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Abstract. In the context of decision making under uncertainty, we for-

malize the concept of analogy: an analogy between two decision prob-

lems is a mapping that transforms one problem into the other while

preserving the problem�s structure. We identify the basic structure of a

decision problem, and provide a representation of the mappings that pre-

serve this structure. We then consider decision makers who use multiple

analogies. Our main results are a representation theorem for "aggre-

gators" of analogies satisfying certain minimal requirements, and the

identi�cation of preferences emerging from analogical reasoning. We

show that a large variety of multiple-prior preferences can be thought

of as emerging from analogical reasoning.

1. Introduction

Analogy is the recognition that A (a phenomenon, a problem, etc.) is

like B and that, therefore, consequences (inferences, explanations, solutions,

etc.) that can be drawn from A can be drawn from B as well. Analogy is

one of the cornerstones of human thought ([10]). As such it is expected to
play a fundamental role in decision-making. The scope of this paper is to

formalize the idea of analogical reasoning, and to identify those decision-

theoretic models that can be thought of as deriving from analogical rea-

soning. Our line of reasoning will unfold as follows. Given two problems

in decision making, DP1 and DP2, a necessary condition for speaking of

an analogy between the two is that we ought to be able to transform DP1
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into DP2. The mapping A : DP1 7�! DP2 describing this transformation

would represent the analogy between the two problems. The idea of anal-

ogy, however, demands more: inferences, explanations, solutions for DP1
must correspond via the mapping A to inferences, explanations, solutions

for DP2. This is a requirement on both the relation between DP1 and DP2
and on the mapping A: not only must DP1 and DP2 display in some sense

the same properties, but also the mapping A must preserve this "alikeness"

if it is to represent an analogy between the two. We encounter here the fa-

miliar mathematical ideas of structure and of structure-preserving mapping

(i.e., homomorphism). Thus, we will say that DP1 is analogous to DP2 if

there exists a structure-preserving mapping A : DP1 7�! DP2. Of course,

in order to give this de�nition we will have to identify the basic structure

of a decision problem, which we will do in Section 4. Once a satisfactory

de�nition of analogy between two problems has been reached, we go on to

study decision makers who solve the problem they face by means of multiple

analogies. The main issue here is to �nd and to characterize "aggregators"

of the various analogies. Because of the perversive nature of analogy as

a processes of human thinking, these aggregators should only satisfy very

minimal requirements.

The main ideas are introduced in the next section, and then gradually

elaborated in the subsequent two sections. These developments come to-

gether in Section 5, where the concept of Analogy in decision-making is

formally stated. This section also uncovers the basic structure of models of

decision-making where the solution for the problem at hand is reached by

using (possibly) multiple analogies. The main results (Section 7) are a repre-

sentation theorem for "aggregators" of analogies satisfying certain minimal

requirements, and the identi�cation of preferences emerging from analogical

reasoning. In particular, it is shown that a large variety of multiple-prior

preferences can be thought of as emerging from analogical reasoning.

The issue of the objective existence of an analogy between two di¤erent

problems is not addressed here. A possible view is that the existence of an

analogy between two di¤erent problems is a subjective statement, that is, it

pertains to the decision-maker, and as such is outside the theory. However,

(future) considerations involving dynamics and learning might lead one to

alter this point of view.
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2. Toward a de�nition of Analogy

By a problem in decision-making, we mean a Savage-style setting where

a decision-maker is called upon to rank a certain set of alternatives F . Each

alternative is viewed as a mapping S �! X, where S is a set of states and X

is a set of outcomes. We are going to think of a Savage model as of a "small

world". Consequently, we are often going to consider indexed collections,

f(Si; Xi; Fi) : i 2 Ig, of decision problems. The scope of this section is to
address the following question: What does it mean that a decision-maker

solves a (decision) problem by analogy with one or more problems which he

solved in the past? We are going to approach the issue step-by-step, and

will focus more on ideas rather than on technicalities. Full details will be

given in subsequent sections.

2.1. Single analogy. We begin with the simplest case. Intuitively,

the story behind it goes as follows. Today, an individual faces a problem for

which he has to provide a solution. He realizes that the problem (as a whole)

"looks like" another problem that he solved yesterday and, therefore, he is

going to use yesterday�s solution to arrive at a solution for today�s problem.

Let us see what this intuitive description entails in terms of the objects

introduced above. Clearly, the crucial issue is to give a precise meaning to

the statement a problem "looks like" another problem. Let us label today�s

problem by DP1, DP1 = (S1; X1; F1). The problem consists of ranking the

set of alternatives F1 = ff; g; h; :::g, where an element of F1 is a mapping
S1 �! X1. A solution to the the problem is a ranking %1 of the alternatives
in F1. Yesterday�s problem is labeled DP2 = (S2; X2; F2), and consisted of

ranking a set of alternatives F2 = f'; 
; �; :::g. That was solved by means of
a ranking %2. It is pretty clear that a very minimal requirement for us to say
that DP1 looks like DP2 is that we can associate to each alternative in DP1
an alternative in DP2. That is, there must be a mapping A : F1 �! F2.

Then, we can say that DP1 is solved by analogy with the way DP2 was

solved if

f %1 g iff A(f) %2 A(g)
That is, DP1 is solved by analogy with DP2 if the ranking %1 is derived
from the ranking %2, given the mapping A which describes the alikeness

between the two problems.

A moment of thought, however, shows that this idea of alikeness is too

weak to be fruitful. To see this, suppose, for example, that the same set
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of consequences occurs both in DP1 and in DP2, and that two alternatives

f; h 2 F1 are such that h produces in each state the same consequences as f
but in an order of magnitude twice as big. Then, it seems natural to demand

that any reasonable de�nition of "alikeness" would demand that A(f) and

A(h) would be in a similar relation with each other, at least in qualitative

terms. For if not, the existence of a mapping A : F1 �! F2 would appear as

anything but a mathematical accident. Similarly, if f; h 2 F1 are associated
to "almost the same consequences", it seems natural to demand that the

same would be true for A(f) and A(h). Abstracting from the examples,

what seems necessary in order to have a reasonable de�nition of analogy is

that if two alternatives f; h 2 F1 are in a certain relation R, fRh, then
this relation must be preserved by the mapping A. We will refer to such

mappings as structure-preserving mappings.

Summing up, the basic idea is that we can say that DP1 is solved by

analogy with DP2 if we can map DP1 into DP2 in a way that preserves the

structure of DP1, and then we derive the ranking %1 from the ranking %2.
Later, we will see that in each decision problem there is a natural relation on

the set of alternatives, and we will demand that this relation be preserved

whenever we want to talk about analogical reasoning.

2.2. Multiple analogies. Here, the idea is again pretty intuitive but
the story is a little more complex. In his life, our individual has already

solved many problems, and several of those "look like" the problemDP1 that

he faces today. Thus, multiple analogies are possible. In general, however, it

might be that di¤erent analogies lead to di¤erent solutions forDP1. So, what

our individual wants to do is to collect these multiple analogies together, and

use all of them to come up with a solution for DP1.

If we are to pursue this idea, then what we need is an "aggregator" of

the various analogies. We are going to devote the remainder of this section

to understanding what is an aggregator of the analogies. To begin, we

notice that, as a consequence of our view above about the analogy between

two problems, certain mathematical objects naturally appear in the multi-

analogy case. Let us denote by AP = fDP2; DP3; :::g the set of problems
that are analogous to DP1. By de�nition, for each problem DPj 2 AP,
there must exist a structure-preserving mapping Aj : F1 ! Fj . Thus, every

alternative f 2 F1 is associated to a collection of alternatives, one for each
problem that is analogous to today�s problem. That is, we have a mapping
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f 7�! fAj(f)gDPj2AP . The next step consists of observing that, in the end,
all that our individual cares about is to solve DP1, that is he wants to come

up with a ranking of the alternatives in F1. By de�nition, each problem

DPj 2 AP has already been solved. Thus, in particular, for each f 2 F1 the
alternative Aj(f) 2 Fj has already been ranked in Fj . Hence, we can assign
to Aj(f) an object, rf (DPj), which represents the rank that Aj(f) has in

problem DPj , Aj(f) 7�! rf (DPj). By composing these mappings with the

previous one, we get the mapping

� : f 7�! frf (DPj)gDPj2AP

For each f 2 F1, the collection frf (DPj)gDPj2AP can be viewed as a map-
ping  f on AP de�ned by  f (DPj) = rf (DPj). This expresses the following

information: the value of mapping  f at DPj expresses how alternative f

fares if one uses analogy DPj . Notice that if DPj is the only analogy, then

f %1 g iff �j(f) %j �j(g)

in accordance to what was said in the single-analogy case.

Following this construction, we are thus led to focus on aggregators

V :  f 7�! V ( f ), where V ( f ) must represent the place that f takes in the

ranking that our individual provides as a solution for today�s problem DP1.

This is pretty intuitive: an aggregator takes into account how alternative f

would fare with respect to each analogy, and then spits out how f should

perform in the problem at hand.

Summing up: The problem of our individual is to assign a rank to each

alternative f in DP1. He is going to do so by setting up analogies with

problems DPj that he solved in the past. This procedure is described by

two mappings:

1. A mapping

� : f 7�!  f

that associates each alternative f in DP1 to a mapping  f on AP, the set
of all problems analogous to DP1 that have already been solved. The value

of the mapping  f at point DPj 2 AP expresses how alternative f fares if

the analogy with problem DPj is used.

2. An aggregator of the analogies

V :  f 7�! V ( f )
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The value V ( f ) represents the place that f takes in the ranking that our

individual provides as a solution for DP1.

Before we leave this part, one more issue has to be addressed. When

we talked about a single analogy, it seemed compelling to impose the con-

dition that the mapping Aj : F1 ! Fj be structure-preserving. Moving

to the multi-analogy case, we have found the mapping � in point 1 above.

Are there any natural requirements to be imposed on the mapping �? In

particular, should we demand that � be structure-preserving as well? Our

answer is yes, and here is why. Ultimately, what an aggregator V does is

to produce a ranking of the mappings f�(f) =  fgf2F1 , and the ranking
of the alternatives in F1 is reached by using the ranking of the mappings

f fgf2F1 :
f %1 g iff V ( f ) � V ( g)

In the same fashion as above, it seems then essential to require that if two

alternatives f and g are in a certain relation with each other, then this

property would translate into a corresponding relation between the corre-

sponding mappings  f and  g. That is, we believe that the requirement

that mappings like � be structure-preserving should be part of any reason-

able de�nition of analogy.

3. Setting

Each decision problem DPj (including DP1) consists of ranking a set of

alternatives, which are mappings Sj �! Xj . We are going to restrict this

setting by making the following assumptions.

R0: For each j, Xj is a mixture space (see [3], [6])
R1: For each j, there exists a linear utility uj : Xj �! R (Axioms on
preferences guaranteeing the existence of such an utility are well-

known; see, for instance, [3]).

We can use R1 to de�ne a measurable structure on Sj , for each j. In

fact, R1 produces an embedding of the set of alternatives Fj into the set of

real-valued functions on Sj by means of the mapping fj 7�! uj �fj , fj 2 Fj .
Then, we can de�ne a �-algebra �j on Sj as the coarsest �-algebra which

makes all the functions fuj � fjgfj2Fj measurable. Thus, for each j, we

obtain the measurable space (Sj ;�j), and each alternative corresponds to

a measurable real-valued function. In the remainder of the paper, we will
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identify the alternatives with the corresponding real-valued functions. We

also assume that

R2: For each j, the set of alternatives consists of all bounded �j-
measurable mappings Sj �! R. This set is denoted by B(�j).

This is only a simplifying assumption, which serves solely to relate our

work to classical models of decision-making, all of which (in some form)

make such an assumption (see, for instance, [3], [5], [7]).

4. Structures

In Section 2.1, we put forth the idea that an analogy between two prob-

lems DP1 = (S1; X1; F1) and DP2 = (S2; X2; F2) should be de�ned as a

mapping A : F1 �! F2 which preserves the problem�s structure. For an ar-

bitrary decision problem DPj , we have just seen that the set of alternatives

Fj can be identi�ed to the space B(�j) of bounded measurable functions on

Sj . Thus, the fundamental structure of the problem DPj is that of B(�j)

(clearly, this encodes Sj and, by means of uj , Xj as well). In turn, this is

completely identi�ed by the facts that (i) B(�j) is a linear space; (ii) B(�j)

consists of bounded measurable functions; and (iii) B(�j) has a partial order

described by its positive cone. This leads to the following de�nition.

Definition 1. Let (Si;�i) and (Sj ;�j) be two measurable spaces. A

mapping � : B(�i) �! B(�j) is structure-preserving if:

(1) � is linear;

(2) � preserves the positive cone, i.e. �(B+(�i)) � B+(�j);

(3) � is normal: fn % f =) �(fn)% �(f); n 2 N.

Conditions (1) and (2) are self-explanatory. Condition (3) is an impor-

tant ingredient of the requirement that � be structure-preserving. For every

measurable space (S;�), every function in B(�) is a limit from below (%) of
(simple) measurable functions. Thus, a structure-preserving mapping must

respect this property.

4.1. Kernels and their representation. Mappings satisfying the con-
ditions in De�nition 1 are called kernels. The remainder of this section is

devoted to showing that all kernels can be represented in essentially the same

way (see [9], for more on kernels). This representation will produce valuable
insights into the problem of formalizing the idea of analogical reasoning.

Let (S;�) and (T;�) be measurable spaces, let ba(�) denote the space

of bounded charges on � and let � : B(�) �! B(�) be a kernel. By using �,
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we can de�ne a mapping T �! ba(�) in the following way: to the element

t 2 T we associate the charge �t 2 ba(�) de�ned by the equation

(4.1) �t(A) = (�(�A)) (t); for every A 2 �

where �A denotes the indicator function of the set A 2 �. Notice that since
� is a kernel, then �t is a positive charge (by property (2) in De�nition 1)

and is countably additive (by property (3), De�nition 1). By using the fact

that every f 2 B(�) is a limit from below of measurable simple functions,

it is easily seen that equation (4.1) along with properties (1), (2) and (3) of

� imply that

(4.2) �(f)(t) = �t(f) �
Z
S

fd�t

that is, a kernel � sends the function f 2 B(�) into the function �(f) 2 B(�)
which is de�ned by �(f)(t) =

R
S

fd�t. Conversely, let a mapping t 7�! �t

be given, t 2 T and �t 2 ba(�). Let ' : B(�) �! RT be de�ned by

f 7�! '(f), where '(f) is the function T �! R which at point t 2 T takes
the value

R
S

fd�t. Then, if '(f) 2 B(�) for all f 2 B(�) and if all the

measures f�tgt2T are positive and countably additive, then ' is a kernel. In
fact, ' is clearly a linear mapping. If '(f) 2 B(�) for all f 2 B(�), then

' : B(�) �! B(�). If all the measures f�tgt2T are positive, then ' satis�es
property (2) in De�nition 1; and if all the measures f�tgt2T are countably
additive, then ' satis�es property (3). Notice that countable additivity

of the measures is necessary because we need the dominated convergence

theorem to hold in order to ensure normality.

Summing up, given two measurable spaces (S;�) and (T;�), a kernel

� : B(�) �! B(�) is a mapping that sends the function f 2 B(�) into

the function �(f) 2 B(�) which is de�ned by �(f)(t) =
R
S

fd�t, where

�t is a positive, countably additive measure on �. Notice, in particular,

that each kernel B(�) �! B(�) is automatically associated to a set of

measures f�tgt2T . Below, without any loss in generality, we are going to
restrict to those kernels whose associated measures are probabilities. This

simply implies that the function u1 � f : S1 �! R in decision problem

DP1 = (S1; X1; F1) which is identically equal to 1 on S1 would be evaluated

by the number 1 in each and every analogy.
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5. Analogy

Now, we are going to gather what was said in the previous sections. The

following de�nitions should present no surprise.

5.1. Single analogy.

Definition 2. Let DP1 = (S1; X1; F1) and DP2 = (S2; X2; F2) be two

decision problems. Denote by <i the ranking in problem i; i = 1; 2. We say

that DP1 is solved by analogy with DP2 if there exists a structure-preserving

mapping � : F1 �! F2 such that

f %1 g iff �(f) %2 �(g)

for any two alternatives f; g in DP1.

By what was established in the previous section, this de�nition is equiv-

alent to

Definition 3. Let DP1 and DP2 be two decision problems. Denote by

<i the ranking in problem i; i = 1; 2. We say that DP1 is solved by analogy

with DP2 if there exists a kernel � : B(�1) �! B(�2) such that

f %1 g iff �(f) %2 �(g)

for any two alternatives f; g in DP1.

5.2. Multiple analogies. Of course, the de�nition that we are going
to give will be like: Problem DP1 is solved by analogy with a collection of

problems fDPjgDPj2AP if there exists a structure-preserving mapping ~� :
f 7�!  f (the mapping  f was discussed in Section 2.2) and an aggregator

of the analogies ~V (valued in some ordered space) such that

f %1 g iff ~V (~�(f)) � ~V (~�(g))

It will be useful, however, to replace this type of de�nition with an equivalent

one that encodes the representation result which is proven in Lemma 1,

below. By virtue of that result, the equivalent de�nition will be both more

manageable and more telling. Throughout, it should be kept in mind that,

by assumption, we focus on decision makers who reach their ranking for DP1
by means of an analogical process. Thus, the conditions below are not to be

viewed as assumptions but rather as necessary conditions for an analogical

procedure.
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We have seen that the structure of the decision problem DP1 is that

of B(�1). A collection of analogous problems fDPjgDPj2AP produces the
mapping ~� : f 7�!  f , where the value  f (DPj) expresses how alterna-

tive f fares if the analogy with problem DPj is used. The requirement

that ~� be structure preserving implies two things: (a) we must have a mea-

surable structure, Y, on AP; and (b) the mappings  f must be R-valued
and Y-measurable. Thus, we have a measurable space of analogous prob-
lems (AP;Y) as well as a collection of measurable functions on this space.
The lemma below says that this space has an especially useful representa-

tion: it can be represented by means of the measurable space (C;B), where
C � ba(�1) and B is the Borel �-algebra generated by the weak*-topology
(ba(�1); B(�1)). In other words, analogies can be represented by means of

measures on �1. Let B(C;B) denote the space of bounded Borel functions
on C.

Lemma 1. Let �� be a kernel B(�1) �! B(AP;Y). Then, there ex-
ists a linear isomorphism � of ��(B(�1)) into a linear subspace of B(C;B).
Moreover, the composition � = � � �� is a kernel B(�1) �! B(C;B).

Proof. The kernel ~� de�nes a mapping DPj 7�! �DPj 2 ba(�1) (see

Section 4.1), with �DPj positive and countably additive. Let C � ba(�1)

denote the collection of all such measures, that is C = f�DPjgDPj2AP . For

each f 2 B(�1), de�ne  ̂f : C �! R by  ̂f (�DPj ) =
Z
S

fd�DPj . Then,  ̂f

is a weak*-continuous function on C and, therefore, B-measurable. Next,
de�ne � : ��(B(�1)) �! B(C;B) by �( f ) =  ̂f . Clearly, � is one-to-one

and linear, and it is immediate to see that � = � � �� is a kernel. �

Now, we can give our de�nition of reasoning by analogy.

Definition 4. We say that problem DP1 is solved by analogy with a

set of problems AP if there exists a kernel � : B(�1) �! B(C;B) and a
functional V : �(B(�1)) �! X, X some ordered space, such that

f %1 g iff V (�(f)) � V (�(g))

Implicit in the de�nition is the requirement that the kernel � would factor

as � = � � ��, with �� being a kernel B(�1) �! B(AP;Y). Equivalently, the
space (C;B) must be a representation (in the sense of Lemma 1) of the space
(AP;Y).
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6. Axioms on the aggregator

In this section, we are going to make De�nition 4 operational by making

three requirements on the aggregator of the analogies V : �(B(�1)) �! X.
The �rst is certainly restrictive

AA0: V is R-valued.

Requirement AA0 is restrictive because it will force the preference on

B(�1) to be Archimedean. However, most of what we are going to say can

be easily extended to non-Archimedean preferences by using well-known

methods (see [2]). At the same time, restricting to AA0 will help us focus
more on substance than on technicalities. The next two assumptions seem

quite natural and, we believe, fairly uncontroversial.

AA1 (Positive A¢ ne Equivariance): For any positive a¢ ne trans-
formation a : R �! R,

a � V ( f ) = V (a �  f )

for any f 2 B(�1).

AA1 simply states the translation invariance of the functional V since

 f 2 �(B(�1)) implies a �  f 2 �(B(�1)) for any positive a¢ ne transfor-

mation a : R �! R. Condition AA1 is motivated by the fact that the
utilities uj of Section 3 are unique only up to a positive a¢ ne transforma-

tion. Essentially, condition AA1 states that the decision maker�s utility can

be measured in the same units both in DP1 and in all analogous problems

DPj 2 AP. Next, we have

AA2 (Monotonicity):  f �  g =) V ( f ) � V ( g).

This is clearly self-explanatory: it says that if f fares better than g (f; g 2
B(�1)) with respect to each and any analogy, then f must be preferred to

g. There seems to be hardly any doubt that this must be the case.

7. Main result

This section contains our main result: all aggregators satisfying AA0,

AA1 and AA2 can be represented in the same way, and every such aggregator

is a Choquet integral (Theorem 1). In order to establish this, we �rst need

an easy lemma which states that, without loss in generality, we can assume

that the set C which represents the analogies (Lemma 1) is convex and
weak*-compact. For C � ba(�1), let ~C =

�
co(C) (the weak*-closed convex
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hull of C). For f 2 B(�1), denote by  f and ~ f the mappings de�ned by

 f (�) =

Z
S1

fd� ; � 2 C and ~ f (~�) =

Z
S1

fd~� ; ~� 2 ~C

Finally, let � : f 7�!  f and ~� : f 7�! ~ f .

Lemma 2. Let V : �(B(�1)) �! R be an aggregator satisfying AA1 and
AA2. Then, there exists a unique aggregator ~V : ~�(B(�1)) �! R such that
V ( f ) = ~V (~ f ), for any f 2 B(�1). Moreover, ~V satis�es both AA1 and

AA2.

Proof. For  f 2 �(B(�1)), let z 2 R be such that infC  f + z > 0. By

AA2, V (sup
C
 f + z) � V ( f + z) � V (inf

C
 f + z). By AA1 and V (1) = 1,

this implies sup
C
 f � V ( f ) � inf

C
 f . Hence, for each  f there exists

�( f ) 2 [0; 1] such that V ( f ) = �( f )infC
 f + (1 � �( f ))sup

C
 f . Now,

observe that

inf
C
 f = inf

~C
~ f and sup

C
 f = sup

~C

~ f

and that the mapping  f 7�! ~ f from �(B(�1) �! ~�(B(�1)) is clearly one-

to-one and onto. Hence, we can de�ne ~� : ~�(B(�1)) �! [0; 1] by ~�(~ f ) =

�( f ). Then, ~V : ~�(B(�1)) �! R de�ned by ~V (~ f ) = ~�(~ f )inf
~C
~ f + (1 �

~�(~ f ))sup
~C

~ f is the unique functional satisfying V ( f ) = ~V (~ f ), for any

f 2 B(�1). The second part is immediate. �

A short comment is in order. While the lemma says that it is immate-

rial to assume either the weak*-compactness or the convexity of the set C
representing the analogies, both properties seem quite natural. If �; � 2 C,
then �loosely speaking �one can always �ip a coin between � and � thus

e¤ectively creating, at the same time, both another problem and an analogy

with that problem. Thus, the idea of mixing appears to be a sound justi-

�cation for the assumption that C be convex. Compactness would follow if
the set C representing the analogies is weak*-closed. This also seems to be
a natural property, especially when combined with convexity: essentially, it

implies that one can always complete the set of analogies by means of an

inductive procedure such as that of taking limits.

By virtue of the lemma, we can now assume without any loss in general-

ity that C is convex and weak*-compact. In such a case, the space �(B(�1)
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coincides with the space A(C), the space of all weak*-continuous a¢ ne map-
pings on C. The following theorem completely characterizes aggregators

satisfying AA0, AA1 and AA2.

Theorem 1. An aggregator V : �(B(�1) �! R satis�es AA1 and AA2
if and only if there exists a capacity � on B, the Borel sets of C, such that
for every  f 2 �(B(�1))

V ( f ) =

Z
C

 fd�

where the integral is taken in the sense of Choquet.

Proof. AA1 states that V is translation invariant. If  ;' 2 �(B(�1)) =
A(C) and  and ' are non-constant, then  and ' are comonotonic if and
only if they are isotonic ([1, Proposition 2]). In such a case, there exist a > 0
and b 2 R such that ' = a + b. Then,

V ( + ') = V ((1 + a) + b) = V ( ) + V (')

by the translation invariance of V . Thus, V is comonotonic additive on the

domain A(C). By AA2, V is monotone as well. In Amarante [1, Corollary 1],
it was shown that these functionals can be represented by Choquet integrals.

The converse is an immediate consequence of the properties of the Choquet

integral. �

The following are all examples of aggregators satisfying AA0, AA1 and

AA2:

(1) Every Lebesgue integral;

(2) Every (probabilistic) quantile;

(3) Every generalized quantile (i.e., monotone and ordinally covariant

functional �(B(�1) �! R, see [4]).
The �rst is obviously a special case of a Choquet integral. The procedure

of evaluating alternatives by using a similarity function as in Gilboa and

Schmeidler [8] gives an example of an aggregator of analogies which is a
Lebesgue integral (linear weighting). The fact that both (2) and (3) satisfy

the conditions of Theorem 1 follows from their representability as Choquet

integrals as established in [4].
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8. Analogical Reasoning preferences

In this section, we are going to use Theorem 1 to identify those pref-

erences that can be thought of as deriving from analogical reasoning. We

are going to show that a wide class of preferences can be thought of in this

way (Corollaries 1 and 2). Let (S1; X1; F1) be a problem of decision-making

under uncertainty, and let %1 be a preference relation on the mappings
S1 �! X1.

Definition 5. We say that preference %1 is an analogical reasoning
(AR) preference if %1 satis�es the conditions in De�nition 4 with V satis-

fying AA0, AA1 and AA2.

The combination of the next two corollaries identi�es the class of AR-

preferences. We recall that the class of Invariant Biseparable Preferences

(IBP) consists of those preferences satisfying the �rst �ve axioms in Gilboa-

Schmeidler ([5], [7]).

Corollary 1. Every AR preference is an IBP.

Proof. Let %1 be an AR preferences on the mappings S1 �! X1. By

Theorem 1, %1 can be represented by a functional I : B(�1) �! R de�ned
by

I(f) =

Z
C

�(f)d�

where � is the mapping B(�1) �! A(C). It is easily checked that %1satis�es
axioms A1 to A5 in [7]. �

The next proposition provides a partial converse to Corollary 1. We

recall that an IB preference satis�es the Axiom of Monotone Continuity ([5,
Sec. B.3]) if and only if all the priors appearing in the representation of the

IBP are countably additive and the set C is weak compact.

Corollary 2. Every IBP which, in addition, satis�es the axiom of

Monotone Continuity is an AR preference.

Proof. By [1, Theorem 2], any IBP preference is represented by a func-

tional of the type I(f) =
Z
C
�(f)d�, where � is de�ned like above and � is a

capacity on B. So an IB preference is an AR preference if � is a kernel. This
occurs if and only if all the measures in C are countably additive. In turn,
this occurs if and only if the preference satis�es the Axiom of Monotone

Continuity ([5, Sec. B.3]). �
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There is a gap between the class of IB preferences and that of AR prefer-

ences as well as a gap between Monotone Continuous IB preferences (MIBP)

and AR preferences; that is, all the inclusions MIBP � ARP � IBP are

strict. Here are two examples:

(a) An IBP which is not AR: Take any multiple prior model with C being
a convex combination of two �nitely, but not countably, additive measures.

Then (by [1]), I(f) =
Z
C
�(f)d�, but � is not a kernel because it is not a

normal mapping;

(b) An ARP which is not MIBP: In order to manufacture such an exam-

ple, it su¢ ces to exhibit a set of priors which is the closure in ba(�) of a set

of countably additive measures, but this closure contains �nitely additive

measures (equivalently, the closure is weak* but not weak compact).

Overall, these gaps are fairly minor, and occur only when the state

space S1 is in�nite. The gap between MIBP and ARP (which, in addition

requires the set C to be in�nite-dimensional) can be removed by imposing
an additional axiom guaranteeing that the set of measures appearing in the

ARP representation be uniformly countably additivity (which is equivalent

to imposing the existence of a control measure on the set of priors).
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