ, h) + γf(r + 2ρ, h)N2f(ρ, h)2e−rh

ā0 = −bγf(r, h)f(r + 2ρ, h)−N2λ2
2.

Given Ā, we find:

B̄ =

aNf(r, h)(−λ2 + Āf(ρ, h)e−h(r+ρ))

(bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh)(1− e−h(r+ρ))−N2f(ρ, h)e−rh(−λ2 + Āf(ρ, h)e−h(r+ρ))
.

The dynamic evolution of the stock of pollutant is then

zk+1 = f(ρ, h)
Naf(r, h) + B̄f(ρ, h)e−rhN2 + zkN

2[−λ2 + Āf(ρ, h)e−h(r+ρ)]

bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh
+ zke

−ρh

≡ ϕN(zk).

The unique solution to the equation x = ϕN(x) is:

z̄ =
Naf(r, h)f(ρ, h) + B̄N2e−rhf(ρ, h)2

N2(λ2 − Āf(ρ, h)e−rh) + (1− e−ρh)[bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh]
.

25



Hence, ∀ k = 0, 1, 2, 3, ...,

zk+1 − z̄ ≡ ϕN(zk)− z̄ = RN(zk − z̄)

so that

zk = z̄ + (RN)k(z0 − z̄), ∀ k = 0, 1, 2, 3, ...,

where,

RN =
N2[λ1e

−ρh − λ2f(ρ, h)] + bf(r, h)e−ρh

bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh
.

By a similar argument as for the 1 > R0, we can show that 1 > RN . Therefore a necessary

and sufficient condition for zk to converge is RN > −1. When this condition holds, the

sequence zk converges z̄. It does so monotonically if RN > 0.

Thus the steady-state emission rate exists if and only if RN > −1, in which case its

expression is given by:

q̄i =
af(r, h) + B̄f(ρ, h)e−rhN + z̄N [−λ2 + Āf(ρ, h)e−h(r+ρ)]

bf(r, h) +N2λ1 −N2Āf(ρ, h)2e−rh
.
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Figure 3: Length of commitment, coalition size and stock of pollutant over time.
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Figure 4: POC, PAC and coalition size as functions of h.
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Figure 5: Gain from cooperation by signatories and by non-signatories as functions of h.
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