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Abstract

We o¤er an axiomatization of the serial cost-sharing method of Friedman and
Moulin (1999). The key property in our axiom system is Group Demand Monotonic-
ity, asking that when a group of agents raise their demands, not all of them should
pay less.
JEL classi�cation: C 71, D 63
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1. Introduction

Serial cost sharing was proposed by Moulin and Shenker (1992) as a method for allocating
the cost of production of a single good among n agents. Friedman and Moulin (1999)
generalized it to the context where each agent consumes a possibly di¤erent good: total
cost varies with the consumption pro�le but need no longer be a function of the sum of
the agents� consumptions. The problem is to allocate the cost C(x) generated by the
demand pro�le x = (x1; :::; xn) based on the knowledge of x and the information contained
in the cost function C de�ned on Rn+; which is assumed to be nondecreasing, continuously
di¤erentiable, and to display no �xed costs. This is the standard cost-sharing model
developed by Billera and Heath (1982), Mirman and Tauman (1982), and Samet and
Tauman (1982). Assuming without loss of generality that x1 � x2 � ::: � xn; Friedman
and Moulin�s serial method charges agent i the integral of her marginal cost along the
�constrained egalitarian path�made up of the line segments linking 0 to (x1; :::; x1) to
(x1; x2; :::; x2), and so on to x. This is an alternative to the better known method derived
from the Aumann-Shapley (1974) value for nonatomic games, which integrates marginal
costs along the diagonal from 0 to x:
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Friedman and Moulin (1999) proposed an axiomatization of their method. A key axiom
in their work states that if all goods are perfect substitutes �that is, C(z) = c(

P
i2N zi)�

then an agent�s cost share should not exceed the cost of producing n times her own demand.
This condition o¤ers a protection against the risk of paying an exceedingly high cost share
because of the much higher demands of others. It is certainly in the original spirit of the
serial method but remains perhaps too reminiscent of the very de�nition of the method to
provide an independent justi�cation for it.
Our purpose is to o¤er an alternative axiomatization providing such a justi�cation.

The general normative principle motivating our choice of axioms is the one that underlies
most of the theory of cost sharing: an agent should pay �fully but only�the fraction of
the cost generated by her own demand1. Of course, unless the cost function is additively
separable, this general principle is ambiguous. The challenge is to formulate unambiguous
statements that capture the essential aspects of it.
In order to do that, we �nd it useful to break down an agent�s in�uence on total cost

into two components: the marginal cost function associated with the good she consumes
and the size of her demand. If agents must be charged �the cost of their demand�, then
cost shares should somehow
(a) be positively associated with marginal cost functions,
(b) be positively associated with demand sizes,
(c) be independent of any cost-irrelevant information.

With one exception �Additivity�, our axioms are meant to be unambiguous statements
interpreting these three desiderata. Of course, desideratum (b) is compelling only when
each good is consumed by a clearly identi�able agent who can be held responsible for the
entire demand of that good. That is the interpretation of the cost-sharing model we have
in mind2.
The �rst component of our axiom system is nothing more than the extension to the cost-

sharing model of the system used by Shapley (1953) to characterize the value: Additivity
(cost shares depend additively on the cost function), Dummy (an agent pays nothing if total
cost never increases with her consumption), and Anonymity (the identity of an agent does
not a¤ect what she pays). If Additivity is used for tractability �the world of nonadditive
methods is virtually uncharted territory that we do not want to venture into�, the other two
axioms follow naturally from desiderata (a) and (c) above. Dummy is a minimal expression
of the view that cost shares should be positively related to marginal cost functions and
Anonymity follows from the principle forbidding the use of cost-irrelevant information. As
a matter of fact, we do employ a strengthened version of the Dummy axiom requiring also
that a change in the demand of a dummy agent should have no e¤ect on cost shares. This
requirement too follows naturally from (c).

1There are contexts where this �full responsibility�principle is not warranted: see Moulin and Sprumont
(2006) for a discussion and an alternative view.

2A good example is the problem of allocating overhead costs among the various divisions of a large
�rm (Shubik (1962)). Desideratum (b) is not compelling when the demand for a given good results from
the agregation of many small individual demands, as in the telephone pricing problem studied by Billera,
Heath and Raanan (1978) and other applications of Aumann-Shapley pricing.
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The second important component of our axiom system, Group Demand Monotonicity,
follows from desideratum (b). This axiom, introduced by Moulin and Sprumont (2005),
says that when a group of agents raise their demands, not all of them should end up paying
less. This seems to be a rather weak form of the idea that cost shares should be positively
related with demand sizes.
The model, the axioms, and our theorem are presented in Section 2. The proof is given

in Section 3. A discussion of our result and further comparison with related work is o¤ered
in Section 4.

2. The model and the result

Let N = f1; :::; ng be a �nite set of agents, n � 3: A cost function is a mapping C :
RN+ ! R+ that is nondecreasing, continuously di¤erentiable, and satis�es C(0) = 0: The
set of cost functions is denoted C. A demand pro�le is a point x 2 RN+ . A (cost-sharing)
method is a mapping ' which assigns to each (cost-sharing) problem (C; x) 2 C � RN+ a
vector of nonnegative cost shares '(C; x) 2 RN+ satisfying the budget balance conditionP

i2N 'i(C; x) = C(x):

As is well known, this model can be reinterpreted as a surplus-sharing model: C is then
viewed as a production function, xi is agent i�s input contribution and 'i(C; x) is her share
of the total output produced. All our axioms remain meaningful under this alternative
interpretation. We maintain the cost-sharing interpretation throughout the rest of the
paper to avoid confusion.

If C 2 C and i 2 N , we denote by @iC(z) the ith partial derivative of C at z if
zi > 0 and its ith right partial derivative at z if zi = 0: For all z; z0 2 RN , we let
z ^ z0 = (min(z1; z

0
1); :::;min(zn; z

0
n)): The (Friedman-Moulin) serial method is the cost-

sharing method '� de�ned by

'�i (C; x) =

Z xi

0

@iC((�; �; :::; �) ^ x)d� (2.1)

for all C 2 C, x 2 RN+ , and i 2 N: This method reduces to the well known serial formula
proposed by Moulin and Shenker (1992) in the particular case of perfectly substitutable
goods. If there exists a function c : R+ ! R+ such that C(z) = c(

P
i2N zi) for all z 2 RN+ ;

then, assuming without loss of generality that x1 � x2 � ::: � xn; the cost shares in (2.1)
become '�1(C; x) =

c(nx1)
n
; '�2(C; x) =

c(nx1)
n
+ c(x1+(n�1)x2)�c(nx1)

n�1 ; ... '�n(C; x) =
c(nx1)
n
+

c(x1+(n�1)x2)�c(nx1)
n�1 + :::+ c(x1+:::+xn)�c(x1+:::+xn�2+2xn�1)

1
:

Just like the Aumann-Shapley method, the serial method belongs to the class of �path-
generated methods� (Friedman (2004)). To make the comparison precise, rewrite agent
i�s serial cost share as '�i (C; x) =

R 1
0
@iC(z

�x(t))
dz�xi
dt
(t)dt; where z�x : [0; 1] ! [0; x] is the

constrained egalitarian path z�x(t) = (txn; txn; :::; txn) ^ x (and note that z�xi is di¤eren-
tiable almost everywhere). Under the Aumann-Shapley method, on the other hand, agent
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i pays 'ASi (C; x) =
R 1
0
@iC(z

ASx(t))
dzASxi

dt
(t)dt; where zASx : [0; 1] ! [0; x] is the diagonal

path zASx(t) = tx.

We now present our axioms. The �rst four are adapted from the properties used by
Shapley (1953) to characterize the value in the model of cooperative games.

Additivity. For all C;C 0 2 C and x 2 RN+ ; '(C + C 0; x) = '(C; x) + '(C 0; x):
As mentioned in the Introduction, our primary motivation for this axiom is tractability.

Additive methods can be described fairly explicitly: Friedman and Moulin (1999) and
Friedman (2004) o¤er characterizations of the class of additive methods satisfying the
Dummy axiom and Moulin and Vohra (2003) propose a description of the entire class
in the discrete version of the cost-sharing model. By comparison, only a few speci�c
nonadditive rules were studied in the literature �see for instance Sprumont (1998)�and no
general characterization results are available. Beyond tractability, however, the practical
advantages of Additivity should not be underestimated. As many authors have noted,
an additive method is easily implementable. When total cost arises from independent
production processes, applying the method to the cost function corresponding to each
process and adding the resulting cost shares is equivalent to applying it to the aggregated
cost function. This guarantees that the proper level of application of the method is not a
matter of dispute.

Weak Dummy. For all C 2 C; x 2 RN+ , and i 2 N; if xi = 0 and @iC(z) = 0 for all
z 2 RN+ ; then 'i(C; x) = 0:
Following standard terminology, we call agent i a dummy agent if @iC(z) = 0 for all

z 2 RN+ : Weak Dummy requires that a dummy agent who demands nothing pays nothing.
This is an extremely weak axiom. If the statement that an agent should pay only the
fraction of the cost generated by her own demand entails any well de�ned restriction on
', this must be one.

Dummy Independence. For all C 2 C; x; x0 2 RN+ and i 2 N; if @iC(z) = 0 for all
z 2 RN+ and xj = x0j for all j 2 N n fig ; then '(C; x) = '(C; x0):
This axiom says that if total cost is independent of an agent�s demand, then cost

shares should also be. Together with Weak Dummy, Dummy Independence allows one to
essentially ignore all dummy agents. This seems to be a very natural separability condition
for a theory aiming at charging agents according to their own impact on total cost. We
stress that Dummy Independence is a mild requirement; it is satis�ed by the popular
cost-sharing methods proposed in the literature, including the Aumann-Shapley method
mentioned in the Introduction and the Shapley-Shubik method described in Section 4.
Notice that Weak Dummy and Dummy Independence together imply the familiar

Dummy axiom: if @iC(z) = 0 for all z 2 RN+ ; then 'i(C; x) = 0: Dummy seems to be
unavoidable: since C(0) = 0, the fraction of the total cost generated by agent i�s demand
is indisputably nil if the cost does not vary with her demand. Given this observation,
Dummy Independence may also be defended from a strategic viewpoint. Indeed, a method
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satisfying Dummy and violating Dummy Independence would be vulnerable to manipula-
tions by pairs consisting of a dummy and a non-dummy agent: an increase in the dummy
agent�s demand could reduce her partner�s cost share without increasing her own.

Our fourth axiom uses the following notation. If � is a permutation on N , x 2 RN+ and
C 2 C, we de�ne �x by (�x)�(i) = xi for all i 2 N and we de�ne �C by �C(�z) = C(z)
for all z 2 RN+ : Note that �C 2 C. If i; j are two distinct agents, we denote by �ij the
permutation on N which exchanges i and j : �ij(i) = j; �ij(j) = i and �ij(k) = k if
k 2 N n fi; jg :
Anonymity. For all C 2 C, x 2 RN+ ; and distinct i; j 2 N; if xi = xj; then 'i(C; x) =
'j(�

ijC; x):

This requirement expresses the familiar idea that the names of the agents should play no
role in the computation of the cost shares. This is widely accepted as a very basic notion of
fairness and is consistent with condition (c) in the Introduction: characteristics unrelated
to the cost function or the demand pro�le should be ignored. Our formulation is rather
weak insofar as it does not impose restrictions on the cost shares across demand pro�les:
Sprumont (2008), for instance, uses the stronger condition that '(�C; �x) = �'(C; x) for
all C 2 C, x 2 RN+ , and every permutation � on N . On the other hand, our axiom does
impose restrictions across cost functions; it is stronger than the requirement that agents
with equal demands pay the same cost share when the cost function is symmetric in the
goods they demand.

Our �fth axiom has no counterpart in Shapley�s characterization of the value.

Group Demand Monotonicity. For all C 2 C, all x; x0 2 RN+ ; and all nonempty S � N;
if xi < x0i for all i 2 S and xi = x0i for all i 2 NnS, then there exists i 2 S such that
'i(C; x) � 'i(C; x0).
This axiom simply requires that when a group of agents jointly increase their demands,

not all of them pay less. It strengthens Moulin�s (1995) Demand Monotonicity axiom
which only requires that if xi < x0i and xj = x0j for all j 2 Nn fig, then 'i(C; x) �
'i(C; x

0). As already discussed, Group Demand Monotonicity is in line with the normative
principle that cost shares should be positively related to demand sizes. We note that the
axiom is also compelling from the strategic viewpoint: in an environment where agents can
easily communicate, Group Demand Monotonicity is necessary to prevent manipulations
by coordinated arti�cial in�ation of demands.

Theorem. The serial method is the only cost-sharing method satisfying Additivity, Weak
Dummy, Dummy Independence, Anonymity and Group Demand Monotonicity.

3. The proof

It is well known and easy to check that the serial method satis�es our �rst four axioms.
To check Group Demand Monotonicity, �x a cost function C, a group of agents S � N;
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and two demand pro�les x; x0 such that xi < x0i for all i 2 S and xi = x0i for all i 2 NnS.
We claim that the cost share of any agent with minimal demand in S at x cannot decrease
when the demand pro�le changes from x to x0: Indeed, let i1 2 S be such that xi1 � xi for
all i 2 S: Then '�i1(C; x) =

R xi1
0
@iC((�; �; :::; �) ^ x)d� =

R xi1
0
@iC((�; �; :::; �) ^ x0)d� �R x0i

0
@iC((�; �; :::; �) ^ x0)d� = '�i1(C; x0):
We now turn to the proof that only the serial method satis�es our axioms. The following

notation will be used throughout. Vector inequalities are written �; <;�. For all S � N
and z 2 RN we denote by zS 2 RS the restriction of z to S: If z; z0 2 RN ; we denote by
(zS; z

0
NnS) the point in RN whose restrictions to S and N nS are zS and z0NnS; respectively.

If Z � RN ; we let ZS =
�
zS 2 RS j 9zNnS 2 RNnS : (zS; zNnS) 2 Z

	
:

Our proof relies on Friedman and Moulin�s (1999) characterization of the cost-sharing
methods satisfying Additivity and Dummy.
For any x 2 RN+ ; denote by B([0; x]) the set of Borel subsets of [0; x] : If i 2 N;

a 2 [0; x] ; and �xi is a Radon measure on B( [0; x]); de�ne mx
i (a) = lim"!0

1
"
�xi (fz 2 [0; x] j

ai � zi � ai + " and zj � aj for all j 2 N n ig): A weight system is a mapping � on
RN+ ; x 7! �x = (�x1 ; :::; �

x
n); where each �

x
i is a nonnegative Radon measure on B( [0; x])

satisfying the following two conditions:

�xi (fz 2 [0; x] j ai � zi � big) = bi � ai whenever 0 � ai � bi � xi; (3.1)X
i2S
mx
i (a) = 1 for all S � N and almost all a 2 [0; x] such that aNnS = 0; (3.2)

where the term �almost all� is understood with respect to the jSj-dimensional Lebesgue
measure on

�
0; (xS; 0NnS)

�
:

Lemma (Friedman and Moulin, 1999). A cost-sharing method ' satis�es Additivity and
Dummy if and only if it is generated by a weight system � in the sense that

'i(C; x) =

Z
[0;x]

@iCd�
x
i for all i 2 N; C 2 C, and x 2 RN+ : (3.3)

This weight system � is unique.

The role of conditions (3.1), (3.2) is to guarantee that the cost shares de�ned by (3.3)
satisfy budget balance. We refer to �x as a weight system at x. By the support of �x we
mean the union of the supports of the measures �x1 ; :::; �

x
n.

We denote by �� the weight system generating the serial method '� and call �� the
serial weight system. This system is an example of a �xed weight system. In a �xed weight
system �; when x � x0; each measure �xi is the projection of �x

0
i onto [0; x] ; namely, the

measure px�x
0
i de�ned on B( [0; x]) by

px�
x0

i (Z) = �
x0

i (fz 2 [0; x0] j z ^ x 2 Z and zi � xig): (3.4)

For any b = (�; �; :::; �) 2 RN+ , the support of the serial weight system ��b at b is the set
f(�; �; :::; �) j 0 � � � �g, the diagonal of [0; b] : Using (3.1), it is easy to see that this
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property determines ��b uniquely, as noted in the proof of Theorem 2 in Friedman and
Moulin (1999). For any x � b, the serial weight system at x is de�ned by the projection
property ��xi = px�

�b
i for all i 2 N:

The support of ��x is the constrained egalitarian path to x. Suppose, without loss of
generality, that x1 � x2 � ::: � xn: For all i 2 N , de�ne the demand pro�le xi 2 RN+ by
xij = min(xi; xj) for all j 2 N: The support of ��x is

S�x = [ni=1co
�
xi�1; xi

	
; (3.5)

where x0 = 0 and co fxi�1; xig is the line segment joining xi�1 to xi: See Figure 1.
Proof of the Theorem. Let ' be a cost-sharing method satisfying Additivity, Weak
Dummy, Dummy Independence, Anonymity and Group Demand Monotonicity. Since
Weak Dummy and Dummy Independence imply Dummy, it follows from Friedman and
Moulin�s lemma that there exists a weight system � generating '.
Let � be a positive real number, �x the demand pro�le b = (�; �; �; :::; �); and let

B = [0; b] : Steps 1 to 6 are devoted to showing that �b coincides with ��b, the serial weight
system at b: Steps 7 and 8 establish that �x coincides with ��x for all demand pro�les
x � b.
Step 1. We claim that if 0 < � < �; and a = (�; �; �; :::; �); then �ai = pa�

b
i for i = 3; :::; n:

Fix � such that 0 < � < �; let a = (�; �; �; :::; �) and write A = [0; a]. We use the
following terminology and notation. A set E � RN is an interval (in RN) if E = �i2NEi;
where each Ei is an (open, half-open, or closed) interval in R. If E is nonempty, we denote
its endpoints by e�(E); e+(E) or simply e�; e+. An open interval in RN is an interval
which is also an open set: if nonempty, it takes the form E = fz 2 RN j e� � z � e+g
where e� � e+; and we write E = ]e�; e+[: Let E and Eo denote the set of intervals and
the set of open intervals, respectively. The set of intervals which are below the hyperplane
z1 = z2 is E< = fE 2 E j z2 < z1 for all z 2 Eg; the set of intervals above it is
E> = fE 2 E j z2 > z1 for all z 2 Eg; and the set of intervals whose endpoints are on this
hyperplane is E= = fE 2 E j e�1 (E) = e�2 (E) and e+1 (E) = e+2 (E)g:
1.1. We claim that �ai (E \ A) � pa�bi(E \ A) for i = 3; :::; n and all E 2 Eo \ E<:
We only give a sketch of the argument and refer the reader to the Appendix for details.

Fix E 2 Eo \ E< and let e�; e+ 2 RN ; e� � e+; be the endpoints of E: Assume that

e+1 � � or e+1 > �: (3.6)

This assumption entails no loss of generality. (If � < e+1 � �, choose e++1 > � and consider
the open interval E+ =]e�; (e++1 ; e+Nn1)[. Apply the argument below to E

+ rather than E
to obtain �ai (E

+ \ A) � pa�bi(E+ \ A) for i = 3; :::; n: Since E+ \ A = E \ A; our claim
follows.) Assumption (3.6) guarantees that

pa�
b
i(E \ A) = �bi(E \B) for i = 3; :::; n: (3.7)
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Suppose now, by way of contradiction, that, say,

�a3(E \ A) < pa�b3(E \ A): (3.8)

Assume also that 0 � e�3 and e+3 � � : this too is without loss of generality because �a3(fz 2
A j z3 = 0g) = �a3 (fz 2 A j z3 = �g) = pa�b3 (fz 2 A j z3 = 0g) = pa�b3 (fz 2 A j z3 = �g) =
0 by (3.1). For any set Z � RN ; let �12Z = f�12z j z 2 Zg ; where we recall that �12 is
the permutation exchanging agents 1 and 2; and let Z� = Z [ �12Z : this is the smallest
superset of Z that is symmetric with respect to the hyperplane z1 = z2:
Suppose we could construct a cost function C such that (a) C(a) = C(b); (b) C(z) is

independent of z4; :::; zn; and (c) @3C is a positive constant k on E\RN+ and zero elsewhere.
De�ne the function C� on RN+ by C�(z) = C(z) if z1 � z2 and C�(z) = �12C(z) otherwise.
By Anonymity '1(C; a)+'2(C; a) = '2(�

12C; a)+'1(�
12C; a) and by Dummy 'i(C; a) =

0 = 'i(�
12C; a) for i = 4; :::; n: Since C(a) = �12C(a); budget balance implies '3(C; a) =

'3(�
12C; a): Since '3(C; a) =

R
A
@3Cd�

a
3 = k�

a
3(E \A) and '3(�12C; a) =

R
A
@3�

12Cd�a3 =
k�a3(�

12(E \ A)); we obtain �a3(E \ A) = �a3(�
12(E \ A)) and therefore �a3((E \ A)�) =

2�a3(E \ A):
Likewise, since '3(C; b) = k�b3(E \ B) = kpa�

b
3(E \ A) (by (3.7)) and '3(�12C; b) =

kpa�
b
3(�

12(E \ A)); a similar argument yields pa�b3((E \ A)�) = 2pa�b3(E \ A): Therefore
inequality (3.8) implies �a3((E \ A)�) < pa�b3((E \ A)�):
Now, since '3(C�; a) = k�a3((E \ A)�) and '3(C�; b) = kpa�

b
3((E \ A)�); it follows

that '3(C�; a) < '3(C�; b): By Dummy, 'i(C�; a) = 0 = 'i(C�; b) for i = 4; :::; n: Since
C�(a) = C�(b); budget balance implies '1(C�; a) + '2(C�; a) > '1(C�; b) + '2(C�; b): By
Anonymity, 'i(C�; a) > 'i(C�; b) for i = 1; 2; contradicting Group Demand Monotonicity.
An example of a nondecreasing function C satisfying properties (a), (b) and (c) above

is the following. For all z 2 RN and i 2 N , de�ne z0i =
zi�e�i
e+i �e

�
i

: Let z003 = med(0; z
0
3; 1); the

median of the three numbers 0; z03; 1; and de�ne C : RN+ ! [0; 1] by

C(z) =

8>><>>:
z003 if (z1; z2) 2 Ef1;2g;

0 if (z1; z2) =2 Ef1;2g and z01 + z02 < 1;
1
2
if (z1; z2) =2 Ef1;2g and z01 + z02 = 1;

1 if (z1; z2) =2 Ef1;2g and z01 + z02 > 1;

(3.9)

where we recall that Ef1;2g = f(z1; z2) j 9z3; :::; zn : (z1; z2; z3; :::; zn) 2 Eg : See Figure 2
for an illustration. The only di¢ culty is that C is not a cost function: it is not continu-
ously di¤erentiable or indeed even continuous. The formal proof in the Appendix involves
approximating C by a sequence of cost functions.

1.2. We claim that �ai (E \ A) � pa�bi(E \ A) for i = 3; :::; n and all E 2 E<:
Let E 2 E< be an interval with endpoints e�; e+: Partition N into N<;<; N<;�; N�;<;

N�;� so that E = fz 2 RN j e�i < zi < e+i if i 2 N<;<; e
�
i < zi � e+i if i 2 N<;�;

e�i � zi < e+i if i 2 N�;<; and e�i � zi � e+i if i 2 N�;�g: For m = 1; 2; :::; de�ne
Em = fz 2 RN j e�i < zi < e+i if i 2 N<;<; e�i < zi < e+i + 1

m
if i 2 N<;�; e�i � 1

m
< zi < e

+
i if
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i 2 N�;<; and e�i � 1
m
< zi < e

+
i +

1
m
if i 2 N�;�g: By de�nition, Em+1 � Em form = 1; 2; :::

and \1m=1Em = E: It follows that for all i = 3; :::; n; �ai (E \ A) = limm!1 �
a
i (Em \ A)

and pa�bi(E \ A) = limm!1 pa�
b
i(Em \ A): By Step 1.1, �ai (Em \ A) � pa�bi(Em \ A) for

m = 1; 2; ::: and i = 3; :::; n: The claim follows.

1.3. We claim that �ai (E \ A) � pa�bi(E \ A) for i = 3; :::; n and all E 2 E :
Mutatis mutandis, the proof that �ai (E\A) � pa�bi(E\A) for i = 3; :::; n and all E 2 E>

is identical to the argument in Steps 1.1 and 1.2. The proof that �ai (E \A) � pa�bi(E \A)
for i = 3; :::; n and all E 2 E= is also similar. When E 2 E= the function C in (3.9) is
symmetric with respect to z1; z2 and C� coincides with C: Assumption (3.6) guarantees
that C(a) = C(b): The only change required in the formal proof in the Appendix is that
the functions eCm satisfying (5.2) to (5.5) must now be symmetric with respect to z1; z2:
This causes no di¢ culty since E itself is symmetric with respect to z1; z2. To conclude the
proof of Step 1.3, it su¢ ces to note that every interval in E can be written as a disjoint
union of intervals in E<; E> and E=:
1.4. We claim that �ai (E \ A) = pa�bi(E \ A) for i = 3; :::; n and all E 2 E :
Let E 2 E be an interval with endpoints e�; e+; �x i 2 f3; :::; ng and assume without

loss of generality that 0 � e�i and e
+
i � �: Let G =

�
z 2 RN j e�i � zi � e+i

	
: Applying

(3.1) to �ai and pa�
b
i ,

�ai (G \ A) = e+i � e�i = pa�bi(G \ A): (3.10)

Partition G n E into the eight disjoint intervals G<;< = G1; G=;< = G2; G>;< = G3;
G<;= = G4; G>;= = G5; G<;> = G6; G=;> = G7 and G>;> = G8; where G<;< = fz 2 G j
z1 < z

0
1 and z2 < z

0
2 for all z

0 2 Eg; G=;< = fz 2 G j z1 = z01 for some z0 2 E and z2 < z02
for all z0 2 Eg; G>;< = fz 2 G j z1 > z01 and z2 < z02 for all z0 2 Eg; and so on.
By (3.10), �ai (E \ A) = (e+i � e�i ) �

P8
k=1 �

a
i (Gk \ A) and pa�bi(E \ A) = (e+i �

e�i )�
P8

k=1 pa�
b
i(Gk \A): By Step 1.3, �ai (Gk \A) � pa�bi(Gk \A) for k = 1; :::; 8: Hence

�ai (E \ A) � pa�
b
i(E \ A): Since the opposite weak inequality holds by Step 1.3, we are

done.

1.5. We claim that �ai (Z) = pa�
b
i(Z) for i = 3; :::; n and all Z 2 B(A):

Because every open set in RN is the union of a countable collection of (open) intervals,
Step 1.5 follows from Step 1.4, the de�nition of the Borel sets, and the countable additivity
of the measures �ai and pa�

b
i :

Step 2. For any real number � such that 0 < � < �; partition B into B0(�) =
fz 2 B j z1; z2 � �g ; B1(�) = fz 2 B j z2 < � < z1g ; B2(�) = fz 2 B j z1 < � < z2g ;
and B3(�) = fz 2 B j (�; �) < (z1; z2)g: Recall that (�; �) < (z1; z2) means that � � z1;
� � z2; and at least one of these inequalities is strict. We claim that

�bi(B
1(�) [B2(�)) = 0 for i = 3; :::; n: (3.11)

The proof works by constructing a particular cost function C and applying Anonymity
and Group Demand Monotonicity to the problems (C; a); (C; b): Although the construction
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of C is in essence rather simple, the requirement that it be continuously di¤erentiable
introduces unavoidable minor complications. We begin by de�ning C on the set B = fz 2
B j zi = � for i = 3; :::; ng: If z = (z1; z2; �; :::; �) 2 B; we abbreviate notation by writing
z = (z1; z2):
Let s : R! [0; 1] be a �smoothing function�, namely, a nondecreasing, continuously

di¤erentiable function such that s(0) = 0; s(1) = 1; and s0(0) = s0(1) = 0: De�ne h : B !
[0; 1] by

h(z) =

8>>>><>>>>:
s

�
2

1+
��z2
��z1

�
if 0 � z2 � z1 < �;

s

�
2

1+
��z1
��z2

�
if 0 � z1 < z2 < �;

0 otherwise.

The level sets of this function are shown in Figure 3. Observe that h(; ) = 1 whenever
0 �  < �: The function h is continuously di¤erentiable everywhere but at (�; �); where
it is discontinuous.
De�ne the functions C1; C2 : B ! [0; 1] by

C1(z) = s

�
1�

�
� � z1
� � � � h(z)

��
�� z2
�

��
;

C2(z) = s

�
1�

�
�� z1
�

��
� � z2
� � � � h(z)

��
:

Observe that C1(z) = C2(z) = 1 if z � (�; �) and C1(; ) = C2(; ) whenever 0 �  < �:
The functions C1; C2 are continuously di¤erentiable at every point, including (�; �) where
@iCj(�; �) = 0 for i; j 2 f1; 2g. Moreover, one checks that @iC1(; ) = @iC2(; ) for
0 �  < � and i 2 f1; 2g :
Partition the setB intoB

01
(�) =

�
z 2 B j z2 < z1 � �

	
; B

02
(�) =

�
z 2 B j z1 � z2 � �

	
;

B
1
(�) =

�
z 2 B j z2 < � < z1

	
; B

2
(�) =

�
z 2 B j z1 < � < z2

	
; and B

3
(�) = fz 2 B j

(�; �) < (z1; z2)g: De�ne C : B ! [0; 1] by

C(z) =

8><>:
C1(z) if z 2 B

01
(�) [B1(�);

C2(z) if z 2 B
02
(�) [B2(�);

1 if z 2 B3(�):

Thanks to the properties of C1; C2 discussed above, C is continuously di¤erentiable and
one checks that it is nondecreasing. The level sets of C are drawn in Figure 4. Note that
C(a) = C(b) = 1:
Finally, with a slight abuse of notation, we extend C to RN+ by letting

C(z) =

nP
i=3

zi

(n� 2)�C (min (z1; �) ;min (z2; �) ; �; :::; �)

10



for all z 2 RN+ : This function belongs to C:
Suppose now that (3.11) is false: say, �b3(B

1(�) [ B2(�)) > 0: Let a = (�; �; �; :::; �);
A = [0; a] ; and de�ne the function @a3C : RN+ ! R+ by @a3C(z) = @3C(z ^ a): By Step 1,
the measure �a3 is obtained by projection of �

b
3 onto A: It then follows from the de�nition

of the Lebesgue integral that Z
A

@3Cd�
a
3 =

Z
B

@a3Cd�
b
3:

From the de�nition of C; we have

@a3C(z) = @3C(z) for all z 2 B0(�) [B3(�);
@a3C(z) < @3C(z) for all z 2 B1(�) [B2(�):

For instance, if z 2 B1(�); then @a3C(z) = @3C(�; z2; z3; :::; zn) = 1
(n�2)�C(�; z2; �; :::; �) <

1
(n�2)�C(z1; z2; �; :::; �) = @3C(z):
Therefore

'3(C; b)� '3(C; a) =

Z
B

@3Cd�
b
3 �

Z
A

@3Cd�
a
3

=

Z
B

(@3C � @a3C) d�b3

=

Z
B1(�)[B2(�)

(@3C � @a3C) d�b3

> 0;

that is, '3(C; a) < '3(C; b): Since C is symmetric in z3; :::; zn and a3 = ::: = an = � and
b3 = ::: = bn = �; Anonymity implies '3(C; a) = ::: = 'n(C; a) and '3(C; b) = ::: =
'n(C; b): Therefore 'i(C; a) < 'i(C; b) for i = 3; :::; n: Since C(a) = C(b); budget balance
implies '1(C; a) + '2(C; a) > '1(C; b) + '2(C; b): But since C is symmetric in z1; z2 and
a1 = a2 = � and b1 = b2 = �; Anonymity also forces '1(C; a) = '2(C; a) and '1(C; b) =
'2(C; b): Hence, '1(C; a) > '1(C; b) and '2(C; a) > '2(C; b); contradicting Group Demand
Monotonicity.

Step 3. De�ne D12 = fz 2 B j z1 = z2g : We claim that

�bi(D
12) = �bi(B) for i = 3; :::; n: (3.12)

For any real number � such that 0 < � < �; let B12(�) = B1(�)[B2(�) and D12(�) =
B n B12(�): For r = 1; 2; :::; let B12r = [r�1k=1B

12(k�
r
) and D12

r = B n B12r : See Figure 5 for
an illustration when n = 3: We get

�bi(D
12
r ) = �bi(B)� �bi(B12r )

= �bi(B)� �bi([r�1k=1B
12(
k�

r
))

= �bi(B)

11



for i = 3; :::; n; where the last equality holds because (3.11) guarantees that �bi(B
12(k�

r
)) = 0

for k = 1; :::; r � 1 and i = 3; :::; n: Since D12
r � D12

r+1 for r = 1; 2; ::: and D
12 = \1r=1D12

r ;
we obtain

�bi(D
12) = �bi(\1r=1D12

r )

= lim
r!1

�bi(D
12
r )

= �bi(B)

for i = 3; :::; n:

Step 4. For all S � N n 3 such that jSj � 2; let DS = fz 2 B j zi = zj for all i; j 2 Sg :
We claim that

�b3(D
Nn3) = �b3(B): (3.13)

From Step 3, �b3(D
f1;2g

) = �b3(B): Since the choice of agents 1 and 2 in Steps 1, 2 and
3 was arbitrary, this conclusion generalizes to

�b3(D
S) = �b3(B) for all S � N n 3 such that jSj = 2: (3.14)

For all S � N n 3 such that jSj � 2; de�ne bDS = fz 2 DS j zi 6= zk for all i 2 S and all
k 2 (N n 3) n Sg: Statement (3.14) implies

�b3(
bDS) = 0 for all S � N n 3 such that 2 � jSj � n� 2: (3.15)

To see why, suppose there exists S � N n 3 such that 2 � jSj � n � 2 and �b3( bDS) > 0:

Because 1 � jSj � n � 2; there exist i 2 S and k 2 (N n 3) n S such that bDS �
fz 2 B j zi 6= zkg = B nDfi;kg: But then �b3(B nDfi;kg) � �b3( bDS) > 0; hence �b3(D

fi;kg) <
�b3(B), contradicting (3.14).
Notice that [S�Nn3:jSj�2DS = fz 2 B j 9i; j 2 N n 3 : i 6= j and zi = zjg : Since for all

S � N n 3 such that jSj � 2; DS =
S
T�Nn3:T�S bDT ; we have[

S�Nn3:jSj�2

DS =
[

S�Nn3:jSj�2

bDS:

Since DNn3 = bDNn3 = fz 2 B j zi = zj for all i; j 2 N n 3g; it follows that

DNn3 =

0@ [
S�Nn3:jSj�2

DS

1A n
0BB@ [

S�Nn3:
2�jSj�n�2

bDS

1CCA :
Using (3.14) and (3.15), it follows that �b3(D

Nn3) � �b3(B): This inequality must be an
equality since DNn3 � B:

12



Step 5. We interrupt the course of the proof to establish a general property of the
weight system � that will be used in Step 6. This property does not depend on the
assumption that ' satis�es Anonymity and Group Demand Monotonicity; it is implied by
(3.1), (3.2), and (3.3). For any real number � such that 0 < � < �; de�ne E3+(�) =
fz 2 B j z3 � � > zj for all j 2 N n 3g and E3�(�) = fz 2 B j z3 � � < zj for all j 2
N n 3g: See Figure 6. We claim that

if �bi(E3+(�)) = 0 for all i 2 N n 3; then �b3(E3+(�)) = 0; (3.16)

and
if �bi(E3�(�)) = 0 for all i 2 N n 3; then �b3(E3�(�)) = 0: (3.17)

We prove (3.16) and leave the similar proof of (3.17) to the reader. If i 2 N and P is
a property that points of B may have, we abbreviate notation by writing �bi(P ) instead
of �bi(fz 2 B j z satis�es property Pg): For all t 2 B; i 2 N; S � N n i; and " > 0 small
enough, we de�ne

mS
i (t) = lim

"!0

1

"
�bi (ti � zi � ti + "; zj < tj if j 2 S; and zj � tj if j 2 (N n i) n S)

In particular, m;
i (t) = m

b
i(t), as de�ned just before condition (3.1).

5.1. We claim that if 0 < �0 < �; then

�b3 (zi < �
0 for i 2 Nn3 and z3 � �) =

Z �

�

m
Nn3
3 (�0; �0; z3; �

0; :::; �0)dz3: (3.18)

De�ning M(t3) = �b3 (zi < �
0 for i 2 Nn3 and z3 � t3) ; we have M 0(t3) = lim"!0

1
"
(M(

t3+")�M(t3)) = lim"!0
1
"
(�b3(zi < �

0 for i 2 Nn3 and z3 � t3+") � �b3(zi < �0 for i 2 Nn3
and z3 � t3)) = � lim"!0

1
"
�b3 (zi < �

0 for i 2 Nn3 and t3 � z3 < t3 + ") = �mNn3
3 (�0; �0;

t3; �
0; :::; �0); where the last equality uses property (3.1).
Hence

R �
�
m
Nn3
3 (�0; �0; t3; �

0; :::; �0)dt3 = �
R �
�
M 0(t3)dt3 = M(�) �M(�) = �b3(zi < �0

for i 2 Nn3 and z3 � �) � �b3(zi < �0 for i 2 Nn3 and z3 � �) = �b3(zi < �0 for i 2 Nn3
and z3 � �):
5.2. Next we claim that if 0 < �0 < �; then

m
Nn3
3 (�0; �0; z3; �

0; :::; �0) =
X
i2Nn3

m
(Nn3)ni
i (�0; �0; z3; �

0; :::; �0) for almost all z3 2 [�; �] :

(3.19)
To see why this is true, �x z3 2 [�; �] and write a0 = (�0; �0; z3; �

0; :::; �0): For any set S
such that 3 2 S � N; applying property (3.2) gives

P
i2Sm

b
i(a

0
S; 0NnS) = 1 almost surely

whenever 3 2 S � N: By de�nition of mT
i (a

0); we have mb
i(a

0
S; 0NnS) = m;

i (a
0
S; 0NnS) =P

T :;�T�NnSm
T
i (a

0) for all i 2 S: Therefore,X
i2S

X
T :;�T�NnS

mT
i (a

0) = 1
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almost surely whenever 3 2 S � N: Adding up these conditions pre-multiplied by alter-
nating positive and negative unit coe¢ cients,

X
S:32S�N

(�1)jSj�1
0@X

i2S

X
T :;�T�NnS

mT
i (a

0)

1A = 0

almost surely. Cancelling terms in the left-hand side of this equation, we obtain

m
Nn3
3 (a0)�

X
i2Nn3

m
(Nn3)ni
i (a0) = 0

almost surely, as claimed.

5.3. Assume now that �bi(E3+(�)) = 0 for all i 2 N n 3: Combining (3.18) and (3.19),

�b3 (zi < �
0 for i 2 Nn3 and z3 � �) =

Z �

�

X
i2Nn3

m
(Nn3)ni
i (�0; �0; z3; �

0; :::; �0)dz3

whenever 0 < �0 < �: But if i 2 N n 3 and � � t3 � �; then m(Nn3)ni
i (�0; �0; t3; �

0; :::; �0) =
lim"!0

1
"
�bi (�

0 � zi � �0 + "; zj < �0 for j 2 (Nn3)ni; and z3 � t3) = 0 because �bi(E3+(�))
= 0 and fz 2 B j �0 � zi � �0 + "; zj < �0 for j 2 (Nn3)ni; and z3 � t3g � E3+(�) when
" is su¢ ciently small. Therefore

�b3 (zi < �
0 for i 2 Nn3 and z3 � �) = 0 (3.20)

whenever 0 < �0 < �:
A standard limit argument completes Step 5. Writing Ek3+(�) = fz 2 B j zi < �� 1

k
for

i 2 N n3 and z3 � �g for k = 1; 2; :::; we have �b3(Ek3+(�)) = 0 from (3.20). Since Ek3+(�) �
Ek+13+ (�) for all k and

S1
k=1E

k
3+ = E3+(�); we get �

b
3(E3+(�)) = limk!1 �

b
3(E

k
3+(�)) = 0:

Step 6. We claim that
�b = ��b: (3.21)

Let D = fz 2 B j zi = zj for all i; j 2 Ng: We �rst show that

�b3(D) = �
b
3(B); (3.22)

that is, the support of �b3 is included in the diagonal of B:
PartitionDNn3 intoD = fz 2 DNn3 j z3 = zi for all i 2 Nn3g; DNn3

+ = fz 2 DNn3 j z3 >
zi for all i 2 N n 3g; and DNn3

� = fz 2 DNn3 j z3 < zi for all i 2 N n 3g. Suppose, contrary
to our claim, that �b3(D) < �

b
3(B): Then �

b
3(D

Nn3
+ ) > 0 or �b3(D

Nn3
� ) > 0: We consider the

case where �b3(D
Nn3
+ ) > 0 and derive a contradiction. If �b3(D

Nn3
� ) > 0; a completely similar

argument (using (3.17) instead of (3.16)) leads to a similar contradiction.
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For k = 1; 2; :::; de�ne DNn3
+ (k) = fz 2 B j z3 � 1

k
� zi = zj for all i; j 2 N n 3g:

See Figure 7. Since DNn3
+ (k) � DNn3

+ (k + 1) for all k and
S1
k=1D

Nn3
+ (k) = D

Nn3
+ ; we have

�b3(D
Nn3
+ ) = limk!1 �

b
3(D

Nn3
+ (k)): Therefore there is some k such that

�b3(D
Nn3
+ (k)) > 0: (3.23)

Let � be a �nite subset of [0; �] such that

D
Nn3
+ (k) �

[
�2�

E3+(�) (3.24)

where, as in Step 5, E3+(�) = fz 2 B j z3 � � > zj for all j 2 N n 3g : For instance, we
may choose � =

�
1
2k
; 2
2k
; :::; 2k�1

2k

	
: From (3.23) and (3.24) follows that there exists � 2 �

such that �b3(E3+(�)) > 0: By (3.16) in Step 5, there must exist some i 2 N n 3 such that

�bi(E3+(�)) > 0: (3.25)

Since the choice of agents 1 and 2 in Step 1 and the choice of agent 3 in Steps 4 and 5
was arbitrary, an equation analogous to (3.13) holds for agent i as well, namely,

�bi(D
Nni) = �bi(B):

But E3+(�) � B n DNni (since z 2 E3+(�) ) zj 6= z3 for all j 2 N n 3 ) zj 6= z3
for all j 2 N n f3; ig ) zj 6= zk for some j; k 2 N n i ) z 2 B n DNni). Therefore
�bi(E3+(�)) � �bi(B nDNni) = 0, contradicting (3.25). This proves (3.22).
Since the support of �b3 is included in the diagonal of B; it follows from (3.1) that �b3

is uniquely determined and, by de�nition of the serial weight system, �b3 = �
�b
3 : Since the

choice of agents 1 and 2 in Step 1 and the choice of agent 3 in Steps 4 and 5 was arbitrary,
�bi = �

�b
i for all i 2 N:

Step 7. We identify a key restriction imposed on � by the Dummy Independence axiom.
Let x 2 RN+ and X = [0; x] : De�ne the demand pro�le x(12) = (x1; x2; 0; :::; 0); and let
X(12) = [0; x(12)] : We claim that for all E 2 Eo such that E \X(12) 6= ;;

�
x(12)
i (E \X(12)) = �xi (E \X) for i = 1; 2: (3.26)

Let E = ]e�; e+[; with e� � e+: Since E \ X(12) 6= ;; we have e+i > 0 for i = 1; 2:
De�ne e�i+ = max(e

�
i ; 0): For m = 3; 4; :::; let

Em = fz 2 E j e�i+ +
1

m
(e+i � e�i+) � zi � e+i �

1

m
(e+i � e�i+) for i = 1; 2g:

Fix a real number k > 0 and let (Cm)m=3;4;::: be a sequence of cost functions such that,
for all m, (a) Cm(z) is independent of z3; :::; zn; (b) @1Cm(z) = k if z 2 Em \ RN+ ; (c)
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@1C
m(z) � k if z 2 E \ RN+ ; and (d) @1Cm(z) = 0 if z 2 RN+ n E: See Figure 8 for an

illustration. Then,

k�
x(12)
1 (Em \X(12)) � '1(C

m; x(12)) � k�x(12)1 (E \X(12)),
k�x1(E

m \X) � '1(C
m; x) � k�x1(E \X):

Since limm!1 �
x(12)
1 (Em \X(12)) = �x(12)1 (E \X(12)) and limm!1 �

x
1(E

m \X) = �x1(E \
X); we have limm!1 '1(C

m; x(12)) = k�
x(12)
1 (E\X(12)) and limm!1 '1(C

m; x) = k�x1(E\
X): By Dummy Independence, '1(C

m; x(12)) = '1(C
m; x) for all m: Since '1(:; x(12))

and '1(:; x) are continuous (because they are of the form given in (3.3)), it follows that
limm!1 '1(C

m; x(12)) = limm!1 '1(C
m; x); hence �x(12)1 (E \ X(12)) = �x1(E \ X): A

completely similar argument shows that �x(12)2 (E \X(12)) = �x2(E \X):
Step 8. We conclude the proof.

8.1. Let b(12) = (�; �; 0; :::; 0) and B(12) = [0; b(12)] : We claim that

�b(12) = ��b(12): (3.27)

From Step 7, �b(12)i (E \ B(12)) = �bi(E \ B) for i = 1; 2 and all E 2 Eo such that
E\B(12) 6= ;: Using Step 6, it follows that �b(12)i (E\B(12)) = ��bi (E\B) = 0 for i = 1; 2
and all E 2 Eo \ (E< [ E>): This means that for i = 1; 2 the support of �b(12)i is included
in fz 2 B(12) j z1 = z2g; the diagonal of B(12): Then (3.27) follows because of (3.1) and
because bi(12) = 0 for i = 3; :::; n.

8.2. Fix a real number � such that 0 � � < � and consider the demand pro�le x =
(�; �; 0; :::; 0): We claim that

�x = ��x: (3.28)

Because Group Demand Monotonicity implies Demand Monotonicity, '1(C; x) � '1(C;
b(12)) for all C 2 C: As Friedman and Moulin (1999) show (see step 3 of the proof of their
Theorem 1), this implies that �x1 and �

b(12)
1 coincide on [0; x] : Because of (3.1) and (3.2),

it follows that �xi = px�
b(12)
i for i = 1; 2: Hence, hence by Step 8.1 and the de�nition of

the serial weight system ��, �xi = px�
b(12)
i = px�

�b(12)
i = ��xi for i = 1; 2 and (3.28) follows

because xi = 0 for i = 3; :::; n.

8.3. Let x be an arbitrary demand pro�le such that 0 � x � b: For any two distinct
i; j 2 N; let x(ij) = (xfi;jg; 0Nnfi;jg): Since the choice of agents 1; 2 in Steps 7, 8.1, and 8.2
was arbitrary, (3.26) and (3.28) generalize:

�
x(ij)
k (E \X(ij)) = �xk(E \X) for k = i; j and all E 2 Eo such that E \X(ij) 6= ;

and
�x(ij) = ��x(ij):

Since these two facts hold for all distinct i; j 2 N; the support of �x must equal S�x, the
support of ��x de�ned in (3.5). Because of (3.1), any weight system at x whose support
equals S�x coincides with ��x: Thus �x = ��x: Since � is arbitrary, we conclude that � = ��;
hence ' = '�:�

16



4. Discussion

(1) The only other existing axiomatization of the Friedman-Moulin serial method in the
continuous cost-sharing model used in the current paper is the one we alluded to in the
Introduction. Theorem 2 in Friedman and Moulin (1999) states that the serial method
is characterized by Additivity, Dummy, Demand Monotonicity, and Upper Bound for Ho-
mogenous Goods. This last axiom says that if goods are perfect substitutes, namely,
C(z) = c(

P
i2N zi), then 'i(C; x) � C(xi; :::; xi) for all x 2 RN+ and i 2 N: As we argued

earlier, this powerful property is intimately connected with the very de�nition of the serial
method. In fact, it rules out virtually all the popular cost-sharing methods. The only
noticeable exception we are aware of is the so-called �cross-subsidizing serial method�of
Moulin and Sprumont (2006) which di¤ers from the Friedman-Moulin method but retains
its serial structure. By contrast, Group Demand Monotonicity is satis�ed by methods such
as equal or proportional cost sharing.
In the discrete version of the cost-sharing model (that is, when demands are integers and

the cost function is de�ned over NN) Moulin and Sprumont (2006) o¤er an axiomatization
of the (proper reformulation of the) Friedman-Moulin serial method based on Distributivity.
That property states that the cost-sharing method should commute with the composition
of cost functions. It is a technical axiom akin to Additivity with no clear normative or
strategic interpretation. By contrast, Group Demand Monotonicity, is meaningful on both
counts.
Still in the discrete framework, Sprumont (2008) studies a combination of axioms very

closely related to the one we use. The main di¤erence is that his axiom of Independence of
Dummy Changes is strictly stronger than the combination of Weak Dummy and Dummy
Independence, as the example of the Aumann-Shapley method shows. Moreover, his ver-
sion of Anonymity is stronger than ours. In spite of this, Sprumont�s (2008) axioms fail to
uniquely characterize the serial method: they circumscribe the class of so-called �nearly
serial�methods. The use of the continuous framework allows us to obtain a much crisper
result.

(2) The axioms used in our theorem are independent.
A cost-sharing method satisfying all our axioms but Additivity is equal sharing among

the non-dummy agents: given a problem (C; x); letN(C) =
�
i 2 N j 9z 2 RN+ : @iC(z) > 0

	
;

'i(C; x) = C(x)= jN(C)j if i 2 N(C) and 'i(C; x) = 0 if i 2 N nN(C):
A method violating only Weak Dummy is plain egalitarianism, 'i(C; x) = C(x)=n:
A simple example of a method violating only Dummy Independence is proportionality:

'i(C; x) = xiC(x)=
P

j2N xj if x > 0 and 'i(C; 0) = 0: This rule, however, violates Dummy.
For an example that also satis�es Dummy, combine the serial method with the Shapley-
Shubik method: let 'i(C; x) = '

�
i (C; x) if jfj 2 N j xj > 0gj � 3 and 'i(C; x) = 'SSi (C; x)

otherwise, where the Shapley-Shubik method 'SS charges agent i her Shapley value in the
�stand-alone game�(C;x)(S) = C(xS; 0NnS) for all S � N: This method satis�es Group
DemandMonotonicity because the Shapley-Shubik method satis�es DemandMonotonicity.
For a method violating only Anonymity, consider any so-called ��xed-path method�
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other than the serial method: the simplest example is the so-called �incremental�method
'i(C; x) = (C;x)(f1; :::; ig)� (C;x)(f1; :::; i� 1g):
Finally, the Aumann-Shapley method and the Shapley-Shubik method are examples of

methods violating only Group Demand Monotonicity.

(3) The proof of our theorem does not use the full power of Group Demand Monotonic-
ity. In fact, this axiom may be replaced with the weaker requirement that members of
groups of size one or two cannot all lower their cost shares by jointly raising their demands.
But Demand Monotonicity would not su¢ ce: numerous demand-monotonic methods, in-
cluding the Shapley-Shubik method, satisfy our �rst four axioms.

(4) One think of axioms of responsiveness to marginal costs that would strengthen
Dummy. One very natural requirement would stipulate that if the marginal cost function
associated with an agent increases, that agent should not end up paying less: if @iC1(z) �
@iC

2(z) for all z 2 RN+ ; then 'i(C1; x) � 'i(C
2; x) for all x 2 RN+ : This property is

automatically satis�ed by every additive method satisfying Dummy, including the serial
method, because of the Friedman-Moulin lemma (see formula (3.3)).
In the same spirit of cost responsiveness, Young (1985) proposed a powerful condition

dubbed Symmetric (Cost) Monotonicity: if @iC1(z) � @jC
2(z) for all z 2 [0; x] ; then

'i(C
1; x)=xi � 'j(C2; x)=xj: The fact, proved by Young, that only the Aumann-Shapley

method possesses this property illustrates the trade-o¤ existing between the fundamental
desiderata of responsiveness to marginal costs and responsiveness to demand sizes. In
our interpretation of the cost-sharing model where each good is consumed by a clearly
identi�able agent, Symmetric Monotonicity is not compelling because average cost shares
have no particular ethical relevance.

(5) One can also think of axioms of responsiveness to demand size that would strengthen
Group Demand Monotonicity. One such property is Strong Group Demand Monotonicity:
the sum of the cost shares of the agents in a group should not decrease when they jointly
raise their demands. This condition is violated by the serial method3. In fact, one can show
(by adapting the arguments in Moulin and Sprumont (2005) to our continuous model) that
no additive method satis�es Strong Group Demand Monotonicity and Dummy. This fact is
another illustration of the trade-o¤between cost responsiveness and demand responsiveness
within the class of additive methods. It also shows how restrictive Additivity is. Indeed, it
is easy to construct non additive methods satisfying Dummy and Strong Group Demand
Monotonicity: equal sharing among the non-dummy agents is a very simple example; it
actually satis�es the condition that none of the agents who jointly raise their demand pays
less.

3A much more modest strengthening of Group Demand Monotonicity would require that if xi < x0i for
all i 2 S and xi = x0i for all i 2 NnS, then either there exists i 2 S such that 'i(C; x) < 'i(C; x0) or else
'i(C; x) = 'i(C; x

0) for all i 2 S: This condition too is violated by the serial method.
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5. Appendix

We provide the proof of the claim made in Step 1.1. To do so, we begin by constructing a
sequence of continuous functions Cm approximating the function C in (3.9). Recall that
E =]e�; e+[ is an open interval below the plane z1 = z2: For m = 3; 4; :::; and � 2 [0; 1] ;
de�ne the set

Em(�) =

�
z 2 E j min

�
1

m
;
2�

m

�
� z0i � min

�
1� 1

m
; 1� 2�

m

�
for i = 1; 2

�
:

Figure 9 shows the set Emf1;2g(�) for some values of �: Observe that E
m(1

2
) = fz 2 E j

e�i +
1
m
(e+i � e�i ) � zi � e+i � 1

m
(e+i � e�i ) for i = 1; 2g � Em(�) for all � 2 [0; 1] : From

now on we write Em instead of Em(1
2
): Notice that

Em � Em+1 for m = 3; 4; ::: and [1m=3 Em = E: (5.1)

For m = 3; 4; :::; and � 2 [0; 1] ; de�ne Cm0 (:; :; �); Cm1 (:; :; �) on R
f1;2g
+ by

Cm0 (z1; z2; �) = max

�
0; �mmin(z01; z

0
2);

1�m
2

+
m

2
(z01 + z

0
2)

�
;

Cm1 (z1; z2; �) = min

�
1; 1� (1� �)mmin(1� z01; 1� z02);

1�m
2

+
m

2
(z01 + z

0
2)

�
:

Figure 10 illustrates the function Cm0 (:; :; �) (for � =
3
4
) and the function Cm1 (:; :; �) (for

� = 1
2
). De�ne Cm : RN+ ! [0; 1] by

Cm(z) =

8<:
z003 if (z1; z2) 2 Emf1;2g(z003 );

Cm0
�
z1; z2;max(z

00
3 ;

1
2
)
�
if (z1; z2) =2 Emf1;2g(z003 ) and 1�m

2
+ m

2
(z01 + z

0
2) � z003 ;

Cm1
�
z1; z2;min(z

00
3 ;

1
2
)
�
if (z1; z2) =2 Emf1;2g(z003 ) and 1�m

2
+ m

2
(z01 + z

0
2) > z

00
3 :

See Figure 11. Because of (5.1), the sequence (Cm)m=3;4;::: converges pointwise to the
function C de�ned in (3.9).

The functions Cm are not continuously di¤erentiable. Our next step consists in smooth-
ing them o¤. We begin by slightly modifying them to obtain functions that are contin-
uously di¤erentiable in z3. Let k be a large positive real number. For m = 3; 4; :::; let
fm : R+ ! [0; 1] be a continuously di¤erentiable nondecreasing function such that (a)
fm(z3) = z

00
3 whenever z3 � e�3 or e�3 + 1

m
(e+3 � e�3 ) � z3 � e+3 � 1

m
(e+3 � e�3 ) or e+3 � z3 and

(b) the derivative of fm is bounded above by k. De�ne Cm;m : RN+ ! [0; 1] by replacing
z003 with f

m(z3) in the de�nition of the function Cm above. Notice that Cm;m coincides
with Cm outside E. Because the sequence (fm)m=3;4;::: converges pointwise to the function
f(z3) = z

00
3 ; the sequence (C

m;m)m=3;4;::: converges pointwise to the function C de�ned in
(3.9).
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Next, we modify the functions Cm;m to obtain functions that are also continuously
di¤erentiable in z1 and z2: For m = 3; 4; ::: and � 2 [0; 1] ; de�ne Em� = fz 2 Em \ RN+ j
z003 = �g and E� = fz 2 E \ RN+ j z003 = �g: Given a function eC : RN+ ! [0; 1] ; de�ne

E( eC; �) = nz 2 E j eC (z) = � and z003 = �o :
Note that E(C; �) = E�: Let ( eCm)m=3;4;::: be a sequence of cost functions satisfying the
following conditions:

8m = 3; 4; ::: and z =2 E; eCm(z) = Cm(z); (5.2)

8m = 3; 4; ::: and � 2
�

1

m+ 1
; 1� 1

m+ 1

�
; Em� � E( eCm+1; �) \ Em+1� ; (5.3)

8� 2 [0; 1] ; E( eCm; �)! E� in the Hausdor¤ metric, (5.4)

8m = 3; 4; ::: and z 2 E; @3 eCm(z) � k: (5.5)

The construction of such a sequence causes no di¢ culty: see Figure 12 for an illustration.
We make two sets of claims regarding this sequence. First,eCm ! C pointwise, (5.6)

where C is given in (3.9). To see why this is true, check �rst, using (5.4) and the continuity
of the cost functions eCm; that for all � 2 [0; 1] ; fz 2 E j eCm(z) = �g ! E� in the Hausdor¤
metric. This in turn implies, using the continuity of the cost functions again, that for all
z 2 E; eCm(z) ! C(z): Combining this with (5.2) and the fact that Cm ! C pointwise
yields (5.6).
Second, we claim that each cost function eCm has properties similar to C: Speci�cally,

(a) eCm(a) = eCm(b); (b) eCm(z) is independent of z4; :::; zn; and (c) @3 eCm is a positive
constant on a set eE( eCm) which tends to E \ RN+ as m grows, and zero outside E \ RN+ :
Properties (a) and (b) are clear. As for (c), let Em;m =

�
z 2 Em j z003 2

�
1
m
; 1� 1

m

�	
for

m = 3; 4; ::: and notice that
[1m=3Em;m = E: (5.7)

For m = 3; 4; :::; de�ne the set

eEm = �z 2 Em;m j eCm(z�3; �e+3 + (1� �)e�3 ) = � for all � 2 � 1m; 1� 1

m

��
:

By construction,

@3 eCm(z) = ( 1
e+3 �e

�
3

for all z 2 eEm;
0 for all z =2 E;

(5.8)

and we claim thateEm � eEm+1 for m = 3; 4; :::; and [1m=3 eEm = E \ RN+ : (5.9)
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To prove this claim, �xm � 3 and, for all � 2
�
1
m
; 1� 1

m

�
; let eEm(�) = fz 2 eEm j z003 = �g:

Using (5.3), it is straightforward to check that Em� � eEm+1(�) for all � 2 � 1
m+1

; 1� 1
m+1

�
;

hence Em;m � eEm+1; and the �rst statement in (5.9) follows. As for the second statement,
we have [1m=3 eEm = [1m=2 eEm+1 � [1m=2Em;m = E because of (5.7).
We are now ready to complete the proof of Step 1.1. The function eCm� de�ned on RN+

by eCm� (z) =
( eCm(z) if z1 � z2;
�12 eCm(z) otherwise,

need not be a cost function because it may fail to be di¤erentiable when z1 = z2: However, it
is straightforward to construct a cost function eCm;m� which (a) coincides with eCm� whenever
jz1 � z2j < 1

m
; (b) is symmetric in z1; z2; (c) is independent of z4; :::; zn, and (d) is such

that @3 eCm;m(z) = 0 for all z =2 E: For m large enough, (3.7) and (5.9) guarantee that
pa�

b
3(
eEm \ A) = �bi( eEm \B): Using (5.8) and Anonymity,

'3( eCm;m� ; a) =
2�a3( eEm \ A)
e+3 � e�3

+ 2

Z
(E\A)n( eEm\A) @3 eCmd�a3

and

'3( eCm;m� ; b) =
2�b3(

eEm \B)
e+3 � e�3

+ 2

Z
(E\B)n( eEm\B) @3 eCmd�b3

=
2pa�

b
3( eEm \ A)
e+3 � e�3

+ 2

Z
(E\B)n( eEm\B) @3 eCmd�b3:

By (5.5),
R
(E\A)n( eEm\A) @3 eCm d�a3 � k�a3((E \ A) n ( eEm \ A)) for all m. By (5.9),

limm!1 �
a
3((E \A) n ( eEm \A)) = 0; hence limm!1

R
(E\A)n( eEm\A) @3 eCmd�a3 = 0. Similarly,

limm!1
R
(E\B)n( eEm\B) @3 eCmd�b3 = 0. Therefore

lim
m!1

�
'3( eCm;m� ; a)� '3( eCm;m� ; b)

�
=

2

e+3 � e�3
lim
m!1

�
�a3( eEm \ A)� pa�b3( eEm \ A)�

=
2

e+3 � e�3
�
�a3(E \ A)� pa�b3(E \ A)

�
< 0

by (5.9) and (3.8).
Because of (5.6), eCm;m� ! C� pointwise. Hence, since '3(:; a) and '3(:; b) are continuous

(by (3.3)), there exists m such that '3( eCm;m� ; a)�'3( eCm;m� ; b) < 0: As in the sketch of the
argument at the beginning of Step 1.1, budget balance, Dummy, and Anonymity now imply
that 'i( eCm;m� ; a) > 'i( eCm;m� ; b) for i = 1; 2; contradicting Group Demand Monotonicity.
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