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RESUME

Cet article porte sur 1l'introduction du capital et de 1'in-
vestissement, y compris dans 1'hypothése oli celui-ci est soumis i des
colits d'ajustements, dans les modéles th&oriques d'extraction des res-
sources Gpuisables. Deux résultats classiques font 1'objet d'une at-
tention particuliére : 1'un, la régle d'Hotelling, qui veut que le'taux
d'extraction diminue avec le temps, s'avere particuliérement robuste;
le deuxidme, selon lequel une hausse du taux d'escompte accélére 1'ex-
traction, ne reste valide que si le capital est relativement moins
rare, d'une maniére qui peut &tre définie formellement, que la resséur-

ce épuisable.

ABSTRACT

This paper studies alternative ways of introducing capital
in theoretical models of resource extraction, including the cost of
adjustment model. It focuses on two central results of the mining

1

literature : the fist one, known as Hotelling's rule, claims that the
extraction rate diminishes over time. It is found to be surprisingly
robust. The second one has to do with the effect of a rise in the

discount rate on the speed of extraction. Unlike the conventional case,

this effect may be negative if capital is relatively scarcer than the

resource.
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1. INTRODUCTION

Little attention has been devoted in the exhaustible-resource literature
to the importance of factors of production, capital in particular, in the
extraction process. Given that the approach used to deal with extraction
problems has been basically capital theoretic, one may wonder to what extent
the presence of one or several other assets or stocks in those problems might

affect the traditional results.

In this paper, we investigate the effects of introducing capital on two
well-known results of the exhaustiblé-resource literature: the result that the
extraction rate diminishes over time and the result that a rise in Eﬂ; interest
rate implies a faster extraction program. Both issues have already received
some attention but we hope to throw some more light on the effects of intro-
ducing capital, by casting the analysis into a more general framework, by
focussing alternativelx on the major approaches to investment which have Eeen
applied to the qonvegéional firm, and by adapting to the extractive firm some

-

of the anal§§ical methods which are routinely used in standard microeconomics.

In section 2, we propose various ways of introducing capital in extractive
models and examine their effects on extraction profiles. In section 3, we use a
model with many factors of production but with perfectly malleable capital in

order to investigate, following Neher (1981), under what circumstances a rise in

the interest rate accelerates extraction. Section 4 provides a brief summary

and conclusion.




2. THE EXTRACTION PROFILE

A great deal of efforts have been devoted to characterizing the extraction
profile of exhaustible resources. Gray (1914) initiated this long tradition which
found another major benchmark with the work of Hotelling (1931), took momentum

in the recent period with such research as that by Schultze (1974) or Levhari
and Liviatan (1977) and has now reached maturity, that is to say, the status of
a full chapter (chapter.6) in the book by Dasgupta and Heal (1979). The major
result applies to the industry as a whole in the absence of technical change
or demand shifts. It calls for a progressive reduction in the extraction rate
as time goes by. Being somewhat unrealistic that result has also generated a
search for exceptions, the most meaningful of which arise when the resource is
not homogeneous and (or) when capital and investment come into the picture.
Two papers, one by Puu (1977) and one by Campbell (1981), fall into the last
category and make the connection with an older and less well-known line of
research on capital and extraction, one with more practical purposes, which is

represented by Massé (1959, 348-53), Billiet (1959) and Ventura (1964).
Before going over the distinctive features of those models with capital,

\
i

a word on maintained assumptions is warranted. The diminishing extraction rate

I3

is the counterpart of the increasing implicit price of the resource, which arises
itself from a standard asset management argument: the own interest rate on an
otherwise unproductive asset must equal the general rate of interest. It follows
that exceptions to the diminishing extraction rate rule may result from two

kinds of causes: first, when something breaks or complicates the link between

the implicit extraction cost and the extraction rate, as may happen in presence
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of capital; second, when the cause itself disappears as may be the case when

the resource is heterogeneous. Indeed, when the resource is heterogeneous, its
implicit price may decrease and increasing extraction rates may follow (Levhari
and Liviatan (1977). 1In this section of the paper, since we investigate how the
introduction of capital may affect the result that the extraction rate diminishes,
we assume that all other conditions for this result are satisfied, in particular,’
we assume that the resource is homogeneous, that there is no technical change

and that the demand, whether elastic or not, does not shift over time (Stiglitz (1976))1,

Capital raises the issues associated with its durability and its lack of

malleability. Those have been addressed in various ways which carry specific

-

assumptions with them: irreversibility, adjustment costs, the putty—cia
hypotheses for example (see Lasserre (1981), chapter I). We shall deal with
the issue of capital in a somewhat systematic way, by proposing models of the

extractive firm which can be classified according to those key—assumptions.

We start with a model of the firm characterized by a concave production
function of}éé&eral factors, some of them having the dimension of stocks and the
other ones, ﬁalled variable factors, having the dimension of flows. There are

no adjustment:.costs to any factors, nor any irreversibility. The sole constraint
*

on factors of production is that they should be non negative. It is also assumed

that the industry is competitive or managed by a social planner so that there are
no attempts to extract any monopoly rent. The output price may not be constant
over time, but 1is given by a time-autonomous function of output which is such

that demand "chokes off" at some finite price. The price trajectory is somehow

known to the firm. Factor prices are assumed to be constant. Finally, and




this is the difference between this model and any early neoclassical model of
investment (Jorgenson (1963)), the firm extracts ore from a finite homogeneous

reserve stock, R. The problem is (time subscripts will be omitted later on

when no ambiguity arises):
T2
. N . - " - ' L] L]
Max f y(t) (pt f<xt,Lt) w L - ¢ 1) " dt (1)
T1
{It,Lt} , T2
s IV . v,
+y (T2) - ¢ Xny
f Subject to:
f . ..
| (a) x =1 3 (b) Xpp T X3 (¢) x, 20, te [T1, T2]; (2)
| L, 20; (3)
(a) th ‘qt='f(Xt, Lt); (b) RT1=R1; (c) RtZO, te[T1l, T2], (4)

P

where P> W ¢ -dre respectively the price of the output flow, the remtal -prices
of the variable factors, and the asset prices of the stock factors at time t;

I

X Lt are?respectively a vector of factor stocks, the vector of adjustments

t? Tt
to those stocks, and a vector of variable factors; y(t)=exp(-r - (t-T1)); Tl and T2

are respectively the initial and final extraction dates. The production function,
f(xt, Lt)_is assumed to be concave and twice differentiable and satisfies the
Inada conditions. This guarantees that extraction does occur. Since the resource

is homogeneous and the price is bounded, the extraction period is finite (Salant

et al. (1981)).




Although all conditions for the application of the Maximum Principle are
not met, it does yield the solution in this problem. The current-value Hamiltonian,

simply called Hamiltonian in the rest of the paper, is:
M= (p-u) » £(x,L) - w' - L— (¢"=2") « I, (5)

where U and A are respectively the costate variable associated with R and the
vector of costate var;ébles associated with x. One notes that M is linear in I,
so that the optimum decision depends on the sign of each element in the vector
of switching functions, o(t)=(At-¢). Consider the case where each switching

function is null. Then,
At=¢, and At=¢=o. )
The first-order conditions governing the costate variables are:

(A-t2) - v(t)=-%;(vft) + M) and (-ry) - y(t)=—%§(y(t) * M), or

) ”

X:rx-(ping'- £ and ' (8)

4

B, -

{I:r . u . ) (9)

Substituting (7) into (8), we have a conventional user cost relation, except that

the output price has been corrected to reflect the implicit value of the resource:

(p_u) . fx =r + ¢, (10)

srenin,

I —,




Equation (10) defines a singular path for x. That such a path is preferable to

any other one results from the fact that the indeterminary of I in the maximization
of the Hamiltonian, when 0=0, means that no marginal change in x could affect the
objective functional. Furthermore, by the concavity of f, each vector x: so
- characterized is a unique maximum. Hence the singular path cannot be improved upon.
Now, if X, f xt, the optimal policy is to bring x instantaneously to x*. That the
move is instantaneous results from the bang-bang nature of the problem, and the
. absence of bounds on I., That the optimal move is toward x*, not away from it,

again results from the concavity of the production function.
Now the Hamiltonian must also be maximized with respect to L. Hence,
(p-1) - £ =w. (11)

(10) and (11) implicitely define the solutions x* and L* as functions of p-i,w,r « ¢.

(10) and (11) can be interpreted as first-order conditions for the maximization of

the modified Hamiltonian, defined below at its maximum:

H* (v, v, Wy = y oo f(x*, L¥) - w' * L*¥ ~ ' . x% (12)

e

Where v =ir * ¢ and y = p~M.

®

Since f is concave, H* can be interpreted as an implicit profit function with

the usual properties (Diewert (1974)):

. . X , . JH*
H* is decreasing in w and v, and increasing in y; H* is convex; z—=-L¥;
aw




This last expression, Hotelling's theorem, can be differentiated tofally

in order to study the behaviour of gq* over time (stars will be omitted in the

rest of the argument). One gets: ;
B (13)
Since the market price is a time-autonomous function of output, p = p(q),
we have:
i
y = pq . q - |, so that, substituting into (13), |
(14)

Since H 1is non negative, pq non positive, and ﬁ positive, we get the usual result

that the extraction rate diminishes over time?.

As could be expected from a model which reflects only the durability of capital,

and not its lack of malleability, the pattern of diminishing extraction rates is not

R

affected.

We now shpw that. the sign of the change in the extraction rate is not affected

either by a fairly common way to model the lack of malleability of capital, the

assumption that investment is non negative. Consider the same problem as

previously, but with the following two supplementary assumptions:

(2) (d) 1 =20, te(T1l, T2),
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and the scrap value of the firm is null, since assumption (2) (d) means that the

equipment has no alternative use outside the firm.

The Hamiltonian of the problem is still given by (5), but one must take
account of (2)‘(d) in its maximization. As before, since M is linear in I, three
phases must be distinguished for each stock xj : phase a, where ¢j-kj<o, Ij is
infinite, and xj registers a discrete increase; phase b, where ¢j = Aj’ and Ij is

not determined by the mgximization of the Hamiltonian; phase c, where ¢j-kj>o, Ij

s

would be infinite and negative if it were not for the non negativity constraint,

but the latter is binding and Ijzo. The following remarks are in order: first,

|
i
i
[

since x,(t) is continuous during phases b and c, its costate variable is continuous

3
during those phases. Consequently, a transition from phase c, when ¢j—Ajgo, to

phase a, when ¢j—Aj<o, must involve a passage in phase b, when ¢j=lj; second, since

it involves a discrete change in x, any occurence of phase a must be instantaneous.

In the rest of this section, we shall use the superscripts a, b, c, to denote

those stock factors, stockfadjustments, stock asset prices or implicit prices which
are (or pertainj;oﬁétock factors which are) in phases a, b, or c, respectively.
Consider now aféituation where all stock factors are either in phase b or phase c,

when I is finité. Since Ab=¢b, it follows from (8) that:

7

: r - ¢b: y f xb(xb, Xc, L)- (15)

(11) is unaffected by the new constraint; combined with (15), it implies that the

restricted modified Hamiltonian, defined below at its maximum, is being maximized.

- b

H (y, vb, W, xc) =y« f (xbf X

€ L% -w'e L&A~ v . xP¥ (16)
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H differs from H* in that it has only a subset of stock-factor user-costs as
arguments, those which pertain to stocks currently being adjusted, and it has
some stocks, those which are currently fixed, as arguments. Clearly, H can be

interpreted as a restricted profit function, with the following properties

, F N OH L BH o 3H o BH
(Lau (1976)): H is convex in y, v , and w; e L e e e e A By'q'

Differentiating this last expression with respect to time, one has, following

the same argument as in the previous case:

q . (l-ﬁyy . pq)=— Eyy .+ 11, since x%=o0. (17)
This expression, which implies that q does not increase over time, is valid
whenever all stocks are in phases b or c, although ﬁ must be redefined whenever

a stock switches from one phase to the other. Given the possibility of a third
bhase, one may wonder about the generality of this result. However, it is sub-
optimal . to move from phase b to phase a when, as assumed, prices do not have
discontinuities. The reason is intuitively obvious: in phase b, when Ab=¢b, the
Maximum Principle legveé'ih;-stock adjustment, Ib, indeterminate precisely because

no marginal dhaﬁée in the levels of the corresponding factor stocks can increase

s

the Hamiltoniéﬁ or, consequenply, the objective functional. So, whenever possible,
it is optimum ?or a stock to be in phase b. Since upward stock adjustments are

feasible in pﬁ;se b, Ab will not be allowed to increase in such a wéy as to become
higher than ¢b. It follows that phase a can occur only as an initial instantaneous
build-up of capital3,‘so that (17) holds all the time except, possibly, at Tl. So

even in presence of non negativity constraints, the rate of output is non-increasing.

Are there any interesting special cases? Campbell (1980) presents an elegant

treatment of a problem whose optimum involves a constant extraction rate over an



initial period. In his model the short-run marginal extraction cost increases

with output and the firm faces a capacity constraint, q<q, with g directly propor-
tional to the level of capital, the unique stock factor which may be acquired in
any positive amount but has no alternative use. This is clearly a special case of
the model just dgscribed and we can make use of (17) to infer conditions on the
technology which produce Campbell's result. With only one stock factor, K, ﬁ
reduces to:

E (v, w,'K) y « £ (K, L*) - w' . L*, when K is currently fixed, (16)a

or

y « £ (K*¥ L*) - w . L* - v*K*, when K is béihg adjuéted (16)b

H*(y, w, V)

In both cases, (17) holds provided the appropriate function is used. Although this
is not crucial to our interpretation, we can also make use of Campbell's result that
K is adjusted only at the initial time, which implies that ﬁ (y, wy, K) is the
appropriate function to use. Following Campbell, we élso assume that the output
price is constant, which»imélies thét:

pq=0. Accbfhingly, (17) reduces to: 4 :
|
c.l: "Hyy(y’ W, K) * ]3..
A constant extraction rate, q'=0, implies Hyy=o which requires H to be linear in V.

Considering (16)a, this means that L* is insentitive to y. In other words, the

marginal cost curve is vertical at the output rate considered. Following the same

argument, a diminishing extraction rate requires the marginal cost curve to be



upward sloping at the levels of output which prevail toward the end of the

extraction period, when y is low. Since K is constant, we have just characterized
two parts of the same marginal curve: an upward-sloping part at low levels of y;

a vertical part at higher levels of y, as shown in Graph 1.

Y =P "M e e e ]
J /

]
/

v

0
o
Kal

-

M

GRAPH 1: The technology in Campbell's (1980) model.

Graph 1 clearly shows how the reduction in y, which results from the increase
in 1 over time, may have no effect on extraction as long as the marginal cost curve,
MC, is vertical but will cause output to diminish.when y becomes low enough to
correspond to the upward-sloping part of the curve. It will also be noted that
Campbell's assumption that the upward-sloping part of the marginal cost curve is

independant of K, as represented in Graph 1, is not crucial to his result.

S LS S g ol g b e g
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So far, we have seen that perfectly malleable capital, even with no alternative
use outside the firm, does not affect the standard Hotelling's result that the output
of a mine or extractive industry does not increase over time. The lack of mallea-
bility of capital may also result from internal technological constraints. A
primitive way to introduce such comstraints is to impose an upper bound on investment.
Puu (1977) studies such a model; its solution consists in a phase of increasing
output followed by a phase of decreasing output. However he uses a model with
variable grade, for wh?eh it is known that the standard result does not necessarily
hold. Does his result depend on that particular assumption or does it follow from
the upper bound which is imposed on investment? Let us use the same model as

before, with an additional constraint:
(2) (¢) I < T.

As before, we have a bang-bang problem which involves three possible alternative

| policies for each stock xj, according to whether Aj>¢j (phase a), Xj=¢j (phase b),
or Aj<¢j (phase c). .In'fhe absence of an upper bound on I, phase a was shown to
involve an inetantEneous upward jump in the stock considered. This could be
observed onl;‘ge Tl so that, during the extraction period [T1, T21, ali stocks

were in either phases b or c, q was given by (17) and was consequently non-positive.
This is no loééer true in presence of an upper bound on I, and it could be shown
that the optimal policy, during phase a, consists in increasing the stock as

fast as possible, at a rate 12 ; T*. The optimal extraction policy, derived

from (8) and Ab=¢b, must now satisfy:

g - (1—ﬁyy . pq):-ﬁ A R A (17)b

yy y x4
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In the absence of any a priori restriction on the vector ﬁy <@’ the sign of d cannot
be inferred. This result is not surprising as intuition and Puu's result lead

one to conjecture that, if initial factor stocks are low, the firm goes through

an initial period during which it builds up its capacity (phase a) and finishes

its extractive life with a period where it wished it owned less factor stocks, as
equipment has no alternative use, but cannot get rid of those stocks (phase ¢).
Indeed, since we know that the implicit factor stock prices are continuous functions
of time in this problem, and since, in the absence of al;ernative uses for the
stocks, they must tené“}oward zero as t.approaches T2, it is easily proven that all
stocks must be in phase ¢ toward the end of the extraction period. What happens
before that is not as clear. One would like to conjecture that the (bliss) phase b
when the firm is perfectly happy with the amount of equipment it owns#isrshort—lived
“to the point of being instantaneous. But if one imposes ibzo and one differentiates
(8) with respect to time, one finds that this is not necessarily the case, unless

there is only one factor of production, as in the model of Puu.

So it appears that Fhe lack of malleability of capital, even when it is
introduced in a p;imitive fashion, by imposing upper and lower bounds on investment,
affects‘Hotellipg's result about the direction of the change in the extraction rate.
One would expégt this to be also the case when the lack of malleability takes the
more sophisticated form of adjustment costs. In Lasserre ((1981), chapter 2) we
studied a model of factor demands and output supply for an extractive firm which

faced costs when adjusting its factor stock levels. Unfortunately, we were able i

to provide only an implicit characterization of the solution, in the form of a

system of diffeiential equations. Here, we characterize the optimum programme
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explicitely, for a one~factor model with separable adjustment costs. The problem
is to choose I(t) so as to maximize:

T2

Sy - (p v £(x) - C(I) = ¢ - I) - dt + vy (T2) * ¢ + x (T2) (18)
T1 ,

subject to:
(2) (a) x=I; (b) x (Tl):xl, given; (¢) x 20.

(4) (a) R=-£(x); R(TL)=R; (c) R 20,
where C(I) is a convex adjustment cost function which reaches a miniﬁu; of C(o)=0
and tends to positive infinity when II[ tends to infinity. The term ¢ * I under
the integral may be positive or negative, which implies that the equipment can be
resold at no loss, and that the adjustment costs, C(I), are internal to the firm.
Consistent with the ass?mption that the equipment has an alternative use, there
is a scrap yalug‘tofthe firm; as formulated it can be realized at no cost, under
the assumptiéﬁwthat the adjustment costs affect only the operating firm and
disappear at‘IZWﬂ If we ignore those problems which might be associated with using
the Maximum gjinciple in presence of non negativity constfaints on the state variables

conditions for using it are met. The Hamiltonian is:

H=y « f(x) - C(I)V-— (¢=2) -I. (19)

It is maximized when:

C' (1) =- (¢-2) (20)




- 16 -
Other first-~order conditions are:
A= Ar Yyt fo (21)
szr'u . (22)
The transversality conditions are:
u(T2)=plf(x;)] (23)
and
A(T2)=¢ (24)

 The Legendre second-order conditions are satisfied since f£(x) is concave as well as

-(C(D)+¢ - I).

Proposition 1: If A>$, A<O
Proof: If A>¢,
We have: I>0; q>0, p<O, y<O

Differentiating (215, we get:
A=dr-y - f -y f I (25)
i

Suppose that A20, then by (25), A>0. It follows that A will keep increasing so that

the transversability condition (24) will not be met. Hence,i must be negative. Q.E.D.
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‘ Proposition 2: If A=¢, A<O unless t=T2.
! Proof: Using a similar argument as in Proposition 1, one can show that

) must not be positive unless t=T2. Hence ASo.
Suppose that A=0. Since A=¢=>§<o and I=0, it follows from (25)
that A is positive. But if so, A will become positive which

was just shown not to be feasible unless t=T2. Hence A< O

unless t=T2. Q.E.D.
Proposition 3: A(T2)=r + ¢ unless x(T2)=0
Proof: lim A=lim XA - r - lim y - fx, by (21)
t=3T2 t->T2 t->T2
x * ¢ - 0 - lim £ using (23) and (24)
t->T2
=r + ¢, unless x tends toward zero. Q.E.D.

From propositions 1-3 we deduce the following:

. If A>¢ at some date during the extraction period,
then'i{il)>¢ (from proposition 1);
. The tfﬁjectory of A can cross the A=¢ line at most once

and from above (from proposition 2);

If A>¢ at some date during the extraction period, the trajectory
of X\ must cross the A=z¢ line (from proposition 3, since x cannot tend

toward zero if )\ tends ‘toward ¢ from above as this implies that x is

increasing, and since A must tend toward ¢ from below, if x(T2)>0).
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As a result, referring to Graph 2 below, the optimum program must either follow
pattern 1, which we label "scarce capital", or pattern 2, which we label
"abundant capital'. Pattern 3 is an important limiting case to which we shall

refer later.

Graph 2: Optimum programs with costs of adjustment.
Pattern 1 Pattern 2 Pattern 3
(scarce capital) (abundant capital) (optimum initial
. e capital)

-

As when inveéﬁé;nt was bounded, a program such as pattern 1, which involves an
increasing raée of extraction during an initial period, followed by a period of
decreasing ouéfut toward the end of the extractive life, may be optimum if the
initial capital stock is low. On the contrary, if the initial capital stock is
high enough, the standard pattern of decreasing output will obtain. We believe
- but have not been able to prove that this is also the case for a model with many

factors of production.5
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One weakness of cost of adjustmént models of investment is their inability
to explain the inherited capital level, X1s in a satisfactory manner. One has to
believe that the same adjustment cost regime applies during the construction of
a firm as during its active existence. A better view of the world, represented
by the putty-clay hypothesis and refined by the putty-semi-putty hypothesis
(Fuss (1977)), holds that something irreversible happens at the creation time
which narrows the ex post choice set of the firm. In Lasserre (1981), this idea
is adapted to mean that-adjustment costs are negligible ex ante, so that a firm
can select any scale of operation and factor proportions to start with, but that
adjustment costs become present ex post if the firm wants to modify its initial
choice. For problem (18) this amounts to making the initial equipment level a
choice variable. The investment program I(t) is then selected accordihély. If
we call V(xl, Rl, ¢, r) the maximized value function obtaiped by solving problem

(18) for a given initial level of x, xi, the ex ante choice consists in choosing

x1 s0 as to maximize:

V(X19 Rli’ ¢,1‘)- ¢ - xl (26)

Since f(x) satisfies the Inada conditions, it can be shown that V is concave and

differentiable in x; and that an interior solution to (26) exists. That solution

must satisfy:

V. = ¢; or

A(T1)=¢. (27)



.
v

Consequently, when the initial level of capital is a decision variable, the

optimum extraction pattern is parttern 3 in graph 1, and it follows that the

standard Hotelling's result applies again |

Besides the very sensible extraction pattern implied, this model
describes the investment pattern qualitatively. A surprising result implied
by proposition 3, which states that A is increasing when time approaches T2,
is that investment is becoming less negative when t approaches T2, a feature
which gets an intuitive explanation from the fact that, in (21), the change
in the opportunity cost of capital can be attributed to two sources. The

first one,Ar, reflects the fact that capital is a financial asset which must

Ve

produce capital gains unless it generates other benefits. Those are productive
services, the second source of changes in A and second term in (21); they

tend to be dominated by the first term toward the end of the extraction phase
because y, the value of one extracted ore unit net of its resource opportunity

cost, becomes very small when the horizon is rear.

A word “on the putty-clay hypothesis will complete this review of alter-

L

native wayé:éo introduce capital in exhaustible-resource models. Two versions &
must be conéidered; in the first one, only stock factors are fixed ex post,
while the proportion of variable factors to fixed factors may vary. This is

the standard extraction case with increasing marginal costs, which is known

to involve a diminishing extraction rate. In the second version, both stock

factor levels and factor proportions are fixed ex post. In that case, output

is constant. Again, Hotelling's result holds. %
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3. THE EFFECT OF THE INTEREST RATE

Even a partial survey of the effects of capital and investment on resource
extraction could not leave out a discussion on the role of the interest rate. Since
Neher (1981) covers the key aspects of this question in an attractive and elegant
fashion, we shall only discuss his points briefly, derive them in the more general
framework of the model used in the previous section, and provide a few additional
results. We shall coqg}der two alternative interest rates, with rbﬁrl. Subscripts
"0" and "1", associated with any relevant variable, will refer to the optimum value
of that particular variéble,vwhen =Y Or .r=r; respectively. Without loss of
generality, the initial extraction date will be t=0 and the terminal time will be

noted T,, 1=0,1, unless the extraction perjod is infinite.

LI

i’
The traditional view is that extraction is faster, the higher the interest rate,

as the opportunity cost of postponing a revenue rises with the interest rate. The

notion of a faster extraction is not without ambiguity. When T is finite one could

say that extraction is faster when r=r, than when r=r, if T, < T,. Indeed, Levhari

1

and Liviatan (1977) show that 9T/3r <o0. Unfortunately, for many exhaustible resource

-~

models, the eifréction period is infinite. Such would be the case for our model of
last section héd we not postulated that demand choked above a certain price. An
alternative coééept of speed of extraction compares extraction rates: extraction is
said to be faster at r; than rj if thé extraction rate is higher at r;, other things

equal. A privileged date for other things to be equal is t=0, as this is when the

resource stocks are identical under the two alternative programs. Indeed, whether T

is finite or not, 93q(0)/8r20 in all "traditional" extraction models®. This last




concept may be deceptive however, for one can conceive of a resource for which

3q/3r 20 at some reserve level and 3q/3r <O at some other level. In fact, this is
the essence of Neher's (1978) '"Double Cross", an example of an extraction model
with capital for which the industry price paths at two alternative interest rates
cross twice. Given this possibility one would like to suggest two alternative
definitions of "faster extraction'. Under the strong definition, extraction is
said to be faster at r, than r  if 9q/3120 at any reserve level; under the weak
definition, extraction is said to be ultimately faster atr, »than r, if there
exists a level of reserves below which 9q/3T 26. Such a distinction between a
strong and a weak definition of "faster extraction" may also usefully be extended to
cases where T is finite, for it is easily seen that 3q/dr 20 at any reserve‘ievel
implies 3T/3rso whatever the initial reserve level (a "strong" concept of faster
extraction) and that, if 3gq/3r20 when reserves are below a certain level, R, then
oT/3r£0 1if the initial reserve level is not greater than R (a "weak" concept of

faster extraction).

Before providing a féw results on the effect of the interest rate on the

extraction speed, we briefly show how the presence of capital may affect the

-

traditional rééult, as an increase in r increases the user cost of capital and
provides an incentive for slow extraction which might offset the increased
extractive imﬁgtience which underlies the traditional result. Consider the model
of extraction with perfectly malleable capital which was studied in the previous

section. It is recalled that g=H*(y, v, w). The interest rate affects q through y,

the net-of-resource-rent output price, and through v, the user cost of capital, as:
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This finding satisfies one's intuition and leads to more specific questionms.
It is clear that when capital is not under the control of the firm, a rise in the
interest rate implies a faster extraction program whatever the level of reserves.
when capital is variable, however, since the resource becomes relatively scarcer as
extraction proceeds, one may wonder whether there is a reserve level below which a
rise in the interest rate will imply a faster extraction (the weak definition).
It turns out that this is not necessarily the case, but propositions 1 and 2

provide two situations where this is true:

Proposition 1: If the demand does not choke, then there is a reserve

level below which a rise in the interest rate implies

a faster extraction.

Proposition 2: If the production function satisfies the Inada conditions,

then there is a reserve level below which a rise in the

interest rate implies a faster extraction.

Proofs: .

Both_proofstrely on a comparison between QO and dl’ when t tends toward infinity
in the case Pf proposition 1, and when t tends toward TO or Tl in the case of
proposition 2. When the demand does not choke, p tends toward infinity and q
tends toward zero as t tends toward infinity. Since p = u + ¢, where c represents

the marginal extraction cost, and since, with a concave production function, c

does not increase as q diminishes, the trajectory of u tends toward the tra-

jectory of p as q approaches zero. It follows that:




e
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1im plp = lim yu/u
t=->% t=>®
But u /u <ﬁ /ul =T, Consequently, when t tends toward infinity,

po/Po <P /p , which implies that qo/qo >ql/q1 In order that both q, and q, tend
toward zero while q, diminishes at a faster rate when t tends toward infinity, it
is necessary that:

o

ql(t) > qo(t) when t->%
This establishes Proposition 1.

When the demand does not choke, Proposition 2 follows from Propositioﬁ i. We now
assume that there is an upper limit, S; to the output price, which implies that
extraction takes place over a finite period. If the production function satisfies
the Inada conditions, it can be shown (Lasserre (1981), chapter 2) that u(T)=p,
which reflects the fact that q(t) tends toward zero as t approaches T, so that
marginal factor products tend toward infinity and the marginal cost tends toward
zero. This has two interesting implications: first, since M, (T)_u (™, uo(t)<u1(t)
when t approaches T; second, since p = M + ¢ and ¢ tends toward zero, p = u when t

tends toward T. It follows that ﬁo(t) < él(t) when t tends toward T0 (in the case

of ﬁo(t)) or T1 (in the case of ﬁl(t)). This is illustrated in Grgph 3.
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v

Graph 3: Terminal conditions when the production function satisfies the
inada conditions and demand chokes at p.

In graph 3, the slopes of pi and po at T; and :0 respectively arg.ﬁhiquely
defined by p and the appropriate level of r. But the relative position of

Ty and To depends on the initial level of u, and u,, itself a function of the
initial reserve level. It is clear however that the last reserve unit is
extracted faster when r=r; than when r=r; which implies that there is a

level of reserves below which extraction is faster the higher the interest

rate. Thié'establishes proposition 2.

|
Propésition 1 and 2 confirm one's intuition that, although the presence
of capita; may affect the traditional view on the effect of the interest rate,
that view remains valid for a resource which approaches exhaustion. Such
intuition must be taken cautiously, however, as can be seen from the

following counter-example. Suppose that the technology is such that the

minimum marginal cost is c(r), with c(r,) < c(ry), as would be the case, for

example, if the production function was linear in a unique stock factor. We
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know that:
Uo(To) =P - c(rp) and u(Ty) =p - clry)
it follows that y, (T1) may be sufficiently lower than Yo (Ty) for ﬁl(Tl) to
be lower than {i,(T,) despite the fact that u, grows at a higher rate than
Me. If, as drawn in Graph 4, the marginal costs are respectively constant
over time, this is sufficient for:

qo(To) > da (Ty)-
In this case, a rise in the interest rate implies a slower extraction at
any reserve level. Capital reﬁains scarce relative to the exhaustibie

resource over the whole extraction program.

Graph 4: Counter-example




- 28 -

4. SUMMARY AND CONCLUSION

In this paper, we have explored some ways and effects of introducing
capital in extractive models. The emphasis was put on two well-known
results: the proposition that the output of an extractive firm or industry
should not increase over time and the proposition that a rise in the interest
rate speeds up extraction. When capital is introduced in a somewhat primitive
m s fashion, where only its durability is taken into account, the standard result
on the extraction profile remains valid. It is the second key characteristic

of capital, its imperfect malleability, which may affect the result, as a

firm may find itself in a position where it is optimum progressively to

build up its capacity before adopting the standard attitude of reducing

output in response to a rising resource opportunity cost and, possibly, to

the reduction in the remaining operative life of equipment. The standard

result appears to be fairly robust, however, and it is valid again in i
the case of a more sophisticated one-factor adjustment cost model where

the initial fagtof stock is not left unexplained but results from a rational

ex ante decision of the firm.

e
i

A rise in the interest rate may slow down extraction in presence of

7~

capital but, unlike the previous case, the key characteristic at play is
the durability of capital. Neher's (1981) conclusion that this result
obtains only if capital is scarce relative to the exhaustible resource was
reestablished and explored further. If the demand does not vanish at high

prices or if the production function satisfies the inada conditions, there

exists a reserve level below which the exhaustible resource is scarce enough
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;
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relative to capital for the conventional effect of a rise in the interest
rate to obtain. Under other characteristics of the market and the
technology, however, the scarcity of the resource will indeed increase
over time but may never outweight that of capital. In such cases, a

rise in the interest rate may slow down extraction even if the resource-

approaches exhaustion.

Throughout the paper, the methods and results of static duality
theory were applied to maximized Hamiltonians, allowing the derivation

of fairly general results in a simple fashion.
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FOOTNOTES

1  Aggregation problems may be perverse in presence of exhaustible resources
(Blackorby and Schworm (1980)). 1In fact Lasserre (1982) shows that,
even when the conditions outlined below are met, the extraction rates
of all individual firms may not decrease over time although industry
output conforms to the Hotelling pattern.

2 If the aggregation problem is addressed adequately, this result does not
follow for all firms (see footnote 1).

3 In the foregoing argument, since we are considering upward jumps only, the
non-negativity constraint on I can be ignored, so that the argument of
Arrow and Kurz ((1970), p. 57) can be used as a formal proof.

% If adjustment costs persists at T2, the firm faces ... a standard extrac-

tion problem without capital, that of extracting a stock x,, at a rate
I = % using a technology characterized by the cost functiof Cc(1), given

that the output price will stay at ¢. For this well-known problem, the
imputed price of the resource (capital) , A, grows at the discount rate

to reach the output price, ¢at the end of the extraction (dismantling)
period, with output (negative investment) reaching zero at that, time

1 (Lasserre (1981, chap. 2) and also Schulze (1974)). If T is the length

of the dismantling)period which starts at T2, the imputed value of capital
at T2 is A(T2) = e~TT,.¢$. The whole foregoing treatment of the cost of
adjustment model can be adapted by substituting this terminal value to
that given by (24). For more comments see footnote 5.

S If adjustment costs persist after T2, it is easily checked that proposition
1 holds, proposition 2 holds even at t = T2 and, in proposition 3, ¢ must

! be replaced by e~YT, ¢, the value of A(T2) given in footnote 4. The same

qualitative results obtain, with Graph 2 being replaced by Graph 2'.

Graph 2': Optimum programs with cost of adjustment which persist after'

-+~ exhaustion. y q
o ! A.q i A,Q’t\g !

o - - T - -
\ -rT o L. _ L Tt
: : € ¢ —“"’r/ v € ¢
|
]

AN
1
|
i
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!
l /'\! '
i \ q; (I ’/’/A’ : . A :
, . ) 4 > ! 5 ! .
F T1 T2 T2+1 t T1 T2 T241 ¢ T1 T2 T2+t t
scarce capital A abundant capital optimal initial

capital level

In Graph 2', t is not lower in the abundant capital case than in the
"optimal initial capital' case and t is not lower in that case than in
the "scarce capital" case. To see this, note that 3t/3x, > 0, so that
the terminal capital level in the "abundant capital' case would have to
be lower than in the "scarce capital" case, if the proposition did not
hold in which instance capital trajectories would have to cross. To see
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that this is impossible, consider what happens toward exhaustion time.
We shall use the indices a and s to refer to the cases of abundant and

scarce capital respectively if xa(T23)< xS(TZS), by (21),
. a L]
Aa(TZ =£)< AS(TZ-E), since fxa > fxs. But this implies that the trajectory

of 1% tends to the trajectory of A% from above if those are represented o
on such a time scale that Tg and T2° are represented by the sape p01nt ‘
Th1s in turn implies that I~ > % toward T2. aSo 1£ X (T2 ) < (T2 )
12 must have been inferior to I°, requiring A~ < X, at some earlier time. |
The trajectories of 22 _and A® must have crossed . as indicated in Figure a |
at, say, T2-t. At T2-t, 2@ = )° s %2 < xb, and y = ys. Hence by (21)
A < A R which contradicts Figure a. hence the in1t1a1 proposition, |
(T2 ) < (T2 ), cannot hold, hence x (T2 ) 2 (T2 ). i

A }

i
!
SI'
!
]

) 2

12-t T12%,T12% time

= T2

6 By «traditional» models, we mean positive discount rate models of present-
value or additive-utility maximization without capital such as Hotelling
(1931), Levhari and Liviatan (1977) or Schultze (1974).

7 From resource homogenelty, we have: ;
(a) w = J/R, with J = f y(t) * (F(x,L) = ¢ I - W'L) dt + y(T) - ¢' - x(T) {

where x, L, T are at their optimum. With perfectly malleable capital,
J.canTalso be written as:

J = f v(t) + (f(x,L)=v's x = w'L) dt + ¢'. x(0) i
By the concavity of f and 31nce, at the optimum (p - W) fx = v and

(p - u) £ = w, the expression under the integral is positive at

all dates.

Knowing this, suppose that 3J/3r > 0, or

®) J(r,, 1) > J(x,, 0), where i in J(r ,i) indicates that all relevant
variable take ~the values which are optimal when r = r.. Since the
term under the integral is positive at all dates, and ~ x(T)2 0

J(ro, 1) > J(rl, 1). But this means that J(rl, 1) < J(ro, 0), since

J(ro, 0) 2 J(r,, 1) as an optimum. This contradicts (b) and it

0’

follows that 3J/d9r < 0. But by (a), this implies:
du/dr <0 Q.E.D. i
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If 9v/9r = ¢, (9v/dr) Jv = 1/r which means that all factor prices have
been increased by the same percentage l/r.

As Neher's illustration relies on several explicit integrations, it was
confined to a one factor model with linear technology under the assump-
tion that demand does not choke, (28) is valid for any concave production
function of m variable factors and n perfectly malleable stock factors
for which a solution to the mine problem exists, we assume Pq < Q but

there may be an upper limit to the prices which command a positive demand.



- 33 -

REFERENCES

ARROW, K.J. and Kurz, M., (1970) Public Investment, the Rate of Return,
and Optimal Fiscal Policy, Johns Hopkins University Press (for Resources
for the Future), Baltimore.

BILLIET, A. (1959), «Sur la recherche de 1l'optimum d'exploitation d'un gi-
sement minier de capacité incertaine», Revue francaise de Recherche
opérationnelle, 10, 21-24. '

BLACKORBY, C. and Schworm, W. (1980b), «Rationalizing the Use of Aggregates
in Natural Resource Economics», Discussion Paper No. 80-19, Department
of Economics, University of British Columbia, Vancouver.

CAMPBELL, H.F. (19863, «The Effect of Capital Intensity on the Optimal Rate
of Extraction of a Mineral Deposit», Canadian Journal of Economy 13(2),
349-56.

DASGUPTA, P.S. and Heal, G.M. (1979), Economic Theory and Exhaustible
Resources, Cambridge University Press, Oxford.

‘DIEWERT,W.E. (1974), «Applications of Duality Theory», in Frontiers7ef- .,
Quantitative Economics, Vol. II, ed. by M.D. Intrilligator and D.A.
Kendrick, North-Holland Publishing Company, Amsterdam.

FUSS, M.A. (1977), ¢The Structure of Technology Over Time: A Model for
Testing the 'Putty-clay' Hypothesis», Econometrica,45(8), 1797-1821.

GRAY, L.C., €1914), «Rent Under the Assumption of Exhaustibility», Quarterly
Journal of Economics 28, 466-89. Rpt. in Extractive Resources -and
Taxation, Mason, M. Gaffney, ed., Madison, Wisc., the University of
Wisconsin Press; 1967, 423-46.

HOTELLING, H: '(193I), «The Economics of Exhaustible Resourcesk, Journal of
Politieal Economy,39, 137-75.

JORGENSON, D.W., (1963), «Capital Theory and Investment Behaviour», American
Economic Review, Papers and Proceedings, 53, 247-259.

LASSERRE, Pﬁ; (1981), Factor Demands and Output Supply by the Extractive
Firm: Theory and Estimation, unpublished Ph.D. thesis, University of
British Columbia, Vancouver.

LASSERRE, P., (1981), «¢Generalized Irreversibility and Ex Ante Factor
Demands with an Application to Mining», Cahier de recherche No. 8116,

Département de science &conomique et Centre de recherche en dé&veloppe-
ment &conomique, Université de Montréal, Montréal.



- 34 -

LASSERRE, P., (1982), «Market Price and Individual Extraction Profiles for
a Competitive Extractive Industry», unpublished mimeograph, Départéement
de science &conomique, Université de Montréal, Montréal.

1AU, L.J., (1976), «A Characterization of the Normalized Restricted Profit
Function», Journal of Economic Theory, 12 (1), 131-163.

LEVHARI, D. and Liviatan, N., (1977), «Notes on Hotelling's Economics of
Exhaustible Resources», Canadian Journal of Economics 10, 177-192.

MASSE, P., (1962), Optimum Investment Decisions, Prentice-BHall, Englewood-
Cliffs.

NEHER, P.A., (198}), «Rent-A-Rig II», Resources Paper No. 68, Department of
Economics, University of British Columbia, Vancouver.

PUU, T. (1977), «On the Profitability of Exhausting Natural Resources»,
Journal of Economic and Environmental Management 4, 185-199.

SALANT, S., Eswaran, M. and Lewis, T. (1981), «The Length of Optimal Extrac-
tion Programs when Depletion Affects Extraction Costs», Resources Paper
No. 61, Department of Economics, University of British Columbia, .
Vancouver.

SCHULZE, W.D. (1974), «The Optimal Use of Non-Renewable Resources: the
Theory of Extraction», Journal of Economic and Environmental Management
1(1), 53-73.

STIGLITZ, J.E. (1976), «Monopoly and the Rate of Extraction of Exhaustible.
Resources», American Economic Review 66(4), 655-61.

VENTURA, E.M. (1964); «Operations Research in the Mining Industry», in D.B.
Hertz and R.T. Edison, ed., Progress in Operations Research, Wilby,
Vol.\g;'SQCtion 4.4, 315-16.




