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Résumé 

Les systèmes Matériels/Logiciels deviennent indispensables dans tous les 

aspects de la vie quotidienne. La présence croissante de ces systèmes dans les 

différents produits et services incite à trouver des méthodes pour les développer 

efficacement. Mais une conception efficace de ces systèmes est limitée par plusieurs 

facteurs, certains d'entre eux sont: la complexité croissante des applications, une 

augmentation de la densité d'intégration, la nature hétérogène des produits et 

services, la diminution de temps d’accès au marché. Une modélisation 

transactionnelle (TLM) est considérée comme un paradigme prometteur permettant 

de gérer la complexité de conception et fournissant des moyens d’exploration et de 

validation d'alternatives de conception à des niveaux d’abstraction élevés. 

Cette recherche propose une méthodologie d’expression de temps dans TLM 

basée sur une analyse de contraintes temporelles. Nous proposons d'utiliser une 

combinaison de deux paradigmes de développement pour accélérer la conception: le 

TLM d'une part et une méthodologie d’expression de temps entre différentes 

transactions d’autre part. Cette synergie nous permet de combiner dans un seul 

environnement des méthodes de simulation performantes et des méthodes 

analytiques formelles. Nous avons proposé un nouvel algorithme de vérification 

temporelle basé sur la procédure de linéarisation des contraintes de type min/max et 

une technique d'optimisation afin d'améliorer l'efficacité de l'algorithme. Nous avons 

complété la description mathématique de tous les types de contraintes présentées 

dans la littérature. Nous avons développé des méthodes d'exploration et raffinement 

de système de communication qui nous a permis d'utiliser les algorithmes de 

vérification temporelle à différents niveaux TLM.  

Comme il existe plusieurs définitions du TLM, dans le cadre de notre 

recherche, nous avons défini une méthodologie de spécification et simulation pour 

des systèmes Matériel/Logiciel basée sur le paradigme de TLM. Dans cette 

méthodologie plusieurs concepts de modélisation peuvent être considérés 

séparément. Basée sur l'utilisation des technologies modernes de génie logiciel telles 
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que XML, XSLT, XSD, la programmation orientée objet et plusieurs autres fournies 

par l’environnement .Net,  la méthodologie proposée présente une approche qui rend 

possible une réutilisation des modèles intermédiaires afin de faire face à la contrainte 

de temps d’accès au marché.  Elle fournit une approche générale dans la 

modélisation du système qui sépare les différents aspects de conception tels que des 

modèles de calculs utilisés pour décrire le système à des niveaux d’abstraction 

multiples. En conséquence, dans le modèle du système nous pouvons clairement 

identifier la fonctionnalité du système sans les détails reliés aux plateformes de 

développement et ceci mènera à améliorer la "portabilité" du modèle d'application.  

 

 Mots-clés : Systèmes Matériels/Logiciels, vérification temporelle, analyse 

temporelle, modélisation transactionnelle, modélisation des systèmes à différents 

niveaux d'abstraction. 
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Abstract 

Hardware/Software (Hw/Sw) systems are likely to become essential in all 

aspects of everyday life. The increasing penetration of Hw/Sw systems in products 

and services creates a necessity of their efficient development. However, the 

productive design of these systems is limited by several factors, some of them being 

the increasing complexity of applications, the increasing degree of integration, the 

heterogeneous nature of products and services as well as the shrinking of the time-to-

market delay. Transaction Level Modeling (TLM) paradigm is considered as one of 

the most promising simulation paradigms to break down the design complexity by 

allowing the exploration and validation of design alternatives at high levels of 

abstraction. 

This research proposes a timing expression methodology in TLM based on 

temporal constraints analysis. We propose to use a combination of two paradigms to 

accelerate the design process: TLM on one hand and a methodology to express 

timing between different transactions on the other hand. Using a timing specification 

model and underlining timing constraints verification algorithms can decrease the 

time needed for verification by simulation. Combining in one framework the 

simulation and analytical design exploration methods can improve the analytical 

power of design verification and validation. We have proposed a new timing 

verification algorithm based on the linearization procedure and an optimization 

technique to improve its efficiency. We have completed the mathematical 

representation of all constraint types discussed in the literature creating in this way a 

unified timing specification methodology that can be used in the expression of a 

wider class of applications than previously presented ones. We have developed the 

methods for communication structure exploration and refinement that permitted us to 

apply the timing verification algorithms in system exploration at different TLM 

levels.  

As there are many definitions of TLM and many development environments 

proposing TLM in their design cycle with several pro and contra, in the context of 

our research we define a hardware/software (Hw/Sw) specification and simulation 
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methodology which supports TLM in such a way that several modeling concepts can 

be seen separately. Relying on the use of modern software engineering technologies 

such as XML, XSLT, XSD, object oriented programming and others supported by 

the .Net Framework, an approach that makes an intermediate design model reuse 

possible in order to cope with time-to-market constraint is presented. The proposed 

TLM design methodology provides a general approach in system modeling that 

separates various application modeling aspects from system specification: 

computational models, used in application modeling, supported by the language used 

for the functional specification and provided by simulator. As a result, in the system 

model we can clearly identify system functionality without details related to the 

development platform thereby leading to a better “portability” of the application 

model.  

 

Keywords: Hardware/Software system modeling, timing verification, temporal 

constraints analysis, transaction level modeling, multiple abstraction levels. 
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Chapter 1. Introduction 

1.1 Motivation 

Hardware/Software (Hw/Sw) systems are widely presented nowadays. Their 

impact on our life is very important as these systems are present in a variety of 

applications such as audio and video consumer products, communications, desktop 

and mobile computers, as well as professional areas like traffic control, 

environmental applications, driving and car control, medical systems, etc.  

The increasing penetration of Hw/Sw systems in products and services creates a 

necessity of their efficient development. Several facts, which make the achievement 

of this goal quite complex, are:  

– Increasing complexity of applications 

– Increasing degree of integration  

– Heterogenic nature of products and services 

– Wide diversity of non-functional constraints and applications 

– Shrinking time-to-market time 

– Increasing importance of system flexibility [71]. 

According to Moore’s law, the complexity of integrated circuits in terms of the 

number of transistors on a chip will double every 18 month. This growth of 

complexity of micro-electronic components will correspondingly lead to exponential 

growth of the complexity of Hw/Sw systems. Furthermore, as the complexity of 

applications is increasing continuously and modern applications describe often the 

functionality of different nature, the complexity growth in the number of different 

technologies needed in building an Hw/Sw system is evident.  

The facts mentioned above render the productive design difficult, leading to a 

necessity of resolving the following challenges in system design:  

– Assuring the reuse in different forms 
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– Assuring the design of the right system on target, without over and without 

under specification  

– Supporting in the design flow a passage from executable specification to 

implementation 

– Providing improved verification and validation techniques as these tools 

remain a significant bottleneck in system modeling. 

 All system design challenges listed above presume several opportunities for actions 

detailed in the embedded systems roadmap [71] and the semiconductor design 

roadmap [72].  

1.1.1 Reuse 

Reuse is an important factor in making the development process efficient. 

The amount of reuse in different forms has to increase drastically. In the embedded 

systems roadmap [71] it is indicated that the amount of reuse of existing hardware, 

software and Hw/Sw components has to increase from 20% to at least 80%. In this 

direction it is necessary to promote, facilitate and develop the reuse of intellectual 

property (IP) blocks comprising both hardware and software components. For 

example, current embedded software methods and tools do not support reuse [71]. IP 

block descriptions have to be standardized in order to facilitate their exchange and 

integration in different design methodologies. Furthermore, the IP blocks regarding 

behavior, cost and performance have to be presented at different abstraction levels to 

achieve the highest degree of reusability.  

1.1.2 System specification  

The increasing internal and external complexity of systems as well as their 

diffusion into a multi-disciplinary world makes it very difficult to establish a 

specification that can serve as input, following a subsequent transformation, to a 

suitable implementation. The heterogeneity of designed systems will require that 

several technologies of implementation be combined on a carrier technology. 

Reusable parts and different kinds of metrics quantifying the design experience must 
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be developed to aid the designer in balancing constraints of different nature to obtain 

the final specification. In the specification domain, an urgent need exists for the 

development of methods that close the gap between requirements and specification, 

in particular in the expression of different kinds of constraints. Specifications and 

design representations need to be augmented with means to express properties which 

go beyond behavior and structure. The languages used in system modeling must 

make possible to express different time models and different constraint types such as 

real-time constraints, throughput, power dissipation and silicon area.    

1.1.3 Design flow  

The design flow of different methodologies can be divided into two parts: the 

first covers the flow from idea to some form of executable specification and the 

second covers the flow from executable specification to final implementation. The 

executable specification of the two parts of the design flow can be based on various 

models and can be presented at different levels of abstraction varying over a wide 

range and representing the system description with a different amount of details. This 

diversity of models and representations imposes an additional demand on the 

correctness of the design flow, on the capabilities of the design representations and 

on the correctness of the semantics of these representations, leading to the 

formalization of the entire design process. This in particular holds for the design flow 

from executable specification to the final implementation. The different steps in the 

design flow should be connected together in a more appropriate and less error prone 

manner. The development methods must put more emphasis on the formal semantics 

and models on which the design flow and the design representations are founded. 

Thus, developments in the area of design representations and design languages are 

needed. 

 Currently, no design languages or representations do exist that can be used 

throughout the design process. Moreover, at high levels of specification we need an 

integral representation of components of different nature, i.e. we need an appropriate 

representation of physics, mechanics, etc. together with behavior and structure. The 

design space exploration styles have to allow for requirement analysis in a mixed 
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technology framework by co-simulation of executable models of heterogeneous 

building blocks at the appropriate abstraction levels. It is necessary to develop 

methods and tools to explore design decisions concerning the allocation of 

computation and communication to resources with the possibility of early evaluation 

of the consequences of system requirements and obtaining high-quality solutions.  

Another aspect of supporting a passage from specification to implementation 

is further automation of design tools. This trend imposes supplementary exigencies 

on compilers and translators used in the design. In this context a compiler is any 

translator that translates one representation into another and performs synthesis and 

optimization. The ultimate goal of the compiler is automatically map the behavior 

expressed by an executable specification on hardware. Thus, the compiler can 

determine both – underlying hardware and software. The derivation of hardware 

architecture from behavioral specification has to be based on several cost functions. 

Furthermore, for this hardware the dedicated software has to be generated too. The 

other kind of compilers urgently needed in Hw/Sw system design is a retarget 

compiler that efficiently delivers a code to execute on these designs. For these 

compilers a suitable representation of the target architecture is needed. 

1.1.4 Verification and validation techniques 

At each step of the design flow it is necessary to check whether the design 

implements the desired functionality. There are various techniques to do this; these 

can be separated into formal and non-formal groups. As modern designs are quite 

complex, there are very large state spaces associated with them. As such, current 

formal verification tools are not capable of examining these spaces in their entirety. 

Thus, a large part of verification is effectuated by simulation and emulation. The 

tendency of the design complexity to grow will maintain a need for simulation. 

However, as stated in the International Technology Roadmap for Semiconductors 

(ITRS) [72], the simulation does not scale as designs grow; simulation techniques 

can only cover a part of the design space. Therefore some new approaches have to be 

proposed to cope with the design verification issue. The shift from non-formal to 

formal verification techniques is considered as a breakthrough of the design 
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verification issue. The integration of formal verification and validation techniques 

with the design flow are the only ways to solve the growing simulation burden of 

verifying the correctness of the design steps. Although formal verification and 

validation are not feasible for all designs, they can be applied successfully in many 

cases. The analytical power of verification and validation tools has to be improved. 

Furthermore, much more attention has to be given to the correctness of the design 

tools. Verification and validation will be needed at low levels of abstraction as well 

as at higher levels. The relation with the top-level specification is very important to 

allow for integration of verification techniques in the system design flow. Electronic 

Design Automation (EDA) tools in general deal with the register transfer level (RTL) 

of abstraction and the abstraction levels below. At these levels EDA tools are very 

powerful, but as they demand very detailed system description they are very slow 

and are not suitable for validation of a whole complex system that could be further 

implemented in software or hardware. Thus, there is a gap between the system level 

modeling (SLM) and register transfer level (RTL) design (Figure 1) and a strong 

need for tools to bridge the system level to RTL gap in design and verification exists.  

 

Figure 1: SLM to RTL gap [74] 
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Analyzing the modern trends and tendencies in hardware and Hw/Sw system 

design we could summarize in the next paragraph the most promising solutions 

dealing with the above discussed problems. These solutions have been used in our 

research providing in this way new methods to cope with modern system design 

challenges.   

 

1.2 Objectives and proposed approach 

Raising the level of design abstraction, the need to increase the design 

productivity and reuse in all forms and at all levels are a must in designing 

increasingly complex systems. The necessity of a design methodology covering a 

passage from executable specification to implementation providing the system 

description and refinement at different abstraction levels, addressing the design 

productivity challenge, supporting reuse in different forms, providing sophisticated 

verification and validation techniques becomes evident.  Several solutions aimed at 

efficient development were recently proposed.  

The Transaction Level Modeling (TLM) paradigm supporting multiple higher 

than register transfer abstraction levels is one of these solutions. In TLM, the 

computation and communication components are modeled separately. Details of 

communication and computation are added gradually as necessary, thereby providing 

acceleration of simulation. The TLM allows the exploration and validation of design 

alternatives at higher levels of abstraction.  

Software engineering technologies and paradigms are actively explored in the 

Hw/Sw design domain to augment design reuse. Several system level languages such 

as SystemC and SystemVerilog have some deficiencies that need to be eliminated. 

For example, these new languages cannot be used in system modeling by both 

hardware and software designers as they have some limitations in terms of visual 

descriptions and ease of use at the system level [74]. Some examples of work in this 

direction are:  
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– Using UML in conjunction with SystemC as a hardware requirement and 

description notation [76]-[78].  

– Using XML technology for model descriptions [79], as storage format [79], 

or for description of meta-data for IP documenting [82].  

Timing analysis and verification are important parts of system design. 

Accelerating these activities can drastically speed up the overall design process. 

In this work we present a model of timing specification that can be used for 

acceleration of design space exploration in the Transaction Level Modeling design 

flow enhancing in this way the most promising simulation technique by analytical 

methods. The analytic timing specification representation is completely independent 

from description/modeling languages; this opens another possibility in terms of 

reuse. The analytical temporal model can be integrated in different design 

methodologies. 

In the current design methodologies it is impossible to decouple the system 

model from the details imposed by the design framework. There are many aspects 

that influence the transformation of the initial specification into implementation thus 

making it non reusable in its intermediate forms by other design methodologies.  The 

aspects, which are used in the design methodology to express the system model at 

different abstraction levels, are: design flow structure, choice of the specification 

language, computational models and paradigms. We propose a method permitting to 

achieve the orthogonalization of different modeling concepts providing in this 

manner better possibilities of reuse. The method is based on using the XML 

technology and the .NET Framework as a design environment for system 

specification.  

The .NET Framework has been designed to ease application development in the 

highly distributed and heterogeneous environment of the Internet, something which 

assures powerful multi-paradigm support. In the software domain, the .NET 

Framework is becoming more and more a dominating design environment. These 

two facts make choosing the .NET Framework as a development platform very 

suitable and perhaps one of the best currently available solutions. Using .NET design 
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capabilities such as XML support, interoperability, .NET Framework class library, 

object-oriented programming, provides new possibilities in system exploration and 

eases and accelerates Hw/Sw system codesign. 

 

1.3 Contributions 

Our contributions in this work are: 

– Proposition of a timing expression methodology in TLM flow. Currently, 

there is no methodology for timing specification representation in TLM. We 

propose to use a combination of two paradigms to accelerate the design 

process: TLM on one hand and a methodology to express timing between 

different transactions on the other hand. Using a timing specification model 

and underlying timing constraints verification algorithms can decrease the 

time needed for verification by simulation [65, 66]. 

– Proposition of methods for communication structure exploration and 

refinement in system design based on temporal constraints analysis. The 

proposed communication structure exploration methodology can be used in 

an automatic protocol generation, in determining temporal specification 

inconsistencies and in adjusting some parameters in the case of platform-

based design methodologies [67] 

– Presentation of a new algorithm with an optimization technique for timing 

verification of systems with deterministic and non-repetitive behavior 

handling all constraint types described in the literature and using the 

linearization of min-max inequalities [Erreur ! Source du renvoi 

introuvable.].  

– Proposition of a specification/modeling methodology that supports 

transactional level modeling in the design cycle in order to handle the 

increasing complexity of systems; closing the gap between system and RTL 
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levels; speeding up the simulation process, providing in this manner a 

methodology that increases the design productivity[62].  

– Development of a methodology where the specification is not committed to a 

hardware description language (HDL) nor to a specific programming 

language. This will allow reuse at different design stages, easier design 

exploration and exchange of specification between different users having 

different HDLs and implementation environments. 

– Validation of the intermediate models’ structures at each abstraction level in 

order to assure correctness of the modeling. As correctness of design tools is 

a necessity in modern conditions, the possibility to guide the designer in the 

designing process through multiple abstraction levels respecting several 

modeling rules guarantees error reduction in system design.   

– Combination of the transaction level modeling paradigm with software 

engineering technologies in order to provide an efficient method of separation 

of concerns. Using software engineering technologies in TLM expression 

eases the creation of high level transaction models and provides a method to 

productively explore some architectural concerns at a high level of 

abstraction [63]. 

1.4 Outline of the Thesis  

The thesis is organized as follows: Chapter 2 presents an overview of existing 

design techniques underlining the diversity of different aspects differentiating them. 

It covers the existing design flow structure and the computation models used in 

specification languages and in application modeling.  This review serves to 

demonstrate the enormous influence of the chosen methodology on intermediate 

representations of the modeling system. Particularly, attention is given to the 

presentation and evolution of the transaction level modeling paradigm.  

 Chapter 3 describes current software engineering technologies such as 

XML/XSLT and .Net paradigms that we use to achieve the separation of some 

environment related concerns from system representation. An overview of some 
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Hw/Sw design methodologies that use these software engineering technologies 

together with a discussion of the similarities and differences between them and the  

approaches that we have used are also presented in Chapter 3. The TLM Hw/Sw 

specification and simulation methodology is detailed in Chapter 4. At the beginning 

of this chapter, we present a description of the abstract model used for application 

modeling. Further, the XML abstract model representation is given followed by an 

explanation of methods assuring correct abstract model construction and simulation 

model generation. Finally, some experimentation results are given and discussed at 

the end of the chapter.  

 Chapter 5 covers a timing representation model. At the beginning, related 

work is presented and discussed. We analyze and summarize the descriptions of all 

constraint types and establish relationships between several of them. In addition, we 

present and discuss existing algorithms, introduce a new timing verification 

algorithm with an optimization technique and demonstrate experimental results. 

Finally, an application of the presented timing verification methodology in the TLM 

design flow is given and Chapter 6 concludes the thesis and gives directions for 

future work. 
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Chapter 2. Existing design techniques 

Design methodology is the key element in product development. Today’s 

systems are often too complex and require a strong methodology for successful 

product delivery. There exist a number of approaches in hardware and Hw/Sw 

system modeling. However, all design practices cover the design fully or partly, from 

system behavior to its detailed implementation, having the same goal: breakdown 

design complexity and produce better designs in shorter time (Figure 2). 

 

Figure 2: Design process 

Specification describes system behavior and non-functional system requirements 

such as: 

– time constraints 

– power/energy constraints 

– safety requirements 

– environmental aspects 

– cost, etc. 

System specification can be formulated in natural language or using specification 

languages that make it more detailed and unambiguous. The intended behavior of the 

designed system can be presented as a relation between inputs and outputs or as an 

algorithm.  

Specification 
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In today’s design methodologies it is impossible to decouple the system model 

from the details imposed by the design framework. There are many aspects that 

influence the transformation of the initial specification into implementation making it 

non reusable in its intermediate forms by other design methodologies.  These aspects 

are: design flow structure, choice of the specification language for modeling, 

computational models and paradigms used in the design methodology to express 

system model at different abstraction levels. 

2.1 Main design flows 

There are three general strategies in system modeling based on the design flow 

structure: top-down, bottom-up and meet-in-the middle.  

Top-down strategies, such as that proposed by the System-On-Chip 

Environment (SCE) [1] start the design flow from system behavior description 

representing the design’s functionality and refine it by adding implementation details 

until the system gradually reaches the implementation model. In general, system 

architecture is generated from behavior in these kinds of methodologies.  

Bottom-up approaches, such as those used in [5], deal with the existing 

computation components, which are assembled by means of inserting wrappers 

among them. Bottom-up strategies focus on component reuse and wrapper 

generation. 

Meet- in-the middle approaches [2] and [3] are a combination of both 

bottom-up and top-down strategies. In systems developed using the meet-in-the 

middle approach, system architecture is predefined but the system behavior has to be 

explored and refined to meet architecture constraints.  

2.2 Specification/description languages 

The choice of a suitable language for system specification is very important for 

the design methodology. Generally a trade-off between several criteria such as the 

expressiveness of the language, the automation capabilities provided by the model 
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underlying the language as well as the availability of methods and tools supporting 

the language [34] must be made. Specification/description languages describe the 

desired functionality of a system in a way that captures system characteristics. The 

semantics of each language are defined by the underlying model of computation 

[14]. This model defines the expressiveness of the language, i.e. what kind of 

systems can be described with the language. Languages with high expressiveness can 

specify numerous systems with different characteristics. However, they also make 

formal reasoning and automated synthesis extremely complex and in some cases 

impossible [14]. Below, we will consider some specification languages used in 

hardware and Hw/Sw modeling. They can be categorized as follows: 

– Programming Languages or system level design languages (SpecC, SystemC, 

etc.) 

o The SpecC language [20] is defined as an extension of the ANSI-C 

programming language with the goal of supporting specification and 

design of digital embedded systems, including hardware and software 

parts. The SpecC language features concepts essential for embedded 

system design such as behavioral and structural hierarchies, 

concurrency, communication, synchronization, state transitions and 

timing. 

o SystemC [18] is a C++ class library and a simulation kernel that 

allows the creation of cycle-accurate models and system-level 

designs. The SystemC class library provides the constructs needed to 

express hardware timing, concurrency, and reactive behavior that are 

missing in standard C++. 

– Hardware Description Languages (VHDL, Verilog, etc.) 

o VHDL (VHSIC Hardware Description Language) [42] and Verilog 

[43] are the standard description languages for digital systems. They 

support very well system description at low levels of abstraction 

(RTL). System representation at high levels of description is possible 

but complex and is not widely used by the designers.  



 

   

14

 

– Languages specialized for specification of systems in particular areas and 

displaying  unique features: 

o Formal Description Techniques (LOTOS, SDL, etc.) 

 LOTOS [35] (Language of Temporal Ordering Specifications) 

is a language that is very suitable in describing concurrency, 

communication and data structures; however, the concept of 

time is missing. It is based on Process Algebra. The properties 

of Process Algebra are used in order to prove correctness of 

specifications. The language is widely used in protocol and 

distributed systems specifications. 

 SDL [36] (Specification and Description Language) is a 

general purpose description language for communicating 

systems. It is based on the model of extended finite state 

machines and can be used to model real-time, stimulus-

response systems. 

o Real Time System Languages (Esterel, Statecharts) 

 Esterel [48] is a programming language dedicated to 

programming reactive systems, including real-time systems 

and control automata. This language provides powerful 

concepts for expressing time, though the communication 

model is restricted to the specification of synchronous systems 

[44]. 

 StateCharts [45] is a language that has been developed in order 

to deal with problems of specification and design of large 

reactive systems. The basis for the StateChart language is the 

Hybrid state machine proposed by David Harel. StateCharts is 

used to depict the behavioral view of a system, which is 

described by means of hierarchical states with corresponding 

transitions. Moreover, these transitions are triggered by 
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conditions and events. The communication model used in 

StateCharts is broadcasting whereas the execution model is 

synchronous. 

o Parallel Programming Languages (CSP, Occam) 

 CSP (Communicating Sequential Processes language) [46] is 

Process Algebra designed for the description and analysis of 

concurrent systems. CSP is based on formal mathematics 

thereby allowing the designer to specify requirements 

unambiguously and to satisfyingly prove their implementation.    

In the next section, we will consider some of the models of computation 

commonly used to describe hardware and Hw/Sw systems that have been employed 

in the above presented specification languages. 

2.3 Models of computation  

A model of computation in the general sense can be defined as a set of 

theoretical choices that adequately express some problem. We can distinguish a 

computational model or models underlying the specification language from 

computational models that can be constructed on the top of the language. 

Any design can be viewed abstractly as a set of components interacting with each 

other and with their environment. In this context, the model of computation describes 

the behavior and interaction methods of these components. The aspects that models 

of computation usually refer to are: 

 internal semantics of component functionality related to it computation  

 communication  

 relationships in terms of concurrency 

Concurrency is one of the aspects that differentiates computational models. The 

concurrency can be 

 Data-driven  
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 Control-driven. 

In data-driven concurrency the ordering of executions is not explicitly specified. 

Parallelism is determined by data dependencies. In control-driven concurrency 

explicit constructs are used to specify parallel and sequential execution. 

Various communication and synchronization mechanisms are used in the 

different computation models: shared memory, message-passing communications, 

blocking and non-blocking communications control-depending and data-depending 

synchronizations. The last very important component of each computation model is a 

time representation [14].   

A variety of models have been proposed for concurrent systems. We will 

consider some computation models commonly used to describe hardware and 

Hw/Sw systems: 

 Communicating sequential processes (CSP) 

 Kahn Process Network 

 Dataflow models 

 Discrete Event 

 Petri nets 

 Finite State Machine 

2.3.1 Communicating sequential processes [40] 

In the CSP computation model, the components are sequential processes that 

run concurrently and communicate using the synchronous message passing 

technique. Synchronous communication in CSP means the presence of a mechanism 

that ensures that, in case of data transfer, the receiver process is in an adequate state 

to accept the information. The notion of time is absent. Time consuming actions have 

to be modeled using a pair of events (an event is an atomic action with zero 

duration). This model of computation is very appropriate to represent applications 

dealing with resource management problems. 
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2.3.2 Kahn process networks [8]. 

In this model, concurrent processes (Figure 3) communicate through 

unidirectional channels with unbounded capacity using a first-in-first-out (FIFO) 

policy. A read operation is blocking, i.e. an attempt to read from an empty channel 

will lead to a process stall. A write operation is non-blocking. Processes perform 

sequential computation and, at any given time, they may be in two states: a 

computing state or a waiting for information on one of its input lines state. 

 

 

Figure 3: Kahn process network 

2.3.3 Dataflow models 

 SDF – Synchronous Dataflow [49]. In the SDF model, components execute 

some actions according to a predetermined schedule, i.e. the modeled system 

is presented as a directed graph where the nodes describe computations and 

the arcs data paths. Any node performs its computation (fires) when the input 

data is available on incoming arcs. When the node fires, several tokens will 

be consumed or produced on each arc. In the SDF model, the number of 

tokens on each arc is specified a priori. Communication is strictly controlled 

and there is no notion of time. This model is very appropriate for representing 

digital signal processing applications. 

 HDF – Heterochronous Dataflow. This is a heterogeneous composition of the 

SDF and the finite state machine models. The HDF computation model 
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allows rate changes through state transitions of the FSM, while within each 

state the system can be considered as an SDF model. 

 DT – Discrete Time. This model is an SDF model with the added notion of 

time. Furthermore, it has a global time and period. 

2.3.4 Discrete Event 

In discrete event models [50] system components communicate according to 

the events that are ordered on a global timeline. An event is an instantaneous action 

which causes a transition from one discrete state to another. The communication 

between computational tasks (processes) is implemented by means of signals that 

represent a set of atomic events occurring in some instant of physical time. Thus, 

each event is associated with a value and a timestamp [47]. Each action can be the 

event generator or event receiver. This computation model is widely used in digital 

logic to simulate behavior of digital systems (VHDL, Verilog simulators). 

2.3.5 Petri nets 

Proposed by C.A. Petri in1966, the Petri nets computation model consists of 

three elements: the S-elements (places), T-elements (transitions) and tokens. Places 

and transitions are related to each other by a flow relation. Two important 

characteristics of Petri nets are concurrency and the asynchronous nature of this 

model. The asynchronous property signifies that there is no inherent clock 

mechanism for firing transitions. Petri nets are very useful to represent the control 

structures of digital systems. 

2.3.6 Finite State Machine  

The FSM model consists of a set of sequential states linked by transitions. An 

operation of the system is strictly ordered by a set of corresponding transitions. As 

the classical FSM representations do not allow concurrency of states, a number of 

extensions and variations have been suggested: 

– Extended-FSM,  
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– Codesign FSM [51].  

2.4 Transaction Level Modeling (TLM) 

The TLM modeling approach has been widely discussed in system-level 

design community as an approach to handle the complexity of system-on-chip and 

time-to-market pressures [6, 7, 21, 22, 23]. There are many definitions of TLM and 

many development environments proposing TLM in their design cycle. In this 

section, we will consider some TLM definitions, the evolution of this modeling 

paradigm and why it became the first choice for many researchers. 

Most definitions denote transaction level models as models where the 

communication and computation of systems are considered separately. This 

definition has a vague meaning and there are many types of models that fit this 

description.  

2.4.1 SpecC definition 

The TLM definition proposed by L. Cai and D. Gajski [6] is closely 

connected to the SpecC modeling principles. We have mentioned the SpecC 

modeling language in subsection 2.2. 

TLM in SpecC interpretation defines several transaction level models, each of 

which is adopted for a different design purpose. These TLM models are: 

 Component-assembly model 

 Bus-arbitration model 

 Bus-functional model 

 Cycle-accurate computation model. 

The TLM models serve to simplify the design process by slicing the entire design 

into several smaller design stages. Each design stage has a specific design objective. 

At each of these design stages, the corresponding models can be simulated and 

estimated independently. The system modeling graph shown in Figure 4 relates 

different models. On the graph, the axes represent computation and communication 
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with a time accuracy of three degrees: untimed, approximate-timed and cycle-timed. 

The untimed degree signifies computation/communication descriptions without any 

notion of time and represents the description of only pure functionality. The 

approximate-timed degree presumes that system level implementation details are 

added to system descriptions. The models with this degree of time accuracy contain 

information about the selected system architecture and the specification process 

mapping to the processing elements of the system architecture. The cycle-timed 

computation/communication models contain implementation details at system and 

RTL levels. In the system modeling graph shown in Figure 4, the TLM abstraction 

models (B, C, D, and E) are shown together with two others, namely the 

specification and implementation models. This is done to demonstrate the 

relationships between all models used in design.  

 

 

Figure 4: System modeling graph 

The specification model is untimed and can describe system functionality 

without implementation details. The component-assembly model describes 

concurrently executing processing elements which communicate through channels. 
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The communication part of the model is untimed while the computation part of the 

model is timed. The estimated time of computation is computed by a system level 

estimator. The component-assembly model explicitly specifies the allocated 

processing elements in the system architecture and the mapping decision of 

processes to processing elements. In the bus-arbitration model, some bus protocol 

details are added with approximate timing to the channel message passing 

mechanism.  The bus-functional model contains cycle accurate communication and 

approximate-timed computation descriptions. Two types of bus-functional models 

exist: time-accurate and cycle accurate. Time-accurate models specify timing 

constraints of communication; cycle-accurate models specify the time in terms of the 

bus master’s clock cycles. In the cycle-accurate computation model, the computation 

is cycle-accurate, i.e. computation components are pin accurate and function cycle-

accurately whereas communication is approximate-timed. Finally, the 

implementation model represents cycle accurate communication and computation. 

The processing elements are defined in terms of their register-transfer or instruction 

set architecture.  

 In Figure 4 a common design flow is indicated by the gray solid arrow going 

through the specification and bus-arbitration models and finishing with the 

implementation model. The specification model represents system functionality, the 

bus arbitration model denotes abstract system architecture and the implementation 

model deals with cycle-accurate system implementation. The bus-arbitration model 

(C) divides the system flow in two stages: system design and component design. In 

the first stage, the system architecture is selected or generated and the system 

behavior is mapped to that architecture. In the second stage of the design flow, the 

computation and communication components are refined to a cycle accurate level 

and possibly synthesized. Different design flows containing different models exist.  

2.4.2 SystemC definition 

Below, we will consider the SystemC (section 2.2) definition of TLM proposed 

by A. Donlin [7]. According to [7], TLM refers to a set of abstraction levels each 

differing from one another in the degree of expression of functional or temporal 
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details. These levels, and the possible design flows through the TLM space, are 

presented in Figure 5 together with an indication of their situation between the 

algorithmic (ALG) and register transfer levels (RTL) that are not considered to be a 

part of TLM space.  Transaction-modeling levels are: 

 Communicating Processes (CP)  

 Communicating Processes with Time (CP+T) 

 Programmer’s View (PV) 

 Programmer’s View with Time (PV+T) 

 Cycle Accurate (CA) 

 

Figure 5: TLM Abstraction Levels and Potential Flows [7] 

The Communicating Processes level is characterized by the representation 

of system behavior as a network of parallel processes that exchange complex, high-

level data structures. Processes communicate using point-to-point links. Systems 

described at this level are generally architecture and implementation independent. 

However, the separation of functionality into parallel tasks imposes some 

architectural concerns. The main activity at this abstraction level is functional 

verification (Figure 6). 
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Figure 6: CP level 

At the Communicating Processes with Time level, some timing information 

has to be added. Nodes may contain quite accurate or high-level estimates of timing 

data. Communication timing models are abstract and the exact communication 

protocol is not defined. The main design activity is design space exploration (Figure 

7). 

 

Figure 7: CP+T level 

The Programmer’s View level defines a transport mechanism between 

model components with some elements of arbitration. The hardware sub-system at 

this level may be seen as an accurate programmer’s representation by low-level 

software drivers.  

The Programmer’s View with Time level is functionally identical to the PV 

level model with the exception of timing information. The timing model is much 

more precise. The abstract communication structure is transformed to a given 

interconnection type and soft-real-time functional verification is enabled (Figure 8).  

Simulate
Analyse, Verify,

Partition, Combine

Timing
Models of

nodes

IP User IP

Processor



 

   

24

 

Figure 8: PV, PV+T levels 

The Cycle Accurate model contains micro-architectural details. It has all 

timing annotations and is accurate to the level of individual clock cycles. 

According to the features and requirements of particular product-types the author 

[7] distinguishes five TLM use-models which are suitable for different application 

domains. Each use model will respect a design flow which is a subset of levels and 

paths given in the Figure 5: 

– Use-Model 1 (UM1) is a model of ASSP-based (Application-Specific 

Standard Products) systems. The basic characteristic of such systems is their 

pre-ordained architecture. A designer has to implement an application on a 

given platform, i.e.  in software destined to execute on the ASSP. As UM1 is 

characterized by its software dominated nature, CP and CP+T levels are not 

applied. PV and PV+T levels support hardware platform parameter tuning 

and functional verification. The CA level enables detailed performance 

analysis of the application using elaborate platform parameter tuning. 

– Use-Model 2 (UM2) describes systems based on structured ASIC (Library-

oriented micro-architecture design). In these systems, a hardware subsystem 

is a result of an incremental refinement of an existing reference architecture 

specification. Customization of the subsystem specification in these models is 

limited by the next type of variations: 

o IP module replacements 

o Addition of some small number pieces to IP 

o Alternation of the IP provision subset. 
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In UM2, the CP level captures the application behavior description in an 

architecture agnostic manner. The CP+T level is not used. The PV level 

enables software development and functional verification whereas PV+T and 

CA support the same activities as in UM1.        

– Use-Model 3 (UM3) is a model from the Structured ASICs domain with a 

much greater degree of hardware subsystem customization than UM2. This 

allows satisfying design performance goals, functional goals or both. In this 

model, the designer works with a reference hardware architecture and with 

the ability to add custom-designed IP to the interconnection architecture of 

the system. In this model, CP, PV, PV+T and CA levels support almost the 

same activities as in UM2. The increasing degree of customization in UM3 

introduces some design space exploration presented at the CP+T level by 

means of high level performance estimation and partitioning of application 

functionality.    

– Use-Model 4 (UM4) is based on custom designed ASIC. In this model, there 

is no initial architecture template; some vendor supplied component models 

are still present. Comparing with UM3, much more application functionality 

is partitioned into the hardware domain with the aim of realizing it as a 

custom logic. The design activity in UM4 is equivalent to that in UM3. There 

is one difference, however, in the shifting of emphasis from PV, PV+T to CP 

and CP+T levels.  

– Finally, Use-Model 5 (UM5) presents a model that allows customization of 

all system aspects to achieve maximum performance and functionality. In this 

model design space exploration plays an extremely important role. All 

abstraction levels are presented in UM5, but the most significant work is 

concentrated in the CP and CP+T levels. 
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2.4.3 Open Core Protocol – International Partnership TLM 

definition 

The Open Core Protocol – International Partnership (OCP-IP) TLM defines a 

set of layers of abstraction that together create a link between architecture 

exploration and System on chip (SoC) implementation. These layers are: Message 

Layer (L-3), Transaction Layer (L-2) and Transfer Layer (L-1) [58]. 

 The Message Layer or Layer 3 is the highest level of abstraction which can 

be used by SoC architects to prove concept tools, to rationalize first order functional 

partitioning and to explore some system level architectural concerns. This layer is 

also one of executable specifications. L-3 models are untimed and event driven. 

 The transaction Layer or Layer 2 serves to make detailed hardware 

performance analysis and hardware/software partitioning. At this level, low level 

drivers can be interfaced with hardware simulation models and Operating System 

simulators can be integrated with hardware emulators. L-2 models are structurally 

accurate enough to allow modeling a complete system. An event-driven 

computational model contains approximate timing and is highly parametrical.  

Computation models at the L-2 level are independent of any bus fabric protocols. 

 The transfer Layer or Layer 1 is used by designers to perform detailed tasks 

such as modeling the interfaces of embedded processors, creating cycle accurate test 

benches and carrying out cycle accurate performance simulations. L-1 models are 

clocked cycle-accurate. 

2.4.4 TLM evolution 

We have only presented some TLM definitions from the myriad available. As we 

can see, the necessity of standards in TLM was urgent [59] in order to provide a 

possibility for model exchange within companies and across IP producers. Some 

attempt has been done early trying to link the Open SystemC Initiative (OSCI) and 

OCP-IP TLM world [58]. Furthermore, the initial SystemC definition [7] has been 

revised and OSCI TLM levels have become [58]: 

– Programmer’s View (PV) 
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– Programmer’s View with Timing (PV+T) 

– Cycle Callable (CC). 

TLM abstracts away the number of events and the amount of information that has 

to be processed during simulation of the minimum required. In SystemC, the TLM 

definition of the necessary information is presented to the designer as a TLM API 

(Application Program Interface). The OSCI TLM API represents a set of interfaces 

that define how models communicate. At PV level, an interface does not contain 

communication events, carries little timing information and is implemented as a 

function call.  At PV+T level, the simulation can switch between two interfaces with 

and without timing. This level is characterized by allowing model refinement without 

changing the functional description of the model’s behavior. The CC level provides a 

cycle accurate modeling style. The interface explicitly describes the cycle-by-cycle 

behavior. As the behavior of the model is coupled with the interface, it includes cycle 

timing. The CC level uses higher level ports rather than pin-accurate signals while 

still remaining at TLM abstraction.  

Recently, a new transaction level modeling standard, TLM-2.0, was announced 

by OSCI [19]. Standard transaction level modeling approaches aim to enable model 

interoperability and exchange within companies and between companies. The new 

standard includes some changes. Models have been categorized according several 

characteristics such as granularity of time, frequency of model evaluation, functional 

abstraction, communication abstraction and use cases. The existence of a variety of 

use cases for transaction level modeling is explicitly recognized and TLM-2.0 uses 

an approach of distinguishing between APIs on one hand and coding styles on the 

other rather than defining an abstraction level around each use case as shown in 

Figure 9. The TLM-2.0 standard defines a set of interfaces and describes a number of 

coding styles for various use cases. The interfaces are low-level programming 

mechanisms for implementing transaction level models and form the normative part 

of the standard thereby ensuring interoperability.  A coding style is defined as “a set 

of programming language idioms that work well together, not a specific abstraction 
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level or software programming interface” [81]. Each coding style supports a range of 

abstraction functionality, communication and timing. 

Use cases

Software
development

Software
performance
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Hardware
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TLM-2 Coding styles Each style supports a range of abstractions

Loosely-timed
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Figure 9: TLM-2.0 approach [81] 

 In our work, we have chosen the SystemC terminology for TLM as the 

SystemC modeling language was in its standardization process. Now, the SystemC 

standardization process has finished with several changes introduced in the new 

SystemC TLM definition. In our work, we referred to the terminology initially 

proposed in [7].   

2.5 Discussion 

There are many of codesign methodologies that use different computational 

models in system modeling in order to simplify the design process of complex 

systems [13, 14, 17, 18, 19]. All modeling elements add to the system description a 

multitude of details which are relevant to the particular environment thus allowing 

the intermediate system representations to be tightly coupled with the design 

environment. In Table I, we summarize different design methodology aspects which 



 

   

29

 

influence the transformation process of specification into implementation for some 

codesign methodologies (the presented list is not exhaustive). 

Table I: Codesign methodologies 

Codesign 
Environment 

Application Specification 
language 

Model 

Vulcan [52] Data oriented HardwareC DFG Set 
Cosyma Data oriented Cx Syntactic tree 
Ptolemy [18] Real Time Silage CDFG 
Polis [17] Control-dominated 

systems 
Esterel CFSM :Codesign 

Finite State 
Machines 

Cosmos Control-dominated 
systems 

SDL SOLAR: 
communicating 
extended FSM  

CoWare [4], 
SPACE [85] 

Various SystemC Discrete Event, 
TLM 

SPADE [57] Signal processing 
applications 

C Kahn process 
networks 
 

SpecSyn [54] Different  SpecCharts Hierarchical 
program state 
machine (PSM) 

Tosca [53] Control-dominated 
systems 

OCCAM CSP 

Chinook [55] 
 

Control-dominated  
systems 

Verilog 
 

Modal processes 

 

All these methodologies use one specification/description language in their 

design cycle. Different computation models provided by some of these design 

methodologies are constructed on the top of specification/description language 

related to the methodology. Utilization of a restricted computation model has the 

advantage that a system might be modeled in an unambiguous way and formal 

verification techniques might be applied. A disadvantage consists of a restriction of 

the represented application class. For the methodologies that support quite general 

computation models, verification by simulation is the only viable solution to test the 

model correctness.  Formal verification techniques may be used to verify only a part 

of the design. In all cases, the process transforming a specification into 
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implementation is highly related to the methodology.  There exists a multitude of 

methodologies, such as CoWare [4] for example, that support reuse at the component 

or module level. It should be noted, however, that we are talking about a finer level 

of reuse here, which is that of functional descriptions used inside a module or 

component for different design methodologies. These intermediate representations of 

a system under design are impossible or difficult to reuse as the computation model 

and the specification/description language choice influence the model description 

enormously.
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Chapter 3. Software engineering technologies  

The application of software engineering methodologies to hardware and 

Hw/Sw design is an active field of research within the hardware design community. 

In our research, we have used modern software engineering technologies such as 

XML, XSLT and other software engineering paradigms in order to represent the 

system model at different abstraction levels with a clear separation from the design’s 

environment details. This approach leads to better model reuse and “portability”. 

3.1 XML technology [9] 

Extensible Markup Language, XML [9], – is a markup language designed to 

provide a standard way to describe content.  

Markup languages are characterized by: 

– Description of the text structure within the document. 

– Separation of content from formatting. 

 Generalized Markup Languages are HTML (Hypertext Markup Language), 

SGML (Standard Generalized Murkup Language) and XML. 

HTML, contrary to SGML and XML, is technically a markup language that in 

reality is used as a formatting language. In HTML, content and representation are 

defined together within the same document. 

SGML is a very powerful markup language that is widely used to handle 

complex, large documents across platforms. SGML’s complexity and a limited set of 

elements for structuring documents in HTML format created the need for XML 

creation.   

XML is a subset of SGML. It provides many of SGML’s complex features but in 

a more manageable form. XML uses element tags to mark up content according to a 

set of rules created by the document’s developer called the Document Type 

Definition (DTD).  
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XML provides the ability to  

– define the new elements and attributes,  

– nest document structures within other document structures, 

– check the validity of document structure.   

With XML, the layout is separate from the content. The mechanism of style 

sheets is used to drive the layout in order to display the content across different 

applications. XSL, Extensible Stylecheet Language, is a language that implements 

the style sheets mechanism for XML. XSL consists of two parts: one is composed of 

some formatting features and the other of XSLT. XSLT (XSL transformations) 

describes syntax for transforming a document from XML format to another. In the 

next subsection, we will give a more detailed description of the role of XSLT in 

XML treatment.  

3.2 XML processing 

Like many formatting languages, XML requires parsers and processors in 

order to adequately convert the incorporated content. Parsers currently used for XML 

usually take the form of a code library written in programming languages. The parser 

verifies the syntax of the DTD and XML document and then the processor provides 

access to the content and structure of the document.  

There are three different approaches to accessing an XML document in a 

program: 

– The Document Object Model (DOM), 

– The Simple Application Programming Interface (API) for XML (SAX), 

– The Extensible Stylesheet Language Transformations (XSLT) approach.  

In the DOM approach, the entire XML document is placed in memory as a 

hierarchical “tree” and the programmer has the possibility to apply various methods 

to locate and manipulate the nodes of the tree. 
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In the SAX approach, a parser analyzes the XML document, identifies each 

element as it is encountered and calls methods supplied by the programmer as the 

document is read. 

The XSLT approach, as we have discussed in the previous subsection, was 

initially a composite part of XSL. However, it was quickly discovered that XSLT 

abilities to reorganize document structure had far greater use outside of XSL. The 

XSLT have become its own recommendation.  

An XSLT document contains the transformation rules that can be applied to the 

source document tree. The rules are presented as a collection of patterns and 

templates. When the pattern is matched, its content is used to fill in the XSLT 

template. The resulting tree contains filled templates with the information gathered 

from the source tree. A transformation process using XSLT means independence of 

source tree organization from the resulting one structure. The XSLT approach is 

widely used in XML processing. It provides a “declarative” style of programming 

that is different from the procedural programming of DOM and SAX. The 

characteristics of three program processing approaches are demonstrated in Table II.    

Table II: Decision matrix for selecting an XML processing approach [9] 

Criterion/Capability DOM SAX XSLT 
Document size Small to 

medium 
Any Any 

Access multiple elements at the same 
time 

Easy Tricky Possible

Rearrange elements Yes No Yes 
Create a new document Yes No Yes 
Modify an existing document Yes Tricky but 

possible 
Yes 

3.3 XSD technology [20] 

The XML Schema (XSD) is a schema definition language expressed in XML 

which is intended to be used to describe structure and to constrain the content of 

XML documents [20]. The XML Schema definition language is the current standard 

schema language for all XML documents and data. XSD improves on the schema 
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functionality provided by the DTD, which was the original form of schema for XML 

documents prior to this technology. 

A schema specifies the rules that complying XML documents have to follow to 

be considered valid. Validation of XML documents ensures that external data 

conforms to the rules defined by the schema, in this manner providing possibilities to 

exchange information between applications with greater confidence and with less 

custom programming to test or to confirm document structure or that some data is of 

a particular type.   

3.4 .NET 

The Microsoft .NET Framework is a software technology that was intended to 

simplify application development in the highly distributed environment of the 

Internet [84]. This objective has to be reached by means of providing multiparadigm 

support. The .NET Framework includes a large library of precoded solutions to 

common programming problems termed the .NET Framework class library. It 

includes programming solutions covering a number of areas. In addition, it also 

provides functionalities for web application development, XML document 

manipulation, cryptography, network communication, data access, database 

connectivity, several numeric algorithms, data structures and user interface. The 

Common Language Runtime (CLR) acts as an application virtual machine providing 

capabilities of independency from the specific CPU that will execute the program. 

The common language runtime manages code at execution time, provides core 

services such as memory management, thread management, remote execution and 

enforces strict type safety and other forms of code accuracy. Programming languages 

on the .NET Framework compile into an intermediate language, the Common 

Intermediate Language (CIL), which is then compiled into native code in a manner 

known as just-in-time compilation (JIT). The common language runtime provides 

built-in support for language interoperability, in other words it allows for the ability 

of code to interact with code written in different programming languages by means 

of specifying and enforcing a common type system and by providing metadata. 
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Language interoperability maximizes code reuse and in this way improves the 

efficiency of the development process. All .NET programming languages targeting 

language interoperability follow the rules for defining and using types which is 

consistent across languages. Metadata defines a uniform mechanism for storing and 

retrieving information about types thereby providing descriptive information about 

the context, condition of data or some data characteristics. Furthermore, several 

elements of the .Net Framework are available as open standards thus creating 

possibilities for third parties to develop compatible implementations of the 

framework on other platforms leading to .NET Framework portability.  

3.5 Hw/Sw design and software engineering technologies 

and paradigms 

Software engineering technologies and paradigms are actively explored in the 

Hw/Sw design domain to increase design productivity and to breakdown the growing 

system complexity by  raising the level of abstraction. Several system level 

languages have been recently proposed to bridge the gap between system modeling 

and RTL levels, though these languages have some limitations in terms of visual 

descriptions and ease of use at the system level [74]. In order to resolve this problem, 

several researchers have proposed to use different software engineering technologies 

and paradigms in hardware and Hw/Sw design. In this subsection, we will focus on 

the review of several works that have used XML technology for Hw/Sw design, as 

we did in ours.  

3.5.1 Sesame framework [79] 

  C. Erbas and al. [79] have proposed a framework named Sesame for the 

system-level modeling and simulation of embedded system architectures. It primarily 

focuses on the multimedia application domain to efficiently prune and explore the 

design space of the target platform architectures. Sesame recognizes two distinct 

models: an application model, describing the functional behavior of an application, 

and a platform architecture model that defines architecture resources and captures 
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their performance constraints. For application modeling, Sesame uses the Kahn 

process network model of computation. During the execution of the Kahn application 

model, each process records its computational and communication actions, such as 

reads or executes, thus generating a trace of application events of coarse grain.  An 

architecture model simulates the performance consequences of the communication 

and computation events by parameterization of each component of the architecture 

model. In order to cosimulate the application and architecture models, an 

intermediate mapping layer is used. The mapping layer executes three functions: 

control of the mapping of Kahn processes onto architecture model components, 

makes sure that no communication deadlocks occur by providing various strategies 

for application event scheduling and dynamically transforms application events into 

low-level architecture events to realize flexible refinement of architecture models. 

The results of system simulations are performance estimates of the system under 

study with some statistical information. To be capable of exploring large parts of the 

design space, Sesame uses analytical methods to identify a small set of promising 

system architectures for system exploration by simulation. The mapping of an 

application model onto an architectural model takes into account three objectives: 

maximum processing time, total power consumption and the cost of the architecture. 

The mapping is effectuated using multiobjective evolutionary algorithms. 

 Sesame’s model description language, which is used to describe the 

application model, the architecture model and the mapping which relates two models 

for cosimulation, is called YML (Y-chart modeling language) and is XML-based. 

The YML language contains several elements and describes simulation models as 

directed graphs.  Sesame’s application simulator reads an YML application 

description file and executes the application model. The object code of each process 

is fetched from a shared library; currently C++ processes are supported. The 

architecture models are implemented in the Pearl discrete event simulation language 

or in SCPEx, which is a variant of Pearl implemented on top of SystemC.  
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3.5.2 Colif [79] 

 Colif is a design representation for modeling on-chip communication at 

different abstraction levels where component behavior is separated from the 

communication infrastructure. In this design representation, system specification is 

presented in a modular manner using the concept of object model and defining its 

semantics at four abstraction levels of communication refinement. In a modular 

system specification, three conceptual entities are used: module, port and net. A 

system in Colif is presented as a set of hierarchical modules interconnected by a 

communication network which in turn can be composed of hierarchical nets and 

ports. This syntactical representation is uniform and can be used to describe 

heterogeneous systems. Each module is defined by its interface consisting of a set of 

ports and content. The module content can be other module instances or a 

composition of tasks. The Colif object model has a declarative part and an instances 

part. The declarations represent objects that define a reusable template. The classes 

describing Colif objects are polymorphic and their semantics change according to the 

abstraction level that is considered. The interface between components is 

implemented using the port concept. These are classified into two categories: internal 

and external. This allows for providing a mechanism to mix different abstraction 

levels within the same description. Furthermore, this concept permits the separation 

of behavior and communication. Different port instances are connected using the net 

object. The net object can hide very complex behavior. The flexibility of the Colif 

representation resides in the permission of the hierarchical structure of modules and 

in the generalized net and port concepts.  

The format used for Colif representation is XML.  Arbitrary complex object-

data models can be created using a special XML dialect called Middle-ML grammar.  

In the later stages, a special design tool generates a cosimulation model.  

3.5.3 IP-XACT [82] 

The IP-XACT design-exchange standard was developed by the SPIRIT 

(Structure for Packaging, Integrating and Re-using IP within Tool-flows) consortium 

[82], an organization that was formed to resolve the need for an integrated front-end, 
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multi-vendor system design flow in the semiconductor industry. Several companies 

signed up for the initiative as the design of complex systems-on-chip was getting 

significantly harder, and building an IP-reuse solution to this problem required an 

improved integration of various design flows and better interoperability of reusable 

IP. 

The IP-XACT specification is deliverable for accompanying IP design files 

written in different popular design languages such as Verilog, VHDL, 

SystemVerilog, SystemC, etc. It is built on W3C standards to allow capture of 

metadata that is used across multiple platforms and applications as shown in Figure 

10. 

IP Views

Generators

Meta Data (XML)

IP Library

Design Environment

IP-XACT for IP descriptions 

specifies ...

 

Figure 10: IP-XACT specification [82] 

IP-XACT describes soft IP, hard IP, verification IP and software. The 

specification documents the software and hardware views of a design, the interface 

of an IP block and the interfaces to standard and custom busses. This allows system 

design tools to automatically comprehend IP integration requirements. IP-XACT 

covers two aspects of IP integration. It includes a XML schema that creates a 



 

   

39

 

common way to describe IP and a tool integration API. The API provides a standard 

method for tools to exchange design data. 

3.6 Discussion 

In this section, we have overviewed Hw/Sw design methodologies using XML 

technology in the design cycle.  In the Sesame and Colif approaches, XML 

technology is used in a similar way:  an XML-based description language is created 

for model descriptions. In both cases XML descriptions facilitate internal 

manipulation of modules. The SPIRIT IP-XACT specification together with its 

associated tools was created with the aim of increasing IP reuse.  

In the following section, we propose a TLM modeling and simulation 

methodology that uses XML technology to increase the possibility of reuse. It should 

be noted that reuse is considered at different degrees of granularity that that seen in 

the SPIRIT approach. In our methodology, the XML document structure has to 

reflect the computational model chosen for modeling and the .NET interoperability 

features have to provide a support of several specification/description languages that 

can be incorporated in a system specification. Similarly to the SPIRIT approach, our 

methodology uses XSD schema technology to validate XML specifications as well 

as XSLT transformations to generate the executable system models against “SPIRIT” 

generators that enable automated design creation and configuration. 
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Chapter 4. TLM Hw/Sw system specification and 

modeling methodology 

The TLM paradigm permits a more efficient system exploration and an 

increased simulation speed than traditional RTL design. The possibility of easy and 

efficient modeling at TLM levels can reduce the development cycle and lead to 

accurate implementations. These reasons are at the root of TLM modeling becoming 

very popular and widely adopted in the system level community. When we started 

our work, there was no accepted methodology for timing specification representation 

in TLM. The existing TLM methodologies (Section 2.4) were tightly coupled with 

specification/description languages rendering the integration process of timing 

specification methodology difficult. They provided reuse at component level and not 

at “code” level where code segments written in different specification/description 

languages might be merged and simulated together. Recently, works [89] realized in 

the context of the MARTE [87] and AADL [88] projects have appeared providing 

methods of temporal analysis following the TML 2 standard [81]. MARTE, a UML 

profile for Modeling and Analysis of Real-Time and Embedded Systems, and 

AADL, an Architecture Analysis and Design Language, are both modeling 

formalisms that support the analysis of real-time embedded systems. In this work, the 

authors propose a new methodology for SoC/SoPC applications where the separation 

of concerns is supported by the MARTE modeling formalism and the description of 

communications follows the TLM 2 standard. This standard does not include the CP 

and CP+T levels, but we think that system refinement should be done through 

multiple abstraction levels, starting from very high abstraction description towards 

the detailed RTL description. Furthermore, in the MARTE formalism, several 

models of computation and communication used in embedded applications are absent 

[89], leading to a limitation of the modeled applications.  As the MARTE/AADL 

approach was unavailable when we tried to introduce the TLM timing specification 

methodology and any existing TLM methodology had not provided a sufficient 

separation of concerns, we have decided to define a TLM modeling and simulation 

methodology in which we can clearly separate several modeling aspects such as 
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timing, behavior, structure, specification/description languages, simulator details, 

etc.  To achieve the orthogonalization of modeling concepts, the methodology 

presented below uses software engineering technologies and paradigms such as XML 

and .Net.  

 The next section will detail the TLM Hw/Sw system specification and 

modeling methodology. 

4.1 Abstract model 

The first abstraction level in Transaction Level Modeling is the 

Communicating processes level, where the system is modeled as a network of 

parallel communicating processes exchanging complex, high level data structures. At 

the CP level, we have proposed to use an abstract model for system specification 

based on the Kahn process network [8]. In this model, processes communicate 

through unbounded FIFOs and it should be mentioned that the Kahn process network 

model matches the TLM CP level description. However, we propose to extend the 

communication mechanism of the Kahn process network model by adding event 

based inter-process communication and shared memory communication. With this 

generalization of the Kahn process network computation model, we lose some of its 

formal properties, though we have extended a class of applications that was explored 

in our methodology. The pure Kahn process network computation model is a 

particular case of a generalized model where event-based inter-process 

communication and shared memory communication mechanism are absent.  

In the proposed abstract model, system functionality has to be distributed 

between parallel processes (Figure 11). The initial parallelism granularity has to be 

defined by the designer. Each process performs sequential computations locally. The 

computation actions can be interleaved with communication actions. Furthermore, 

the extraction of different level of concurrency is limited to the number of 

independent actions that can be defined by a designer. The designer does not get 

support from the methodology in identifying these actions.  
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 The communication scheme in the proposed model allows not only data-

dependent, but also control-dependent synchronization. The data-dependent 

synchronization is modeled using FIFOs channels with unbounded capacity like in 

the Kahn process network model (rectangles in the Figure 11). The control-

dependent synchronization is implemented by means of events (dashed lines in the 

Figure 11). 

...
...

...

  

Figure 11: CP Abstract Model 

A transaction in our model refers to the exchange of data or an event 

occurring between two processes of a modeled system. By generalizing the Kahn 

process network model, we achieve the possibility of enhancing expressiveness for 

data dominated as well as control dominated systems. 

At the CP level, we construct an untimed system model which includes the 

correct ordering of events. The partitioning of functionality between the 

communicating nodes has to be done by the designer. 

The same abstract model is used in test bench modeling which differs from 

system modeling by the introduction of an initial timing annotation of processes in 

order to provide more realistic scenarios for simulation. 

4.2 XML Abstract model representation 

In order to express the CP abstract model, we have chosen the XML 

technology [9]. Extensible Markup Language (XML) provides a way to describe 

structured data using a set of tags. Since we can define an unlimited set of XML tags, 



 

   

43

 

descriptions in this language are very flexible. Furthermore, XML is platform-

independent and is a widely adopted standard, therefore making the retrieving of 

information from XML documents possible in a variety of environments. 

We have defined several XML tags to describe the CP Abstract Model. A 

process’ description and its communication scheme are placed in an XML 

specification. Process functionality is described using one of several programming 

languages supported by .NET thereby making possible the reuse of functional 

specifications written in different programming languages. This feature is supported 

by the .NET language interoperability capabilities. 

System specification consists of a functional description of the system and a 

set of design constraints. In order to unify the functional and non-functional aspects 

of the system under development, the proposed methodology presents the system as 

an XML tree of nodes containing functional and non-functional specifications. The 

initial system specification at the first XML tree level contains the following nodes: 

Environment Model, System Model, Simulation Parameters, Shared Code, Shared 

Data and Constraints. These are depicted in Figure 12 below. 

 

Figure 12: Graphic representation of the XML system specification 

  The structure of the Environment Model node is identical to that of the 

System Model node. The only difference between these nodes is the timing 

annotation of processes in the Environment Model node at the untimed CP level. This 

allows for generation of valid test-vectors for simulation. 

The System Model node’s structure is presented in the Figure 13 and consists 

from one or several Process nodes and a Process Network node. 
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Figure 13: Graphic representation of the System Model node structure 

The Process nodes describe parts of system functionality which are/can be 

performed in parallel. As processes can communicate using either FIFOs, shared 

memory or through events, the corresponding information has to be presented in the 

process description shown in Figure 14. 

In order to specify the system at the CP level, the designer has to fill in the 

corresponding tags for each process in the XML specification indicating the chosen 

transaction mechanism (FIFO, events or shared memory). 

 

Figure 14:  Process node structure 

Figure 15 illustrates the use of XML tags for process description. The 

attribute ProgrammingLanguage defines the specification language used for 

expressing process functionality in the Computation node. Each process can be 
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simple or hierarchical (contains other processes); this is indicated using the 

ProcessStructure attribute. 

 

Figure 15: XML tags for process description 

By default, the process structure is simple. The ProcessName tag contains a name of 

a defining process. As each process can communicate through FIFO, shared memory 

or by means of events, the corresponding instance names for FIFO and shared 

memory have to be indicated in the FIFO and Memory nodes. Computations can 

be interleaved with communication actions in processes; for this reason there may be 

one or several FIFO, Memory nodes. The Declarations node contains 

declarations of local variables. Finally, each process has one or several 

Computation elements consisting of Transaction and 

ComputationBefore(After)TransactionCode  nodes. 

4.3 Verification of the model structure 

Using XML in system description, we have tried to separate multiple modeling 

elements related to the modeling environment, the specification languages and the 

simulator. Another advantage of using XML in system description is the possibility 

of validating the fact that the XML document contains the desired data and structure 

by means of the XML Schema technology [20]. The validation of model structure at 

each abstraction level will guarantee the appearance of not many errors during 

complex system design.  

<Process ProgrammingLanguage="" ProcessStructure="simple" 
ProcessName=""> 
<Fifo FifoName="" /> 
<Memory MemoryType="" MemoryName="" /> 
<Declarations /> 
<Computation> 
<ComputationCodeBeforeTransaction /> 
<Transaction FifoName="" MemoryName="" EventName="" Direction="" 
VariableType="" VariableName="" Address="" /> 
<ComputationCodeAfterTransaction /> 
</Computation> 
</Process> 
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In the presented Hw/Sw simulation and modeling methodology, the XML 

specification structure at CP level reflects the CP abstract model. The XML Schema 

technology permits to verify whether the system description conforms to the abstract 

model and if the XML nodes contain the data of a particular type and a given 

structure. According to the particular TLM level, the XML system specification 

structure contains its associated elements and the corresponding XML schemas are 

used in order to assure the correctness of the automatically transformed code. 

Furthermore, this creates a possibility of reuse of different TLM models. 

In Figure 16 the representation of the XML schema defining a structure for the 

process node is shown. When a designer specifies the process node, its structure 

along with some constraints on the data are validated according to the presented 

schema.  

 

Figure 16: Graphic representation of XML schema for process description 
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4.4 Simulation model generation 

The CP XML system specification is a non executable one. In order to 

simulate the system model, this specification is automatically transformed into a 

simulation model using XSLT transformations corresponding to each abstraction 

level. 

EXtensible Stylesheet Language Transformation, XSLT [15], is used to 

transform the content of a source XML document into another document having a 

different format or structure. We have used XSLT to implement the transformation 

of the system representation from one computational model to another.  Figure 17 

demonstrates a fragment of process node transformation into C# code. We can see 

that if the data of the FifoName attribute is not empty, we have to analyze the 

transaction Direction (read or write) and retrieve the necessary information to 

construct a C# statement. 

 

Figure 17: Fragment of process node transformation 

The simulation model generation flow is presented in Figure 18. The XML 

language allows the definition of an unlimited number of tags. This feature is a 

language advantage though, in the same way it can also be a cause of difficulties. For 

each defined tag, we must provide an implementation according to the semantics of 

the chosen computation model. 

 

<xsl:if test="Transaction/@FifoName[.!='']"> 
<xsl:choose> 
<xsl:when test="Transaction/@Direction[.='write']"> 
<xsl:value-of select="Transaction/@FifoName"/>.Write( 
               <xsl:value-of select="Transaction/@VariableName"/>); 
</xsl:when> 
<xsl:otherwise> 
<xsl:value-of select="Transaction/@FifoName"/>.Read( 
         ref <xsl:value-of select="Transaction/@VariableType"/> O); 
</xsl:otherwise> 
</xsl:choose> 
</xsl:if> 
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Figure 18: Simulation model generation flow 

We have defined a limited set of about sixty tags, structurally organized 

according to the CP Abstract Model.  Process functionality is described using one of 

several programming languages supported by .NET thereby making possible the 

reuse of functional specifications written in different programming languages. This 

feature is supported by the .NET language interoperability capabilities. The 

transformation process of the XML non-executable model, with data specified in 

different programming languages, into a .NET simulation model is presented in 

Figure 19. In simulation models, all transaction implementation details are generated 

automatically.  

CP (CP+T) XML File

XSLT Processor

XML stream or 
C#  text stream or 
C++  text stream

CP (CP+T)  C#  XSLT File

CP (CP+T)  C++  XSLT File

Simulation Model Files

 

Figure 19: TLM level Transformation 
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4.5 Abstract model and TLM 

System behavior at the CP level is seen as a network of parallel processes 

communicating through unbounded FIFOs, shared memory or by events. We have 

chosen the .NET Framework as a development environment as it provides multiple 

classes for XML parsing, validation, and transformation. This support guarantees 

easy XML representation and efficient system description transformations into 

simulation models at different TLM abstraction levels. In .NET, we implement 

parallel process activities using multithreaded programming. As processes at high 

TLM levels exchange complex data structures, the existence of Collections Classes 

that group similarly typed objects is very useful.  In these Collections, memory 

management is handled automatically and the capacity of a collection is expanded as 

needed. In the modeling of data dependent synchronization, we have used a Queue 

Class to implement an unbounded FIFO. The control-dependent synchronization 

used in high level TLM is modeled using the .NET event mechanism.  

The XML language allows for the definition of an unlimited set of tags to 

structure and encapsulate the data. Difficulties appear in using XSLT as the data 

have to be extracted and executable code must be generated by manipulating this 

data according to a certain computational model. For example, in the currently 

proposed abstract model expressing the CP TLM paradigm, we do not support 

dynamic process instantiations.   

By using XML, different types of constraints can be expressed in the proposed 

abstract model. Firstly, we will concentrate on the temporal type of constraints 

associated with different architecture components commonly used in Hw/Sw 

systems. To define the architecture constraints, we will use a component library 

where with each component we will associate timing information in the form of a set 

of temporal constraints. During the transformation of a non-executable specification 

into an executable one, the timing information associated with the architecture 

component will be incorporated in the simulation model. Our simulation is 

performed in several steps. The first step corresponds to system representation at the 

CP level.  Following this first step, we will continue the simulation using the 
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architecture component’s temporal constraints and we will verify them. The second 

step corresponds to system representation at CP+T level. For each simulation, 

increasingly more precise timing information concerning communication and 

computation is added in a path. In this way we can add to the system description the 

implementation details. This process will lead to the system model passing through 

all TLM abstraction levels.    

When the architecture and explicit timing constraints are not specified in the 

model, we suppose that the maximum performance has to be found and that a 

number of architecture configurations has to be explored in order to find a better 

solution for a given system behavior. When a timing violation is found, the designer 

will have to change the architecture constraints if they have been defined, or 

“reengineer” the distribution of system functionality between the processes.  

According to the type of architectural constraints defined in the application 

model, the system model is transformed in one of five TLM use-models presented in 

the section 2.4.2. In the case of heavily architecture constrained systems, a system 

model is a UM1.  For this type of models, the main design activities are concentrated 

at the PV+T TLM level. Use-models UM2-UM5 [7] that may be received as a result 

of architecture constraints relaxation will require design space exploration based on 

performance analysis. A design flow determined by our application model is 

presented in Figure 20. 
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Figure 20: Design flow 

4.6 Experimentations 

4.6.1 System Description 

In this subsection, we present a TLM high level model of an audio-video 

server system. The initial system specification [13] is as follows: a server system 

acting as a video player, allowing users to read or write video or audio sequences. 

These sequences are of variable duration (from one minute to several hours) and the 

sequence rate may range from 0 to 15 Mb/s. The server has to satisfy a maximum 

1000 simultaneous users. 



 

   

52

 

4.6.2 Abstract Model of audio-video server system 

In order to explore the audio-video server system at the CP level, we have 

implemented the test bench or environment and the server CP models (Figure 21). 

 

Figure 21: CP Abstract Models of Test Bench and Server System 

An environment model represents a set of users and consists of one Send, one 

Receive and 1000 PlayRecord processes. At each moment, PlayRecord processes can 

be suspended or reactivated with new data for transmission. The Send process is 

responsible of generating different user commands and sending them to the server. 

The Receive process interprets server responses and communicates the necessary 

information to the corresponding PlayRecord process. As this information must have 

an immediate effect, the Receive process communicates with PlayRecord processes 

using events. All processes in the Environment Model are annotated with timing 

information and, as a consequence, they have some latency during simulation. The 

environment model’s goal is to provide valid test-vectors to the system model. 

The Server model contains one UsersSupervision and 1000 

FragmentSendingReceiving processes. The UsersSupervision process interprets the 

received commands, manages access to the sequence bank, allocates and frees the 

server resources and initiates transmissions. All Server-Environment 



 

   

53

 

communications at the CP level are through FIFOs.  In contrast to the Environment 

Model, the Server system at CP level is completely un-timed with only deals with 

logical event ordering. During a refinement step, we have to ameliorate the system 

description by adding the temporal and functional details. 

4.6.3 XML server system specification and CP server simulation 

model 

Initial functional descriptions for each process in the audio-video server system and 

environment model have been coded in C#. These descriptions, as well as the 

indication of the communication mechanism used for transactions between 

communicating processes have been placed in an XML specification. A fragment of 

the server system specification is shown in Figure 22.  

Figure 22: Fragment of XML server system specification 

The XSLT transformation supporting the CP abstract model, based on .NET 

features, is applied to the XML specification to create an executable CP level system 

model. The Transformation process for C# code generation is presented in Figure 23. 

<Process ProgrammingLanguage="C#" ProcessStructure="simple" Type="Send"> 
  <Fifo Name="CmdSend" /> 
  <Declarations> 
    ArrayList SimultaneousUsers=new ArrayList(); 
    . . .  
   </Declarations> 
   <Computation> 
    <ComputationCode>...</ComputationCode> 
    <Transaction FifoName="CmdSend" Direction="write" 
VariableType="ArrayList" 
                   VariableName="SimultaneousUsers" Delay="delay" 
EventName=""> 
   </Transaction> 
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Figure 23 : CP C# Transformation process 

C# XSLT transformation extracts the necessary data from the CP XML description, 

completes it and generates C# simulation model files. Figure 24 shows the result of 

applying C# XSLT transformation to the XML specification from Figure 22. 

  

Figure 24 : C# code fragment after XSLT transformation 

We have simulated the server system in order to verify whether the system 

specification was captured properly and also to validate the system functionality 

partitioning. The possibility of using XSLT transformations in automatic code 

generation facilitates the exploration process. All implementation details of 

communication mechanisms corresponding to the CP abstraction level are generated 

automatically providing in this way an easy method of high level model creation. 

The separation of the system functionality into parallel tasks takes into account some 

architectural concerns. Multiple high level models can be created and simulated in 

order to decide the final system functionality distribution between processes and the 

transaction synchronization types. 

During our exploration of different high level server models, we have shown 

that we cannot only use FIFOs to model the server communication mechanism.  In 

ArrayList SimultaneousUsers = new ArrayList(); . . . 
while(true){ 
. . . 
CmdSend.Write(SimultaneousUsers); 
Thread.Sleep(delay);  
} . . . 
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other words, we need the events to describe the reactive server behavior and the 

shared memory mechanism for the communication of the 

FragmentSendingReceiving processes. The designed CP model is a starting point for 

the refinement flow through TLM abstractions. 

At the CP+T level, the delay tag is added to the transaction node to designate 

explicit temporal constraints in the specification. In our server model we consider 

only temporal constraints. Other constraint types can be specified by adding code 

with corresponding semantics in the XSLT transformation.  At the CP level, any HW 

architecture elements are present. At the CP+T level, some explorations may be done 

in order to map one or more processes implementing computations into HW 

modules. For these sorts of explorations we need a library of temporal descriptions of 

common HW modules. 

4.7 Conclusion 

In this chapter, we have defined a TLM framework for system refinement and 

analysis. The goal of the introduction of a new TLM Hw/Sw modeling and 

simulation methodology was to provide an approach with separation of concerns, 

where the timing aspect could be used not only in simulation exploration but also in 

analytical timing verification. We have presented a design flow of this methodology 

with the identification of design activities at each abstraction level.  Automated 

support of the presented methodology is implemented for the high CP, and partially 

CP+T, abstraction levels. The example of an audio-video server model is shown to 

demonstrate in which way the modeling and refinement process may proceed. 

  



Chapter 5. Timing specification in TLM 

Several levels in TLM are characterized by a timing annotation of system 

behavior descriptions. In currently existing TLM based design methodologies, the 

amount of timing information required at each TLM level is defined by the TLM 

APIs (Application Program Interface) which is a set of interfaces describing the 

different communication schemes [58].  Following this, the corresponding TLM 

simulation models are used in the design space exploration phase leading to final 

system implementation. In our TLM methodology, we propose a separation of 

concerns, where the timing aspect is separated from functionality. Different 

explorations and reduction of the design space can be obtained without any 

functional specification. After this step, functional and timing aspects can be merged 

for further refinements. Furthermore, several decisions can not only be done without 

simulation, but also formally proven. 

In the next subsection, we will introduce the notion of timing specifications 

and timing constraints. Further, we will consider in which way temporal details will 

be incorporated in the initial abstract model in order to express the system at 

different TLM abstraction levels. 

5.1 Expressing timing 

  The temporal behavior of systems is frequently described using event-based 

representations where events are characterized by their occurrence times with timing 

constraints. A timing model based on min-max-linear constraints was used by 

Gahlinger [28], Vanbekbergen et al. [61], McMillan and Dill [29] and other 

researchers to solve the problem of the timing verification of interface timing 

specifications. This timing model is based on timing diagram analysis and was used 

at a low level of modeling. 

A timing diagram represents an external view of circuit behavior. More 

precisely, it demonstrates the constraints on the timing of critical signal transitions 

by showing signal waveforms on the connections between the environment and the 
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circuitry [28]. Because of their simplicity and expressiveness, timing diagrams are 

often used to specify the device behavior. A timing specification based on timing 

diagram analysis includes timing characteristics which represent relationships 

between the times of events. An example of a timing diagram is given in Figure 25

 

 

Figure 25: Read-cycle timing diagrams for the 8086 CPU [28] 

Graphically, the timing diagram and its characteristics can be presented by an 

event graph whose nodes define events represented the changes in the values of 

signals whereas the weighted directed edges show the delay constraints between 

events. The weights assigned to every arc denote a minimum and a maximum time of 

event firing relative to the firing time of its predecessor. It is assumed that the time it 

takes to fire a transition is between zero and infinity and there is only one source 

event with a firing time of zero. 

Definition 1 [32] 

An event graph EG can be associated with each timing diagram: EG = (E, C) where 

the set of vertices E corresponds to the set of events and the set of directed edges C 

corresponds to a set of constraints [ ] },|),),,({ EeeuleecC jiijijjiij ∈== . 

The event graph associated with the timing diagram from Figure 25 is shown in 

Figure 26. 
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Definition 2 [32] 

To each event ei we assign an occurrence time of ei denoted by t(ei) such that 

ijijij uetetl ≤−≤ )()(  for all Ccij ∈ . 

In Figure 26, event c1 is a source. For each arc the first weight number 

denotes a lower bound and the second, an upper bound on the delay constraint 

between occurrence times of events. 

 

Figure 26: Partial graphic representation of the timing diagram from Figure 25 

A definition and an interpretation of four constraint types were given by 

Vanbekbergen et al. [61]. Inequalities (1) define linear constraints where the 

occurrence time of the event ej has to satisfy simultaneously all delay constraints 

connected it to its predecessors. In the second constraint type, the max type (2), in 

contrast to linear constraints, only one upper bound, the latest, has to be satisfied. In 

the case of min type (3), only one lower bound, the earliest one, has to be satisfied 

among all lower bounds. Finally, in the fourth constraint type, the latest upper bound 

and the earliest lower bound have to be satisfied. For this constraint type, researchers 

did not find any practical use.  

( ) ( )iji
i

jiji
i

uetetlet +≤≤+ )(min)()(max   (1) 

( ) ( )iji
i

jiji
i
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( ) ( )iji
i

jiji
i

uetetlet +≤≤+ )(min)()(min  (3) 
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The interpretation of the four constraint types is given in Figure 27. The black 

dots indicate the firing times of the events e1, e2, e3. Suppose that they are 2, 4, 10 

time units correspondingly. We want to find a range of timing assignments for the 

event ej, having the following delay constraints: e1→ ej = [9, 12]; e2→ ej = [5, 11]; 

e3→ ej = [2, 7]. The clear boxes indicate the time interval in which ej can fire 

according to each constraint considered separately. The shaded boxes demonstrate 

the firing interval of event ej according to each constraint type. As it can be observed, 

each one of these intervals is different depending on the constraint type.  

time
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e2

e3

2 4 10

ej

11 14
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ej
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Figure 27: Interpretation of the different types of constraints [61] 

One of the problems of timing verification is formulated as finding the 

maximum achievable separation sij between each pair of events ei and ej under a 

system of one or several types of timing constraints: 

))()((max ij
i

ij etets −=  
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For example, consider the subgraph with linear constraints from Figure 28. 

Constraints ca →  and  cb →  are linear; the occurrence time of the event c has to 

satisfy the following two constraints: 

80)()(30)(

60)()(40)(

+≤≤+
+≤≤+

btctbt

atctat
 

From these two inequalities we have: 

30)()(40 ≤−≤− atbt  

Thus, [-sba, sab], the maximum separation time between a and b, is [-40, 30]. 

In event graphs we will use a circle to denote an event with linear constraints, 

a square to represent a max event and a pentagon to represent a min event.  

 

Figure 28: Subgraph with linear constraints 

The maximum separation calculation determines if the timing specification is 

consistent, if at least a feasible timing assignment exists and also gives us the 

possibility to verify if all the timing requirements are satisfied for all timing 

assignments.  

The complexity for deriving the maximum separations of all nodes from a 

single node varies with the types of constraints which are allowed (Table III). Some 

solutions are graph-based algorithms [25], [29], [38] whereas others use a 

reformulation of constraint specifications into a mathematical optimization problem 
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followed by use of existing solvers to resolve the min-max-linear constraint problem 

[62].  

Table III: Complexity of the maximum separation problem [25] 

Constraint type Complexity Proposed by 
Linear only O(EC) Shortest-path algorithms 
Max only O(C) McMillian & Dill [29], 

Vanbekbergen et al. [61] 
Max + linear O(E2logE + EC) 

conjecture 
Ti-Yen Yen et al. [26] 

Max + linear O(E5) conjecture Walkup & Borriello [38] 
Min + Max NP- complete McMillian & Dill [29] 
Min + Max + Linear NP- complete T. M. Burks, K. A. Sakallah [62] 

5.2 Timing Analysis 

In the following subsections, we will consider timing specifications with 

different constraint types and the corresponding graph-based algorithms to resolve 

the problem of timing verification. We consider the graph-based interpretation of 

timing specifications as being better understood intuitively than a reformulation of 

the timing specification into a mathematical optimization problem. Furthermore, 

graph-based algorithms are quite simple when compared to complex solvers and can 

be easily implemented.  

5.2.1 Linear constraint systems 

Several design problems require the solution of a set of linear inequalities of 

the type: 

ijij wetet ≤− )()( , i, j = 0, 1, …, n-1. 

A delay constraint ijijiji uetetlet +≤≤+ )()()( , can be split into two inequalities 

ijij uetet +≤ )()(  and ijji letet −≤ )()(  which can be presented by forward and 

backward edges correspondingly (Figure 29). 



 

   

62

 

 

Figure 29: Graphic representation of delay constraint 

A set of linear inequalities can be presented as a directed graph with n 

vertices and m edges, each one weighted by wij. Such a graph is called the constraint 

graph and its properties are related to the satisfiability of a set of linear inequalities. 

More precisely, the set of linear inequalities presented above, is satisfiable if and 

only if the corresponding shortest path problem is consistent [60].   

For linear constraint systems, we need to find, for each pair of nodes, a 

greatest lower bound and a least upper bound: ( ) ( )iji
i

jiji
i

uetetlet +≤≤+ )(min)()(max . We 

can do this by finding the shortest paths in the corresponding graph. Considering two 

nodes in the graph ei and ej, in order to get the least upper bound we have to find the 

shortest path from the ei node to ej (sij) and to get the greatest lower bound, we need 

to find the shortest path from ej to ei (-sji). As a lower bound in the delay constraint is 

presented in the graph by a negative number, to find the shortest paths we use the 

Bellman-Ford algorithm [60].  

Consider a graph G= (V, E), where for V, a set of vertices and E, a set of 

edges, the algorithm finds a vector )(vd   for all the shortest-path lengths from a 

source Vs ∈  to all  Vv ∈ . 

Algorithm 1: Bellman-Ford algorithm 

0)( ←sd  
for each }{\ sVv ∈  

do ∞←)(vd  
end for 

for 1←i  to 1−V do 

 for each edge Evu ∈),(  do 

  if ),()()( vuwudvd +>  then 

Initialisation

Relaxation step 
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uv

vuwudvd

←
+←

)(

),()()(

π
 

  end if 
 end for 
end for 
for each edge Evu ∈),(  do 

 if ),()()( vuwudvd +>  then 
  report that a negative-weight cycle exists 

 end if 

end for 

5.2.2 Max constraint systems 

For the timing specification of systems with max-only constraints we have to 

find the greatest lower bound and the greatest upper bound: 

( ) ( )iji
i

jiji
i

uetetlet +≤≤+ )(max)()(max  

Our algorithm for finding the maximum separation time between any two events 

in a graph with only max constraints is based on the ideas presented in [61].For each 

pair of nodes we have to find a greatest lower bound and a greatest upper bound. A 

greatest lower bound can be found by minimizing the total delay for all l-bound paths 

of the nodes and a greatest upper bound for the events ei and ej can be obtained by 

means of maximizing the separations ski for predecessor ek of ej. Then, in order to 

compute the maximum separation time between the two events ei and ej we have to 

consider two cases:  

1. There is a path from ej  to ei  ending in the source node. In this case all delays 

have to be set to their lower bounds. 

2. There is no path from ej  to ei  ending in the source node. For this case we 

have to maximize t(ej) - t(ei) by maximizing t(ek) - t(ei) for each predecessor 

ek of ej. 

Algorithm 2: Maximum separation in max-only constraint 
systems 

Step 1:  if i=j then  
return 0 

  end if 
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  if max separation already is calculated then  
return previously calculated value 

  end if 
Step 2:  if path between ei and ej exists then 
   Max = ∞; 
       for each vertex k, predecessor of vertex j 

     do  
        newMax ← MaxSep(ei,ek)-lkj {lkj: lower 
                                   bound of the arc k→j} 
        if newMax ≤ Max then  

Max=newMax; 
 end if 
end for 

  else  
  Max ← -∞; 

        for each vertex k, predecessor of vertex i do 
       newMax ← MaxSep(ek,ej) + uki { uki: upper 
                                   bound of the arc k→i} 
        if Max ≤ newMax  then  

Max ← newMax 
    end if 
    end for 
  end if 
  return Max 

The complexity of the algorithm computing the separations sij between all 

pairs of events for the graph with number of events (vertices) n and number of edges 

e, is O(n·e) ≤ O(n3). 

We applied the algorithm presented above to the graph shown in Figure 30[61].  

 

Figure 30:  Max only constraint timing model 
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The results are given in Table IV  and correspond to what was obtained in [61].  

Table IV: Maximum separation time for the timing specification of Figure 30 

 A+ B+ A- C+ B- 

A+ 0 ∞ 80 ∞ ∞ 
B+ -135 0 -55 40 25 
A- -50 ∞ 0 ∞ ∞ 
C+ -165 -30 -85 0 -5 
B- -135 0 -55 40 0 

5.2.3 Max-Linear Systems 

Max-linear systems are the most discussed in literature. The max-linear 

temporal model is widely used in the description of interfaces. Several algorithms 

were proposed to solve the timing verification problem for such systems.  McMillan 

and Dill [29] proposed a graph-based algorithm with an exponential worst case 

running time. An interesting algorithm for max-linear systems was proposed by T. Y. 

Yen et al. [26]. According to their experimental results [30], [31] this algorithm is 

quite efficient. However, the exact complexity has not been given. The algorithm 

uses the “iterative tightening from below” approach and is based on two steps. 

The first step consists of the generation of a special intermediate graph, 

termed the compulsory graph, containing the arcs representing bounds that must be 

satisfied (compulsory bounds).  For max events, these arcs represent the lower 

bounds whereas for min events they denote upper bounds. Also, for linear 

constraints, upper and lower bound arcs are compulsory arcs. From this graph, the 

smallest separation values that satisfy the compulsory bounds are obtained such that 

they may serve as the initial estimation for the tightening process. 

Definition 3 [27] 

Given an event graph G=(V, E) and a source node s, the corresponding compulsory 

graph Gc=(V, Ec) is a weighted directed graph, where Ec contains the following 

edges. For each linear or max constraint cijij EeEc ∈∈ ,  and has weight 

[ ] lowerceweight ijijc .= . For each linear constraint cjiij EeEc ∈∈ ,  and has weight 

[ ] upperceweight ijjic .−= . For each node csi Eei ∈,  and has weight –MAXINT, where 
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MAXINT is an arbitrary number larger than any sum of the absolute values of the finite 

bounds, but obeying the arithmetic rules of finite numbers. 

A compulsory graph for the graph presented in Figure 31 (a) is shown in Figure 31 (b). 

 

Figure 31:  An event graph (a) and the corresponding compulsory graph (b) 

The second step of the algorithm consists of constructing another 

intermediate graph, a slack graph, defining the values by which the max (min in the 

case of min-linear systems) constraint arcs can be tightened. Following this, the 

upper bounds for max constraints and lower bounds for min constraints are 

reintroduced in the compulsory graph and the initial separations are iteratively 

relaxed according to the slacks.  

Definition 4 [27]  

Given an event graph G=(V, E), a source node s, and a separation value sepa[i] for 

each node Vi ∈ , the slack graph ),( ss EVG =  is a weighted directed graph where Es 

is defined as follows: for each constraint Ecxy ∈ , construct two edges xye  and yxe , 

and define 

lowercbounde

uppercbounde

xyyx

xyxy

..

..

−=

=
 

For each boundeij . , when [ ] ∞≠isepa  or [ ] ∞≠jsepa , add edge ije  to Es with edge 

weight [ ] [ ] [ ])(. isepajsepaboundeeweight ijijs −−=  if the weight is nonnegative. 
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When [ ] [ ] ∞== jsepaisepa  add edge ije  with [ ] 0=ijs eweight . Mark sij Ee ∈  as 

max-optional if ijc  is a max constraint; otherwise it is compulsory. If a node u is a 

max event and no max-optional edge enters u, add a compulsory edge sue  with 

weight zero. 

In Figure 32 (a) the event graph is shown with the calculated initial time 

separations (labels of the nodes). Figure 32 (b) gives the slack graph after the first 

iteration. The value inside each node represents its maximal slack.  
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Figure 32:  An event graph (a) and the corresponding slack graph in the first 
iteration (b) 

The pseudo code for two procedures [26], namely the computation of shortest 

slack and the maximum separation calculation, is given below. 

Algorithm 3: Shortest slack calculation  

Shortest slack is calculated from a source node s for 
each node in a slack graph Gs 
Step 1: Initialization  
for each node ei do  

Put node ei in Queue Q 
Initialize safe slack estimate d[i]←∞ 
Initialize temporal value for slack m[i]←0 
n[i]←number of max-constraints 

end for 
d[s]←0  
Step 2:   
while Queue is not empty do  
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 Find node ei in the Queue with a minimum d[i] 
     for each edge outgoing from this node in the slack            
          graph Gs do 
      relax the edges: t←d[i]+weight(i→j) 
   if node ej is a max event then  
    n[j]-- 
    m[j]←min(m[j],t) 
    if n[j]=0 and d[j]>m[j] then 
      d[j]←m[j] 
    end if 
   else  

d[j]←max(d[j],t) 
end if 
Remove ei from the Queue; 

 end for 
end while 

At the end of the execution of shortest slack procedure, d[i] is a shortest slack 

estimate from a source node s for each node ei. This procedure is used for the 

computation of the maximum achievable separations for a constraint graph. 

Algorithm 4: The MaxSeparation algorithm  

The maximum separations are found from a source node s 
for an event graph G with max and linear constraints 
 
Step 1: Construct the compulsory constraint graph Gc 
 
Step 2: Calculate longest paths in the graph Gc from a 
source node to each other node 
if a positive cycle exists then  

return inconsistent 
end if 
 
Step 3: Initialization of the initial separations   
for each node ei do  

Set separation from s to ei=the weight of the  
longest path from s to ei  

end for 
 
Step 4:  Iterative relaxation 
repeat 

Construct the slack graph Gs  
Calculate the shortest slack from a source node s to 
each node using the previous procedure        

     for each node ei do 
  if the shortest slack is ∞ then  
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set separation from s to ei ∞ 
  else if the shortest slack > 0 then  
                  Increase separation by the shortest  

    slack 
          end if 
 end for 
until the shortest slacks do not change  
if all constraints in graph G are satisfied then 

return problem is consistent 
else 
 return problem is inconsistent  

end if  

 

The authors conjecture that the complexity of this algorithm is O(VE 

+V2log(V)).   

5.2.4 Min-Max Constraint Systems 

McMillan and Dill proved that the problem with max and min constraints is 

NP-complete [29]. To prove NP-completeness of the min/max constraint problem 

McMillan and Dill used the reduction from 3-SAT.  

Theorem 1 [29] 

3-SAT is reducible to the min/max problem. 

Proof 

Let φ be a 3-CNF with n variables a, b, c, …;  pa, pb, pc, …na,  nb, nc, … corresponding 

to the positive and negative literals respectively. Formula φ has m clauses. We 

demonstrate the reduction from 3-SAT to the min/max problem that converts 

formulas to graphs. Structures within the graph are designed to mimic the behavior 

of variables and clauses. Create graph G of a min/max problem as follows: 

Let s be a source event and pa, pb, pc, …na,  nb, nc, … - events in constraint graph G 

subject to the constraints: 

vv spsp tt ∂+= , where 10 ≤∂≤
vsp  

vv snsn tt ∂+= , where 10 ≤∂≤
vsn  
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The time of each event pv, nv, ranges between 0 and 1 relative to the source event s. 

Graphically, this is expressed by the arcs going from the source event to each event 

pv, nv (Figure 33). For each pair of events pv, nv we construct a min event mv: 

),min(
vvv npm ttt = . 

There is also a max event q that is the latest of the mv events: 

)(max
,...},,{ jm

cbaj
q tt

∈
=  

For each clause we construct a max event fi which is the latest of the corresponding 

events pv, nv forming the clause. For example, for the clause pa + pb + pc: 

),,max(
cbai pppf tttt =  

Finally, we construct a min event r that is the earliest of the fi events: 

)(min
1 ifmi

r tt
≤≤

=  

We have to find the maximum separation qrs  in the constructed constrained graph.  

To prove that this reduction works, we have to demonstrate that the maximum 

separation qrs  equals 1 if and only if the formula φ is satisfiable.  

1. Suppose the formula φ has a satisfying assignment. In that satisfying 

assignment, at least one literal is true in every clause. For either assignment 

of variables 1=vp , 0=vn  and 0=vp , 1=vn , it follows that the execution 

time of the min events vm  coincides with the earlier of  vp  or vn  and is equal 

in all cases to 0. A max event q coincides with the latest of the vm  events 

and, as the vm  events fire at 0, thus 0=qt . The firing time of max events f1, 

f2 will be always 1 since at least one delay from the events representing 

clause variables vp , vn  must be 1, leading to the defining of the execution 

time of the event r being 1. Thus, 1)max( =−= qrqr tts . 
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2. Suppose now that the maximum achievable separation 1)max( =−= qrqr tts . 

This means that 1=rt  and 0=qt . As 1=rt  and r is a min event, both events 

f1 and f2 have to fire at time 1 and thus 1,1
21

== ff tt . Since 0=qt , at least 

one delay from each pair vp , vn  must be 0. Thus, if 1=vp  and 0=vn , this 

assignment to the variables satisfies φ because according to the firing time 

1,1
21

== ff tt , each triple of events representing a clause in the graph 

contains a literal that is assigned TRUE. Therefore we have a satisfying 

assignment of the formula φ. 

Figure 33 shows an example of the constraint graph corresponding to the 3-SAT 

formula ))((),,,( dbacbadcba ++++=ϕ .  

 

Figure 33: Reduction from 3-SAT to min/max problem 

In the graph above, pentagons represent min events and squares represent 

max events. The numbers depicted over the events indicate a solution of the timing 

constraints for the satisfiable assignment of the formula φ. 
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5.2.5 Min-Max-Linear Constraint Systems 

The general min-max-linear constraint problem is also NP-hard. This was 

demonstrated in [62] using a reduction from 0-1 integer programming. This fact 

justifies a branch and bound approach for resolving such problems.  

McMillan and Dill [29] proposed an algorithm where min constraints are 

eliminated by assuming that one of the min constraints is less than the others. An 

instance of the max-linear constraint problem is generated by the recursive 

elimination of all min constraints. The solution is the maximum of the separations for 

all max-linear sub problems.  

T. Y. Yen et al. [26] proposed an algorithm that handles all three constraint 

types modifying their max-linear algorithm (Algorithm 4 The MaxSeparation 

algorithm). In this algorithm, the min constraints are recursively eliminated as 

well, as in the McMillan and Dill algorithm, each time generating a max-linear 

subproblem. If some min constraint has been satisfied by other constraints, it has to 

be chosen; as for each min event, only the earliest constraint has to be found.  

Furthermore, when a new sub problem is generated, the algorithm continues with the 

current status and not from the beginning in order to optimize the calculation 

process.  

5.2.6 Assume-Commit Constraint Systems 

Assume-commit constraints were introduced to reflect the input/output nature 

of events [32, 33, 70]. The maximum separation time computation guarantees that 

the given system of constraints is consistent, i.e., that it has at least one solution, 

even though this solution may not be realizable if we take into account the 

input/output nature of events. The input events are those that cannot be controlled by 

the system and the timing for these events has to be satisfied for each value in the 

bounded interval [33]. On the contrary, the output events are under the control of the 

system and can be constrained in the given interval if needed. Distinguishing the 

input/output nature of events led to the definition of two constraint types: commit 

constraints and assume constraints.  
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Definition 5 [32] 

Consider the events ei and ej with constraint Cij = (ei, ej, [lij, uij]), where 

ijijij uetetl ≤−≤ )()( . Cij is a commit constraint if ej is an output event; otherwise it 

is an assume constraint.  

A heuristic method based on the local consistency property was used for 

solving interface timing specifications with commit-assume constraints [32] and is 

based on the following reasoning.  

Definition 6 [32] 

An event (node) is said to be a convergence event (node) if it has more than one 

parent. 

Definition 7 [32] 

Let z be a convergent node of event graph EG=(E, C), and P(z) a set of its parents in 

EG. Let )','(' CEEG = , where }{\' zEE = , and [ ] }),,,{(\' CulzeCC i ∈= . The node 

z is locally consistent if )(, 21 zPee ∈∀  the maximum separation time 12s  of e1, e2 

(respectively 21s  of e2, e1) computed over EG’ is less than or equal to the maximum 

separation time 12s  ( 21s ) computed over the subgraph containing only the set of 

nodes },,{ 21 zee . 

Definition 8 [32] 

An event graph,  EG=(E, C), is locally consistent if each convergent node z is locally 

consistent. 

  The local consistency property means that the maximum separation time 

between each pair of convergence node parents computed over the graph without this 

node and its corresponding constraints is less than or equal to the maximum 

separation time computed over the graph formed from the convergence node and its 

parents.  
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The idea behind the local consistency property is that the satisfaction of the 

local consistency condition guarantees the existence of at least one realizable relative 

schedule for each locally consistent node and, correspondingly, for the locally 

consistent graph. 

In the event graph of Figure 34 (without dashed arcs), nodes ik (k = 1 to 3) are 

input events and nodes os (s = 1 to 5) are output events.  

  

Figure 34:  Event graph 

This graph is not locally consistent. Two convergent nodes, o4 and o5 , do not 

verify the local consistency property. The algorithm looks for a locally consistent 

graph. In the case when the initial event graph does not verify the local consistency 

property, the method determines which commit constraint can be modified or added 

without altering the given assume constraints. 

For example, for node o5, the maximum separation time between the nodes i2 

and i3 computed over the graph without this node and its corresponding constraints 

(Figure 35, (a)) is 40)()(40 23 ≤−≤− itit . 

The maximum separation time computed over the graph formed from o5, i2 and i3 

(Figure 35, (b)) is 30)()(40 23 ≤−≤− itit .  

In the example presented, in order to make the graph locally consistent, two 

new commit constraints were added (dashed arcs in the Figure 34). The constraint 

33 oi →  assures the implicit assume constraint between the nodes i2 and i3 makes the 

node o5 locally consistent. The constraint 21 oo →  has been added explicitly to render 



 

   

75

 

o4 locally consistent as node o2 is an output event and is considered as being under 

system control. Each locally consistent node can be removed from scheduling it can 

always can be scheduled using the As Late As Possible (ALAP) relative schedule. 

For node o5: t (o5) = min(t(i2) + 60, t(i3) + 80). 

  

Figure 35: Subgraphs used in the determination of local consistency property 
for the node o5. 

Algorithm 5: Algorithm for finding a locally consistent 
event graph 

Step 1: tighten the event graph 
 
Step 2: sort the list of convergence nodes in a reverse 
topological order 
 
Step 3:  
for each convergence node do  

Determine its parents 
 for each pair of its parents do  
  if not locally consistent then   
    if possible to add a commit constraint  

  then add it 
  else find a commit constraint among the   
       upstream ancestors 
  end if 

            update the list of convergence nodes 
          end if 
 end for 
end for  
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 As mentioned earlier, the timing for input events has to be satisfied 

for each value in the bounded interval, i.e., having multiple assume constraints, we 

need to satisfy each value from each bounded interval. This means that the assume 

constraint interpretation corresponds to the type 4 constraints interpretation from 

Figure 27. In [32], the assume constraint type was considered as a special type of 

linear constraint though an efficient algorithm to resolve the timing verification 

problem with linear-assume constraints has not been given. An equivalent set of min-

max-linear constraints for the type 4 constraints shown in Figure 36 was proposed in 

[27].     

 

Figure 36: Transformation of type 4 constraints into min-max-linear constraints 

The existence of equivalent min-max-linear expression for type 4 constraints 

and the discovered correspondence between type 4 and assume constraints explain 

the non-existence of a polynomial time algorithm due to the NP complexity of the 

general min-max-linear problem [62]. The mathematical interpretation of assume 

constraints completes the mathematical representation of all constraint types 

discussed in literature.  

5.2.7 Discussion 

In previous subsections we have seen graph-based algorithms for timing 

specification verification. Another approach used to calculate the maximum 

achievable separations for a temporal constraint specification is based on its 

reformulation into a mathematical optimization problem. Among the algorithms 
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using this method, we want to mention the works of T. M. Burks and K. A. Sakallah 

[62] and Y. Cheng and D.Z. Zheng [30], [31].  

T. M. Burks and K. A. Sakallah [62] proposed two methods to solve the min-

max-linear constraint problem: a branch-and-bound algorithm in mathematical 

programming and a transformation method based on the linearization of min-max 

inequalities into a standard mixed integer linear programming formulation. In both 

cases, existing solvers were used to cope with reformulated timing specifications. Y. 

Cheng and D.Z. Zheng [30], [31] mathematically reformulated the Yen et al. [26] 

algorithm using min-max functions theory.  

5.3 Min-max constraint linearization algorithm 

In order to cope with a general min-max-linear constraint problem, we propose 

a new graph-based algorithm. In our approach, we use the standard linearization 

procedure of min-max constraints as in the work of T. M. Burks and K. A. Sakallah 

[62], though we interpret it as a graph theory problem thereby obtaining as a result a 

set of graphs with only linear constraints to which we apply the shortest path 

algorithm to calculate the maximum separation time for all event pairs.  

5.3.1 Min-max constraint linearization 

The min value z of two integer numbers x and y, z = min{x, y}, or the max 

value  z = max{x, y} can be found by resolving a set of linear inequalities (Figure 

37), where α1, α2  are binary variables and M is a suitably large positive constant. 
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Figure 37: Min-Max linearization inequalities 
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Consider the subgraph shown in Figure 38 containing a max event tk having two 

predecessors ti and tj, and two max constraints: [ ]),,,( iikiik ulttc = , 

[ ]),,,( jjkjjk ulttc = .  

ti tj

ujui

-lj-li

tk

 

Figure 38: Subgraph with the max constraints 

The firing time of the event tk determined by two max-constraints is:  

),max(),max( jjiikjjii ututtltlt ++≤≤++  

The left part of the inequality is the same as for the linear solution, i.e., we have to 

satisfy all lower bounds simultaneously. This means that we can leave the lower 

bounds without any transformation in the graph. To find a greatest upper bound in 

order to resolve the right part of the inequality shown above, we rewrite it using the 

linearization procedure presented in Figure 37 and obtain a set of linear inequalities 

shown in Figure 39.  
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Figure 39: Transformed max constraint 

We can observe that all inequalities have only two unknown variables for a given 

constant M and a given value of the binary variable α (Figure 39). A solution of such 

a linear system of inequalities can be found by a shortest path algorithm applied to a 

corresponding graph. We can transform the min constraints to a set of linear 
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inequalities in a similar way as for the max constraints. The firing time of the event tk 

determined by two min constraints is:  

),min(),min( jjiikjjii ututtltlt ++≤≤++  

We transform the left part of the above expression into a set of linear inequalities as 

shown in Figure 40. 
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Figure 40: Transformed min constraint 

The graph interpretation of the transformed min and max constraints of Figure 39 

and Figure 40 is given in Figure 41.  

 

Figure 41: Graph representation of the transformed max and min constraints 

According to the last inequality of Figure 37, the constant M in the linearization 

procedure of Figure 39 has to verify jjii ututM −−+≥  for max constraints and 

jjii ltltM −−+≥  for min constraints. We have also the following system of 

inequalities: 
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jijijijijjii uusuuttutut ++≤++−≤−−+  

jijijijijjii uusllttltlt ++≤++−≤−−+  since ii ul ≤  and jj ul ≤  

The constant M has to be larger than separation between the nodes tj and ti: 

for max-only constraint systems the maximum separation between each pair of nodes 

tj and ti, as we have seen, is )(max)(max mm
m

kmm
m

uttlt +≤≤+ , where m denotes all 

parents of the node tk.  In other words, a maximum separation calculated in the graph 

where all constraints are considered as being max along upper bounds will be greater 

than the corresponding maximum separation for the general constraint system.  An 

efficient polynomial time algorithm for systems with only max constraints [61] was 

used to obtain the separation between all nodes tj and ti. This value was then 

employed to obtain an approximate upper bound for M. Thus, for min and max 

constraints we take the constant jionlyji uusM ++=
max

  )0,( ≥ji uu  in the case of 

finite bounds.  If one or more values in the constant M‘s expression are equal ∞, we 

will consider that M is equal ∞ and we represent it by an arbitrary number larger than 

any sum of the absolute values of the finite bounds. 

A max and min function of more than two variables can be replaced by a 

composition of two-variable min, max functions. Therefore, from now on, we will 

consider two variable min-max constraints. 

Algorithm 6: Min-max constraint linearization algorithm 

Step 1: Calculate the maximum separations considering all 
constraints being max type 
 
Step 2: Calculate the number of min-max events and form 
binary vector of parameters αi 
 
Step 3: Construct an intermediate graph where each min 
and max node are transformed into “linear” one 
 
Step 4: 
repeat  

for each min or max node do 
 Calculate the constant value M   
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Adjust the weights on the corresponding edges 
according to the binary vector value 

end for  
Calculate the maximum separations using Bellman-Ford 
algorithm 
if linear solution exists then 
   for all i,j do 

sij←max(previous(sij),current(sij)) 
  end for 
 end if 
until all binary combinations of αi represented by the   
binary vector have been explored 
  

Example 

In the above presented algorithm, we illustrate an example taken from [26]. 

In Figure 42 we have a graph with two max events, c and f. There are four max 

constraints, a→c, b→c, d→f and e→f.  

 

Figure 42: Initial graph with max constraints 

We transformed the two max events in the initial graph in the manner presented by 

Figure 41 thus obtaining the “parameterized” graph presented in Figure 43. The 

parameters in the graph are the binary values of variables αi. The arcs whose weight 

has to be changed according to the binary values αi are represented by the dashed 

lines in Figure 43. For each binary value we have to find the linear solution, if it 

exists, and take the maximum values of the separations obtained during calculations.  

The complexity of the presented algorithm is exponential in terms of min-

max events. If m is a number of min-max events, each with two constraints, we have 
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to explore, in the worst case, 2m subproblems having only linear constraints. Thus, 

the algorithm’s complexity is 2mn3 where n is the number of graph nodes and m is the 

number of min-max events. 

a

b

s

j

d

e

h

-2

2

500

0

500

0

2-2

-1

-1

0

-2

-2

∞

∞

-1

-1

0

c c_z

-1

1+(1-α1)M

-1

1+α1M

f f_z

-1

-1

1+(1-α2)M

1+α2M

0

0

 

Figure 43: Graph with transformed max constraints                  

5.3.2 Algorithm Optimization 

In order to reduce the number of linear solution explorations, we propose to 

employ a procedure used in T.Y.Yen et al.’s algorithm [26] such that we may 

eliminate unsatisfied upper bounds of max constraints or unsatisfied lower bounds of 

min constraints, as, for both constraint types, only one bound has to be satisfied, 

namely the earliest one for min constraints and the latest one for max constraints.   

We have presented T. Y. Yen et al.’s algorithm [26] in Section 5.2.3. The general 

idea of this algorithm consists of two steps:  

1. Satisfaction of all compulsory bounds and obtaining the smallest separation 

values that satisfy the compulsory bounds. For max events all lower bounds 

have to be satisfied, for min, all upper bounds and for linear constraints, both.  
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2. Construction of the slack graph with values defining an amount by which the 

bound value can be tightened and with iterative relaxation of the separations 

according to the slacks. 

In our algorithm, in order to eliminate the unsatisfied bounds, we construct a 

compulsory graph and calculate the smallest separations. Following this step, we 

construct the slack graph. If the initial slack values are negative, the corresponding 

bounds cannot be tightened and, in the context of our algorithm, we do not need to 

explore the corresponding binary combinations for αi.  

For the example shown in Figure 42, we have obtained negative slacks for the 

max constraints b→c  and d→f . This means that constraints b→c_z  and d→f_z 

(Figure 43) cannot be tightened and the values of  α1  = 1 and α2  = 0 have not been 

explored, thus leading to the verification of only one parameter combination: α1  = 0 

and α2  = 1 instead of four binary combinations. The linear solution corresponding to 

the assignments α1 = 0 and α2 = 1 in the parameterized graph (Figure 43) gives us the 

solution to the initial problem.  

With this kind of optimization, the worst case complexity stays the same, as, 

sometimes in the graph, all bounds for min-max constraints can give some amount 

by which the bounds can be tightened. We thus have to find the one that provides the 

largest or smallest value for the max or min constraint correspondingly, therefore 

exploring all binary assignments.    

5.3.3 Experimentations 

We have applied the presented algorithm with optimization to the graph of 

timing specification shown in Figure 42. We have obtained results exploring only 

one linear solution. For comparison, Yen et al.’s algorithm requires two iterations 

and McMillan and Dill’s almost 500 in order to get the results [26]. 

The second example that we have used is the Intel 8086 ROM read cycle 

from [28]. The exploring system, shown in Figure 44, contains a clock generator, an 

address decoder and an address latch. The clock generator emits a clock signal with a 

period of 204 ns. The latch holds the address and has a delay of [0, 12] ns. The 
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address decoder has a delay of [0, 30] ns and ensures that only the selected PROM 

outputs data into the bus at any given time. The designer’s problem is to verify 

whether or not the 2716 PROM is fast enough to work with an 8086 having a clock 

period of 204 ns. In timing terms, this means that we have to verify the following 

timing requirements: 
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Figure 44:  Intel 8086 ROM read cycle 

The timing specification of this example consists of 13 events among which 

there are one min event, one max event and the rest are linear events, as shown in 

Figure 45. Events c1, c2, c3 are clock transitions; a1 and a2 are, respectively, the 

beginning and the end of a valid address on the data/address bus. The events A1 and 

A2 are the beginning and end of a valid address at the address latch outputs. The 

events r1/R1 and r2/R2 are, respectively, the beginning and the end of the read signal 

of the address decoder output. A min event, d2, denotes the end of valid data on the 

data/address bus. This event has to occur as soon as either the address or the read 

signal is removed. A max event, d1, is the start of valid data on the data/address bus 

which depends on the later of the two input signals.  
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Figure 45: Timing specification of the Intel 8086 ROM read cycle 

In order to verify the timing requirements we have applied the algorithm to 

the system timing specification (Figure 45) and calculated actual timing separations 

(Table V).  

Table V: Timing separations for the Intel 8086 ROM read cycle 

 c1 c2 c3 a1 a2 r1 r2 A1 A2 R1 R2 d1 d2
c1 0 204 612 110 284 369 762 122 296 399 792 572 ∞ 
c2 -204 0 408 -94 80 165 558 -82 92 195 588 368 ∞ 
c3 -612 -408 0 -502 -328 -243 150 -490 -316 -213 180 -40 ∞ 
a1 -10 194 602 0 274 359 752 12 286 389 782 509 ∞ 
a2 -214 -10 398 -104 0 155 548 -92 12 185 578 358 ∞ 
r1 -214 -10 398 -104 0 0 548 -92 12 30 578 358 ∞ 
r2 -622 -418 -10 -512 -338 -333 0 -500 -326 -303 30 -50 ∞ 
A1 -10 194 602 0 274 359 752 0 286 389 782 509 ∞ 
A2 -214 -10 398 -104 0 155 548 -92 0 185 578 358 ∞ 
R1 -214 -10 398 -104 0 0 548 -92 12 0 578 358 ∞ 
R2 -622 -418 -10 -512 -338 -333 0 -500 -326 -303 0 -50 ∞ 
d1 -214 -10 398 -104 0 0 548 -92 12 0 578 0 ∞ 
d2 -214 -10 398 -104 0 155 548 -92 12 185 578 358 0 

 

The results are the same as presented in [28]. As we can see several timing 

requirements are violated. A comparison of the actual separations computed by the 

algorithm and the required separations is given in the Table VI. 
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Table VI: Required and computed separations for the Intel 8086 ROM read 
cycle 

Constraints Required time intervals Actual timing separations, [ ]ijji ss ,−

21 dd →  [0,∞] [-358,∞] 

23 dc →  [10, ∞] [-398,∞] 

21 RR →  [0,∞] [303,578] 

21 AA →  [0,∞] [92,286] 

12 da →  [0,∞] [0,358] 

31 cd →  [30,∞] [40,398] 

  In our algorithm, for timing specification with one max and one min event, 

we have to explore four linear solutions. By applying the above discussed 

optimization technique we have reduced the number of linear solution explorations 

to two. 

In order to estimate the average complexity of the proposed algorithm, we 

have performed several numerical experiments. As there is not enough real data for 

the experiments, we have decided, like other researchers [30, 31], to automatically 

generate the timing specification graphs, which should be acyclic. In order to respect 

this condition, we have used an initial acyclic graph having a solution (Figure 45) for 

the generation of larger graphs. We have generated graphs in three manners, 

resulting in obtaining graphs of one of three types, as presented in Figure 46. 
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Figure 46: Structures of the generated graphs 

In Figure 46 (a), the initial graph is merged with other graphs of identical 

structure in a parallel manner; in (b) the merging is done in a sequential manner and 

in (c) one of the initial graph nodes is replaced by a graph with the same structure. In 

all cases, the values of arc weights are randomly generated. In our experiments, we 

wanted to compare the linearization algorithm’s efficiency with that of T.Y. Yen et 

al’s [26]. The authors conjecture that the complexity of their algorithm is O(VE 

+V2log(V)) when it is trying to resolve  a max-linear problem. On the other hand, for 

min-max-linear problem the algorithm has to be modified and its complexity is 

exponential in the worst case. Our algorithm treats all three types of constraints in 

optimized and non optimized versions. However, to compare our algorithm with the 

most efficient version of the T.Y. Yen et al’s algorithm, we have decided to use in 

our experimentations graphs with only linear and max constraints.  
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We have limited the number of nodes to approximately 150 as it is difficult to 

generate a large graph with a non cyclic structure having a solution. The hardware 

platform for the experiments was a computer with an Intel Pentium 1.5 GHz CPU 

and 512 Mb of RAM. The results were measured in number of ticks, which is the 

smallest unit available to measure time and is equal to 100 nanoseconds. We have 

converted the tick measures to milliseconds. The results are given in Table VII, 

which lists the number of constraints representing the number of arcs in the graphs, 

the total number of nodes in the graphs and the number of max nodes among them. 

The next three columns contain the costs, in milliseconds, for resolving max-linear 

problems of different size and complexity for three algorithms: T. Y. Yen et al.’s, the 

Linearization algorithm in the non optimized version and the Linearization algorithm 

in the optimized version. As the complexity of the linearization algorithm is 

exponential in terms of the number of min/max nodes, more precisely O(2mn3), 

where m is the number of min/max nodes and n  the total number of nodes in a 

graph, for certain experiments we do not have the numerical data. For example, for 

experiment number 4 (b) with 21 max nodes, we have to explore 221 linear solutions, 

leading to very long execution delays. In such cases, we present the timing for the 

optimized version of the algorithm. 

Table VII: Results of experiments  

Graph CPU time 

Constraints Nodes/Max nodes Algorithm 
of T.Y. 

Yen et al., 
in ms 

Linearization 
Algorithm, in 

ms 

Linearization 
Algorithm with 
optimization, 

in ms 
1. 17 13/2 30 0 (< 100 ns) 0 (< 100 ns) 
2. (a) 40 30/7 50 400 0 (< 100 ns) 
 (b)38 27/7 40 360 0 (< 100 ns) 
 (c)38 27/7 40 400 0 (< 100 ns) 

3. (a)84 58/17 360 1698091 881  
 (b)76 53/16 250 721056 370 
 (c)78 53/15 280 354840 360 

4. (a)168 114/12 
114/13 

3054 
3094 

290758 
595606 

40 
40 

 (b)158 110/21 
110/13 

2393 
2513 

 - 
277218 

1261 
60 
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 (c)160 107/21 
107/16 

2343 
2413 

- 
2297864 

1241 
80 

5. (a)228 152/17 7180 18615658 70 
 (b)218 148/18 6109 17256613 140 
 (c)220 145/20 5848 - 140 

The data presented in the table show that the optimization of the linearization 

algorithm significantly reduces the cost incurred by its non optimized version. 

Furthermore, in most cases, the optimized version of our algorithm is better than the 

max-linear version of T. Y. Yen et al.’s. In [30, 31], the experimental results for T. 

Y. Yen et al.’s algorithm are presented and mathematically reformulated using min-

max functions. It is quite difficult to compare these results to our data due to the 

different nature of representations and as a consequence of the experimental 

parameters. However, for the experiment in [31] with parameters corresponding to 

170 constraints and 10 min/max nodes, the execution time is around 50 milliseconds 

whereas, in our case, the execution time is between 40 to 80 milliseconds depending 

on graph structure. Thus, the complexity of both algorithms is comparable.     

The examples presented demonstrate that regardless of the exponential worst case 

complexity, the proposed optimized linearization algorithm is quite efficient. 

5.4 Timing in TLM 

In Transaction Level Modeling, the first level where some quantity of timing 

information is added to the system description is the CP+T level. At this level we 

have to extract, from the system specification information and perhaps from the CP 

simulation results, the first global temporal system model. All architectural 

constraints can be presented by their corresponding temporal models and can be 

verified analytically using timing verification algorithms and then again verified with 

refining functional details by simulation. The Hardware/Software partitioning 

process, if needed, can be guided by criteria of temporal constraints realizability. At 

the PV and PV+T levels, the communication structure can be explored and verified 

using timing analysis. 
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In this subsection, we demonstrate the way in which the presented timing 

expression methodology can be applied at different TLM abstraction levels. 

5.4.1 Timing modeling at CP+T level 

We will demonstrate an application of the proposed timing expression 

methodology in the exploration of the CP+T TLM models in the design of an audio-

video server system first described in Section 4.6. For exploration at the CP+T level, 

we use a CP audio-video server system model. From the information collected at the 

CP level, we have manually created the temporal server model shown in Figure 47. 

As shown in the aforementioned figure, events appearing on one server channel are 

presented with its temporal relationships. This CP+T temporal model of the audio-

video server system is explored and has to be refined. As we can see, the server’s 

temporal model contains several conditional events such as user commands. At the 

CP level these commands are modeled using probabilistic generation. Furthermore, 

some parameters are defined by their variation intervals, leading to the specification 

of timing intervals in a parameterized manner. Thus, the server’s behavior is quite 

complex and the corresponding temporal graph includes cyclic treatment, 

parameterized borders of the delay intervals and several conditional events 

describing nondeterministic behavior. These concepts are not supported by the 

previously presented timing expression methodology, which is based on timing 

constraint analysis. For this case, we have tried to combine the simulation and the 

temporal verification. In order to manage the exploration of the systems with 

conditional events and repetitive behavior, we can use dynamic verification that 

combines the simulation and analytical methods. We can subdivide the graph with 

cyclic behavior into acyclic subgraphs and explore several of them by analytical 

methods in the parameterized form. Having the verified subgraphs with timing 

intervals presented in parametric form, we can, during the simulation, dynamically 

extract the corresponding subgraphs, substitute the simulation values and verify the 

system requirements. In this manner we can verify and adjust temporal constraints in 

the temporal model and add the behavior details in the simulation model. 
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For the audio-video server model, we have extracted several parameterized 

acyclic subgraphs, though all of them gave us trivial solutions. This fact signifies that 

each acyclic subgraph in the temporal audio-video server model is not detailed 

enough to provide information for temporal analysis. In addition, this also means that 

the whole CP+T temporal graph is very complex for the proposed temporal 

expression methodology.  

 

Figure 47: Temporal model of the audio-video server system 

Our experimentations have demonstrated that the timing constraint analysis is 

probably not very appropriate for exploration of high level system descriptions and 

for applications with nondeterministic and repetitive behavior. Indeed, for such 

systems, the simulation method will be sufficient in providing acceptable simulation 
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speed as there are very little amounts of details regarding system description at the 

CP level. 

5.4.2 Communication Exploration at PV and PV+T Levels   

The TLM paradigm assumes development of system computation structure 

separately from development of communication structure in the design flow. In this 

subsection, we present a method which uses the min-max-linear temporal model to 

explore and refine the system communication structure in the TLM design flow. 

Detailed communication structure exploration and refinement is done at the PV and 

PV+T abstraction levels. The presented method is an extension and generalization of 

a heuristic algorithm based on the local consistency property for assume-commit 

constraints systems [32] discussed in Section 5.2.6.   

Structurally, modern systems can be seen as one or several processing 

components which communicate with each other or/and the environment. The idea of 

distinguishing the event’s nature leads to the identification of events that can be 

controlled by some component or that can be grouped according to certain 

functionality for future implementation as a unique component in the system. A 

“subdivision” of the global temporal system specification into regions of events 

belonging to some structural or logical unit gives us the possibility to verify the 

temporal interactions between the communicating elements and eventually propose a 

set of rules thereby defining a protocol of communication assuring the timing 

consistency of the system specification.  This verification mechanism can be applied 

at different abstraction levels providing, in this way, the exploration and refinement 

of the system communication infrastructure.  In the case of platform-based modeling, 

this method can help to adjust several configuration parameters.  

Consider the event graph of Figure 48 that represents the temporal 

specification of two communicating components. Suppose that in this graph the 

events c1i (i=1 to 5) are  those of communicating component 1 that can be controlled 

by  it. Correspondingly, c2j (j = 1, 2) are the events controlled by communicating 

component 2. The constraints represented by the arcs finishing at these events are 

commit constraints. 
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Figure 48: Temporal specification of two communicating components 

There is only one event that cannot be controlled in Figure 48, an event 

source labeled a1. Events that cannot be controlled in the system timing specification 

are the “true” input events which form assume constraints. In the temporal system 

specification, if a certain component cannot control an event associated with it, the 

nature of this event must be defined as being “in”. Determining this nature has to be 

done judiciously because each communicating component can have several 

uncontrolled events.  In this case, assume constraints can be generated with 

environment events that are generally uncontrollable.  

Applying the local consistency verification algorithm (Section 5.2.6) to the 

graph in Figure 48, and considering all constraints to be linear, we have obtained a 

solution which is presented in Figure 49. In the initial event graph, nodes c14 and c15 

are not locally consistent. To change this, we can examine the parents of these nodes 

and, since they are events belonging to the same logical partition, i.e. they are 

controlled by the same communicating component, we can add the corresponding 

commit constraints. Thus, we have generated timing relationships between two 

communicating devices which can be thought of as a protocol of communication that 

has to be respected to assure temporally correct system functionality. 
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Figure 49: Solution for the temporal specification of Figure 48 

In case of presence of multiple uncontrolled events, the assume constraints 

generated by them have to be satisfied for all values of bounded intervals. To satisfy 

the assume constraints, the algorithm looks for a candidate for a new commit 

constraint among the events belonging to the same logical unit.  

Let us now consider the fact that component 2 generates only one event, c21 

(Figure 50).  
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Figure 50: Changed temporal specification of Figure 48 

In trying to make node c15 locally consistent, we should enforce the implicit assume 

constraint between c21 and c16 to be in [-30, 40] by means of inserting the 

corresponding commit constraint in the appropriate logical unit. The new commit 

constraint is [-40, 20], inserted between events c16 and c13 which are under the 

control of communicating component 1. A pseudo code of the algorithm for finding a 

realizable timing specification of multiple communicating components is presented 

below. 
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Algorithm 7: Algorithm for finding a realizable timing 
specification of multiple communicating components 

Step 1: Annotate in the timing specification graph events 
that can be controlled by the same communicating 
component and “true” input events 
 
Step 2:  
for each convergence node do 
     for each pair of its parents do  
      verify the local consistency property 
      if the condition does not hold then 

if the pair of convergence node parents 
   belong to the same component 

         then 
          add or adjust the commit constraint 
          else  
              look for a necessary commit constraint 
                 in the corresponding component  
   end if                             
       else 
         signal timing inconsistency 
  end if 
 end for 
end for  

5.4.2.1 Experimentations 

In this section, we apply the above presented concepts to the timing of bus 

arbitration [28] example.  

Buses are basic blocks of complex digital systems and often cause some 

difficult timing problems. Considering the timing specification of the multi-master 

system configuration on an Intel Multibus, we derive a realizable bus arbitration 

protocol. 

The aforementioned multi-master system configuration involves three 

masters: A, B, C. Each master has a distinct priority.  Its resolution is handled by the 

parallel priority resolution scheme implemented by means of encoder/decoder logic 

on Master A. In this example, the bus arbitration concerns Masters B and C, this has 

the lowest priority.  
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Consider the following situation. Master C is transferring data and B requests 

a bus data transfer. The priority resolution logic at A asserts and removes the 

corresponding signals. C is allowed to complete the transfer. Thereafter, Master C 

surrenders the bus and B prepares for and begins the transfer. The relevant signals 

and events involved in Multibus arbitration with parallel priority resolution are 

presented in Figure 51. 

 

Figure 51: Events and signals involved in arbitration [28] 

The bus arbitration timing specification for a minimum bus clock of 100 ns 

(the maximum bus transfer rate) derived from Intel’s data sheets is presented in [28] 

and is given in Figure 52.  In this temporal specification, we can distinguish four 

groups of events. “True” input events are clock events represented in Figure 52 by 

dashed lined white circles. The second group of events contains those controlled by 

the bus: R, P, c, b. The third group contains only one event, r, which is the request 

event sent by Master B to access the bus for data transfer. Finally, events p, C, B are 

controlled by the priority resolution logic and are forming the fourth event group.  

Dashed arcs represent the constraints involved in the arbitration process. Now we 

can explore the temporal interactions between communicating devices and, if 

needed, constrain the temporal specifications inside each group of events and 

between groups thereby generating a realizable bus arbitration protocol. In this 

example, all temporal constraints are linear.  
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Figure 52: Timing specification of the bus arbitration 

We have applied to the graph of Figure 52 the local consistency property method. 

The results are given in Figure 53.  

 

Figure 53: Realizable bus arbitration timing specification 

The timing depicted on the dashed arcs represents a realizable bus arbitration 

protocol on the Intel Multibus system. As we can see, in order to satisfy a priority 

resolution delay of 37 ns (constraint R→p), we have to add a constraint to the clock-

request delay ( rb →1 ). If we want to avoid this, faster priority resolution logic has to 
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be chosen. In [28], the timing for the constraint pR →  was calculated manually using 

the specification of worst-case bounds on the corresponding signals and the 

constraint violation was determined; another timing violation was detected using the 

simulation method. In both cases, timing violations were discovered, but no solution 

was given. In applying our method, we derived a protocol for communicating 

components that can satisfy a priority resolution delay of 37 ns thus reducing the 

temporal bounds of the events that can be controlled by the system. 

5.4.3 Conclusion 

In this chapter, we have presented an analytical timing model and the way in 

which it may be used in transaction modeling. This allowed for enhancing the TLM 

verification simulation method with the analytical one. The presented timing model 

is based on temporal constraint analysis for the min-max-linear and commit/assume 

constraint types. A new timing verification algorithm was proposed as well as an 

optimization technique to improve the algorithm efficiency. This algorithm was used 

in combination with the TLM simulation method to explore the CP+T model of the 

server application, though, for this kind of application, the presented timing model 

was quite restricted to the exploration of the functional specification at a high 

modeling level. In contrast, for late phase CP+T level architecture explorations 

involving HW modules and exploration of Hw/Sw partitioning, this timing 

verification model is very suitable as it matches temporal hardware module behavior. 

We have estimated the average verification algorithm performance and showed that 

it is acceptable. Furthermore, a second algorithm was proposed for PV+T 

communication structure explorations and its successful application was 

demonstrated through the bus arbitration example as the temporal inconsistency was 

not only discovered but the solution was also proposed. Finally, we can predict that 

the most important impact of the proposed timing verification methods on system 

exploration performance will be at the late phase of the PV+T level, where many 

HW components are involved and the simulation speed drastically decreases. 
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Chapter 6.    Conclusions and future work 

6.1 Conclusions 

In this research, we have presented a timing expression methodology in 

Transaction Level Modeling, providing a method to accelerate the overall design 

process. This acceleration can be achieved by means of a combination of two 

paradigms: a simulation TLM approach on one hand and an analytical timing 

expression methodology to specify timing between different transactions on the 

other.  Two verification methods (simulation and analytical verification algorithms) 

provide an excellent solution to the verification and design space exploration of large 

designs. Indeed, while several parts can be verified and explored analytically, others 

require simulations and some need both methods. The proposed timing expression 

methodology is based on previous works and is enhanced with several important 

theoretical aspects.  We have completed the mathematical representation of all 

temporal constraint types discussed in literature by means of discovering the 

correspondence between min-max-linear and assume constraints semantics. The 

assume constraint type can be modeled as min and max constraints. It corresponds to 

the fourth constraint type that was considered as being without any practical usage. 

This fact explained the non-existence of a polynomial time algorithm for linear-

assume constraints systems as being due to the NP complexity of the general min-

max-linear problem. We have implemented several existing timing verification 

algorithms.  

A new general algorithm based on the linearization of min-max inequalities 

was proposed as well as an optimization technique that significantly improves its 

efficiency.  This method has been used in the timing analysis of all four constraint 

type systems. Thus, the method can be applied to the exploration of a wider class of 

applications than previously presented ones.  

The timing expression based on temporal constraint analysis is completely 

independent from languages used for system design, providing, in this manner, a 

possibility of reuse.  
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In this research, we presented a framework supporting the Transactional Level 

Modeling paradigm as one of the promising solutions to cope with the growing 

system complexity and the time to market pressure. The proposed framework 

provides a general approach in system modeling that separates various application 

modeling aspects from system specification: computational models, timing, 

specification/description languages, different functional and non functional 

parameters. To achieve this separation, we have used software engineering 

technologies and paradigms. Using software engineering technologies in TLM 

expression eases the creation of high level transaction models and provides a method 

to productively explore some architectural concerns at a high abstraction level. 

Among the software engineering technologies, we have chosen the .NET 

Framework, XML/XSLT and XSD technologies.  

The .NET Framework has been chosen because it provides multiple predefined 

modeling constructs that allow easy creation of high level transaction models. Some 

of these elements are: multithreaded programming to model parallel activities, an 

events mechanism and interfaces and different kinds of abstract data types in order to 

model transactions The XML technology permitted to powerfully express a system 

specification with unifying functional and non-functional aspects such as cost, size, 

power dissipation, bandwidth, etc. in a single model framework. In this way, these 

constraints can be modeled in the earliest specification phase so that a designer can 

deal with them right from the beginning.  

The XSLT technology used in the transformation of specification into a 

simulation model provides an efficient mechanism for design space exploration at 

different abstraction levels. The XSLT transformation contains simulator and 

specification language details, i.e. computation models related to the system under 

design. XML/XSLT and the .NET language interoperability support render TLM 

high level models independent from description and programming languages, in this 

way leading to high level functional specification reuse. This will allow reuse at 

different design stages, easier design exploration and exchange of specifications 

between different users having different HDLs and implementation environments. 
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Using the XSD technology, we have implemented the validation of the 

intermediate models’ structures at each abstraction level in order to assure 

correctness of the modeling. As the correctness of the design tools is a necessity in 

modern conditions, the possibility to guide the designer in the designing process 

through multiple abstraction levels respecting several modeling rules guarantees 

error reduction in system design.  We have implemented a graphic user interface to 

isolate the designer from the cumbersome and error prone syntax of the CP and 

CP+T abstraction levels. 

We have integrated the min-max-linear-assume constraint timing specification 

methodology in the TLM design flow in order to represent and explore timing 

descriptions at different abstraction levels. We have extended the existing methods to 

perform the communication structure exploration and refinement at the PV+T level. 

This method can be used in different system design methodologies. The exploration 

of communicating components of the temporal model has been done using the local 

consistency property method which was generalized to handle min-max events. The 

proposed communication structure exploration methodology can be used in 

automatic protocol generation, in determining temporal specification inconsistencies 

and in adjusting some parameters in case of platform-based design methodologies. 

All these features lead to the reduction in the time needed for the exploration of the 

communication design space. 

6.2 Future work 

The presented analytical approach does not support verification of systems with 

cyclic non deterministic behavior. Thus, the elaboration of analytical methods to 

manage these kinds of behavior as well as parameterized temporal interval 

boundaries in the timing specification methodology is an important issue.   

To estimate the average performance of the min-max constraint linearization 

algorithm, we have used random generated graphs. In the future, we need to collect 

numerical data of algorithm execution time for different real applications to confirm 

the obtained average case complexity. 
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In order to demonstrate the full strength of the presented analytical approach in 

the system verification step, it is necessary to create a library of temporal 

descriptions of hardware architecture components. In this case, many design 

decisions might be done efficiently without simulation. These decisions concern 

Hw/Sw partitioning, the mapping of system functionality to architecture components 

and the definition of the system communication infrastructure. 

Further development of tools for the TLM framework is needed. The automated 

support for the PV and PV+T levels has to be implemented and a link with the 

SystemC TLM standard, as well as with other Hw/Sw design methodologies has to 

be established. An important contribution to easing the design will be an 

implementation of a semi-automated procedure of construction of the initial temporal 

specification from an untimed high level functional model. This model might be used 

for further exploration and refinement along with the simulation model providing, in 

this way, a powerful verification method combining analytical and simulation 

techniques. 
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