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RÉSUMÉ 

Le cancer de la prostate est le cancer le plus fréquemment diagnostiqué chez 

les hommes canadiens et la troisième cause de décès relié au cancer. Lorsque 

diagnostiqué à un stade précoce de la maladie, le cancer de la prostate est traité de 

manière curative par chirurgie et radiothérapie. Par contre, les thérapies actuelles ne 

peuvent éradiquer la maladie lorsqu’elle progresse à des stades avancés. Ces thérapies, 

comme la chimiothérapie et l’hormonothérapie, demeurent donc palliatives. Il est 

primordial d’optimiser de nouvelles thérapies visant l’élimination des cellules 

cancéreuses chez les patients atteints des stades avancés de la maladie. Une de ces 

nouvelles options thérapeutiques est l’immunothérapie.  

L’immunothérapie du cancer a fait des progrès considérables durant les 

dernières années. Cependant, les avancements encourageants obtenus lors d’essais 

précliniques ne se sont pas encore traduits en des résultats cliniques significatifs. En ce 

qui concerne le cancer de la prostate, les résultats négligeables suivants des 

interventions immunothérapeutiques peuvent être causés par le fait que la plupart des 

études sur le microenvironnement immunologique furent effectuées chez des modèles 

animaux. De plus la majorité des études sur l’immunologie tumorale humaine furent 

effectuées chez des patients atteints d’autres cancers, tels que le mélanome, et non 

chez les patients atteints du cancer de la prostate. Donc, le but central de cette thèse de 

doctorat est d’étudier le microenvironnement immunologique chez les patients atteints 

du cancer de la prostate afin de mieux définir les impacts de la tumeur sur le 

développement de la réponse immunitaire antitumorale. Pour réaliser ce projet, nous 

avons établi deux principaux objectifs de travail : (i) la caractérisation précise des 

populations des cellules immunitaires infiltrant la tumeur primaire et les ganglions 

métastatiques chez les patients atteints du cancer de la prostate; (ii) l’identification et 

l’étude des mécanismes immunosuppressifs exprimés par les cellules cancéreuses de la 

prostate. Les résultats présentés dans cette thèse démontrent que la progression du 

cancer de la prostate est associée au développement d’un microenvironnement 

immunosuppressif qui, en partie, est régulé par la présence des androgènes. 
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 L’étude initiale avait comme but la caractérisation du microenvironnement 

immunologique des ganglions drainant la tumeur chez des patients du cancer de la 

prostate. Les résultats présentés dans le chapitre III nous a permis de démontrer que 

les ganglions métastatiques comportent des signes cellulaires et histopathologiques 

associés à une faible réactivité immunologique. Cette immunosuppression 

ganglionnaire semble dépendre de la présence des cellules métastatiques puisque des 

différences immunologiques notables existent entre les ganglions non-métastatiques et 

métastatiques chez un même patient. La progression du cancer de la prostate semble 

donc associée au développement d’une immunosuppression affectant les ganglions 

drainant la tumeur primaire. 

Par la suite, nous nous sommes intéressés à l’impact de la thérapie par 

déplétion des androgènes (TDA) sur le microenvironnement immunologique de la 

tumeur primaire. La TDA est associée à une augmentation marquée de l’inflammation 

prostatique. De plus, les protocoles d’immunothérapies pour le cancer de la prostate 

actuellement évalués en phase clinique sont dirigés aux patients hormonoréfractaires 

ayant subi et échoué la thérapie. Cependant, peu d’information existe sur la nature de 

l’infiltrat de cellules immunes chez les patients castrés. Il est donc essentiel de 

connaître la nature de cet infiltrat afin de savoir si celui-ci peut répondre de manière 

favorable à une intervention immunothérapeutique. Dans le chapitre IV, je présente 

les résultats sur l’abondance des cellules immunes infiltrant la tumeur primaire suivant 

la TDA. Chez les patients castrés, les densités de lymphocytes T CD3+ et CD8+ ainsi 

que des macrophages CD68+ sont plus importantes que chez les patients contrôles. 

Nous avons également observé une corrélation entre la densité de cellules NK et une 

diminution du risque de progression de la maladie (rechute biochimique). Inversement, 

une forte infiltration de macrophages est associée à un plus haut risque de progression. 

Conjointement, durant cette étude, nous avons développé une nouvelle approche 

informatisée permettant la standardisation de la quantification de l’infiltrat de cellules 

immunes dans les échantillons pathologiques. Cette approche facilitera la comparaison 

d’études indépendantes sur la densité de l’infiltrat immun. Ces résultats nous ont donc 

permis de confirmer que les effets pro-inflammatoires de la TDA chez les patients du 

cancer de la prostate ciblaient spécifiquement les lymphocytes T et les macrophages. 
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 L’hypothèse intéressante découlant de cette étude est que les androgènes pourraient 

réguler l’expression de mécanismes immunosuppressifs dans la tumeur primaire. 

Dans le chapitre V, nous avons donc étudié l’expression de mécanismes 

immunosuppressifs par les cellules cancéreuses du cancer de la prostate ainsi que leur 

régulation par les androgènes. Notre analyse démontre que les androgènes augmentent 

l’expression de molécules à propriétés immunosuppressives telles que l’arginase I et 

l’arginase II. Cette surexpression dépend de l’activité du récepteur aux androgènes. 

Chez les patients castrés, l’expression de l’arginase II était diminuée suggérant une 

régulation androgénique in vivo. Nous avons observé que l’arginase I et l’arginase II 

participent à la prolifération des cellules du cancer de la prostate ainsi qu’à leur 

potentiel immunosuppressif. Finalement, nous avons découvert que l’expression de 

l’interleukin-8 était aussi régulée par les androgènes. De plus, l’interleukin-8, 

indépendamment des androgènes, augmente l’expression de l’arginase II. Ces résultats 

confirment que les androgènes participent au développement d’une 

microenvironnement immunosuppressif dans le cancer de la prostate en régulant 

l’expression de l’arginase I, l’arginase II et l’interleukin-8. 

En conclusion, les résultats présentés dans cette thèse témoignent du caractère 

unique du microenvironnement immunologique chez les patients atteints du cancer de 

la prostate. Nos travaux ont également permis d’établir de nouvelles techniques basées 

sur des logiciels d’analyse d’image afin de mieux comprendre le dialogue entre la 

tumeur et le système immunitaire chez les patients. Approfondir les connaissances sur 

les mécanismes de régulation du microenvironnement immunologique chez les 

patients atteint du cancer de la prostate permettra d’optimiser des immunothérapies 

mieux adaptées à éradiquer cette maladie.  
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SUMMARY 

Prostate cancer is the most frequently diagnosed cancer in Canadian men and 

the third cause of cancer related death. When diagnosed at an early stage, prostate 

cancer can be effectively cured by surgery and radiotherapy. However, current 

therapies do not eradicate the advanced stages of the disease. Treatment of prostate 

cancer via chemotherapy or hormonotherapy remains palliative. It is thus essential to 

optimize novel therapies whose goal is to eliminate tumor cells in patients with 

advanced prostate cancer. One such approach is immunotherapy.  

Cancer immunotherapy has made important strides in recent years. The 

encouraging progress observed in pre-clinical trials has nonetheless not translated to 

significant results in the clinical setting. Concerning prostate cancer, the limited clinical 

efficacy of current immunotherapeutic protocols could be explained by the lack of 

studies directly evaluating the immunological microenvironment in prostate cancer 

patients and not in animal models or in patients afflicted by other malignancies, such 

as melanoma. Thus, the fundamental goal of this Ph.D. thesis is to study the 

immunological microenvironment in prostate cancer patients in order to better 

understand the impact of the tumor on the development of the anti-tumoral immune 

response. To realize this project, we established two main working objectives: (i) to 

precisely characterize the immune cell populations in tumor draining lymph nodes 

(LNs) and in the primary tumor of prostate cancer patients; (ii) to identify and to study 

the immunosuppressive pathways expressed by prostate cancer cells. The results 

detailed in this thesis demonstrate that prostate cancer progression is associated with 

the development of an immunosuppressive microenvironment, which is regulated, in 

part, by the presence of androgens. 

The initial study was based on the characterization of the immunological 

microenvironment of tumor draining LNs of prostate cancer patients. The results 

presented in chapter III allowed us to demonstrate that metastatic lymph nodes 

displayed cellular and histopathological evidence associated with a reduced 

immunological reactivity. This LN immunosuppression seemed to be dependant on 
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 the presence of metastatic cells as we noted significant immunological differences 

between non-metastatic and metastatic lymph nodes of the same patient. Prostate 

cancer progression was thus associated with the development of an 

immunosuppressive state, which affected tumor-draining lymph nodes. 

Next, we studied the impact of androgen deprivation therapy (ADT) on the 

immunological microenvironment of the primary tumor. Following ADT, there is a 

marked augmentation in intra-prostatic inflammation. Immunotherapeutic protocols 

currently evaluated in clinical trials are targeted at hormone refractory patients, which 

have received and failed ADT. However, very little information is available regarding 

the nature of the post-ADT immune infiltrate. Thus, it becomes essential to 

understand whether this post-ADT infiltrate could positively react to immunotherapy. 

In chapter IV, I present the results of the quantification of the immune cell abundance 

within the primary tumor. In patients who have received ADT prior to surgery, there 

was an elevated density of CD3+ and CD8+ T lymphocytes as well as CD68+ 

macrophages compared to control patients. We also observed an inverse correlation 

between the NK cell density and the risk of disease progression (biochemical 

recurrence). Conversely, an elevated macrophage infiltration was associated with a 

higher risk of progression. Furthermore, for this study, we developed a novel 

computerized approach allowing for the standardization of the quantification of 

immune cell infiltrate. This approach could facilitate the interpretation of results from 

independent studies on the density of immune cells within pathological specimens. 

This study confirmed that the pro-inflammatory impact of androgen deprivation 

therapy in prostate cancer patients target specifically the T lymphocyte and 

macrophage populations. The interesting hypothesis arising from this study was that 

androgens could positively regulate the expression of immunosuppressive pathways 

within the primary tumor. 

In chapter V, we evaluated the immunosuppressive mechanisms expressed by 

prostate cancer cells and regulated by androgens. Our analysis demonstrate that 

androgens increase the expression of molecules with immunosuppressive properties, 

such as arginase I and arginase II in an androgen receptor dependent manner. This 

androgen regulated expression of arginase II was also observed in prostate cancer 
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 patients treated by ATD. We observed that arginase I and arginase II participate in 

prostate cancer cell proliferation as well as in their immunosuppressive potential. 

Finally, we discovered that interleukin-8 expression was also regulated by androgens. 

Moreover, interleukin-8, independently of androgens, increased the expression of 

arginase II. Altogether, these results confirmed that androgens participate in the 

development of an immunosuppressive microenvironment in prostate cancer by 

regulating the expression of arginase I, arginase II and interlukin-8.  

In conclusion, the results presented in this thesis attest to the unique character 

of the immunological microenvironment in prostate cancer patients. Our work has 

also allowed to establish novel software-based analysis methods in order to better 

understand the dialogue between the tumor and the immune system. Further 

understanding of the regulatory pathways involved in the immunological 

microenvironment will allow for the optimization of immunotherapies better suited to 

eradicate prostate cancer.  

KEY WORDS 

Prostate cancer; Immunology; Immunosuppression; Androgen; Arginase; 
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CHAPTER I 

INTRODUCTION 

The introductory chapter of this Ph.D. thesis contains five sections. Following 

a summary of important aspects of prostate cancer, I will describe basic concepts of 

the immune system and of the current theories regarding the anti-tumoral immune 

response. Finally, I will review the literature on arginase and on the 

immunoregulatory properties of sexual hormones.  

1.1 PROSTATE CANCER 

1.1.1 CANCER STATISTICS 

Cancer affected 166,400 Canadians and claimed the lives of 73,800 patients in 

2008 (1). According to the current cancer incidence rate, 40% of Canadian women 

and 45% of Canadian men will develop cancer in their lifetime. In Canada, cancer is 

the second most common cause of mortality (30.2% of deaths) after circulatory 

diseases and fourth cause of hospitalization (7.4%) (2). 

As for prostate cancer, in 2008, 24,700 Canadian men were diagnosed with the 

disease and 4,300 patients died from prostate cancer related complications making it 

the most diagnosed cancer (28.4% of newly diagnosed cancer in men) and third cause 

of cancer related deaths (11.1% of all male cancer related deaths) (1). Improvements 

in early detection protocols through the widespread use of prostate-specific antigen 

(PSA) screening accounts for the continuing increasing numbers of patients 

diagnosed with prostate cancer, which are now being diagnosed at a younger age and 

with less aggressive tumors (3). Over 95 % of prostate cancer patients have a relative 

survival rate exceeding five years and prostate cancer mortality has decreased by 2.9% 

annually between 1995 and 2004. This decreased in prostate cancer associated 

mortality is attributed to PSA screening, surgery, higher doses of radiotherapy and 

earlier onset of androgen deprivation therapy (ADT) (1). 
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 1.1.2 THE PROSTATE GLAND 

The prostate is an exocrine gland part of the male reproductive system. The 

prostate surrounds the urethra below the bladder. Its organogenesis begins at the 

onset of puberty and is under the control of androgens. In healthy men, the prostate 

is roughly the size of a walnut. Through the contraction of prostatic muscles during 

ejaculation, the prostate secretes a milky alkaline fluid that constitutes 25-30% of the 

semen along with spermatozoa and seminal vesicle fluid. This fluid is primarily 

composed of sugars and electrolytes (citrate, zinc) (4) with less than 1% being 

proteins such as proteolytic enzymes, prostatic acid phosphatase (PAP) and PSA. The 

prostatic fluid protects the genomic material of spermatozoa and promotes their 

motility and survival by providing the necessary nutrients as well as by regulating the 

pH of the environment (5). 

The prostate contains five distinct glandular zones: central zone, fibromuscular 

zone, transitional zone, peripheral zone and periurethral zone. There is a distinctive 

prevalence of prostatic pathologies between the different zones (Figure 1 on page 3). 

Benign prostatic hyperplasia (BPH) is mostly present within the transition zone. 

Adenocarcinomas are most often located in the peripheral zone, with few in the 

transition zone and with rare occurrence in the central zone. The peripheral zone is 

also more susceptible to inflammation, high-grade prostatic intraepithelial neoplasia 

(PIN) and more aggressive adenocarcinomas. Adenocarcinomas within the transition 

zone are generally less aggressive (6). 
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Figure 1. Zonal predisposition of prostate disease.  

Most cancers develop in the peripheral zone, with few in the transition zone and with 

rare occurrence in the central zone. Focal atrophy, chronic inflammation and high-

grade PIN are also more prevalent in the peripheral zone. BPH lesions develop 

preferentially in the transition zone without affecting the peripheral zone. 

Adapted from (6). 
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1.1.3 PATHOLOGIES OF THE PROSTATE 

1.1.3.1 Prostatitis 

Prostatitis is the inflammation of the prostate gland. Symptomatic prostatitis 

affects 3 % to 16 % of men (7). The American National Institute of Health (NIH) 

recognizes four categories of prostatitis (8). Acute (class I) and chronic (class II) 

symptomatic bacterial prostatitis are caused by Escherichia coli or other Gram-negative 

bacteria. However, 90% of patients with prostatitis have symptomatic chronic non-

bacterial prostatitis of unknown etiology (class III) (9). The prevalence of 

asymptomatic prostatitis (class IV) is unknown. More details on prostatic 

inflammation and its implication in prostate cancer can be found in section 1.1.6 on 

page 8. 

1.1.3.2 Focal Atrophy 

Histologically, areas of focal epithelial atrophy are frequently associated with 

acute or chronic immune cell infiltration. These atrophic lesions contain elevated 

numbers of proliferative epithelial cells, which fail to differentiate as columnar 

secretory cells. This pathology is defined as proliferative inflammatory atrophy (10). 

Proliferative inflammatory atrophy lesions occur in the peripheral zone and are 

associated with the development of high-grade PIN and prostate cancer (6). 

1.1.3.3 Prostatic Intraepithelial Neoplasia 

PIN is the benign proliferation of prostate epithelium cells within the glandular 

lumen in the absence of basal membrane invasion. PIN can remain unchanged or 

regress with time. It is classified as either low-grade or high-grade PIN. High-grade 

PIN is associated with an increased risk of developing prostate cancer. 
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 1.1.3.4 Benign Prostatic Hyperplasia 

BPH refers to the non-malignant proliferation of the prostate’s stromal and 

epithelial cells frequently diagnosed in older men. Over 70% of 60 year old men and 

> 90% of 70 year old men have histological evidence of BPH (11). BPH is also 

caused by the proliferation and increased muscle tone of the prostate’s stromal 

smooth muscle cells, which lead to the formation of nodules and the enlargement of 

the transition zone. The enlarged prostate constricts the prostatic urethra thereby 

causing urinary difficulties, a common symptom of BPH and prostate cancer. BPH 

can be treated by medication such as α-adrenoreceptor blockers (tamsulosine, 

alfuzosin), by 5-α reductase inhibitors (finasteride, dutasteride) or by surgery. Surgery 

for BPH is usually through transurethral resection of the prostate (TURP). 

1.1.4 PROSTATE CANCER 

Prostate cancer is a slow progression cancer, which can remain asymptomatic 

for a relatively long period. Approximately 70% of men in their 60s have 

asymptomatic prostate cancer (12). Prostate cancer is an adenocarcinoma caused by 

the uncontrolled proliferation of prostate epithelial cells. Prostate cancer statistics are 

detailed in section 1.1.1 on page 1. 

Prostate cancer diagnosis is based on digital rectal examination and the 

pathological evaluation of prostate biopsies. Serum PSA level is used in diagnosis and 

in disease monitoring. Nomograms are used for risk assessment and prostate cancer 

prognosis. Current nomograms are composed of clinico-pathological features such as 

Gleason score, pTNM stage, pre-operative serum PSA levels and seminal vesicle 

invasion (13). The Gleason scoring system categorizes the degree of tissue 

differentiation, with “1” representing well-differentiated and “5” undifferentiated 

tissues. The sum of the two most prevalent histologies is used as the Gleason score. 

Current nomograms however lack the desired precision for identification of patients 

at higher risk of prostate cancer progression. An important domain of prostate cancer 

research focuses on the optimization of nomograms using molecular and/or cellular 

markers. Such markers could be evaluated on biopsy samples prior to surgery and 
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 complement current clinico-pathological markers in the early prognosis of prostate 

cancer patients. 

1.1.5 RISK FACTORS FOR PROSTATE CANCER 

1.1.5.1 Age 

Age is the primary risk factor for prostate cancer, with an average age at 

diagnosis of 70. Older age is associated with an increased risk of prostate injury and 

infection resulting in chronic prostate inflammation, as well as with hormonal 

changes and decreasing immunological functions. All of these factors participate in 

the development of prostate cancer. 

1.1.5.2 Environmental causes 

Similar to other cancers, prostate cancer has a multi-factorial etiology. Several 

environmental factors increase the risk of developing the disease. The importance of 

environmental factors in the development of prostate cancer is apparent in the 

population of Southeast Asian men who immigrate to a westernized country. These 

men, who naturally have a low incidence of prostate cancer, develop an increased rate 

of prostate cancer often within one generation following immigration. This rise is 

attributed to diet, pattern of sexual behavior, alcohol consumption, exposure to 

ultraviolet radiation and occupational exposure. A diet rich in red meat and animal fat 

escalate the risk of prostate cancer. Conversely, an Asian diet rich in soy as well as a 

Nordic diet with high content of rye lowers the risk of developing prostate cancer. 

Epidemiological data suggests that consumption of dietary anti-oxidants and 

micronutrients, such as lycopene, selenium, vitamin D and vitamin E, may also be 

protective (14), but remains unproven in prospective studies to date.  

1.1.5.3 Hereditary causes 

Studies comparing the occurrence of prostate cancer in monozygotic and 

dizygotic twins reveal that prostate cancer has the strongest hereditary component of 
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 any cancer (15). Prostate cancer is hereditary in 5-10% of cases and 10-20% of 

prostate cancer patients have a family history of the disease (16). While canonical 

cancer mutations have been identified in other cancers (k-ras in pancreatic cancer and 

adenomatosis polyposis coli (apc) in colon cancer), few specific genetic risk factors have 

been identified in prostate cancer. Linkage analyses have however identified several 

gene locus associated with an increased risk of developing the disease. These locus 

include the hereditary prostate cancer locus on chromosome-1 (HPC1), HPC-2, 

HPC-X, predisposing for cancer of the prostate (PCAP) locus, cancer prostate and 

brain (CAPB) locus, which together contain a hereditary mutations in genes such as 

elaC homolog 2 (Escherichia coli) (elac2), ribonuclease l (rnasel) and macrophage scavenger receptor 

1 (msr1) [reviewed in (17)]. Mutations in breast cancer type 2 susceptibility protein (brca2) 

also augment the risk of prostate cancer and could be attributed to 5% of cases in 

patients younger than 55 years (13). 

1.1.5.4 Race 

Southeast and East Asian men have the lowest incidence of prostate cancer 

(18). Conversely, compared to Caucasian men, African American men have a 34% 

higher incidence of prostate cancer, less favorable stages at diagnosis and a two-fold 

higher risk of prostate cancer associated mortality (19). PSA levels are also higher and 

more variable in African American men without prostate cancer (20) or with localized 

prostate cancer (21). 

1.1.5.5 Androgens 

Although there is no direct association between androgen serum levels and the 

development of prostate cancer (22), androgens do play an important role in the 

disease. The initial stages of prostate cancer are termed “hormone sensitive” and 

medical castration causes prostate atrophy and a temporary elimination of symptoms 

associated with prostate cancer metastasis (discussed in section 1.1.7.3 on page 15) 

Testosterone is the most abundant sex hormone in men and is converted to 

dihydrotestosterone (DHT) by 5α-reductase. Compared to testosterone, DHT has a 



 
8 

 

 greater affinity (8-fold) for the androgen receptor (AR) (23). Finasteride, an inhibitor 

of 5α-reductase, is the only agent to date proven to reduce the risk of developing 

prostate cancer (24, 25). Testosterone can also be converted into estrogen by the 

enzymatic activity of a cytochrome p450 aromatase. Exposure to environmental or 

developmental estrogen is also associated with the development of prostate cancer 

(26, 27). 

1.1.5.6 Inflammation 

Prostatic inflammation is associated with an increased risk of prostate cancer 

(28) and will be discussed in details in the following section. 

1.1.6 PROSTATIC INFLAMMATION 

From an immunological standpoint, the prostate is a rather complex organ. The 

prostate was long thought to be an immunologically privileged organ similar to the 

eye (29, 30). Such is no longer the case. Immune cells secreting a wide-array of 

cytokines infiltrate the prostate and there is evidence of immune responses directed 

against prostate specific antigens.  

The prostate may nonetheless contain a unique immunological 

microenvironment. For instance, during puberty the androgen-dependent 

organogenesis of the prostate causes the expression of novel prostate specific 

antigens. Remarkably, there is no immune response targeting these novel prostate 

antigens. The prostate also has a low density of lymphatic vessels. Furthermore, 

androgens, which are present at their highest tissue concentration within the prostate, 

have documented immunosuppressive functions (discussed in section 1.5.4 on page 

74) and could regulate a state of immunological tolerance (31, 32). Such observations 

suggest that the prostate may possess a strong immunoregulatory potential that 

accompanies its organogenesis.  
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 1.1.6.1 Inflammation in the normal prostate 

B and T lymphocytes, macrophages and mast cells infiltrate the normal 

prostate. Within the normal prostate tissue, most T lymphocytes are CD8+, whereas 

CD4+ T lymphocytes predominate in prostatitis lesions. Compared to non-activated 

T lymphocytes in normal tissues, T lymphocytes in inflamed tissues express major 

histocompatibility complex of class II (MHC-II) and CD45RO suggesting that they 

are activated and antigen experienced (33). 

1.1.6.2 Causes of prostatic inflammation 

As discussed earlier, 90 % of men diagnosed with prostatic inflammation have 

prostatitis of unknown etiology. Various factors have been described to have pro-

inflammatory effects within the prostate such as: infection, urine reflux, dietary factor, 

age, and hormonal imbalance [reviewed in (6)] (see Figure 2 on page 10 and Table 1 

on page 11). 
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Figure 2. Causes of prostatic inflammation.  

Details on the sources of prostatic inflammation are found in Table 1. 

Adapted from (6). 



 
11 

 

  

Sources of prostatic inflammation. Adapted from (6) 

Bacteria Acute and chronic bacterial prostatitis: Gram-negative bacteria (Escherichia 
coli) (34). 
Bacteria acquired from sexual transmitted diseases : Neisseria 
Gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis and 
Treponema pallidum (Shyphilis) (28). 
Bacteria acquired from non-sexually transmitted disease : 
Propionibacterium acnes 

Viruses Recently, a study demonstrated a strong association with the presence of 
Xenotropic murine leukemia virus–related virus (XMRV) and prostate 
cancer (35). 
Human papillomavirus (HPV), human herpes simplex virus type 2 (HSV2), 
cytomegalovirus (CMV) and human herpes virus type 8 (HHV8) are also 
associated with prostate cancer. 

Urine reflux Chemical irritation of the prostate due to the presence of uric acid, which 
can directly activate immune cells. 

Corpus amylacea Amorphous small nodules or concretions located in the lumen of benign 
prostate acini and ducts that accumulate with age and which can lead to the 
erosion of the epithelium and promote the expression of cyclooxygenase-2 
(COX-2). 
Corpus amylacea contribute to prostate inflammation, increase the risks of 
persistent infection and carcinogenesis. 

Dietary factors Charred meats contain heterocyclic aromatic amines and polycyclic 
aromatic hydrocarbon carcinogens such as 2-amino-1-methyL-6-
phenylimidazol[4,5-b]pyridine (PhIP). 
PhIP causes prostate inflammation and glandular atrophy. 

Estrogens Increases in prolactin production through the hypothalamic-pituitary-
gonadal axis leads to prostate inflammation (36). 
Direct effects on the stroma (ER-α) and epithelial cells (ER-β) by 
estrogens at specific developmental stages causes tissue architectural 
defects, which lead to inflammation. 

Break of immune 
tolerance 

Breaks of immune tolerance following prostate injury are associated with 
proliferative inflammatory atrophy. 

Allelic variants of 
inflammatory genes. 

Increased risk of prostate cancer with:  
- Inactivating mutation in RNASEL diminishes the anti-viral response 

of innate cells. 
- Inactivating mutation in MSR1 promotes bacterial infection due to 

reduced macrophage functions. 
- Mutation in macrophage inhibitory cytokine 1 (MIC1), a member of 

the TGF-β family also diminishes macrophage activity. 
 

Table 1. Source of intra-prostatic inflammation.  
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 1.1.6.3 Association between inflammation and prostate cancer 

Chronic inflammation is linked to an increased risk of developing prostate 

cancer (37). Prostatitis increases the risk of prostate cancer and this preferentially in 

younger men (38). Several studies demonstrate that the infiltration of various immune 

cell populations correlates with disease progression or with various clinico-

pathological parameters of prostate cancer patients. Increased immune cell infiltrate 

correlates with an increased rate of tumor recurrence (39), whereas elevated density of 

CD4+ T lymphocytes (40) and mast cells (41) are associated with poor survival and 

higher Gleason score, respectively. Strong tumor-infiltrating lymphocytes (TILs) 

density also correlates with perineural and capsular invasion and a shortened time to 

PSA recurrence (42). Conversely, one study finds that a high TILs density was 

protective against disease progression (43). Results from these studies are however 

difficult to analysis due to different staining and analysis methods (discussed in 

Chapter IV on page 116) 

Furthermore, it is only recently that the activation status through detailed 

phenotypical analysis has been documented. CD3+ and CD4+ T lymphocytes do 

infiltrate the tumor tissue but do not express perforin and interferon-γ (IFN-γ) 

suggesting that they are functionally inactive (44). Several studies have also evaluated 

the presence of Foxp3+ regulatory T cells (TREGs) in prostate cancer. TREGs are 

important for the maintenance of immune tolerance and the inhibition of the anti-

tumoral immune response (more details in section 1.2.5.3 on page 43). In a transgenic 

adenocarcinoma mouse prostate (TRAMP) mouse model expressing the influenza 

hemagglutinin (HA) antigen under a prostate specific promoter, adoptive transfer of 

HA-specific CD4+ T lymphocytes resulted in a skewing into a TREG phenotype both 

at the transcriptional and functional level attesting to the tolerogenic power of the 

prostate microenvironment (45). In prostate cancer patients, a recent study 

demonstrates an increased infiltration of TREGs, PD-1+ and B7-H1+ immune cells 

within the prostate primary tumors (46). Foxp3+ T lymphocytes were also more 

present in tumor tissue than in BPH tissue or normal prostate samples from healthy 

men (46). The TREG skewing was apparent even at the earlier stages of the disease and 
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 elevated levels of TREGS with increased suppressive potential (47) are also present in 

the blood and primary tumors of prostate cancer patients (48). Although present at a 

higher density in malignant tissues compared to benign tissues, TREG density does not 

correlate with disease progression (49). Another study illustrated that CD4+ T 

lymphocyte population was skewed towards a TH17 and a TREG phenotypes (50). High 

abundance of TH17 CD4+ T cells did correlate with lower Gleason scores (50). The 

roles of TH17 cells in prostate cancer remain undefined. Altogether, as the primary 

tumor is able to convert antigen-specific T lymphocytes into immunosuppressive 

immune cells thereby promoting immune evasion, these results argue that the simple 

assessment of immune cell numbers is inaccurate as it is their activation status that is 

relevant.  

Finally, there are correlations between cytokines levels and the risk of prostate 

cancer progression. For example, elevated serum levels of IL-6, IL-8, transforming 

growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) are associated with 

higher Gleason score, development of metastatic disease and poor prognosis (51, 52). 

The cytokines are produced by infiltrating immune cells and by prostate cancer cells 

through the activation of NF-κB signaling (7). The prolonged presence of infiltrating 

lymphocytes and the production of cytokines and other immunological mediators can 

inhibit the anti-tumoral immune response and provide pro-angiogenic and tumor 

growth factors. 

Altogether, these data suggest that prostatic inflammation correlates with a 

more aggressive disease and a more rapid disease progression. Interestingly, TREG 

removal in murine model of prostate cancer decreased prostatic inflammation and 

reduced the risk of developing prostate cancer (53). Nonetheless, from these studies, 

it is difficult to establish the roles of prostatic inflammation in actual prostate cancer 

development. Due to a lack of appropriate experimental model suited for the 

evaluation of prostatitis prior to prostate carcinogenesis, it remains unclear whether 

inflammation is a causative agent of prostate cancer or whether inflammation is 

induced following the development of prostate cancer.  
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 1.1.7 THERAPIES FOR PROSTATE CANCER 

Localized prostate cancer is highly curable through radical prostatectomy or 

radiotherapy. Treatment of advanced prostate cancer is however palliative (54). 

Advanced prostate cancer is characterized by: (i) high-risk locally advanced disease or 

metastatic disease, (ii) PSA recurrence after local therapy or (iii) increasing PSA level 

despite treatment with ADT, which is also termed hormone-refractory prostate 

cancer (HRPC) (55). The median survival of patients with HRPC ranges from 24 to 

40 months for patients diagnosed with skeletal metastasis and averages 68 months for 

patients without skeletal metastasis (56).  

1.1.7.1 Active Surveillance and Radical Prostatectomy 

Prostate cancer is well-suited for active surveillance as the cancer grows 

relatively slowly in most patients. Approximately 70% of men in their 60s have 

asymptomatic prostate cancer (12). A study evaluating the influence of radical 

prostatectomy versus active surveillance demonstrates that the benefits of surgery on 

cancer-related mortality, risks of metastasis and local progression were mainly 

apparent at 10 years post-surgery (57). As such, it is recommended that men with a 

life expectancy of less than 10 years and who are diagnosed with early-stage prostate 

cancer be actively monitored without undergoing aggressive therapy in the absence of 

progression (13). Side effects also remain a major problem following radical 

prostatectomy, which include erectile dysfunction (frequent) and urinary incontinence 

(less frequent). 

1.1.7.2 Radiotherapy 

Radiotherapy, by brachytherapy with the insertion of radioactive sources within 

the prostate, or by external beam radiotherapy, is a curative therapy for early-stage 

prostate cancer. Patients with locally advanced prostate cancer (positive surgical 

margins, seminal vesicle invasion) can also be cured by radiotherapy through dose 

escalation and by combination with ADT.  
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 1.1.7.3 Androgen Deprivation Therapy 

ADT is the primary treatment option for patients with advanced prostate 

cancer. Huggins and Hodges first reported in 1941 that ADT causes prostate cancer 

regression and alleviation of pains associated with metastatic prostate cancer (58). Dr 

Charles B. Huggins, born in Halifax, Nova Scotia, won the Nobel Prize in Medicine 

in 1966 for his discovery. Their work demonstrated the androgen dependency of 

normal and neoplastic prostate cells. ADT blocks cellular proliferation and causes the 

involution of the prostate gland through the apoptosis of hormone sensitive epithelial 

cells (59). Successful in 70-80% of patients, ADT was the only treatment clinically 

proven to prolong patient survival, until 2005 when two docetaxel (Taxotere) 

regiments proved to have survival benefits (60-63). Unfortunately, ADT remains a 

palliative treatment option with a response window limited 18 to 24 months (64).  

ADT targets circulating androgens and/or the AR. Testicular androgens are 

eliminated through surgical castration or via agonists and antagonists of the 

gonadotropin-releasing hormone (GnRH) receptors and luteinizing hormone 

releasing hormone (LHRH). AR activity is blocked with cyproterone (Androcur), 

cyproterone acetate (Androcur) and non-steroidal anti-androgens such as flutamide 

(Euflex), bicalutamide (Casodex) and nilutamide (Anandron). 

1.1.7.4 Chemotherapy 

Recent reports suggest that docetaxel increases the survival of metastatic HRPC 

patients by 2.9 months. Docetaxel is an anti-mitotic agent that promotes microtubule 

assembly and stability. Combination of docetaxel with prednisone (Deltasone) 

decreases PSA levels and increases survival of HRPC patients (65-67). Prednisone is a 

synthetic corticosteroid, which is converted to prednisolone in the liver, and acts 

mainly as an anti-inflammatory agent. Docetaxel-based therapy is now the standard of 

care for chemotherapy against HRPC as recommend by American and European 

guidelines. 
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 1.1.8 CANCER IMMUNOTHERAPY 

The goal of immunotherapy is the induction of a cytotoxic immune response 

targeting the tumor cell. The therapeutically induced anti-tumoral immune response 

must achieve three criteria: (i) in vivo generation of sufficient numbers of tumor-

specific immune cells; (ii) trafficking and infiltration of these tumor-specific immune 

cells within the tumor: (iii) activation of the immune cell’s effector functions within 

the tumor (68). Although a humoral immune response could be beneficial, it is the 

cell-mediated immune response that is essential for tumor rejection. In mouse 

models, transfer of T lymphocytes, and not antibodies, was protective against tumor 

challenges. Elimination of CD8+ T lymphocytes also abrogated both the protective 

and therapeutic actions of the anti-tumoral immune response. Finally, in the context 

of a potent immunotherapy promoting the induction of a cytotoxic CD8+ T 

lymphocytes response, both dendritic cells (DCs) and CD4+ T lymphocytes need to 

be involved. 

Cancer immunotherapy is classified as either active or passive. Active 

immunotherapy involves the in vivo stimulation of the immune system either 

specifically or non-specifically through administration of cytokines and interleukins. 

Passive immunotherapy involves the ex vivo activation of immune cells, which are 

transferred back into the patient. The inherent specificity of immunotherapy should 

theoretically decrease the normal tissue toxicity observed with chemotherapy. 

However, results from clinical trials demonstrate that patients that do develop 

clinically manageable autoimmunity associated with the development of the anti-

tumoral immune response, such as vitiligo in the case of immunotherapy against 

melanoma, have a more favorable clinical response to therapy.  

In theory, prostate cancer is ideally suited for immunotherapy. Innate and 

adaptive immune cells infiltrate the prostate and the therapeutic window is relatively 

long (69). Moreover, for patients diagnosed at the earlier stages of the disease, 

immunotherapy could be administered during the period of active surveillance or 

prior to ADT (see section 1.1.8.2.5 on page 19). The prostate also expresses several 

specific antigens (see section 1.1.8.1 on page 17), which are recognized by T 
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 lymphocytes. Finally, prostate cancer patients are generally diagnosed at an age when 

they no longer have children. As such, the prostate becomes a non-essential organ 

and there is no need to discriminate between normal and neoplastic prostatic 

epithelium as the entire prostate can be targeted by immunotherapy. In practice 

however, the prostate’s immunosuppressive mechanism may be the cause of the lack 

of success in the clinical setting. 

1.1.8.1 Prostate Tumor-Associated Antigens 

Several prostate tumor-associated antigens (TAAs) have been described as 

potential immunotherapeutic targets (70, 71). PSA is an active serine protease that 

participates in the liquefaction of the seminal fluid (72). PSA transcription is regulated 

by androgens and is specifically expressed by the prostate epithelium. Prostate cancer 

causes PSA levels to increase up to 10,000 fold. Serum PSA levels are also influenced 

by BPH, prostatitis, age, body-mass index and race (73). Increases in serum PSA 

levels are not caused by elevated PSA expression, which actually decreases during 

cancer, but by a higher release of PSA in blood caused by a disruption of prostate 

architecture (74). Circulating CD8+ T lymphocytes are present in patients with 

prostatitis (75) or prostate cancer (76). Other prostate tumor-associated antigens 

include prostate specific membrane antigen (PSMA), a transmembrane glycoprotein 

overexpressed in primary tumors and metastases, prostate stem cell antigen (PSCA) 

(77) and PAP (78), a glycoprotein whose expression is more specific to the prostate 

than that of PSA or PSMA (79).  

1.1.8.2 Clinical trials in immunotherapy of prostate cancer 

Several immunotherapy strategies for prostate cancer using cell-based 

approaches, viral vectors or antibodies are currently in clinical trials. The following 

sections will describe the immunotherapies that have had the most promising results. 

1.1.8.2 .1  Sipuleuce l -T (Provenge)  
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 Sipuleucel-T (Provenge) is a DC-based vaccine. DCs are loaded with PAP 

peptides and granulocyte macrophage-colony stimulating factor (GM-CSF). PAP was 

chosen becase of its localization on the cytoplasmic membrane and its success in pre-

clinical models, where it could elicit prostate-specific immune responses and 

autoimmune prostatitis (80). GM-CSF promotes DC differentiation into potent TH1 

activator (81). Activated DCs promote the activation of cytotoxic CD8+ T 

lymphocytes targeted against PAP epitopes. In two phase III trials, Sipuleucel-T 

offered a survival advantage of 4.5 months for HRPC patients (82, 83). Following 

recent positive results from the IMPACT trial (Immunotherapy for Prostate 

AdenoCarcinoma Treatment) the American Food and Drug Administration has 

approved Sipuleucel-T for treatment of HRPC. It is the first immunotherapy to be 

approved for cancer treatment. 

1.1.8.2 .2  GVAX 

 GVAX is tumor cell-based vaccine in which LNCaP and PC3 cell lines are 

transfected with GM-CSF, irradiated and injected in patients. The premise of the 

GVAX vaccine is that the prostate cancer cells will be phagocytosed by the patient’s 

DCs, which will then present several prostate TAAs to cytototoxic CD8+ T 

lymphocytes. In a Phase II trial, GVAX increased median survival of HRPC patients 

by 8.2 months (84). A phase III clinical trial is currently underway in North America 

and Europe evaluating GVAX as a single agent (VITAL-1) in comparison to 

docetaxel plus prednisone in HRPC patients. A VITAL-2 phase III trial evaluating 

the combination of GVAX with docetaxel was terminated due to increased mortality 

in the GVAX docetaxel arm. 

1.1.8.2 .3  PROSTVAC-VF 

 PROSTVAC-VF is a recombinant vaccinia virus expressing PSA (rV-PSA). 

The premise is that the anti-viral response will promote the activation of PSA-specific 

CD8+ T lymphocytes. Initial trials showed that pre-existing immunity to the virus and 

immunodominance of viral proteins limited the efficacy of the therapy (85). The 

protocol was modified to include a fowlpox virus (rF-PSA) as a boost to improve 
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 effectiveness. A phase II trial showed that rV-PSA + rF-PSA increased time to 

progression from 9.2 months to 18.2 months compared to rV-PSA or rF-PSA 

individual injection and an increase survival of 8.5 months (86). A phase III trial 

(PARADIGM, Therion/NCI/ECOG) is currently underway. 

1.1.8.2 .4  Anti -CTLA-4 therapy 

Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) signaling inhibits 

activated T lymphocytes. Blocking of CTLA-4 causes the activation of CD8+ T 

lymphocytes. In two phase I trials with HRPC patients, anti-CTLA4 therapy 

(Ipilimumab) was shown to be safe and cause a decrease in PSA levels (87, 88).  

1.1.8.2 .5  Combinat ion o f  immunotherapy with conventional therapy 

Combination of immunotherapy with radiotherapy has synergistic effects in 

prostate cancer (89) and in other cancers (90). In squamous cell carcinoma, the 

beneficial effects of combining radiotherapy and chemotherapy are associated with 

the elimination of TREGS and an increase in homeostatic proliferation (91-93). In a 

TRAMP mouse model, cyclophosphamide temporarily decreases TREG numbers and 

could potentially improve immunotherapy (94). In prostate cancer, chemotherapy 

with docetaxel however inhibits the anti-tumoral effect of immunotherapy (95).  

The most beneficial combinatory effects have been obtained from co-therapy 

with ADT. ADT improves the survival benefits of immunotherapy (96) when 

vaccination occurs early in the treatment regiment (90) and prior to ADT (97, 98). 

The favorable effects of ADT are related to the improvements of DC maturation, 

costimulation marker expression and cytokine secretion. However, it is noteworthy 

that, in the current clinical settings for immunotherapy, patients undergoing 

immunotherapy have already failed other therapies including ADT. It is thus 

important to understand the immunological consequences of ADT, and other 

therapies, on the prostate’s immunological environment.  
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 1.1.9 SUMMARY 

Prostate cancer remains untreatable for patients with advance form of the 

disease. Novel immunotherapeutic regiments offer to tackle HRPC. However, until 

the recent encouraging announcement of Sipuleucel-T’s FDA approval for the 

treatment of HPRC, immunotherapy in prostate cancer had minimal success in 

clinical trials. The prostate must be regarded as an organ with a unique immunological 

microenvironment. This uniqueness, which remains to be fully characterized, must be 

taken into consideration during the optimization of immunotherapies against prostate 

cancer. To achieve this, three main aspects need to be addressed.  

1.1.9.1 Studying the prostate’s immunological environment in order to 

develop prostate specific immunotherapies. 

The prostate’s immuno-oncologic microenvironment remains understudied. It 

is important to recognize that each organ possesses unique mechanisms to maintain 

its distinct state of tissue homeostasis. This translates to different immune cell 

populations infiltrating different tissues thereby generating diverse immune 

environments (99). As such, the immunoregulatory pathways in one cancer, such as 

melanoma, are not representative of those in prostate cancer. This is especially 

important considering the prostate’s unique immunological microenvironment (see 

section 1.1.6 on page 8). To date, most immunological studies on prostate cancer 

present correlative data between immune cell infiltration and disease progression. 

However, further studies are needed to understand the mechanisms responsible for 

regulating prostatic inflammation in order to identify key targets for immunotherapy. 

1.1.9.2 Understanding the prostate’s immunological environment in human 

Prostate cancer immunology needs to be studied in human. Without detailing 

the immunological differences between mice and men [reviewed in (100)], key 

immunoregulatory pathways, which could affect the efficacy of the anti-tumoral 

immune response, are different between the two species. However, it is important to 

highlight that the study of TILs functions in human prostate cancer faces many 
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 challenges. First, surgical samples are often only available from patients with early-

stage prostate cancer or with a favorable prognosis for surgery. These patients may 

not necessarily represent patients that would be treated with immunotherapy. Second, 

isolation of true TILs is difficult due to the infiltrative and heterogeneous nature of 

prostatic adenocarcinoma and to the low numbers of TILs found in the tumor tissue. 

Finally, the generation of autologous prostate cancer cell lines allowing for direct 

measurement of anti-tumoral cytotoxicity is difficult. Resolving these challenges could 

offer essential knowledge on human prostate immunobiology and significantly 

improve current immunotherapeutic protocols. 

1.1.9.3 Immunosuppression in human prostate cancer 

Finally, the majority of immunotherapeutic protocols for prostate cancer have 

focused solely on the activation of tumor-specific cellular effectors. Similar to 

stepping on the accelerator while keeping one foot on the brake, not eliminating the 

tumor’s endogenous immunosuppressive pathways prevents the full activation of 

tumor-specific cellular effectors. The prostate is the source of several 

immunosuppressive pathways (see sections 1.2.4 on page 34, 1.2.5 on page 42 and 

1.3.4 on page 55), whose regulatory pathways responsible to their expression remain 

undefined. As part of this Ph.D. thesis, we chose to characterize the immunological 

microenvironment in prostate cancer and to study on the regulation of 

immunosuppression in human prostate cancer. 

1.2 BASIC CONCEPTS OF AN IMMUNE RESPONSE 

1.2.1 THE INNATE AND THE ADAPTIVE ARM OF THE IMMUNE 

SYSTEM 

The immune system is responsible for the elimination of pathogens, virally 

infected cells and malignant cells. It is composed of two main arms participating in 

innate and adaptive immune responses. The innate immune response is the primary 

responder to pathogen invasion and tissue damage. The adaptive immune response 

takes a longer time to develop due to its antigen-specific activation, but results in the 
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 establishment of immunological memory. Immunological memory is responsible for 

the rapid and robust immune response following a secondary exposure to a pathogen. 

Innate cellular effectors are phagocytes (neutrophils, DCs, monocytes and 

macrophages), cells that release inflammatory mediators (basophils, eosinophils and 

mast cells), and natural killer (NK) cells. Innate immune cells are an important source 

of cytokines, which regulate both the innate and adaptive immune responses. 

Adaptive effectors are the B and T lymphocytes, which proliferate and mature in an 

antigen-specific manner in secondary lymphoid organs through the recognition of 

their cognate antigen on the surface of antigen-presenting cells (APCs). The 

elimination of invading pathogens engages both innate and adaptive arms of the 

immune system. 
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Figure 3. Immune and adaptive immune cells.  

Innate immune cells (macrophages, DCs, mast cells, NK cells, granulocytes) initially 

recognize pathogens and tissue injury and initiate the inflammatory response. 

Adaptive immune cells (B lymphocytes, CD4+ and CD8+ T lymphocytes) take a 

longer time to develop in mature effector. They are however able to target the 

pathogens in an antigen-specific manner and are responsible for the development of 

immunological memory. Natural Killer T (NKT) cells and γδ T cells are hybrid innate 

/ adaptive immune cells that recognize non-peptidic antigens such as lipids and 

carbohydrates. 

 

Adapted from (101). 
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1.2.2 SECONDARY LYMPHOID ORGAN: THE LYMPH NODE 

The adaptive immune response is activated within secondary lymphoid organs, 

such as LNs, the spleen, tonsils and Payer’s patches. During infection, the LN acts as 

a mechanical sieve filtering the lymph draining from the infected tissue. In cancer, 

LNs are often the primary site of tumor cell metastasis. A layer of connective tissue 

encapsulates the LN with collagen fibers (trabeculae) extending from the capsule to 

the parenchyma of the LN (see Figure 4 on page 25). Immune cells continuously 

enter and exit LNs. From the blood, lymphocytes enter LNs through high endothelial 

venules and, from the lymphatic system, through afferent lymphatic vessels. The 

lymph containing immune cells and antigens flows through the LNs via medullary 

sinuses composed of macrophages known as histiocytes. B and T lymphocytes are 

segregated in specific zones within the LN, which promote antigen recognition and 

proper activation due to the close proximity of APCs (DCs and macrophages) and 

CD4+ Helper T lymphocytes. The B lymphocyte zone located in the cortex contains 

follicules and germinal centers where memory B lymphocytes develop and somatic 

hypermutation and antibody class-switching occurs. The T lymphocyte zone 

surrounds the B lymphocyte follicle and extend towards the center of the LN. 

Antigen recognition within the T lymphocyte zone will either lead to the development 

of a MHC-II restricted, CD4+ T lymphocyte-mediated humoral immune response or 

a MHC-I restricted, CD8+ T lymphocyte-mediated cytotoxic immune response 

depending on the pathogen and on the cytokines present during antigen recognition. 
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Figure 4. Histology of a lymph node.  

Although LNs lack connective tissue, they nonetheless have a highly defined tissue 

architecture well-suited for the optimal recognition of cognate antigenic peptides and 

activation of naïve lymphocytes in distinct B and T lymphocytes zone. 

 

Adapted from  

http://academic.kellogg.cc.mi.us/herbrandsonc/bio201_McKinley/Lymphatic%20System.htm 



 
26 

 

 
1.2.3 IMPORTANT IMMUNOLOGICAL CONCEPTS 

The following section will detail important immunological concepts pertaining 

to the anti-tumoral immune response. 

1.2.3.1 Pathogen and Malignant Cell Recognition 

Pathogen recognition differs between the innate and adaptive immune 

responses. Innate immune cell effectors directly recognize pathogens through 

pathogen-recognition receptors. For example, Gram-negative bacteria expressing 

lipopolysaccharides (LPS) are recognized by the Toll-like receptor-4 (TLR-4) of 

macrophages. Neutrophils and macrophages also express antibody-specific receptors 

(Fc receptors), which allow for the recognition and phagocytosis of antibody-coated 

pathogens. Activation of NK cells is discussed in section 1.2.4.2 on page 35.  

For adaptive immune cells, the pathogen recognition process takes a longer 

time and accounts for the different response rate between the innate and adaptive 

immune responses. Naïve adaptive immune cells encounter their cognate peptides 

presented by APCs in secondary lymphoid organs. During the initial recognition of 

their cognate antigen, naïve B or T lymphocytes form an immunological synapse with 

the APC. This immunological synapse procures the first two of three signals 

necessary for lymphocyte activation: signaling through the T cell receptor (TCR) or B 

cell receptor (BCR) and signaling through co-stimulatory receptors such as CD80 and 

CD86. The third signal is provided by cytokines locally produced by APCs or helper 

CD4+ T lymphocytes. This antigen specific activation causes the proliferation, 

maturation and expression of the cytotoxic machinery or production of antibodies as 

well as the development of immunological memory. Once activated in secondary 

lymphoid organs, lymphocytes migrate to the injured tissue and eliminate the 

pathogens, the infected cells or malignant cells. 

In cancer, tumor cell recognition is similar to the recognition of virally infected 

cells. NK cells recognize and eliminate malignant cells that have lost MHC-I 

expression (section 1.2.4.2 on page 35). APCs also phagocytose malignant cells and 
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 present TAAs to CD8+ T lymphocytes in tumor-draining lymph nodes (LNs). 

However, once the tumor reaches a clinically detectable size, the activation of the 

anti-tumoral immune response is impaired (section 1.3.3 on page 52). For example, 

APCs lose their ability to properly activate TAA-specific lymphocytes. Furthermore, 

the development of an immunosuppressive tumor microenvironment prevents the 

activation of TAA-specific lymphocyte within the tumor. 

1.2.3.2 Antigen Presentation 

APCs present in the injured tissue will phagocytose pathogens and present 

enzymatically digested antigenic peptides through MHC-I or MHC-II. Peptides from 

endogenous proteins and intracellular pathogens, such as viruses, are presented by 

MHC-I to CD8+ T lymphocytes. Conversely, peptides from extracellular pathogens, 

such as bacteria, are presented by MHC-II to B and CD4+ T lymphocytes.  

In cancer, CD8+ T lymphocytes need to be activated by APCs (macrophages or 

DCs) in a TAA-specific manner in order to recognize and eliminate malignant cells. 

Since TAAs are extracellular antigens, the activation of CD8+ T lymphocytes by 

APCs is achieved through cross-presentation [reviewed in (102)]. In this process, the 

APCs will phagocytose tumor cells, degrade its proteins into antigenic peptides and, 

instead of targeting them to MHC-II presentation, will present the TAAs onto MHC-

I complexes. The machinery involved in cross-presentation remains to be clearly 

defined. Phagocytosis is the principal pathway for the internalization of extracellular 

antigens, but antigens acquired through macropinocytosis are also cross-presented. 

Once inside the phagosome, antigens can either be transferred to the cytosol where 

they are transfered to the classical MHC-I peptide processing machinery in the 

endoplasmic reticulum. On the other hand, specialized phagosomes degrade antigens 

via cathepsin S and directly load the resulting peptides on MHC-I that have trafficked 

to the phagosome. Activation of CD8+ T lymphocytes by cross-presentation further 

necessitates the concomitant activation of CD4+ T helper lymphocytes. In a tumor 

mouse model, in which TAAs were strictly presented by MHC-I and not by MHC-II, 

the CD8+ T lymphocyte were rendered anergic due to lack of CD4+ help (103). 
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 Furthermore, considering that tumor-associated DCs promote T lymphocyte anergy, 

it is possible that they represent a distinct CD8α+ DC population (104, 105), which 

poorly expresses MHC-II restricted peptides (106) and thus promote CD8+ T 

lymphocyte anergy.  

1.2.3.3 Diversity of the antigen repertoire 

The strength of the immune system lies in its ability to generate T and B 

lymphocytes specific for a large diversity of non-self peptides. The vast repertoire of 

antigen-specific receptors, estimated at 1015 different variable regions, originates from 

genomic rearrangement during lymphocyte development of about 400 genes. DNA 

recombination of V (variable), D (diversity), J (joining) and C (constant) gene loci 

occurs during TCR and BCR rearrangements in primary lymphoid organs. T 

lymphocytes undergo a unique TCR rearrangement during thymic development. B 

lymphocytes undergo a first BCR rearrangement in the bone marrow and a second 

rearrangement during somatic hypermutation in germinal centers.  

Following BCR and TCR rearrangement and expression at the cell surface, B 

and T lymphocytes must undergo negative and positive selection. This process 

ensures that the antigen-specific receptors are not specific for self-antigens while 

maintaining adequate affinity for self-MHC (for T lymphocyte only). T lymphocytes 

expressing a TCR specific for self-peptide die by apoptosis (negative selection) 

whereas a lack of MHC recognition deprives the lymphocyte of survival signal 

(positive selection). More than 95% of T lymphocytes will be eliminated during 

negative selection, which is the principal mechanism to maintain immunological 

tolerance to self. 

In cancer, TAAs are self-peptides, which are either overexpressed or mutated 

by the tumor cells. Consequently, T and B lymphocytes with high-avidity for these 

TAAs are not present in cancer patients as they are eliminated during lymphocyte 

development through negative selection. Cancer patients do produce TAA-specific 

antibodies (107) and TAA-specific T lymphocytes (108) that recognize both MHC-I 
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 and MHC-II restricted peptides (109). However, these TAAs-specific lymphocytes 

express low avidity TCR (110). 

1.2.3.4 Termination of the immune response 

An acute immune response will resorb itself prior to causing pathological tissue 

damages. The termination of an immune response involves the removal of the initial 

danger signals, of pro-inflammatory mediators, the apoptosis of cellular effectors and 

the promotion of tissue repair (111). The immune system has developed intrinsic 

mechanisms to inhibit its own effectors in order to prevent the exacerbation of the 

inflammatory response. These mechanisms include the secretion of anti-inflammatory 

lipoxins synthesized from arachidonic acids (112), prostaglandins and cytokines, the 

expression of inhibitory or pro-apoptotic receptors by lymphocytes immediately 

following their activation (CTLA-4, Fas) and the recruitment of immunoregulatory 

immune cells with immunosuppressive properties, such as TREGs and macrophages.  

In cancer, molecular and cellular effectors implicated in the termination of the 

immune response participate in the development of tumor immunosuppression. 

From an immunological point of view, a tumor that reaches clinically detectable size 

is similar to a wound that does not heal or to an immune response that did not end 

(113). The disruption of tissue homeostasis that accompanies tumor growth favors 

the sustained and excessive activation of innate immune cells and the recruitment of 

adaptive immune cells. At a certain stage in tumor development, the immune system 

is coerced to accept the tumor as self and initiates the termination of the anti-tumoral 

immune response thereby preventing more tissue damage. More details on anti-

inflammatory processes present in prostate cancer are found in section 1.3.4 on page 

55. 

1.2.3.5 Inflammation-induced carcinogenesis 

In 1863, Rudolf Virchow proposed that tumors originate from chronically 

inflamed tissues (114). Chronic inflammation is directly implicated in the 

development of liver, stomach, large intestine, biliary tree and bladder cancer and 
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 increases the risk of developing of esophagus, lung, pancreatic and prostate cancer. 

For many of these cancers, chronic inflammation results from exposure to infectious 

agents or other pro-inflammatory environmental agents. Chronic inflammation leads 

to increased sensitivity to chemical carcinogens and can induce cellular 

transformation in the absence of pathogen-encoded oncogenes (115). 

Inflammation-induced carcinogenesis involves a complex interaction between 

adaptive and innate immune cells. Generally, inflammation caused by innate immune 

cell activation promotes carcinogenesis whereas a lymphocyte-mediated immune 

response eliminates tumor cells. Activated innate immune cells release reactive 

oxygen species (ROS) (superoxide, hydrogen peroxide, singlet oxygen and nitric 

oxide) that initiate a free-radical reaction with phospholipids, which increases 

genomic instability. Chronic inflammation also participates in several physiological 

processes implicated in carcinogenesis: cell survival, tissue remodeling, angiogenesis 

and suppression of the anti-tumoral adaptive immune response (116).  
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Regulation of Cancer Development by Immune Cells 

Innate immune cells 
contribute to cancer. 
 
Tumor-associated 
macrophages (TAMs), 
myeloid-derived 
suppressor cells (MDSC), 
granulocytes. 

Direct mechanisms: 
- Induction of DNA damages by the generation of free radicals 
- Paracrine regulation of intracellular pathways (NF-κB) 

Indirect mechanisms: 
- Promotion of angiogenesis and tissue remodeling via the 

secretion of growth factors, cytokines, chemokines, matrix 
metalloproteinases 

- Upregulation of COX-2 
- Immunosuppression of the adaptive anti-tumoral immune 

response 
Adaptive immune cells 
modulate cancer. 

Direct mechanisms: 
- Inhibition of tumor growth by cytotoxic T lymphocytes 
- Inhibition of tumor growth by cytokine mediated tumor cell 

lysis (IFN-γ, TNF-β) 
Indirect mechanisms: 

- Promotion of tumor growth by TRegs 
- Promotion of tumor growth via a humoral immune response 

that causes chronic inflammation 
 

Table 2. Regulation of cancer development by immune cells.  

Summary of the various pathways by which innate and adaptive immune cells can 

regulate tumor growth. 

 

Adapted from (110). 



 
32 

 

  

Summary of the source and function of important cytokines 
Cytokines Source(s) Function(s) 

Interleukin-1 β Monocytes, macrophages, 
DCs, T and B lymphocytes. 
Non-immune cells such as 
fibroblasts and others. 

TH1 cytokine promoting inflammation by activating T lymphocytes 
and macrophages. IL-1 also induces fever, acute phase response 
and neutrophil activation. 
In cancer, IL-1 can promote the growth and progression of solid 
tumors (117). 

Interleukin-2 Activated TH1 T 
lymphocytes. 

TH1 cytokine, activation of T lymphocytes, NK cells and B 
lymphocytes. 
Necessary for the proliferation of T lymphocytes during activation. 

Interleukin-4 TH2 T lymphocytes, mast 
cells, basophils and 
eosinophils. 

Activation of TH2 T lymphocytes, B lymphocytes and monocytes 
Involved in immunoglobulin class switching to IgE 

Interleukin-6 TH2 T lymphocytes, B 
lymphocytes, monocytes 
and macrophages. 

Stimulates TH2 T lymphocytes and B lymphocyte differentiation 
Macrophage and NK cell activation 
In cancer, IL-6 favor the proliferation of hormone refractory 
prostate cancer cell lines (118), inhibit tumor cell apoptosis and 
promote angiogenesis s(119). 

Interleukin-8 T lymphocytes, 
macrophages, granulocytes. 
Non-immune cells such as 
fibroblasts and others. 

Chemokine 
Chemotaxis of neutrophils, basophils and T lymphocytes. 
In cancer, IL-8 promotes angiogenesis and metastasis of prostate 
cancer cells through the induction of MMP-9 expression (120). 

Interleukin-10 Activated TH2 CD4+ T 
lymphocytes, CD8+ T 
lymphocytes and DCs. 

TH2 cytokine that inhibits a TH1 immune response. 
Stimualtion of B lymphocyte proliferation and IgA secretion. 
Inhibits the production of pro-inflammatory cytokines (IL-1β, 
TNF-α) by T lymphocytes, NK cells, monocytes and 
macrophages. 
Decreases the expression of MHC-II on monocytes (121, 122). 

Interleukin-12 Monocytes, Macrophages 
B lymphocytes and DCs. 
 

TH1 cytokine. 
Stimulate the production of IFN-γ by TH1 CD4+ T lymphocytes. 
Stimulates the cytotoxic properties of CD8+ T lymphocytes, NK 
cells and macrophages. 

Interleukin-17 TH17 activated CD4+ T 
lymphocytes 

Pro-inflammatory cytokine. 
Induces macrophages to secrete IL-1β and TNFα. 
Promotes in vivo growth and angiogenesis of tumors. 

Interferon-γ 
(IFN-γ) 

TH1 CD4+ and CD8+ T 
lymphocytes as well as NK 
cells. 

Polarization of TH1 CD4+ T lymphocytes through STAT-1 and 
inhibition of TH2 CD4+ T lymphocytes. 
Activation of macrophages and NK cells. 
IFN-γ in pivotal in the anti-tumoral immune response. 
IFN-γ can enhance the immunogenicity of tumor cells by 
increasing the expression of MHC-I and MHC-I antigen 
processing components.  

Transforming 
growth factor-β 
(TGF-β) 

T lymphocytes, 
macrophages, B 
lymphocytes, mast cells as 
well as non-immune cells 
and platelets 

TH2 cytokine. 
Immunosuppressive cytokine that inhibits antigen presentation, T 
lymphocyte proliferation, NK cytotoxicity and activates Tregs. 
In cancer, TGF-β inhibits the growth of non-transformed and 
hematopoietic cells, while promoting the survival and proliferation 
of transformed cells, including prostate cancer cells. 

Tumor necrosis 
factor-α  
(TNF-α) 

Monocytes, macrophages, 
NK cells, mast cells, T and 
B lymphocytes 

TH1 cytokine. 
Pro-inflammatory cytokine causing T lymphocyte activation. 

Table 3. Source and functions of important cytokines. 
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Figure 5. Lymphocyte immune response activation.  

Left panel: Cell-mediated immune response with the activation of TH1 helper CD4+ 

and cytotoxic CD8+ T lymphocyte in the context of a viral infection. Recognition of 

viral peptide presented by MHC-I on the APC and on the virally-infected cell as well 

as the production of TH1 cytokines (IL-2, IFN-γ). Right panel: Humoral immune 

response with the activation of TH2 helper CD4+ and antibody-producing B 

lymphocyte in the context of a bacterial infection. Presentation of bacterial peptides 

following phagocytosis by the APC on MHC-II and production of TH2 cytokines (IL-

4, IL-5, IL-6).                                              Adapted from (123). 
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1.2.4 CELLS OF THE INNATE IMMUNE SYSTEM 

1.2.4.1 Granulocytes 

Granulocytes constitute about 65% of all peripheral blood mononuclear cells 

(PBMCs) and regroup basophils (0.5% to 1%), eosinophils (3% to 5%) and 

neutrophils (90% to 95%). Neutrophils are the first cells to extra-vasate from the 

blood to the site of injury. Neutrophils are terminally differentiated, are incapable of 

cellular division, have a very short lifespan and produce very low de novo RNA and 

protein, which makes them exceptionally hard to study in vitro. Neutrophils 

phagocytose and kill pathogens by producing free radicals. GM-CSF, often utilize in 

cancer immunotherapy, potentiates the neutrophil functions, such as increases in 

migration and transmigration, phagocytosis, oxidative metabolism, lysozyme release 

and complement recruitment (124, 125). Eosinophils are not phagocytotic and kill 

pathogens through the release of reactive oxygen species (ROS), cytokines and 

prostaglandins. Basophils have FcεR specific for IgE. During allergic reaction, the 

binding of FcεR by IgE will trigger the release of histamine, protaglandins and 

leukotrienes.  

The role of granulocytes in tumor promotion and tumor elimination remains 

poorly understood. Eosinophils expressing indoleamine 2,3-dioxygenase (IDO), a 

tryptophan-metabolizing enzyme with immunosuppressive properties, are found in 

lesions of non-small cell lung cancer (126). On the other hand, neutrophils expressing 

Fc receptors could help eliminate antibody-coated tumor cells (127). Through the use 

of an anti-Gr1 antibodies targeting neutrophils and eosinophils (128, 129) and of an 

attenuated measle virus transfected with GM-CSF (125), neutrophils were shown to 

be implicated in the rejection of human tumors in SCID mice. Neutrophils are also 

thought to possess a more important role in tumor rejection than eosinophils (130, 

131) and to directly eliminate tumor cells via the release of hydrogen peroxide (132, 

133), the nitric oxide (NO) pathway (130) and neutrophils-mediated inhibition of 

glutamine uptake by the tumor cell (134). 



 
35 

 

 1.2.4.2 Natural killer cells 

NK cells are effector lymphocytes of the innate immune system [reviewed in 

(135)]. NK cells comprise 2 to 18% of PBMCs with a turnover rate of about two 

weeks. In humans, NK cells can be divided into 2 subsets: CD56dim (90% of blood 

and spleen NK cells) and CD56bright (mostly present in LNs). NK cells do not 

recognize antigens presented by MHC. They express killer-activating (KARs) and 

killer-inhibitory receptors (KIRs), which allows for the recognition and elimination of 

virally-infected or malignant cells. KARs, such as NKG2D, detect the presence of 

stress-induced ligands on the surface of the target cells. NK cells also express CD16, 

a low-affinity Fc receptor allowing the detection of antibody-coated cells and the 

activation of antibody-dependent cell cytotoxicity (ADCC). KIRs contain 

intracytoplasmic inhibitory motifs (ITIMs) and inhibit NK cell activation. KIRs 

recognize MHC-I expressed on all nucleated cells. MHC-I expression is often lost 

during viral infection causing the absence of presentation of viral to cytotoxic CD8+ 

T lymphocytes. The loss of MHC-I expression results in an absence of NK cell 

inhibitory signaling, which induces NK cell activation and the destruction of the 

MHC-I deficient target cell.  

Malignant cells also lose MHC-I expression, which renders them invisible to 

CD8+ T lymphocytes but sensitive to NK cell recognition. NK cells kill tumor cells 

via TNF-related apoptosis-inducing ligand (TRAIL) or perforin-dependent pathways. 

In mouse models of spontaneous and induced tumors, depletion of NK cells 

augments the risk of tumor development (136, 137). To prevent NK cell killing, 

prostate cancer cells secrete soluble NKG2D ligand, such as MHC class I-related 

chain molecules A/B molecules (MICA/B), which causes NK cell activation away 

from the tumor cells.  

1.2.4.3 Natural killer T cells 

Natural killer T (NKT) cells are a subset of CD4+ and CD8+ T lymphocytes 

expressing a αβ-TCR and NK cell markers. Similar to γδ T lymphocytes, NKT cells 

recognize lipids and carbohydrates presented on the cell surface by non-classical 
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 MHC such as CD1d. NKT cells produce both TH1 (IL-2, GM-CSF, IFN-γ, TNF-α) 

and TH2 cytokines (IL-4). The role of NKT cells in tumor development remains 

ambiguous. 

1.2.4.4 Monocytes and Macrophages 

Monocytes compose 5% to 10% of PBMCs. They have a short lifetime, 

spending an average of 24 hours in the circulation. Monocytes kill phagocytosed 

pathogens and produce a wide array of pro-inflammatory cytokines. In human, there 

are two main monocyte subtypes: classical CD14hiCD16- monocytes (90% of total 

monocytes) and non-classical CD14+CD16+ monocytes. When monocytes extra-

vasate from the blood, they differentiate into macrophages. Macrophages can further 

differentiate in various long-live tissue macrophages, such as osteoclasts (bones), 

microglial cells (alveoli, central nervous system), histiocytes (LNs) and Kupffer cells 

(liver) (138).  

Macrophages play important roles in homeostasis and in immune responses 

[reviewed in (139)]. With regards to homeostasis, macrophages phagocytose 2 x 1011 

erythrocytes each day and recycle iron and hemoglobin. Macrophages also remove 

cellular debris generated during tissue remodeling and apoptotic bodies from dying 

cells. Receptors involved in macrophage’s homeostatic clearing functions are 

scavenger receptors, phophatidyl serine receptors, thrombospondin receptor and 

integrins. These receptors do not activate intracellular signaling linked to cytokine 

gene expression and development of an inflammatory response. Conversely, clearance 

of cellular debris from necrotic cells causes an inflammatory response due to the 

activation of TLRs, intracellular pathogen recognition receptors, IL-1R, and myeloid 

differentiation primary-response gene 88 (MyD88) signaling.  

During an immune response, macrophages participate in pathogen 

phagocytosis, antigen presentation, cytokine production as well as innate and adaptive 

immune cells activation. Macrophages also play essential roles in the termination of 

the immune response and tissue repair. Innate immune cells cause transient 
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 macrophage activation, whereas adaptive immune cells cause a prolonged activation, 

which can lead to the chronic inflammation. 

Macrophage classification has been the focus of extensive reviews in recent 

years. Based on murine studies, macrophages are classified as M1 (classically 

activated, pro-inflammatory) and various subtypes of M2 macrophages (alternatively 

activated, anti-inflammatory, tissue remodeling) (140). However, studies have revealed 

that human macrophages cannot be categorized according to murine macrophage 

classification. Key molecular markers for M1 and M2 murine macrophages, such as 

inducible nitric oxide synthase (iNOS) and ARG1 respectively, are not expressed by 

human macrophages. The mannose receptor (CD206) is the only accepted marker for 

human M2 macrophages (141). Hence, compared to murine macrophages, population 

markers and overall classification of human macrophages remains rather blurred. In 

2008, Mosser et al. proposed a classification based on the fundamental functions of 

macrophages: host defense, wound healing and immune regulation (139).  
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Figure 6. Human macrophage phenotypes.  

Human macrophage classification according to functions: microbicidal, tissue repair 

and anti-inflammatory functions. 

Adapted from (139). 
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Host defense or classically activated macrophages or M1 macrophages are 

effector macrophages produced during a cell-mediated immune response in the 

presence of IFN-γ and TNF-α. IFN-γ is initially produced by innate cells (NK cells) 

and later by adaptive cells (TH1 CD4+ T lymphocytes) allowing for the prolonged 

macrophage activation. Other pro-inflammatory mediators, such as TLR-ligands 

signaling through MyD88, IFN-regulatory factor 3 (IRF3) and IFN-β also activate 

this macrophage population. Classically activated macrophages have enhanced 

microbicidal and tumoricidal capacity and secrete high amounts of pro-inflammatory 

cytokines. They will produce high amounts of ROS enabling them to kill 

phagocytosed intracellular pathogens.  

Wound-healing macrophages or M2 macrophages are activated primarily 

through IL-4, IL-13 and M-CSF produced by innate and adaptive immune cells. 

Basophils, mast cells, neutrophils and other granulocytes are responsible for the initial 

release of IL-4 following tissue injury (142, 143). Compared to classically activated 

macrophages, wound-healing macrophages secrete minimal amount of pro-

inflammatory cytokines, do not present antigen to T lymphocytes and are less 

efficient at killing intracellular pathogens due to lower ROS production. Wound-

healing macrophages have immunosuppressive effects on the immune response.  

Regulatory macrophages are also part of the M2 macrophage murine 

nomenclature. This macrophage population is implicated in the termination of the 

immune response. Regulatory macrophages produce IL-10, an anti-inflammatory 

cytokine, in response to glucocorticoids, immune-complexes, FcγR activation, 

prostaglandins, apoptotic cells, ligands of G-protein-coupled receptors (GPCRs), and 

IL-10 itself. Glucocorticoids released by adrenal glands in response to stress can 

promote the expansion of regulatory macrophage by inhibiting the transcription and 

decreasing mRNA stability of pro-inflammatory genes (144). Moreover, 

glucocorticoid-treated macrophages skew the T lymphocyte response to a TH2 

phenotype and induce the development of TREGS (145). Interestingly, regulatory 
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 macrophages are potent APCs and have a high expression of co-stimulatory 

molecules (CD80 and CD86) (146). 

In cancer, macrophages activated by IFN-γ initially eliminate tumor cells 

through cell-contact dependant and independent mechanisms via the production of 

ROS (147, 148). However, this production of free radicals promotes DNA damages 

and increases genomic instability within the tumor microenvironement. Furthermore, 

tumor cells take advantage of the high level of plasticity between the various 

macrophage phenotypes. Tumor-associated macrophages (TAMs) acquire a hybrid 

wound healing/regulatory phenotype that inhibits the anti-tumoral immune response 

and restrain neighboring cytotoxic macrophages. TAMs also promote tissue 

remodeling and angiogenesis (149) through the expression of matrix degrading 

enzyme and pro-angiogenic factors (114, 139, 150-153).  

In prostate cancer, the impact of macrophage infiltration within the prostate 

remains uncertain with only a few studies offering diverging conclusions on the 

association between macrophage density and disease progression. High TAMs density 

is associated with a worse prognosis and decreased survival (154). In a severe 

combined immunodeficiency (SCID) mouse model, inhibition of monocyte 

chemotactic protein-1 (MCP-1) causes a reduced macrophage infiltration resulting in 

a reduction of angiogenesis and tumor growth (155). In a rat prostate cancer model, 

only extra-tumoral macrophages were associated with tumor size and vasculature 

proliferation (156). However, high TAMs density correlated with a better five-year 

survival rate (157). Altogether, a better assessment of the macrophage phenotype is 

essential in understanding their function in prostate cancer. 

1.2.4.5 Dendritic cells 

DCs were first described by Paul Langerhans in the late 19th century. In 1973, 

the group of Dr. Ralph Steinman classified these cells as DCs (158). Myeloid DCs 

(mDCs) express TLR-4 and TLR-6 and activate TH1 lymphocytes through IL-12 

secretion. Plasmacytoid DCs (pDCs) express TRL-7 and TLR-9 and produce high 

levels of IFN-α. DCs are professional APCs that have the ability to present antigens 
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 to both CD4+ and CD8+ T lymphocytes. DCs express MHC-I and MHC-II as well as 

several co-stimulatory molecules (CD40, CD80, CD86) leading to potent lymphocyte 

activation. Immature DC have high phagocytic activity and minimal lymphocyte 

activation potential. Following pathogen recognition through pathogen recognition 

receptors and their subsequent phagocytosis, DCs express CCR7, the chemokine 

receptor promoting LN homing. During LN migration, DCs begin their maturation 

process, where they lose their phagocytotic abilities and upregulate the expression of 

co-stimulatory molecules and MHC-peptide complexes (159, 160). 

In cancer, dysfunctions in DC maturation, differentiation and migration 

promote the tumor’s tolerogenic state [reviewed in (161)]. Instead of priming TAA-

specific T lymphocytes, immature DCs secrete IL-10 and vascular endothelial growth 

factor (VEGF) causing T lymphocyte anergy. Cancer cells also alter bone marrow 

hematopoiesis and promote the generation of large numbers of immature DCs. 

Moreover, mature tolerogenic DC promote TH2 polarization and the expansion of 

TREGs. Furthermore, as previously mentioned, tumor-associated DC have defects in 

cross-presentation of TAAs. Monocytes from prostate cancer patients also 

differentitate less efficiently in myeloid DCs as in healthy controls (162, 163). 

Fortunately, circulating DC from prostate cancer patients can be activated into 

mature, fully functional DC suitable for immunotherapy (164, 165) (see section 

1.1.8.2.1 on page 17). 

1.2.4.6 Mast cells 

Mast cells are tissue resident innate immune cells that contain cytoplasmic 

granules enriched in histamine and heparin. Mast cell degranulation occurs following 

tissue injury, IgE cross-linking of FcεRI or complement activation during allergic 

reaction and anaphylaxis shock. 

In cancer, mast cells were one of the first immune cells identified in the tumor 

microenvironment (166). During acute inflammation, mast cells secrete several 

cytokines and inflammatory effectors with pro-angiogenic properties (heparin, 

heparanase, histamine), tissue-remodeling serine- and metallo-proteinases and various 
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 growth factors (basic fibroblast growth factor and VEGF) (167). Thus, mast cell can 

promote extracellular matrix remodeling and tumor neo-angiogenesis (168). 

1.2.4.7 Myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSCs) are a phenotypically diverse 

population of immature myeloid precursors found in tumors. MDSC can inhibit the 

production of IFN-γ by CD8+ T lymphocyte by secreting TGF-β or by L-arginine 

metabolism. In mice, MDSCs express high levels of ARG1 concomitantly with iNOS, 

which deplete the tumor microenvironment in L-arginine and potently inhibit T 

lymphocyte activity through peroxynitration of tyrosine residues (169, 170) (see 

section 1.4.2.3 on page 66). In human, MDSCs are undefined immunoregulatory 

innate immune cells with an immature differentiation phenotype (171). Human 

MDSC express CD11b, CD13, CD15, CD33 and CD34 and are devoid of CD14, and 

HLA-DR (163, 172). Human MDSC can express ARG1.  

1.2.5 CELLS OF THE ADAPTIVE IMMUNE SYSTEM 

1.2.5.1 T lymphocytes 

Lymphocytes comprise about 30 % of PBMCs, with 85 % to 90 % being T 

lymphocytes. There are two main families of T lymphocytes based on their TCR: the 

αβ-T cells and γδ-T cells. αβ-T cells represent 95 % of all T lymphocytes and 

recognize antigenic peptides presented by MHCs on APCs. Within circulating αβ-T 

cells, the ratio between helper CD4+ T lymphocytes and cytotoxic CD8+ T 

lymphocytes is about 2 to 1. γδ-T cells represent 5 % of the total T lymphocyte 

population and participate in mucosal immunity. γδ-T cells do not recognize antigens 

through MHC-peptide complexes, but rather through non-classical MHCs, such as 

CD1, which present lipids and glycolipids. During TCR-MHC engagement, signaling 

through the associated CD3 molecules is essential for T lymphocyte activation. The 

CD3 complex is comprised of CD3γ, CD3δ, CD3ε and CD3ζ chains. The 

cytoplasmic tails of the CD3 chains are phosphorylated following TCR cross-linking 



 
43 

 

 and initiate signal transduction. In the absence of co-stimulatory molecules (second 

signal), CD3 is improperly phosphorylated, which causes lymphocyte anergy or 

apoptosis.  

In murine models of prostate cancer, infiltrating T lymphocytes have decreased 

expression of TCR-β, CD3ε and CD3ζ chains (173). L-arginine depletion in the 

prostate tumor microenvironment decreases the expression of CD3ζ chains and 

prevents T lymphocyte activation and proliferation (see section 1.4.2.3 on page 66). 

1.2.5.2 CD4+ T lymphocytes 

CD4+ T lymphocytes can be broadly defined as cytokine-secreting helper T 

lymphocytes. Depending on the pathogen and on the cytokine environment during 

the initial recognition of their cognate antigen, naïve TH0 T lymphocytes will 

differentiate into various TH phenotypes (TH1, TH2, TH17). Each TH phenotype is 

characterized by its cytokine profile and by the immune cell effector it activates. TH1 

helper CD4+ T lymphocytes secrete TH1 cytokines (IFN-γ, IL-2, IL-12), which 

promote the activation of cytotoxic CD8+ T lymphocytes and classically-activated 

macrophages. TH2 helper CD4+ T lymphocytes secrete TH2 cytokines (IL-4, IL-5, IL-

6, IL-10, IL-13), which promote the activation of B lymphocytes and antibody 

production, granulocytes as well as wound healing and regulatory macrophages. TH1 

cytokines such as IFN-γ inhibits the activity of TH2 cells and, reciprocally, IL-10 

inhibits TH1 cells (174). TH17 CD4+ T lymphocytes develop in response to IL-23 and 

secrete IL-17 [reviewed in (175)]. TH17 T lymphocytes participate in the inflammation 

associated with arthritis and encephalitis. In prostate cancer, activated T lymphocytes 

were shown to secrete high amounts of IL-17 (176). However, the exact function of 

TH17 T lymphocytes in prostate cancer remains undefined.  

1.2.5.3 Regulatory T cells 

Regulatory T cells (TREGs) represent 10-15% of the CD4+ T lymphocytes. 

TREGs constitutively express CD25, the α-chain of the IL-2 receptor and forkhead box 

P3 (Foxp3), a transcription factor, which, to date, is the most reliable TREG marker 
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 (177). Other TREG markers include glucocorticoid-induced tumor necrosis factor 

receptor (GITR), CD44, CD103, latency-associated peptide, intracellular IL-10 and 

CTLA-4. Two main subtypes of TREGs have been identified, naturally-occurring 

thymic TREGs and peripherally-induced TREGs, whose development from naive T 

lymphocyte is regulated by TGF-β, IL-2 and retinoic acid. TREGs are essential for the 

maintenance of immunological tolerance and immune cell homeostasis during the 

immune response (178, 179). TREGs are activated in an antigen-specific manner in 

secondary lymphoid organs, but suppress effector cells irrespectively of their antigen 

specificity. TREGs have multiple immunosuppressive mechanisms through cell-cell 

contact dependent pathways or secretion of immunosuppressive IL-10 and TGF-β. 

Naturally-occurring TREGs suppress the proliferation and the differentiation of effector 

functions of naïve T lymphocytes. TREGs also inhibit the effector activities of CD4+, 

CD8+ T lymphocytes, NK cells, NKT cells, B lymphocytes, macrophages, osteoclasts 

and DCs. Recently, the group of Dr. Sakaguchi observed that TREGs promoted the 

down-regulation of the co-stimulatory molecules CD80 and CD86 on the surface of 

DCs, without affecting the expression of CD40 or MHC-II, thereby preventing naïve 

T lymphocyte activation via CD28 (180). 

Pathologically, TREGs limit the aberrant activation of immune cell effectors in 

autoimmune disorders and in allergy. In cancer, the presence of TREGS within the 

primary tumor can inhibit the anti-tumoral immune response and can hinder the 

clinical efficacy of immunotherapy (181). In murine models, TREGS accumulate in the 

primary tumor and blocking of CD25 with anti-CD25 antibody reduces tumor 

growth (182). TREGS also accumulate in primary tumors of prostate cancer patients (48, 

50) as well as a less described CD8+Foxp3+ TREGs (183). Similar to ovarian cancer 

(184), the chemokine CCL22 could be implicated in the recruitment of TREGS in the 

prostate tumor. Remarkably, in a murine mouse model, the presence of TREGs 

correlated with a lower risk of prostate cancer as it inhibited the development of 

chronic inflammation (53). 



 
45 

 

 1.2.5.4 CD8+ T lymphocytes 

Cytotoxic CD8+ T lymphocytes recognize antigens presented by MHC-I. 

Virally-infected cells present viral peptides on their surface through MHC-I, which 

causes their recognition and elimination by CD8+ T lymphocytes through the 

secretion of perforin and granzymes (185). CD8+ T lymphocytes also express Fas 

ligand (FasL) and bind Fas receptor on the surface of the target cell, which leads to 

caspase activation and apoptosis. Cytotoxic CD8+ T lymphocytes are central cellular 

effectors that need to be activated in the context of cancer immunotherapy. 

As a method of immune evasion, prostate cancer cells lose MHC-I expression, 

which renders them invisible to cytotoxic CD8+ T lymphocytes. Furthermore, in a 

recent study, CD8+ T lymphocytes were shown to have undergone clonal expansion 

within the prostate (186). However, these CD8+ T lymphocytes also express high 

level of PD-1, a cell surface receptor associated with an “exhausted” CD8+ T 

lymphocyte phenotype (46, 186). Finally, following trafficking through the prostate, 

murine prostate-specific CD8+ T lymphocytes can inhibit the proliferation of naïve T 

lymphocytes in a TGF-β-dependent manner (187). 

1.2.5.5 B lymphocytes 

B lymphocytes are antibody producing cells representing 5% to 15% of 

circulating lymphocytes. B lymphocytes first develop in the bone marrow. They 

proliferate and mature in germinal centers through close interactions with follicular 

dendritic cells, macrophages and CD4+ helper T lymphocytes. Ligation of CD40 on B 

lymphocytes by CD40 ligand (CD40L) expressed by CD4+ helper T lymphocytes is 

necessary for their activation and leads to somatic hypermutation and class switching 

recombination causing the production of high-affinity antibodies. Conventional B 

lymphocytes (B2 cells) can present phagocytosed antigen to T lymphocytes and, 

reciprocally, get activated and develop into antibody-producing plasma cells (188-

190). The smaller population of B1 cells can produce antibody independently of T 

lymphocytes and are suggested to be the source of auto-antibodies (191). 
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 In cancer, B lymphocytes and antibody production participate in the 

maintenance of the tumor’s chronic inflammatory state. 

1.2.6 SUMMARY 

An effective immune response necessitates the activation of both innate and 

adaptive immune cellular effectors. In cancer, the cell-mediated anti-tumoral TH1 

CD8+ T lymphocyte immune response is rendered ineffective due to DC dysfunction, 

the recruitment of immunoregulatory cells, such as TREGS and regulatory macrophages, 

and the development of an immunosuppressive microenvironment within the tumor 

bed. In the case of prostate cancer, it is essential to better understand the activation 

status of immune cells within secondary lymphoid organs and the primary tumor. The 

sole evaluation of cell numbers contributes to confusing conclusions in the literature 

as to the implication of lymphocytic and myeloid cell infiltration in disease 

progression.  

1.3 THE ANTI-TUMORAL IMMUNE RESPONSE 

It was 100 years ago when Dr. Paul Ehrlich demonstrated that the immune 

system could recognize and eliminate tumor cells (192). In the late 1950s, Drs. 

Thomas and Burnet, coined the concept of immune surveillance based on the 

increased cancer incidence from viral origins in immunosuppressed patients (193, 

194). The cancer immune surveillance concept states that lymphocytes are responsible 

for eliminating continuously arising malignant cells. Early on, this concept however 

failed to be accepted by oncologists since athymic nude mice develop chemically 

induced tumors at the same rate as control mice suggesting that the absence of T 

lymphocytes did not favor tumor development (195). At the time, it was not known 

that athymic nude mice do in fact produce low, but detectable numbers of αβ T 

lymphocytes, have normal numbers of functionally active NK cells, have a fully 

functional innate immune system, and that they could thus mount an effective anti-

tumoral immune response. Recently, with the use of modern immunodeficient mouse 

models, it has been demonstrated that the immune system does eliminate tumor cells. 
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 Nonetheless, the continued interactions between immune and tumor cells causes a 

survival selection pressure that promotes the outgrowth of tumor cells better suited 

to fight off the anti-tumoral immune response. In light of these results, Dunn and 

Schreider proposed the concept of immune editing, which is comprised of three 

phases: elimination (immune surveillance), equilibrium and escape (196) [and 

reviewed in (197)]. 

1.3.1 IMMUNE ELIMINATION 

During the immune elimination phase, the immune system acts as an extrinsic 

tumor suppressor continuously killing spontaneously arising tumor cells. Similar to 

the eradication of invading pathogens, the elimination of tumor cells requires the 

collaborative effort of both adaptive and innate immune cells and the production of 

IFN-γ. Innate cells are first to recognize malignant transformation. NK cells can 

recognize tumor cells by the absence of MHC-I expression. Innate cells can also 

recognize the local tissue disruption associated with unregulated stroma remodeling 

caused by tumor neo-angiogenesis and tissue invasion. This initial tumor cell 

recognition leads to the production of IFN-γ and IL-12 by NK cells and 

macrophages. Tumor cell death and phagocytosis favor the presentation of TAAs to 

naïve tumor-specific TH1 CD4+ T lymphocytes and promote the activation tumor-

specific CD8+ cytotoxic T lymphocytes. These activated T lymphocytes eliminate the 

remaining tumor cells in an antigen-specific manner. It is interesting to note that most 

clinically diagnosed cancers occur in the aging population where there is a 

concomitant decline in immune functions. 



 
48 

 

 

 

 

Figure 7. Direct and indirect pathways of tumor cell recognition by innate and 

adaptive immune cells.  

 

Right panel: Tumor cell recognition by innate immune cells. NK cell recognizes the 

absence of MHC-I expression by the tumor cell and MICA/B expression by the 

tumor cell. Through CD36 and αvβ5 integrins, DC phagocytose the tumor cell, whose 

TAAs will be presented in the tumor draining LNs. Necrotic tumor cell will activate 

scavenger receptors (CD91) on tumoricidal macrophages. Left panel: DC present 

TAAs to CD4+ T lymphocytes and CD8+ T lymphocytes. B lymphocytes are also 

activated with the help of CD4+ T lymphocytes. Reciprocally, CD4+ T lymphocytes 

promote DC maturation, which also activate NKT cells. 

 

Adapted from (101). 
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1.3.1.1 Evidence of immune elimination in mice 

In the 1990s, two landmark studies renewed the interest for cancer immune 

surveillance. There was the demonstration that endogenous IFN-γ is central in the 

protection against transplanted tumors, chemically induced tumors and spontaneously 

arising lymphomas and lung adenocarcinomas (198). Furthermore, mice lacking 

perforin are more sensitive to chemically induced and spontaneous tumors (199). 

Definitive proof of cancer immune surveillance came through the use of recombinase 

activating gene-2 (RAG-2) knock-out mice, which lack B lymphocytes, T lymphocytes 

and NKT cells (200). Rag-2 -/- mice have a more rapid development of chemically-

induced tumors as well as a higher incidence of spontaneous, non-virally induced 

tumors.  

1.3.1.2 Evidence of immune elimination in humans 

Individuals with congenital or acquired immunodeficiencies and patients 

undergoing immunosuppressive therapies have increased incidence of cancers of the 

anal and urogenital tracts and virally-induced cancer, such as Kaposi’s sarcoma 

(Kaposi's sarcoma-associated herpes virus) and non-Hodgin’s lymphoma (human T-

cell leukemia/lymphoma virus and Epstein Barr virus) (201). Cancer incidence 

analysis of non-viral origins in immunocompromised individuals is problematic due 

to their higher sensitivity to infection. Nonetheless, there is evidence showing that 

immunosuppressed transplant patients have a higher incidence of non-viral cancers 

(197). Several studies demonstrated an increased incidence of colon, lung, bladder, 

kidney, pancreatic, ureter and endocrine tumors in transplanted patients (202, 203). In 

one study, the prevalence of lung cancer was 25-fold higher in transplanted patients. 

However, it remains unknown whether clinically induced immunosuppression 

increases the development of de novo tumors (related to the absence of immune 

elimination) or permits the proliferation of pre-existing cancers initially constrained 

by the immune system (related to the absence of immune equilibrium). 
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 Dunn and Schreiber also suggest that immune surveillance is evidenced by the 

correlative data between the presence of tumor-infiltrating lymphocytes (TILs) and 

favorable prognostic indicator for patients with melanoma (204), ovarian (205), 

colorectal (206), esophageal squamous cell (207) and prostate cancer (43). NK cell 

infiltration of the primary tumor is also a favorable prognostic factor for patients with 

gastric carcinoma (208), squamous cell lung carcinoma (209) and colorectal cancer 

(210). Moreover, patients do develop adaptive and innate immune response to the 

tumors they bear. Some cancer patients develop paraneoplastic neurological disorder, 

a rare autoimmune neurological disease caused by the anti-tumoral immune response 

cross-reacting with the nervous system (211).  

However, contrary to the murine studies, these correlative data based on 

immune cell infiltration and disease progression do not reflect a role for immune 

surveillance. Clinically detectable tumors have passed the stage of immune 

surveillance and thus the immune cell infiltrate could be drastically different from the 

immunological environment during the earlier stages of carcinogenesis. Nonetheless, 

cancer incidence in transplanted patients is insightful. If transplanted patients not 

only have a higher tumor incidence, but also have a more rapid onset of non-virally-

induced tumors, then it could be suggested that these patients do lack anti-tumoral 

immune functions related to either immune elimination or equilibrium. 

1.3.2 IMMUNE EQUILIBRIUM 

Evidently, not all malignant cells are eliminated during the immune surveillance 

phase as patients do develop cancer. The carcinogenic process follows a darwinesque 

evolutionary route on which tumor cells that gain a survival advantage in the face of a 

selective pressure will be able to survive and to proliferate. The immune equilibrium 

stage of carcinogenesis is believed to be the longest stage in the life of the tumor 

during which it enters in a dynamic communication with the immune system. There 

are three eventual outcomes to this stage. The immune system can gain a definite 

advantage and fully eradicate the tumor mass. On the other hand, the immune system 

can be unable to eliminate the tumor cells, but nonetheless keep tumor cell numbers 
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 below clinically detectable levels. Finally, tumor cells can overpower the immune 

system and grow into a clinically detectable mass. Through the release of ROS, the 

continuous presence of innate and adaptive immune cells effectors can increase 

genomic instability of malignant cells. It will thus become easier for these genetically 

unstable cells to mutate, reduce their immunogenicity and acquire weapons to fight 

off the immune system [reviewed in (212)]. By the time the tumor attains a clinically 

detectable size, it has developed sufficient immune invisibility and gained an effective 

arsenal to allow for its survival. 

1.3.2.1 Evidence of immune equilibrium in mice 

Studies in mouse models demonstrate that the immune system sculpts the 

immunogenicity of tumor cells. Cancer cells from wild type or Rag2 -/- mice both 

grow with similar kinetics in immunodeficient mice. However, Rag2 -/- tumors are 

rejected when transplanted in immunocompetent hosts, demonstrating that tumors 

arising from immunodeficient hosts are more immunogenic (197). In the prostate 

cancer TRAMP model, adoptive transfer of TAA-specific T lymphocytes offers a 

long-term protection against tumor outgrowth without completely eradicating the 

tumor bed (213). This state of immune-induced tumor dormancy is also observed in 

healthy mice receiving low doses of carcinogen 20-methylchol-anthrene (MCA). 

Without having evidence of growing tumors, these mice have dormant tumors kept in 

check by the immune system. Following specific immunosuppression (T lymphocyte 

depletion or anti-IL-12 or anti-IFN-γ antibodies), there is an outgrowth of the 

dormant tumor, which becomes fatal for the host (214).  

1.3.2.2 Evidence of immune equilibrium in humans 

Immune equilibrium is observed in cancer patients who are in remission for 

several years following therapy. A study shows that breast cancer patients have been 

in remission for more than 20 years (free of clinically detectable tumor mass) still had 

tumor cells circulating in their blood (215). The immune equilibrium phase of cancer 

progression is also observed in the transmission of cancer from transplant donors to 
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 recipients. The transplanted organs from donors with no clinical history of cancer or 

in durable cancer remission (histologically normal and tumor-free at harvest) can give 

rise to cancer in the recipient host (216-219). Results from the literature suggest that 

the immunosuppressive regiment of transplanted patients can allow the outgrowth of 

occult tumor cells, which have been maintained in the equilibrium phase by the 

immunocompetent donor. The rapid onset of tumor growth in these patients argues 

against de novo carcinogenesis. 

1.3.3 IMMUNE ESCAPE 

The immune escape phase is characterized by the outgrowth of 

immunologically sculpted tumor cells into clinically detectable size in 

immunocompetent host. At this point of carcinogenesis, tumor cells have acquired 

sufficient “immunity” against immunological attacks from both innate and adaptive 

immune cell effectors. In a murine model activated TAA-specific T lymphocytes are 

functionally tolerogenized, i.e. they are unable to degranulate and secrete IFN-γ or 

granzyme B (220). In fact, it is the entire tumor microenvironment that has become 

hostile to the anti-tumoral immune response. Stromal cells, which are also modified 

by their neoplastic neighbors, can express IDO (221) and COX-2 thereby directly 

participating in the development of the tumor’s immunosuppressive 

microenvironment. DC expressing IDO can accumulate in tumor draining LNs 

preventing the activation and promoting the apoptosis of TAA-specific lymphocyte 

(220). In prostate cancer patients, we showed that tumor-draining lymph nodes are 

also immunosuppressed (222). 

Immune escape involves several mechanisms. The selective immunological 

pressure renders the tumor cell less immunogenic through the loss of MHC-I 

expression. Cancer cells also express immunoregulatory molecules (TH2 cytokines, 

arginase, IDO, COX-2) preventing the activation of innate and adaptive immune 

cells. Cancer cells also shed decoy receptors (Fas) and decoy ligands (FasL, MICA/B) 

forcing the improper activation or apoptosis of cellular effectors away from the 

tumor bed. Finally, immunosuppressive immune cells (MDSCs, TREGS and regulatory 



 
53 

 

 macrophages) that participate in the termination of the immune response are 

recruited to the tumor, further preventing the activation of the anti-tumoral immune 

response.  
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Figure 8. Immunosuppressive pathways in cancer.  

Schematization of several immunosuppressive pathways possibly present in cancer. 

Note the large variety of immunoregulatory molecular mediators as well as the 

involvement of multiple innate and adaptive immune cells. 

Adapted from (221). 
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1.3.4 IMMUNOSUPPRESSION IN PROSTATE CANCER 

The following section will briefly describe the role of immunosuppressive 

molecules documented to be expressed in prostate cancer [reviewed in (223)]. Tumor-

derived immunosuppression through cellular effectors such as TREGs, immature DCs 

and regulatory macrophages were previously described in sections 1.2.5.3 on page 43, 

1.2.4.5 on page 40 and 1.2.4.4 on page 36. 

1.3.4.1 Defects in antigen presentation 

Several studies have demonstrated a reduced or complete loss of MHC-I 

expression in primary tumors and LN metastases from prostate cancer patients 

compared to normal or BPH specimens (224-227). Loss of MHC-I expression 

prevents the presentation of TAAs on the surface of tumor cells and their recognition 

by CD8+ T lymphocytes. Contrary to prostate cancer cell lines, defects in the antigen 

presentation machinery have not been detected in tissue samples from primary 

tumors. 

1.3.4.2 Production of immunosuppressive cytokines 

In the context of a TH1 anti-tumoral immune response, the expression of TH2 

cytokines is considered immunosuppressive as it inhibits the expression of IFN-γ and 

the activation of cytotoxic CD8+ T lymphocytes. The serum of prostate cancer 

patients contains elevated levels of TH2 cytokines (IL-4, IL-6, IL-10, TGF-β) 

compared to men without cancer or to men with BPH (228-231). An increase in IL-6 

levels is associated with a worst prognosis (232) and with direct growth promoting 

effects on prostate cancer cells (119). Mitogen-activated PBMCs of prostate cancer 

patients also produce less TH1 cytokines (IL-2 and IFN-γ) than controls (233), which 

could explain the inefficiency of the CD8+ mediated anti-tumoral immune response. 
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 1.3.4.3 Immunosuppression through amino acid depletion 

Amino acid depletion is an in ancestral mechanism preventing the proliferation 

of invading cells or pathogens. From a tumor’s point of view, the invading cells are 

activated tumor-specific CD8+ T lymphocytes. As further detailed in section 1.4.2.3 

on page 66, the activation status of CD8+ T lymphocytes is sensitive to the 

concentration of specific amino acids (arginine, tryptophan) present in the tumor 

microenvironment. Overexpression of L-arginine metabolizing enzymes (arginase and 

NOS) and the consequent diminution of arginine extracellular concentration causes 

the inhibition of prostate-specific T lymphocytes [reviewed in (169)]. Compared to 

benign tissue, arginase activity is also increased in the tumor tissue of melanoma 

(234), breast (235) and colon cancer patients (236) and in the serum of colon cancer 

patients (237) where it is associated with disease progression (238).  

In prostate cancer patients, arginase II (ARG2) is overexpressed in the 

peripheral and transition zones of the prostate. There is almost no ARG2 expression 

in the central zone of the prostate (239) (see section 1.1.2 on page 2). Two studies 

found an increased arginase activity (240, 241) as well as increased ARG1 and ARG2 

expression (242) in prostate cancer patients compared to BPH patients, whereas one 

study demonstrated a lower arginase activity in tumor tissues (243). However, a high 

arginase activity also correlates with lower Gleason score (244) and with increased 

survival rate (245). This inverse correlation between arginase expression and tumor 

aggressivity is also observed in prostate cancer cell lines. Androgen-sensitive prostate 

cancer cell lines (LNCaP and 22RV1) express higher levels of ARG2 than androgen-

independent cell lines (Du145 and PC3) (244). Moreover, LNCaP cells derived to an 

androgen-independent state lose their ARG2 expression, which is compensated by an 

increased ornithine ornithine aminotransferase (OAT) expression (244). LNCaP cells 

are also dependent on the generation of polyamines from the metabolism of L-

arginine, which are essential for their growth (246). Expression of iNOS is also 

upregulated in prostate cancer (247-249) and correlates with poor survival (250). 

Altogether, these data suggest that arginase expression and arginase activity are 
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 increased within tumor tissue. However, the importance of this elevated arginase 

expression seems to be restricted to the earlier stages of the disease. 

IDO, which metabolizes tryptophan, is another enzyme that modulates CD8+ 

T lymphocyte activation through amino acid metabolism. Tryptophan depletion leads 

to decreases in T lymphocyte proliferation, maturation of effector functions and 

survival [reviewed in (251)]. Increased IDO expression has been demonstrated in 

primary tumors of prostate cancer patients (252). 

1.3.4.4 COX-2 and Prostaglandin E2 

Cyclooxygenase-2 (COX-2) converts arachidonic acid to prostaglandin G2 

(PGG2), which is further converted to PGE2 by PGE2 synthase (PGES). COX-2 is 

overexpressed in several tumors (253). In prostate cancer, COX-2 expression 

correlates with higher Gleason score and neoangiogenesis (254). COX-2 expression is 

linked to prostatic inflammation with TILs promoting COX-2 expression by prostate 

cancer cells (255). Epidemiologically, individuals taking non-steroidal anti-

inflammatory drugs (NSAIDs) have a 15% lower incidence of prostate cancer, 

suggesting a role for COX-2 in prostate cancer (256). Three different PGES have 

been identified: membrane PGES-1 (mPGES-1) and mPGES-2 and cytosolic PGES 

(cPGES). Of the three only mPGES-1 is inducible during inflammatory responses. 

None of the three PGES have been demonstrated to be expressed in prostate cancer.  

PGE2 regulates T lymphocyte proliferation, lymphocyte cytokine production as 

well as macrophage and NK cell cytotoxicity (257). The immunosuppressive action of 

PGE2 is associated with the production of IL-10 (221) and with an increased TREG 

suppressive activity (258, 259).  

1.3.4.5 Induction of T lymphocyte death through Fas-FasL 

FasL is a type II transmembrane TNF family protein that triggers apoptosis in 

Fas expressing cells. CD8+ T lymphocytes induce tumor cell apoptosis through this 

Fas-FasL interaction. Conversely, there is an increased secretion of soluble Fas in 

serum of prostate cancer patients (260), which act as decoy receptors preventing the 
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 elimination of Fas-bearing tumor cells. There is also an increased secretion of FasL by 

prostate cancer cell lines promoting the apoptosis of Fas-expressing lymphocytes 

(261). 

1.3.5 SUMMARY 

According to the immune editing theory of cancer development, at the time a 

tumor reaches clinically detectable size, it has to have gained an immunoregulatory 

status rendering it “immune” to the anti-tumoral immune response by diminishing its 

immunogenicity, by actively expressing immunosuppressive molecules and by 

recruiting immunosuppressive cellular effectors. In the context of an immunotherapy, 

these immunosuppressive mechanisms need to be identified and overcomed to allow 

for the activation of cytotoxic cellular immune effectors within the tumor bed. 

Concerning prostate cancer, the challenge regarding the elimination of 

immunosuppressive mechanism is two-fold. First, we must identify which 

immunosuppressive mechanisms are expressed at specific stages of prostate cancer 

progression. We must characterize the immunological environment in patients with 

advanced prostate cancer, as they are the patients targeted to undergo 

immunotherapy. Secondly, we must understand the regulation of the 

immunosuppressive pathways in prostate cancer patients. Studying the regulatory 

pathways will provide essential information on which factors allow prostate tumors to 

evade the immune system and possibly identify new therapeutic targets. 

1.4 L-ARGININE AND ARGINASE 

1.4.1 L-ARGININE HOMEOSTASIS 

L-arginine and its metabolites participate in protein synthesis, cell division, 

wound healing, reproduction, ammonia removal, neurotransmission and immunity. In 

humans, L-arginine is a conditionally non-essential amino acid, which is only 

nutritionally essential in infants. Circulating L-arginine is derived from diet, 

endogenous synthesis and protein turnover. In diet, it is abundant in dairy products, 

meat, seafood, wheat germ and cereals, nuts, seeds, chick peas and soybeans (262). 
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 Due to the high arginase activity of the small intestines about 40% of dietary L-

arginine is degraded in first pass metabolism (263, 264). In adults, L-arginine is 

principally synthesized via the intestinal-renal axis. L-citrulline is released in the blood 

from the small intestine and metabolized to L-arginine in the proximal tubule of the 

kidney. L-citrulline is converted into L-arginine through the activity of 

argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). There are also 

minor contributions of adipocytes, endothelial cells, macrophages, neurons and 

myocytes in L-arginine synthesis (265). The liver produces the highest amount of L-

arginine, however, due to its high arginase activity, there is no net L-arginine synthesis 

(265). In healthy adults, a balance between uptake and catabolism maintains L-

arginine homeostasis (266). Through various metabolic pathways, L-arginine is the 

source of NO, agmatine, proline, glutamine, glutamate, creatine and several 

polyamines.  

1.4.1.1 Polyamines and tumor cell proliferation 

Polyamines are important substrates in the regulation of cellular proliferation 

and differentiation [reviewed in (267)]. The prostate has the highest polyamine 

concentration of any tissue and it is one of the only organs that produce polyamines 

for export in the seminal fluid (267). The seminal fluid is rich in polyamines, such as 

putrescine, spermidine and spermine, which are essential for cell growth and 

differentiation during spermatogenesis.  

Compared to normal cells, tumor cells require higher amounts of polyamines to 

sustain their proliferative rate (268). Malignant cells augment polyamine synthesis 

through the overexpression of ornithine decarboxylase (ODC), the first enzyme in 

polyamine biosynthesis from L-ornithine (269). Tumor cells also express high levels of 

arginase (270, 271). Hepatocellular carcinoma and melanoma cells are termed 

auxotrophic for L-arginine, which means that they are unable to synthesize the 

sufficient amount of L-arginine necessary for their growth (272, 273). Clinically, 

systemic release of endogenous arginase following transhepatic arterial embolisation 
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 caused hepatocellular carcinoma remission due to diminished L-arginine 

bioavailability (274). 
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Figure 9. L-arginine metabolism.  

Metabolic pathways of L-arginine and polyamine synthesis. Important enzymes are 

highlighted in red, L-arginine and L-citrulline in blue and important metabolic by-

products in green. 

ADC (Arginine Decarboxylase); AGAT (Arginine:Glycine Amidinotransferase), ASL 

(Argininosuccinate Lyase); ASS (Argininosuccinate Synthase); OAT (Ornithine 

Aminotransferase); ODC (Ornithine Decarboxylase). 

 

Adapted from (262). 
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1.4.1.2 L-arginine intracellular transport 

L-arginine is actively transported inside cells via high-affinity cationic amino 

acid transporters (CATs), which are either Na+-independent (system y+) or Na+-

dependent (b0,+, B0,+ and y+L) (275, 276). In inflammatory cells, the system y+ is an 

absolute requirement for L-arginine transport (277). The system y+ is composed of 

five confirmed members: CAT-1, CAT-2A, CAT-2B, CAT-3 and CAT-4 (278). 

Whereas CAT-1 is constitutively expressed, CAT-2 expression is inducible. CAT-2A 

expression is limited to hepatocytes while CAT-2B is expressed by various cells 

including inflammatory cells, such as macrophages (279, 280). Inflammatory signaling 

will induce the expression of CAT-2B concomitantly with arginine-metabolizing 

enzymes such as NOS (281). The expression of CAT-1, CAT-2 and CAT-3 has been 

confirmed in humans. 

1.4.1.3 Pathological disorders associated with L-arginine deficiency. 

An imbalance in L-arginine availability leads to serious pathological conditions. 

In premature infants, L-arginine deficiencies cause life-threatening hyperammonemia 

as a result of a lack of urea necessary for ammonia detoxification (282). Patients with 

pulmonary tuberculosis have significantly lower plasma L-arginine levels, which 

correlates with impaired T lymphocyte activation (283) (see section 1.4.2.3 on page 66 

for the immunosuppressive effects of L-arginine depletion). Conversely, high levels of 

L-arginine metabolites can also be detrimental. Renal cells are quite sensitive to high 

concentration of proline, polyamine and NO (262). Overproduction of proline, and 

the consequent elevated collagen formation, causes extracelllular matrix fibrosis. 

Elevated polyamine levels lead to excessive renal cell proliferation. Excessive NO 

production causes elevated levels of peroxynitrite anion, nitration of protein tyrosine 

and production of hydroxyl radical, all of which may worsen immune-mediated 

glomerulonephritis and post-ischemic renal failure.  
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 1.4.1.4 Regulation of L-arginine metabolism 

L-arginine is metabolized by five enzymes. ARG1 (cytoplasm) and ARG2 

(mitochondria) hydrolyze L-arginine into L-ornithine. Cytoplasmic NOS oxidizes L-

arginine into NO. Mitochondrial arginine decarboxylase (ADC) decarboxylates L-

arginine in agmatine and arginine:glycine amidinotransferase (AGAT) catalyses the 

transfer of an amidino group on L-arginine to form glycine. Glucocorticoids augment 

arginase expression and L-arginine hydrolysis in hepatocytes and enterocytes (284) as 

well as reducing NOS expression and consequently NO production (285, 286). 

Cytokines (IL-4, IFN-γ) and other pro-inflammatory molecules, such as LPS and 

cyclic adenosine monophosphate (cAMP), are important regulators of L-arginine 

metabolism (287). Rats injected with LPS will have a 10- to 20-fold increase in NO 

within 24 hours (288). In murine macrophages, TH1 cytokines favor the expression 

NOS, whereas TH2 cytokines favor the expression of arginases. The polyamine 

synthesis pathways, which include ornithine decarboxylase (ODC) and spermidine 

synthase, are also regulated by androgens (267). More details on the regulation of 

arginase expression will be discussed in the following section. 

1.4.1.4 .1  NO produc t ion  in  cancer 

At low concentration, NO has tumor-promoting effect by acting as a second 

messenger and by promoting tumor vascularization (289, 290). On the other hand, at 

high concentration, NO causes DNA and protein nitrosylation leading to cell-cycle 

arrest and apoptosis (291). Myeloid cells are the major source of iNOS within the 

tumor bed and their NO production, which can be induced by IFN-γ, has direct 

tumoricidal effects (292, 293). Interestingly, iNOS expression in tumor is often loss 

during tumor progression (294), possibly due to the phenotypic changes of M1 into 

arginase-expressing M2 macrophages (295) and through the production of TGF-β by 

myeloid suppressor cells (296). 
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 1.4.2 ARGINASE I AND ARGINASE II 

The two arginase isoforms, ARG1 and ARG2 are encoded by two separate 

genes and share ~60% protein homology. ARG1 and ARG2 have different 

biochemical and immunological functions (287). Cytoplasmic ARG1 is primarily 

expressed by hepatocytes and to a limited extent by enterocytes, endothelial cells, 

immune cells and red blood cells. ARG1 directs ornithine to polyamine synthesis due 

to its colocalization with ODC. Mitochondrial ARG2 is widely expressed at a low 

level in most mitochondria-containing extra-hepatic cells. ARG2 participates in the 

synthesis of proline and glutamine and colocalizes with OAT. ARG2, and not ARG1, 

seems to be responsible for the inhibition of iNOS expression through L-arginine 

bioavailability, whereas ARG1 is more important in polyamines synthesis necessary 

for tumor growth (297). ARG1 knock-out and ARG1/ARG2 double knock-out mice 

develop severe hyperammonemia and die within 10 to 14 days after birth (298). 

ARG2 knock-out display cardiovascular anomalies associate with hypertension (299) 

due to increased NO production. 

Arginase is the principal pathway for L-arginine catabolism and the limiting step 

in polyamine synthesis. High arginase expression has been described in chronic 

inflammation, asthma (300), psoriasis (301), infection diseases (283, 302, 303) and 

cancer (304). Arginase can also be released in extracelllular fluids (plasma, wounds, 

intestinal lumen) where it hydrolyzes L-arginine into ornithine and urea. In 

inflammation and injury, high plasma arginase activity can results in L-arginine 

deficiency, reduced NO production and increased parasite and bacterial survival 

(305). Serum arginase activity is also elevated in association with type-2 diabetes 

mellitus (306), asthma (307), burn victims (308) and in sickle cell anemia (309). 

1.4.2.1 Regulation of arginase expression in animal models 

In mice, ARG1 expression is upregulated by TH2 cytokines (IL-4, IL-6, IL-10, 

IL-13, TGF-β) (310), cyclic adenosine monophosphate (cAMP), GM-CSF (311), LPS 

(171), PGE2 (312), catecholamines (313) and NF-κB signaling (314). In murine 

macrophages, ARG1 induction by TH2-cytokine is dependent on signal transducer 
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 and activator of transcription-6 (STAT-6) (315). Murine ARG2 is also regulated by 

LPS and cAMP (316). In murine macrophages, Heliobacter pylori activates NF-κB 

signaling causing ARG2 expression (314). Liver X receptors increase ARG2 

expression whereas IRF-3 prevents this Liver X receptor-mediated ARG2 induction 

(317). 

Contrary to TH2 cytokines, TH1 cytokines (TNF-α, IFN-α, IFN-β, IFN-γ) 

promote iNOS and not ARG1 expression (318). Moreover, arginase and NOS also 

directly inhibit each other through NO by-products and L-arginine bioavailability 

(319, 320). Through the production of the NO intermediate hydroxy-L-arginine, 

iNOS inhibits arginase expression. Conversely, depletion of L-arginine by ARG2 

directly inhibits the translation of iNOS mRNA (286, 321, 322).  

1.4.2.1 .1  Androgen i c  regu lat ion  o f arginase  express ion  in  an imal mode ls  

In rats, castration decreases arginase activity by 50%, which was prevented by 

DHT administration (323). Testosterone injection also upregulates ARG2 and ODC, 

whereas it down-regulates OAT expression by murine female kidneys (324). 

Conversely, castration in male mice decreases the expression of ARG2 and ODC by 

kidney cells and upregulates OAT (324). The murine ARG2 promoter does not 

contain putative androgen receptor response elements (AREs). It has been proposed 

that testosterone can bind sex hormone binding globulin (SHBG) and the SHBG 

receptors, which would increase cAMP in an AR-independent signaling (324). (See 

section 1.5.5.2.2 on page 76 for details on AR non-genomic signaling).  

1.4.2.2 Regulation of arginase expression in humans 

It remains unclear what factors regulate the expression of ARG1 and ARG2 in 

human cells. Contrary to murine regulatory macrophages and DCs, human 

macrophages and DCs do not express ARG1 (171). Human neutrophils, but not 

eosinophils (325), constitutively express ARG1, which however does not vary 

following exposure to TH2 cytokines IL-4 and IL-13 (326). IRF-3 signaling increases 

ARG2 expression in Jurkat cells infected with Sendai-virus (327). Recent reports 

suggest that COX-2 and PGE2 may also regulate arginase expression in human tumor 
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 cells (170). Finally, gene-chips studies evaluating LNCaP cells treated with DHT 

identified ARG2 as an androgen-regulated gene (328, 329). DHT also upregulates the 

expression of ODC in LNCaP cells (330). 

1.4.2.3 Immunosuppressive effects of L-arginine depletion 

L-arginine depletion following elevated L-arginine metabolism by the tumor 

causes the anergy of activated CD8+ T lymphocytes (169, 304, 326, 331-335). 

Physiologically, L-arginine depletion mediated T lymphocyte hyporesponsiveness is 

present in pregnancy (336).  

Activated T lymphocytes are quite sensitive to L-arginine levels. L-arginine 

depletion causes T lymphocyte anergy by blocking protein synthesis, proliferation and 

CD3ζ TCR signaling. Reduction of intracellular L-arginine concentration activates 

general control non-derepressible-2 (GCN2) kinase, a stress-induced kinase activated 

by elevated levels of uncharged tRNA. GCN2 activation leads to the inhibitory 

phosphorylation of eIF2, which inhibits protein expression by halting translation 

initiation (316, 337). L-arginine depletion also causes a decreased phosphorylation of 

Rb. Moreover, following activation in an L-arginine-depleted microenvironment, T 

lymphocyte will fail to upregulate the expression of cyclin D3 and cyclin-dependent 

kinase 4 (CDK4), which causes cell cycle arrest in G0-G1 (334, 335, 338). T 

lymphocytes are also unable to upregulate CD3ζ as a result of reduced protein 

synthesis and a shorter CD3ζ mRNA half-life in the absence of L-arginine (331). 

Increased production of polyamines can also inhibit the release of pro-inflammatory 

cytokines (339). Finally, within the tumor, a high concentration of NO, due to the 

expression of NOS, can directly induce T lymphocyte apoptosis and inhibit the 

expression of intracellular signaling proteins participating in lymphocyte activation 

such as JAK kinases (340-343).  

NK cells are also sensitive to L-arginine depletion. In a recent study, 

constitutive arginase expression by granulocytes inhibits human NK cell proliferation 

as well as IL-12 and IFN-γ secretion (344). NK cell viability and granule exocytosis 

were not affected. However unlike T lymphocytes and NK cells, murine macrophages 
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 are insensitive to L-arginine depletion and maintain expression of cytokines, 

chemokines and activation markers in the absence of L-arginine (345). Since 

macrophages do not proliferate following their activation, L-arginine depletion may 

have less repressive effects on macrophages than on the actively proliferating T 

lymphocytes. Moreover, macrophages have a functional urea cycle and can thus 

synthesize their own L-arginine, which allows for their activation in an L-arginine 

depleted environment (346).  
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Figure 10. Potential inhibitory pathways of L-arginine depletion.  

A) Blockade of CD3ζ expression through the activation of GNC2. B) NO 

production causes nitrosylation of cysteine residues and activation of cyclic guanosine 

monophosphate (cGMP), which affect IL-2R/CD25 signaling and IL-2 mRNA 

stability. C) Expression of both ARG1 and iNOS causes the production of ROS and 

reactive nitrogen-oxide species, which can induce lymphocyte apoptosis. 

Adapted from (169). 
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1.4.3 L-ARGININE SUPPLEMENTATION 

The involvement of L-arginine depletion in several pathologies and tumor-

derived immunosuppression suggests that L-arginine supplementation could have 

therapeutically effects. Several studies demonstrated that L-arginine supplementation 

is beneficial for patients with cardiovascular disorders (347), obesity (262, 348), sickle-

cell anemia (349), cystic fibrosis (350) as well as to increase wound healing (351) and 

muscular endurance (352) in healthy individuals. However, regarding L-arginine 

supplementation in cancer patients, the answer is not so simple. 

1.4.3.1 L-Arginine Supplementation in Cancer 

In cancer models, L-arginine supplementation reverses the immunosuppressive 

effects of increased L-arginine metabolism (262). In tumor-bearing rats, L-arginine 

supplementation increases thymic weight and cellularity, T lymphocyte proliferation, 

IL-2 production and IL-2R expression as well as lymphocyte, macrophage and NK 

cell cytotoxicity (353). Mice given low doses of oral L-arginine for one year had 

decreased tumor incidence and increased survival due to the activation of NO-

dependent tumor cytotoxicity mediated by macrophages and lymphocytes (354). 

However, the concomitant polyamine synthesis associated with increased L-arginine 

bioavailability has tumor growth promoting effects, which depends on tumor stage. L-

arginine supplementation to patients with colorectal adenoma (benign) or during the 

earlier stage of colorectal carcinogenesis increases ODC activity, reduces cellular 

proliferation decreases tumor mass, whereas during later stages, L-arginine promotes 

tumor growth and increases the tumor expression of NOS and NO serum levels, two 

factors that favor colorectal cancer progression (355-357). Furthermore, 

administration of L-arginine, which increases NO production, would be detrimental 

to patients with severe infections, inflammatory or autoimmune disorders and 

pathological angiogenesis. As such, L-arginine supplementation does not apply to 

every pathological disorder and should be carefully evaluated in specific stages of 

cancer progression. 
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 1.4.3.2 Polyamine inhibition to minimize tumor growth 

Conversely to L-arginine supplementation, the dependency of tumor cells for L-

arginine and arginine can be targeted to eliminate tumors (272, 273). A recombinant 

human ARG1 linked to a polyethylene glycol linker (rhArg-PEG), which depletes the 

extracellular L-arginine, causes the inhibition of tumor cell proliferation in vitro and 

reduces the growth of xenografts in vivo (358). Another group has generated a 

pegylated L-arginine deiminase (ADI-PEG), which, like the rhArg-PEG, causes L-

arginine depletion and tumor growth inhibition (359). However, tumor cells have 

been shown to be resistant to these novel drugs by overexpressing enzymes of the 

urea cycle, such as ASS and OTC, and replenish their store of L-arginine (272). 

Furthermore, these studies did not evaluate the consequence of L-arginine depletion 

on the inhibition of the anti-tumoral immune response.  

In prostate cancer, reduction of intracellular polyamines through the inhibition 

of ODC caused a decreased proliferation of prostate cancer cell lines in vitro and PC3 

xenograft on nude mice (360). Such an approach is interesting as it inhibits the 

growth promoting effects of polyamine, while preventing the depletion of 

extracellular L-arginine. 

1.4.3.3 Arginase inhibitors 

Treatment with N-hydroxy-nor-L-Arginine (NOHA) impaired tumor formation 

of Lewis lung carcinoma cells in syngenic animals but not in SCID mice suggesting of 

an immune-mediated tumor rejection (333, 361). NG-monomethyl-L-arginine (L-

NMMA) is a NOS inhibitor. Addition of both NOHA and L-NMMA can restore T 

lymphocyte cytotoxic functions in prostate cancer patients ex vivo models (362). 

Nitroaspirin (NCX-4016) also restores T lymphocyte proliferation in the presence of 

MDSC by inhibiting arginase and NOS (363). 

1.4.4 SUMMARY 

Arginase activity leads to increased synthesis of polyamines, which are 

necessary for the prostate’s physiological roles in reproduction. However, during 
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 carcinogenesis, aberrant arginase expression leads to increased polyamines synthesis, 

which sustains the growth of prostate cancer cells. Furthermore, the consequent L-

arginine depletion associated with elevated arginase activity causes local 

immunosuppression within the tumor microenvironment. Inhibition of arginase or 

NOS reverses T lymphocyte anergy and promotes a tumor-specific anti-tumoral 

immune response. However, current data suggests that human arginases are not 

regulated by similar factors as murine arginases. The regulatory factors leading to 

arginase expression in human immune and tumor cells remain unknown. Data 

suggest that androgens could regulate the expression of ARG2 and other enzymes 

involved in polyamine synthesis.  

1.5 REGULATION OF IMMUNE RESPONSES BY SEXUAL 

HORMONES 

There is accumulating evidence that sexual hormones play determining roles in 

the regulation of immune responses, which results in considerable differences 

between women and men. Epidemiological data reveal a gender-based difference in 

the predisposition to autoimmune diseases and other pathologies. Studies with 

experimental animal models demonstrate that sexual hormones are directly implicated 

in this dichotomy and that they can modulate immune cell numbers, cytokine 

production and activation of the lymphocyte cytotoxic machinery.  

The literature on the immunoregulatory impact of sexual hormones largely 

describes the actions of estrogens with relatively scarce information on the impact of 

testosterone on immune cells. In prostate cancer, estrogens do participate in the 

disease progression as the intra-prostatic estrogen concentration may regulate the 

local immunological microenvironment. In the normal prostate, prostate stromal cells 

express the cytochrome p450 aromatase. The aromatization of testosterone and DHT 

by the p450 aromatase results in an elevated concentration of estrogens within the 

prostate (364). During carcinogenesis, malignant prostate epithelial cells also acquire 

aromatase expression (365). Furthermore, stromal cells express both ER-α and ER-β 

(366), with ER-α playing a prominent role in the pro-inflammatory actions of 
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 estrogens and ER-β having an anti-inflammatory role (367). As such, the 

immunoregulatory functions of estrogens could play important role in the 

carcinogenesis of the prostate. In the following section, the immunoregulatory 

properties of both androgens and estrogens will be discussed. A larger focus for this 

introductory section will be devoted to estrogens due to aforementioned 

predominance in the current literature.  

1.5.1 HIGHER INCIDENCE OF AUTOIMMUNE DISEASES IN WOMEN 

There are contrasting differences in the incidence of autoimmune disorders 

between women and men. The women to men ratio for the incidence of systemic 

lupus erythematosus (SLE), Grave’s disease, Hashimoto’s thyroiditis and Sjögren’s 

syndrome is 7-10 : 1 and 2-3 : 1 for the incidence of multiple sclerosis (MS), 

rheumatoid arthritis (RA) and scleroderma. In contrast, ankylosing spondylitis, 

Goodpasture syndrome, Reiter syndrome and vasculitis are more present in men 

(368, 369). In animal models of experimental autoimmune encephalomyelitis (EAE), 

transfer of male T lymphocytes leads to less severe EAE symptoms than female T 

lymphocytes (370). Estrogens increase the expression of CCR5 and CCR1 by CD4+ T 

lymphocytes, which participate in T lymphocyte homing during infection and 

autoimmune disease (371). Gender-based immunological differences also exist with 

regards to infection. With the exception of sexually transmitted infections (HIV and 

herpes simplex virus-2), men have higher incidence and increased degree of severity 

for viral, bacterial, fungal and parasitic infection (372, 373). Overall, these 

epidemiological data suggest that women have stronger cell-mediated and humoral 

immune responses to antigenic challenges than men and may also explain the lower 

incidence of cancer in women (374, 375). 

1.5.2 SEXUAL HORMONES IN THYMIC DEVELOPMENT 

With age comes a profound thymic atrophy (almost 90% loss of function). This 

thymic atrophy begins at the onset of puberty under the action of sexual hormones 

(376, 377). Thymic atrophy is characterized by a degeneration of the stromal thymic 
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 network, which sustains the survival and differentiation of developing T lymphocytes, 

and by a diminution in the homing of thymocyte progenitors (378).  

Estrogens (i) decrease the number of precursors that migrate from the bone 

marrow to the thymus, (ii) deplete early thymic progenitors within the thymus, (iii) 

reduce the ability of double-negative (CD4-CD8-) progenitors to proliferate in 

response to pre-TCR signaling, and (iv) cause the apoptosis of double-positive 

(CD4+CD8+) thymocytes (379), through upregulation of FasL (380). Finally, 

estrogens increase CD4+CD8- and inhibit the production of IL-7, an important 

regulator of T lymphopoiesis (381). Together, these data suggest that estrogens 

prevent the proper development of T lymphocytes within the thymus. Nevertheless, 

estrogens do favor the development of the CD4+ T lymphocyte compartment over 

CD8+ T lymphocytes.  

Conversely, if given early in thymic development, androgens contribute to 

thymic hypercellularity and favor the development of mature single positive CD4+ 

and CD8+ T lymphocytes and naturally occurring TREGs (381, 382). Contrary to 

estrogen, androgens favor the immigration and development of CD4-CD8+ single-

positive thymocytes through the overexpression of Thy-1 (383, 384). Castration does 

however reverse the age-related thymic atrophy suggesting that androgens also have a 

detrimental role in thymic physiology. 

1.5.3 ESTROGENS PROMOTE A TH2 SKEWING OF THE IMMUNE 

RESPONSE 

Estrogen favor the development of a greater number of CD4+ T lymphocytes 

in women compared to men. Estrogen also reduce the production of pro-

inflammatory TH1 cytokines (IL-1β, IL-2, IL-12 and TNF-α) by monocytes (385) and 

lymphocytes (386, 387). Women PBMCs also secrete less TH1 cytokines (IL-2, IFN-γ) 

and more TH2 cytokines (IL-4, IL-10) following mitogen activation (387, 388). 

Estrogens favor the secretion of TH2 cytokines by regulating the expression of T-bet 

(regulator of TH1 differentiation) and IRF1 (389). Estrogens promote the 

development of B lymphocytes and the production of auto-reactive antibodies (390, 
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 391) through the expression of activation-induced deaminase in B lymphocytes, 

which participates in somatic hypermutation and class switching recombination (392). 

Conversely, testosterone prevents the production of auto-reactive antibodies (393, 

394). Moreover, estrogens reduce NK cell numbers and cytotoxicity (395-398). On 

murine macrophages, estrogens promote the expression of TLR-4 and a stronger 

anti-bacterial immune response (399). Physiologically, high estrogen concentration 

during the luteal phase of the menstrual cycle or during pregnancy causes an elevated 

production of TH2 cytokines (IL-4, IL-6) and reduced production of TH1 cytokines 

(IL-2) (400-403). For women with autoimmune disorders, these variations in 

estrogenic concentration exacerbate TH2 autoimmune disease (SLE) and improve TH1 

diseases (asthma, MS and RA) (369, 389, 404, 405). These variations may also be 

caused by TREGS (406, 407), whose numbers are diminished during the luteal phase 

(high estrogen) (408). Altogether, these data suggest that estrogen promotes a TH2 

skewing of the immune response.  

1.5.4 ANDROGENS ACT AS NON-SPECIFIC IMMUNOSUPPRESSANT 

Contrary to the TH2-promoting action of estrogens, androgens broadly 

suppress the immune system by inhibiting B and T lymphocyte proliferation (409-

412) and by causing T lymphocyte apoptosis (413). CD4+ T lymphocytes produce 

more IL-10 following testosterone stimulation preventing a TH1 cell-mediated 

immune response (414). On monocytes and macrophages, testosterone decreases the 

expression of TLR4, the receptor for LPS responsible for the activation of the innate 

immune system in response to Gram-negative bacterial infection (415). Testosterone 

does not however affect the production of IL-2, IFN-γ by lymphocytes and TNF-α 

by monocytes (416), nor does it changes NK cells count (417). In a recent study, 

androgens increase telemorase expression in human PBMCs from healthy donor 

following aromatization and signaling through ERα (418). Altogether, androgens act 

as immunosuppressants preventing the activation of cell-mediated and innate immune 

response, which accounts for the higher rate of infection in men. 
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 1.5.5 EXPRESSION OF ESTROGEN AND ANDROGEN RECEPTOR BY 

IMMUNE CELLS 

Until recently, it remained unknown whether immune cells expressed steroid 

hormone receptors and whether sexual hormones could directly modulate their 

activity. Evidence now suggest that immune cells express classic cytoplasmic steroid 

receptors and non-classical steroid receptors located on the cytoplasmic membrane. 

1.5.5.1 Estrogen receptor 

Estrogens bind to two cytoplasmic steroid receptors: estrogen receptor α (ERα 

or ERS1) and estrogen receptor β (ERβ or ERS2). Upon ligation, there is a 

conformational change, dimerization and nuclear translocation of the ER. The ER 

regulates the expression of genes containing ER responsive elements (ERE) in their 

promoter region and through the recruitment of co-regulatory proteins on ERE-

negative promoters (419). ERα and ERβ bind to identical ERE, but differ in their 

trans-activating subunits.  

The transcription role of estrogens varies depending on which ER is expressed. 

ERα and ERβ are expressed by B and T lymphocytes, DCs, macrophages, 

neutrophils and NK cells (369). T lymphocytes express higher levels of ERα, whereas 

B lymphocytes express more ERβ (389). Estrogens induce Fas/FasL-mediated 

apoptosis of monocyte expressing ERβ, but not of macrophage expressing ERα 

(420). Similarly, through ERβ, estrogens cause the age related thymic involution that 

begins at puberty (421). Moreover, ERα activation has protective anti-inflammatory 

effects in EAE symptoms whereas specific ERβ activation has no effect (422). 

Finally, a membrane ER (mER) is present in T lymphocytes, monocytes and 

granulocytes (389, 423). mER signals through non-genomic pathways, which can 

increase intracellular calcium concentration (423), SRC kinase as well as downstream 

MAPK and AKT activation (389). 
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 1.5.5.2 Androgen Receptor 

The classical cytoplamsic AR (iAR) is a member of the steroid hormone 

superfamily of ligand-activated transcription factors. It is composed of four main 

domains: (i) a N-terminal regulatory domain involved in interaction with co-

regulators; (ii) a DNA-binding domain composed of two zinc fingers that recognize 

AREs; (iii) a hinge region that includes the nuclear translocation signal; and (iv) a 

ligand-binding domain.  

1.5.5.2 .1  iAR genomic  si gnal ing 

The binding of androgens (testosterone or DHT) to the iAR in the cytoplasm 

induces conformational changes, liberation from heat-shock proteins, 

homodimerization and nuclear translocation. Nuclear androgen receptor binds to 

ARE and activate transcription by inducing conformational changes in the chromatin, 

by promoting RNA polymerase activity and by recruiting the transcription machinery 

(25). This pathway is defined as iAR genomic signaling.  

1.5.5.2 .2  iAR non-genomic  si gnal ing 

Non-genomic signaling needs to be further studied, as its impact remains 

largely undefined. What is known is that iAR non-genomic signaling involves the 

rapid induction (seconds and minutes) of second messengers such as intracellular 

Ca2+ independently of the iAR transcriptional activity. This rapid action implicates 

protein-protein interactions, which are insensitive to transcription or translation 

inhibitors (424). Depending on the cell type, non-genomic signaling causes the 

activation of protein kinase A (PKA), protein kinase C (PKC), phosphatidyl-inositol 

3-kinase (PI3K) and mitogen-activated protein kinases (MAPK) (425) [reviewed in 

(426)]. DHT is reported to induce non-genomic signaling in LNCaP causing an 

accumulation of intracellular Ca2+ in a pathway dependent on an unidentified GPCR 

(427). The iAR can also bind to and activate the non-receptor tyrosine kinase Src via 

its SH3 domain. Finally, non-genomic signaling can lead to transcription changes 



 
77 

 

 causing an increased expression of c-fos protein and to an increase in iAR genomic 

signaling by phosphorylating iAR or its coactivators (426). 

Murine studies revealed that T lymphocyte and macrophages do not express 

the classical iAR. Murine CD4+ and CD8+ T lymphocytes express a plasma 

membrane AR (mAR) whose ligation causes the rapid (< 5 seconds) rise of 

intracellular Ca2+ dependent on the influx of extracellular Ca2+ (428). In contrast, 

murine B lymphocytes solely express the iAR and testosterone stimulation of B 

lymphocytes does not induce a rise in intracellular Ca2+ (429). Murine macrophages 

express an undefined plasma membrane G-protein coupled receptor, which, 

following testosterone stimulation also cause a rapid increase in their intracellular Ca2+ 

concentration, but this time due to the release of intracellular Ca2+ stores (430). This 

Ca2+ mobilization is dependent on the activation of phospholipase-C (PLC), 

ERK1/2, JNK/SAPK and p38 (430, 431).  

Testosterone can also bind to the SHBG receptor. Approximately 60% of 

serum testosterone and DHT is bound to SHBG and the remainder is bound to 

albumin. Ligation of testosterone-SHBG complexes to SHBG receptors, also a G-

coupled receptor, activates cAMP and PKA independently of the AR (432). LNCaP 

cells express SHBG receptors (433, 434) and SHBG receptor activation in this 

prostate cancer cell line also causes an induction of cAMP and the subsequent 

activation of PKA (434). Unfortunately, the non-genomic signaling of iAR or mAR in 

human immune cells remains needs to be further studied. 

1.5.6 IMMUNOREGULATORY PROPERTIES OF MEDICAL 

CASTRATION 

By taking into account the immunosuppressive functions of androgens, it is not 

surprising that medical castration stimulates the pro-inflammatory functions of the 

immune system. Medical castration has the dual effect of eliminating circulating 

testosterone and reducing intracellular estrogens derived from testosterone and DHT 

aromatization. It is thus important to keep in mind that the immunoregulatory 
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 properties of medical castration are dependent on the loss of both androgens and 

estrogens. 

1.5.6.1 Castration in animal models  

Castration of male mice augments T lymphocytes in peripheral lymphoid 

tissues due to an increase in bone marrow, spleen and thymus cellularity and B and T 

lymphopoiesis (32, 435). Castration reduces the serum concentration of TH2 

cytokines (IL-10 and IL-17) and increases TH1 cytokines (IL-1a and IL-12p40) 

without affecting the concentration of IL-6, TNF-α and IFN-γ (98). T lymphocytes 

from castrated mice also proliferate more vigorously in vitro during anti-CD3 and anti-

CD28 stimulation as well as during antigen-specific activation (32, 436). Castration 

also increases DC numbers in LNs, DC maturation and DC expression of co-

stimulatory marker (CD80, CD83, CD86, CD40, OX-40L) (98). Antigen-experienced 

CD62L+CD4+ T lymphocytes in the presence DCs from castrated mice secrete more 

IL-2, IL-4, IL-12p70, GM-CSF, IFNγ and TNF-α (98) suggesting that DC from 

castrated mice have increased T lymphocyte priming functions. Conversely, in a 

myocarditis murine model, castration increases the population of “alternatively 

activated” or immunosuppressive macrophages (437). In a murine model of prostate 

cancer, 55% of castrated mouse develop an autoantibody response against poly(A) 

binding nuclear protein 1 (PABPN1) as well as a T cell response against PABPN1 

(438). Paradoxically, mice that developed these autoantibody and T cell response have 

a shorter time to tumor recurrence. Finally, castration does improve tumor-

recognition by T lymphocytes. In a mouse model expressing influenza antigens under 

a prostate-specific promoter, androgen-deprivation leads to recognition of the 

influenza antigens in tumor draining LNs (439). Nonetheless, T lymphocytes fail to 

fully mature into cytotoxic effectors and undergo abortive proliferation. This is 

possibly as a result of the tumor’s tolerogenic state, which is not completely abolished 

following castration. Altogether, these results suggest that medical castration has pro-

inflammatory effects by expanding B and T lymphocytes numbers, favoring DC 

stimulation and increasing TH1 cytokine production.  



 
79 

 

 1.5.6.2 ADT and prostatic inflammation 

The effect of ADT on the prostate’s immunological network is complex. ADT 

leads to an increase infiltration of macrophages, T lymphocytes and DCs (31, 59, 440, 

441). In healthy individuals, medical castration leads to a decreased percentage of 

circulating CD4+CD25+ T lymphocytes (442). The immunoregulatory actions of ADT 

could be related to its impact on thymocyte development and the increases of naïve T 

lymphocyte pool (443). Moreover, the massive epithelial cell apoptosis could lead to 

increased infiltration of phagocytic APCs, which present TAAs to naïve lymphocyte 

in the draining LNs. Finally, as stated previously, androgens may directly participate 

in the development of the prostate’s immunological tolerogenic microenvironment by 

either directly inhibiting the activation of immune cells or by promoting the 

expression of immunosuppressive molecules. ADT thus causes the reduced 

expression of androgen-dependent immunosuppressive pathways, and consequently 

the elevated immune cell infiltration. 

1.5.7 SUMMARY 

The immunoregulatory properties of estrogens and androgens are associated 

with distinctive predisposition to autoimmune disorders and infection between 

women and men. Estrogens promote thymic atrophy and a TH2 skewing of the 

immune response whereas androgens have broad immunosuppressive effects. 

Medical castration has pleiotropic immunostimulatory effects on immune cells caused 

by the elimination of circulating androgens and a reduction of estrogens generated 

from androgen aromatization. Expression of sexual steroids receptors (iAR, mAR 

and SHBG receptors) was demonstrated in murine immune cells. However, their 

expression by human immune cells and their regulatory properties through genomic 

and non-genomic signaling remains to be understood. In prostate cancer, it remains 

to be demonstrated that medical castration eliminates an androgen-driven 

immunosuppressive microenvironment. 

2 TLE IN WHITE 
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CHAPTER II 

DOCTORAL THESIS OBJECTIVES 

At the time when this doctoral project was initiated, the literature regarding the 

immuno-oncology of prostate cancer mainly consisted of correlative studies based on 

immune cell numbers and disease progression. A better understanding on the 

interactions between tumor and immune cells had to be gained. The all-encompassing 

goal of this doctoral thesis was thus to further the understanding of the 

immunological microenvironment in human prostate cancer. To achieve this we 

established two main objectives: (i) to precisely characterize the immune cell 

populations present in the tumor microenvironment; (ii) to identify and to study the 

immunosuppressive pathways expressed by human prostate cancer cells. 

 This project originated from a publication by our group evaluating the nuclear 

localization of NF-κB p65 in prostate cancer LN metastases (444). The authors 

demonstrated that a vast majority of lymphocytes neighboring metastatic cells had 

nuclear localized NF-κB p65. Conversely, lymphocytes in non-metastatic LNs had no 

or very low levels of nuclear NF-κB p65. This result suggested that only lymphocytes 

in the proximity of invading metastatic cells have activated NF-κB signaling. We thus 

set out to phenotypically characterize the immune cell populations within metastatic 

and non-metastatic LNs of prostate cancer patients by immunohistochemistry (222). 

The goal of this study was not to provide correlations between various immune cell 

markers and prostate cancer progression. Rather, we wanted to evaluate the 

immunological status of metastatic LNs of prostate cancer patients. For this study, we 

pioneered a novel software-assisted image analysis protocol to precisely quantify 

immune cell numbers within large tissue sections. Our results demonstrate that the 

presence of prostate cancer LN metastasis is associated with the development of an 

immunosuppressive microenvironment. Similar to the NF-κB p65 study, our data 

suggests that metastatic LNs have a unique immunological microenvironment. 

Furthermore, our data raise the possibility that metastatic cells may have direct 
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 immunoregulatory properties within the LN thereby leading to a local 

immunosuppression. 

Subsequently, we sought to further understand the immunosuppressive 

pathways expressed by prostate cancer cells. Specifically, we studied the contribution 

of androgen, an important player in the prostate’s organogenesis and carcinogenesis, 

in the regulation of the immunosuppressive microenvironment in human prostate 

cancer. As stated in section 1.5.6.2 on page 79, a significant increase in intra-prostatic 

immune cell infiltration follows ADT. Our goal was to determine which immune cell 

population infiltrated the prostate following medical castration. We thus characterized 

the immune cell infiltrate in primary tumor specimens of a cohort of 35 ADT patients 

treated by ADT prior to radical prostatectomy and 40 Gleason-matched control 

patients treated by radical prostatectomy only (49). For this study, we optimized our 

software-based image analysis method, which was coupled to whole-slide image 

scanner. With this digital image-analysis approach, we were able to precisely quantify 

immune cell density on entire prostate specimens thereby removing significant 

analysis biases often present in similar studies. Our data enabled us to confirm that 

ADT promotes the infiltration of specific immune cell populations (T lymphocytes 

and macrophages) within the primary tumor. Furthermore, we validated a novel 

software-based approach, which may help standardize the quantification of immune 

cell populations within pathological samples. 

Finally, we evaluated whether the pro-inflammatory state induced by ADT was 

caused by the removal of androgen-regulated immunosuppressive pathways. We thus 

setout to identify and to study which immunosuppressive molecules were expressed 

by prostate cancer cells and upregulated following androgen stimulation. Through 

bioinformatic analyses, we generated a list of several molecules reported to have 

immunosuppressive properties and to be expressed in prostate cancer. Following 

molecular biology experiments (qPCR and Western blot), we identified ARG1 and 

ARG2 as two immunosuppressive enzymes expressed by prostate cancer cells and 

upregulated following androgen stimulation (445). Importantly, we are the first group 

to demonstrate an expression of ARG1 by malignant cells. We also show that the 

androgen-regulated expression of ARG2 is also present in vivo using prostate samples 
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 from our cohort of 35 ADT-treated patients and 40 control patients. Finally, we 

observed that interleukin-8 was also upregulated by androgens and could, on its own, 

promote the expression of ARG1 and ARG2. Together, our data clearly demonstrate 

that the immunosuppressive properties of androgens in prostate cancer implicate the 

expression of ARG1, ARG2 and IL-8.  

In conclusion, our research has furthered the common understanding of the 

uniqueness of the prostate’s immunological microenvironment in prostate cancer 

patients. We validated novel quantification methods allowing for a clearer 

understanding of the immune cells population that infiltrate the tumor bed. 

Furthermore, we demonstrate that androgen play have potent immunoregulatory 

functions in prostate cancer.  
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Abstract 

Background: Several reports suggest that the dissemination of neoplastic cells and 

cancer progression are associated with the generation of an immunosuppressive 

environment.  

Methods: In this report, we investigated immunological effects of prostate cancer by 

comparing metastastic and non-metastatic pelvic lymph nodes (LNs) from 25 patients 

with carcinomatous involvement of LNs to the non-metastatic LNs from 26 control 

patients with no metastatic involvement by immunohistochemistry and histological 

analyses. 

Results: Our results showed a decreased abundance of CD20+ B lymphocytes 

(p=0.031), CD38+ activated lymphocytes (p=0.038) and CD68+ macrophages 

(p<0.001) and less evidence of follicular hyperplasia (p=0.014), sinus hyperplasia 

(p<0.001) and fibrosis (p=0.028) in metastatic LNs comparatively to control LNs. 

Finally, we observed that metastatic LNs were significantly smaller than control LNs 

(p=0.005). 

Conclusions: Our results suggest that the development of prostate cancer LN 

metastasis is accompanied with smaller LN size and decreased LN reactivity 

suggesting the development of an immununosuppressive microenvironment. 
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Introduction 

One obstacle that metastatic cancer cells must circumvent in order to invade 

and proliferate in distant tissues is the immune system. Continual interactions 

between immune and cancer cells occur throughout the development of a tumor. The 

immunosurveillance properties of the immune system allow for the initial recognition 

and successful elimination of the early threat of growing neoplastic cells. However, 

this constant selective immunological pressure leads to the development of robust 

neoplastic cells, which are able to evade the immune system by mimicking 

immunosuppressive processes associated with the induction of tolerance and the 

prevention of auto-immune disorders (1, 2). Lymph nodes are essential in preventing 

the dissemination of tumor cells by acting as mechanical and biological filters (3-6). In 

spite of this, they are the primary metastatic sites for epithelial tumors. Regional LNs 

have an essential role in the development of a systemic anti-tumoral immune 

response. Professional antigen presenting cells (APCs), such as dendritic cells (DCs) 

and macrophages, migrate to tumor draining LNs carrying antigens from the tumor 

and participate in the activation and proliferation of tumor antigen-specific T and B 

lymphocytes. Activated lymphocytes subsequently migrate to the primary tumor and 

exert their newly acquired tumoricidal effector potential. It is now becoming evident 

that the tumor environment contributes to the suppression of the anti-tumor immune 

functions of tumor draining LNs thereby promoting the occurrence of cancer 

metastasis (7). 

Prostate cancer is the second leading cause of cancer related death and the 

most frequently diagnosed cancer among North American men (8). Curative 

therapies, such as radical prostatectomy and radiotherapy, are effective only for 

patients with localized disease. Prostate cancer metastases are initially detected in the 

pelvic LNs prior to disseminating to the bones and lungs. Since the emergence and 

widespread use of serum prostate specific antigen (PSA) in prostate cancer screening, 

the clinical incidence of LNs metastasis has decreased by half (9-14). Although 

uncommon, even the presence of micrometastases in draining LNs has substantial 

clinical significance in the staging and prognosis of the disease (15-19). Given the 
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 pivotal role of tumor-draining LN activity in cancer progression, merely focusing on 

the presence or absence of metastasis in this specialized secondary lymphoid 

compartment may not provide a comprehensive picture of the implication of the 

immune system in the eradication of cancer cells. Rather, the histological evaluation 

of LN reactivity and the thorough characterization of the immune cell population 

may potentially offer a more accurate assessment of the interaction between the 

immune system and prostate cancer cells.  

The diverse histological patterns of reactivity observed in tumor draining LNs 

are indicative of the varied immune responses taking place (20). For example, a 

humoral immune response is associated with the proliferation of B lymphocytes in 

germinal centers and the development of follicular hyperplasia, whereas the 

proliferation and activation of T lymphocytes in a cell-mediated immune response is 

associated with paracortical hyperplasia (21). In tumor draining LNs, the presence of 

distinct histopathological patterns have also been linked to cancer progression. Sinus 

hyperplasia (histiocytosis), follicular hyperplasia, granulomatous inflammation, 

fibrosis (hyaline material) with or without secondary calcification have all been shown 

to correlate with cancer prognosis and may represent an immune response to the 

tumor or its secreted products (21-24). The presence of sinus hyperplasia in 

metastatic LNs of laryngeal squamous cell carcinoma patients correlated with survival 

(25). The presence of paracortical hyperplasia correlated with survival in squamous 

cell carcinoma of the oral cavity and thyroid carcinoma (23, 26). These morphological 

changes reflect past or present immunological responsiveness, and may even reflect 

tumor-specific reactivity.  

Our recent studies on the immuno-environment of LNs draining prostate 

cancer suggest that the presence of metastatic cells promote a distinct immunological 

phenotype. Our report revealed an increased level of nuclear localization of NF-κB in 

lymphocytes surrounding metastatic prostate cancer cells in pelvic LNs suggesting a 

local activation of lymphocytes (27). We also documented, in a preliminary report 

based on a Ki67 immunohistochemical analysis, that lymphocytes in metastatic LNs 

have a higher proliferation index than lymphocytes in non-metastatic LNs (28). The 
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 aim of the present study is to further characterize the immunological 

microenvironment of metastatic and non-metastatic LNs in prostate cancer based on 

the characterization of LN immune cells, LN histological patterns of immunological 

reactivity and LN size. To our knowledge, no other immunological and 

histopathological evaluations of prostate cancer draining LNs have been published 

describing the potential generation of an immunosuppressive microenvironment 

associated the presence of metastatic cells. 
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Materials and methods 

Tissues: 

Formalin-fixed paraffin-embedded (FFPE) archival tissue specimens were obtained 

from 51 patients who had undergone radical prostatectomy with pelvic 

lymphadenectomy at the CHUM Notre-Dame Hospital (Montréal, Québec, Canada) 

between 1990 and 2000. Clinical and pathological characteristics of metastatic and 

non-metastatic patients are summarized in Table 1. Specimens were obtained from 

patients who had not received hormone therapy prior to surgery since it was 

demonstrated that androgen depletion therapy intensifies the anti-tumoral immune 

response in prostate cancer (29-31). Of the 51 patients, 25 patients had 

carcinomatous involvement of LNs (metastatic LNs), whereas 26 patients had no 

evidence of metastasis or biochemical recurrence (PSA greater than 0.3) five years 

after surgery (control LNs). Furthermore, we studied the benign adjacent LNs from 

the 25 patients with a positive LN status (non-metastatic LNs, internal control 

group). In order to confirm their status, i.e. metastatic LN or non-metastatic LN, all 

LNs were subjected to immunohistochemical staining with anti-PSA antibodies 

(Figure 1L) and analysis by two pathologists to detect the presence of micro-

metastases. 

 

Immunohistochemistry: 

Formalin-fixed paraffin-embedded specimens were immunostained as previously 

described (32). Briefly, 4µm thick tissue sections were de-paraffinized with toluene 

and rehydrated in an ethanol gradient. Microwave antigen retrieval was performed by 

heating tissue slides in 1 mM EDTA buffer (pH 8.0) or 10 mM sodium citrate buffer 

(pH 6.0) for 15 minutes. Non-specific antigen binding was blocked with a protein 

blocking serum-free reagent (DakoCytomation, California, United States) preceding 

the ninety-minute primary antibody incubation with: anti-CD4 (Ab-8) (LabVision, 

California, United States), anti-CD8 (M-7103), anti-CD20 (M-0755), anti-CD45RA 

(M-0754), anti-CD45RO (M-0742), anti-CD68 (M-0876), anti-PSA (A-0562) (all from 
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 DakoCytomation, California, United States), anti-CD56 (Ab-5, Lab Vision 

NeoMarkers, California, United States), anti-Fascin (Ab-1, Lab Vision NeoMarkers, 

California, United States), anti-HLA-DR/DP/DQ (555557, BD Biosciences 

Pharmingen, California, United States) or anti-Ki-67 (SP-6, Lab Vision NeoMarkers, 

California, United States). Tissues were treated with 1% H2O2 in methanol or 3% 

H2O2 in distilled water to eliminate endogenous peroxidase activity. This was 

followed by consecutive incubations with the secondary biotinylated antibody and 

streptavidin-HRP (DakoCytomation, California, United States). Reaction products 

were developed using 3,3’-diaminobenzidine (DAB) substrate-chromogen system 

(DakoCytomation, California, United States). CD4 staining was performed with the 

Envision G|2 system and developed with permanent red (DakoCytomation, 

California, United States). Hematoxylin counterstaining was performed for ease of 

reading. Immunostaining with appropriate isotype control antibodies were used as 

negative controls. 

 

Quantification: 

Slides were examined under standard light microscopy in order to confirm an optimal 

quality of staining. Histological images of 30 randomly selected fields were captured 

using a 20x microscope objective (Arcturus Pix Cell IIe system microscope, 

California, United States) through a video camera (Hitachi Digital KP-0590P CCD 

color video camera, Tokyo, Japan). Pictures were digitized in a 24 bits true color 

TIFF format. Positive signals were quantified using the Image-Pro Plus version 5.1 

software (MediaCybernetics, Maryland, United States). The software was trained to 

discern the DAB or the permanent red immunostaining signal (brown or red 

coloration), the hematoxylin stain (blue) and areas devoid of tissue (white) using the 

color segmentation operation. Two filter ranges were also applied to eliminate 

background staining: an area range (50.0 to 10,000,000 pixels) and a mean density 

range (100 to 250 units). In order to obtain precise color recognition templates, the 

analysis was initially performed manually against a representative photograph of each 

tissue sample prior to the full analysis with an automated macro. The data was then 

exported to an Excel spreadsheet where the percentage of the immunostained area 
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 was corrected for the area devoid of tissue [% areacorr = % area of positive signal / (1 - % 

area devoid of tissue)]. For the histopathological evaluation of LN reactivity, 

morphological analyses were performed with light microscopy using hematoxylin & 

eosin (H&E) stained sections. 

 

Statistics:  

The % areacorr was used in statistical analyses using non-parametric Mann-Whitney U-

test or parametric Student T-Test. The Kolmolgorov-Smirnov test and a test of 

homogeneity of variances were used in the evaluation of the distribution and the 

variance of the data between the three groups of LNs studied. Correlations were 

performed with linear regression evaluations. A two-tailed P ≤ 0.05 was considered 

statistically significant. All statistical tests were performed using Statistical Package for 

the Social Sciences (SPSS), version 11.0 (SPSS Inc., Illinois, United States).  
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Results 

Immunological microenvironment of pelvic LNs 

We characterized the lymphocyte populations within pelvic LNs of 51 

prostate cancer patients consisting of 26 control LNs, 25 non-metastatic LNs and 21 

metastatic LNs using immune cell population markers (CD4, CD8, CD20, CD56, 

CD68, Fascin, HLA-DR/DP/DQ), activation and maturation markers (CD38, 

CD45RA, CD45RO) and a proliferation marker (Ki67) (Figure 1A-L). In order to 

minimize the subjectivity of immunohistochemical analyses, we chose to quantify the 

area covered by positively stained cells with a digital image analysis software. 

We first evaluated if the presence of prostate cancer metastasis affected 

different immune cell populations (T and B lymphocytes and NK cells) found within 

LNs. The abundance of T lymphocytes was evaluated by quantifying the expression 

of CD4 and CD8, co-receptors expressed respectively by helper T lymphocytes and 

cytotoxic T lymphocytes. We observed a significant increase in CD8+ T lymphocytes 

in metastatic and non-metastatic LNs when compared to controls (p = 0.047 and p = 

0.05, respectively, Mann-U test) (Figure 2a). No significant differences were detected 

in the CD4+ helper T cell populations between metastatic and non-metastatic LNs 

when compared to controls (p = 0.616 and p = 0.098, respectively, Mann-U test) and 

between non-metastatic and metastatic LNs (p = 0.062, Mann-U test) (Figure 2a). We 

evaluated the abundance of B lymphocytes by quantifying the expression of CD20, a 

plasma membrane protein expressed by naïve and mature B lymphocytes. We found a 

significant decrease in CD20+ B lymphocytes in metastatic and non-metastatic LNs 

when compared to controls (p = 0.031 and p = 0.009, respectively, Mann-U test) 

(Figure 2a). Finally, we studied the presence of the NK cell population by quantifying 

the expression of the NK cell-specific marker CD56. Our results trend towards a 

reduction of CD56+ NK cells in metastatic LNs when compared to control LNs, 

although not statistically significant (p = 0.093, Mann-U test) (Figure 2b).  

We then determined if there were differences in the abundance of APCs in 

metastatic LNs by analyzing the abundance of DCs, macrophages and the expression 
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 of HLA-DR/DP/DQ, the major histocompatibility complex of class II (MHC-II) 

expressed by APCs. We investigated the LN macrophage population by studying the 

expression of CD68, a lysosomal membrane protein strongly expressed in the 

cytoplasmic granules of macrophages. We observed that metastatic LNs had lower 

CD68 expression than control LNs (p = 0.0003, Mann-U test) (Figure 2b). The DC 

population was studied by evaluating the expression of the protein Fascin. Fascin is a 

55kDa cytoskeletal actin bundling protein highly expressed by DCs (33-35). No 

significant differences were observed between metastatic and non-metastatic LNs 

when compared to the controls (p = 0.732 and p = 0.547, respectively, Mann-U test) 

(Figure 2a). Finally, we evaluated the expression of MHC-II primarily expressed by 

APCs, such as DCs, macrophages and B lymphocytes. Again, no significant 

differences were observed between metastatic and non-metastatic LNs when 

compared to the controls (p = 0.668 and p = 0.835, respectively, Mann-U test) 

(Figure 2a). 

In order to evaluate whether lymphocyte maturation levels were affected by 

the presence of prostate cancer LN metastases, we assessed the expression of CD45, 

a transmembrane glycoprotein tyrosine kinase present on the surface of lymphocytes. 

Distinct CD45 isoforms are expressed at various stages of differentiation of 

hematopoietic cells: the CD45RA isoform is present on naïve cells whereas 

activated/memory cells express CD45RO. No significant differences in the 

expression of CD45RA and CD45RO were observed between the three groups 

(Figure 2a).  

We further analyzed the activation status of the immune cells in metastatic 

LNs by quantifying the expression of the cell surface marker CD38, an ADP-ribosyl 

cyclase expressed by activated lymphocytes. We observed a significant reduction in 

the abundance of CD38+ activated immune cells in metastatic LNs when compared 

to both control LNs and non-metastatic LNs (p = 0.038 and p = 0.0003, respectively, 

Mann-U test) (Figure 2b). 

Finally, we examined the proliferation of lymphocytes in pelvic LNs by 

quantifying the expression of the proliferative marker Ki67. Only Ki67+ lymphocytes 

were counted in this analysis. These cells were easily distinguishable from other Ki67+ 



 
93 

 

 cells, such as macrophages or metastatic cells, in the computer-assisted analysis 

because of their small dense nuclei (Figure 1K). Metastatic LNs contained more 

lymphocytes expressing the proliferation marker Ki67 than non-metastatic LNs (p = 

0.042, Mann-U test) and no statistically significant difference was observed between 

metastatic and control LNs (p = 0.325, Mann-U test) (Figure 2b). Together, these 

results suggest that the presence of prostate cancer LN metastasis alters the 

distribution of lymphocytic and macrophage populations, promotes lymphocytes 

proliferation and lowers the activation levels of lymphocytes without significantly 

altering their differentiation into memory cells. 

 

Histological evaluation of pelvic LNs in prostate cancer 

We evaluated if the presence of metastatic cells in pelvic LNs of prostate 

cancer patients was associated with histological changes related to LN reactivity. 

Without prior knowledge of the LN status, pathological reviews of the hematoxylin & 

eosin staining of the 72 LNs were analyzed for reactive LN changes, namely: follicular 

hyperplasia, sinus hyperplasia (histiocytosis), fibrosis (hyaline material), calcifications 

and granulomatous reactions. These parameters of LN reactivity are known to 

correlate with cancer prognosis (22, 23, 25). 

Follicular hyperplasia is characterized by the proliferation of B lymphocytes in 

germinal centers alongside tingible body macrophages and DCs, which phagocytose 

apoptotic lymphocytes and participate in the antigen presentation necessary for B 

lymphocyte development. Follicular hyperplasia was detected in 9/26 (34.6%) of 

control LNs, 5/25 (20.0%) of non-metastatic LNs and only 1/21 (4.8%) of the 

metastatic LNs (p = 0.014 between control LNs and metastatic LNs, Mann-U test) 

(Table 2). Furthermore, in our study, the presence of follicular hyperplasia was 

associated with the lower expression of CD8 (p = 0.007, linear regression).  

Sinus hyperplasia is characterized by distention and prominence of lymphatic 

sinusoids caused by the infiltration with histiocytes and marked hypertrophy of the 

lining endothelial cells (21). Sinus hyperplasia was detected in 88.5% (23/26) of 

control LNs and in 96.0% (24/25) of non-metastatic LNs, in contrast to only 4/21 

(19.0%) of metastatic LNs (p<0.001 between control LNs and metastatic LNs, 
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 Mann-U test) (Table 2). The occurrence of sinus hyperplasia also correlated with 

higher expression of CD38 (p = 0.012, linear regression), higher CD68 expression (p 

= 0.029, linear regression) and lower Ki67+ lymphocytes (p = 0.006, linear 

regression). 

Fibrosis results from the formation of excessive collagen in a reactive process. 

LNs with fibrosis in the tissue parenchyma were observed in 24/26 (92.3%) of 

control LNs, 21/25 (84.0%) of non-metastatic LNs and 14/22 (66.7%) of the 

metastatic LNs (p = 0.028 between control LNs and metastatic LNs, Mann-U test) 

(Table 2). The occurrence of LN fibrosis was also associated with the higher 

expression of CD38 (p = 0.05, linear regression) and the incidence of sinus 

hyperplasia and calcification (p = 0.025, p < 0.001, linear regression, respectively).  

Granulomatous inflammation is a distinctive pattern of chronic inflammation 

characterized by aggregates of activated macrophages activated by T lymphocytes 

often associated with infective agents such as tuberculosis (21). None of our study 

cases displayed evidence of granulomatous inflammation in draining LNs (Table 2). 

LN calcification is an abnormal deposition of calcium salt in the soft tissue in the 

absence of calcium metabolic derangements (21). There was no statistically significant 

difference in the presence of calcification between the three groups: 12/26 (46.2%) of 

control LNs, 18/25 (72.0%) of non-metastatic LNs and 10/21 (47.6%) of the 

metastatic LNs (Table 2).  

 

LN size and presence of metastatic cells 

We evaluated if the size of LNs was associated with the lower prevalence LN 

reactivity of metastatic LNs. We calculated the approximate surface area of the LNs 

by measuring the longest and shortest axes of the LN tissue section. A similar 

technique of assessment of LN size is performed in transesophageal 

echocardiography (36). We found that metastatic LNs and non-metastatic LNs were 

significantly smaller than control LNs from patients with localized prostate cancer (p 

= 0.005 and p = 0.044, Student T-Test, respectively) (Table 2). Furthermore, 71.4% 

of the metastatic LNs had a diameter < 10mm as compared to non-metastatic 

(52.0%) and controls (34.6%). In addition, the size of the LN correlated positively 
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 with the presence of sinus hyperplasia, follicular hyperplasia and fibrosis (p = 0.026, p 

= 0.019 and p = 0.008, linear regression, respectively), thus confirming that the LN 

reactivity correlated with the size of the LN. 
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Discussion 

Currently, LNs of cancer patients are subjected to a routine histological 

analysis focusing on the detection of metastatic tumor cells. However, considering 

that removal of metastatic LNs does not appear to provide significant improvement 

to the patient’s overall survival rate, it is likely that the detrimental effects associated 

with the development of LN metastasis remain long after the removal of tumor-

infiltrated LNs (15). The important roles of tumor draining LNs in the development 

of the anti-tumoral immune response might be compromised in advanced prostate 

cancer. As such, the evaluation of various cytoarchitectural characteristics of both 

metastatic and non-metastatic LNs might provide important clues regarding the 

activity of the immune system in events leading to the development of prostate 

cancer LN metastasis. Moreover, a detailed analysis of the immunological activity of 

tumor-infiltrated LNs would further our understanding of the mechanisms involved 

in immune system evasion and help in the development of clinically applicable 

immunotherapy for prostate cancer.  

We observed an increased abundance of CD8+ cytotoxic T lymphocytes in 

tumor-invaded LNs. Reports in the literature describe an augmentation of CD8+ T 

lymphocytes in metastatic LNs of breast cancer patients and lower abundance of 

CD8+ T lymphocytes in metastatic LNs of patients with head and neck cancer, 

suggesting that variation in the CD8+ T lymphocyte population could be cancer 

specific (37-39). An augmentation of CD8+ T cells in metastatic LNs is significant 

since it implies that the microenvironment of tumor-invaded LNs favors the 

proliferation and/or the homing of cytotoxic T cells, which could participate in the 

elimination of the intruding cancer cells. Furthermore, the reduced level of CD20+ B 

lymphocytes and follicular hyperplasia in metastatic LNs, which correlates with the 

augmented presence of CD8+ T lymphocytes, may suggest that a cell-mediated 

immune response occurs more frequently than a humoral response. However, data 

suggest that CD8+ lymphocytes in metastatic LN of melanoma patients displayed a 

precursor phenotype (pre-terminally differentiated state) and lack the expression of 
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 key protein of the cytotoxic machinery (40). Further work would be required to 

specifically address the activation status of the CD8+ lymphocyte populations in 

metastastic and non-metastatic LNs in order to fully understand the extent of 

immunosuppression associated with prostate cancer metastasis. 

The increase abundance of Ki67+ lymphocytes also implies that the 

microenvironment could favor some lymphocyte proliferation. However, the 

increased lymphocyte proliferation was very small and metastatic LNs were 

significantly smaller than non-metastatic LNs. Our results on lymphocyte 

proliferation require further investigation in order to determine whether this 

increased proliferation is counterbalanced by increased numbers of apoptotic 

lymphocytes in tumor-invaded LNs. It was shown that tumor cells could promote 

lymphocyte apoptosis through Fas-Fas ligand interaction and caspase activation (41). 

An augmentation in apoptotic lymphocytes in metastatic LNs could prevail over 

lymphocytic proliferation and further explain the smaller size of metastatic LNs in 

comparison to control LNs. 

The microenvironment of metastatic LNs was shown to favor the activation 

of lymphocytes by increasing the immunogenicity of the invading neoplastic cells 

(42). However, our results on the expression of CD45RA and CD45RO suggest that 

metastatic LN lymphocytes did not attain levels of maturation higher than 

lymphocytes in non-metastatic or control LNs. Similar observations have been made 

in the study of lymphocytes in colon and stomach cancer (43). Nonetheless, contrary 

to expectation, the increased prevalence of sinus hyperplasia and/or follicular 

hyperplasia, two processes associated with the development of inflammatory 

responses, were not associated with elevated expression of CD45RO in tumor-free 

LNs. We observed, however, a lower abundance of CD38+ activated lymphocytes in 

metastatic LNs, which suggest that the presence of neoplastic cells would prevent the 

activation of immune cells.  

Furthermore, the expression of MHC-II was relatively similar between the 

three LN groups even though there was significant reduction in the abundance of B 

lymphocytes and macrophages, two APCs expressing MHC-II at their surface. There 

are three hypotheses that could explain why we did not observe a lower expression of 
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 MHC-II in metastatic LNs. First, the lower abundance of macrophages in metastatic 

LNs compared to controls is significant but very low (3.28% ± 2.17% and 0.62% ± 

0.52%) when compared to the expression of MHC-II (13.1% ± 1.98 and 9.88% ± 

1.79%). The lower abundance of macrophage may not significantly account for lower 

expression of MHC-II. The second hypothesis is that the relative equal abundance of 

DCs between the three groups may be enough to counterbalance the lower 

abundance of B lymphocytes and, thus the lack of lower expression of MHC-II in 

metastatic lymph nodes. DCs in LNs are known to express higher levels of MHC-II 

than macrophages (44) and B lymphocytes (45-47). This higher expression of MHC-

II by DC could prevent the reduction in MHC-II expression. Finally, 

immunohistochemical analysis is somewhat subjective. FACS analyses with double 

staining for MHC-II and DC, macrophages, T or B lymphocytes markers would be 

necessary to precisely address the question whether there is a lower expression of 

MHC-II within one immune cell population. Unfortunately, it is technically 

impossible to perform FACS analyses on archived tissues.  

Our histopathological findings reinforces the idea that an immunosuppressive 

microenvironment may exist in tumor-invaded LNs. Our results indicate a diminished 

incidence of LN reactivity (sinus hyperplasia, follicular hyperplasia and fibrosis) in 

metastatic LNs. The absence of sinus hyperplasia in metastatic LNs was observed in 

an experimental rat model, which demonstrated a transient LN reactivity only in the 

early stages of the metastatic process (6). The presence of metastatic cells in LNs has 

also been documented to be associated with a decrease in the macrophage 

population, a result similar to our observation in metastatic LNs of prostate cancer 

patients (6). A lower incidence of follicular hyperplasia in metastatic LNs was also 

observed in squamous cell carcinoma of the oral cavity (26). The lower abundance of 

CD8+ lymphocytes correlated with decreased signs of sinus hyperplasia. An inverse 

relationship between paracortical hyperplasia (proliferation of T lymphocytes) and 

sinus hyperplasia has also been previously reported (23, 48). These results, combined 

with the correlation between follicular hyperplasia and CD8+ T lymphocytes, indicate 

that the immunological response in metastatic LNs, if present, might predominantly 

be T lymphocyte mediated.  
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 Finally, the development of an inflammatory reaction is generally associated 

with an augmentation of LN size. This reactive enlargement is caused by the 

generation of sinus, follicular and/or paracortical hyperplasia. In our study, the size of 

the LN showed a correlation with the presence of sinus hyperplasia, follicular 

hyperplasia, fibrosis and calcification, therefore suggesting that larger LNs are more 

immunologically reactive. In several cancers, it has been established that tumor-

infiltrated LNs are larger than tumor-free LNs due to the development of an immune 

response against invading metastatic cells leading to reactive hyperplasia or to the 

growth of tumor cells (6, 26, 49). In contrast, our results indicate that metastatic LNs 

are significantly smaller than non-metastatic LNs. This has not previously been 

reported in prostate cancer. Interestingly, other investigators have reported similar 

observations, specifically in non-small cell lung cancer and endometrial cancer (36, 

50). The finding that metastatic LNs are of smaller size than non-metastatic LNs 

would further indicate that the presence of prostate cancer LN metastasis is 

associated with the development of an immunosuppressive microenvironment.  

Finally, both non-metastatic and metastatic LNs of patients with metastatic 

LNs were significantly smaller than LNs of the control groups. There are two reasons 

that may explain this result. First, the non-metastatic LNs could contain micro-

metastases, which would affect LN size and LN reactivity. Although the presence of 

micro-metastases in non-metastatic LNs is possible, we feel it is unlikely since two 

pathologists analyzed all of the non-metastatic LNs and none were positive for the 

presence of micro-metastases. Furthermore, our results clearly show that the non-

metastatic LN group is significantly distinct from the metastatic group based on 

cellular and histological characteristics. Secondly, the entire nodal basin could be 

subjected to the immunosuppressive action of a soluble factor, such as TGF-β. This 

is a plausible hypothesis since the expression of TGF-β, an immuno-inhibitory 

cytokine, is increased in advanced prostate cancer (51, 52). All tumor-draining LNs in 

metastatic patients could be less effective at mounting an immunological response 

than LNs in patients with localized prostate cancer. This phenomenon would 

nonetheless be further amplified in metastatic LNs. 
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Conclusions 

Although this is consistent with published data, to our knowledge, this is the 

first report to characterize tumor-infiltrated pelvic LNs in prostate cancer both from 

an immunological and from a histopathological perspective. We observed that 

metastatic LNs are subjected to immunoregulatory interactions with the invading 

cancer cells, which tends to correlate with a smaller LN size and decreased LN 

reactivity. In other tumor models, it has also been previously reported that tumor-

draining LNs and metastatic LNs show evidence of an immunological 

unresponsiveness (6, 48, 53-56). Several mechanisms have been postulated to account 

for lack of immunological reactivity in tumor-draining LNs, such as high expression 

of immunosuppressive cytokines, elevated activity of immunosuppressive cells 

(regulatory T cells and/or indoleamine 2,3-dioxygenase (IDO) expressing DCs) and 

modifications in the T lymphocytes and DCs zones (7, 54-57). Further research is 

now necessary in order to detail which immunosuppressive mechanisms are utilized 

by prostate cancer cells. Moreover, our results on LN size call into question the 

validity of assessing LN status (metastatic or non-metastatic) based on their 

macroscopic appearance. Our data reinforces the pressing need to develop new 

molecular and imaging tools in order to better stratify patients with metastatic disease 

and to help clinicians plan treatment modalities. This work may eventually lead to the 

development of immunotherapeutic modalities for prostate cancer by targeting the 

immunosuppressive properties of tumor cells, thereby enhancing the local 

tumoricidal immune response. 
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Figure 1. Representative images of immunohistochemical staining 
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 Figure 1. Representative images (20x objective) of immunohistochemical staining of 

formalin-fixed paraffin embedded pelvic lymph nodes (LNs) tissue sections. (A) 

CD4+ T lymphocytes marked with permanent Red; (B) CD8+ T lymphocytes; (C) 

CD20+ B lymphocytes; (D) CD38+ activated lymphocytes; (E) CD45RA+ naïve 

lymphocytes; (F) CD45RO+ memory lymphocytes; (G) CD56+ natural killer cells; (H) 

CD68+ macrophages localized in a B lymphocyte follicle; (I) Fascin+ dendritic cells in 

the paracortical area; (J) HLA-DR/DP/DQ+ immune cells localized in the 

paracortical area (staining distribution similar to the Fascin staining); (K) Ki67+ 

proliferating lymphocytes in a B lymphocyte follicle marked with DAB. Ki67+ 

lymphocytes are easily distinguishable from other cell type based on their dense 

nuclei; (L) PSA+ prostate cancer lymph node metastasis. 
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Figure 2. Percentage of area covered by positively stained cells 
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 Figure 2. Percentage of area (areacorr) covered by positively stained cells analyzed by 

Image-Pro Plus v.5.1 in pelvic lymph nodes (LNs) (median ± s.e. median). (White 

bars) non-metastatic (control) LNs from patients with no PCa LNs metastasis, (Gray 

bars) non-metastatic LNs from patients with PCa LNs metastasis, (Black bars) 

metastatic LNs from patients with PCa LNs metastasis. (A) CD4, CD8, CD20, 

CD45RA, CD45RO, Fascin, HLA-DR/DP/DQ; (B) CD38, CD56, CD68, KI67. 

 



 
112 

 

 

 

Figure 3. Histopathological features observed in hematoxylin and eosin 

(H&E) stained LN sections. 
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 Figure 3. Histopathological features observed in hematoxylin and eosin (H&E) 

stained LN sections. (A) Sinus hyperplasia (arrow) and calcification (arrowheads) (10x 

objective); (B) Fibrosis (arrows) (10x objective); (C) Follicular hyperplasia (arrow) and 

fibrosis (arrowheads) (10x objective); (D) Prostate cancer lymph node metastasis 

(arrow) (4x objective). 
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Table 1. Clinical Characteristics of Prostate Cancer Patients 
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Table 2. Pathological Analysis of LNs in Prostate Cancer Patients 
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Abstract 

Introduction: Our goal was to study the hormonal regulation of immune cell 

infiltration in prostate cancer patients treated by androgen deprivation therapy (ADT) 

using an optimized computer-assistance quantification approach. 

Methods: The relative density of immune cell subtypes (CD3+, CD8+, CD20+, 

CD56+, CD68+ and Foxp3+) was analyzed by immunohistochemistry in archived 

prostate specimens from control patients (radical prostatectomy only, n=40) and 

ADT-treated patients (ADT prior to radical prostatectomy, n=35) using an image 

analysis software and a whole-slide scanner. 

Results : ADT-treated patients had significantly increased relative density of CD3+ 

(p<0.001) and CD8+ T lymphocytes (p<0.001) as well as CD68+ macrophages 

(p<0.001). Elevated abundance of CD56+ Natural Killer (NK) cells was associated 

with a lower risk of prostate cancer progression (p=0.044), while a high density of 

CD68+ macrophages was related to an increased risk of biochemical recurrence 

(p=0.011). 

Conclusions: Our results demonstrate that the infiltration of specific immune cell 

subtypes is modulated by ADT. Furthermore our data confirm that NK cells have a 

protective role against tumor progression while macrophages seem to favor the 

development of advanced prostate cancer. 
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Introduction 

Prostate cancer remains the most frequently diagnosed cancer and third 

leading cause of cancer related deaths for North American men (Jemal et al., 2008). 

Androgens participate in the prostate’s organogenesis and carcinogenesis (Grossmann 

et al., 2001). As such, the most common treatment for men with advanced stage or 

recurrent prostate cancer is androgen deprivation therapy (ADT). ADT promotes the 

apoptosis of the hormone sensitive prostate epithelial cells, which leads to the 

involution of the prostate (Montironi and Schulman, 1998; Ohlson et al., 2005). 

Unfortunately, generally within one to five years following ADT initiation, patients 

develop hormone refractory prostate cancer, the major contributor to prostate cancer 

related death, and a disease for which only palliative therapies are currently available 

(Oefelein et al., 2002; Tannock et al., 2004).  

Novel therapeutic protocols are currently emerging with the goal of tackling 

hormone-refractory prostate cancer, including immune-based therapies. The common 

rationale between the various immunotherapeutic approaches is the activation of the 

anti-tumoral immu ne response within the tumor and/or metastases. To this day, 

immunotherapeutic protocols in clinical trial have yet to attain the optimistic results 

demonstrated in animal models. Recent data suggest that the prostate possesses a 

strong immunoregulatory potential, which may suppress the activation of the anti-

tumoral immune response (Miller and Pisa, 2007). Therefore, the interactions 

between the immune system and prostate cancer cells within the patient’s primary 

tumor needs to be better understood in order to develop clinically effective 

immunotherapies. 

Several publications have demonstrated that different immune cell 

populations infiltrate the prostate and that, in some cases, the abundance of specific 

immune cells may correlate with cancer progression (Vesalainen et al., 1994; Irani et 

al., 1999; Shimura et al., 2000; McArdle et al., 2004; Karja et al., 2005). Nonetheless, 

in the context of an androgen dependant cancer such as prostate cancer, significant 

knowledge needs to be obtained on whether androgens can modulate the abundance 

and activity of the immune cell infiltrate within the primary tumor. It is known that 
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 ADT fosters the development of a pro-inflammatory environment within the prostate 

(Civantos et al., 1996; Guinan et al., 1997; Mercader et al., 2007). Moreover, the 

immunosuppressive potential of the primary tumor can be dampened following ADT 

(Drake et al., 2005). With clinical trials combining immune-based therapies and ADT 

currently being evaluated, it is essential to gain insights on the various 

immunoregulatory changes present within the prostate following ADT. 

Our goal was thus to characterize, using a computer-based approach, the 

immune cell infiltrate in patients treated by ADT. Using a cohort of 75 patients, we 

quantified the relative density of various adaptive and innate immune cell populations 

using a software-assisted protocol coupled to a whole-slide image scanner. The 

abundance of various immune cell populations was quantified using a freely available 

image-analysis software. With the idea that immune cell abundance could be used as a 

prognostic tool for prostate cancer progression, we optimized a system that would 

allow for the rapid and accurate quantification of various immunohistochemical 

markers on a large tissue sample thereby eliminating significant biases of analyses on 

smaller tissue sections. We believe that our method could heIp standardize the 

analysis of diverse immune cell populations within primary tumors and thus facilitate 

the interpretations of independent studies to better understand the biology of the 

immune system in prostate cancer. 



 
120 

 

 
Materials and methods 

Patients 

Paraffin-embedded formalin-fixed primary tumor specimens from 40 control 

patients (radical prostatectomy only) and 35 ADT patients (ADT prior to radical 

prostatectomy) who had undergone surgery between 1991 and 2001 were used in this 

study. The 35 patients in the ADT group had (i) histologic effects attributable to 

neoadujvant ADT (ii) histologically identifiable areas of tumor remaining within 

prostate samples. The control group was matched according Gleason score in order 

to eliminate immune infiltration variation due to the degree of differentiation of the 

tumors. All patients had a clinical follow-up of at least five years or until death (mean 

99.8 months). Clinico-pathological characteristics of both control and ADT patients 

can be found in Supplementary Table 1. All ADT patients received either a luteinizing 

hormone-releasing hormone (LHRH) agonist (Cyproterone) or gonadotropin-

releasing hormone (GnRH) antagonist (Leuprolide) in combination with an AR 

blocker (Flutamide). Time to biochemical recurrence was defined as the time elapsed 

between surgery and when prostate-specific antigen (PSA) level first rose from 

undetectable to > 0.3 ng/ml and increasing, as previously reported by our group 

(Fradet et al., 2004; Le Page et al., 2006; Koumakpayi et al., 2007; Diallo et al., 2008). 

The final pathological staging, grading and histopathological diagnosis was based on 

the pathology report. Specimens were obtained from consenting patients and the 

institutional ethics review committee approved this study. 

 

Immunohistochemistry 

Specimens were immunostained with anti-CD3 (NCL-L-CD3-PS1, 

Novocastra, Newcastle, UK), anti-CD8 (M-7103, Dako Diagnostics Inc. Carpinteria, 

CA, USA), anti-CD20 (M-0755, Dako), anti-CD56 (Ab-5, LabVision Neomarkers, 

Fermont, CA, USA), anti-CD68 (M-0876, Dako) and anti-Foxp3 (222510, Abcam, 

MA, USA). Staining was performed as previously described (Lessard et al., 2003; 

Gannon et al., 2006; Koumakpayi et al., 2006; Diallo et al., 2007). Briefly, specimens 
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 were deparaffinized, rehydrated and antigen retrieval was performed with a Tris-

EDTA buffer (10 mM Tris Base, 1 mM EDTA Solution, pH 9.0) using a commercial 

pressure cooker. The specimens were then blocked with a protein-blocking serum-

free reagent (Dako) and incubated with the primary antibody for 90 min. Endogenous 

peroxidase activity was then blocked with 0.6% H2O2 in methanol for 30 min, which 

was followed by a 30 min incubation with a secondary goat anti-mouse IgG HRP-

coupled antibody (sc-2005, Santa Cruz, CA, USA). Between each incubation, 

specimens were washed in PBS for 15 min. Positive signal was revealed using the 

LSAB 2 peroxidase system (Dako) and counterstained with Harris haematoxylin 

(Sigma-Aldrich, St-Louis, MO, USA). There were no non-specific stainings when IgG 

isotype controls were used in lieu of the primary antibody. 

 

Image Analysis 

Whole slide digital images were obtained for each specimen using a 

ScanScope XT automated high-throughput scanning system (Aperio Techonologies 

Inc, Vista, CA, USA). The resulting high-resolution digital images were analyzed using 

the Image ScopeTM software (Aperio) using the positive pixel count algorithm 

(version 9). The positive pixel-count algorithm generates four output values based on 

the pixel’s intensity: haematoxylin or negative signal (blue in mark-up image), weak 

positive (yellow in mark-up image), positive (orange in mark-up image) and strong 

positive (brown in mark-up image) (Figure 1a, 1b). The Image ScopeTM software 

contains several parameters that can be adjusted to precisely differentiate positive and 

background staining. Among all the parameters, we found that positively stained cells 

could be clearly differentiated from the non-specific and background staining with 

minor adjustments in the upper limit of intensity for weak-positive pixel or Iwp(high), 

the lower limit of intensity for weak-positive pixel equals the upper limit of intensity 

for positive pixel or Iwp(low)=Ip(high) and the lower limit of intensity for positive pixel 

equals the upper limit of intensity for strong-positive pixel or Ip(low)=Isp(high). In 

most case, the Iwp(High) value was set at 230, the Iwp(Low)=Ip (High) value between 80 

and 140 and the Ip(Low)=Isp(High) between 20 and 40. Using these parameters, the 

strong non-specific (brown) as well as the weak positive (yellow) signals were 
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 considered as debris background staining, whereas the positive value (orange) was 

considered as specific. To quantify the immune cell infiltrate, the number of positive 

pixels (orange) was divided by the total number of pixels of the specimens (blue + 

yellow + orange + brown) thus giving a relative abundance ratio (referred in the text 

as relative units). 

 

Statistics 

The nonparametric Mann-Whitney U test was used to assess statistical 

significance of differences in immune cell infiltration between control and ADT 

groups. Correlation coefficients were computed using Spearman’s non-parametric 

test. Univariate analyses were completed using Cox regression with the Enter model. 

Multi-variate analyses were completed using the Forward Wald model. Statistical tests 

were performed using the Statistical Package for the Social Sciences (SPSS) version 11 

(SPSS Inc., Chicago, IL, USA). 
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 Results 

Image analysis using Image ScopeTM 

Our previous publication demonstrated the accuracy of quantifying immune 

cell populations by immunohistochemistry in formalin-fixed paraffin-embedded 

tissues using a digital image analysis software (Gannon et al., 2006). In the present 

study, whole-slide high-resolution images were analyzed with the freely available 

Image ScopeTM software from Aperio. By changing the various parameters of the 

pixel-count algorithm (see Material and Methods section), we were able to accurately 

differentiate between specific and non-specific staining (Figure 1a, 1b). Prior to 

analysis with the Image ScopeTM software, a visual assessment of every digital 

specimen is necessary to manually remove tissue artifacts (corpus amylacea, staining 

of the surgical margins) and staining debris that interfere with the pixel-count analysis 

(Figure 1c). Furthermore, during this visual assessment it is important for the 

observer to quantify crudely the immune cell density (absent, low, intermediate, high) 

present within the tissue. This visual quantification of immune cell abundance is then 

compared to the output value from the software’s analysis. In a small proportion of 

tissues, when the immunohistochemical staining produced non-specific background, 

the visual assessment was essential to fine-tune the software’s parameters in order to 

minimize false-positive results caused by this non-specific staining. As presented in 

Figure 1, the output values of the software’s analyses correlated with the visual 

assessments of the prostatic inflammation (Figure 1d, 1e, 1f). 

 

Increased density of T lymphocytes and macrophages in ADT patients. 

In order to provide a detailed understanding of the density of the 

inflammatory infiltrate following ADT, we quantified the abundance of innate 

immune cell populations (CD56+ Natural Killer cells and CD68+ macrophages), 

adaptive immune cell population (CD20+ B lymphocytes, CD3+ and CD8+ T 

lymphocytes) and Foxp3+ lymphocytes. Using paraffin-embedded formalin-fixed 

lymph nodes as positive controls, all antibodies were carefully optimized in order to 

obtain strong positive signals with minimal background staining (Figure 2). 
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 Unfortunately, we were unable to optimize an anti-CD4 antibody with satisfactory 

results. Immunohistochemistry using appropriate isotype control antibodies resulted 

in negative staining (Data not shown). 

Our results demonstrate a specific increase in the abundance of T 

lymphocytes and macrophages in the ADT group. CD3+ T lymphocytes had an 

average relative density of 0.743 relative units in control patients and 1.391 relative 

units in ADT patients, a 1.87-fold increase (p < 0.001, Mann-U) (Figure 3a). 

Consequently, the average density of CD8+ T lymphocytes was also increased by 

~2.00-fold, from 0.434 relative units in the control group to 0.866 relative units in the 

ADT group (p < 0.001, Mann-U) (Figure 3b). We did not detect statistically 

significant changes in the average relative abundance of CD20+ B lymphocytes (1.836 

relative units vs 2.153 relative units, p = 0.066, Mann-U) (Figure 3c) or of CD56+ NK 

cells (1.554 relative units vs 1.754 relative units, p = 0.310, Mann-U) (Figure 3d) in 

control versus ADT patients, respectively. Patients in the ADT group did however 

have a 1.78-fold increase in the average relative abundance of CD68+ macrophages 

compared to control patients (1.066 relative units vs 0.598 relative units, respectively, 

p < 0.001, Mann-U) (Figure 3e). Finally, we evaluated the infiltration of Foxp3+ 

lymphocytes with regards to ADT. In our cohort, we did not observe significant 

changes in the average relative density of Foxp3+ cells in control (0.238 relative units) 

compared to ADT group (0.325 relative units) (p = 0.196, Mann-U) (Figure 3f). 

 

Correlations between the relative abundance of immune cell populations 

Correlations between the relative abundance of the various immune cell 

populations were analyzed in both the control group and the ADT group 

independently (Table 1). In the control group (Table 1, top panel), several significant 

correlations were observed. Predictably, the infiltration of CD3+ T lymphocytes 

correlated with the infiltration of CD8+ T lymphocytes (Spearman’s Rho = 0.290, p = 

0.015). A strong CD3+ or CD8+ T lymphocyte infiltration also positively correlated 

with the CD68+ macrophage infiltration (Spearman’s Rho = 0.293, p = 0.013; and 

Spearman’s Rho = 0.311, p = 0.005, respectively). Interestingly, we noted a positive 
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 correlation between the CD20+ B lymphocyte infiltration and the CD56+ NK cell 

density (Spearman’s Rho = 0.248, p = 0.039). 

The hypothesized immunological modulatory properties of ADT were 

evidenced when looking at the correlations in the ADT group (Table 1, bottom 

panel). We did not observe the expected correlation between CD3+ and CD8+ T 

lymphocytes, which highlights a possible dysfunction in immune regulatory pathways. 

However, we did detect an inverse correlation between the abundance of CD68+ 

macrophages and Foxp3+ lymphocytes (Spearman’s Rho = -0.744, p < 0.001). 

 We also evaluated whether the immune cell infiltrate correlated with clinico-

pathological parameters (Table 2). In the control group, we found that CD3+ T 

lymphocytes positively correlated with extracapsular invasion (Spearman’s Rho = 

0.397, p = 0.013) and that a high abundance of CD68+ macrophages correlated with 

positive surgical margins (Spearman’s Rho = 0.277, p = 0.044). There was also an 

inverse correlation between the density of CD56+ NK cells and seminal vesicle 

invasion (Spearman’s Rho = -0.349, p = 0.013). Finally, a high relative abundance of 

Foxp3+ lymphocytes was associated with elevated pre-operative PSA levels 

(Spearman’s Rho = 0.366, p = 0.009). No correlations were observed within the ADT 

group (Data not shown). 

 

Immune cell infiltration correlates with biochemical recurrence 

We then analyzed whether the relative density of immune cells measured via 

the image analysis software could predict biochemical recurrence, an indicator of 

prostate cancer progression (Table 3). Univariate Cox regression analyses revealed 

that a dense infiltrate of CD56+ NK cells protected control patients from biochemical 

recurrence (Odd’s ratio = 0.213, p = 0.044). On the other hand, control patients with 

high relative abundance of CD68+ macrophages were at a higher risk of developing 

biochemical recurrence (Odd’s ratio = 4.264, p = 0.011). In the ADT group, we did 

not identify any immune cell populations which were associated with biochemical 

recurrence. 

Finally, we evaluated the possibility that immune cell density could act as a 

predictor of biochemical recurrence in a multi-variate model composed of six clinico-
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 pathological parameters known to predict prostate cancer progression: age at time of 

surgery, pre-operative PSA levels, Gleason (<7, ≥7), positive surgical margins as well 

as positive seminal vesicle and lymph node invasion (Supplementary Table 2). To 

validate the predictive strength of these parameters in our cohort, we performed 

univariate Cox regression analyses without the immune cell density values. Univariate 

analyses in the control group revealed that positive surgical margins, seminal vesicle 

and lymph node invasion were all associated with increased risks of developing 

biochemical recurrence. Multi-variate analyses combining the six markers showed 

that, in our cohort, lymph node invasion was the strongest predictor of biochemical 

recurrence, which can be explain by the relatively high number of lymph node 

invasion in our cohort. Unfortunately, when the immune cell data was added to the 

multi-variate model, no immune cell populations were identified as independent 

predictors of biochemical recurrence (Data not shown). In the ADT group, univariate 

analyses revealed that pre-operative PSA levels and seminal vesicle invasion were 

associated with biochemical recurrence. Similar to the control group, our multi-variate 

model did not identify any immune cell populations as independent predictors of 

biochemical recurrence (Data not shown). 



 
127 

 

 
Discussion 

Several studies have associated the degree of immune cell infiltration with 

prostate cancer progression (Vesalainen et al., 1994; Irani et al., 1999; Sari et al., 1999; 

Shimura et al., 2000; McArdle et al., 2004; Karja et al., 2005). Increased immune cell 

infiltrate evaluated by H&E coloration correlates with increased rate of tumor 

recurrence (Irani et al., 1999) and capsular and perineural invasion (Karja et al., 2005), 

whereas elevated density of CD4+ T lymphocytes (McArdle et al., 2004) and mast 

cells (Sari et al., 1999) are associated with poor survival and higher Gleason score, 

respectively. However, another study did observe that a high TILs density, again 

evaluated by H&E staining, was protective against disease progression (Vesalainen et 

al., 1994). Moreover, there are inverse relationships between CD68+ macrophage 

primary tumor infiltration and disease progression (Shimura et al., 2000). 

Standardization of the quantification protocol of immune cell abundance is essential 

in order to better compare independent studies evaluating immune cells within the 

prostate and establishing conclusions on the pro- or anti-cancer properties of intra-

prostatic inflammation.  

Together with the fact that several studies reported immune cell density using 

non-specific H&E staining, a major bias in the previously aforementioned studies was 

that immune cell abundance was quantified in randomly selected fields. The intra-

prostatic inflammation is rather heterogeneous in nature with different immune cell 

subtypes showing preferential sub-localizations within the tissue. For example, T and 

B lymphocytes tended to accumulate in inflammatory foci surrounding the glandular 

epithelium, whereas NK cells and Foxp3+ lymphocytes were found to be distributed 

throughout the stroma and around the glandular epithelium. To counter this, we 

utilized a whole-slide scanner which generated high-resolution digital images of the 

entire tissue. Since it would have been particularly time consuming to manually count 

positive cells on such large area, the use of an image-analysis software was necessary. 

A variation of this method was used by Richardsen et al. to quantify infiltration 

within the prostate (Richardsen et al., 2008), although this analysis was still based on 

randomly selected fields. We believe that our approach fully eliminates the bias of 
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 randomly selected fields while generating rapid and accurate measurements of 

immune cell density.  

Our results confirmed those obtained by Mercader et al. as to the increased 

infiltration of T lymphocytes and macrophages in primary tumors of patients treated 

by ADT. In our small cohort of 40 control patients, we were however unable to 

demonstrate associations between the density of the lymphocytic infiltration and 

prostate cancer progression as was previously reported (Vesalainen et al., 1994; Irani 

et al., 1999; Karja et al., 2005). It is possible that additional associations of statistical 

significance could have been identified in a larger cohort. However, we did observe 

an inverse relationship between the density of CD56+ NK cells and the risk of 

biochemical recurrence as well as an inverse correlation with seminal vesicle invasion. 

This data support the beneficial roles of NK cells in the anti-tumoral immune 

response. Conversely, our data suggest, as did that of Shimura et al., that an elevated 

relative abundance of macrophages could favor prostate cancer progression (Shimura 

et al., 2000). An important aspect of our data is that we considered the overall 

inflammation within the primary tumor. All samples contained tumor tissue as 

confirmed by a pathologist. Again, due to the relatively small size of our cohort, these 

results should be validated in a larger independent cohort using a similar software-

based approach. Future studies could also focused on stratifying the observed 

differences in immune cell infiltration. Indeed, it would be particularly interesting to 

quantify stromal inflammation in comparison to inflammation in the proximity of 

non-malignant or malignant glands, although pathologically this would be challenging 

in neoadjuvant ADT treated patients. 

By taking into consideration the important role of regulatory T cells in the 

anti-tumoral immune response, our results on Foxp3 expression need to be carefully 

interpreted. Firstly, our data support published studies describing the presence of 

Foxp3+ lymphocytes within the prostate (Miller et al., 2006; Fox et al., 2007). 

Moreover, as it was previously published, Foxp3+ infiltration does seem to not 

correlate with disease recurrence (Fox et al., 2007; Sfanos et al., 2008). We did 

however find a novel positive correlation between Foxp3+ lymphocyte density and 

pre-operative PSA levels. This result raises the interesting question as to whether 
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 regulatory T cells might play a more important role in cancer initiation than tumor 

progression. Notably, although still recognized as the most specific marker for 

regulatory T cells, Foxp3 can also be expressed by activated human T lymphocytes 

(Walker et al., 2003; Morgan et al., 2005; Shevach, 2006). It is thus difficult to draw 

conclusions on the phenotype of Foxp3+ lymphocytes in an immunohistochemical 

study. Thus, further detailed studies on the hormonal regulation of Foxp3+ regulatory 

T cell numbers and functions are warranted. 

Finally, although post-ADT inflammation has been observed for several 

decades, its causes remain elusive. Two main hypotheses are proposed in the 

literature. On one hand, ADT via anti-LHRH will reduces testosterone levels 

systemically, which was proposed to increase thymopoiesis and consequently increase 

the ratio of naïve to memory T lymphocytes (Olsen et al., 1991; Sutherland et al., 

2005). On the other hand, increased release of tumor antigen during the ADT-

induced apoptotic involution of the prostate combined with an elevated abundance of 

antigen-presenting cells (macrophages, dendritic cells) could favor the development 

of a pro-inflammatory microenvironment (Mercader et al., 2001; Haverkamp et al., 

2008). Furthermore, there could be immunosuppressive mechanisms expressed by 

the prostate epithelium cells, which may be dampened following ADT (Drake et al., 

2005). Our results, and those of other groups, warrant further studies on the 

hormonal regulation of the anti-tumoral immune response in prostate cancer. Such 

studies will shed light on whether androgens (or ADT) modulate the activation 

potential of specific immune cell subtypes. Moreover, it would be interesting to 

determine the immunosuppressive potential of prostate cancer cells in an androgen-

deprived environment. 

In conclusion, this present study details a standardized approach for the rapid 

and accurate quantification of immune cell density within the primary tumor of 

prostate cancer patients. We found that ADT increases the relative abundance of 

CD3+ and CD8+ T lymphocytes as well as CD68+ macrophages. Although not 

identified as independent predictors of biochemical recurrence in a multi-variate 

model, we did observe that CD56+ NK cells and CD68+ macrophages infiltration was 

associated with prostate cancer progression. Our data demonstrate that the relative 
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 density of specific immune cell subtypes is modulated by ADT. Finally, this technique 

could also be used in prospective studies. Combined with flow cytometry analysis, 

this technique offers the possibility to visualize the in situ localization of the immune 

cells, something that cannot be observed during flow cytometry analysis. 
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Figure 1. Image analysis with Image Scope and the Pixel-Count Algorithm. 
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 Figure 1. Image analysis with Image Scope and the Pixel-Count Algorithm. 

 

A) Example of a tissue specimen stained with anti-CD20 antibodies and with high 

non-specific background. B) Pseudo-colored image of panel A illustrating the four 

output values of the Pixel-Count algorithm: haematoxylin or negative signal (blue), 

weak positive (yellow), positive (orange) and strong non-specific (brown). C) 

Representation of areas with corpus amylacea, which were manually removed from 

the analysis (red lines). Insets are higher magnification images. Representative images 

of various densities of CD3+ T lymphocytes in primary prostate demonstrating that 

the image-analysis output matches visual evaluation. D) 0.15 relative units. E) 1.00 

relative units. F) 2.70 relative units. 
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Figure 2. Immunohistochemical staining of immune cells in paraffin-

embedded prostate primary tumors. 
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 Figure 2. Immunohistochemical staining of immune cells in paraffin-embedded 

prostate primary tumors. 

 

A) CD3+ T lymphocytes. B) CD8+ T lymphocytes. C) CD20+ B lymphocytes. D) 

CD56+ Natural Killer cells. E) CD68+ macrophages. F) Foxp3+ lymphocytes. All 

images were taken from the same tissue section. Insets are higher magnification 

images clearly illustrating the positively stained cells in brown. Immunohistochemisty 

with appropriate isotype control antibodies were negative. 
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Figure 3. Increased abundance of immune cells in ADT patients. 
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 Figure 3. Increased abundance of immune cells in ADT patients. 

 

Control group is represented in white and the ADT group in gray with the average 

for each group as the black line. Each square represents the relative abundance for 

one patient. A) CD3+ T lymphocytes (0.743 units vs 1.391, p < 0.001, Mann-U). B) 

CD8+ T lymphocytes (0.434 units vs 0.866, p < 0.001, Mann-U). C) CD20+ B 

lymphocytes (1.836 units vs 2.153, p = 0.066, Mann-U). D) CD56+ Natural Killer 

cells (1.554 units vs 1.754, p = 0.310, Mann-U). E) CD68+ macrophages (0.598 units 

vs 1.066, p < 0.001, Mann-U). F) Foxp3+ lymphocytes (0.261 units vs 0.384, p = 

0.1963, Mann-U).  
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Table 1. Correlations between immune cell populations 
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Table 2. Correlations between immune cell populations and clinical markers 
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Table 3. Univariate Cox regression analyses of biochemical recurrence 
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Supplementary Table 1. Clinico-pathological characteristics of prostate cancer 

patients 
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Supplementary Table 2. Univariate and Multi-variate Cox regression analyses 

of biochemical recurrence 
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Abstract 

Background: Prostate cancer (PCa) is the most frequently diagnosed cancer in 

North American men. Androgen-deprivation therapy (ADT) accentuates the 

infiltration of immune cells within the prostate. However, the immunosuppressive 

pathways regulated by androgens in PCa are not well characterized. Arginase 2 

(ARG2) expression by PCa cells leads to a reduced activation of tumor-specific T 

cells. Our hypothesis was that androgens could regulate the expression of ARG2 by 

PCa cells. 

Methodology/Principal Findings: In this report, we demonstrate that both ARG1 

and ARG2 are expressed by hormone-sensitive (HS) and hormone-refractory (HR) 

PCa cell lines, with the LNCaP cells having the highest arginase activity. In prostate 

tissue samples, ARG2 was more expressed in normal and non-malignant prostatic 

tissues compared to tumor tissues. Following androgen stimulation of LNCaP cells 

with 10 nM R1881, both ARG1 and ARG2 were overexpressed. The regulation of 

arginase expression following androgen stimulation was dependent on the androgen 

receptor (AR), as a siRNA treatment targeting the AR inhibited both ARG1 and 

ARG2 overexpression. This observation was correlated in vivo in patients by 

immunohistochemistry. Patients treated by ADT prior to surgery had lower ARG2 

expression in both non-malignant and malignant tissues. Furthermore, ARG1 and 

ARG2 were enzymatically active and their decreased expression by siRNA resulted in 

reduced overall arginase activity and L-arginine metabolism. The decreased ARG1 

and ARG2 expression also translated to diminished LNCaP cells cell growth and 

increased PBMC activation following exposure to LNCaP cells conditioned media. 

Finally, we found that interleukin-8 (IL-8) was also upregulated following androgen 

stimulation and that it directly increased the expression of ARG1 and ARG2 in the 

absence of androgens.  

Conclusion/Significance: Our data provides the first detailed in vitro and in vivo 

account of an androgen-regulated immunosuppressive pathway in human PCa 

through the expression of ARG1, ARG2 and IL-8. 
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Introduction 

Prostate cancer (PCa) is the most frequently diagnosed cancer and third 

leading cause of cancer related deaths for North American men [1]. The prostate’s 

organogenesis and carcinogenesis rely on the presence of androgens [2]. As such, the 

most common treatment modality for men with an advanced stage or recurrent PCa 

is androgen-deprivation therapy (ADT). ADT leads to the apoptosis of hormone 

sensitive prostate epithelial cells [3]. Unfortunately, within one to five years following 

ADT initiation, most patients develop hormone refractory PCa (HRPC), whose 

treatment remains palliative [4]. New treatment modalities, such as immunotherapy, 

attempt to tackle these later stages of PCa. However, current immunotherapies 

against PCa have resulted in limited success in the clinical settings. A detailed 

understanding of the tumor immunological microenvironment should provide new 

insights on how to improve current immune-based protocols. 

Recent data demonstrate that various immunosuppressive mechanisms are 

present within the prostate and may hamper the anti-tumoral immune response in the 

context of an immunotherapy (reviewed in [5]). Arginase 2 (ARG2) is expressed in 

human PCa [6] and its inhibition, concomitant with iNOS, increases the activation of 

tumor-infiltrating lymphocytes (TILs) [7]. While the immunosuppressive properties 

of arginases through the metabolism of L-arginine are well documented (reviewed in 

[8]), the regulation of human arginase expression, however, is currently undefined.  

Androgens are known to have immunosuppressive properties, which is 

illustrated by the intra-prostatic inflammation following androgen deprivation therapy 

[9,10]. Gene expression analyses and murine studies suggest that androgens regulate 

the expression of ARG2 and other enzymes of the polyamine pathway [11,12,13]. 

Thus, considering the fundamental roles of androgens in prostate carcinogenesis and 

in the sculpting of the prostate’s microenvironment, we evaluated whether androgens 

could regulate the expression of arginases by PCa cells in vitro and in vivo. 

In this study, we report that PCa cell lines express both functionally active 

ARG1 and ARG2. Interestingly, hormone sensitive (HS) and hormone refractory 

(HR) tissues expressed less ARG2 than non-malignant tissues. In the HS LNCaP cell 
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 line, androgen stimulation led to the increased expression of both ARG1 and ARG2 

in an androgen receptor (AR) dependant manner. This androgen-regulated expression 

was also observed in the primary tumor of ADT-treated patients who expressed less 

ARG2 in both the non-malignant tissues adjacent to the tumor and the tumor tissues. 

Finally, we discovered that IL-8 was also regulated by androgens under the control of 

the AR, and participated in the regulation of ARG2 expression. Altogether, our data 

provides the first detailed account in vitro and in vivo of an androgen-regulated 

immunosuppressive pathway in human PCa.  
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Materials and methods 

Cell Culture 

LNCaP, 22Rv1, DU145 and PC3 cell lines were obtained from ATCC (MD, 

USA). All cell lines were maintained as previously described by our group [30]. For 

R1881 stimulation, cells were plated at 600,000 cells per 60 mm petri dish and 

incubated for an initial 72 hours in 10% (v/v) charcoal-stripped fetal calf serum 

(FCS)-supplemented RPMI 1640, which eliminates all steroid hormones from the 

serum. Afterwards, the cells were washed with PBS and cultured in fresh 10% 

charcoal-stripped FCS-supplemented RPMI 1640, with either 10 nM R1881 or 

ethanol (control) [30]. Conditioned media, protein and RNA were extracted at 0, 24, 

48 or 72 hours following the R1881 stimulation. For IL-8 stimulation, LNCaP cells 

were plated in charcoal-stripped serum supplemented media for 72 hours followed by 

24 hours in serum-free RPMI. Cells were then stimulated for 72 hours with either 10 

nM R1881 or with 100 ng/ml IL-8 (PeproTech, Rocky Hill, NJ) in serum-free RPMI. 

siRNA targeting the AR, ARG1, ARG2 and IL-8 as well as the RISC-free siGLO 

fluorescent siRNA control were purchased from Dharmacon (Chicago, IL). When 

LNCaP cells reached 80% confluence in a 100 mm petri dish they were transfected as 

recommended by the manufacturer using the Dharmafect 2 transfection reagent. 

Cells were incubated for 24 hrs after which they were seeded as described for the 

R1881 stimulation. 

 

Antibodies 

The following antibodies were purchased from Santa Cruz (Santa Cruz, CA): 

anti-ARG1 (BC9, sc-47715), anti-ARG2 (L-20, sc18357), anti-PSA (C-19, sc-7638), 

anti-RAN (C-20, sc-1146). The anti-AR (Ab-1) was purchased from 

LabVision/NeoMarkers (Fermont, CA). 

 

Gene and Protein Expression 
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 Quantitative real-time PCR (qPCR) analyses were performed as previously 

described by our group [31]. RAN served as the housekeeping gene as we found that 

its expression was not sensitive to R1881 stimulation. Relative mRNA of candidate 

gene/RAN ratios were calculated using the method described by Pfaffl et al. [32]. 

Fold change was calculated relative to the mock treated control. Western blotting of 

proteins extracted in non-denaturing buffer was performed as previously described by 

our group [33].  

 

Arginase Activity 

 Arginase activity was quantified as previously described [34]. Briefly, a 

solution of 10 mM MnCl2 / 50 mM Tris / HCl at pH 7.5 was added to whole cell 

extracts. Following an incubation at 55 °C for 60 mins, 25 µl of 0.5 M arginine pH 9.7 

was added to the samples and further incubated for 60 mins at 37 °C. The arginine 

hydrolysis reaction was stopped by adding H2SO4/H3PO4/H2O at a ratio of (1:3:7, 

v/v/v). The samples were then boiled at 100 °C for 15 mins following the addition of 

9% ISPF and read at 540 nm. Using a standard curve, arginase activity was reported 

as mUnits / mg of protein. 

 

Immunohistochemistry on PCa TMAs 

Four different tissue microarrays (TMAs) were used in this study. The first 

TMA contained 50 normal prostate specimens obtained from 39 autopsied patients 

without PCa. The second TMA contained non-malignant tissue adjacent to tumor 

(n=55), prostate intra-epithelial neoplasic (PIN) tissue (n=32) and HS tumor tissue 

(n=63) from 63 patients who had undergone radical prostatectomy [35]. The third 

TMA contained HR tumor tissues obtained by trans-urethral resection of the prostate 

(TURP) from 36 patients collected subsequent to hormone therapy failure [36,37]. 

Finally, the fourth TMA contained prostate specimens obtained from 35 patients who 

were treated by ADT prior to radical prostatectomy (ADT group) and 40 Gleason-

matched control patients who were only treated by radical prostatectomy, as 

previously described [10]. For each patient, a total of four tumor cores and two 

normal adjacent cores were spotted on duplicate TMAs. Cell pellets of each PCa cell 
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 line (RWPE, LNCaP, 22Rv1, DU145 and PC3) were spotted on each array and 

served as internal staining controls. Ethics approval for this study was obtained from 

the local ethics review committee. 

Immunohistochemical staining was done as previously described by our 

group [37,38,39]. Briefly, the 90 min primary antibody incubation was followed by 30 

min incubation with an anti-mouse HRP-coupled secondary antibody (sc-2005, Santa 

Cruz). Positive signals were developed with diaminobenzidine (DAB) (Dako 

Cytomation, Mississauga, On, Canada) and the nuclei were counterstained with 

haematoxylin. High-resolution digital images of each TMA were generated using a 

whole-slide scanner (SanScope XT automated high-throughput scanning system) 

from Aperio (Vista, CA). Two independent observers evaluated the intensity (0, 1+, 

2+, 3+) and the percentage of positively stained cells. For each core a value 

corresponding to the intensity multiplied by the percentage of stained cells was 

calculated and reported for statistical analysis. 

 

Quantification of L-Arginine concentration by HPLC. 

Perchloric acid (150 µl) was added to conditioned media (150 µl), which was 

then vortexed and shook for 10 min. The samples were then centrifuged (13,000 

rpm) for 20 min and 240 µl of supernatant were transferred into an amber eppendorff 

tube. This solution containing the L-arginine was thus essentially cleared of cellular 

proteins [40]. The supernatant was then neutralized with 60 µl of 3 M NaOH and 

buffered to pH 9.0 using 180 µl of borate buffer. To this solution, 10 µl of 0.1 M 

NaCN and Naphthalene-2,3-dicarboxaldehyde (NDA) were added and shaken for 20 

min before injection into the HPLC. All samples were run on a Varian Pursuit C18 

column 250 x 4.6 mm with the following three solvents: Solvent A: 100 mM 

triethylammonium acetate (TEAA) buffered to pH 7.0 with 5% acetonitrile (ACN) in 

milli-Q water; Solvent B: 60% ACN in Solvent A; Solvent C: 100% ACN. A series of 

L-arginine standards were made ranging from 0 to 2.58 x 10-4 g/ml. Each standard 

was done in triplicate and was functionalized with NDA to determine the retention 

time of L-arginine and the area under the peak corresponding to L-arginine at specific 

concentrations. Samples were monitored at 260 nM and 420 nM to identify which 
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 samples had been functionalized with the NDA. Peaks that appear at 420 nM 

correspond to substances that have a primary amine available to react. 

 

Lymphocyte activation 

PBMCs from healthy donors were isolated from whole blood by Ficoll 

gradient using lymphocyte-separating medium (Wisent, St-Bruno, Qc, Canada). 

PBMCs (150,000) were incubated in a 96-well flat-bottomed plate with 1 µg/ml of 

anti-CD3 (OKT3, eBioscience, San Diego, CA) or an isotype control. Supernatants 

were harvested for cytokine quantification by enzyme-linked immunosorbent assay 

(ELISA). For proliferation assays, bromodeoxyuridine (BrDU) was added in the last 

12 hrs according to the manufacturer’s instruction. 

 

ELISA 

The ELISA kit for IL-8 was purchased from R&D Systems (Minneapolis, 

MN) and the cell proliferation BrDU ELISA kit from Roche (Mississauga, ON, 

Canada). ELISAs were done according to the manufacturer’s instruction. The IFN-γ 

ELISA was completed as previously described [41].  

 

Statistics 

Statistical analysis was performed using SPSS software 11.0 (SPSS Inc., 

Chicago, Il). The non-parametric Mann-Whitney U test was used to show statistically 

significant differences. 
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Results 

ARG1 and ARG2 expression in PCa 

Our data demonstrate that PCa cell lines express both ARG1 and ARG2. 

Gene expression analyses by qPCR demonstrated that ARG1 mRNA was more 

expressed by the 22Rv1 cell line (Figure 1a). ARG1 protein was slightly more 

expressed by the two HR PCa cell lines (Du145 and PC3) than in the LNCaP cells 

(Figure 1b). ARG1 protein expression did not correlate with the gene expression 

analysis results suggesting possible post-transcriptional regulation prior to ARG1 

protein expression. As for ARG2 expression, the LNCaP cell line expressed the 

highest levels of ARG2 mRNA (Figure 1a). Minimal expression of ARG2 mRNA 

was detected in the two HR cell lines DU145 and PC3. ARG2 protein expression 

correlated with the gene expression results with LNCaP cells expressing significantly 

more ARG2 than the other three cell lines (Figure 1b). Furthermore, LNCaP cells 

had the highest arginase activity suggesting that ARG2 is the predominant enzyme 

with regards to arginase activity of PCA cells (Figure 1c).  

Expression of the ARG2 protein was evaluated in clinical samples by 

immunohistochemistry on three different TMAs regrouping prostate samples from a 

cohort of 99 PCa patients and 50 normal prostate obtained from autopsies. We did 

not evaluate ARG1 protein expression as, in our hands, anti-ARG1 antibodies tested 

were not suitable for immunohistochemistry on archived formalin-fixed paraffin-

embedded tissues. We observed that ARG2 expression was restricted to the prostate 

epithelium and absent from the stroma (Figure 1d). ARG2 was statistically 

significantly less expressed in tumor tissues compared to normal (p<0.001, Mann-U), 

to non-malignant normal adjacent (p<0.01, Mann-U) and to PIN tissues (p<0.001, 

Mann-U) (Figure 1e). HR tissues also expressed less ARG2, although only 

significantly different from PIN tissues (p=0.033, Mann-U). There was no correlation 

between ARG2 expression within the normal adjacent and tumor tissues 

(Supplementary Table 1). Finally, we evaluated if the ARG2 expression correlated 

with clinico-pathological parameters such as Gleason Score, pre-operative PSA and 

biochemical recurrence. Our results show that ARG2 expression within the normal 
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 adjacent tissue inversely correlated with vesicle seminal invasion (Supplementary 

Table 1). Altogether, these in vitro and in vivo data demonstrate the differential 

expression of ARG1 and ARG2 between various stages of PCa progression. 

 

Androgen-regulated expression of ARG1 and ARG2 

The differential expression of ARG1 and ARG2 between the HS and HR 

PCa cell lines led us to investigate the regulatory roles of androgens in arginase 

expression. ARG1 mRNA expression was not statistically significantly upregulated in 

either LNCaP or 22RV1 cell lines following R1881 stimulation (Figure 2a). However, 

in LNCaP cells, ARG2 mRNA expression was increased at 48 hours (p=0.002, 

Mann-U) and at 72 hours (p=0.016, Mann-U) following the R1881 stimulation (Left 

panel, Figure 2b). The overexpression of ARG2 in 22RV1 was not statistically 

significant (p=0.248, Mann-U) (Right panel, Figure 2b). In fact, ARG2 expression 

correlated with the higher androgen sensibility of LNCaP cells compared to 22RV1 

(Data not shown but available to reviewer in Supplementary Figure 1a). As such, 

LNCaP cells were used for further experiments. Corroborating the PCR data, 

Western blots from LNCaP cells demonstrated that the R1881 stimulation increased 

ARG2 protein expression (Figure 2d). Interestingly, although no significant changes 

were observed in ARG1 mRNA expression in LNCaP cells treated with R1881, 

ARG1 protein expression was significantly increased. We did not any increases in 

ARG1 or ARG2 protein expression in DU145 and PC3 stimulated with 10 nM of 

R1881 (Data not shown but available to reviewer in Supplementary Figure 1b). 

 

Implication of the AR in ARG1 and ARG2 expression  

As our results suggest that androgens regulate arginase expression, we 

evaluated the contribution of the AR. We inhibited AR activity with the non-steroidal 

anti-androgen bicalutamide (Casodex) (Figure 2d). We noted a decreased expression 

of ARG1 with the highest concentration (40 µM) of bicalutamide following R1881 

stimulation. The androgen induction of ARG2 was not blocked, even at the highest 

concentration of bicalutamide. As previously documented [14], we observed that 

bicalutamide had AR-agonist activity in LNCaP cells cultured in the absence of 
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 androgens. There was an R1881-independant induction of PSA and ARG2 

expression in LNCaP cells stimulated with 20 µM and 40 µM of bicalutamide in the 

absence of androgens. In this same condition, bicalutamide caused a decreased in 

ARG1 expression. These results suggest that ARG1 expression may be more sensitive 

to AR inhibition than ARG2, whose expression was induced by the agnostic effect of 

the AR inhibitor. 

We decided to further inhibit the AR by blocking the AR expression in 

LNCaP cells using siRNA. The presence of siRNA against the AR resulted in a 

significant inhibition of AR expression and in a reduced PSA expression following 

R1881 stimulation (Figure 2e). Both the ARG1 and ARG2 induction following R1881 

stimulation were inhibited by the siRNA treatment, which translated in the absence of 

an upregulation in arginase activity (Figure 2f). These results suggest that the AR 

regulates the expression of ARG1 and ARG2 although differentially. 

 

Diminished ARG2 expression in PCa patients following ADT 

Based on our in vitro data, we hypothesized that androgens might modulate 

ARG2 protein expression in PCa patients as well. We observed that, compared to 

control patients (surgery only), ADT-treated patients (ADT prior to surgery) had 

significantly lower ARG2 expression in both the non-malignant tissues adjacent to 

the tumor (46.4 vs 23.5 relative units; p<0.001, Mann-U) and the tumor tissues (41.7 

vs 31.5 relative units; p<0.01, Mann-U) (Figure 3a). We also observed that androgen 

deprivation in vitro could decrease ARG2, but not ARG1 protein expression, in 

LNCaP and 22RV1 cells cultured for seven days in the absence of androgens (Figure 

3b). Taken together, these results suggest that androgens regulate the expression of 

ARG2 in vivo in PCa patients as ADT reduces ARG2 expression. 

 

ARG1 and ARG2 are metabolically active 

To evaluate whether ARG1 and ARG2 expressed by LNCaP cells were 

metabolically active, we inhibited the expression of either ARG1 or ARG2 by siRNA. 

Compared to a siCTRL, both siRNA significantly inhibited ARG1 or ARG2 

expression (Figure 4a). Inhibition of either ARG1 or ARG2 resulted in diminished 
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 arginase enzymatic activity (Figure 4b). By HPLC, we then determined the impact of 

the inhibition of ARG1 and ARG2 expression on the metabolism of L-arginine by 

LNCaP cells. The absence of either ARG1 or ARG2 led to higher concentrations of 

L-arginine in the conditioned media suggesting a lower metabolism of L-arginine by 

LNCaP cells (Figure 4c). Moreover, we noted that R1881 stimulation led to a 

decrease concentration of extracellular L-arginine, which corroborates our results 

demonstrating an increased arginase expression following androgen stimulation. The 

expression of nitric oxide synthase (NOS), also known to metabolize L-arginine was 

also evaluated. We did not observe the expression of iNOS or nNOS, as well as no 

production of NO in our model (Data not shown).  

As arginases are implicated in the polyamine synthesis pathway necessary for 

cellular proliferation, we evaluated the impact of ARG1 and ARG2 on cell growth. 

We observed that inhibition of either ARG1 or ARG2 expression resulted in a lower 

proliferation of LNCaP cells maintained in complete media (p=0.02 and p=0.01, 

respectively for siARG1 and siARG2) (Figure 4d). Furthermore, in order to study 

whether ARG1 and ARG2 expression by LNCaP cells affected their 

immunosuppressive potential, PBMCs from healthy donors were activated in the 

presence of conditioned media from LNCaP+siCTRL or LNCaP+siARG1 or 

LNCaP+siARG2. The inhibition of either ARG1 or ARG2 translated into increased 

PBMC proliferation as quantified by BrdU incorporation (Figure 4e, left panel). This 

increased proliferation was associated with an increase in IFN-γ secretion by PBMCs 

as measured by ELISA (Figure 4e, right panel). No significant variations in the 

secretion of IL-2 or IL-10 were observed (Data not shown). Finally, we correlated 

whether the ARG2 expression correlated with the immune cell infiltrate of the 

primary tumor that we recently published [10]. We noted that ARG2 expression did 

inversely correlate with the infiltration of T lymphocytes and macrophages within the 

prostate (Supplementary Table 2). Collectively, these results suggest that ARG1 and 

ARG2 expressed by LNCaP cells are enzymatically active and participate in important 

physiological processes such as cellular proliferation and tumor-derived 

immunosuppression.  
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Cytokine-induced ARG2 expression 

As cytokines are known to induce arginase expression in murine models, we 

assessed whether this could also occur in human PCa. The cytokine expression profile 

of LNCaP cells stimulated with 10 nM of R1881 was evaluated using a Proteome 

Profiler (R&D Systems) cytokine array (Figure 5a). The proteomic data illustrated that 

the R1881-stimulated LNCaP cells had increased expression of IL-8 and Serpin E1 

(Densitometry as data not shown, but available to reviewers in Supplementary Figure 

2a). We further investigated the role of IL-8 in arginase expression as IL-8 has been 

recently linked to the expression of androgen-regulated genes in PCa [15]. By ELISA, 

we confirmed that R1881 stimulation increased the expression of IL-8 in LNCaP cells 

(Figure 5b). This IL-8 induction was dependent on the AR. AR expression by siRNA 

prevented IL-8 secretion following androgen stimulation (Figure 5c). We then 

evaluated whether inhibition of IL-8 could diminish ARG1 and ARG2 expression 

following R1881 stimulation. Using a siRNA against IL-8, we could significantly 

diminish IL-8 secretion (Figure 5d). This reduced IL-8 production was associated 

with a reduction of ARG1 and ARG2 without and with R1881 stimulation (Figure 

5e). The treatment of LNCaP cells with siIL-8 also translated to a decrease in arginase 

activity (Data not shown, but available to reviewers in Supplementary Figure 2b). 

Finally, we stimulated androgen-deprived LNCaP cells with increasing concentration 

of exogenous IL-8 for 72 hrs and monitored the expression of ARG1 and ARG2. By 

Western blot analysis, we observed that both 50 ng/ml and 100 ng/ml of IL-8 

induced the expression of ARG1 and ARG2 when compared to control LNCaP cells 

(Figure 5f). The decrease in ARG1 and ARG2 protein expression with 250 ng/ml of 

IL-8 correlated with IL-8 induced cellular toxicity. We also observed an induction of 

ARG2, but not ARG1, gene expression after a 24 hr stimulation (Data not shown, 

but available to reviewers in Supplementary Figure 2c). Taken together, the data 

clearly shows that androgens regulate the expression IL-8, which on its own can 

induce the expression of both ARG1 and ARG2. 
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Discussion 

A more thorough understanding of the prostate immunological 

microenvironment mechanisms may improve the clinical efficacy of current 

immunotherapies against PCa. We and others have shown that ADT leads to drastic 

changes in the prostate immunological microenvironment [9,10]. The arginase 

pathway participates in the development of an immunosuppressive state within the 

primary tumor of PCa patients [7]. However, the regulation of arginase expression by 

PCa cells remains undefined.  

In this report, we observed that androgens induced the expression of both 

ARG1 and ARG2 in HS PCa cell lines. The AR was implicated in this regulation as 

both bicalutamide and siAR transfection prevented ARG1 and ARG2 overexpression 

following R1881 stimulation. Reciprocally, androgen deprivation and ADT reduced 

ARG2 expression in vitro and in the primary tumor of PCa patients, respectively. 

LNCaP cells expressed enzymatically functional ARG1 and ARG2 which, once their 

protein expression was inhibited, caused a decrease in cellular proliferation and in 

their immunosuppressive potential. Finally, we showed that IL-8 was also regulated 

by R1881 and could stimulate the expression of ARG1 and ARG2 independently of 

androgen. Altogether, our results provide the first mechanistic evidence of an 

androgen-driven immunosuppressive pathway in PCa through the expression of 

ARG1, ARG2 and IL-8 by PCa cells.  

We demonstrate that PCa cells express both ARG1 and ARG2. ARG2 was 

predominantly expressed by HS PCa cell lines and by non-malignant prostate tissues. 

These results corroborate published data describing a lower ARG2 expression in 

androgen-insensitive PCa cell lines (DU145 and PC3) and in the tumor and HR 

tissues of PCa patients [6,16]. However, to our knowledge, we are the first group to 

study the expression of ARG1 by PCa cells. Similar to ARG2, inhibition of ARG1 

expression led to decreased tumor cell proliferation, reduced L-arginine metabolism 

and reduction of their immunosuppressive potential. Based protein expression 

(Figure 1b) and on the arginine activity of PCa cells (Figure 1c), our data suggest that 
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 ARG2 may nonetheless have a more prominent role than ARG1 in PCa cells arginase 

activity [17].  

Furthermore, our data showed that ARG1 and ARG2 were differentially 

regulated by androgens. Contrary to ARG2 gene and protein expression, we clearly 

demonstrated that the gene and protein expression of ARG1 do not correlate. This 

suggests that androgen may influence a post-transcriptional regulation of ARG1 as it 

was previously reported in xenopus [18] and in yeast models [19]. Since ARG2 

expression is localized to mitochondria, we evaluated whether cellular proliferation 

independent of androgens could induce ARG2 expression in LNCaP cells. In a 

proliferation assay with EGF instead of R1881, no ARG2 induction was observed 

(Data not shown). Collectively, our results reveal that, although both induced by 

R1881, the signaling pathways leading to ARG1 and ARG2 expression differs for the 

two enzymes and needs to be further examined. 

The implication of an androgen-regulated expression of ARG1 and ARG2 in 

prostate carcinogenesis requires further investigation. Arginase expression and 

polyamine synthesis are elevated in PCa [20,21] and associated with tumor grade [22]. 

A high arginase activity correlates with increased proliferation of breast cancer [23], 

colon cancer [24] and kidney cell lines [25]. However, we observed that tumor or HR 

tissues express less ARG2 than non-malignant tissues. It is possible that tumor cells 

do not acquire the expression of these immunosuppressive enzymes as a mean to 

further their immunosuppressive potential, an aspect associated with tumor 

progression. In fact, since the prostate is the organ with the highest polyamine 

production, arginase expression by prostate cells may precede the development of 

cancer, as polyamine production is essential for the proliferation of prostate cells. 

Thus, the immunosuppressive advantage gained by prostate cells may be secondary to 

the proliferative role played by the arginases. From our data and that of others, we 

hypothesize that arginase may be implicated in the earlier hormone-sensitive stages of 

prostate carcinogenesis by promoting cancer cell proliferation and the development 

of an androgen-regulated immunosuppressive environment. 

Finally, we observed that IL-8 was upregulated following androgen 

stimulation and could induce the expression of ARG1 and ARG2. IL-8 mediates its 
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 effects through the activation of two high-affinity G-protein coupled receptors, 

CXCR1 and CXCR2 [26], both of which are expressed by LNCaP cells [27,28]. It is 

important to note that expression of ARG1 and ARG2 following IL-8 stimulation 

was not as substantial as with R1881 stimulation suggesting that other androgen-

regulated pathways could be involved. Altogether, this is the first indication that the 

expression of IL-8 is regulated by androgens and that arginases can be regulated by a 

TH2 cytokine in human cancer cells. 
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Conclusion 

Our data demonstrate that androgens regulate the expression of both ARG1 

and ARG2 in HS PCa cell lines and in PCa patients in an AR-dependent manner. 

ARG1 and ARG2 are enzymatically active and their inhibition results in reduced L-

arginine metabolism, cell growth and immunosuppressive potential. We found that 

IL-8 secreted by LNCaP cells was also regulated by androgens and could on its own 

promote the expression of ARG1 and ARG2. Collectively, the results presented in 

this report suggest that androgens actively participate in the development of an 

immunosuppressive microenvironment within the prostate through the expression of 

ARG1 and ARG2. A better understanding of the expression of immunosuppressive 

pathways at specific stages of PCa progression may eventually provide new insights 

for improving current immunotherapeutic strategies. 
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Figure 1. In vitro and in vivo expression of ARG1 and ARG2 in PCa 
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Figure 1: In vitro and in vivo expression of ARG1 and ARG2 in PCa 

 

PCa cell lines (LNCaP, 22Rv1, DU145 and PC3) were maintained in RPMI 

supplemented with 10% FBS. A) Gene expression of ARG1 (left panel) and ARG2 

(right panel). Mean relative expression (n=3) with standard error of the mean (error 

bars). B) Western blot of ARG1 and ARG2. Ran served as loading control. C) 

Arginase activity of PCa cell lines quantified in mU/mg of proteins. D) 

Representative image of immunohistochemistry staining of ARG2 expression in 

prostatic tissue. Note that the expression of ARG2 was confined to the epithelial cells 

with no stromal staining. E) Quantification of ARG2 expression by 

immunohistochemistry in prostate specimens. *Statistically significant difference in 

ARG2 expression between PIN and HR tissues (p=0.033, Mann-U). **Statistically 

significant difference in ARG2 expression between tumor tissues and normal tissues 

(p<0.001, Mann-U), non-malignant tissues adjacent to tumor (p<0.01, Mann-U) and 

PIN tissues (p<0.001, Mann-U). 
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Figure 2. Androgen-regulated expression of ARG1 and ARG2 
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 Figure 2. Androgen-regulated expression of ARG1 and ARG2 

 

A-B) LNCaP cells (left panels) and 22RV1 (right panels) were stimulated over a 

period of 72 hours with 10 nM R1881 following a 72 hour incubation period in 

charcoal-stripped media and the gene expression of A) ARG1 and B) ARG2 analyzed 

by qPCR. Control (gray bars) and R1881-stimulated (black bars). *Statistically 

significant difference (p<0.05, Mann-U). Mean relative expression (n=4) with 

standard error (error bars). C) Increased protein expression of both ARG1 and 

ARG2 following R1881 stimulation by Western blot. LNCaP cells were stimulated 

with 10 nM R1881 as previously described. PSA served as positive control. 

Representative experiment, (n=6). D) Inhibition of AR activity with bicalutamide. 

LNCaP cells were stimulated with R1881 as previously described in the presence of 

increasing doses of bicalutamide (0, 10, 20 and 40 µM). ARG1 and ARG2 expression 

levels were evaluated by Western blot. Representative experiment shown, (n=3). Note 

the agonist effect of bicalutamide in the absence of R1881 illustrated by an increased 

PSA and ARG2 expression. E) Inhibition of AR expression by siRNA. LNCaP cells 

were transfected as previously described. AR, ARG1 and ARG2 expression levels 

were evaluated by Western blot. Representative experiment, (n=4). F) Arginase 

activity of LNCaP cells transfected with siCTRL or siAR and then stimulated with 

R1881 was quantified in mU/mg of proteins. Representative experiment, (n=3). 
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Figure 3. Reduced ARG2 expression following ADT 
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 Figure 3. Reduced ARG2 expression following ADT 

 

A) Analysis of androgen-regulated ARG2 expression in PCa patients by 

immunohistochemistry. Control patients (Gray bars, n=40) and ADT-treated patients 

(Black bars, n=35). B) Decreased ARG2 protein expression in the absence of 

androgens in vitro determined by Western blot. Ran served as loading control. PCa 

cell lines (LNCaP, 22Rv1, DU145 and PC3) were maintained in RPMI 10% FBS or in 

RPMI supplemented with 10% charcoal stripped FBS for 7 days (n=3). Note that 

ARG1 expression did not vary but that ARG2 was reduced in LNCaP and 22Rv1 

cells in the absence of androgen. 
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Figure 4. ARG1 and ARG2 are metabolically active 
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 Figure 4. ARG1 and ARG2 are metabolically active 

 

LNCaP cells were transfected with either a siCTRL or a cocktail of three siRNA 

against the ARG1 or ARG2. Post-transfection (24 hours), cells were plated in 

charcoal-stripped serum supplemented media for 72 hours and then stimulated for 72 

hours with 10 nM R1881. A) siRNA inhibition of ARG1 and ARG2 expression was 

evaluated by Western Blot. Representative experiment shown, (n=4). B) Decreased 

arginase activity following transfection with siARG1 or siARG2 in LNCaP cells. The 

corresponding Western blot is shown in the bottom panel. Representative experiment 

shown, (n=3). C) Decreased metabolism of L-arginine in the absence of arginase 

expression. Conditioned media of LNCaP cells transfected with siCTRL, siARG1 or 

siARG2 were analyzed by HPLC for L-arginine concentration. The conditioned 

media analyzed by HPLC were from the LNCaP cells presented in Figure 4a. 

*Statistically significant difference (p<0.05, Mann-U). D) Decreased proliferation of 

LNCaP cells in the absence of arginase expression. LNCaP cells were transfected as 

previously described. Proliferation was measured by cell count 96 hours post-

transfection. *Statistically significant difference (p<0.05, Mann-U), (n=3). E) 

Inhibition of ARG2 expression causes increased PBMC proliferation and activation. 

PBMCs from normal donors were activated with anti-CD3 (OKT3, 1 µg/ml) with or 

without IL-2 in the presence of fresh media or conditioned media of LNCaP cells 

transfected with either control, siCTRL, siARG1 or siARG2 as previously described. 

Left panel: PBMC proliferation was quantified by BrdU incorporation following 120 

hours of OKT3 and IL-2 stimulation. Mean absorbance (n=4) is shown with standard 

error (error bars). Right panel: PBMC secretion of IFN-γ quantified by ELISA. Same 

experiment as previously described, but the PBMCs were activated for 24 hours 

without IL-2. Representative expression is shown (n=4) with standard error of the 

mean (error bars). 
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Figure 5. Androgens induced Interleukin-8, which in turn promotes ARG1 and 

ARG2 expression 
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 Figure 5. Androgens induced Interleukin-8, which in turn promotes ARG1 and 

ARG2 expression 

 

Evaluation of the cytokine expression profile of LNCaP cells following R1881 

stimulation. A) Conditioned media of LNCaP cells stimulated as previously described 

were analyzed with a Proteome ProfilerTM (R&D Systems). B) Conditioned media of 

LNCaP cells stimulated over time with either ethanol control (gray bars) and R1881 

(black bars) were analyzed for the production of IL-8 by ELISA. The representative 

experiment shown was performed with the same conditioned media used for the 

Proteome Profiler analysis in 5a, (n=3). C) Quantification of IL-8 secretion by 

LNCaP cells transfected with siAR and stimulated with R1881 as previously 

described. Representative experiment shown, (n=3). D) Quantification of IL-8 

secretion by LNCaP cells transfected with siIL-8 and stimulated with R1881 as 

previously described. Representative experiment shown, (n=3). For 5b and 5c, there 

was no IL-8 secretion detected in the absence of R1881 stimulation. E) Expression of 

ARG1 and ARG2 in LNCaP cells following transfection of siIL-8 and R1881 

stimulation. Representative experiment shown, (n=3). F) LNCaP cells were plated in 

charcoal-stripped serum supplemented media for 72 hours and for 24 hours in 

serum-free RPMI. Cells were then stimulated for 72 hours with 10 nM R1881 or with 

50, 100 or 250 ng/ml of IL-8 in serum-free RPMI. ARG1 and ARG2 expression 

levels were detected by Western blot. Representative experiment, (n=3). Note the 

induction of both ARG1 and ARG2 at 50 and 100 ng/ml of IL-8 concentration in 

the absence of R1881. 
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Supplementary Table 1. Correlations between ARG2 expression and clinico-

pathological parameters. 
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Supplementary Table 2. Correlations between ARG2 expression and immune 

cell infiltration in the primary tumor. 
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Supplementary Figure 1. Androgen stimulation of PCa cells 
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 Supplementary Figure 1: Androgen stimulation of PCa cells 

A) LNCaP cells (left panels) and 22RV1 (right panels) were stimulated over a period 

of 72 hours with 10 nM R1881 following a 72 hour incubation period in charcoal-

stripped media and the gene expression of Prostate-Specific Antigen (PSA), a positive 

control for R1881 stimulation, was analyzed by qPCR. Note that the ARG2 gene 

expression correlated presented in Figure 1b correlated with the higher androgen 

sensibility of LNCaP cells compared to 22RV1 as exemplified by the mRNA 

expression of Prostate-Specific Antigen (PSA). B) Expression of ARG1 and ARG2 

determined by Western blot in LNCaP, Du145 and PC3 cells stimulated with R1881 

for 72 hours as previously described. Note the absence of ARG1 and ARG2 in the 

two HR PCa cell lines, DU145 and PC3.  
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Supplementary Figure 2: ARG1 and ARG2 induction following IL-8 

stimulation. 
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 Supplementary Figure 2: ARG1 and ARG2 induction following IL-8 stimulation. 

 

A) Positive signals from the Proteome ProfilerTM were quantified by densitometry 

using Quantity One software (Bio-Rad). Ethanol control (gray bars) and R1881 (black 

bars). B) Arginase activity of LNCaP cells transfected with siCTRL, siAR or siIL-8 

and then stimulated with R1881 was quantified in mU/mg of proteins. Same 

representative experiment as presented in Figure 2f, (n=3). C) Increased ARG2 gene 

expression at 24 hours following IL-8 stimulation. LNCaP were stimulated with IL-8 

as previously described. Ran served as the loading control. 

6  IN WHITE 
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CHAPTER VI 

DISCUSSION 

The all-encompassing goal of this doctoral thesis was to further our 

understanding of the tumor immunological microenvironment in human prostate 

cancer. The results presented in the previous two chapters demonstrate that 

androgens play determining roles in the sculpting of a unique local immunological 

microenvironment. Our data also highlights several key aspects that should be further 

studied. It would be insightful to precisely characterize the activation/maturation 

phenotype of immune cells present in tumor microenvironments (primary tumor and 

metastatic tissues). To achieve this, novel analysis methods need to be optimized and 

antibodies against activation/maturation markers suited for immunohistochemistry 

on FFPE specimens need to be further developed. Furthermore, a strong 

collaborative understanding between the hospital pathology department and the 

fundamental research unit is essential to provide fresh clinical samples for research. A 

second objective would be to evaluate in greater detail the immunological 

environment in metastatic and HRPC patients. The uniqueness of the immunological 

microenvironment of HRPC patients needs to be considered in the optimization of 

immunotherapies for prostate cancer. Immunotherapy is currently considered as a 

second-line therapeutic option. As such, it is important to validate whether prostate 

cancer patients who have received and failed previous therapies still have the 

“immunological strength” that is required for a successful immunotherapy. 

6.1 IMMUNOSUPPRESSION IN TUMOR DRAINING LYMPH NODES 

OF PROSTATE CANCER PATIENTS 

In chapter III, we explored the immunological microenvironment of metastatic 

LNs of prostate cancer patients. Tumor-draining LNs are necessary for the activation 

of CD8+ T lymphocytes and the development of a cell-mediated anti-tumoral 

immune response, such as expected during an immunotherapy. It is thus essential to 

determine the LN’s immunological status in prostate cancer patients. Our results 
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 provide cellular and histopathological evidence suggesting a reduced LN reactivity 

specifically within metastatic LNs. Compared to non-metastatic LNs of the same 

patient, metastatic LNs had significantly less activated CD38+ T lymphocytes, less 

CD68+ macrophages, more Ki67+ proliferating lymphocytes as well as less follicular 

and sinus hyperplasia. Other groups also observed an increase in lymphocyte 

proliferation in tumor draining LNs. However, although they do proliferate more, 

these lymphocytes are anergic, fail to fully develop in mature effectors (446) and 

remain inefficient at mounting an anti-tumoral immune response against the invading 

tumor cells (103). This is consistent with our result showing no difference in the 

expression of CD45RA (antigen naïve lymphocyte) and CD45RO (antigen 

experienced lymphocyte) between non-metastatic and metastatic LNs. The lower 

incidence of follicular and sinus hyperplasia within metastatic LNs also support 

published data highlighting a reduced immunological reactivity within the paracortex 

of tumor draining LNs (447). Furthermore, we observed that the metastatic masses 

were mostly free of immune cells (unpublished data). This observation suggests a 

possible defect in lymphocyte migration within the tumor. In vitro studies demonstrate 

that macrophages induce the expression of vascular cell adhesion molecule-1 

(VCAM-1) by prostate cancer cell lines (448). VCAM-1 is implicated in immune 

evasion by decreasing tumor trafficking of T lymphocytes (449). Our study was 

centered upon the characterization of lymphocyte populations within the LN tissue 

and not within the metastasis itself. It would nevertheless be interesting to evaluate 

the activation status of the immune cells that are able to invade the metastatic mass as 

well as to quantify VCAM-1 expression in the primary tumor and LN metastasis of 

prostate cancer patients. This type of study could be part of the larger objective of 

evaluating the immunoregulatory environment in metastatic and HRPC patients. 

From our results, we were however unable to answer the question as to 

whether LNs are rendered anergic prior to invasion or if the invading cells actively 

inhibit the LNs concomitantly to their lymphatic colonization. In a breast cancer 

study, sentinel LNs exhibited signs of immunosuppression, such as decreased 

abundance CD4+, CD8+ T lymphocytes and CD1a+ DCs (450), prior to tumor 

invasion (112). In a mouse model, B16 melanoma cells directly implanted in LNs 



 
187 

 

 elicit the activation of CD8+ T lymphocytes and are effectively rejected. However, 

when the same B16 cells are implanted in extralymphatic sites, tumor draining LNs 

are rendered anergic. This LN immunosuppression further allowa for the growth of 

B16 tumors subsequently injected within LNs (103). Our results do show comparable 

variations in CD20+ B lymphocytes, CD8+ T lymphocytes abundance and in LN size 

between non-metastatic and metastatic LNs compared to control LNs from non-

metastatic patients, therefore suggesting similar variations between sentinel LNs. In 

line with this, sentinel LNs closest to the primary tumor are reported to be more 

immunosuppressed and more frequently invaded by tumor cells (451, 452). These 

data suggest that an immunosuppressive field effect may emanate from the primary 

tumor. Interestingly, metastatic LNs, LNs closest, as well as those furthest away from 

the primary tumor are found to be less immunologically reactive compared to LNs in 

intermediate positions (453) [reviewed in (447)]. Although it would have been 

interesting to evaluate an immunosuppressive field effect in our cohort of prostate 

cancer patients, the pathology reports lacked information regarding LN localization 

and prevented us from doing so. Altogether, these results suggest that the primary 

tumor modulates the activity of all sentinel LNs. Similar to the “soil-and-seed” 

hypothesis (454, 455), only the LNs that are effectively rendered anergic would be the 

ones invaded by metastatic cells. This is exemplified by our data illustrating lower 

lymphocyte activation, a reduced macrophage population and diminished paracortex 

reactivity within metastatic LNs. 

What mechanisms are implicated in this LN immunosuppression? Several 

studies associate LN anergy with DC dysfunctions (456-458). DCs present TAA 

peptides to CD8+ T lymphocyte by cross-presentation. For CD8+ T lymphocytes to 

be properly activated, cross-presentating DCs also need to activate CD4+ T helper 

lymphocytes. In a tumor mouse model, DCs were shown to lack adequate MHC-II 

peptide expression, required for CD4+ T lymphocyte activation, which results in the 

improper activation of CD8+ T lymphocytes (103). The absence of MHC-II peptide 

complexes at the surface of DCs is associated with elevated IL-10 concentration 

within sentinel LNs. IL-10 inhibits the surface expression of MHC-II as well as DC 

maturation and migration (459). DC expressing IDO also accumulate in tumor 
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 draining LNs further preventing the activation and promoting the apoptosis of TAA-

specific lymphocyte (220).  

A first step towards determining what mechanisms are implicated in LN 

immunosuppression would be to accurately characterize the phenotype of immune 

cells residing in tumor draining LNs in order to denote activation and maturation 

defects. From our results, we did not observe significant difference in the expression 

of CD45RA and CD45RO between non-metastatic and metastatic LNs. It is possible 

that the presence of prostate cancer LN metastasis is not accompanied by an 

increasing number of antigen-experienced lymphocytes, which could be explained by 

the lower number of APCs (macrophage and B lymphocytes) within metastatic LNs. 

Although we did not detect changes in DC numbers between non-metastatic and 

metastatic LNs, it is conceivable that a more thorough analysis of the DC phenotype 

could have highlighted significant differences regarding the DCs activation and 

maturation status with regards the LN’s metastatic status. Since fresh clinical LNs 

samples suitable for FACS analyses are hard to acquire, such an analysis would need 

to be completed using archived pathological tissue samples. By standard 

immunohistochemistry or tissue immunofluoresence protocols, it is however difficult 

to perform the double or triple stainings essential for the proper characterization of 

the activation/maturation status of specific immune cell population. Novel 

techniques would thus need to be optimized. By using mRNA extracted by tissue 

laser-microdissection following an initial DC marker staining, the expression of 

activation/maturation markers could be analyzed by real-time PCR. In a more 

sophisticated approach, pathological samples could be analyzed by laser scanning 

cytometry (LSC) [reviewed in (460)]. LSC allows the in situ imaging and quantitative 

analysis of individual cells using x-y tissue mapping and with up to nine colors. In a 

recent publication, LSC was successfully applied at quantifying the density of 

CD4+/FoxP3+ T lymphocytes in FFPE biopsy samples (461). Overall, results from 

these studies would provide insightful data on the precise phenotype of immune cells 

in tumor draining LNs of prostate cancer patients. 

The second step towards identifying the causes of LN immunosuppression 

would be to look directly at the invading metastatic cells as potential player in the 



 
189 

 

 induction or the maintenance of LN hyporesponsiveness. To achieve this, a high-

throughput genomic or proteomic approach could generate significant results. In a 

collaborative effort with the pathology department, researcher could be given access 

to fresh LNs. From the pathological sample, metastatic cells could be enriched using 

positive selection columns. The RNA and protein material from these cells could 

then be used for genomic and proteomic analyses. As controls, fresh malignant cells 

from tumor biopsies or from radical prostatectomy could be analyzed to compare to 

immunoregulatory phenotype of malignant cells with different tissue origins. 

Taken as a whole, the limited clinical success of current immunotherapies in 

prostate cancer could result from an inadequate activation of TAA-specific CD8+ T 

lymphocytes within tumor draining LNs. It is thus important to determine the causes 

of the specific immunosuppression associated with human prostate cancer. However, 

our results do not eliminate the possibility that, earlier in prostate cancer progression, 

an effective immune response could have developed within the tumor draining LNs. 

When considering the immune editing theory, it is plausible that the 

immunosuppression of sentinel LN represent an additional obstacle that the tumor 

needs to overcome in order to spread beyond the confine of the prostate. Finally, 

there is the possibility that LN positive prostate cancer patients may be less 

responsive to immunotherapies due to lower LN reactivity. As such, the metastatic 

status of prostate cancer patients should be taken into consideration when selecting 

immunotherapies. With additional knowledge on the kinetics of LN 

immunosuppression with regards to disease progression, it might be possible to 

discover the adequate timing for the initiation of immunotherapy. 

6.2 ANDROGEN DEPRIVATION THERAPY PROMOTES THE 

INFILTRATION OF T LYMPHOCYTES AND MACROPHAGES 

WITHIN THE PRIMARY TUMOR 

In chapter IV, we explored the impact of ADT on the immune cell infiltrate 

within the prostate. This study addressed two important points. First, immunotherapy 

is preferentially given to hormone refractory prostate cancer (HRPC) patients who 
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 have received and failed ADT. However, to our knowledge, only one study 

characterized the prostate’s immunological microenvironment following medical 

castration in prostate cancer patients (31). There is also the possibility that ADT 

could allow for a temporary immunotherapeutic window (439). As such, it is essential 

to characterize the immunological status of post-ADT prostate cancer patients to 

evaluate whether these patients would be well-suited for immunotherapy. Second, the 

literature contains several studies quantifying immune cells infiltration within primary 

tumors. However, these studies often derived conflicting conclusions as to the 

implication of immune cell density in disease progression. One point of concern is 

that the different analysis methods of limited accuracy utilized may account for these 

varying conclusions. We thus proposed a novel computer-based approach to 

standardize the quantification of immune cell density within large pathological tissue 

samples. The use of a precise, rapid and comprehensible evaluation method of the 

immune cell population could remove interpretation bias and facilitate the 

interpretation of independent studies. Furthermore, the digital images generated from 

the whole-slide scanner allow for the virtual dissection of the tissue, thus offering the 

possibility to compare immune cell density between non-malignant and malignant 

tissue. Although this was not done during our study, it would be interesting to 

evaluate, with the assistance of a pathologist, the immune cell abundance in non-

malignant and malignant tissue of ADT-treated prostate cancer patients. Such an 

analysis would allow us to determine if non-malignant tissue adjacent to the tumor is 

subjected to the immunoregulatory effects emanating from the malignant tissue 

thereby helping to characterize the tumor immunological field-effect.  

In our immunohistochemical analysis, we demonstrate that ADT favors the 

infiltration of specific immune cell populations. While no changes were observed in 

the relative densities of B lymphocytes, NK cells and Foxp3+ T lymphocytes, the 

relative densities of CD3+ T lymphocytes, CD8+ T lymphocytes and CD68+ 

macrophages were significantly increased in ADT patients. These results support 

previously published data suggesting that the post-ADT inflammatory response 

favors an increased abundance in T lymphocytes and macrophages (31). Furthermore, 

we identified a statistical correlation between prostate cancer progression and the 
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 infiltration of CD56+ NK cells and CD68+ macrophages. We found that patients with 

a high density of NK cells had a lower risk of developing biochemical recurrence. 

This result supports the anti-tumoral role of NK cells. NK cells are one of the first 

cellular effectors to recognize and eliminate tumor cells. It is encouraging to observe 

that NK cells could still influence prostate cancer progression in patients with 

clinically-detectable tumors. In line with this observation, pre-clinical trials in mouse 

models are in fact demonstrating an essential role for NK cells in prostate cancer 

immunotherapy (462, 463). Conversely, a high density of CD68+ macrophages was 

associated with an increased prostate cancer progression corroborating accumulating 

data on the tumor-promoting roles of tumor-associated macrophages (TAMs) in 

prostate cancer. Again, considering the immunoregulatory potential of macrophages, 

a detailed characterization of the macrophage phenotype within the primary tumor of 

prostate cancer patient is greatly needed (more details on macrophages in prostate 

cancer later on page 193). 

The characterization of the immunological microenvironment in clinically 

detectable tumors could also be useful in prognostication. The activation status of 

immune cells varies according to the tumor’s immunosuppressive potential, which 

can potentially be related to disease severity, i.e. would more aggressive tumors have 

stronger immunosuppressive potential? As such, analysis of immune cell activation 

status could allow for the identification of prostate cancer patients at risk of disease 

progression as well as identifying patients better suited for immunotherapy. In a 

possible scenario, it might be determined that when a patient reaches a specific level 

of immunosuppression (elevated density of TREGs or immature DCs), then 

immunotherapy should not be considered. Furthermore, a better understanding of 

the immunological status during the earlier stages of the disease is also needed. This is 

of importance as it may be advantageous to treat patients by immunotherapy prior to 

the establishment of a potent tumor-derived immunosuppressive microenvironment.  

Independent of the causes of the post-ADT inflammatory boost, it is also 

important to understand the role of this prostatic infiltrate in ADT patients. Prostate 

cancer patients almost unilaterally fail ADT within 24 months after treatment 

initiation. This clinical reality suggests that, although significantly denser, the post-
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 ADT immune cell infiltration remains unable to eliminate residual prostate cancer 

cells. There are several hypotheses for the apparent ineffectiveness of the post-ADT 

inflammation. For instance, the remaining ADT-resistant prostate cancer cells could 

be potent immunosuppressant. According to the cancer stem cell theory in prostate 

cancer, the residual hormone refractory prostate cancer cells, which repopulate the 

prostate following ADT, may have a more primitive cell fate than the hormone 

sensitive prostate epithelial cells. Reports in the literature suggest that these hormone 

refractory cells have a cancer stem cell phenotype and are derived from the basal cell 

layer. Without entering into a discussion on the biology of cancer stem cells, 

proponent of this theory should evaluate the immunosuppressive potential of these 

cells. One of the arguments for the existence of cancer stem cells is that the injection 

of relatively low numbers of cancer stem cells leads to the growth of detectable tumor 

masses. Considering that immune evasion is the seventh hallmark of cancer (197), it is 

thus of interest to evaluate whether these cancer stem cells can promote the 

development of an immunosuppressive microenvironment. 

Furthermore, there is also the possibility that, similar to the pre-ADT immune 

cell infiltrate, immune cells in the post-ADT prostate remain anergic and incapable of 

differentiating into potent cytotoxic effectors targeting the tumor cells. We, and 

others (31), have shown that CD8+ T lymphocytes and macrophages massively 

infiltrate the prostate following ADT. The fact that these cells, even at higher 

numbers, are not clinically beneficial for the patients further argues that a simple 

evaluation of immune cell numbers cannot be correlated with the biological effects of 

immune cells with regards to tumor progression. This is substantiated by our previous 

results demonstrating that metastatic LNs had increased abundance of CD8+ T 

lymphocytes and elevated lymphocytic proliferation (Ki67+ lymphocytes). These 

observations could be associated with an immune reaction against the invading cells 

and considered as favorable markers against disease progression. However, the 

increase in CD8+ T lymphocytes and in lymphocyte proliferation has limited clinical 

benefit as metastatic cells are not eradicated and are able to grow into metastases 

rendering them pathologically detectable. Similarly, it is possible that the higher 

numbers of infiltrating CD8+ T lymphocytes within the primary tumor of ADT 
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 patients are unable to eradicate the remaining tumor cells due to activation and 

maturation defects. As previously stated, it would thus be advantageous to analyze in 

greater details the activation status of the T lymphocyte and APC populations 

infiltrating the prostate of ADT patients to identify which mechanisms fails. To 

address this, flow cytometry analyses using fresh clinical samples (detailed phenotypic 

characterization) in combination with immunohistochemistry (in situ localization) 

would provide a precise characterization of the immune infiltrate.  

Finally, as previously stated, the macrophage population infiltrating the post-

ADT prostate microenvironment should be more closely evaluated. Since ADT 

causes the apoptosis of hormone sensitive prostate epithelial cells, it is proposed that 

an elevated number of macrophages are recruited to the prostate in order to 

phagocytose apoptotic cells. Macrophages are attracted to apoptotic cells following to 

release of chemoatractant, such as the ribosomal protein S19 (464) phospholipids 

lysophosphatidylcholine (LPC) (465) and CX3CL1/fractalkine (466). Phagocytosis of 

apoptotic bodies by macrophages temporally enhances TAA presentation to T 

lymphocytes and could be associated with the increased T lymphocyte density (439). 

However, following phagocytosis, macrophages also secrete elevated quantities of 

anti-inflammatory molecules, such as TGF-β, PGE2, platelet-activating facvtor and 

IL-10 (467-470), which hinders the development of T lymphocyte effector functions. 

There is also evidence that ADT causes an increase in the number of circulating 

HLA-DRlow monocytes (163). HLA-DRlow monocytes are documented to have 

immunosuppressive function through the production of IL-10 and TGF-β as well as 

through the inhibition of DC differentiation and T lymphocyte proliferation (163). 

Finally, although the abundance of Foxp3+ T lymphocytes was not increased in the 

primary tumors of ADT patients, it is conceivable that the suppressive functions of 

Foxp3+ TREGs are increased by a local TGF-β production by tumor-associated 

macrophages. Ex vivo functional assays on the immunosuppressive potential of these 

cells in prostate cancer patients should be evaluated. Altogether, there is accumulating 

evidence regarding the immunosuppressive potential of TAMs, which raises the 
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 possibility that, similar to the removal of Foxp3+ TREGs, TAMs depletion may be 

beneficial to improve the efficacy of immunotherapies.  

6.3 ANDROGEN REGULATED IMMUNOSUPPRESSION THROUGH 

ARGINASE EXPRESSION 

The previous section discussed the immunoregulatory impact of ADT on the 

prostate microenvironment. From a cellular point of view, ADT promotes as 

significant increase in the infiltration of T lymphocytes and macrophages within the 

prostate. Several non-exclusive pathways may be involved in this elevated immune 

cell density that follows ADT. Already mentioned is the fact that the apoptosis of 

hormone sensitive prostate epithelial cells caused by ADT may induce the 

recruitment of macrophages. These macrophages phagocytose apoptotic tumor cells 

thereby increasing TAAs presentation to T lymphocytes and possibly cause their 

elevated influx within the prostate. Three other androgen-regulated pathways could 

also be associated with the post-ADT inflammatory boost: (i) an increased thymic 

output, (ii) the elimination of an androgen-regulated immunosuppressive network 

based on the direct immunosuppressive action of androgens on immune cells and (iii) 

on the expression of immunosuppressive molecules by prostate cancer cells. 

Concerning thymic atrophy, as previously stated, medical castration reverses age-

related thymic atrophy, promotes thymopoiesis and increases the pool of naïve T 

lymphocytes. LHRH agonists also increase the number of lymphoid and myeloid 

progenitors in the bone marrow (471). We did not test this hypothesis and it cannot 

be ruled out as a possible cause of the increase in T lymphocyte and macrophage 

density within the prostate following ADT.  

Concerning the direct immunosuppressive action of androgens on immune 

cells, we did begin preliminary work using PBMCs and macrophages from healthy 

donors. We stimulated PBMCs with anti-CD3 (OKT3) in the presence of 10 nM of 

R1881 (methyltienolone, a synthetic analog of testosterone) and evaluated their 

proliferation by BrdU incorporation and cytokine production by ELISA 

(Supplementary Figure 1 on page ii). We observe that, compared to PBMCs activated 
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 in control charcoal-stripped serum supplemented media, PBMCs exposed to R1881 

had decreased proliferation and decreased IFN-γ secretion. This data suggest that 

exposure to androgens inhibits T lymphocyte proliferation and activation. In another 

study, we evaluated the suppressive potential of macrophages exposed to androgens 

(Supplementary Figure 2 on page iv). We designed an in vitro mixed-lymphocyte 

reaction (MLR) system allowing for the physiological activation of CD4+ T 

lymphocytes. For this assay, blood monocytes from a healthy donor were 

differentiated into macrophages for five days in the presence of 10 nM of R1881 or 

control media (charcoal-stripped serum supplemented media). CD4+ T lymphocytes 

from a second healthy donor were than added to the macrophage cultures. After an 

additional five-day incubation period, proliferation was measured by BrdU 

incorporation. Our results demonstrate that macrophages derived in the presence of 

androgens induce significantly lower CD4+ T lymphocyte proliferation. These data 

suggest that androgens render macrophages less apt to activate CD4+ T lymphocytes 

possibly through the development of androgen-regulated immunosuppressive 

functions. Further work is necessary to identify the androgen-regulated molecular 

machinery rendering macrophage more immunosuppressive. ELISAs against IFN-γ, 

IL-2 and IL-10 did not demonstrate variations in cytokine production between the 

various culture conditions suggesting that other pathways could be involved. Lastly, 

we evaluated the expression of the iAR by monocyte-derived macrophages 

(Supplementary Figure 3 on page v). We did not detect protein expression of the 

classical iAR in the macrophages populations tested supporting previous report that 

macrophages respond to androgens by non-genomic signaling or through non-

classical AR. Overall, these preliminary results using human immune cells from 

healthy donors suggest that androgens can reduce T lymphocytes proliferation and 

activation as well as decrease the activating potential of macrophages. 

In parallel, androgens could also positively regulate the expression of 

immunosuppressive molecules by prostate cancer cells. The decision to study the 

expression of immunosuppressive molecules by prostate cancer epithelial cells was 

based on our previous results and on experimental model consideration. From our 

study on the immunological characterization of tumor draining LNs in prostate 
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 cancer patients, we observed that metastatic LNs were more immunosuppressed than 

non-metastatic LNs. We hypothesized that metastatic prostate cancer cells could have 

direct immunosuppressive effects in tumor draining LNs. As such, we wanted to 

further understand the contribution of the tumor cells to the tumor’s 

immunosuppressive microenvironment. In terms of the choice of the cell line studied, 

we decided to use prostate cancer hormone sensitive cell lines (LNCaP and 22rv1) for 

our in vitro work. It is probable that stromal cells are important players in the 

androgen-regulated immunosuppressive microenvironment. As a source of several 

growth factors, it would have been interesting to characterize the immunoregulatory 

potential of prostatic stromal cells in the presence and absence of androgens. We 

tried to obtain one of the only prostate stroma cell lines described in the literature 

without success (472). The contribution of stromal cells to the prostate’s 

immunological microenvironment should nonetheless be further studied. To 

compliment our limitation regarding the number of cell lines in our in vitro 

experiments, we evaluated protein expression in prostate tissue micro-arrays by 

immunohistochemistry. From our immunohistochemistry observation, we observed 

that ARG2 expression was restricted to prostate epithelial cells and was absent from 

the stroma thereby supporting the use of prostate epithelial cells in our in vitro studies.  

Initially, our work began with an extensive literature review. We established a 

list of possible candidates described to be expressed by prostate cancer cells and to 

have documented immunosuppressive properties. Using real-time PCRs and Western 

blots, we evaluated whether androgen stimulation increased a given candidate’s gene 

and protein expression. This approach led us to discover the androgen-regulated 

expression of ARG1, ARG2 and IL-8 (discussed further below). We also discovered 

that the COX-2 – PGES – PGE2 pathway was also induced by androgens 

(Supplementary Figure 4 on page vi). This finding is of interest since COX-2 is 

regarded as a major inflammatory player in the prostate. Furthermore, PGE2 is 

associated with the regulation of ARG1 expression in murine macrophage (312) and 

in human MDSCs in cancer patients (170). When LNCaP cells were stimulated with 

10 nM R1881, COX-2 gene expression was significantly induced in conjunction with 

MPGES-1. As previously described in section 1.3.4.4 on page 55, only MPGES-1, and 
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 not MPGES-2 or CPGES, demonstrates an inducible expression during 

inflammation. This work is preliminary and needs to be validated through Western 

blots and ELISA in order to evaluate if the increased expression of COX-2 and 

mPGES-1 leads to elevated PGE2 secretion.  

Our approach also led to the observation that TGF-β expression by prostate 

cancer cells was also induced by androgens, which supports previously published data 

(473). A report in the literature also suggests that androgens, in this case DHT, inhibit 

TGF-β signaling by downregulating the expression of TGF-βRII in PC3 cells thereby 

protecting the cells from the pro-apoptotic action of TGF-β (474). Altogether, this 

preliminary work supports the hypothesis that androgens may regulate the prostate’s 

immunosuppressive microenvironment by inducing the expression of several 

immunosuppressive candidates.  

Our results presented in Chapter V further demonstrate that ARG1 and ARG2 

expressions are induced by androgens. In vitro, androgen stimulated LNCaP cells 

express higher levels of both ARG1 and ARG2 proteins. The androgen-regulated 

expression of ARG2 was also observed in a cohort of 75 prostate cancer patients. 

Prostate cancer patients treated by ADT prior to surgery expressed significantly lower 

ARG2 levels in non-malignant and malignant tissues than control patients treated by 

surgery only. This result is interesting as, on one hand, it implies that the absence of 

androgens causes a reduction of ARG2 expression. Our in vitro data supports such a 

hypothesis as LNCaP cells cultivated in androgen-deprived media had lower basal 

ARG2 expression. On the other hand, there is the possibility that ADT eliminates 

most of the hormone-sensitive, ARG2 expressing cells. This idea is also consistent 

with our observation that hormone-refractory prostate cancer cells do not express 

ARG2. Furthermore, by considering the essential roles of androgens during the 

prostate’s organogenesis and the earlier stages of carcinogenesis, it is plausible that 

androgen-regulated immunosuppressive molecules are also expressed prior to 

neoplastic transformation. This was in fact the case for ARG2 expression in prostate 

cancer patients. We observed a stronger ARG2 expression in normal and non-

malignant prostate tissues compared to malignant and hormone-refractory specimens. 
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 Altogether, these results suggest that in the case that ARG2 should be targeted during 

an immunotherapy, patients with hormone-sensitive disease may respond better than 

patients with advance HRPC. Further work needs to be initiated to evaluate the 

expression of ARG1 by immunohistochemistry in pathological prostate specimens. 

We also noticed clear differences between ARG1 and ARG2 expression in our 

in vitro model. For ARG2, the increased protein expression correlated with an 

augmented ARG2 gene expression. However, ARG1 protein up-regulation was not 

associated with an increase in ARG1 gene expression. As previously discussed in 

Chapter V, data from the literature suggest that ARG1 expression is subject to post-

transcriptional regulation. Our data suggests that these post-transcriptional 

modifications would be influenced by the presence of androgens. Furthermore, 

during promoter analysis studies, we noted that the proximal promoter regions of 

ARG1 contained only two putative AR response elements (AREs) (at -849bp and 
+301bp relative to the initiation site), whereas the proximal promoter of ARG2 

contained four AREs (at -99bp, -75bp, -49bp and -25bp relative to the initiation site). 

There is the possibility that the ARG1 promoter does not respond, or respond 

poorly, to androgen. We are currently evaluating the contribution of these ARE to 

the regulation of ARG1 and ARG2 expression by promoter deletion studies. 

Altogether, these results highlight differential regulatory pathways leading to the 

androgen-regulated expression between ARG1 and ARG2.  

The physiological effects of ARG1 and ARG2 expression by prostate cancer 

cell were evaluated. Inhibition of ARG1 and ARG2 protein expression by siRNA 

caused a decrease in LNCaP cell proliferation, which may be attributed to a reduction 

in polyamine synthesis. Similar to our results, inhibition of ODC (a key enzyme 

involved in polyamine synthesis) in LNCaP cells (475) and PC3 cells (476) caused a 

reduction of polyamine production and a growth arrest in G1. This growth arrest 

could be rescued by the addition of exogenous putrescine. HPLC analyses offered a 

second proof that ARG1 and ARG2 were enzymatically active. Following protein 

inhibition, we observed an elevated concentration of L-arginine in the conditioned 

media. From our results, it is however difficult to determine whether ARG1 or ARG2 

has a more potent L-arginine metabolizing activity in LNCaP cells. Finally, we 
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 demonstrated that ARG2 participated in the immunosuppressive potential of LNCaP 

cells. The inhibition of ARG2 expression was associated with an elevated PBMC 

proliferation and IFN-γ secretion, which is associated with increased lymphocyte 

activation. These results confirm previously published data on the 

immunosuppressive role of arginase in prostate cancer. Altogether, these results 

demonstrate that LNCaP cells express enzymatically active ARG1 and ARG2. It is 

noteworthy that we are the first group to demonstrate the expression of ARG1 by 

human cancer cells.  

As several publications have linked TH1 and TH2 cytokines with the expression 

of ARG1 and ARG2, we characterized the cytokine expression profile of LNCaP 

cells exposed to androgens. We observed that LNCaP cells expressed a limited 

number of cytokines, none of which were initially associated with arginase expression. 

We identified two molecules upregulated following androgen stimulation: Serpin E1 

and IL-8. Serpin E1, also known as plasminogen activator inhibitor-1, is the primary 

physiologic inhibitor of plasminogen activation to plasmin (477). Plasmin is a serine 

proteinase that digests fibrin, fibronectin and laminin in the extracellular matrix and 

activates other matrix-degrading proteinases, such as matrix metalloproteinases 

(MMPs). An elevated Serpin E1 would thus be protective against tumor invasion. 

Paradoxically, Serpin E1 is however associated with a worse prognosis in several 

cancers including prostate cancer (478), breast cancer (479) and glioblastomas (480). 

In colon cancer patients, Serpin E1 is overexpressed at the invasive front of the 

tumor (481) and by the peripheral cells of colon cancer liver metastasis (482). 

Moreover, the absence of Serpin E1 is associated with impaired tumor vascularization 

(483, 484). From these results, it was proposed that Serpin E1 could protect the 

tumor from excessive extracellular matrix degradation. Serpin E1 can also protect 

endothelial cells from FasL mediated apoptosis caused by the pro-apoptotic cleavage 

of FasL following excessive plasmin activity (484). In terms of the androgen 

regulation of Serpin E1, two studies found that prostate cancer patients receiving 

ADT had no changes in Serpin E1 plasma levels (485, 486) This suggests that our 

result is either an artifact of in vitro studies on prostate cancer cell lines or that the 

elevated secretion of Serpin E1 by prostate cancer cells does not reach the systemic 



 
200 

 

 circulation. Interestingly, IL-8 was found to upregulate the expression of Serpin E1 in 

human umbilical vein endothelial cells (HUVECs) (487). Conversely, Serpin E1 

stabilizes the chemoattractant form of IL-8 at the cell surface of HUVECs (488). 

Altogether, Serpin E1 may represent an interesting candidate involved in prostate 

cancer progression. 

IL-8, or CXCL8, is a pro-inflammatory TH1 cytokine implicated in the 

recruitment of neutrophils. In cancer, IL-8 is associated with tumor angiogenesis, 

metastasis and poor prognosis (489). In prostate cancer, IL-8 overexpression results 

in prostate epithelial hyperplasia and a reactive stroma phenotype (490). Serum levels 

of IL-8 are elevated in metastatic prostate cancer patients (491) and in patients with 

hormone refractory tumors (52). In mouse models, overexpression of IL-8 correlates 

with elevated angiogenesis and the development of LN metastasis (120, 492). As for 

the sexual hormone regulation of IL-8 expression, published data are conflicting. 

Estrogen inhibits IL-8 expression by epithelial cells (493), but favors IL-8 secretion 

by monocyte-derived DCs (494). There is also a positive correlation between estradiol 

and IL-8 secretion in the normal breast tissue in vivo (495). We are the first group to 

report that androgens increase the expression of IL-8. In terms of the association 

between IL-8 and arginase expression, one study demonstrates that IL-8 secretion by 

non-small cell lung tumor cells induces the exocytosis of ARG1 by neutrophils (496). 

Although we observed an increased of ARG2 and not ARG1 gene expression 

following IL-8 stimulation of LNCaP cells, this study does nonetheless provide a 

second example of arginase regulation through IL-8. It would be of interest to further 

study the signaling pathways activated by IL-8 leading to arginase expression and 

determine whether they are similar to those involved in androgen signaling.  

Finally, the contribution of estrogens in the sculpting of the prostate’s 

immunological environment was not studied. It would nevertheless be interesting to 

evaluate the impact of estrogen on the expression of pro- and anti-inflammatory 

molecules by prostate cancer cells. The incidence of prostate cancer increases with 

age when there is a parallel decrease in testosterone levels (497). Conversely, estrogen 

levels remain unchanged with age through increased aromatization of adrenal 

androgens in the adipose tissue (498), which also increases in older male. Hence, the 
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 ratio of androgens to estrogens decreases and is related to the onset of prostate 

cancer (367). Furthermore, as detailed previously, contrary to the immunosuppressive 

functions of androgens, estrogens induce prostatic inflammation. In a mouse model 

overexpresssing the aromatase gene, the prostate develops normally, but the tissue 

shows extensive inflammation (367, 499). The pro-inflammatory impact of estrogens 

is also independent of local androgens as mouse models with low levels 

(gonadotropin-deficient hypogonadal mouse (500)) or high levels (aromatase deficient 

mouse (501)) of androgens show similar pro-inflammatory responses to estrogens 

(502). The roles of estrogens should thus be evaluated on the activation/maturation 

status of immune cells from prostate cancer patients as well as on the development of 

an immunosuppressive microenvironment within the prostate. 
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CONCLUSION 

Immunotherapy is now at the doorstep of the urologist’s office. To improve its 

clinical efficacy, more knowledge needs to be gained on the immunological status of 

prostate cancer patients. The fundamental goal of this doctoral thesis was thus to 

study the immunological microenvironment in prostate cancer patients. To realize 

this project we established two main working objectives: (i) to precisely characterize 

the immune cell populations in tumor draining LNs and in the primary tumor of 

prostate cancer patients; (ii) to identify and to study the immunosuppressive pathways 

induced by prostate cancer cells.  

For the first objectives, we developed novel software-based approaches 

allowing for the precise quantification of immune cell density within large 

pathological samples. We hope that our approach will standardize the reporting of 

immune cell abundance therefore facilitating the interpretation of independent 

studies. The results from our first immunohistochemical study argue for a direct 

association between lymphatic immunosuppression and disease progression. This 

study also raises the question as to whether patients with LN metastasis would be less 

responsive to immunotherapy. In our second study, we demonstrate that ADT 

induces the specific infiltration of T lymphocytes and macrophages within the 

primary tumor. Preliminary work also suggests that T lymphocytes and macrophages 

are sensitive to androgens in vitro. Further work should focus on the androgenic 

regulation of T lymphocyte activation as well as on the immunoregulatory functions 

of human macrophages in the presence of androgens.  

For the second objective, we wanted to determine which factors were 

implicated in the unique immunological microenvironment of the prostate. As such, 

we studied the regulation by androgens of immunosuppressive molecules expressed 

by prostate cancer cells. Our results demonstrate that androgens regulate the 

expression of ARG1, ARG2 and IL-8 suggesting that hormone sensitive prostate 

cancer cells are directly involved in the development of an immunosuppressive tumor 

bed.  
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 In conclusion, this doctoral thesis explored important questions to improve the 

treatment of prostate cancer by working with clinical samples and by trying to answer 

present clinical priorities. Our work proposes several long-term clinical and 

fundamental perspectives. Clinically, the immunological status of prostate cancer 

patients could be evaluated prior to administrating immunotherapy as some patients 

may have a strong immunosuppressive microenvironment preventing the activation 

of anti-tumoral response. Moreover, the quantification of immune cell density may 

offer novel prognosis markers for prostate cancer progression. Furthermore, arginase 

may represent only one of several immunosuppressive molecules positively regulated 

by the presence of androgens. Specifically, the immunosuppressive potential of 

HRPC cells should be evaluated, as it is for this stage of the disease that novel 

curative therapies are strongly needed. Discovery-based research of novel strategies 

that block tumor-driven immunosuppression will certainly improve the clinical 

efficacy of immunotherapies. Finally, integrative collaborative work between 

clinicians, pathology department and fundamental researchers is necessary in order to 

better understand to disease and provide effective novel therapy to prostate cancer 

patients. 
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Supplementary Figure 1. Impact of R1881 on the proliferation and activation of 

human PBMCs 

PBMCs of healthy donors were isolated from whole blood by Ficoll gradient using 

lymphocyte-separating medium. Increasing numbers of PBMCs were incubated in a 

96-well flat-bottomed plate with 1 µg/ml of anti-CD3 (OKT3) or an isotype control 

for 24 hours in the presence of (i) RPMI supplemented with 10% FBS (blue 

diamond); (ii) RPMI supplemented with 10% charcoal-stripped FBS (black squares); 

(iii) RPMI supplemented with 10% charcoal-stripped FBS and 10 nM R1881 (red 

triangles). Supernatants were harvested for cytokine quantification by ELISA. For 

proliferation assays, bromodeoxyuridine (BrDU) was added in the last 12 hrs 

according to the manufacturer’s instruction. A) PBMCs proliferation. B) IFN-γ 

secretion. C) IL-2 secretion. D) IL-10 secretion. All panels are from the same 

representative experiment (n=3). 
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 Note that PBMCs incubated with 10 nM R1881 have a lower proliferation and lower 

IFN-γ secretion with no observable changes in IL-2 and IL-10 secretions. 
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Supplementary Figure 2. Macrophages differentiated in the presence of R1881 

have an immunosuppressive phenotype in a mixed-lymphocyte reaction 

PBMCs of a first healthy donor were isolated from whole blood by Ficoll gradient, 

plated in a 96-well flat-bottom plate and, following a 2 hour incubation at 37°C, non-

adherent cells were removed. The remaining adherent cells were maintained in the 

various media: (i) RPMI supplemented with 10% FBS (blue diamond); (ii) RPMI 

supplemented with 10% charcoal-stripped FBS (black squares); (iii) RPMI 

supplemented with 10% charcoal-stripped FBS and 10 nM R1881 (red triangles). 

Media was changed every two days. After five days, increasing numbers of CD4+ T 

lymphocytes of a second healthy donor were added to the macrophages and 

incubated for another five days. Proliferation was measured by BrdU incorporation. 

A representative experiment is shown (n=4). 

Note that CD4+ T lymphocytes incubated in the presence of macrophages exposed to 

R1881 had a lower proliferation suggesting that these macrophages had a stronger 

immunosuppressive potential. 
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Supplementary Figure 3. Expression of iAR by human monocyte derived 

macrophages. 

PBMCs of a healthy donor were isolated from whole blood by Ficoll gradient, plated 

in a 96-well flat-bottom plate and, following a 2 hour incubation at 37°C, non-

adherent cells were removed. The remaining adherent cells were maintained in the 

various media: (i) RPMI supplemented with 10% FBS; (ii) RPMI supplemented with 

10% charcoal-stripped FBS; (iii) RPMI supplemented with 10% charcoal-stripped 

FBS and 10 nM R1881. Media was changed every two days. After five days, proteins 

were extracted. Classical AR (iAR) protein expression was determined by Western 

blot. LNCaP cells acted as positive controls for iAR protein expression and β-actin 

was the loading control. 

Note that although R1881 stimulation seems to affect the macrophage’s phenotype, 

there is no iAR expression. 
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Supplementary Figure 4. Analysis of COX-2 , MPGES-1 , MPGES-2  and 

CPGES  expression in LNCaP cells following R1881 stimulation 

LNCaP cells were stimulated over a period of 72 hours with 10 nM R1881 following 

a 72 hour incubation period in charcoal-stripped media and the gene expression of A) 

COX-2, B) MPGES-1 and C) MPGES-2 and D) CPGES were analyzed by qPCR. 

Control (gray bars) and R1881-stimulated (black bars). **Statistically significant 

difference (p<0.05, Mann-U). Mean relative expression (n=7) with standard error 

(error bars).  

Note the increased COX-2 and MPGES-1 gene expression 72 hours following R1881 

stimulation. 
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