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RÉSUMÉ

Cette thèse est composée de trois essais liés à la conception de mécanisme et aux

enchères.

Dans le premier essai j’étudie la conception de mécanismes bayésiens efficaces dans

des environnements où les fonctions d’utilité des agents dépendent de l’alternative choi-

sie même lorsque ceux-ci ne participent pas au mécanisme. En plus d’une règle d’attri-

bution et d’une règle de paiement le planificateur peut proférer des menaces afin d’inciter

les agents à participer au mécanisme et de maximiser son propre surplus ; Le planifica-

teur peut présumer du type d’un agent qui ne participe pas. Je prouve que la solution du

problème de conception peut être trouvée par un choix max-min des types présumés et

des menaces. J’applique ceci à la conception d’une enchère multiple efficace lorsque la

possession du bien par un acheteur a des externalités négatives sur les autres acheteurs.

Le deuxième essai considère la règle du juste retour employée par l’agence spa-

tiale européenne (ESA). Elle assure à chaque état membre un retour proportionnel à

sa contribution, sous forme de contrats attribués à des sociétés venant de cet état. La

règle du juste retour est en conflit avec le principe de la libre concurrence puisque des

contrats ne sont pas nécessairement attribués aux sociétés qui font les offres les plus

basses. Ceci a soulevé des discussions sur l’utilisation de cette règle : les grands états

ayant des programmes spatiaux nationaux forts, voient sa stricte utilisation comme un

obstacle à la compétitivité et à la rentabilité. Apriori cette règle semble plus coûteuse

à l’agence que les enchères traditionnelles. Nous prouvons au contraire qu’une implé-

mentation appropriée de la règle du juste retour peut la rendre moins coûteuse que des

enchères traditionnelles de libre concurrence. Nous considérons le cas de l’information

complète où les niveaux de technologie des firmes sont de notoriété publique, et le cas de

l’information incomplète où les sociétés observent en privée leurs coûts de production.

Enfin, dans le troisième essai je dérive un mécanisme optimal d’appel d’offre dans un

environnement où un acheteur d’articles hétérogènes fait face a de potentiels fournisseurs

de différents groupes, et est contraint de choisir une liste de gagnants qui est compatible

avec des quotas assignés aux différents groupes. La règle optimale d’attribution consiste
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à assigner des niveaux de priorité aux fournisseurs sur la base des coûts individuels

qu’ils rapportent au décideur. La manière dont ces niveaux de priorité sont déterminés

est subjective mais connue de tous avant le déroulement de l’appel d’offre. Les différents

coûts rapportés induisent des scores pour chaque liste potentielle de gagnant. Les articles

sont alors achetés à la liste ayant les meilleurs scores, s’il n’est pas plus grand que la

valeur de l’acheteur. Je montre également qu’en général il n’est pas optimal d’acheter

les articles par des enchères séparées.

Mots clés: efficacité, options extérieures endogènes, menaces, coûts virtuels, op-

timalité, juste retour, libre concurrence, asymétrie, enchère.



ABSTRACT

This thesis is made of three essays related to mechanism design and auctions.

In first essay I study Bayesian efficient mechanism design in environments where

agents’ utility functions depend on the chosen alternative even if they do not participate

to the mechanism. In addition to an allocation rule and a payment rule the designer may

choose appropriate threats in order to give agents the incentive to participate and maxi-

mize his own expected surplus ; The planner may presume the type of an agent who does

not participate. I show that the solution of the design problem can be found by a max -

min choice of the presumed types and threats. I apply this to the design of an efficient

multi-unit auction when a buyer in possession of the good causes negative externalities

on other buyers.

The second essay considers the fair return rule used by the European Space Agency

(ESA). It ensures each member state of ESA a return proportional to its contribution, in

the form of contracts awarded to firms coming from that state. The fair return rule is in

conflict with the principle of free competition since contracts are not necessarily awarded

to firms with the lowest bids. This has raised debates on the use of this rule : it is well ac-

cepted by small states, but larger states with strong national space programs, see its strict

use as an obstacle to competitiveness and cost effectiveness. It is easy to believe that

this rule is more costly to the agency than traditional auctions. We show on the contrary

that an adequate implementation of the fair return rule may cause it to be less expensive

to the agency than the traditional auctions of free competition. We consider the case of

complete information where firms’ technology levels are common knowledge, and the

case of incomplete information where firms observe privately their production costs. In

both cases we show that adequate implementation of the fair return rule may help take

advantage of asymmetries between countries in order to expect a lower cost than with

traditional auctions.

Finally, in the third essay I derive an optimal procurement mechanism in an environment

where a buyer of heterogeneous items faces potential suppliers from different groups,

and is constrained to choose a winning list that is consistent with some exogenous quo-
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tas assigned to the different groups. The optimal allocation rule consists of assigning

priority levels to suppliers on the basis of their cost reports. The way these priority levels

are determined is subjective but known to all before the auction. The individual reports

induce scores for each potential winning list. The items are then purchased from one of

the lists with the best score, provided it is not greater than the buyer’s valuation for the

items. I also find that it is not optimal to purchase the items through separate auctions,

unless the buyer’s valuation is sufficiently high or low.

Keywords : efficiency, endogenous outside options, threats, Optimal, Virtual

costs,fair return, free competition, asymmetry, auction.
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INTRODUCTION GÉNÉRALE

Prendre une décision quand plusieurs agents font face à des alternatives les affectant

différemment est un problème habituellement résolu par l’exécution d’un mécanisme.

C’est à dire un ensemble de règles déterminant, sur la base d’informations recueillies

auprès des agents (appelées leurs types), quelle alternative sera choisie et éventuellement

quels doivent être les paiements à faire ou à recevoir par chaque agent. Des exemples de

mécanismes incluent des enchères et des règles de vote. Les agents sont habituellement

libres de décider s’ils participeront au mécanisme ou pas. Différentes règles seront em-

ployées selon l’objectif visé par le décideur et selon le contexte dans lequel la décision

doit être prise. Les deux objectifs les plus communs sont la maximisation du revenu et

l’efficacité sociale. Ces deux objectifs sont en général opposés dans un contexte d’infor-

mation incomplète. Comme discipline, la conception de mécanismes vise à formaliser

la création et l’exécution de règles appropriées étant donnés un certain objectif et un

environnement particulier. Cette thèse est faite de trois essais liés à la conception de mé-

canismes avec des applications aux enchères. Les essais diffèrent par l’environnement et

par l’objectif du décideur.

Dans la majeure partie de la littérature sur la conception de mécanismes on suppose

habituellement que les agents qui ne participent pas au mécanisme ont des options ex-

térieures qui sont indépendantes de l’issue du mécanisme. Cependant dans la pratique

les agents qui ne participent pas sont néanmoins concernés par l’alternative finalement

choisie par les autres. Par exemple, si un gouvernement veut vendre un permis pour une

innovation technologique la société qui obtient le permis exercera des externalités néga-

tives sur les autres sociétés. En fait, qu’une société participe ou pas, sa part du marché

est susceptible de diminuer suite au fait que le permis est vendu à un concurrent. le pre-

mier essai étudie la conception de mécanismes efficaces dans des environnements où les

agents ont des informations privées et ont des options extérieures endogènes. C’est à dire

que leurs fonctions d’utilité dépendent de l’alternative choisie même si ils ne participent

pas au mécanisme. La décision appartient à un planificateur qui, en plus de viser l’effi-

cacité sociale, veut maximiser l’espérance du surplus collecté lors des transfert avec les
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agents, tout en cherchant à induire une participation honnête de tous les agents. Krishna

et Perry (2000) ont généralisé les mécanismes VCG en introduisant le concept de la base.

Dans leur théorème 1 ils prouvent qu’un choix approprié de la base permet d’obtenir un

mécanisme qui maximise le paiement de chaque agent, et par conséquent le surplus es-

péré du planificateur, parmi les mécanismes efficaces qui induisent la participation hon-

nête. Leur modèle cependant ne prend pas en considération des environnements où les

options extérieures sont endogènes comme c’est le cas dans cet essai. Jehiel et al (1996)

ont prouvé que les options extérieures endogènes donnent au planificateur un outil addi-

tionnel pour augmenter son surplus espéré et pour induire la participation des agents : le

planificateur peut décider comment punir un agent qui décide de ne pas participer. Dans

ce contexte un mécanisme implique la description d’une règle d’attribution qui déter-

mine l’alternative qui sera choisie si tous les agents participent, une règle de paiement,

mais également “une menace” pour chaque agent au cas où il ne participerait pas.

Je combine les approches de Krishna et Perry (2000) et de Jehiel et autres (1996)

pour concevoir un mécanisme qui maximise le surplus espéré (revenu) du concepteur

parmi les mécanismes efficaces induisant la participation honnête de tous. Je considère

une classe de mécanismes VCG plus large que celle de Krishna et de Perry (2000), et

j’utilise des hypothèses moins fortes. Les mécanismes VCG sont désormais caractérisés

non seulement par une base mais également par des menaces. Je prouve qu’un choix

approprié de type max-min de la base et des menaces maximise le surplus espéré du pla-

nificateur parmi les mécanismes efficaces induisant la participation honnête. Je fournis

un résultat d’existence pour des fonctions d’utilité extérieures pouvant être décomposées

en deux composantes additives : une composante exogène et une composante endogène.

J’applique alors ces résultats pour concevoir une enchère multiple efficace dans un envi-

ronnement où un acheteur en possession du bien cause des externalités négatives sur les

autres agents.

Dans la littérature liée à la conception de mécanismes avec des options extérieures

endogènes, l’analyse s’est concentrée sur les ventes et sur la maximisation de revenu

comme premier objectif. Le mécanisme optimal s’avère souvent inefficace (excepté dans

le cas de l’information complète Jehiel et autres (1996)). Jehiel et autres (1996) travaille
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aussi en information incomplète mais pas avec des options extérieures qui dépendent du

type des agents. Figueroa et Skreta (2009) considèrent un modèle avec des options ex-

térieures dépendantes du type des agents ; ils prouvent que quelques fois le mécanisme

maximisant le revenu est efficace et d’autres fois il n’est pas efficace. Dans cet essai

l’efficacité est plus importante que la maximisation du revenu (le surplus) : l’objectif de

revenu est limité aux mécanismes efficaces seulement. Cependant les deux approches se

rencontrent chaque fois que le mécanisme maximisant le revenu est efficace. Une intui-

tion qui nous vient de cette littérature est que le planificateur menacerait de minimiser

l’utilité d’un agent qui ne participe pas par ce que son option extérieure est une limite

potentielle au surplus du décideur ; cependant il peut induire la participation des agents

en tendant à réduire leurs paiements s’ils participent au mécanisme. C’est la conjonction

de ces deux forces qui mène au choix de type max-min de la base et des menaces dans

mon modèle. D’ailleurs dans ce cadre la base peut être interprétée comme types pré-

sumés des agents quand ils ne participent pas et donc ne signale pas directement leurs

types privés au planificateur.

Dans le deuxième essai nous considérons la règle du juste retour. Les appels d’offre

de l’agence spatiale européenne (ASE) sont sujets à cette règle. La règle du juste retour

assure à chaque état membre un retour proportionnel à sa contribution, sous forme de

contrats attribués aux sociétés venant de cet état. Autrement dit les projets de l’ASE sont

divisés en plus petits projets de sorte que les sociétés de tailles différentes et provenant

des différents états membres puissent y participer. Un avantage de cette règle est que les

sociétés ont l’occasion de partager leurs expériences, leur connaissances scientifiques et

leurs technologies. Un autre avantage est d’inciter les états membres à contribuer aux

activités de l’ASE. Dans la pratique la règle du juste retour est mise en application de

sorte que le rapport entre la part d’un état en valeurs des contrats et sa contribution finan-

cière aux projets de l’agence ne soit pas inférieur à un seuil (le taux de retour). Quand

ce seuil est 0.98 par exemple, une contribution de 1 euro garanti à un état au moins 0.98

euro sous forme de contrats a attribuer à des sociétés de cet état. Dans le meilleur des cas

le taux de retour devrait être égal à 1. À côté de la règle du juste retour, l’ASE cherche

également à favoriser la libre concurrence chaque fois que les deux principes ne sont pas
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en contradiction. La conception traditionnelle de la libre concurrence consiste à assigner

des contrats aux sociétés qui font les plus basses offres indépendamment de leurs ori-

gines. L’exécution de la règle du juste retour requiert une période relativement longue

(5 ans) à l’issue de laquelle chaque état membre devrait avoir un taux de retour dans les

normes ; car il est pratiquement impossible d’assurer à chaque état membre un retour

égal à sa contribution à tout moment ou à l’issue de chaque enchère. En bref, l’ASE

applique la libre concurrence autant que possible et une révision est constamment faite

afin d’ajuster les taux de retour si nécessaire. Ceci est fait en appliquant quelques règles

particulières d’attribution dans les enchères restantes selon les taux de retour courant.

Il y a eu bien des discussions sur l’utilisation de la règle du juste retour. Elle est plutôt

acceptée par les petits états mais les états possédant des programmes spatiaux nationaux

forts, voient dans son utilisation stricte un obstacle à la compétitivité et à la rentabilité.

En outre, l’ASE et le Communauté Européenne travaillent ensemble afin de déterminer

une politique spatiale européenne. Dans ce nouveau rapport, la question de la règle du

juste retour est également discutée puisque le Communauté Européenne emploie une

politique industrielle différente.

L’utilisation du juste retour a généré beaucoup de questions ; ce deuxième essai

contribue à répondre à la suivante : les enchères traditionnelles sont-elles moins coû-

teuses pour l’ASE que la règle du juste retour ? Cette question résulte du fait que la

règle du juste retour est (socialement) inefficace, dans le sens où la société ayant la plus

basse offre ne gagne pas nécessairement le contrat. Nous faisons un premier pas dans

l’analyse de cette question en utilisant un modèle réduit où un acheteur (ASE) cherche

à acheter plusieurs articles à des fournisseurs potentiels (sociétés) de diverses origines

(états membre de l’ASE). L’agence peut mettre en application la règle du juste retour ou

la libre concurrence. Sous la libre concurrence, des contrats pour la fourniture de chaque

article sont attribués indépendamment et les gagnants sont les meilleurs soumission-

naires (ceux avec les plus basses offres). Quoique la règle du juste retour soit dynamique

dans son exécution, dans cet essai, nous en adoptons une version statique afin de garder

les choses simples : selon la règle du juste retour les contrats sont attribués de sorte que

tous les états membres soient représentés par les fournisseurs réels. Il est important de
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noter qu’une version dynamique de la règle du juste retour est faite en réalité d’une suite

d’enchères statiques semblables à celle que nous adoptons ici mais différentes aussi par

le nombre d’états réellement impliqués dans chaque enchère. Dans la pratique la priorité

est accordée à certains états membres selon les taux de retour courants. Lorsque les taux

de retour varient la priorité change. Nous considérons le cas de l’information complète

où les niveaux de technologie des sociétés sont de notoriété publique, et le cas de l’in-

formation incomplète où les sociétés observent en privé leurs coûts de production. De

même qu’il y a une multitude d’enchères qui assigneraient les contrats aux meilleurs

soumissionnaires (ex. enchères au premier et deuxième prix), il y a plusieurs enchères

possibles qui pour satisfaire la règle du juste retour. La plus évidente permettrait d’as-

signer les contrats à une équipe composée de sociétés venant de tous les états ayant la

meilleure offre agrégée. Nous appelons cette enchère FR et la comparons à l’enchère

de premier prix dans le cas de l’information complète. Dans le cadre de l’information

incomplète nous concevons une enchère dans le genre de l’enchère de deuxième prix

et comparons ce format d’enchère (appelé l’enchère SFR) à l’enchère de deuxième prix

justement.

En présence d’asymétrie technologique, le conflit entre les petits et grands états peut

être illustré comme suit : imaginez une situation où les fournisseurs de l’état l ont des

coûts inférieurs pour la production des articles en comparaison avec leurs adversaires de

l’état h ; sous l’enchère de premier prix les articles sont uniquement achetés des four-

nisseurs de l puisqu’ils ont plus de latitude à faire de basses offres. Par conséquent les

fournisseurs de l’état h préféreront l’enchère FR à l’enchère de premier prix, contrai-

rement aux fournisseurs de l’état l. D’ailleurs dans un tel contexte il est clair que, si

les fournisseurs font les mêmes offres indépendamment de la politique industrielle uti-

lisée, l’agence payerait un prix plus élevé sous l’enchère FR que sous des enchères des

premiers prix. Plus généralement, même sans l’hypothèse d’asymétrie, nous pouvons

parvenir à cette conclusion. En effet, sous des enchères de premier prix les contrats

sont attribués aux plus bas soumissionnaires à un prix égal à ces offres ; mais sous l’en-

chère FR, les contrats sont attribués à un ensemble de fournisseurs avec la plus basse

offre agrégée ; puisque certains fournisseurs de l’équipe gagnante peuvent ne pas avoir
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la plus basse offre de leur catégorie, le prix payé par l’agence sous l’enchère FR est

plus élevé. Ceci étant, une réponse affirmative à la question initiale peut sembler évi-

dente. Cependant, même si l’argument précédent est vrai, il repose sur l’hypothèse que

les fournisseurs feraient les mêmes offres peu importe l’enchère en vigueur, ce qui n’est

pas forcément le cas. En fait les offres des fournisseurs ne sont que le résultat de leurs

différentes stratégies et, celles ci peuvent changer si les règles changent. Nous montrons

que la libre concurrence peut parfois être plus coûteuse que la règle du juste retour. En

particulier, et contrairement à l’argument précédent et à la première intuition, nous prou-

vons que ceci se produit souvent quand les fournisseurs d’un état donné sont chacun

plus compétitifs que leur adversaire direct de l’autre état. Dans de telles conditions l’un

des états possède un avantage technologique par rapport à l’autre dans la production

de chaque article. L’intuition : selon la règle du juste retour, puisque les fournisseurs

du même état ne peuvent pas gagner simultanément, un fournisseur compétitif est en

concurrence non seulement avec le fournisseur du même article mais également avec le

fournisseur du même état. Une situation qui force les fournisseurs compétitifs à être plus

agressifs dans leurs offres sous la règle du juste retour que sous la libre concurrence, et

résulte en un prix plus élevé pour l’agence.

Le dernier essai étudie la conception d’un mécanisme optimal pour un acheteur vou-

lant acheter des articles hétérogènes et faisant face à des fournisseurs potentiels appar-

tenant à différents groupes. Chaque fournisseur peut uniquement fournir un des articles.

Les articles sont des compléments et l’acheteur désire les acheter en utilisant un méca-

nisme d’achat optimal c’est-à-dire, un mécanisme qui maximise son surplus. En outre

l’acheteur fait face à la contrainte suivante : à chaque groupe d’agent est assigné des

quotas déterminant le nombre maximal et minimal d’articles à acheter des fournisseurs

de ce groupe. En parallèle, nous sommes également concernés par le mécanisme optimal

quand l’acheteur n’est pas contraint.

Ce modèle pourrait s’appliquer aux deux exemples suivants. Tout d’abord, consi-

dérons un organisme gouvernemental désirant réaliser un projet divisé en sous-projets.

Des contrats reliés à ces sous-projets sont attribués à des agents par le moyen d’un appel

d’offre. Supposons que les participants sont des chercheurs de différentes provinces du
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pays. Un gouvernement voulant encourager la recherche dans toutes les provinces peut

concevoir un mécanisme d’appel d’offre tel que les gagnants proviennent de toutes les

provinces. Si l’agence attribue chaque contrat aux chercheurs qui font les plus basses

offres, il y a des chances que les gagnants ne viendront pas de toutes les provinces. Quel

mécanisme d’attribution l’agence devrait-elle choisir afin d’attribuer les contrats ? En

second lieu, supposons qu’une institution internationale a plusieurs postes à remplir et

fait face à des candidats venant de différents états. Si l’établissement est financé par ces

états, alors l’établissement peut vouloir recruter de tous ces pays dans le but de favoriser

l’intégration des différents états. Comment le processus de recrutement devrait-il être

conduit ?

Revenant au modèle, on suppose que des fournisseurs ont des informations privées

sur leurs coûts d’approvisionnement (coût d’accomplissement de la tâche dans le cas

d’un recrutement) et ces coûts sont indépendants les uns des autres. Nous limitons notre

attention aux mécanismes directs. Il s’agit de mécanismes dans lesquels chaque four-

nisseur est tenu de soumettre son information à l’acheteur avant que celui ci ne prenne

sa décision. Sous de tels mécanismes, étant donné que les coûts sont connus de façon

privée, les fournisseurs peuvent donner une fausse information sur leurs coûts s’il le juge

avantageux. Nous nous intéressons aux mécanismes d’incitation c’est-à-dire, des méca-

nismes dans lesquels c’est un équilibre de rapporter honnêtement l’information privée.

En outre nous nous concentrons sur des mécanismes satisfaisant la contrainte de partici-

pation : ce sont des mécanismes dans lesquels chaque fournisseur qui participe à l’appel

d’offre s’attend à un bénéfice au moins égal à ce qu’il obtient s’il ne participe pas.

Nous généralisons les techniques de Myerson (1981) afin de d’obtenir un mécanisme

optimal. Comme dans Myerson (1981) l’acheteur peut refuser d’acheter les articles s’il

ne le juge pas avantageux. Branco (1996) caractérise l’enchère multiple optimale dans

le cas d’articles homogènes, en revanche nous avons un modèle avec des articles hétéro-

gènes. Des enchères multiples optimales avec des articles hétérogènes ont été largement

étudiées. Dans ce type d’environnements chaque soumissionnaire peut habituellement

faire concurrence pour plus d’un article. Un thème récurrent dans ces papiers est la

question d’acheter les articles par paquets ou par plusieurs enchères séquentielles. Arm-
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strong (2000), Jehiel et moldovanu (2001) ont montré que l’empaquetement est optimal

dans le cas de deux articles. Levin (1997) a étudié l’enchère optimale pour des com-

pléments et a prouvé qu’il est avantageux d’empaqueter. Une autre question importante

est la dimension des informations disponibles aux soumissionnaires (leur type). La ma-

jeure partie de la littérature sur les enchères multiples optimales suppose que les types

sont multidimensionnels et discrets (Armstrong 2000, Avery et Hendershott 2000). Nous

considérons plutôt des types unidimensionnels et continus (les coûts unitaire des four-

nisseurs). Tous ces papiers ne considèrent pas des environnement où la liste des gagnants

doit respecter des quotas pour chaque groupe de fournisseurs : le sujet de cet essai. Nous

ne permettons pas aux fournisseurs d’offrir plus d’un article. Mais le fait que l’acheteur

regarde les articles comme des compléments suggère la possibilité de les acheter dans

une enchère commune. D’ailleurs la présence d’une contrainte qui assigne différentes

quotas aux groupes de fournisseurs semble aussi en faveur d’une enchère commune.

Naturellement il est possible d’acheter les articles dans un mécanisme se composant de

beaucoup d’enchères séparées : nous appelons ce type de mécanismes “itemwise”. Nous

trouvons une condition nécessaire pour qu’un mécanisme itemwise soit optimal.



CHAPITRE 1

OPTIMAL THREATS AND EFFICIENT MECHANISM DESIGN

Abstract

This paper studies Bayesian efficient mechanism design in environments where agents’

utility functions depend on the chosen alternative even if they do not participate to the

mechanism. In addition to an allocation rule and a payment rule the designer may choose

appropriate threats in order to give agents the incentive to participate and maximize his

own expected surplus. The planner may presume the type of an agent who does not par-

ticipate. I show that the solution of the design problem can be found by a maxmin choice

of the presumed types and threats. I apply this to the design of an efficient multi-unit

auction when a buyer in possession of the good causes negative externalities on other

buyers.

1.1 Introduction

The problem of reaching a decision when a group of agents faces many alternatives

affecting them differently is usually solved by the implementation of a mechanism. That

is, a set of rules allowing to determine, on the basis of some information gathered from

the agents (their types), which alternative will be chosen and what are the payments each

agent is to make or receive. Examples of mechanisms include voting schemes and auc-

tions. Agents are free to decide if they will participate to the mechanism. In most of the

literature on mechanism design it is usually assumed that agents who do not participate

to the mechanism have outside options that are independent of the outcome of the me-

chanism. 1In some applications however agents who do not participate are still concerned

by the chosen alternative. For example, if a government wants to sell a license for a tech-

nological innovation the winning firm will exert negative externality on the other firms.

In fact whether a firm participates or not, its share in the market is likely to decrease as a

1. For a review on mechanism design see Jackson (2001) or Myerson (2006).
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result of the license being sold to a competitor. The siting of noxious facilities is another

example. In this problem agents have to decide who among them will be the host. The

agents are concerned by the decision, whether they participate or not to the mechanism,

if their utility functions depend on their distance to the site (see Ingberman 1995).

Outside options are said endogenous if the utility functions of agents who do not

participate to the mechanism still depend on the chosen alternative. This paper studies

efficient mechanism design in environments in which agents are privately informed and

have endogenous outside options. The decision belongs to a planner who, beside the

objective of efficiency, wants to maximize his own expected surplus and at the same

time induce truthful participation of all agents.

Krishna and Perry (2000) generalize the VCG mechanisms by introducing a notion

of basis. In their Theorem 1 they show that an appropriate choice of the basis results in a

mechanism that maximizes the payment of each agent, and hence the expected surplus of

the planner, among efficient mechanisms that induce truthful participation. Their model

however does not take into account environments where outside options are endogenous

as is the case in this paper. As shown in Jehiel et al (1996) endogenous outside options

put in the planner’s hand an additional tool to increase his expected surplus and induce

the participation of the agents : the planner can decide what to do if a given agent decides

to not participate. Thus a mechanism involves the description of an allocation rule which

determines the alternative that will be chosen if all agents participate, a payment rule but

also a sequence of “threats” to each agent in case he does not participate. I combine the

approaches of Krishna and Perry (2000) and Jehiel et al (1996) to solve the announced

problem. The class of VCG mechanisms I consider involves not only a basis but also

threats.

I show that an appropriate maxmin choice of the basis and threats would maximize

the expected surplus of the planner among efficient mechanisms inducing truthful par-

ticipation. I provide an existence result for outside utility that may be decomposed into

two additive components : an exogenous component and an endogenous component.

I then apply these results to design an efficient multiunit auction for environments in

which a buyer in possession of the good causes negative externalities on other buyers.
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I show that a generalization of the Vickrey auction (see Vickrey 1961) maximizes the

surplus among efficient mechanisms inducing truthful participation.

Weaker assumptions than those in Krishna and Perry (2000) are made. I do not res-

trict the study to convex type spaces, nor do I assume that the distributions of the payoff

vectors are absolutely continuous. In particular, these assumptions would reduce the set

of efficient allocation rules to a “singleton” as is suggested by the argument for theorem

1 in Krishna and Perry (2000) and is explicitly mentioned in Krishna (2002). Instead I

directly assume that the “revenue equivalence” property holds and rely on the literature

for much weaker sufficient conditions. The results of this paper thus generalize Krishna

and Perry (2000).

In the literature of mechanism design with endogenous outside options the analy-

sis has focused on sales and on revenue maximization as a primary objective (See, for

instance, Jehiel et al 1996, Jehiel et al 1999, Figueroa and Skreta 2009). The optimal

mechanism is often inefficient. Jehiel et al (1996) show that the optimal mechanism is

efficient in the case of complete information. They also determine the optimal mecha-

nism under incomplete information and show that it is inefficient. Their model does not

allow the outside options of agents to depend on their own type. Figueroa and Skreta

(2009) do consider a model with type dependent outside options and show that some-

times the revenue maximizing mechanism is efficient and other times it is not efficient. In

the present paper efficiency is more important than revenue (surplus) maximization : the

revenue objective is limited to efficient mechanisms only. Clearly, the two approaches

meet whenever the revenue maximizing mechanism is efficient. An intuition that comes

from this literature is that the planner would threaten to lower the utility of an agent who

does not participate because his outside option is a potential limit to the planner’s surplus

(or revenue). However the planner can induce the participation of the agents by tending

to reduce their payments if they participate to the mechanism. It is the conjunction of

these two forces that leads to the maxmin choice of the basis and threats in my model.

Moreover in this framework the basis may be interpreted as the presumed types of the

agents when they do not participate and therefore do not reveal their private types to the

planner.
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The rest of the paper is organized as follow : the next section describes the mo-

del and presents a formal statement of the problem. Section 3 introduces the class of

VCG mechanisms and shows that VCG mechanism maximizes the expected surplus of

the planner among efficient mechanisms inducing truthful participation of all agents.

In section 4, the case of outside utility with endogenous and/or exogenous components

is studied. Section 5 presents an application to multi-unit auction design with negative

externalities. Section 6 concludes the paper.

1.2 The model

There is a planner who wants to choose among many alternatives. The set of alter-

natives is denoted A and is finite. There is a set of agents N ={1,2, ...,n} whose utility

funcitons depend on the chosen alternative. Agent i’s type is denoted ti and is a random

variable having values in the measurable space (Ti,Ti) and with a probability image de-

noted pi. Denote T = ×
i∈N

Ti and T = ⊗
i∈N

Ti . The common prior is the product measure

p = ×
i∈N

pi. Thus types are independently distributed. Each agent observes privately his

own type. I will use the notation EY (t) for the expectation of the random variable Y (t)

and E−iY (t) for the expectation of Y (t) taken over t−i. Agent i’s utility when alternative a

is chosen is vi(a, ti)− zi, where zi is the payment made by the agent. Assume that vi(a, .)

is integrable for any a ∈ A.

Hereafter we shall denote ∆(B) the set of probabilities over a finite set B.

An allocation rule is a measurable function q = (qa)a∈A : T→∆(A); qa(t) is the pro-

bability that alternative a is chosen. A payment rule is an integrable function µ : T→Rn

where µi(t) is the payment made by agent i. A threat to agent i is a measurable function

ρ i : (T−i,T−i)→∆(A−i), where T−i = ×
j 6=i

Tj , T−i = ⊗
j 6=i

T j and A−i ⊂ A denotes the set of

available alternatives when agent i does not participate. ρ i
a(t−i) represents the probability

that alternative a be chosen when agent i does not participate and the other agents report

a type vector t−i. I shall use the notation ρ = (ρ i)i∈N . I also denote Mi the set of threats

to agent i.

By the revelation principle I may focus on direct mechanisms. That is, mechanisms



13

under which agents are asked to report their private information prior to the planner’s

decision. Formally a direct mechanism is a triplet (q,µ,ρ). If several agents do not par-

ticipate to the mechanism the planner chooses any alternative. However this choice is

irrelevant in the subsequent analysis since I am studying mechanisms that induce parti-

cipation of all agents.

An allocation rule qe is (ex post) efficient if for every type t ∈ T,

qe(t) ∈ arg max
qε∆(A)

∑
i∈N

∑
a∈A

vi(a, ti)qa. (1.1)

I shall denote by E the set of efficient allocation rules. An efficient allocation rule

chooses the most (socially) valued alternative. A mechanism is incentive compatible (IC)

if reporting his type honestly maximizes the expected utility of an agent when the other

agents are also honest.

Agent i’s expected utility when he reports the type ri and his true type is ti, is given

by :

ui(ri, ti;q,µ) = E−i

{
∑
a∈A

vi(a, ti)qa(ri, t−i)−µi(ri, t−i)

}
. (1.2)

Therefore a mechanism is IC if

ui(ri, ti;q,µ)≤ ui(ti, ti;q,µ)≡Ui(ti;q,µ). (1.3)

Denote wi(a, t) the utility of agent i if he does not participate to the mechanism and

alternative a is chosen. I allow the non participation utility of each agent to depend on

his own type and on other agents’ types, and to be different from participation payoffs.

This assumptions may be justified by the fact that the current mechanism is not the

only source of utility (or disutility) for agents. This assumption is a departure from the

literature on mechanisms with endogenous outside options in which equality between

participation payoffs and outside utility is generally assumed. In the present model this

would correspond to the case of “purely endogenous outside options” : wi(a, t)= vi(a, ti).

The expected utility of agent i if he does not participate (or simply his outside option)
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is given by the formula :

IRi(ti;ρ
i) = E−i ∑

a∈A−i

ρ
i
a(t−i)wi(a, t). (1.4)

When wi(a, t) is independent of ti the outside option is type independent : IRi =

IRi(ρ
i). And if wi(a, t) is independent of a the outside option is independent of the

threat : IRi = IRi(ti). This last case corresponds to the situation where outside options

are exogenous.

A mechanism is individually rational (IR) if Ui(ti;q,µ) ≥ IRi(ti;ρ i) for any i ∈N

and ti ∈ Ti. That is, the expected utility if an agent participates truthfully is at least equal

to his outside option.

The surplus of the planner is the sum of agents’ payments. The planner’s objective

is to design a mechanism that maximizes his expected surplus among efficient, IC and

IR mechanisms.

The revenue equivalence property is satisfied if for any pair (q,µ,ρ) and (q,µ ′,ρ)

of IC mechanisms, E−i µi(ti, t−i)−E−i µ
′
i (ti, t−i) does not depend on ti.

Throughout this paper I assume that the revenue equivalence property is satisfied.

There is an important literature on sufficient conditions for the revenue equivalence pro-

perty 2. The sufficient conditions in Chung and Olszewski (2007) allow for type sets that

may not be connected or bounded as well as prior that may not be absolutely continuous.

Though they do not consider environments in which outside options are endogenous their

result applies to this case provided the outside allocation rules are fixed, as is the case in

the previous definition of the revenue equivalence property.

1.3 VCG mechanisms as surplus maximizing mechanism

1.3.1 Definition

Given an efficient allocation rule q, one may define the following functions :

2. See, for instance, Krishna and Maenner (2001), Milgrom and Segal (2002), Heydenreich et al
(2007).
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SW (t;q) = ∑
i∈N

∑
a∈A

vi(a, ti)qa(t) (1.5)

SWi(t;q) = ∑
a∈A

vi(a, ti)qa(t) (1.6)

SW−i(t;q) = SW (t;q)−SWi(t;q) (1.7)

SW (t;q) is the social welfare if the planner implements the allocation rule q when

the vector of types is t. It is the sum of all the agents utility and the planner’s surplus, i.e.

the sum of expected payoffs of the agents. SWi(t;q) represents the payoff of agent i and

SW−i(t;q) is the payoff of all agents but i. Note that SW is independent of q (for efficient

allocation rules) but this is not true for SWi or SW−i.

Given an allocation rule and a profile of types s = (si)i∈N one may define the pay-

ment rule m(.;q,ρ|s) by :

mi(t;q,ρ|s) = SW (si, t−i)−SW−i(t;q)− IRi(si;ρ
i). (1.8)

Using the fact that SW (si, t−i) = SWi(si, t−i)+ SW−i(si, t−i) we see that, under this

payment rule, agent i is asked to pay the externality (SW−i(si, t−i)−SW−i(t;q)) he causes

on the other agents by revealing a type ti when his true type is si, and also his gain

(SWi(si, t−i;q)− IRi(si;ρ i)) from participating (truthfully) to the mechanism when his

type is si. It would be helpful to understand si as agent i’s presumed type if he does not

participate to the mechanism (agents’ types are private information, thus if they do not

participate the planner can only presume their types).

Given an efficient allocation rule q and an outside allocation rule ρ , the mechanism

(q,m(.;q,ρ|s),ρ) is called a VCG mechanism with basis s and threats ρ . Hereafter I use

the simpler notation (q,s,ρ) to denote the mechanism (q,m(.;q,ρ|s),ρ). The planner

has the choice of ρ and s as well as q, and his choice is publicly declared prior to the

implementation of the mechanism.

Due to the assumptions in this paper the efficient allocation rules may not be equal
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almost surely contrary to Krishna and Perry (2000). Thus, there are possibly many VCG

mechanisms with the same basis s and threats ρ . Moreover because SW−i(t;q) is sen-

sitive to the allocation rule so is agent i’s payment mi(t;q,ρ|s) ; two allocation rules,

different with positive probability, will give the same agent different expected payments

under VCG mechanisms with the same basis and threats.

1.3.2 Properties of VCG mechanisms

By definition a VCG mechanism is efficient. This section shows that VCG mecha-

nisms are incentive compatible and characterizes those that are individually rational.

Lemma 1. VCG mechanisms are IC. 3

Proof. Indeed,{
∑
a∈A

vi(a, ti)qa(ri, t−i)−mi(ri, t−i;q,ρ|s)

}
= ∑

a∈A
vi(a, ti)qa(ri, t−i)+SW−i(ri, t−i;q)−SW (si, t−i)+ IRi(si;ρ

i)

≤ SW (ti, t−i)−SW (si, t−i)+ IRi(si;ρ
i)

=

{
∑
a∈A

vi(a, ti)qa(ti, t−i)−mi(ti, t−i;q,ρ|s)

}

therefore

E−i

{
∑
a∈A

vi(a, ti)qa(ri, t−i)−mi(ri, t−i;q,ρ|s)

}
≤E−i

{
∑
a∈A

vi(a, ti)qa(ti, t−i)−mi(ti, t−i;q,ρ|s)

}
.

The expected equilibrium utility of agent i is given by :

Ui(ti;si,ρ
i) = E−i

[
SW (t)−SW (si, t−i)+ IRi(si;ρ

i)
]
. (1.9)

3. It is actually dominant strategy incentive compatible.



17

And in particular,

Ui(si;si,ρ
i) = IRi(si;ρ

i). (1.10)

Thus agent i is indifferent between participation and non participation if his type is

equal to the basis si.

Let us define the function

Ki(si,ρ
i) = E−iSW (si, t−i)− IRi(si;ρ

i). (1.11)

Ki(si,ρ
i) represents the difference between the expected social welfare if agent i

participates truthfully to the mechanism and his expected utility if he does not participate

at all, when his type is si and the planner threatens to choose an alternative according to

ρ i. I may rewrite the equilibrium utility as :

Ui(ti;si,ρ
i) = E−iSW (t)−Ki(si,ρ

i). (1.12)

This expression shows that Ki may be viewed as the disutility of agent i if he parti-

cipates truthfully to a mechanism with basis si and threat ρ i. This disutility is a conse-

quence of the choice of the basis and threat. The planner has a total control on the di-

sutility through si and ρ i. Once an efficient allocation rule has been chosen the planner

chooses s and ρ in order to induce truthful participation of the agents while seeking to

maximize his own expected surplus. The expression (1.12) implies that Ki is also the

expected social welfare, from agent i’s perspective, if he is not considered as part of the

society. This expected social welfare (E−iSW (t)−Ui(ti;si,ρ
i)) is therefore independent

of his true type ti.

For i ∈N , I consider the following set :

Si(ρ
i)≡ argmin

ti∈Ti
Ki(ti,ρ i). (1.13)

Si(ρ
i) is simply the set of minimizers of the function Ki(.,ρ

i). I will say that Si(ρ
i) is

nonempty to mean that Ki(.,ρ
i) has a minimum. Let S(ρ)≡ ×

i∈N
Si(ρ

i); I will say that S
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is nonempty valued to mean that Ki(.,ρ
i) has a minimum for every agent i and for every

vector of threats ρ .

The following lemma characterizes individual rationality.

Lemma 2. A VCG mechanism (q,s,ρ) is IR if and only if s ∈ S(ρ).

Proof. Using (1.9) and (1.13) one can see that Ui(ti;q,ρ i) ≥ IRi(ti;ρ i) is equivalent to

E−iSW (t)−E−iSW (si, t−i;q)+ IRi(si;ρ i)≥ IRi(ti;ρ i), i.e. to Ki(ti,ρ i)≥ Ki(si,ρ
i).

1.3.3 Results

The next theorem shows that an appropriate choice of the basis and threats maxi-

mizes the planner’s surplus among efficient, IC and IR mechanisms, when S is nonempty

valued.

Theorem 1. Assume that for every i ∈N :

(C1) Si is non empty valued,

(C2) s∗i ∈ Si(ρ
i∗),

(C3) ρ i∗ ∈ arg max
ρ i∈Mi

inf
si∈Ti

Ki(si,ρ
i).

Let ρ∗ = (ρ i∗)i∈N and s∗ = (s∗i )i∈N . Then for any q∗ ∈ E the VCG mechanism

(q∗,s∗,ρ∗) maximizes the expected surplus among efficient, IC and IR mechanisms. The

maximal surplus is equal to :

∑
i∈N

Ki(s∗i ,ρ
i∗)− (n−1)ESW (t).

This shows that it is optimal to choose the basis and threats so that : (C2) the ba-

sis minimizes the disutility from a truthful participation of any agent given the optimal

threats and also, (C3) the minimal disutility of an agent under the optimal threat is at

least equal to the minimal disutility under any other threat. (C2) ensures that the mecha-

nism is IR and (C3) is meant to maximize the surplus of the planner. The planner wants

to maximize the disutility of the agents because it would increases his own surplus ; and

he wants to minimize it in order to give agents incentives to participate.
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Proof. Let (q,µ,ρ) be efficient, IC and IR. Take s ∈ T and let m = m(.;q,ρ|s). By the

revenue equivalence property we have :

E−i µi(ti, t−i)−E−imi(ti, t−i;q,ρ|s) = E−i µi(si, t−i)−E−imi(si, t−i;q,ρ|s)

= E−iui(si, t−i;q,m)−E−iui(si, t−i;q,µ)

= IRi(si;ρ
i)−E−iui(si, t−i;q,µ)≤ 0.

Therefore

E ∑
i∈N

mi(t;q,ρ|s)≥ E ∑
i∈N

µi(t).

That is : an efficient, IC and IR mechanism (q,µ,ρ) results in an expected surplus

weakly lower than any VCG mechanism with the same allocation rule.

Finally, for s ∈ S(ρ) we have :

E ∑
i∈N

mi(t;q,ρ|s) = E

{
∑

i∈N

[
SW (si, t−i)− IRi(si;ρ

i)
]
− (n−1)SW (t)

}
= ∑

i∈N

[
E−iSW (si, t−i)− IRi(si;ρ

i)
]
− (n−1)ESW (t)

= ∑
i∈N

min
s′i∈Ti

[
E−iSW (s′i, t−i)− IRi(s′i;ρ

i)
]
− (n−1)ESW (t) (s ∈ S(ρ))

≤ ∑
i∈N

min
s′i∈Ti

[
E−iSW (s′i, t−i)− IRi(s′i;ρ

i∗)
]
− (n−1)ESW (t) (by (C3))

= ∑
i∈N

[
E−iSW (s∗i , t−i)− IRi(s∗i ;ρ

i∗)
]
− (n−1)ESW (t)

= E ∑
i∈N

mi(t;q∗,ρ∗|s∗).

It is shown in krishna and Perry (2000) that a VCG mechanism maximizes the ex-

pected payment of each agent. Beside the revenue equivalence property, their result also

relies on the fact that efficient allocation rules must be equal almost surely. This last

condition follows from their assumption and is clearly suggested by their argument for

the theorem (see also Krishna 2002, P. 76-77). This result no longer holds in situations
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where there exist efficient allocations rules that are different with positive probabilities.

For instance, this will be the case if type sets are discrete. However the expected surplus

may still be maximized provided the revenue equivalence property holds.

A saddle point of the function Ki is a couple (s̄i, ρ̄
i) such that

Ki(s̄i,ρ
i)≤ Ki(s̄i, ρ̄

i)≤ Ki(si, ρ̄
i),∀(si,ρ

i) ∈ Ti×Mi (1.14)

or equivalently

inf
si∈Ti

sup
ρ i∈Mi

Ki(si,ρ
i) = Ki(s̄i, ρ̄

i) = sup
ρ i∈Mi

inf
si∈Ti

Ki(si,ρ
i). (1.15)

As consequence of the theorem, the mechanism design problem may be solved by a

search for saddle points of the functions Ki if they exist.

Proposition 1. Assume that S is non empty valued and Ki possess a saddle point for

every agent i. Then for any q∗ ∈ E the sufficient conditions (C2) and (C3) of the theorem

are satisfied if and only if (s∗i ,ρ
i∗) is a saddle point of Ki.

Proof. when Si is nonempty valued we have inf
si∈Ti

Ki(si,ρ
i) = min

si∈Ti
Ki(si,ρ

i). Since Ki

has at least one saddle point then inf
si∈Ti

sup
ρ i∈Mi

Ki(si,ρ
i) = sup

ρ i∈Mi

inf
si∈Ti

Ki(si,ρ
i). If (s∗i ,ρ

i∗)

satisfies (C2) and (C3) then Ki(s∗i ,ρ
i∗) = min

si∈Ti
Ki(si,ρ

i∗) ≥ min
si∈Ti

Ki(si,ρ
i),∀ρ i. Therefore

Ki(s∗i ,ρ
i∗) = max

ρ i∈Mi

min
si∈Ti

Ki(si,ρ
i) and (s∗i ,ρ

i∗) is a saddle point. Now assume (s̄i, ρ̄
i) is a

saddle point of Ki and Si is nonempty valued. then by definition Ki(s̄i, ρ̄
i) = min

si∈Ti
Ki(si, ρ̄

i)

and Ki(s̄i, ρ̄
i) = sup

ρ i∈Mi

inf
si∈Ti

Ki(si,ρ
i), i.e. (C2) and (C3) hold.

Let us consider the following condition :

(C4) for a.e t−i ∈ T−i, if wi(a,s∗i , t−i)> min
a′∈A−i

wi(a′,s∗i , t−i) then ρ i∗
a (t−i) = 0.

The condition (C4) means that the planner’s threat is to randomly choose an alterna-

tive that would generate the worst non participation utility to agent i if his type was s∗i .

It is important to remember that the planner does not observe private types and if agent

i does not participate it is not revealed. Under (C4) the planner acts as though agent i’s
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type was s∗i . Hence the planner would choose only alternatives that generate the worst

utility to agent i with presumed type s∗i .

Proposition 2. The conditions (C2) and (C4) characterize the saddle points of Ki.

Proof. Assume that (s∗i ,ρ
i∗) satisfies (C2) and (C4).

For any (si,ρ
i),

Ki(si,ρ
i∗) ≥ inf

ti∈Ti
E−i ∑

a∈A−i

[
ρ

i∗
a (t−i)(SW (t)−wi(a, t))

]
= Ki(s∗i ,ρ

i∗) (by (C2))

≥ E−i ∑
a∈A−i

[
ρ

i
a(t−i)(SW (s∗i , t−i)−wi(a,s∗i , t−i))

]
(by (C4))

= Ki(s∗i ,ρ
i).

Now let (s∗i ,ρ
i∗) be a saddle point.

By definition ρ i∗ ∈ arg max
ρ i∈Mi

inf
si∈Ti

Ki(si,ρ
i) and Ki(s∗i ,ρ

i∗) = inf
ti∈Ti

Ki(ti,ρ i∗) i.e. s∗i ∈

Si(ρ
i∗). I need only show that (C4) is satisfied. First note that

∑
a∈A−i

[
ρ

i∗
a (t−i)(SW (s∗i , t−i)−wi(a,s∗i , t−i))

]
≤ max

a∈A−i
(SW (s∗i , t−i)−wi(a,s∗i , t−i)) .

(s∗i ,ρ
i∗) is a saddle point therefore Ki(s∗i ,ρ

i∗) ≥ Ki(s∗i ,ρ
i) ∀ρ i. Choosing ρ i such that

∑
a∈A−i

[
ρ

i
a(t−i)(SW (s∗i , t−i)−wi(a,s∗i , t−i))

]
= max

a∈A−i
(SW (s∗i , t−i)−wi(a,s∗i , t−i))∀t−i,

I obtain :

E−i ∑
a∈A−i

[
ρ

i∗
a (t−i)(SW (s∗i , t−i)−wi(a,s∗i , t−i))

]
= E−i max

a∈A−i
(SW (s∗i , t−i)−wi(a,s∗i , t−i))
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and

∑
a∈A−i

[
ρ

i∗
a (t−i)(SW (s∗i , t−i)−wi(a,s∗i , t−i))

]
= max

a∈A−i
(SW (s∗i , t−i)−wi(a,s∗i , t−i)) for a.e t−i.

This implies (C4).

Proposition 2 characterizes the saddle points by the conditions (C2) and (C4). In ge-

neral these two conditions are interdependent and constitute an implicit characterization

of the saddle points. In some cases however the correspondence Si may be independent

of the threat ρ i. For example when the non participation utility of an agent is independent

of his own type, or if outside options are exogenous (i.e. independent of the chosen al-

ternative) or finally, in case of monotonicity, when type sets are ordered and Si(ρ
i) is an

extremum of the set Ti. In these situations s∗i is independently determined and the threats

are just irrelevant :s∗i ∈ argmax
ti∈Ti

Ki(ti). This is the optimal choice of the basis in Krishna

and Perry (2000).

1.4 The case : wi(a, t)≡ v̄i(a, ti)+ v̂i(t)

In this case each agent’s non participation payoffs have an endogenous (own-type de-

pendent) component and an exogenous component that may depend on all agents’ types.

For example the case of purely endogenous outside options (wi(a, t) ≡ vi(a, ti)) corres-

ponds to the situation where the payoffs of an agent who participates to the mechanism

equals his utility if he does not participate.

The expected outside option of agent i is :

IRi(ti;ρ
i) = E−i ∑

a∈A−i

ρ
i
a(t−i)v̄i(a, ti)+E−i v̂i(t)

= ∑
a∈A−i

v̄i(a, ti)E−iρ
i
a(t−i)+E−i v̂i(t)

= ∑
a∈A−i

v̄i(a, ti)ρ̄ i
a +E−i v̂i(t),

where E−iρ
i = ρ̄ i ∈ ∆(A−i). Therefore IRi(ti;ρ i) depends on ρ i only through its mean
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ρ̄ i ∈ ∆(A−i) : IRi(ti;ρ i) ≡ IRi(ti; ρ̄ i). Hence the optimal threats can be chosen constant

and Mi may be identified with ∆(A−i).

The disutility of agent i for a basis ti and a threat ρ i is :

Ki(ti,ρ i) = E−i [SW (t)− v̂i(t)]− ∑
a∈A−i

v̄i(a, ti)ρ i
a. (1.16)

The following result gives some sufficient conditions for the existence of optimal

threats and basis.

Proposition 3. Assume that for every i ∈N :

(C5) Ti is a compact convex metric space,

(C6) ∀a ∈ A−i, ∀t−i ∈ T−i, SW (., t−i)−wi(a, ., t−i) is lower semicontinuous,

(C7) for a.e t−i ∈ T−i SW (., t−i)− max
a∈A−i

wi(a, ., t−i)≥−θi(t−i), where θi is non nega-

tive and integrable.

(C8) ti 7→ E−i [SW (t)− v̂i(t)] is quasiconvex and ∀a ∈ A−i v̄i(a, .) is concave.

Then Ki has a saddle point (s∗i ,ρ
i∗) for every i ∈N . Let ρ∗ = (ρ i∗)i∈N and s∗ =

(s∗i )i∈N . Then for any q∗ ∈ E the VCG mechanism (q∗,s∗,ρ∗) maximizes the expected

surplus among efficient, IC and IR mechanisms.

Proof. Ki(si, .) is continuous and linear, and ∆(A−i) is convex and compact in the eu-

clidean topology. (C8) implies that Ki(.,ρ
i) is quasiconvex ∀ρ i ∈ ∆(A−i). By Sion’s

minimax theorem I need only show that Ki(.,ρ
i) is lower semicontinuous to conclude to

the existence of a saddle point. Consider a sequence tn
i converging to ti.

(C6) ⇒ ρ
i
a(t−i)(SW (t)−wi(a, t))≤ liminfρ

i
a(t−i)(SW (tn

i , t−i)−wi(a, tn
i , t−i)),∀a ∈ A−i,∀t−i ∈ T−i

⇒ ∑
a∈A−i

ρ
i
a(t−i)(SW (t)−wi(a, t))≤ ∑

a∈A−i

liminfρ
i
a(t−i)(SW (tn

i , t−i)−wi(a, tn
i , t−i)),∀t−i ∈ T−i

⇒ ∑
a∈A−i

ρ
i
a(t−i)(SW (t)−wi(a, t))≤ liminf ∑

a∈A−i

ρ
i
a(t−i)(SW (tn

i , t−i)−wi(a, tn
i , t−i)),∀t−i ∈ T−i

⇒ E−i ∑
a∈A−i

ρ
i
a(t−i)(SW (t)−wi(a, t))≤ E−i liminf ∑

a∈A−i

ρ
i
a(t−i)(SW (tn

i , t−i)−wi(a, tn
i , t−i))

⇒ E−i ∑
a∈A−i

ρ
i
a(t−i)(SW (t)−wi(a, t))≤ liminfE−i ∑

a∈A−i

ρ
i
a(t−i)(SW (tn

i , t−i)−wi(a, tn
i , t−i))
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Where the last implication follows from the extended Fatou’s lemma. Therefore Ki(.,ρ
i)

is lower semicontinuous. Since Ti is compact I may conclude that Si(ρ
i)= argmin

ti∈Ti
Ki(ti,ρ i) 6=

/0. Therefore all the conditions of theorem 1 are satisfied.

SW (t)−wi(a, t) is the difference between social welfare if agent i participates and

his utility if he does not participate and alternative a is chosen. (C7) means that this

difference has a non positive lower bound that is independent on the chosen alternative. It

is satisfied if payoffs and utilities are bounded. Condition (C6) is satisfied if the functions

wi(a, ., t−i) are continuous and the functions vi(a, .) are lower semicontinuous.

As mentioned earlier the conditions (C2) and (C4) may be used to determine the op-

timal threats and basis. This can be done either analytically or numerically. In particular

when Ki is smooth, first and second order conditions for optimization may be used for

condition (C2). Below I propose an algorithm for approximating the threat and the basis.

Algorithm 1. pick ρ i0 ∈ ∆(A−i),

∀l ≥ 0 let sl
i ∈ argmin

ti∈Ti
Ki(ti,ρ il),

ρ il+1 ∈ ∆(A−i) : ρ il+1
a = 0 if v̄i(a,sl

i)> min
a∈A−i

v̄i(a′,sl
i).

Proposition 4. Suppose that ∀a ∈ A−i v̄i(a, .) is continuous. Then under the conditions

of proposition 3 the sequence (sl
i,ρ

il)l≥0 possess at least one cluster point and every

cluster point is a saddle point of Ki.

Proof. Since Ti×∆(A−i) is compact the sequence (sl
i,ρ

il)l≥0 possess a convergent sub-

sequence (slp
i ,ρ

ilp)p≥0 with limit (s∗i ,ρ
i∗)∈Ti×∆(A−i). Ki(si, .) is continuous and Ki(., .)

is lower semicontinuous. Leininger’s maximum theorem implies that argmin
ti∈Ti

Ki(ti, .) is

upper hemicontinuous and therefore (C2) is satisfied : s∗i ∈ argmin
ti∈Ti

Ki(ti,ρ i∗). If v̄i(a,s∗i )>

v̄i(a′,s∗i ) then for n≥ n0 we also have v̄i(a,sl
i)> v̄i(a′,sl

i) and ρ il+1
a = 0. Taking the limit

I obtain ρ i∗
a = 0 : (C4) is satisfied. the conclusion follows from proposition 2.
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1.5 Application : multi-unit auctions

1.5.1 The market

I consider a seller of m units of an indivisible good who wants to allocate the units

efficiently but is also interested in maximizing his expected surplus. In this application

the agents are the potential buyers. Buyer i’s type is ti = (πi,δi) where πi = (π l
i )l=1,...,m

and δi = (δ
j

i ) j∈N −{i}. π l
i is the marginal valuation of the lth unit for buyer i and δ

j
i is the

marginal disutility of buyer i when buyer j possesses some units of the good. I assume

that marginal valuations are decreasing with the number of units possessed by a buyer.

Buyer i’s type set is :

Ti =
{

ti ∈ Rm+n−1
+ : π

m
i ≤ π

m−1
i ≤ ...≤ π

1
i ≤ π̄i and δ

j
i ≤ δ̄i ∀ j ∈N −{i}

}
.

An alternative is a vector a = (ai)i∈N where ai represents the number of units sold to

agent i. The set of pure alternatives is A =

{
a ∈ N : ∑

i∈N
ai ≤ m

}
. The payoff functions

are

vi(a, ti) =
ai

∑
l=1

π
l
i − ∑

j∈N −{i}
δ

j
i a j. (1.17)

I assume that outside options are purely endogenous so that wi(a, t) = vi(a, ti). The set

of available alternatives when buyer i does not participate is A−i = {a ∈ A : ai = 0}.
Let us denote δ

j
+ = ∑

i∈N −{ j}
δ

j
i the marginal disutility buyer j exerts on all the other

buyers when he is allocated the good. I call π l
i −δ i

+ the relative bid of buyer i for the lth

unit it is the difference between his valuation for the lth unit and the marginal disutility

he exerts on all the other buyers.

The set Ti is convex and the function vi(a, ti) is convex in ti ; the Hypothesis I in

Krishna and Maenner (2001) is satisfied. Therefore the revenue equivalence property is

satisfied.

1.5.2 Surplus maximizing auction

The efficient social welfare is given by SW (t) = max
a∈A

∑
i∈N

vi(a, ti).
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∑
i∈N

vi(a, ti)= ∑
i∈N

ai

∑
l=1

π
l
i − ∑

j∈N
∑

i∈N −{ j}
δ

j
i a j = ∑

i∈N

ai

∑
l=1

π
l
i − ∑

i∈N
δ

i
+ai = ∑

i∈N

ai

∑
l=1

(
π

l
i −δ

i
+

)
This last expression shows that an efficient allocation rule is to allocate an object to

the positive relative bids among the m highest.

I shall denote a∗ the efficient allocation rule just described. Formally the following

conditions characterize the allocation rule a∗(t).

(E1) ∀i ∈N ,a∗i > 0⇒ π
a∗i
i −δ i

+ > 0

(E2) ∀i ∈N : a∗i > 0,∀ j ∈N : j 6= i,πa∗i
i −δ i

+ ≥ π
a∗j+1
j −δ

j
+

(E3) ∑
i∈N

a∗i < m⇒∀ j ∈N ,0≥ π
a∗j+1
j −δ

j
+

(E1) and (E2) means that units are allocated only to the highest positive relative

bids. (E3) means that it is efficient to allocate additional units as long as relative bids are

positive.

For every i ∈N and a ∈ A, vi(a, .) is continuous bounded and affine. Therefore the

conditions (C5)− (C8) are satisfied. Proposition 3 implies that for every i ∈ N there

exist an optimal couple of basis and threat (s∗i ,ρ
i∗).

If he does not participate to the mechanism, buyer i expects a payoff equal to IRi(s∗i ;ρ i∗)=

min
a∈A−i

vi(a,s∗i ) (by condition (C4)).

The payment rule is given by :

mi(t;a∗,ρ∗|s∗) = SW (s∗i , t−i)−SW−i(t;a∗)− min
a∈A−i

vi(a,s∗i ). (1.18)

SW (s∗i , t−i) is the some of the positive relative bids among the m highest if buyer i

had type s∗i . SW−i(t;a∗) is the some of the positive relative bids among the m highest

except those of buyer i when he reveals the type ti.

Hence the efficient mechanism generalizes the Vickrey auction (see Vickrey 1961)
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which corresponds to the case s∗i = 0.

1.5.3 Absolutely continuous prior

In the rest of this section I assume that hyperplanes in the space of (δ j) j 6=i have

measure zero with respect to µ−i for every i ∈N . This is satisfied if the probabilities µi

are absolutely continuous with respect to the lebesgue measure. Given that the functions

vi(a, .) are differentiable, I may conclude that the social welfare SW (t) = max
a∈A

∑
i∈N

vi(a, ti)

is differentiable almost surely and E−i [SW (t)] is differentiable.

Fix i ∈N , for j 6= i we have :

∂

∂δ
j

i

E−i [SW (t)] = E−i

[
∂

∂δ
j

i

SW (t)

]

= E−i

[
∂

∂δ
j

i
∑
a∈A

(
∑

k∈N
vk(a, tk)

)
.1(a = a∗(t))

]

= E−i

[
∑
a∈A

(
∂

∂δ
j

i
∑

k∈N
vk(a, tk)

)
.1(a = a∗(t))

]

= E−i

[
∑(−

a∈A
a j).1(a = a∗(t))

]
,

and finally :
∂

∂δ
j

i

E−i [SW (t)] =−∑
a∈A

a j.Pr(a = a∗(t)|ti). (1.19)

The expected disutility of agent i if he participates to the mechanism under the basis

ti and threat ρ i is given by :

Ki(ti,ρ i) = E−i [SW (t)]− ∑
a∈A−i

v̄i(a, ti)ρ i
a = E−i [SW (t)]+ ∑

a∈A−i

∑
j∈N −{i}

δ
j

i a jρ
i
a (1.20)
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It is important to keep in mind that this disutility is caused by the choice of the basis

and threat by the planner and is different from the disutility caused by other buyers who

possess the good.

Equations 1.19 and 1.20 imply that the marginal expected disutility of agent i (when

he participates) with respect to δ
j

i , under the basis ti and threat ρ i is given by :

∂

∂δ
j

i

Ki(ti,ρ i) = ∑
a∈A−i

a jρ
i
a−∑

a∈A
a j.Pr(a = a∗(t)|ti). (1.21)

This is just the difference between the expected number of units agent j receives

when agent i does not participate and when he participates with type ti.

Thus, from the perspective of agent i, if he wants to participate, a slight decrease in

the (marginal) effect of any other agent is desirable as long as agent i currently expects

that agent to obtain more units if agent i decided to not participate.

Note also that the non participation utility of buyer i is vi(a, ti) = − ∑
j∈N −{i}

δ
j

i a j. It

is minimized if all the units are allocated only to buyers causing the highest marginal

effect to buyer i, and the minimal value is − max
j∈N −{i}

mδ
j

i . I may write the following

proposition.

Proposition 5. Let ρ i∗ ∈ ∆(A−i), π∗i = [0, π̄i] and δ ∗i ∈
[
0, δ̄i

]n−1
. If the prior is abso-

lutely continuous, then ((π∗i ,δ
∗
i ),ρ

i∗) is an optimal choice of the basis and threat if and

only if :

(1) π∗i = 0

(2) ρ i∗
a = 0 ∀a ∈ A−i : ∑

j∈N −{i}
δ
∗ j
i a j < max

j∈N −{i}
mδ
∗ j
i

(3) ∀ j ∈N −{i} ,
∑

a∈A−i

a jρ
i∗
a = ∑

a∈A
a j.Pr(a = a∗(t)|ti = (0,δ ∗i )) i f δ

∗ j
i ∈

(
0, δ̄i

)
∑

a∈A−i

a jρ
i∗
a ≥ ∑

a∈A
a j.Pr(a = a∗(t)|ti = (0,δ ∗i )) i f δ

∗ j
i = 0

∑
a∈A−i

a jρ
i∗
a ≤ ∑

a∈A
a j.Pr(a = a∗(t)|ti = (0,δ ∗i )) i f δ

∗ j
i = δ̄i

Proposition 5 shows how the planner may set the basis and threats. (1) He may

presume that agents who do not participate do not value the good at all. (2) The object
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is allocated only to agents who would affect agent i the most if he does not participate

and his type is correctly presumed by the planner (i.e. is equal to the basis). (3) If the

presumed (marginal) external effect on some agent i is interior then the planner threatens

to ensure that, if agent i does not participate, the expected number of units allocated to

any other agent equals the expected number of units of that agent if agent i participated

and revealed he has no valuation for the units but that the externality of other agents

on him correspond to the presumed external effect. If the presumed (marginal) external

effect on some agent i is 0 (resp. δ̄i) then the planner threatens to ensure that, if agent i

does not participate, the expected number of units allocated to any other agent is weakly

greater (resp. lower) than the expected number of units of that agent if agent i participated

and revealed that he has no valuation for the units but that the externality of other agents

on him correspond to the presumed external effect.

Proof. We know from propositions 2 and 1 that optimality is equivalent to the conditions

(C2) and (C4). (2) is simply an expression of the condition (C4). I need to show that

condition (C2) is satisfied that is :

Ki((0,δ ∗i ),ρ
i∗)≤ Ki((πi,δi),ρ

i∗),∀(πi,δi) ∈ Ti.

First observe that

Ki((0,δi),ρ
i∗)≤ Ki((πi,δi),ρ

i∗),∀(πi,δi) ∈ Ti. (1.22)

Since the objective is a convex function, the solutions of the optimization program

arg min
δi∈[0,δ̄i]

n−1
Ki((0,δi),ρ

i∗) are characterized by the following condition :

∑
j 6=i

∂

∂δ
j

i

Ki((0,δi),ρ
i).(δ

j
i −δ

∗ j
i )≥ 0,∀δi ∈

[
0, δ̄i

]n−1
. (1.23)

Moreover, using equation (1.21), it is easy to show that the condition (1.23) is equi-
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valent to the conditions (3) in proposition 5. Thus any solution of (3) is optimal :

Ki((0,δ ∗i ),ρ
i∗)≤ Ki((0,δi),ρ

i∗) ∀δi ∈
[
0, δ̄i

]n−1
.

Therefore (C2) holds.

Reciprocally, we want to show that if (C2) and (C4) are true then so are (1), (2)

and (3). Since (2) and (C4) are equivalent, we need only show that (1) and (3) are

true. In fact we need only show that (1) is true, since (C2) would then imply that δ ∗i ∈
arg min

δi∈[0,δ̄i]
n−1

Ki((0,δi),ρ
i∗), which has already been said to be equivalent to (3). The

inequality (1.22) together with

(C2) : Ki((π
∗
i ,δ

∗
i ),ρ

i∗)≤ Ki((πi,δi),ρ
i∗),∀(πi,δi) ∈ Ti

imply that Ki((π
∗
i ,δ

∗
i ),ρ

i∗) = Ki((0,δ ∗i ),ρ
i∗). This in turn implies that,

for almost every t−i ∈ T−i,

SW ((π∗i ,δ
∗
i ), t−i) = SW ((0,δ ∗i ), t−i). (1.24)

Assume that π∗i 6= 0 i.e. π∗1i > 0. SW ((πi,δi), t−i) is the sum of the m highest positive

relative bids (the top list of relative bids) ; thus SW ((π∗i ,δ
∗
i ), t−i) = SW ((0,δ ∗i ), t−i) if

and only if the highest relative bid of agent i (when (πi,δi) = (π∗i ,δ
∗
i )) is not positive

or is lower than the mth highest relative bid. Indeed when the type of agent i changes

from (0,δ ∗i ) to (π∗i ,δ
∗
i ) the relative bids of all other agents remain unchanged ; with

probability 1 the relative bids of agent i are initially negative and thus absent from the

top list. The top list of relative bids won’t change unless the relative bids of agent i enters

the top list. Now consider the set of type vectors

H =
{

t−i ∈ T−i : ∀ j : j 6= i,π∗1i −δ
i
+ > π

1
j −δ

j
+,π

∗1
i −δ

i
+ > 0

}
;

H represents the set of types for which agent i has the highest positive relative bid.
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It is the non empty interior of a polyhedron with positive lebesgue measure. Elements

of H do not satisfy SW ((π∗i ,δ
∗
i ), t−i) = SW ((0,δ ∗i ), t−i) and yet the probability of H is

positive. This is in contradiction with 1.24 and therefore π∗i = 0.

Proposition 5 shows that the planner will always presume that an agent who does

not participate does not value the good. However he may presume that there are negative

external effects on that agent (δ ∗i 6= 0). When is it optimal to choose δ ∗i = 0 ? In order

to answer the question observe that if δ ∗i = 0 then the condition (2) of proposition 5 is

trivially satisfied and all the conditions in proposition 5 reduce to π∗i = 0 and to

∑
a∈A−i

a jρ
i∗
a ≥ ∑

a∈A
a j.Pr(a = a∗(0, t−i)),∀ j ∈N −{i} . (1.25)

Therefore the following corollary characterizes the situations under which it is opti-

mal to choose the basis δ ∗i = 0.

Corollary 1. It is optimal to choose t∗i = 0 if and only if the system of inequalities (1.25)

has a solution ρ i∗ ∈ ∆(A−i), which is then the corresponding optimal threat to agent i.

In other words, it is optimal to presume that an agent i who does not participate

has no valuation for the units and suffers no externality if and only if the planner may

threaten to ensure that, if agent i does not participate, each participant will expect at

least as much units as he would if agent i revealed he has no valuation for the units and

suffers no externality.

In that case the optimal expected surplus is :

∑
i∈N

E−iSW (0, t−i)− (n−1)ESW (t).

Buyer i pays

SW (0, t−i)−SW−i(t),

i.e. buyer i pays the difference between the positive presumed relative bids among

the m highest and the positive relative bids among the m highest that are not his own. If

there are no externalities, relative bids are simply bids and the previous difference is just
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the ai highest rejected bids that are not buyer i’s if he wins ai units. This is the payment

rule of the Vickrey auction.

I close this section with two examples of situations in which it is optimal to set as a

basis t∗i = 0.

Example 1. A single unit for sale (m = 1)

I denote [i] the alternative in which the good goes to agent i and [0] the alternative

in which the seller keeps the good. If an agent does not participate he cannot be given

the object. The two terms of the inequality (1.25) are respectively ∑
j′ 6=i

a jρ
i∗
[ j′] = ρ i∗

[ j] and

∑
j′

a j.Pr([ j′] = a∗(0, t−i)) = Pr([ j] = a∗(0, t−i)). Therefore the planner may set the basis

t∗i = 0, and sets the threats such that the probability to give the good to an agent if agent

i does not participate is at least equal to the probability that the same agent obtains

the good when agent i participates even though he does not value the good and is not

affected by its possession by others : ρ i∗
[ j] ≥ Pr([ j] = a∗(0, t−i)),∀ j 6= i,0.

Example 2. Duopsony (n = 2)

The set of alternatives is A =
{
(a1,a2) ∈ N2 : a1 +a2 ≤ m

}
. Without loss I shall

fix i = 1. If agent 1 does not participate then the available alternatives consist of a

choice of the number of units to be sold to agent 2 : A−1 = {0,1, ...,m} . The expected

number of units received by agent 2 if agent 1 does not participate is ∑
a2=0,...,m

a2ρ i∗
a2

.

I can also write ∑
a∈A

a2.Pr(a = a∗(0, t2)) = ∑
a2=0,...,m

∑
a1=0,...,a2−m

a2.Pr(a = a∗(0, t2)) =

∑
a2=0,...,m

a2

(
∑

a1=0,...,a2−m
Pr(a = a∗(0, t2))

)
. Therefore the inequalities (1.25) are satis-

fied if ρ i∗
a2

=

(
∑

a1=0,...,a2−m
Pr(a = a∗(0, t2))

)
. i.e. the probability that agent 2 receives

a given number of units if agent 1 does not participate is equal to the probability that

he obtains the same number of units if both agents participate though agent 1 does not

value the good and is not affected by its possession by agent 2.
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1.6 Conclusion

This paper has analyzed the problem of choosing an efficient alternative for a group

of privately informed agents with diverse interests. A second objective of the designer

was to maximize the surplus collected from the agents among mechanisms that induce

truthful participation of all agents. In this environment, agents who do not participate

to the decision process might still be affected by the decision. In addition to an alloca-

tion rule and a payment rule, the designer must choose appropriate threats in order to

give agents the incentive to participate and maximize his own expected surplus. Since

an agent who does not participate does not reveal his private information, the planner

decides on his own what he considers as that private information (his presumed type)

and threatens to choose an alternative that would give the worst utility to this agent. A

maxmin choice of the presumed type and the threat is shown to maximize the expected

surplus among efficient mechanisms inducing truthful participation of all the agents.

I also provided an existence result for outside utility that may be decomposed into

two additive components : an exogenous component and an endogenous component. I

then applied the results to design an efficient multiunit auction for environments where

a buyer in possession of the good causes negative externalities on other buyers. I sho-

wed that a generalization of the Vickrey auction maximizes the surplus among efficient

mechanisms inducing truthful participation. Other possible applications include the pro-

blem of siting noxious facilities, elections, the siting of sport events, the sale of nuclear

weapons etc.

In some situations the planner would seek to implement a mechanism so that there is

no additional fund from the planner or any surplus. Such mechanisms are called budget

balanced. Formally a mechanism (q,µ,ρ) is budget balanced if : ∑
i∈N

µi(t) = 0 for every

type vector t. As pointed out in Krishna and Perry (2000) the existence of such mecha-

nisms is determined by the sign of the maximal surplus. Though different assumptions

are used in this paper, this result remains valid and the constructive proof (which relies

mostly on the revenue equivalence) is similar. In fact using the same techniques one may

show that it is sufficient that any efficient mechanism inducing truthful participation of
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all agents results in a positive surplus. This may be useful in applications where a closed

form for the surplus maximizing mechanism cannot be found. In such applications it

is sufficient to have an approximation of the surplus maximizing mechanism that itself

results in a positive surplus and construct from it a budget balanced mechanism.

Finally it would be interesting in further research to relax the assumption that the

types of agents are independent and to allow agents to act in a concerted way.



CHAPITRE 2

IS THE FAIR RETURN RULE MORE EXPENSIVE THAN FREE

COMPETITION ?

Abstract

We consider the fair return rule used by the European Space Agency (ESA). This

rule ensures each member state of ESA a return proportional to its contribution, in the

form of contracts awarded to firms coming from that state. The fair return rule is in

conflict with the principle of free competition since contracts are not necessarily awar-

ded to firms with the lowest bids. This has raised debates on the use of this rule : it is

well accepted by small states, but larger states with strong national space programs, see

its strict use as an obstacle to competitiveness and cost effectiveness. It is easy to be-

lieve that this rule is more costly to the agency than traditional auctions. We show on the

contrary that an adequate implementation of the fair return rule may cause it to be less

expensive to the agency than the traditional auctions observing free competition (first

price and second price auctions). We consider the case of complete information where

firms’ technology levels are common knowledge, and the case of incomplete informa-

tion where firms observe privately their production costs. In both cases we show that

by adequately implementing the fair return rule, the agency may even take advantage

of asymmetries between countries in order to expect a lower cost than with traditional

auctions.

2.1 Introduction

The European space agency (ESA) is an independent organization whose role is to

develop space industry in Europe. It is funded by 17 member states and is involved

in many activities related to space exploration and technology. Even though many of

these member states have developed national space programs, ESA achieves far beyond

what is possible within any of these national programs (see Albone et al 2002). ESA’s
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activities are separated into mandatory and optional. Mandatory activities are funded

by all member states, each according to its gross national product, and states contribute

freely to optional activities. According to ESA’s convention (ESA 2003), one objective

of the industrial policy is to :

ensure that all member states participate in an equitable manner, having re-

gard to their financial contribution, in implementing the European space pro-

gram and in the associated development of space technology ; in particular

the agency shall for the execution of the program grant to the fullest extend

possible to industry in all member states which shall be given the maximum

opportunity to participate in the work of technological interest undertaken

for the agency ;

Thus procurements at ESA are globally submitted to the so called fair return rule

which ensures each member state a return in the form of contracts (awarded to firms or

agents coming from that state) proportional to its contribution. Simply ESA’s projects

are divided into smaller projects so that firms of different size and from different states

may participate. One advantage of this rule is that firms have the opportunity to share

experience, scientific knowledge and technology. Another advantage is clearly to give

states incentives to contribute to activities. In practice the fair return rule is implemented

so that the ratio between the share of a state in the values of contracts and its share

in the contribution to the agency’s activities (that is the return rate) must not be lower

than a given threshold. In the beginning of ESA the threshold was set to 0.8, but it has

recently reached 0.98 (ESA 2000). In other words, a contribution of 1 euro from a state

guarantees at least 0.98 euro in the form of contracts awarded to firms from the same

state. Ideally the return rate should be equal to 1. Note that beside the fair return rule,

ESA also seeks to promote free competition whenever the two are not in contradiction.

The traditional understanding of free competition is to allocate contracts to firms who

place the lowest bids regardless of their origins. The implementation of the fair return

rule requires a relatively large period (5 years) at the end of which every member state

should have an appropriate return rate (ESA 2003) ; for it is practically impossible to
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ensure each member state a return equal to its contribution at every moment or at the

end of every auction. In short, ESA applies free competition whenever possible and a

review is constantly made in order to adjust states’ returns when needed. It is done by

applying some particular allocation rules in the remaining auctions depending on the

current return rates. There have been debates on the use of the fair return rule. It still is

well accepted by the small states but larger states, with strong national space programs,

see its strict use as an obstacle to competitiveness and cost effectiveness (ESA 2000).

In addition, ESA and the European Community have recently been working together in

order to write a European space policy. Within this new relationship, the issue of the fair

return rule is also discussed since The European Community uses a different industrial

policy (EC 2002). In this context a formal analysis of the fair return rule is particularly

relevant.

The use of the fair return may generate many questions ; the aim of this paper is to

bring a contribution to the following one : are traditional auctions less expensive to ESA

than the fair return rule ? This question arises from the fact that the fair return rule is

(socially) inefficient, in the sense that a firm with the lowest bid do not necessarily win.

To the best of our knowledge, no formal study has been made to address this issue. We

make a first step in the analysis of the question using a simple model where a buyer

(ESA) is seeking to purchase many items from potential suppliers (firms) of different

origins (member state of ESA). The agency may implement the fair return rule or free

competition. Under free competition contracts for the provision of each item are awarded

independently and the winners are the best bidders (those with lowest bids). Though the

fair return rule is a dynamic mechanism, in this paper however, we adopt a static version

of it in order to keep things simple : under the fair return rule the contracts are awarded

so that all member states are represented by the actual suppliers. It is important to note

that a dynamic version of the fair return rule is actually made of a sequence of static

auctions similar to the one we adopt here but differing one from another by the number

of states involved in each auction. 1 To make things more simple we assume the agency is

1. In practice priority is given to some member states of ESA depending on current return rates. As
return rates vary the priority changes.
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facing a few states and firms ; the agency is willing to purchase two items (a unit of each)

from 4 potential suppliers 1,2,3 and 4. Where suppliers 1 and 2 come from state l and

suppliers 3 and 4 come from state h. We also assume that suppliers 1 and 3 may supply

the first item while suppliers 2 and 4 may supply the second item. Let bi denote supplier

i’s bid. Under free competition the lowest bidder between supplier 1 and 3 (resp. 2 and

4) wins the contract for the first (resp. second) item. Examples include the traditional

first price auction and second price auction. These auctions differ only by their payment

rules. Under the first price auction the winner is paid an amount equal to his bid, while

under the second price auction the winner is paid an amount equal to the second lowest

bid. But the other players receive no payment. Under the fair return rule contracts are

awarded to only one of the pairs {1,4} and {2,3}. If we call aggregate bid of a pair of

suppliers the sum of their bids, then contracts are awarded to the pair with the lowest

aggregate bid. There are many different ways of implementing the static version of the

fair return rule. They simply differ by the payment rules. A natural way is to pay the

winners an amount equal to their bids and pay nothing to the other suppliers. We shall

refer to this auction as the fair return auction (FR). Another way would be to pay each

winner his conjugate bid 2 and nothing to the other suppliers ; we call this the second fair

return auction (SFR).

In presence of asymmetry the conflict between small and large states may be illus-

trated as follows : Imagine a situation where suppliers from state l have lower costs for

the production of the items than their opponents from state h ; under first price auctions

the items are purchased only from suppliers from l since they have more latitude to

make lower bids. Therefore suppliers from h will prefer FR auction to first price auc-

tions contrary to suppliers from l. Moreover in such a setting it is clear that, if suppliers

make the same bids regardless of the industrial policy used, the agency would pay a hi-

gher price under the FR auction than under first price auctions. More generally, without

the assumption of asymmetry, we may reach to the same conclusion. Indeed, under first

price auctions contracts are awarded to lowest bidders at a price equal to these bids ;

but under the FR auction, contracts are awarded to a set of suppliers with the lowest

2. We define this in the next section.
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aggregate bid ; Since some suppliers in this winning set may not have the lowest bid of

their category, the price paid by the agency under the FR auction is higher. Given this, an

affirmative answer to the previous question may seem obvious. But while the previous

argument is true, it rests on the assumption that suppliers’ bids would be the same under

both auctions, and this need not be the case. In fact suppliers’ bids are outcomes of their

individual strategies and, these strategies may change as the rules of the auction change.

We find that free competition may sometimes be more expensive than fair return rule.

In particular, and contrary to the previous argument and first intuition, we show that this

often happens when suppliers from a given state are more competitive than their direct

opponent from the other state. In such conditions one state has a technologic advantage

over the other in the production of all the items. The intuition is this : under the fair

return rule, since suppliers of the same state cannot win simultaneously, a competitive

supplier is in competition not only with the supplier of the same item but also with the

supplier from the same state. A situation that forces competitive suppliers to bid more

aggressively under the fair return rule than under free competition, and results in a lower

cost for the agency.

The rest of the paper is organized as follows. In section 2 we present the model

and give the basic definitions. In section 3 we consider the case where suppliers have

complete information about the supply costs and find conditions under which the FR

auction is less expensive than first price auctions. Then, in section 4, we consider the

case of incomplete information where each supplier observes privately his own cost.

Due to analytical intractability we do not consider the FR auction, but the SFR auction.

We show that this auction induces a lower social cost than the FR auction. We find

conditions under which these auctions lead to a lower expected price than second price

auctions. Section 5 concludes the paper.

2.2 Preliminaries

An agency is willing to purchase two items from 4 potential suppliers 1,2,3 and 4.

Suppliers 1 and 2 originate from state l and suppliers 3 and 4 from state h. Suppliers 1
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and 3 may supply the first item while suppliers 2 and 4 may supply the second item.

The agency may run the following two policies : free competition and the fair re-

turn rule. With free competition contracts for the provision of each item are awarded

independently and the winners are the best bidders (those with lowest bids). With the

fair return rule contracts are awarded such that all the two states are represented by the

actual suppliers.

We use the letter i for an arbitrary supplier in N = {1,2,3,4}. Given a supplier i the

other suppliers (denoted j, i∗ and j∗) can be identified by their relationship with i : i and

j are supplying the same item while i and i∗ are from the same state. As a consequence

i and j∗ (resp. j and i∗) are from different states and supply different items. Thus under

free competition supplier i faces supplier j and supplier i∗ faces supplier j∗, while pair

{i, j∗} faces pair { j, i∗} under the fair return rule. In the later case suppliers i and j∗

(resp. j and i∗) may be viewed as "partners" since they win or loose the auction together.

We assume however that there is no cooperation between suppliers.

If we denote bi supplier i’s bid for all i in N , then we may define supplier i’s conju-

gate bid as b̄i = b j +bi∗−b j∗. This is the algebraic sum of all the other suppliers’ bids

where his partner bid is counted negatively. Under free competition i wins a contract if

bi ≤ b j, and under the fair return rule he wins if bi +b j∗ ≤ b j +bi∗ (i.e. if bi ≤ b̄i). Sup-

plier i’s conjugate bid somehow summarizes competition under the fair return principle.

Under the two policies nothing is paid to suppliers who do not win contracts and ties are

solved equiprobably.

Examples of auctions with free competition include the traditional first and second

price auctions (they differ only by their payment rules) :

– Under the second price auction (SP) the agency compares the bids of suppliers 1

and 3 and buys the first item from the supplier with the lowest bid at a price equal

to the second lowest bid (in this case the highest bid). Then it compares the bids of

suppliers 2 and 4 and buys the second item from the supplier with the lowest bid

at a price equal to the second lowest bid.

– Under the first price auction (FP) the agency compares the bids of suppliers 1 and

3 and buys the first item from the supplier with the lowest bid at a price equal to
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his bid. Then it compares the bids of suppliers 2 and 4 and buys the second item

from the supplier with the lowest bid at a price equal to his bid.

Examples of auctions with the fair return rule include the fair return auction and the

second fair return auction. They also differ by their payment rule :

– Under the fair return auction (FR) suppliers submit their bids simultaneously and

the items are bought from the pair with the smallest aggregate bid between {1, 4}
and {2, 3}, 3 and each winner is paid his bid.

– Under the second fair return auction (SFR) suppliers submit their bids simulta-

neously and the items are bought from the pair with the smallest aggregate bid

between {1, 4} and {2, 3}, and each winner is paid his conjugate bid.

The information held by the suppliers concerns their costs for supplying the items. If

supplier i wins it will cost him ci to provide the item. Otherwise, it will cost him nothing.

Denote c the costs vector (ci)i∈N . We consider both the cases of complete information

(in section 3) and incomplete information (in section 4). Under complete information

suppliers know each other cost, and under incomplete information each supplier observes

privately his own cost. We will compare the two fair return auctions to the two traditional

auctions. Particularly in the next section we compare the FR auction to the FP auction

on the basis of the total price of the items.

2.3 Complete information : FR vs FP

We suppose that bids and costs are positive multiples of a given constant ε > 0. 4 We

denote f r the total price of the two items under the FR auction. Let f p j be the price of

item j ∈ {1, 2} under the FP auction and let f p= f p1+ f p2. f p j is also the winning bid

for item j. The two auctions induce games of complete information between suppliers.

Their strategies are there bids. We suppose that the possible outcomes of these games

are Nash equilibria. The sum of the winning bids represents the total price paid by the

3. If seller i ∈N submits a bid bi then the aggregate bids of pairs {1, 4} and {2, 3} are respectively
b1 +b4 and b2 +b3.

4. ε may be understood as the minimum admissible bid. The main result in this section does not change

if bids are positive multiples of a constant and costs are arbitrary positive real numbers.



42

agency. In all this section the costs vector c = (ci)i∈N is fixed.

Proposition 6. There exists a Nash equilibrium for the FP and FR auctions.

Actually there may exist multiple Nash equilibria for these two auctions. So we may

not always predict the prices of the items, but we may provide bounds for these prices. In

the main result of this section (proposition 7) we give an upper bound for the difference

between the price under FR and FP auctions ( f r− f p) as well as sufficient conditions

for f r− f p < 0.

Lemma 3. the following assertions are true :

(i) f p1 ≥max(c1,c3)− ε and f p2 ≥max(c2,c4)− ε,

(ii) f r ≤max(c1 + c4,c3 + c2)+4ε.

Under the FP auction f p j is the winning bid for item j and the winner is the supplier

with the smallest cost. Indeed he has more latitude to place a lower bid than his opponent

who cannot bid under his cost. Assertion (i) means that the winning bid for item j is at

least just below the greatest cost of the potential suppliers of that item.

Under the FR auction the winning pair is the pair with the smallest aggregate cost

and f r is the aggregate bid of the winning pair. The winning pair’s aggregate bid is close

to the greatest aggregate cost but, according to assertion (ii), does not exceed it of more

than 4ε .

As a consequence of the lemma, we have an upper bound for f r− f p :

f r− f p≤ 6ε +∆(c) (2.1)

with

∆(c) = max(c1 + c4,c3 + c2)−max(c1,c3)−max(c2,c4). (2.2)

We are now able to state the main result of this section.

Proposition 7. the following assertions are true :

(i) f r− f p≤ 6ε.
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(ii) if c1− c3 and c2− c4 have the same sign and

min(|c1− c3|, |c2− c4|)> 6ε then f r− f p < 0.

Assertion (i) means that even when the FR auction is more expensive than the FP

auction, the difference cannot exceed 6ε . In practice the minimum bid is not greater than

the smallest monetary unit (a cent for example). Thus in terms of the price of the items

the FP auction cannot dominate the FR auction of more than six units.

To understand assertion (ii) recall that suppliers 1 and 3 (resp. 2 and 4) are selling

the same item and thus, are in direct competition with one another. Recall also that

suppliers 1 and 2 (resp. 3 and 4) are from the same state. If we see suppliers’ costs as

an index of their technology levels then, c1−c3 (resp. c2−c4) represents the technology

difference between suppliers 1 and 3 (resp. 2 and 4). The fact that c1− c3 and c2− c4

have the same sign means that suppliers of one state dominate the others with respect to

the technology levels. For example if c1−c3 and c2−c4 are both positive then supplier 3

dominates supplier 1 (his direct opponent) and supplier 4 dominates supplier 2. So state

h dominates state l. Now min(|c1− c3|, |c2− c4|) represents the minimum technology

difference between the states. It is therefore an index of the technology gap between the

states. Assertion (ii) means that if a state dominates the other and if the technology gap is

sufficiently high (greater than 6ε) then the FR auction leads to a lower price than the FP

auction. The intuition is this : if suppliers of a state dominate their direct opponents, they

have no interest in making aggressive bids under the FP auction. On the contrary under

the FR auction they are in direct competition with their fellow state supplier who has a

competitive technology (even though he sells another item) and are virtually associated

with a less competitive supplier. The suppliers need to be more aggressive in order to

win against their fellow state supplier and compensate the weakness of their "virtual

partner". This results in a lower price under the FR auction. Note also that the minimum

gap required in assertion (ii) (6ε) is small.

Proof of proposition 7. (i) This follows from inequality (2.1) and the fact that ∆(c)≤ 0.

Indeed c1 + c4 ≤max(c1,c3)+max(c2,c4) and c3 + c2 ≤max(c1,c3)+max(c2,c4).

Now if c1− c3 and c2− c4 have the same sign then ∆(c) = −min(|c1− c3|, |c2−
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c4|). 5 By inequality (2.1) a sufficient condition for f r− f p < 0 is 6ε +∆(c) < 0, i.e.

min(|c1− c3|, |c2− c4|)> 6ε . Hence (ii).

Note that through the lines of this proof we read the following result :

if c1−c3 and c2−c4 have the same sign then 6ε +min(|c1−c3|, |c2−c4|) is a lower

bound for the price difference | f p− f r|. This lower bound increases as the technology

gap min(|c1− c3|, |c2− c4|) increases. In other words, if a state dominates the other the

price difference under the two auctions tends to increase as the technology gap between

states increases.

In the next section we consider the case where suppliers have private information

about their costs. We do not consider the FR auction but the SFR auction which appears

to be analytically easier to deal with.

2.4 Incomplete information : SFR vs SP

In this section every supplier observes privately his own cost but not the other sup-

pliers’ costs. The common prior for the costs is given by the probability measure µ with

support T = ×
i∈N

Ti, where Ti = [c
¯i, c̄i] for all i ∈ N . We assume that µ is absolutely

continuous with respect to the lebesgue measure, and we denote f its probability density

function. There is no cooperation between the suppliers.

A strategy for supplier i is a function βi : Ti→R+. Under this strategy the value βi(ci)

is supplier i’s bid when he observes a private cost ci. A bid can be any non negative real

number.

2.4.1 Nash equilibria

We determine Nash equilibria under the different auctions. It is well known that under

the SP auction it is a weakly dominant strategy to bid his cost (see Krishna 2000). We

show that this remains true under the SFR auction.

5. A proof of this is given in proposition 16, see appendix.
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Proposition 8. It is a weakly dominant strategy for every supplier to bid his cost under

the SFR auction.

Proof. Denote Ui(ci,bi,b−i) the payoff of supplier i when he bids bi rather than his true

cost ci and the other suppliers bid b−i. We will show that Ui(ci,ci,b−i)≥Ui(ci,bi,b−i).

Recall that

Ui(ci,bi,b−i) =


b̄i− ci if bi < b̄i

1
2(b̄i− ci) if bi = b̄i

0 if bi > b̄i.

Assume bi < ci. If b̄i ≤ bi < ci then Ui(ci,ci,b−i) = 0 and either Ui(ci,bi,b−i) = 0

(when b̄i < bi) or Ui(ci,bi,b−i) =
1
2(bi− ci)< 0 (when b̄i = bi).

If bi < ci < b̄i then Ui(ci,ci,b−i) = b̄i − ci = Ui(ci,bi,b−i). If bi < b̄i ≤ ci then

Ui(ci,ci,b−i) = 0≥ b̄i− ci =Ui(ci,bi,b−i).

Assume bi > ci. If bi > ci ≥ b̄i then Ui(ci,ci,b−i) = 0 =Ui(ci,bi,b−i). If b̄i > bi > ci

then Ui(ci,ci,b−i) = b̄i−ci =Ui(ci,bi,b−i). If b̄i = bi > ci then Ui(ci,ci,b−i) = b̄i−ci ≥
1
2(b̄i− ci) =Ui(ci,bi,b−i). And finally if bi > b̄i ≥ ci then Ui(ci,ci,b−i) = b̄i− ci ≥ 0 =

Ui(ci,bi,b−i).

Thus the two auctions have at least one equilibrium. We now compare the price of

the two units assuming that suppliers bid their costs. We first compare the prices of the

items expost, i.e. given the actual (though privately observed) costs. Then we compare

the expected prices paid by the agency under the two auctions.

2.4.2 Expost Comparison of the prices

Since suppliers bid their costs at equilibriums, the agency pays the greatest cost under

the SP auction that is (assuming suppliers costs vector is c) :

sp(c) = max(c1,c3)+max(c2,c4) (2.3)

In order to determine the price under the SFR auction, note that if {1,4} is the win-

ning pair then because suppliers bid their costs c1 + c4 ≤ c2 + c3 ; and the agency pays
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the following total amount

c̄1 + c̄4 = (c2 + c3− c1)+(c2 + c3− c4) = 2(c2 + c3)− (c1 + c4). (2.4)

Similarly if {2,3} is the winning pair then c1 + c4 ≥ c2 + c3 and the total price of the

two units is

c̄2 + c̄3 = 2(c1 + c4)− (c2 + c3). (2.5)

Observing that (c̄2 + c̄3)− (c̄1 + c̄4) and (c2 + c3)− (c1 + c4) have opposite signs we

conclude that the price under SFR auction is (assuming suppliers costs vector is c) :

s f r(c) = max(c̄2 + c̄3, c̄1 + c̄4). (2.6)

Given a costs vector c = (c1,c2,c3,c4) ∈ T, The price difference between the two

auctions is :

δ (c) = s f r(c)− sp(c) = max(c̄2 + c̄3, c̄1 + c̄4)−max(c1,c3)−max(c2,c4). (2.7)

Using the equality max(a,b) = a+b+|a−b|
2 , we obtain :

2δ (c)= c̄2+ c̄3+ c̄1+ c̄4+ |c̄2+ c̄3− c̄1− c̄4|−(c1+c3)−|c1−c3|−(c2+c4)−|c2−c4|.

Using (2.4), (2.5) and rearranging :

2δ (c) = 3|(c1− c3)− (c2− c4)|− |c1− c3|− |c2− c4|. (2.8)

It appears that δ (c) depends solely on the two differences c1−c3 and c2−c4 which,

again, can be understood respectively as the technology gaps between suppliers 1 and 3

and between suppliers 2 and 4. 6 We define the relative technologic gap across the items

6. Remember that suppliers 1 and 3 produce the same good as suppliers 2 and 4 do.
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as c1−c3
c2−c4

; the sign of this ratio tells us if a state dominates for all items or for only one

item ; if it is positive then suppliers of one state have a better technology than their direct

opponent for all items ; if it is negative then each state has the advantage for only one

item. However the ratio c1−c3
c2−c4

does not give information about which state dominates

and for which specific item. Moreover the absolute value of c1−c3
c2−c4

says how great is the

advantage on item 1 compared to the advantage on item 2. The advantage on item 1 is

greater if |c1−c3
c2−c4

| is greater than 1.

We have the following result :

Proposition 9. given a realization c ∈ T of the suppliers’ costs vector we have :

s f r(c)− sp(c)< 0 if and only if 1
2 < c1−c3

c2−c4
< 2.

This proposition gives a necessary and sufficient condition so that, given a realization

of the suppliers’ costs, the price of the items under the SFR auction is lower than the price

under the SP auction. The condition 1
2 < c1−c3

c2−c4
< 2 implies that the relative technologic

gap across the items is positive ; thus there is a state with a higher technology for all

items. This condition also means that the advantages of the suppliers of the strong state

are close enough : the advantage on item 1 (i.e. |c1− c3|) is greater than half of the

advantage on item 2 (i.e. |c2− c4|) but less than twice this advantage.

2.4.3 Comparing the expected prices

In our model the agency does not know the costs of suppliers and therefore cannot

predict exactly what would be the price of the items. Instead it formulates beliefs about

what these costs could be. We model its beliefs by a probability distribution µ for the

costs. We also make the assumption of common beliefs, that is, all the agents (agency

and suppliers) have the same beliefs about the costs. To their eyes costs are random

variables with probability density function f with support T as mentioned earlier in this

section. To compare the two auctions a risk neutral agency would compare the expected

If the costs are such that c1− c3 < 0 and c2− c4 < 0 then the country l has a higher technology than
country h for the production of the two goods.
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prices resulting from these auctions. We denote s f r (resp. sp) the expected price of the

items under the SFR (resp. SP) auction :

sp = E{max(c1,c3)+max(c2,c4)}. (2.9)

s f r = E{max(c̄2 + c̄3, c̄1 + c̄4)}. (2.10)

The difference between the two expected price is :

s f r− sp = E(δ (c)) =
∫

T
δdµ=

∫
T

δ (c) f (c)dc. (2.11)

Let

N = {c ∈ T : δ (c)< 0} (2.12)

and

P = T −N = {c ∈ T : δ (c)≥ 0} . (2.13)

We may write the difference between the two expected prices as :

s f r− sp =
∫

T
δdµ =

∫
P
|δ |dµ−

∫
N
|δ |dµ. (2.14)

This difference depends on the costs’ common prior µ . Hence the following propo-

sition.

Proposition 10. s f r− sp < 0 if and only if µ is such that
∫

P |δ |dµ <
∫

N |δ |dµ.

Recall that N =
{

c ∈ T : 1
2 < c1−c3

c2−c4
< 2
}

(proposition 9). Thus, the expected price

of the items under the SFR auction is lower than the expected price of the items under

the SP auction if the prior gives "more weight" to the negative side of δ , that is, to

situations where it is believed there is a state with a higher technology for all items, and

the advantages of suppliers from the strong state are close enough.

We next give a condition on the support T for the existence of such a prior.

Proposition 11. The following assertions are equivalent :
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(i) There exists a common prior such that s f r− sp < 0

(ii) the lebesgue measure of the set N =
{

c ∈ T : 1
2 < c1−c3

c2−c4
< 2
}

is positive

(iii)

 c̄1 ≥ c
¯ 3

c̄4 ≥ c
¯ 2

or

 c̄3 ≥ c
¯ 1

c̄2 ≥ c
¯ 4

Assertion (iii) is satisfied for example when {c̄i,c¯i} is the same for all suppliers. So

there exists a belief system (not necessarily symmetric) where suppliers’ costs have the

same support, and for which the expected price under the SFR auction is lower than the

expected price under the SP auction. Actually there exist many such belief systems as one

reads from the proof of the previous proposition. Such beliefs simply give more weight

to situations where there is a state with a higher technology for all items, and where the

advantages of suppliers from the strong state are close enough (1
2 < c1−c3

c2−c4
< 2).

Observe that the negation of (iii) can be written as c̄1 < c
¯3

c̄2 < c
¯4

or

 c̄3 < c
¯1

c̄4 < c
¯2

;

So when it is believed that one state strictly dominates the other, to the point that the

worst costs of each supplier from the dominant state is lower than the lowest costs of its

direct opponent, then the expected price under the SFR auction is never lower than the

expected price under the SP auction. The agency may expect lower costs under the SFR

auction only when this type of dominance is not observed.

2.5 Conclusion

In this paper we’ve considered the fair return rule : a rule used by the European Space

Agency which ensures each member state a return in the form of contracts, awarded to

firms coming from that state, globally proportional to its contribution. This rule is some-

how in conflict with the principle of free competition since contracts are not necessarily

awarded to a firm with the lowest bid.

We showed that an adequate implementation of the fair return rule may cause it

to be less expensive than the traditional auctions of free competition (first price and
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second price auctions). We considered the case of complete information (for the first

price auction) where firms’ technology levels are common knowledge, and the case of

incomplete information (for the second price auction) where firms observe privately their

production costs. In both cases we identified an auction under the fair return principle

that takes advantage of asymmetries between countries and yields a lower cost than with

traditional auctions. The price (resp. expected price) of the items under the fair return

rule is lower under the fair return rule in situations where (resp. the agency believes

that) : one state has higher technology level for the production of the items than the

other, and the advantage of suppliers from the high technology state (over their direct

opponents) are close enough.

We have also assumed that the agency does not impose reserve prices. This assump-

tion may be justified by the fact that the buyer’s valuation is known to be too high com-

pared to the suppliers’ costs. So that the buyer cannot reliably commit to not purchase

the items at all. However it would be interesting to compare the two principles in a model

that allows for reservation prices.



CHAPITRE 3

OPTIMAL PROCUREMENT WHEN SUPPLIERS’ ORIGINS MATTER

Abstract

We derive an optimal procurement mechanism in an environment where a buyer of

heterogeneous items faces potential suppliers from different groups, and the buyer is

constrained to choose a winning list that is consistent with some exogenous quotas as-

signed to the different groups. The optimal allocation rule consists of assigning priority

levels to suppliers on the basis of their cost reports. The way these priority levels are de-

termined is subjective but known to all before the auction. The individual reports induce

scores for each potential winning list. The items are then purchased from one of the lists

with the best score, provided it is not greater than the buyer’s valuation for the items.

Only winning suppliers receive a payment which is at least equal to the highest cost he

could have and still win the auction with certainty. We also find that it is not optimal to

purchase the items through separate auctions, unless the buyer’s valuation is sufficiently

high or low.

3.1 Introduction

Consider a government agency desiring to achieve a project. This project is divided

into subprojects and contracts related to these subprojects are awarded through a pro-

curement auction. Assume that participants are researchers from different provinces of

the country. A government wanting to encourage the research in all the provinces may

design a procurement mechanism so that winners come from all the provinces. Any re-

searcher may be awarded a contract, but some subsets of them are “incompatible” : in

the sense that they may not win the auction together. For example if one province (or

a subset of provinces) has several researchers able to achieve all the subprojects at low

cost, they will never appear in the same winning list because it requires all the provinces.

In the same time the agency may want to encourage competition in order to minimize the
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payment. If the agency awards each contract to researchers who make the lowest bids,

chances are that the winners will not come from all the provinces. Which mechanism

should the agency choose in order to award the contracts ?

Similarly, assume that an international institution has several job positions to be filled

and faces job candidates coming from different states. If the institution is funded by

these states, then the institution may want to hire from all these countries for the sake of

integration of the different states. How should the hiring process be conducted ?

In this paper we study a stylized version of the previous problems. We consider a

buyer seeking to purchase some heterogeneous items and facing potential suppliers be-

longing to different groups. Each supplier may only supply one given item. The items are

complements and the buyer is willing to purchase them through an optimal mechanism

that is, a mechanism that maximizes the buyer’s surplus. As in the above examples, the

buyer’s environment may be (legally) constrained ; typically groups would be assigned

quotas determining the maximal and the minimal number of items purchased from sup-

pliers of a group In parallel, we are also concerned with the optimal mechanism when

the buyer’s environment is not constrained.

Suppliers are assumed to have private information about their supply costs and these

costs are independent. By the revelation principle we may restrict our attention to direct

mechanisms. These are mechanisms in which every supplier is required to submit his

private information prior to the buyer’s decision. Under such mechanisms, given that

their costs are private information, suppliers may not be willing to report honestly their

costs if it is not judged advantageous. We are concerned with incentive compatible me-

chanisms that is, mechanisms in which it is an equilibrium to report honestly the private

information. In addition we focus on mechanisms satisfying the participation constraint :

these are mechanisms in which every supplier who takes part in the procurement expects

a profit at least equal to what he gets if he does not participate. In this context of pri-

vate information the buyer’s objective is actually to optimize the expected value of the

surplus.

This paper is related to the literature on mechanism design. A mechanism is a set

of rules that determines which alternative should be chosen among many. Mechanisms
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may be compared on the basis of their ability to achieve desired goals. These goals would

typically depend on the mechanism’s designer and on the environment ; by this we mean

constraints that may not be modified by the mechanism’s designer such as preferences,

available information, technology limitations, and institutional constraints.

Part of the literature is concerned with social efficiency. For example, among recent

works, Pérez-Castrillo and Wettstein (2002) suggest the use of a multi-bidding auction to

efficiently choose an alternative among many. In their mechanism agents make multiple

bids (one for every alternative) that must sum up to zero, in addition they each announce

one alternative that helps make the decision in case of tie. Ehlers (2008) uses the same

environment to show the importance to make the additional announcement. 1

In contrast, we are rather interested in maximizing the surplus of the buyer in the

context of a multi unit procurement. We generalize the techniques in Myerson (1981) in

order to derive the optimal mechanism. As in Myerson (1981) the buyer may refuse to

purchase the items if it is not judged advantageous. Branco (1996) characterizes optimal

multi unit auction in the context of homogeneous items, in contrast our model deals

with heterogeneous items. We also make the assumption that the items are complements

from the buyer’s point of view. Optimal multi unit auctions with heterogeneous items

have been widely studied. In these environments each bidder usually may compete for

more than one item. A recurrent theme in these papers is the question of whether to

purchase the items (or sell in the case of direct auctions) in bundle or in many sequential

auctions. Armstrong (2000), Jehiel and moldovanu (2001) show that bundling is optimal

in the case of two items. Levin (1997) studied optimal auction of complements and

showed that it is advantageous to bundle. Another important issue is the dimension of

the information available to bidders (their type). Most of the literature on optimal multi

unit auction assumes multidimensional and discrete types (Armstrong 2000, Avery and

Hendershott 2000). We rather consider one dimensional and continuous types (the unit

costs of the suppliers). All these papers do not study environment where winning lists

are constrained to respect exogenous quotas for groups of suppliers : the topic of this

1. For a good review on the subject of socially efficient (and more generally of) mechanism design see
Jackson (2001), Serrano (2003), or Myerson (2006).
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paper.

We do not allow suppliers to bid for more than one item. But the fact that the buyer

views the items as complements suggests the possibility to purchase them at a joint auc-

tion. Moreover the presence of a legal constraint that assigns different quotas to groups

of suppliers also seems in favor of a joint auction. Of course it is possible to purchase

the items in a mechanism consisting of many separate auctions as well : we refer to such

mechanisms as itemwise mechanisms. In proposition 15 we provide a necessary condi-

tion for an itemwise mechanism to be optimal : the buyer’s valuation for the items must

be too high or too low. Because of the legal constraint the converse is not in general true,

yet it is true when the environment is unconstrained.

Armantier and Njiki (2008) consider an environment similar to ours : with four sup-

pliers, two groups and two items. Though not searching for optimal auctions they are

interested in some particular auctions. They present two simple constrained mechanisms

and show that they yield lower expected prices than first and second price auctions under

assumptions implying costs correlation or asymmetry. The assumption of costs indepen-

dence made in the present paper is the main difference with their environment, beside

the fact that we allow for many items, suppliers and groups rather than only two items,

four suppliers and two groups as they do.

The rest of the paper is organized as follows. In section 2 we present the model

and introduce some useful definitions. In section 3 we clarify which mechanisms are

considered feasible and focus on direct mechanisms. In section 4 the optimal mechanism

is derived and we discuss about conditions under which an itemwise mechanism may be

optimal. Finally an application is considered in section 5 and, Section 7 concludes the

paper.

3.2 The model

We consider a buyer seeking to purchase one unit of L heterogeneous items. There

are n potential suppliers divided into K groups. Let N = {1,2, ...,n} be the set of sup-

pliers. Each supplier supplies exactly one of the heterogeneous items and belongs to
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exactly one group (or country) 2. Let Il be the set of suppliers who may supply item l,

and Ok the set of suppliers coming from country k. The set of suppliers can be portioned

in two different ways :

L
∪

l=1
Il = N =

K
∪

k=1
Ok (3.1)

With

Il ∩ Il′ = /0 and Ok∩Ok′ = /0, ∀l, l′,k,k′ (3.2)

(3.2) means that every supplier may supply only one item and comes from only one

country. Note that this model allows situations in which some items may not be supplied

in all countries. If supplier i∈N wins the procurement it will cost ci to provide the unit.

But if he looses he suffers no cost. Costs are independently distributed and supplier i’s

cost ci is distributed according to the probability density function fi, and the cumulative

density function Fi with support Γi = [c
¯i, c̄i]. Denote Γ = ×

i∈N
Γi the Cartesian product of

these supports. 3 The costs’ distributions and the countries of the suppliers are common

knowledge to the buyer and the suppliers. Every supplier observes privately his own cost

but not the other suppliers’ costs. There is no cooperation between suppliers. In this set

up the winners of the procurement constitute a subset (a list) of L suppliers such that any

two of them supply different items. We denote P the collection of all such lists and call

it the set of potential winning lists. The buyer’s utility for purchasing the bundle of items

is v.

There are many different mechanisms to purchase the bundle. For instance, the buyer

may buy the units through L simultaneous first price auctions, one for each item. In this

2. These groups may be built, for example, according to suppliers’ countries or their province of origin
or any other characteristic. To be specific, in what follows, we assume that groups are built according to
suppliers’ countries.

3. In all the paper, scalars and scalar functions are denoted by lowercase letters. Vectors and vector
functions are denoted by boldface lowercase letters. u−i denotes the vector u without the component of
order i : u = (ui,u−i). Conditional expectations are denoted by the uppercase of the same letter e.g. :
X(ci) = Ec−i [x(ci,c−i)].

Finally given a set S, a subset T of S and a vector u =(ui)i∈S, we denote (ui)i∈T the vector obtained
by removing the component of u whose orders are not in T .
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case, suppliers are asked to bid the price they are willing to accept, and the buyer takes

each item from the supplier with the lowest bid among the potential suppliers of the item

at a price equal to the lowest bid. He may also buy each item through a second price

auction (for each item the potential suppliers submit their bids, and the item is bought

from the supplier with the lowest bid at a price equal to the second lowest bid). The buyer

can even practice different kind of auctions on each item. In the mechanisms considered

so far items are bought separately : the buyer’s decision concerning the supplier to whom

he purchases an item and its final unit price is independent on his decision concerning

the supplier to whom he purchases another item and the related price. In that sense,

the procurement of a unit is not related to the procurement of another unit. There exist

mechanisms under which the procurements of the units are not separated. For example,

consider the following constraint (R1) : “the buyer must buy the items from suppliers

coming from all the countries”. Let R1 be the collection of all the potential winning lists

that involve all the countries : R1 ⊂P. The buyer is constrained to purchase only from

the lists in R1.

Example 3. 2 countries, 2 items and 4 suppliers

Here n = 4; suppliers from the first country are in O1 = {1,2}, suppliers from the

second country are in O2 = {3,4} ; suppliers of the first item are in I1 = {1,3} and

suppliers of the second item are in I2 = {2,4} ;

In this case, since there are two items needed, suppliers win the procurement in

pairs : the buyer can only purchase from one of the following pairs {1,2} ,{2,3} ,{3,4}
or {4,1} : P = {{1,2} ,{2,3} ,{3,4} ,{4,1}} .4

Under constraint (R1) the buyer can buy only from the pairs {1, 4} and {2, 3} :

R1 = {{1, 4},{2, 3}} .5 Thus if he buys the first item from supplier 1 he must buy the

second item from supplier 4. An example of mechanism under (R1) is the following :

supplier i submits a bid bi and the units are bought from the pair {1, 4} if b1 +b4 <

4. The pair {1,3} is excluded because 1 and 3 sell the same good and the buyer needs only a single
unit of it. {2,4} is excluded for the same reason.

5. The pair {1,2} is excluded because 1 and 2 come from the same country though they sell different
goods. {3,4} is excluded for the same reason.
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b2 +b3, and from the pair {2, 3} if b1 +b4 > b2 +b3. In any case the winners are paid

a price equal to their bid but the other suppliers receive nothing.

We introduce additional definitions.

In a typical procurement mechanism, the buyer first announces the procurement rules

to the suppliers. Suppliers observe privately their own costs and place their bids. Finally

the buyer collects the bids and buys the items according to the rules set before.

Let Ωi be the set of all possible bids for supplier i ∈ N , and let Ω=
n
∏
i=1

Ωi. The

set Ω is determined by the type of information that the buyer requires to each supplier

during the procurement process. So we may assume that the buyer knows the set Ω of

the information he requires. Therefore suppliers cannot bid out of that set.

A strategy for supplier i is a function βi : Γi→Ωi transforming i’s cost into a bid.

An allocation rule is a function q = (qG)G∈P : Ω→ R|P|+ such that :

for any bid vector b ∈Ω, ∑
G∈P

qG(b)≤ 1.

Where qG(b) is the probability that list G wins. ∑
G∈P

qG(b) = 0 would simply mean that

the buyer refuses to purchase the heterogeneous items when the bid vector is b.

The individual allocation rule associated with the allocation rule q is the function

x = (xi)i∈N :Ω→ Rn
+ such that :

for any supplier i ∈N and any bid vector b ∈Ω,xi(b) = ∑
G∈P:i∈G

qG(b).

xi(b) is supplier i’s winning probability when the bid vector is b. 6 Note that this

definition implies that ∑
i∈Il

xi(b) = ∑
G∈P

qG(b), ∀l. i.e. all items have the same probability

to be purchased and this probability is the probability to purchase the bundle.

A payment rule is a function t = (ti)i∈N :Ω→ Rn such that ti(b) is the amount of

money paid to supplier i when the bid vector is b. Note that this payment can be negative,

meaning that supplier i will have to make a transfer to the buyer rather than receive from

6. In example 3 , x1(b) = q{1,2}(b)+q{4,1}(b).
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him.

A procurement mechanism is defined by a set of bids, an allocation rule and a pay-

ment rule. We use the notation (Ω,q, t) to refer to a procurement mechanism with a set

of bids Ω, an allocation rule q and a payment rule t. It is important to note that we do

not mention the individual allocation rule in the definition of a mechanism since it is

uniquely determined by the allocation rule. On the contrary a given individual allocation

rule might be associated with many allocation rules. 7

A procurement mechanism (Ω,q, t) is said itemwise if there exists for every item l

two functions σl : ×
i∈Il

Ωi→ R|Il | and θl : ×
i∈Il

Ωi→ R|Il | such that for any b ∈ Ω ,

 (xi(b))i∈Il = σl( (bi)i∈Il)

(ti(b))i∈Il = θl( (bi)i∈Il)
,

where x is the individual allocation rule associated with q.

To understand this definition, remember that suppliers in Il are selling the same item ;

the conditions (i.e. allocation and payment) under which one item is purchased depend

solely on the message sent by the potential suppliers of that item and not the message

sent by the suppliers of other items. Therefore an itemwise mechanism is a mechanism

where each item is purchased independently of the others, in a procurement that involves

only the potential suppliers of that particular item.

In this paper the buyer may be (legally) constrained to implement allocation rules of

a certain type. For instance, in example 3, an allocation rule most satisfy the additional

constraint :

for any b ∈Ω and G ∈P\R1, qG(b) = 0.

7. Indeed, using the framework of example 3, let x = (xi)i∈N : Ω→ R4
+ be such that x1(b)+ x3(b) =

1 = x2(b)+ x4(b). We will build an allocation rule associated with x. Consider a function µ : Ω→ [0,1]
such that max(0,x3 + x4− 1) ≤ µ ≤ min(x3,x4); µ exists because x3,x4 ∈ [0,1]⇒ 0 ≤ max(0,x3 + x4−
1)≤min(x3,x4)≤ 1.

Take for example q{3,4} = µ;q{4,1} = x4−µ;q{3,2} = x3−µ;q{1,2} = 1− x3− x4 +µ;
It is easy to see that qG = 1 and for any G ∈P,qG ≥ 0. Thus q is an allocation rule. Moreover the

individual allocation rule associated with q is precisely x, but the allocation rule q depends on the selection
µ .
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More generally let R be a non empty subset of P.

An allocation rule q is said R-constrained if the buyer can only purchase from the

lists of suppliers in R :

for any b ∈Ω and G ∈P\R, qG(b) = 0.

A procurement mechanism (Ω,q, t) is R-constrained if q is R-constrained.

If the number of items purchased from suppliers of a group k is constrained to remain

between the exogenous parameters αk and βk then,

R = {G ∈P : αk ≤ |Ok∩G| ≤ βk,∀k ∈ {1,2, ...,K}} . (3.3)

|A| denotes the number of elements of any set A.

We say that the buyer’s environment is unconstrained if he is free to implement any

allocation rule. Note however that an unconstrained mechanism may be viewed as a

P-constrained mechanism.

In the next section we define the set of feasible mechanisms.

3.3 Direct mechanisms

The set of bid vectors Ω can be a complex object, depending on the information

the buyer requires from the suppliers. This makes the problem of optimally choosing a

mechanism difficult. Direct mechanisms are a particular class of mechanisms where each

supplier is asked to directly report his cost. Formally a direct mechanism is a mechanism

where the set of bid vectors is Γ. When (Ω,q, t) is a direct mechanism we shall simply

denote it by (q, t).

3.3.1 The revelation principle

A procurement mechanism induces a game of incomplete information between the

suppliers, and the notion of direct mechanism has been defined in the broader context of
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games with incomplete information. In such games players observe privately an infor-

mation considered as their types, they send a message and resources are allocated on the

basis of the messages sent and predefined rules. The search for an optimal mechanism

can be simplified if one can restrict attention to direct mechanisms. The well known re-

velation principle allows us to make such a restriction without loss of generality. This

principle states that : given a game of incomplete information and a Bayesian Nash equi-

librium (BNE), 8 there exist a direct mechanism (with the same outcomes as the first

game) for which it is a BNE to report honestly the types. For the interested reader we

provide (in appendix) a version of the proof of the revelation principle in our framework.

Proposition 12. (Revelation principle)

Given a mechanism (Ω,q, t) and a BNE for that mechanism β , there exists a direct

mechanism (q̄, t̄) in which it is an equilibrium for each supplier to report honestly his

cost and the outcomes are the same as in the equilibrium of the first mechanism.

3.3.2 Incentive compatible and individually rational direct mechanisms

Suppliers need not report their true costs in a direct mechanism since this information

is private ; if the buyer cares about truth, he must choose a procurement mechanism that

gives them incentives to do so. This condition imposes further restrictions on mecha-

nisms that may be chosen : a procurement mechanism must be incentive compatible and

individually rational. Before we define these two concepts we need to introduce some

more notations.

Consider a direct mechanism (q, t) with an individual allocation rule x.

Let

Xi(mi) =Γ−i xi(mi,c−i) f−i(c−i)dc−i (3.4)

be the (interim) winning probability of supplier i if he reports the value mi given that the

other suppliers report their true costs.

8. A BNE is a profile of strategies such that each player’s strategy is optimal against the other players’
strategies. We consider interim BNE in which strategies are optimal if they are evaluated when players
observe their private types. For more about BNE of games of incomplete information see for example
(Fudenberg and Tirole (1991)).
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And let

Ti(mi) =Γ−i ti(mi,c−i) f−i(c−i)dc−i (3.5)

be the (interim) expected payment received by supplier i if he reports the value mi given

that the other suppliers report their costs honestly.

The (interim) expected profit of supplier i when he reports mi (rather than ci) and the

other suppliers report their true costs is :

πi(mi,ci) = Ec−i[ti(mi,c−i)− xi(mi,c−i)ci] = Ti(mi)−Xi(mi)ci. (3.6)

In particular :

πi(ci,ci)≡ Ti(ci)−Xi(ci)ci. (3.7)

πi(ci,ci) is the expected profit when supplier i reports his true cost ci. If honesty (re-

porting the true cost) is an equilibrium then πi(ci,ci) is supplier i’s profit at equilibrium.

Xi(ci) and Ti(ci) are respectively the winning probability and the expected payment of

supplier i at equilibrium.

A mechanism is individually rational (IR) if :

for any i ∈N and ci ∈ Γi, πi(ci,ci)≥ 0 . (3.8)

This means that even the suppliers with the worst costs will make non negative profits

if they participate in the procurement honestly when all the other players do so.

A mechanism is incentive compatible (IC) if :

for all i ∈N and ci ∈ Γi, πi(ci,ci) = max
mi∈Γi

πi(mi,ci) = {Ti(mi)−Xi(mi)ci}. (3.9)

This means that reporting honestly his cost give a supplier the highest expected profit

when the other suppliers report their true costs. In other words the mechanism (q, t) is

incentive compatible if honesty is an interim BNE of the game induced by (q, t). The

next proposition characterizes an IC mechanism by the winning probabilities and the
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expected payment functions.

Proposition 13. A mechanism (q, t) is IC if and only if :

for all i ∈N ,

the function Xi is decreasing (3.10)

and,

for all ci ∈ Γi, Ti(ci) = Ti(c̄i)−Xi(c̄i)c̄i +Xi(ci)ci +
∫ c̄i

ci

Xi(z)dz. (3.11)

Thus, when honesty is a BNE, suppliers with the lowest costs have the highest interim

winning probabilities. These winning probabilities determine the expected payments up

to a constant. Equation (3.11) is well known in the literature on auction design as the

revenue equivalence theorem. Proofs are available in appendix.

In the next section we suppose the buyer has the choice of the procurement me-

chanism. We look for mechanisms he may choose in order to maximize his expected

surplus.

3.4 Surplus maximizing R-constrained mechanism

Assume the buyer uses a direct mechanism (q, t) with an individual allocation rule

x. The buyer’s expected surplus when suppliers reveal their true cost vector is

π0(q, t) = E

{
v( ∑

G∈P
qG(c))− ∑

i∈N
ti(c)

}
.

The buyer’s goal is to design a direct mechanism maximizing this expected surplus

among IC and IR mechanisms.

E ∑
i∈N

ti(c) = ∑
i∈N

E[ti(c)] = ∑
i∈N

EEc−i[ti(ci,c−i)] = ∑
i∈N

ETi(ci)
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using (3.11),

E[Ti(ci)] = Ti(c̄i)−Xi(c̄i)c̄i +
∫ c̄i

c
¯i

Xi(ci)ci fi(ci)dci

+
∫ c̄i

c
¯i

{∫ c̄i

ci

Xi(z)dz
}

fi(ci)dci

Fubini’s theorem implies,

∫ c̄i

c
¯i

{∫ c̄i

ci

Xi(z)dz
}

fi(ci)dci =
∫ c̄i

c
¯i

{∫ z

c
¯i

fi(ci)dci

}
Xi(z)dz

=
∫ c̄i

c
¯i

Fi(z)Xi(z)dz.

Therefore,

E[Ti(ci)] = Ti(c̄i)−Xi(c̄i)c̄i +
∫ c̄i

c
¯i

[Xi(ci) ci fi(ci)+Fi(ci)Xi(ci)]dci

= πi(c̄i, c̄i)+
∫ c̄i

c
¯i

(ci +
Fi(ci)

fi(ci)
)Xi(ci) fi(ci)dci

= πi(c̄i, c̄i)+
∫

Γ

(ci +
Fi(ci)

fi(ci)
)xi(c) f (c)dc (using (3.4)).

It follows that,

E ∑
i∈N

ti(c) = ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

i∈N
Hi(ci)xi(c)

}
f (c)dc (3.12)

where Hi(m) = m+
Fi(m)

fi(m) for all i ∈N and m ∈ Γi; the function Hi is usually called

the virtual cost of supplier i.

We may also express the expected price in terms of the allocation rule rather than the

individual allocation rule :
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E ∑
i∈N

ti(c) = ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

i∈N
Hi(ci) ∑

G∈P/i∈G
qG(c)

}
f (c)dc

= ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

i∈N
∑

G∈P/i∈G
Hi(ci)qG(c)

}
f (c)dc

= ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

G∈P
∑
i∈G

Hi(ci)qG(c)

}
f (c)dc

= ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

G∈P
qG(c) ∑

i∈G
Hi(ci)

}
f (c)dc.

We define the aggregate virtual cost of the list G as SG(c)≡ ∑
i∈G

Hi(ci). Using

Ev( ∑
G∈P

qG(c)) = E ∑
G∈P

qG(c)v =
∫

Γ
∑

G∈P
qG(c)v f (c)dc,

the expected surplus can be written as :

π0(q, t) =− ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

G∈P
qG(c)(v−SG(c))

}
f (c)dc. (3.13)

For any i∈N , we define the function Ki : [0,1]→R, as Ki(zi)=
∫ F−1

i (zi)
0 Hi(t) fi(t)dt.

Note that K′i (Fi(ci)) = Hi(ci).

Let K̂i : [0,1]→ R be the convex hull 9 of Ki. K̂i is differentiable almost surely. Let

Ĥi : Γi→ R be such that Ĥi(ci) = K̂′i (Fi(ci)).

Ĥi(ci) is called the ironed out virtual cost of supplier i and it should be understood

as a “priority level” assigned to supplier i when his cost is ci ; These priority levels are

subjective and induce a score for each list of suppliers : ŜG(c)≡ ∑
i∈G

Ĥi(ci).

9. i.e. the greatest convex function g : [0,1]→ R such that g(zi)≤ Ki(zi), for any zi ∈ [0,1] .
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Let

π̂0(q, t) =− ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

G∈P
qG(c)v

}
f (c)dc−

∫
Γ

{
∑

i∈N
Ĥi(ci)xi(c)

}
f (c)dc.

(3.14)

π̂0 is obtained from the expression of π0 by replacing virtual costs by the ironed out

virtual costs. Thus we can also write :

π̂0(q, t) =− ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

G∈P
qG(c)(v− ŜG(c))

}
f (c)dc. (3.15)

The following three properties of convex hulls are well known :

(a) K̂i(0) = Ki(0) and K̂i(1) = Ki(1),

(b) K̂i(zi)≤ Ki(zi) for any zi ∈ [0,1] ,

(c) if K̂i(zi) < Ki(zi) then K̂′i is constant in some neighborhood of zi ; hence Ĥi is

constant in some neighborhood of F−1
i (zi).

We are now ready to state our main result. The allocation rule and the payment rule

we define just below are optimal in an R-constrained environment ( /0 R ⊂P).

For any m ∈Γ, we define the following set :

AR(m) =
{

G ∈R : ŜG(m) = min
{

ŜG′(m) : G′ ∈R
}}

.

This set is well defined since R is finite and it represents the collection of all the po-

tential lists of suppliers having the minimum score among the lists which do not violate

the constraint. Thus all the lists in AR(m) have the same score. Hereafter we refer to

elements of AR(m) as minimal lists, and we call AR(m) the set of minimal lists when

reported cost is m.
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We define the following allocation rule qR : for any m ∈Γ and G ∈P,

qR
G (m) =


0 if G /∈ AR(m)

0 if G ∈ AR(m) and ŜG(m)> v
1

|AR(m)| if G ∈ AR(m) and ŜG(m)≤ v

(3.16)

Note that qR is R-constrained by definition. Under this allocation rule the buyer

purchases from a list of potential suppliers with the lowest score among all the potential

lists of suppliers which do not violate the constraint, provided that the lowest score be at

most equal to the buyer’s valuation of the bundle of items. The items are purchased from

any of the minimal lists equiprobably, in case there are many such lists. Observe also that

the buyer will not purchase the items when the minimum score exceeds his valuation.

Given a bid vector m ∈Γ the probability to purchase the items is

∑
G∈P

qR
G (m) =

 0 if v < min
G∈R

ŜG(m)

1 otherwise
. (3.17)

Let xR be the individual allocation rule associated with qR ; xR is such that, for any

m ∈Γ,

xR
i (m) = ∑

G∈R/i∈G
qR

G (m). (3.18)

We also define the following payment rule :

for any m ∈Γ, tRi (m) = xR
i (m)mi +

∫ c̄i

mi

xR
i (t,m−i)dt. (3.19)

A payment of xR
i (m)mi would mean that supplier i receives an amount equal to his

announced cost if he wins the procurement. Beside this, the payment rule t involves

an additional rent
∫ c̄i

mi
xR

i (t,m−i)dt necessary to cause suppliers to reveal their private

information honestly.

Remark 1. In particular tRi (c̄i,m−i) = xR
i (c̄i,m−i)c̄i for all m−i ∈ Γ−i. Then taking the

expectation we have T R
i (c̄i) = XR

i (c̄i)c̄i. Thus the expected profit of supplier i with costs



67

c̄i when he bids honestly is πR
i (c̄i, c̄i)= T R

i (c̄i)−XR
i (c̄i)c̄i = 0. A consequence is that the

mechanism (qR , tR) always yields a worse expected profit than any individually rational

mechanism (q , t) for the supplier i with costs c̄i when he bids honestly : πi(c̄i, c̄i)≥ 0 =

πR
i (c̄i, c̄i).

The following results shows that the previous mechanism is optimal.

Theorem 2. The direct mechanism (qR , tR) maximizes the expected surplus of the buyer

among calR-constrained mechanisms that are IC and IR. The maximum expected surplus

is given by ρR(v) = E
[
max

[
0,v−min

{
ŜG(c) : G ∈R

}]]
.

Note that, as expected, ρR(v)≤ ρR′(v) if R ⊂R ′, i.e. the buyer’s expected surplus

decreases when the environment becomes more constrained. Moreover the allocation

rule and the expected surplus increase with v : a buyer with a high valuation for the

bundle purchases more often and expect more surplus than a buyer with a lower valua-

tion.

The proof of the theorem is available in appendix and relies on the following results.

Lemma 4. Let i ∈N , m−i ∈ Γ−i and ū ∈ Γi.

If i ∈ G and G ∈ AR(ū,m−i) then, for every u
¯
∈ Γi : ū >u

¯
, G ∈ AR(u

¯
,m−i) and

AR(u
¯
,m−i)⊂ AR(ū,m−i).

This lemma shows that if a supplier appears in a minimal list with some reported

cost, then the list would remain a minimal list if this supplier reported a lower cost while

the other suppliers do not change their reports ; Moreover every minimal list would still

be minimal if only one supplier changes his report.

The implication u
¯
< ū⇒ AR(u

¯
,m−i) ⊂ AR(ū,m−i) is not true in general. The pre-

vious lemma provides a sufficient condition for it.

The following lemma is a corollary of lemma 4. It is useful to establish that the

mechanism (qR , tR) is IC using proposition 13.

Lemma 5. For any i ∈N and m−i ∈ Γ−i, the functions qR
G (.,m−i) (where G ∈R : i ∈

G), xR
i (.,m−i) and XR

i (.) are decreasing.
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Finally the following lemma compares the expected surplus π0(q, t) and the modified

expected surplus π̂0(q, t) under an IC mechanism.

Lemma 6. for any IC mechanism (q, t) : π̂0(q, t)≥ π0(q, t).

3.4.1 Unconstrained environment

Theorem 2 applies in particular in the unconstrained environment, i.e. when R =P .

If L = 1 we fall in the context of a single unit auction. P is simply the collection of

all the singletons of N , and the scores are simply virtual costs :

Ŝ{i}(m) = Ĥi(mi).

The set AP(m) is the collection of all the potential suppliers who have the minimum

virtual cost :

AP(m) =
{

i ∈N : Ĥi(mi) = min
{

Ĥ j(m j) : j ∈N
}}

.

The allocation rule and the individual allocation rule are the same (see below). The

buyer purchases from a supplier with the lowest virtual cost provided that this virtual

cost be at most equal to the buyer’s valuation of the single item. When there are many

suppliers with the lowest virtual cost he purchases from any one of them with the same

probability. The buyer does not purchase the items when the minimum virtual cost ex-

ceeds his valuation.

qP
{i}(m) = xP

i (m) =


0 if i /∈ AP(m)

0 if i ∈ AP(m) and Ĥi(mi)> v
1

|AR(m)| if i ∈ AP(m) and Ĥi(mi)≤ v

and the payment rule is deduce from this allocation rule. Myerson (1981) designed

an optimal mechanism in the context of a single unit auction, our optimal mechanism is

simply the procurement version of his mechanism. Our result thus generalizes his.
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Below we provide an explicit formula for the individual allocation rule when there is

more than one item to buy (L≥ 2).

For any item l we define the set of all the suppliers who have the minimum virtual

cost among the potential suppliers of that item :

Al(m) =
{

i ∈ Il : Ĥi(mi) = min
{

Ĥ j(m j) : j ∈ Il
}}

. (3.20)

The following proposition gives an explicit formula for the individual allocation of

the mechanism (qP , tP) : the unconstrained surplus maximizing mechanism.

Proposition 14. The individual allocation rule of the unconstrained surplus maximizing

mechanism (qP , tP) is given by the equalities :

xP
i (m) =


0 if i /∈ Al(m)

0 if i ∈ Al(m) and min
G∈P

ŜG(m)> v

1
|Al(m)| if i ∈ Al(m) and min

G∈P
ŜG(m)≤ v

Remember that under the mechanism (qP , tP) the buyer purchases the items if and

only if the minimum score does not exceeds his valuation : min
G∈P

ŜG(m)≤ v.

The expression of the individual allocation rule shows that when the buyer decides

to purchase the items, item l is purchased equiprobably from suppliers who have the

minimum virtual cost among potential suppliers of that item. It is true that the set Al(m)

depends only on the bids of suppliers of item l. But in general the minimum score would

depend on other suppliers’ bids as well. Hence xP
i (m) would not depend on the bids of

suppliers of item l solely. This means that (qP , tP) is not itemwise 10 in general. The

main reason lies on the fact that the heterogeneous items are complements. The buyer

needs them altogether. He has a valuation for the bundle and not for particular items. An

itemwise mechanism would have to meet this requirement. This implies more costs. We

further discuss this subject when the environment is constrained in the next section.

10. See section 2 for a definition.
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3.4.2 Itemwise mechanisms

This section examines the possibility for an itemwise mechanism to be optimal in a

constrained environment. We’ve already shown that the optimal unconstrained mecha-

nism is not itemwise in general. But this alone does not rule out the possibility for some

other optimal mechanism to be itemwise. Indeed theorem 2 does not claim the unicity of

the optimal solution. We argue below that itemwise mechanisms would not be optimal in

general, and we provide a necessary condition for the existence of an optimal mechanism

that is also itemwise.

First we must observe that the itemwise property of a mechanism carries to his equi-

valent direct mechanism. This can be seen through the proof of the revelation principle

provided in appendix. So when we are dealing with an itemwise mechanism we may

assume without loss that it is a direct mechanism.

Let (q, t) be an itemwise mechanism and let x be the associated individual allocation

rule. By definition of an allocation rule the probability to purchase an item is the same

for all items : it is simply the probability to purchase the bundle. Formally :

∑
i∈Il

xi(c) = ∑
G∈R

qG(c),∀c ∈ Γ.

Now, because the mechanism is itemwise, the probability to purchase an item l from

a supplier i only depends on bids of suppliers of that item xi(c) = xi((ci)i∈Il). Thus the

probability to purchase the bundle itself depends solely on bids by suppliers of item l.

Since item l is arbitrary, and since the sets Il form a partition of the set of suppliers, we

conclude that the probability to purchase is constant : ∑
G∈R

qG(c) is constant.

We learn from the proof of theorem 2 that, with an optimal allocation rule, the ex-

pected profit of the buyer when costs vector is c must be :

∑
G∈R

qG(c)(v− ŜG(c)) = max
{

0,
(
(v− ŜG(c))

)
G∈R

}
almost surely (a.s).

This implies that the allocation rule eventually gives positive probability only to the
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maximal elements of the finite sequence
{

0,
(
(v− ŜG(c))

)
G∈R

}
. So,

if G 6∈ AR(c) then qG(c) = 0.

All this implies that

∑
G∈R

qG(c)(v− ŜG(c)) = ∑
G∈AR(c)

qG(c)(v− ŜG(c)).

Given that for any G ∈ AR(c) we have ŜG(c) = min
G∈R

ŜG(c), we conclude that

∑
G∈R

qG(c)(v− ŜG(c)) = (v−min
G∈R

ŜG(c)) ∑
G∈AR(c)

qG(c) (a.s).

The same is true for mechanism (qR , tR) and therefore :

(v−min
G∈R

ŜG(c))

 ∑
G∈AR(c)

qG(c)− ∑
G∈AR(c)

qR
G (c)

= 0 (a.s).

Recall that under (qR , tR) the probability to purchase depends on the sign of v−
min
G∈R

ŜG(c) (i.e. ∑
G∈AR(c)

qR
G (c) = 1(min

G∈R
ŜG(c)≤ v)) ; under (q , t) however the probability

to purchase is a constant ρ . We deduce

(v−min
G∈R

ŜG(c))
[

ρ−1(min
G∈R

ŜG(c)≤ v)
]
= 0 (a.s).

This implies that

min
G∈R

ŜG(c)≤ v (a.s) or min
G∈R

ŜG(c)≥ v (a.s). (3.21)

Hence the buyer’s valuation most be too “high” or too “low”.

Proposition 15. There exists an itemwise mechanism that maximizes the buyer’s expec-

ted surplus only if his valuation (almost) never falls short of the minimum score, or it

is (almost) never higher than the minimum score, of the potential lists satisfying the
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constraint. Therefore, when conditions (3.21) are not satisfied, the buyer would prefer to

purchase the items in a joint auction rather than through separated auctions.

Note that in case the buyer’s valuation is “high enough”, he almost surely purchases

the items. In this case maximizing the surplus is simply equivalent to minimizing the

payment for purchasing the items. On the contrary if his valuation is not enough high he

will not purchase the items.

In general we cannot tell if the converse is true when the environment is constrained.

But if the environment is unconstrained the converse is true. Indeed assume that the

buyer’s valuation is high enough i.e. min
G∈R

ŜG(c) ≤ v (a.s). Then proposition 14 shows

that the individual allocation rule xP
i is almost surely equal to the individual allocation

rule x∞
i , where

x∞
i (m) =

 0 if i /∈ Al(m)

1
|Al(m)| if i ∈ Al(m)

,

and x∞
i is itemwise. Hence the optimal unconstrained mechanism (qP , tP) is almost

surely equal to an itemwise mechanism when the buyer’s valuation is high enough.

3.5 Example : power distributions

This section is an illustration of our results in the context of the example 3 given in

the beginning of the paper.

We suppose c
¯i = 0 and c̄i = 1, Fi(ci) = (ci )

ai and ai ≥ 1 for all i ∈N and ci ∈ Γi.

The probability density functions are given by fi(ci) = ai (ci)
ai−1, and the virtual cost of

supplier i is

Hi(ci) = ci +
Fi(ci)

fi(ci)
= (1+

1
ai
)ci = εici.

Since Hi is increasing we have

Hi = Ĥi.

An increase in ai (a decrease in εi) results in a decrease of Fi(c) which is the proba-

bility that supplier i’s cost be lower than c. Thus the parameter ai somehow describes the
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technology level of supplier i. The higher ai the worse i’s technology.

We assume that the buyer faces the constraint to purchase from suppliers coming

from all the countries. The surplus maximizing mechanism of a buyer with valuation v

is given below. The allocation rule qR is such that, for any m ∈Γ :


qR
{1,4}(m) = 1 if ε1m1 + ε4m4 < min [ε2m2 + ε3m3,v]

qR
{1,4}(m) = qR

{2,3}(m) = 1
2 if ε1m1 + ε4m4 = ε2m2 + ε3m3 ≤ v

qR
{2,3}(m) = 1 if ε2m2 + ε3m3 < min [ε1m1 + ε4m4,v] .

Note also that the individual allocation rule is such that : xR
1 (m)= xR

4 (m)= qR
{1,4}(m)

and xR
2 (m) = xR

3 (m) = qR
{2,3}(m).

The items are purchased from the list with the smallest weighted sum of reports, if

this weighted sum does not exceed the valuation. Reports’ weights are subjective and

equal εi for supplier i. Low technology suppliers are advantaged by the optimal mecha-

nism.

3.6 Conclusion

Most of the literature on procurement auctions does not consider environments where

winning lists most respect exogenous quotas for different groups of suppliers. However

there are situations in life where such restrictions apply. In this paper we have derived

a procurement mechanism maximizing the expected surplus of a buyer in an environ-

ment constrained by restrictions such as the “quotas restriction” and where suppliers’

information is independent and private. An optimal allocation rule consists of assigning

priority levels to suppliers on the basis of their cost report. The way these priority levels

are determined is subjective but known to all before the auction. The individual reports

induce scores for each potential winning list by summing the priority levels of suppliers

in the list. The items are then (equiprobably) purchased from one of the lists with the

best score, provided it is not greater than the buyer’s valuation for the items. Payments
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are only made to suppliers who win the auction. Our optimal mechanism generalizes

Myerson (1981) concerning both the allocation and the payment rules.

In general it is not optimal to purchase the items through separate auctions. Unless

the buyer’s valuation for the items is high (so that he cannot reliably commit to not

purchase) or too low (when he cannot reliably commit to purchase) it is not optimal to

purchase separately. Conversely when the environment is unconstrained, i.e. when one is

free to purchase from any list, it is optimal for a high value buyer to purchase the items

separately.

In the particular case of power distributions, each supplier is assigned a specific

weight : This weight describes the technology level of the supplier : the higher a sup-

plier’s weight, the better his technology. The score of a list is simply the weighted sum

of the reports by suppliers of that list. Lists with low weighted sum have the priority ;

hence the optimal allocation rule advantages low technology suppliers. The buyer cannot

reliably commit to not purchase when his valuation is higher than the priority level of

the best list, when all suppliers have their worst (highest) possible unit cost.

Future directions of research may include relaxing the assumption of independent

costs and allow in the model situations where some suppliers may supply more than

one item. We also assumed that supplier’s do not act in cooperation ; it would also be

interesting to analyze an environment where suppliers may act in a concerted way.



CONCLUSION

Le premier essai a analysé le problème de choisir une alternative pour un groupe

d’agents ayant des informations privées et des intérêts divers. L’objectif du concepteur

était de maximiser le surplus collecté des agents parmi les mécanismes efficaces qui in-

duisent une participation honnête de tous les agents. Dans cet environnement, les agents

qui ne participent pas au processus de décision pourraient néanmoins être affectés par la

décision finale. En plus d’une règle d’attribution et d’une règle de paiement, le concep-

teur peut choisir des menaces appropriées pour chaque agents dans le but de les inciter

à participer et de maximiser son propre surplus espéré. Puisqu’un agent qui ne participe

pas ne révèle pas son information privée, le planificateur décide de lui même ce qu’il

considérera comme tel si un agent venait à ne pas participer, et menace de choisir l’al-

ternative qui donnerait la plus mauvaise utilité à cet agent sous ces conditions. Un choix

de type max-min du type présumé et de la menace permettent de maximiser le surplus

espéré du planificateur parmi les mécanismes efficaces induisant la participation honnête

de tous les agents. Je fournis également un résultat d’existence pour une fonction d’uti-

lité extérieure qui peut être décomposée en deux composantes additives : l’une exogène

et l’autre endogène. J’applique ces résultats à la conception d’une enchère multiple effi-

cace dans un environnement où un acheteur en possession du bien cause des externalités

négatives sur les autres agents. Je montre qu’une généralisation de l’enchère de Vickrey

maximise le surplus parmi mécanismes efficaces induisant une participation honnête.

D’autres applications possibles incluent la localisation d’équipements nocifs, les élec-

tions, le lieu de déroulement de manifestations sportives, la vente d’armes nucléaires

etc.

Dans certaines situations le planificateur aimerait exécuter un mécanisme qui laisse-

rait toujours sa balance en équilibre (surplus nul). De tels mécanismes sont dit de budgets

équilibrés. l’existence de tels mécanismes est déterminée par le signe du surplus espéré

maximal. Nous argumentons que l’existence des mécanismes de budgets équilibrés par

budget est garantie si n’importe quel mécanisme efficace induisant la participation hon-

nête de tous les agents a comme conséquence un surplus espéré positif. Ceci peut être
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utile dans des applications où une forme analytique pour le surplus maximum ne peut

pas être trouvée. Dans de telles applications il est suffisant d’avoir une bonne approxi-

mation du mécanisme optimal, laquelle donnerait lieu à un surplus espéré positif. Cette

approximation peut alors être utilisée pour construire un mécanisme de budget-équilibré.

Dans le deuxième essai nous avons prouvé qu’une exécution appropriée de la règle

du juste retour peut la rendre moins coûteuse que les enchères traditionnelles de libre

concurrence (enchères premier prix et deuxième prix). Nous avons considéré le cas de

l’information complète (pour l’enchère des premiers prix) où les niveaux de technologie

des firmes sont de notoriété publique, et le cas de l’information incomplète (pour enchère

de deuxième prix) où les sociétés observent en privé leurs coûts de production. Dans les

deux des cas nous avons identifié une enchère sous le principe du juste retour qui tire

avantage des asymétries entre les pays et est moins coûteuse que l’enchère traditionnelle.

Le prix (resp. prix espéré) des articles sous la règle du juste retour est inférieure au prix

sous l’enchère traditionnelle dans les situations où (resp. l’agence croit que) : un état

possède un niveau de technologie plus élevé pour la production des articles que l’autre,

et de plus les avantages de chacun des fournisseurs de l’état en avance (comparé à ceux

de leurs adversaires directs respectivement) sont suffisamment proches l’un de l’autre.

Nous avons également supposé que l’agence n’impose pas des prix de réserve. Cette

hypothèse peut être justifiée par le fait que la valeur que l’agence attribue aux articles est

reconnue pour être trop haute en comparaison des coûts des fournisseurs. De sorte que

l’acheteur ne puisse pas s’engager de façon crédible à ne pas du tout acheter les articles.

Toutefois il serait intéressant de comparer les deux principes dans un modèle qui tient

compte des prix de réserve.

Le troisième essai élabore un mécanisme d’appel d’offre maximisant le surplus es-

péré d’un acheteur dans un environnement contraint par des quotas pour chacun des

différent groupes d’agents y participant. Une règle optimale d’allocation consiste en

l’attribution de niveaux de priorité aux fournisseurs sur la base des coûts unitaires qu’ils

rapportent au décideur. Les coûts rapportés induisent des scores pour chaque potentielle

listes de gagnant, obtenus en additionnant les niveaux de priorité des fournisseurs dans la

liste. Les articles sont alors achetés d’une des listes ayant le meilleur score, pourvu qu’il
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ne soit pas plus grand que la valeur que l’acheteur attribue aux articles. Des paiements

sont seulement effectués aux fournisseurs qui gagnent l’enchère. Notre mécanisme opti-

mal est une généralisation de Myerson (1981).

En général il n’est pas optimal d’acheter les articles par enchères séparées, à moins

que la valeur que l’acheteur attribue aux articles ne soit trop haute (de sorte qu’il ne

peut pas s’engager de façon crédible à ne pas acheter) soit trop basse (quand il ne peut

pas s’engager de façon crédible à l’achat). Réciproquement quand l’environnement n’est

pas contraint, c.-à-d. quand on est libre d’acheter de n’importe quelle liste, il est optimal

qu’un acheteur de valeurs élevées achète les articles séparément.

Dans le cas particulier où les coûts suivent une distribution “puissance”, à chaque

fournisseur est assignée un poids : Ce poids décrit le niveau de technologie du four-

nisseur : le plus haut est le poids meilleur est la technologie. Le score d’une la liste est

simplement la somme pondérés des couts rapportés par les fournisseurs de cette liste. Les

listes ayant la somme la plus basse ont la priorité ; par conséquent cette règle quoique

optimale favorise les fournisseurs les moins avancés technologiquement.

Nous avons supposé tout au long de cette thèse que les agents ou les fournisseurs

n’agissent pas en coopération et que leurs types sont indépendants les uns des autres.

Il serait également intéressant d’analyser un environnement où ils peuvent agir d’une

manière concertée d’une part et d’autre part où leurs types sont plus ou moins corrélés.
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Annexe I

Appendix to chapter 2

Proof of proposition 6. For the FP auction the argument is this : the supplier with the

lowest cost, having more latitude to place low bid than his opponent, maximizes his

profit by bidding just above his opponent’s cost. If the opponent then bids his own cost,

we have an equilibrium provided that the difference between the costs is not small. In

this last case an equilibrium is to bid the highest cost for both suppliers.

We prove the existence of a Nash Equilibrium (NE) for the FR auction by assuming

without loss of generality that c1 +c4 + γ = c2 +c3 with γ ≥ 0. There are only to cases :

γ ≤ 2ε or γ ≥ 3ε .

If γ ≤ 2ε then b∗1 = c1+ γ and b∗i = ci for i 6= 1 is a NE. Indeed, we have b∗1 +b∗4 =

b∗2+b∗3 and this implies that no supplier has incentive to increase his bid since this would

weaken his pair and cause him to lose certainly. In addition, only supplier 1 may consider

to reduce his bid ; if he does reduce his bid of ε then his profit decreases from 1
2γ to γ−ε .

If γ ≥ 3ε then b∗1 = c1+ γ − 2ε,b∗4 = c4+ ε and b∗i = ci for i = 2,3 is a NE. With

such bids we have b∗1 + b∗4 + ε = b∗2 + b∗3 so that the auction is won by the pair {1,4}
and none of suppliers 2 and 3 have incentive to increase their bids ; they cannot reduce

their bid since it would lead to a negative profit. Supplier 4, whose profit is ε, makes a

worse profit if he increases his bid of more than ε or decreases it. If he increases his bid

of ε his profit remains the same ε . Similarly, supplier 1, whose profit is γ−2ε, makes a

worse profit if he increases his bid of more than ε or decreases it. If he increases his bid

of ε his new profit is 1
2(γ− ε); which is less than γ−2ε . So no supplier has incentive to

change his bid given the others’ bids.

Proof of lemma 3. (i) The argument is this : supplier with the lowest cost, having

more latitude to place low bid than his opponent, maximizes his profit by bidding
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just above his opponent’s cost. Note however that if the difference between the

costs is small, it is possible to have an equilibrium where the supplier with the

lowest cost submits a bid just equal to his opponent’s cost.

(ii) let (b∗i )i∈N be a Nash equilibrium. The total price of the items is f r = min(b∗1+

b∗4,b
∗
2 + b∗3). We will show that f r ≤ 4ε +max(c1 + c4,c2 + c3) when b∗1 + b∗4 =

b∗2+b∗3 and b∗1+b∗4 < b∗2+b∗3. The case b∗1+b∗4 > b∗2+b∗3 is similar to the last one.

- Suppose b∗1 + b∗4 = b∗2 + b∗3 ; supplier i’s profit is 1
2(b
∗
i − ci) and we have 1

2(b
∗
i −

ci) ≥ (b∗i − ε − ci) since he has no interest in changing his bid to b∗i − ε . This implies

successively b∗i ≤ 2ε + ci for any i, b∗1 + b∗4 ≤ 4ε + c1 + c4 and b∗2 + b∗3 ≤ 4ε + c2 + c3,

and finally f r ≤ 4ε +max(c1 + c4,c2 + c3).

- Suppose b∗1+b∗4 < b∗2+b∗3 ; then suppliers 2 and 3 both have zero profit. If supplier

2 changes his bid to b∗2− ε then his profit ((b∗2− ε− c2) or 1
2(b
∗
2− ε− c2) in case of tie)

remains non positive. therefore b∗2 ≤ ε +c2. The same argument leads to b∗3 ≤ ε +c3. So

b∗2 +b∗3 ≤ 2ε + c2 + c3 ≤ 2ε +max(c1 + c4,c2 + c3) and the result follows.

Proof of proposition 9. We assume that c1 + c4 ≤ c3 + c2, then c1− c3 ≤ c2− c4. The

proof is similar in the case c1 + c4 ≥ c3 + c2.

If c1−c3≤ c2−c4 < 0 then 2δ (c) = 3[(c2−c4)−(c1−c3)]−(c3−c1)−(c4−c2) =

−2(c1−c3)+4(c2−c4) and c1−c3
c2−c4

≥ 1; Thus s f r(c)−sp(c)< 0 if and only if c1−c3
c2−c4

< 2.

if 0 < c1−c3≤ c2−c4 then 2δ (c) = 3[(c2−c4)−(c1−c3)]−(c1−c3)−(c2−c4) =

−4(c1− c3)+ 2(c2− c4) and c1−c3
c2−c4

≤ 1; in this case s f r(c)− sp(c) < 0 if and only if
c1−c3
c2−c4

> 1
2 .

if c1−c3≤ 0≤ c2−c4, then 2δ (c) = 3[(c2−c4)−(c1−c3)]+(c1−c3)−(c2−c4) =

−2(c1− c3)+2(c2− c4)≥ 0; So that s f r(c)− sp(c)≥ 0.

In all this cases the equivalence [s f r(c)− sp(c)< 0⇔ 1
2 < c1−c3

c2−c4
< 2] is true, thus it

is always true.

Proof of proposition 11. We first prove that (i) and (ii) are equivalent.
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(i)⇒(ii) Suppose λ (N) = 0 ; then µ(N) = 0 because µ is absolutely continuous with

respect to the lebesgue measure λ ; therefore
∫

N |δ |dµ = 0 and, using (2.14), s f r−
sp =

∫
P |δ |dµ ≥ 0.

(ii)⇒(i) Suppose λ (N)> 0. We will show that there exist a measure µ with support

T such that
∫

T δdµ =
∫

P |δ |dµ −
∫

N |δ |dµ < 0. Consider any measure µ0 with

support T . If
∫

T δdµ0 < 0 then simply use µ = µ0. Assume now that
∫

T δdµ0 ≥ 0.

Let µ1 be the uniform distribution on N. It is well defined because λ (N) > 0 ;

moreover
∫

P |δ |dµ1 = 0 and
∫

T δdµ1 =−
∫

N |δ |dµ1 < 0. Define µ = (1−θ)µ0 +

θ µ1. We have
∫

T δdµ = (1− θ)
∫

T δdµ0 + θ
∫

T δdµ1 and it is negative for θ ∈
(0,1) chosen sufficiently close to 1. Moreover the support of (1−θ)µ0 +θ µ1 is

necessarily T .

(ii)⇔(iii) let x = c1− c3 and y = c2− c4 then N has a positive measure if the image

set I =
{
(x,y) ∈ D : 1

2y < x < 2y
}

has positive measure. Where D is the rectangu-

lar [x
¯
, x̄]× [y

¯
, ȳ], with x

¯
=c

¯1− c̄3, x̄ = c̄1− c
¯3, y

¯
=c

¯2− c̄4 and ȳ = c̄2− c
¯4. Consider

below the graphic for the set
{
(x,y) ∈ D : 1

2y < x < 2y
}

:

itbpF3.2249in2.4249in0inregion.eps

The bounds x
¯
, x̄,y

¯
and ȳ can take any value provided that the intersection of the region

R and of the rectangular [x
¯
, x̄]× [y

¯
, ȳ] have a positive measure. We see that a necessary

and sufficient condition for this intersection to have a positive measure is

 x̄≥ 0

y
¯
≤ 0

or x
¯
≤ 0

ȳ≥ 0
. The result follows.

Proposition 16. Let ∆(c) = max(c1 + c4,c3 + c2)−max(c1,c3)−max(c2,c4).

We have

∆(c) =

 −min(|c1− c3|, |c2− c4|) if c1− c3 and c2− c4 have the same sign

0 otherwise

Proof. Without loss of generality we may assume that c1+c4 ≤ c3+c2 (or equivalently

c1− c3 ≤ c2− c4).

If c1− c3 ≤ c2− c4 ≤ 0 then ∆(c) = c3 + c2− c3− c4 = c2− c4 =−|c2− c4|;
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if 0≤ c1− c3 ≤ c2− c4 then ∆(c) = c3 + c2− c1− c2 = c3− c1 =−|c1− c3|;
if c1− c3 and c2− c4 have opposite signs, i.e. if c1− c3 < 0 < c2− c4, then ∆(c) =

c3 + c2− c3− c2 = 0.



Annexe II

Appendix to Chapter 3

Proof of the revelation principle. Consider a mechanism (Ω,q, t) and an equilibrium β ,

define

q̄G(c) = qG(β (c)) and t̄i(c) = ti(β (c));

And let x̄ be the individual allocation mechanism associated with q̄.

Suppose that under the direct mechanism (q̄, t̄) the other suppliers (than i) report

their true costs, supplier i’s expected profit when he bids mi ∈ Γi rather than the true cost

ci is :

Ec−i[t̄i(mi,c−i)− x̄i(mi,c−i)ci];

And we have,

t̄i(mi,c−i)− x̄i(mi,c−i)ci = ti(β (mi,c−i))− xi(β (mi,c−i))ci

= ti(βi(mi),β−i(c−i))− xi(βi(mi),β−i(c−i))ci.

Observe that Ec−i[ti(βi(mi),β−i(c−i))− xi(βi(mi),β−i(c−i))ci] is supplier i’s expec-

ted profit when he bids βi(mi), and the other suppliers strategy is β−i under the mecha-

nism (Ω,q, t). Since β is an equilibrium,

Ec−i[ti(βi(mi),β−i(c−i))− xi(βi(mi),β−i(c−i))ci]

≤ Ec−i[ti(βi(ci),β−i(c−i))− xi(βi(ci),β−i(c−i))ci]

= Ec−i[t̄i(ci,c−i)− x̄i(ci,c−i)ci].

Thus,

Ec−i[t̄i(mi,c−i)− x̄i(mi,c−i)ci]≤ Ec−i[t̄i(ci,c−i)− x̄i(ci,c−i)ci],

implying that supplier i’s best response is to report his true cost.



xvii

Proof of proposition 13. Denote π̄i(ci)≡ πi(ci,ci). If (q, t) is an IC mechanism then the

functions π̄i are convex. Indeed let λ ∈ [0,1], and u,w ∈ Γi :

π̄i(λu+(1−λ )w) = max
mi∈Γi
{Ti(mi)−Xi(mi)(λu+(1−λ )w)}

= max[
mi∈Γi

λ{Ti(mi)−Xi(mi)u}+(1−λ ){Ti(mi)−Xi(mi)w}]

≤ λ max
mi∈Γi

{Ti(mi)−Xi(mi)u}+(1−λ )max
mi∈Γi
{Ti(mi)−Xi(mi)w}

= λπ̄i(u)+(1−λ )π̄i(w)

π̄i (being convex) is differentiable almost everywhere in the interior of its domain

and the derivative is increasing. The envelope theorem applied to condition (3.9) implies

that :

π̄
′
i (ci) =−Xi(ci). (II.1)

Thus −Xi is increasing and therefore Xi is decreasing.

(II.1) also implies that :

π̄
′
i (ci) = π̄i(c̄i)+

∫ c̄i

ci

Xi(z)dz. (II.2)

Replacing π̄i(ci) by Ti(ci)−Xi(ci)ci leads to (3.11).

Conversely, from (3.11) we can have the expressions of Ti(ci) and Ti(mi). Substitu-

ting these expressions in what follows, we have :

[Ti(ci)−Xi(ci)ci]− [Ti(mi)−Xi(mi)ci] =
∫ mi

ci

Xi(z)dz−Xi(mi)(mi− ci),

or equivalently,

πi(ci,ci)− [Ti(mi)−Xi(mi)ci] =
∫ mi

ci

Xi(z)dz−Xi(mi)(mi− ci).

This last expression is positive if the function Xi is decreasing. Therefore condition

(3.9) holds and the mechanism is IC.
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Proof of lemma 4. We start by showing that if G∈AR(ū,c−i)⇒G∈AR(u
¯
,c−i) ; indeed

if G ∈ AR(ū,c−i) then by definition ŜG(ū,c−i) = min
{

ŜG′(ū,c−i) : G′ ∈R
}
. Fix some

G′ ∈calR ;

if i ∈ G′ then from ŜG(ū,c−i)≤ ŜG′(ū,c−i), we deduce successively :

Ĥi(ū)+ ∑
j∈G/ j 6=i

Ĥ j(c j) ≤ Ĥi(ū)+ ∑
j∈G′/ j 6=i

Ĥ j(c j),

∑
j∈G/ j 6=i

Ĥ j(c j) ≤ ∑
j∈G′/ j 6=i

Ĥ j(c j),

Ĥi(u¯
)+ ∑

j∈G/ j 6=i
Ĥ j(c j) ≤ Ĥi(u¯

)+ ∑
j∈G′/ j 6=i

Ĥ j(c j),

i.e. ŜG(u¯
,c−i) ≤ ŜG′(u¯

,c−i).

if i 6∈G′ then, since Ĥi is increasing, we have Ĥi(u¯
)≤ Ĥi(ū) and therefore ŜG(u¯

,c−i)≤
ŜG(ū,c−i).

Because i 6∈ G′ we have ŜG′(.,c−i) constant ; and from ŜG(ū,c−i) ≤ ŜG′(ū,c−i), we

deduce ŜG(ū,c−i)≤ ŜG′(u¯
,c−i) and then ŜG(u¯

,c−i)≤ ŜG′(u¯
,c−i).

this shows that ŜG(u¯
,c−i) = min

{
ŜG′(u¯

,c−i) : G′ ∈R
}
, i.e. G ∈ AR(u

¯
,c−i).

Now we will show that AR(u
¯
,c−i)⊂ AR(ū,c−i). Take any G0 ∈ AR(u

¯
,c−i).

- if i∈G0 then, from ŜG(u¯
,c−i) = ŜG0(u¯

,c−i) we deduce ŜG(ū,c−i) = ŜG0(ū,c−i) i.e.

G0 ∈ AR(ū,c−i).

- if i 6∈ G0 then ŜG0(.,c−i) is constant,

ŜG0(ū,c−i) = ŜG0(u¯
,c−i)

= ŜG(u¯
,c−i) (because G,G0 ∈ AR(u

¯
,c−i) )

≤ ŜG(ū,c−i) (because Ĥi is increasing and i ∈ G).

So we also have G0 ∈ AR(ū,c−i).

Proof of lemma 5. Fix i ∈N , G ∈R : i ∈ G, c−i ∈ Γ−i and u
¯
, ū ∈ Γi :u

¯
< ū.

We know there are only two cases : either G 6∈ AR(ū,c−i) or G ∈ AR(ū,c−i).

(i) Suppose G 6∈ AR(ū,c−i) ; then by definition qR
G (ū,c−i) = 0≤ qR

G (u
¯
,c−i).
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(ii) Suppose G ∈ AR(ū,c−i) then, by lemma 4, AR(u
¯
,c−i)⊂ AR(ū,c−i);

as a consequence |AR(u
¯
,c−i)| ≤ |AR(ū,c−i)|. Now if ŜG(ū,c−i)> v then qR

G (ū,c−i)=

0≤ qR
G (u

¯
,c−i). If ŜG(ū,c−i)≤ v then, because Ĥi is increasing and i∈G, ŜG(u¯

,c−i)≤ v.

Therefore qR
G (u

¯
,c−i) =

1
|AR(u

¯
,c−i)|

≥ 1
|AR(ū,c−i)|

= qR
G (ū,c−i).

(i) and (ii) imply that qR
G (.,c−i) is decreasing. Hence xR

i (.,c−i) = ∑
G∈R/i∈G

qR
G (.,c−i)

and XR
i (.) = E

[
xR

i (.,c−i)
]

are decreasing.

Proof of lemma 6.

π0(q, t)− π̂0(q, t) =
∫

Γ

{
∑

i∈N
Ĥi(ci)xi(c)

}
f (c)dc−

∫
Γ

{
∑

i∈N
Hi(ci)xi(c)

}
f (c)dc,

= ∑
i∈N

∫
Γ

{
Ĥi(ci)−Hi(ci)

}
xi(c) f (c)dc,

= ∑
i∈N

∫ c̄i

c
¯i

{
Ĥi(ci)−Hi(ci)

}
Xi(ci) f (ci)dci (using (3.4)),

= ∑
i∈N

∫ c̄i

c
¯i

{
K̂′i (Fi(ci))−K′i (Fi(ci))

}
Xi(ci) f (ci)dci (by definition of Hi and Ĥi),

= ∑
i∈N

∫ c̄i

c
¯i

{
(K̂i ◦Fi)

′(ci)− (Ki ◦Fi)
′(ci)

}
Xi(ci)dci .

Integrating by part,

π0(q, t)− π̂0(q, t) = ∑
i∈N

{
(K̂i ◦Fi)(c̄i)− (Ki ◦Fi)(c̄i)− (K̂i ◦Fi)(c¯i)+(Ki ◦Fi)(c¯i)

}
−
∫ c̄i

c
¯i

{
(K̂i ◦Fi)(ci)− (Ki ◦Fi)(ci)

}
dXi(ci),

= ∑
i∈N

{
K̂i(1)−Ki(1)− K̂i(0)+Ki(0)

}
−
∫ c̄i

c
¯i

{
(K̂i ◦Fi)(ci)− (Ki ◦Fi)(ci)

}
dXi(ci), (II.3)

Finally, using property (a) :

π0(q, t)− π̂0(q, t) =− ∑
i∈N

∫ c̄i

c
¯i

{
K̂i(Fi(ci))−Ki(Fi(ci))

}
dXi(ci) (II.4)
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Since the mechanism is IC, proposition 13 implies that dXi(ci) ≤ 0. Furthermore

property (b) implies K̂i(Fi(ci))−Ki(Fi(ci)) ≤ 0. It follows that π0(q, t)− π̂0(q, t) ≤ 0.

proof of Theorem 2. - First, we prove that (qR , tR) is IR. By definition tRi (m) ≥

xR
i (m)mi and (integrating over m−i ) T R

i (mi)≥XR
i (mi)mi, i.e. πR

i (mi)≥ 0. So (qR , tR)

is IR.

- Next, we prove that (qR , tR) is IC. Using the definition of tR : tRi (c) = xR
i (c)ci+∫ c̄i

ci
xR

i (u,c−i)du,

and integrating this equality over c−i leads to T R
i (ci) = XR

i (ci)ci+
∫ c̄i

ci
XR

i (u,c−i)du.

Since πR
i (c̄i, c̄i) = T R

i (c̄i)−XR
i (c̄i)c̄i = 0, we conclude

T R
i (ci) = T R

i (c̄i)−XR
i (c̄i)c̄i +XR

i (ci)ci +
∫ c̄i

ci

XR
i (u,c−i)du.

lemma 5 shows XR
i is decreasing. By proposition 13 we may conclude that (qR , tR)

is IC.

- Finally, we prove that π0(q, t) ≤ π0(qR , tR) for any IC and IR constrained me-

chanism (q, t).

Let (q, t) be an R-constrained mechanism IC and IR. Recall that

π̂0(q, t) =− ∑
i∈N

πi(c̄i, c̄i)+
∫

Γ

{
∑

G∈P
qG(c)(v− ŜG(c))

}
f (c)dc.

Remark 1 shows that − ∑
i∈N

πi(c̄i, c̄i)≤− ∑
i∈N

πR
i (c̄i, c̄i).

Because (q, t) is R-constrained,

∑
G∈P

qG(c)(v− ŜG(c))= ∑
G∈R

qG(c)(v− ŜG(c))= (1− ∑
G∈R

qG(c)).0+ ∑
G∈R

qG(c)(v− ŜG(c)).

(II.5)

This is a weighted mean of the sequence
{

0,
(
(v− ŜG(c))

)
G∈R

}
, and we have :
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∑
G∈P

qG(c)(v− ŜG(c)) ≤ max
{

0,
(
(v− ŜG(c))

)
G∈R

}
= ∑

G∈R
qR

G (c)(v− ŜG(c)) (by construction)

= ∑
G∈P

qR
G (c)(v− ŜG(c)).

Since c is arbitrary we conclude that

∫
Γ

{
∑

G∈P
qG(c)(v− ŜG(c))

}
f (c)dc≤

∫
Γ

{
∑

G∈P
qR

G (c)(v− ŜG(c))

}
f (c)dc,

and π̂0(q, t)≤ π̂0(qR , tR). Putting this with lemma 6 gives π0(q, t)≤ π̂0(qR , tR). It

will be sufficient to show that π̂0(qR , tR) = π0(qR , tR).

Since (qR , tR) is IC, equation (II.4) (in appendix) applies :

π̂0(qR , tR)−π0(qR , tR) = ∑
i∈N

∫ c̄i

c
¯i

{
K̂i(Fi(ci))−Ki(Fi(ci))

}
dXR

i (ci);

If K̂i(Fi(ci))−Ki(Fi(ci)) 6= 0 then K̂i(Fi(ci))−Ki(Fi(ci))< 0 and Ĥi(ci) is constant in

some neighborhood of ci (property (c)) and so, XR
i (ci) is also constant 1 (i.e. dXR

i (ci) =

0) in some neighborhood of ci. We then conclude
∫ c̄i

c
¯i

{
K̂i(Fi(ci))−Ki(Fi(ci))

}
dXR

i (ci)=

0 and π̂0(qR , tR)−π0(qR , tR) = 0.

- Moreover the expected surplus is :

1.
Recall XR

i (c1) =
∫

Γ−i
xR

i (ci,c−i) f−i(c−i)dc−i and
xR

i (ci,c−i) = ∑
G∈P/i∈G

qR
G (ci,c−i); this sum depends only on the ironed out virtual costs Ĥi(ci) and

(Ĥ j(c j)) j 6=i. Because the integral is taken over c−i, we conclude that XR
i (ci) depends only on the functions

(Ĥ j) j 6=i and on Ĥi(ci) ; thus it is constant if Ĥi(ci) is constant.
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ρ
R(v) = π0(qR , tR) = π̂0(qR , tR) =− ∑

i∈N
π

R
i (c̄i, c̄i)+

∫
Γ

{
∑

G∈R
qR

G (c)ŜG(c)

}
f (c)dc

= 0+
∫

Γ

max
{

0,
(
(v− ŜG(c))

)
G∈R

}
f (c)dc

= E
[
max

{
0,
(
(v− ŜG(c))

)
G∈R

}]
.

proof of proposition 14. Fix an item l ∈ {1,2, ...,L}, a supplier of that item i ∈ Il and a

report vector m ∈Γ.

- Suppose i 6∈ Al(m) ; there exists j ∈ Il : Ĥi(mi)> Ĥ j(m j).

Consider some list G ∈P :i ∈ G and let G′ = G∪{ j}−{i}. In the list G′ supplier

j is awarded the contract for item l instead of i as in G, but suppliers of the other items

remain the same.

We have

ŜG′(m) = ŜG(m)+ Ĥ j(m j)− Ĥi(mi)< ŜG(c).

This means that G 6∈ A(m) and therefore qP
G (m) = 0. Since G is an arbitrary list inP

such that i ∈ G, we conclude

xP
i (m) = ∑

G∈P/i∈G
qP

G (m) = 0.

- Now suppose that i ∈ Al(m) ; we now know that ∑
j∈Al(m)

xP
j (m) = ∑

j∈Il

xP
j (m). We

first show that suppliers in Al(m) have the same probability to win, i.e. xP
i (m) = xP

j (m)

for any j ∈ Al(m).

Let j∈Al(m) ; then Ĥ j(m j)= Ĥi(mi). The map λ : {G ∈P : i ∈ G}→{G ∈P : j ∈ G} ,
G 7→ G∪{ j}−{i} is a bijection. Moreover, for any G ∈P : i ∈ G ,

Ŝλ (G)(m) = ŜG(m)+ Ĥ j(m j)− Ĥi(mi) = ŜG(c).
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Thus G ∈ A(m) if and only if λ (G) ∈ A(m). This means qP
G (m) = qP

λ (G)(m). It follows

that :

xP
j (m) = ∑

G′∈P/ j∈G′
qP

G′ (m) = ∑
G∈P/i∈G

qP
λ (G)(m) = ∑

G∈P/i∈G
qP

G (m) = xP
i (m).

Therefore

xP
i (m) =

∑
j∈Il

xP
j (m)

|Al(m)|
.

The result follows from the fact that the probability to purchase an item is

∑
j∈Il

xP
j (m) = ∑

G∈P
qP

G (m) = 1(min
G∈P

ŜG(m)≤ v).
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