
Université de Montréal

Timing verification in Transaction Modeling

par

Alena Tsikhanovich

Département d’Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Thèse présentée à la Faculté des Arts et des Sciences en vue de l’obtention du grade
de Philosophiae Doctor (Ph.D.) en Informatique

Décembre 2009

© Alena Tsikhanovich, 2009

Université de Montréal

Faculté des Arts et des Sciences

Cette thèse intitulée:

Timing verification in Transaction Modeling

Présentée par :

Alena Tsikhanovich

a été évaluée par un jury composé des personnes suivantes :

Abdelhakim Hafid, président-rapporteur

El Mostapha Aboulhamid, directeur de recherche

Guy Bois, co-directeur

Jean-Pierre David, membre du jury

Smail Niar, examinateur externe

 Jean-François Angers, représentant du doyen de la FES

I

Résumé

Les systèmes Matériels/Logiciels deviennent indispensables dans tous les

aspects de la vie quotidienne. La présence croissante de ces systèmes dans les

différents produits et services incite à trouver des méthodes pour les développer

efficacement. Mais une conception efficace de ces systèmes est limitée par plusieurs

facteurs, certains d'entre eux sont: la complexité croissante des applications, une

augmentation de la densité d'intégration, la nature hétérogène des produits et

services, la diminution de temps d’accès au marché. Une modélisation

transactionnelle (TLM) est considérée comme un paradigme prometteur permettant

de gérer la complexité de conception et fournissant des moyens d’exploration et de

validation d'alternatives de conception à des niveaux d’abstraction élevés.

Cette recherche propose une méthodologie d’expression de temps dans TLM

basée sur une analyse de contraintes temporelles. Nous proposons d'utiliser une

combinaison de deux paradigmes de développement pour accélérer la conception: le

TLM d'une part et une méthodologie d’expression de temps entre différentes

transactions d’autre part. Cette synergie nous permet de combiner dans un seul

environnement des méthodes de simulation performantes et des méthodes

analytiques formelles. Nous avons proposé un nouvel algorithme de vérification

temporelle basé sur la procédure de linéarisation des contraintes de type min/max et

une technique d'optimisation afin d'améliorer l'efficacité de l'algorithme. Nous avons

complété la description mathématique de tous les types de contraintes présentées

dans la littérature. Nous avons développé des méthodes d'exploration et raffinement

de système de communication qui nous a permis d'utiliser les algorithmes de

vérification temporelle à différents niveaux TLM.

Comme il existe plusieurs définitions du TLM, dans le cadre de notre

recherche, nous avons défini une méthodologie de spécification et simulation pour

des systèmes Matériel/Logiciel basée sur le paradigme de TLM. Dans cette

méthodologie plusieurs concepts de modélisation peuvent être considérés

séparément. Basée sur l'utilisation des technologies modernes de génie logiciel telles

II

que XML, XSLT, XSD, la programmation orientée objet et plusieurs autres fournies

par l’environnement .Net, la méthodologie proposée présente une approche qui rend

possible une réutilisation des modèles intermédiaires afin de faire face à la contrainte

de temps d’accès au marché. Elle fournit une approche générale dans la

modélisation du système qui sépare les différents aspects de conception tels que des

modèles de calculs utilisés pour décrire le système à des niveaux d’abstraction

multiples. En conséquence, dans le modèle du système nous pouvons clairement

identifier la fonctionnalité du système sans les détails reliés aux plateformes de

développement et ceci mènera à améliorer la "portabilité" du modèle d'application.

 Mots-clés : Systèmes Matériels/Logiciels, vérification temporelle, analyse

temporelle, modélisation transactionnelle, modélisation des systèmes à différents

niveaux d'abstraction.

III

Abstract

Hardware/Software (Hw/Sw) systems are likely to become essential in all

aspects of everyday life. The increasing penetration of Hw/Sw systems in products

and services creates a necessity of their efficient development. However, the

productive design of these systems is limited by several factors, some of them being

the increasing complexity of applications, the increasing degree of integration, the

heterogeneous nature of products and services as well as the shrinking of the time-to-

market delay. Transaction Level Modeling (TLM) paradigm is considered as one of

the most promising simulation paradigms to break down the design complexity by

allowing the exploration and validation of design alternatives at high levels of

abstraction.

This research proposes a timing expression methodology in TLM based on

temporal constraints analysis. We propose to use a combination of two paradigms to

accelerate the design process: TLM on one hand and a methodology to express

timing between different transactions on the other hand. Using a timing specification

model and underlining timing constraints verification algorithms can decrease the

time needed for verification by simulation. Combining in one framework the

simulation and analytical design exploration methods can improve the analytical

power of design verification and validation. We have proposed a new timing

verification algorithm based on the linearization procedure and an optimization

technique to improve its efficiency. We have completed the mathematical

representation of all constraint types discussed in the literature creating in this way a

unified timing specification methodology that can be used in the expression of a

wider class of applications than previously presented ones. We have developed the

methods for communication structure exploration and refinement that permitted us to

apply the timing verification algorithms in system exploration at different TLM

levels.

As there are many definitions of TLM and many development environments

proposing TLM in their design cycle with several pro and contra, in the context of

our research we define a hardware/software (Hw/Sw) specification and simulation

IV

methodology which supports TLM in such a way that several modeling concepts can

be seen separately. Relying on the use of modern software engineering technologies

such as XML, XSLT, XSD, object oriented programming and others supported by

the .Net Framework, an approach that makes an intermediate design model reuse

possible in order to cope with time-to-market constraint is presented. The proposed

TLM design methodology provides a general approach in system modeling that

separates various application modeling aspects from system specification:

computational models, used in application modeling, supported by the language used

for the functional specification and provided by simulator. As a result, in the system

model we can clearly identify system functionality without details related to the

development platform thereby leading to a better “portability” of the application

model.

Keywords: Hardware/Software system modeling, timing verification, temporal

constraints analysis, transaction level modeling, multiple abstraction levels.

V

Table of contents

Résumé…………… ... I

Abstract………. .. III

Table of contents .. V

List of tables…. ... IX

List of figures….. ... X

List of figures.. ... X

List of acronyms ... XIII

Acknowledgments ... XV

Chapter 1. Introduction ... 1

1.1 Motivation .. 1

1.1.1 Reuse .. 2

1.1.2 System specification ... 2

1.1.3 Design flow .. 3

1.1.4 Verification and validation techniques ... 4

1.2 Objectives and proposed approach ... 6

1.3 Contributions .. 8

1.4 Outline of the Thesis .. 9

Chapter 2. Existing design techniques .. 11

2.1 Main design flows .. 12

2.2 Specification/description languages ... 12

2.3 Models of computation ... 15

2.3.1 Communicating sequential processes [40] ... 16

2.3.2 Kahn process networks [8]. .. 17

2.3.3 Dataflow models ... 17

2.3.4 Discrete Event .. 18

VI

2.3.5 Petri nets ... 18

2.3.6 Finite State Machine ... 18

2.4 Transaction Level Modeling (TLM) .. 19

2.4.1 SpecC definition ... 19

2.4.2 SystemC definition ... 21

2.4.3 Open Core Protocol – International Partnership TLM definition 26

2.4.4 TLM evolution ... 26

2.5 Discussion .. 28

Chapter 3. Software engineering technologies ... 31

3.1 XML technology [9] ... 31

3.2 XML processing ... 32

3.3 XSD technology [20] .. 33

3.4 .NET ... 34

3.5 Hw/Sw design and software engineering technologies and paradigms 35

3.5.1 Sesame framework [79] .. 35

3.5.2 Colif [79] .. 37

3.5.3 IP-XACT [82] ... 37

3.6 Discussion .. 39

Chapter 4. TLM Hw/Sw system specification and modeling methodology 40

4.1 Abstract model ... 41

4.2 XML Abstract model representation .. 42

4.3 Verification of the model structure .. 45

4.4 Simulation model generation .. 47

4.5 Abstract model and TLM ... 49

VII

4.6 Experimentations .. 51

4.6.1 System Description ... 51

4.6.2 Abstract Model of audio-video server system 52

4.6.3 XML server system specification and CP server simulation model .. 53

4.7 Conclusion .. 55

Chapter 5. Timing specification in TLM .. 56

5.1 Expressing timing ... 56

5.2 Timing Analysis ... 61

5.2.1 Linear constraint systems ... 61

5.2.2 Max constraint systems .. 63

5.2.3 Max-Linear Systems ... 65

5.2.4 Min-Max Constraint Systems ... 69

5.2.5 Min-Max-Linear Constraint Systems ... 72

5.2.6 Assume-Commit Constraint Systems ... 72

5.2.7 Discussion .. 76

5.3 Min-max constraint linearization algorithm ... 77

5.3.1 Min-max constraint linearization ... 77

5.3.2 Algorithm Optimization ... 82

5.3.3 Experimentations .. 83

5.4 Timing in TLM ... 89

5.4.1 Timing modeling at CP+T level ... 90

5.4.2 Communication Exploration at PV and PV+T Levels 92

5.4.2.1 Experimentations .. 95

5.4.3 Conclusion .. 98

VIII

Chapter 6. Conclusions and future work ... 99

6.1 Conclusions .. 99

6.2 Future work .. 101

Bibliography….. .. 103

IX

List of tables

Table I: Codesign methodologies ... 29

Table II: Decision matrix for selecting an XML processing approach [9] 33

Table III: Complexity of the maximum separation problem [25] 61

Table IV: Maximum separation time for the timing specification of Figure 30 65

Table V: Timing separations for the Intel 8086 ROM read cycle 85

Table VI: Required and computed separations for the Intel 8086 ROM read cycle .. 86

Table VII: Results of experiments .. 88

X

List of figures

Figure 1: SLM to RTL gap [74] ... 5

Figure 2: Design process .. 11

Figure 3: Kahn process network ... 17

Figure 4: System modeling graph .. 20

Figure 5: TLM Abstraction Levels and Potential Flows [7] 22

Figure 6: CP level ... 23

Figure 7: CP+T level .. 23

Figure 8: PV, PV+T levels ... 24

Figure 9: TLM-2.0 approach [81] .. 28

Figure 10: IP-XACT specification [82] .. 38

Figure 11: CP Abstract Model .. 42

Figure 12: Graphic representation of the XML system specification 43

Figure 13: Graphic representation of the System Model node structure 44

Figure 14: Process node structure ... 44

Figure 15: XML tags for process description ... 45

Figure 16: Graphic representation of XML schema for process description 46

Figure 17: Fragment of process node transformation .. 47

Figure 18: Simulation model generation flow .. 48

Figure 19: TLM level Transformation ... 48

Figure 20: Design flow ... 51

Figure 21: CP Abstract Models of Test Bench and Server System 52

Figure 22: Fragment of XML server system specification ... 53

XI

Figure 23 : CP C# Transformation process .. 54

Figure 24 : C# code fragment after XSLT transformation ... 54

Figure 25: Read-cycle timing diagrams for the 8086 CPU [28] 57

Figure 26: Partial graphic representation of the timing diagram from Figure 25 58

Figure 27: Interpretation of the different types of constraints [61] 59

Figure 28: Subgraph with linear constraints ... 60

Figure 29: Graphic representation of delay constraint ... 62

Figure 30: Max only constraint timing model ... 64

Figure 31: An event graph (a) and the corresponding compulsory graph (b) 66

Figure 32: An event graph and the corresponding slack graph in the first iteration .67

Figure 33: Reduction from 3-SAT to min/max problem .. 71

Figure 34: Event graph .. 74

Figure 35: Subgraphs used in the determination of local consistency property 75

Figure 36: Transformation of type 4 constraints into min-max-linear constraints 76

Figure 37: Min-Max linearization inequalities ... 77

Figure 38: Subgraph with the max constraints ... 78

Figure 39: Transformed max constraint ... 78

Figure 40: Transformed min constraint .. 79

Figure 41: Graph representation of the transformed max and min constraints 79

Figure 42: Initial graph with max constraints .. 81

Figure 43: Graph with transformed max constraints .. 82

Figure 44: Intel 8086 ROM read cycle .. 84

Figure 45: Timing specification of the Intel 8086 ROM read cycle 85

XII

Figure 46: Structures of the generated graphs .. 87

Figure 47: Temporal model of the audio-video server system 91

Figure 48: Temporal specification of two communicating components 93

Figure 49: Solution for the temporal specification of Figure 48 94

Figure 50: Changed temporal specification of Figure 48 ... 94

Figure 51: Events and signals involved in arbitration [28] .. 96

Figure 52: Timing specification of the bus arbitration ... 97

Figure 53: Realizable bus arbitration timing specification .. 97

XIII

List of acronyms

ALG Algorithmic

ALAP As Late As Possible

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ASSP Application-Specific Standard Products

CA Cycle Accurate

CC Cycle Callable

CIL Common Intermediate Language

CLR Common Language Runtime

CNF Conjunctive Normal Form

CP Communicating Processes

CPU Central Processing Unit

CSP Communicating Sequential Processes

DOM Document Object Model

DT Discrete Time

DTD Document Type Definition

EDA Electronic Design Automation

EG Event Graph

FIFO First In First Out

FSM Finite State Machine

HDF Heterochronous DataFlow

HDL Hardware Description Language

Hw/Sw Hardware/Software

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

XIV

JIT Just-In-Time

LOTOS Language Of Temporal Ordering Specifications

OCP-IP Open Core Protocol – International Partnership

OSCI Open SystemC Initiative

PV Programmer’s View

ROM Read Only Memory

RTL Register Transfer Level

SAX Simple API for XML

SCE System on Chip Environment

SDF Synchronous DataFlow

SDL Specification and Description Language

SLM System Level Modeling

SOC System On Chip

SPIRIT Structure for Packaging, Integrating and Re-using IP within Tool-flows

TLM Transaction Level Modeling

UM Use- Model

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

W3C World Wide Web Consortium

XML EXtensible Murkup Language

XSLT EXtensible Stylesheet Language Transformations

XSD XML Schema Definition Language

YML Y-chart Modeling Language

XV

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility

to complete this thesis. In particular, I would like to thank to my thesis adviser,

Professor El Mostapha Aboulhamid. I will never be able to thank you enough for the

great support during my studies. My special thanks I would like to address to my co-

adviser, Professor Guy Bois, for his suggestions and knowledge. Finally, I’d also like

to thank all peoples with whom I had chance to work.

1

Chapter 1. Introduction

1.1 Motivation

Hardware/Software (Hw/Sw) systems are widely presented nowadays. Their

impact on our life is very important as these systems are present in a variety of

applications such as audio and video consumer products, communications, desktop

and mobile computers, as well as professional areas like traffic control,

environmental applications, driving and car control, medical systems, etc.

The increasing penetration of Hw/Sw systems in products and services creates a

necessity of their efficient development. Several facts, which make the achievement

of this goal quite complex, are:

– Increasing complexity of applications

– Increasing degree of integration

– Heterogenic nature of products and services

– Wide diversity of non-functional constraints and applications

– Shrinking time-to-market time

– Increasing importance of system flexibility [71].

According to Moore’s law, the complexity of integrated circuits in terms of the

number of transistors on a chip will double every 18 month. This growth of

complexity of micro-electronic components will correspondingly lead to exponential

growth of the complexity of Hw/Sw systems. Furthermore, as the complexity of

applications is increasing continuously and modern applications describe often the

functionality of different nature, the complexity growth in the number of different

technologies needed in building an Hw/Sw system is evident.

The facts mentioned above render the productive design difficult, leading to a

necessity of resolving the following challenges in system design:

– Assuring the reuse in different forms

2

– Assuring the design of the right system on target, without over and without

under specification

– Supporting in the design flow a passage from executable specification to

implementation

– Providing improved verification and validation techniques as these tools

remain a significant bottleneck in system modeling.

 All system design challenges listed above presume several opportunities for actions

detailed in the embedded systems roadmap [71] and the semiconductor design

roadmap [72].

1.1.1 Reuse

Reuse is an important factor in making the development process efficient.

The amount of reuse in different forms has to increase drastically. In the embedded

systems roadmap [71] it is indicated that the amount of reuse of existing hardware,

software and Hw/Sw components has to increase from 20% to at least 80%. In this

direction it is necessary to promote, facilitate and develop the reuse of intellectual

property (IP) blocks comprising both hardware and software components. For

example, current embedded software methods and tools do not support reuse [71]. IP

block descriptions have to be standardized in order to facilitate their exchange and

integration in different design methodologies. Furthermore, the IP blocks regarding

behavior, cost and performance have to be presented at different abstraction levels to

achieve the highest degree of reusability.

1.1.2 System specification

The increasing internal and external complexity of systems as well as their

diffusion into a multi-disciplinary world makes it very difficult to establish a

specification that can serve as input, following a subsequent transformation, to a

suitable implementation. The heterogeneity of designed systems will require that

several technologies of implementation be combined on a carrier technology.

Reusable parts and different kinds of metrics quantifying the design experience must

3

be developed to aid the designer in balancing constraints of different nature to obtain

the final specification. In the specification domain, an urgent need exists for the

development of methods that close the gap between requirements and specification,

in particular in the expression of different kinds of constraints. Specifications and

design representations need to be augmented with means to express properties which

go beyond behavior and structure. The languages used in system modeling must

make possible to express different time models and different constraint types such as

real-time constraints, throughput, power dissipation and silicon area.

1.1.3 Design flow

The design flow of different methodologies can be divided into two parts: the

first covers the flow from idea to some form of executable specification and the

second covers the flow from executable specification to final implementation. The

executable specification of the two parts of the design flow can be based on various

models and can be presented at different levels of abstraction varying over a wide

range and representing the system description with a different amount of details. This

diversity of models and representations imposes an additional demand on the

correctness of the design flow, on the capabilities of the design representations and

on the correctness of the semantics of these representations, leading to the

formalization of the entire design process. This in particular holds for the design flow

from executable specification to the final implementation. The different steps in the

design flow should be connected together in a more appropriate and less error prone

manner. The development methods must put more emphasis on the formal semantics

and models on which the design flow and the design representations are founded.

Thus, developments in the area of design representations and design languages are

needed.

 Currently, no design languages or representations do exist that can be used

throughout the design process. Moreover, at high levels of specification we need an

integral representation of components of different nature, i.e. we need an appropriate

representation of physics, mechanics, etc. together with behavior and structure. The

design space exploration styles have to allow for requirement analysis in a mixed

4

technology framework by co-simulation of executable models of heterogeneous

building blocks at the appropriate abstraction levels. It is necessary to develop

methods and tools to explore design decisions concerning the allocation of

computation and communication to resources with the possibility of early evaluation

of the consequences of system requirements and obtaining high-quality solutions.

Another aspect of supporting a passage from specification to implementation

is further automation of design tools. This trend imposes supplementary exigencies

on compilers and translators used in the design. In this context a compiler is any

translator that translates one representation into another and performs synthesis and

optimization. The ultimate goal of the compiler is automatically map the behavior

expressed by an executable specification on hardware. Thus, the compiler can

determine both – underlying hardware and software. The derivation of hardware

architecture from behavioral specification has to be based on several cost functions.

Furthermore, for this hardware the dedicated software has to be generated too. The

other kind of compilers urgently needed in Hw/Sw system design is a retarget

compiler that efficiently delivers a code to execute on these designs. For these

compilers a suitable representation of the target architecture is needed.

1.1.4 Verification and validation techniques

At each step of the design flow it is necessary to check whether the design

implements the desired functionality. There are various techniques to do this; these

can be separated into formal and non-formal groups. As modern designs are quite

complex, there are very large state spaces associated with them. As such, current

formal verification tools are not capable of examining these spaces in their entirety.

Thus, a large part of verification is effectuated by simulation and emulation. The

tendency of the design complexity to grow will maintain a need for simulation.

However, as stated in the International Technology Roadmap for Semiconductors

(ITRS) [72], the simulation does not scale as designs grow; simulation techniques

can only cover a part of the design space. Therefore some new approaches have to be

proposed to cope with the design verification issue. The shift from non-formal to

formal verification techniques is considered as a breakthrough of the design

5

verification issue. The integration of formal verification and validation techniques

with the design flow are the only ways to solve the growing simulation burden of

verifying the correctness of the design steps. Although formal verification and

validation are not feasible for all designs, they can be applied successfully in many

cases. The analytical power of verification and validation tools has to be improved.

Furthermore, much more attention has to be given to the correctness of the design

tools. Verification and validation will be needed at low levels of abstraction as well

as at higher levels. The relation with the top-level specification is very important to

allow for integration of verification techniques in the system design flow. Electronic

Design Automation (EDA) tools in general deal with the register transfer level (RTL)

of abstraction and the abstraction levels below. At these levels EDA tools are very

powerful, but as they demand very detailed system description they are very slow

and are not suitable for validation of a whole complex system that could be further

implemented in software or hardware. Thus, there is a gap between the system level

modeling (SLM) and register transfer level (RTL) design (Figure 1) and a strong

need for tools to bridge the system level to RTL gap in design and verification exists.

Figure 1: SLM to RTL gap [74]

6

Analyzing the modern trends and tendencies in hardware and Hw/Sw system

design we could summarize in the next paragraph the most promising solutions

dealing with the above discussed problems. These solutions have been used in our

research providing in this way new methods to cope with modern system design

challenges.

1.2 Objectives and proposed approach

Raising the level of design abstraction, the need to increase the design

productivity and reuse in all forms and at all levels are a must in designing

increasingly complex systems. The necessity of a design methodology covering a

passage from executable specification to implementation providing the system

description and refinement at different abstraction levels, addressing the design

productivity challenge, supporting reuse in different forms, providing sophisticated

verification and validation techniques becomes evident. Several solutions aimed at

efficient development were recently proposed.

The Transaction Level Modeling (TLM) paradigm supporting multiple higher

than register transfer abstraction levels is one of these solutions. In TLM, the

computation and communication components are modeled separately. Details of

communication and computation are added gradually as necessary, thereby providing

acceleration of simulation. The TLM allows the exploration and validation of design

alternatives at higher levels of abstraction.

Software engineering technologies and paradigms are actively explored in the

Hw/Sw design domain to augment design reuse. Several system level languages such

as SystemC and SystemVerilog have some deficiencies that need to be eliminated.

For example, these new languages cannot be used in system modeling by both

hardware and software designers as they have some limitations in terms of visual

descriptions and ease of use at the system level [74]. Some examples of work in this

direction are:

7

– Using UML in conjunction with SystemC as a hardware requirement and

description notation [76]-[78].

– Using XML technology for model descriptions [79], as storage format [79],

or for description of meta-data for IP documenting [82].

Timing analysis and verification are important parts of system design.

Accelerating these activities can drastically speed up the overall design process.

In this work we present a model of timing specification that can be used for

acceleration of design space exploration in the Transaction Level Modeling design

flow enhancing in this way the most promising simulation technique by analytical

methods. The analytic timing specification representation is completely independent

from description/modeling languages; this opens another possibility in terms of

reuse. The analytical temporal model can be integrated in different design

methodologies.

In the current design methodologies it is impossible to decouple the system

model from the details imposed by the design framework. There are many aspects

that influence the transformation of the initial specification into implementation thus

making it non reusable in its intermediate forms by other design methodologies. The

aspects, which are used in the design methodology to express the system model at

different abstraction levels, are: design flow structure, choice of the specification

language, computational models and paradigms. We propose a method permitting to

achieve the orthogonalization of different modeling concepts providing in this

manner better possibilities of reuse. The method is based on using the XML

technology and the .NET Framework as a design environment for system

specification.

The .NET Framework has been designed to ease application development in the

highly distributed and heterogeneous environment of the Internet, something which

assures powerful multi-paradigm support. In the software domain, the .NET

Framework is becoming more and more a dominating design environment. These

two facts make choosing the .NET Framework as a development platform very

suitable and perhaps one of the best currently available solutions. Using .NET design

8

capabilities such as XML support, interoperability, .NET Framework class library,

object-oriented programming, provides new possibilities in system exploration and

eases and accelerates Hw/Sw system codesign.

1.3 Contributions

Our contributions in this work are:

– Proposition of a timing expression methodology in TLM flow. Currently,

there is no methodology for timing specification representation in TLM. We

propose to use a combination of two paradigms to accelerate the design

process: TLM on one hand and a methodology to express timing between

different transactions on the other hand. Using a timing specification model

and underlying timing constraints verification algorithms can decrease the

time needed for verification by simulation [65, 66].

– Proposition of methods for communication structure exploration and

refinement in system design based on temporal constraints analysis. The

proposed communication structure exploration methodology can be used in

an automatic protocol generation, in determining temporal specification

inconsistencies and in adjusting some parameters in the case of platform-

based design methodologies [67]

– Presentation of a new algorithm with an optimization technique for timing

verification of systems with deterministic and non-repetitive behavior

handling all constraint types described in the literature and using the

linearization of min-max inequalities [Erreur ! Source du renvoi

introuvable.].

– Proposition of a specification/modeling methodology that supports

transactional level modeling in the design cycle in order to handle the

increasing complexity of systems; closing the gap between system and RTL

9

levels; speeding up the simulation process, providing in this manner a

methodology that increases the design productivity[62].

– Development of a methodology where the specification is not committed to a

hardware description language (HDL) nor to a specific programming

language. This will allow reuse at different design stages, easier design

exploration and exchange of specification between different users having

different HDLs and implementation environments.

– Validation of the intermediate models’ structures at each abstraction level in

order to assure correctness of the modeling. As correctness of design tools is

a necessity in modern conditions, the possibility to guide the designer in the

designing process through multiple abstraction levels respecting several

modeling rules guarantees error reduction in system design.

– Combination of the transaction level modeling paradigm with software

engineering technologies in order to provide an efficient method of separation

of concerns. Using software engineering technologies in TLM expression

eases the creation of high level transaction models and provides a method to

productively explore some architectural concerns at a high level of

abstraction [63].

1.4 Outline of the Thesis

The thesis is organized as follows: Chapter 2 presents an overview of existing

design techniques underlining the diversity of different aspects differentiating them.

It covers the existing design flow structure and the computation models used in

specification languages and in application modeling. This review serves to

demonstrate the enormous influence of the chosen methodology on intermediate

representations of the modeling system. Particularly, attention is given to the

presentation and evolution of the transaction level modeling paradigm.

 Chapter 3 describes current software engineering technologies such as

XML/XSLT and .Net paradigms that we use to achieve the separation of some

environment related concerns from system representation. An overview of some

10

Hw/Sw design methodologies that use these software engineering technologies

together with a discussion of the similarities and differences between them and the

approaches that we have used are also presented in Chapter 3. The TLM Hw/Sw

specification and simulation methodology is detailed in Chapter 4. At the beginning

of this chapter, we present a description of the abstract model used for application

modeling. Further, the XML abstract model representation is given followed by an

explanation of methods assuring correct abstract model construction and simulation

model generation. Finally, some experimentation results are given and discussed at

the end of the chapter.

 Chapter 5 covers a timing representation model. At the beginning, related

work is presented and discussed. We analyze and summarize the descriptions of all

constraint types and establish relationships between several of them. In addition, we

present and discuss existing algorithms, introduce a new timing verification

algorithm with an optimization technique and demonstrate experimental results.

Finally, an application of the presented timing verification methodology in the TLM

design flow is given and Chapter 6 concludes the thesis and gives directions for

future work.

11

Chapter 2. Existing design techniques

Design methodology is the key element in product development. Today’s

systems are often too complex and require a strong methodology for successful

product delivery. There exist a number of approaches in hardware and Hw/Sw

system modeling. However, all design practices cover the design fully or partly, from

system behavior to its detailed implementation, having the same goal: breakdown

design complexity and produce better designs in shorter time (Figure 2).

Figure 2: Design process

Specification describes system behavior and non-functional system requirements

such as:

– time constraints

– power/energy constraints

– safety requirements

– environmental aspects

– cost, etc.

System specification can be formulated in natural language or using specification

languages that make it more detailed and unambiguous. The intended behavior of the

designed system can be presented as a relation between inputs and outputs or as an

algorithm.

Specification

Implementation

Design
Steps

Estimations

H/S Partitioning

SW, HW, Communication
Synthesis

V
erification

12

In today’s design methodologies it is impossible to decouple the system model

from the details imposed by the design framework. There are many aspects that

influence the transformation of the initial specification into implementation making it

non reusable in its intermediate forms by other design methodologies. These aspects

are: design flow structure, choice of the specification language for modeling,

computational models and paradigms used in the design methodology to express

system model at different abstraction levels.

2.1 Main design flows

There are three general strategies in system modeling based on the design flow

structure: top-down, bottom-up and meet-in-the middle.

Top-down strategies, such as that proposed by the System-On-Chip

Environment (SCE) [1] start the design flow from system behavior description

representing the design’s functionality and refine it by adding implementation details

until the system gradually reaches the implementation model. In general, system

architecture is generated from behavior in these kinds of methodologies.

Bottom-up approaches, such as those used in [5], deal with the existing

computation components, which are assembled by means of inserting wrappers

among them. Bottom-up strategies focus on component reuse and wrapper

generation.

Meet- in-the middle approaches [2] and [3] are a combination of both

bottom-up and top-down strategies. In systems developed using the meet-in-the

middle approach, system architecture is predefined but the system behavior has to be

explored and refined to meet architecture constraints.

2.2 Specification/description languages

The choice of a suitable language for system specification is very important for

the design methodology. Generally a trade-off between several criteria such as the

expressiveness of the language, the automation capabilities provided by the model

13

underlying the language as well as the availability of methods and tools supporting

the language [34] must be made. Specification/description languages describe the

desired functionality of a system in a way that captures system characteristics. The

semantics of each language are defined by the underlying model of computation

[14]. This model defines the expressiveness of the language, i.e. what kind of

systems can be described with the language. Languages with high expressiveness can

specify numerous systems with different characteristics. However, they also make

formal reasoning and automated synthesis extremely complex and in some cases

impossible [14]. Below, we will consider some specification languages used in

hardware and Hw/Sw modeling. They can be categorized as follows:

– Programming Languages or system level design languages (SpecC, SystemC,

etc.)

o The SpecC language [20] is defined as an extension of the ANSI-C

programming language with the goal of supporting specification and

design of digital embedded systems, including hardware and software

parts. The SpecC language features concepts essential for embedded

system design such as behavioral and structural hierarchies,

concurrency, communication, synchronization, state transitions and

timing.

o SystemC [18] is a C++ class library and a simulation kernel that

allows the creation of cycle-accurate models and system-level

designs. The SystemC class library provides the constructs needed to

express hardware timing, concurrency, and reactive behavior that are

missing in standard C++.

– Hardware Description Languages (VHDL, Verilog, etc.)

o VHDL (VHSIC Hardware Description Language) [42] and Verilog

[43] are the standard description languages for digital systems. They

support very well system description at low levels of abstraction

(RTL). System representation at high levels of description is possible

but complex and is not widely used by the designers.

14

– Languages specialized for specification of systems in particular areas and

displaying unique features:

o Formal Description Techniques (LOTOS, SDL, etc.)

 LOTOS [35] (Language of Temporal Ordering Specifications)

is a language that is very suitable in describing concurrency,

communication and data structures; however, the concept of

time is missing. It is based on Process Algebra. The properties

of Process Algebra are used in order to prove correctness of

specifications. The language is widely used in protocol and

distributed systems specifications.

 SDL [36] (Specification and Description Language) is a

general purpose description language for communicating

systems. It is based on the model of extended finite state

machines and can be used to model real-time, stimulus-

response systems.

o Real Time System Languages (Esterel, Statecharts)

 Esterel [48] is a programming language dedicated to

programming reactive systems, including real-time systems

and control automata. This language provides powerful

concepts for expressing time, though the communication

model is restricted to the specification of synchronous systems

[44].

 StateCharts [45] is a language that has been developed in order

to deal with problems of specification and design of large

reactive systems. The basis for the StateChart language is the

Hybrid state machine proposed by David Harel. StateCharts is

used to depict the behavioral view of a system, which is

described by means of hierarchical states with corresponding

transitions. Moreover, these transitions are triggered by

15

conditions and events. The communication model used in

StateCharts is broadcasting whereas the execution model is

synchronous.

o Parallel Programming Languages (CSP, Occam)

 CSP (Communicating Sequential Processes language) [46] is

Process Algebra designed for the description and analysis of

concurrent systems. CSP is based on formal mathematics

thereby allowing the designer to specify requirements

unambiguously and to satisfyingly prove their implementation.

In the next section, we will consider some of the models of computation

commonly used to describe hardware and Hw/Sw systems that have been employed

in the above presented specification languages.

2.3 Models of computation

A model of computation in the general sense can be defined as a set of

theoretical choices that adequately express some problem. We can distinguish a

computational model or models underlying the specification language from

computational models that can be constructed on the top of the language.

Any design can be viewed abstractly as a set of components interacting with each

other and with their environment. In this context, the model of computation describes

the behavior and interaction methods of these components. The aspects that models

of computation usually refer to are:

 internal semantics of component functionality related to it computation

 communication

 relationships in terms of concurrency

Concurrency is one of the aspects that differentiates computational models. The

concurrency can be

 Data-driven

16

 Control-driven.

In data-driven concurrency the ordering of executions is not explicitly specified.

Parallelism is determined by data dependencies. In control-driven concurrency

explicit constructs are used to specify parallel and sequential execution.

Various communication and synchronization mechanisms are used in the

different computation models: shared memory, message-passing communications,

blocking and non-blocking communications control-depending and data-depending

synchronizations. The last very important component of each computation model is a

time representation [14].

A variety of models have been proposed for concurrent systems. We will

consider some computation models commonly used to describe hardware and

Hw/Sw systems:

 Communicating sequential processes (CSP)

 Kahn Process Network

 Dataflow models

 Discrete Event

 Petri nets

 Finite State Machine

2.3.1 Communicating sequential processes [40]

In the CSP computation model, the components are sequential processes that

run concurrently and communicate using the synchronous message passing

technique. Synchronous communication in CSP means the presence of a mechanism

that ensures that, in case of data transfer, the receiver process is in an adequate state

to accept the information. The notion of time is absent. Time consuming actions have

to be modeled using a pair of events (an event is an atomic action with zero

duration). This model of computation is very appropriate to represent applications

dealing with resource management problems.

17

2.3.2 Kahn process networks [8].

In this model, concurrent processes (Figure 3) communicate through

unidirectional channels with unbounded capacity using a first-in-first-out (FIFO)

policy. A read operation is blocking, i.e. an attempt to read from an empty channel

will lead to a process stall. A write operation is non-blocking. Processes perform

sequential computation and, at any given time, they may be in two states: a

computing state or a waiting for information on one of its input lines state.

Figure 3: Kahn process network

2.3.3 Dataflow models

 SDF – Synchronous Dataflow [49]. In the SDF model, components execute

some actions according to a predetermined schedule, i.e. the modeled system

is presented as a directed graph where the nodes describe computations and

the arcs data paths. Any node performs its computation (fires) when the input

data is available on incoming arcs. When the node fires, several tokens will

be consumed or produced on each arc. In the SDF model, the number of

tokens on each arc is specified a priori. Communication is strictly controlled

and there is no notion of time. This model is very appropriate for representing

digital signal processing applications.

 HDF – Heterochronous Dataflow. This is a heterogeneous composition of the

SDF and the finite state machine models. The HDF computation model

Kahn Process

Channel
Kahn Process Kahn Process

18

allows rate changes through state transitions of the FSM, while within each

state the system can be considered as an SDF model.

 DT – Discrete Time. This model is an SDF model with the added notion of

time. Furthermore, it has a global time and period.

2.3.4 Discrete Event

In discrete event models [50] system components communicate according to

the events that are ordered on a global timeline. An event is an instantaneous action

which causes a transition from one discrete state to another. The communication

between computational tasks (processes) is implemented by means of signals that

represent a set of atomic events occurring in some instant of physical time. Thus,

each event is associated with a value and a timestamp [47]. Each action can be the

event generator or event receiver. This computation model is widely used in digital

logic to simulate behavior of digital systems (VHDL, Verilog simulators).

2.3.5 Petri nets

Proposed by C.A. Petri in1966, the Petri nets computation model consists of

three elements: the S-elements (places), T-elements (transitions) and tokens. Places

and transitions are related to each other by a flow relation. Two important

characteristics of Petri nets are concurrency and the asynchronous nature of this

model. The asynchronous property signifies that there is no inherent clock

mechanism for firing transitions. Petri nets are very useful to represent the control

structures of digital systems.

2.3.6 Finite State Machine

The FSM model consists of a set of sequential states linked by transitions. An

operation of the system is strictly ordered by a set of corresponding transitions. As

the classical FSM representations do not allow concurrency of states, a number of

extensions and variations have been suggested:

– Extended-FSM,

19

– Codesign FSM [51].

2.4 Transaction Level Modeling (TLM)

The TLM modeling approach has been widely discussed in system-level

design community as an approach to handle the complexity of system-on-chip and

time-to-market pressures [6, 7, 21, 22, 23]. There are many definitions of TLM and

many development environments proposing TLM in their design cycle. In this

section, we will consider some TLM definitions, the evolution of this modeling

paradigm and why it became the first choice for many researchers.

Most definitions denote transaction level models as models where the

communication and computation of systems are considered separately. This

definition has a vague meaning and there are many types of models that fit this

description.

2.4.1 SpecC definition

The TLM definition proposed by L. Cai and D. Gajski [6] is closely

connected to the SpecC modeling principles. We have mentioned the SpecC

modeling language in subsection 2.2.

TLM in SpecC interpretation defines several transaction level models, each of

which is adopted for a different design purpose. These TLM models are:

 Component-assembly model

 Bus-arbitration model

 Bus-functional model

 Cycle-accurate computation model.

The TLM models serve to simplify the design process by slicing the entire design

into several smaller design stages. Each design stage has a specific design objective.

At each of these design stages, the corresponding models can be simulated and

estimated independently. The system modeling graph shown in Figure 4 relates

different models. On the graph, the axes represent computation and communication

20

with a time accuracy of three degrees: untimed, approximate-timed and cycle-timed.

The untimed degree signifies computation/communication descriptions without any

notion of time and represents the description of only pure functionality. The

approximate-timed degree presumes that system level implementation details are

added to system descriptions. The models with this degree of time accuracy contain

information about the selected system architecture and the specification process

mapping to the processing elements of the system architecture. The cycle-timed

computation/communication models contain implementation details at system and

RTL levels. In the system modeling graph shown in Figure 4, the TLM abstraction

models (B, C, D, and E) are shown together with two others, namely the

specification and implementation models. This is done to demonstrate the

relationships between all models used in design.

Figure 4: System modeling graph

The specification model is untimed and can describe system functionality

without implementation details. The component-assembly model describes

concurrently executing processing elements which communicate through channels.

21

The communication part of the model is untimed while the computation part of the

model is timed. The estimated time of computation is computed by a system level

estimator. The component-assembly model explicitly specifies the allocated

processing elements in the system architecture and the mapping decision of

processes to processing elements. In the bus-arbitration model, some bus protocol

details are added with approximate timing to the channel message passing

mechanism. The bus-functional model contains cycle accurate communication and

approximate-timed computation descriptions. Two types of bus-functional models

exist: time-accurate and cycle accurate. Time-accurate models specify timing

constraints of communication; cycle-accurate models specify the time in terms of the

bus master’s clock cycles. In the cycle-accurate computation model, the computation

is cycle-accurate, i.e. computation components are pin accurate and function cycle-

accurately whereas communication is approximate-timed. Finally, the

implementation model represents cycle accurate communication and computation.

The processing elements are defined in terms of their register-transfer or instruction

set architecture.

 In Figure 4 a common design flow is indicated by the gray solid arrow going

through the specification and bus-arbitration models and finishing with the

implementation model. The specification model represents system functionality, the

bus arbitration model denotes abstract system architecture and the implementation

model deals with cycle-accurate system implementation. The bus-arbitration model

(C) divides the system flow in two stages: system design and component design. In

the first stage, the system architecture is selected or generated and the system

behavior is mapped to that architecture. In the second stage of the design flow, the

computation and communication components are refined to a cycle accurate level

and possibly synthesized. Different design flows containing different models exist.

2.4.2 SystemC definition

Below, we will consider the SystemC (section 2.2) definition of TLM proposed

by A. Donlin [7]. According to [7], TLM refers to a set of abstraction levels each

differing from one another in the degree of expression of functional or temporal

22

details. These levels, and the possible design flows through the TLM space, are

presented in Figure 5 together with an indication of their situation between the

algorithmic (ALG) and register transfer levels (RTL) that are not considered to be a

part of TLM space. Transaction-modeling levels are:

 Communicating Processes (CP)

 Communicating Processes with Time (CP+T)

 Programmer’s View (PV)

 Programmer’s View with Time (PV+T)

 Cycle Accurate (CA)

Figure 5: TLM Abstraction Levels and Potential Flows [7]

The Communicating Processes level is characterized by the representation

of system behavior as a network of parallel processes that exchange complex, high-

level data structures. Processes communicate using point-to-point links. Systems

described at this level are generally architecture and implementation independent.

However, the separation of functionality into parallel tasks imposes some

architectural concerns. The main activity at this abstraction level is functional

verification (Figure 6).

23

Application

Simulate Analyse & Verify

Figure 6: CP level

At the Communicating Processes with Time level, some timing information

has to be added. Nodes may contain quite accurate or high-level estimates of timing

data. Communication timing models are abstract and the exact communication

protocol is not defined. The main design activity is design space exploration (Figure

7).

Figure 7: CP+T level

The Programmer’s View level defines a transport mechanism between

model components with some elements of arbitration. The hardware sub-system at

this level may be seen as an accurate programmer’s representation by low-level

software drivers.

The Programmer’s View with Time level is functionally identical to the PV

level model with the exception of timing information. The timing model is much

more precise. The abstract communication structure is transformed to a given

interconnection type and soft-real-time functional verification is enabled (Figure 8).

Simulate
Analyse, Verify,

Partition, Combine

Timing
Models of

nodes

IP User IP

Processor

24

Figure 8: PV, PV+T levels

The Cycle Accurate model contains micro-architectural details. It has all

timing annotations and is accurate to the level of individual clock cycles.

According to the features and requirements of particular product-types the author

[7] distinguishes five TLM use-models which are suitable for different application

domains. Each use model will respect a design flow which is a subset of levels and

paths given in the Figure 5:

– Use-Model 1 (UM1) is a model of ASSP-based (Application-Specific

Standard Products) systems. The basic characteristic of such systems is their

pre-ordained architecture. A designer has to implement an application on a

given platform, i.e. in software destined to execute on the ASSP. As UM1 is

characterized by its software dominated nature, CP and CP+T levels are not

applied. PV and PV+T levels support hardware platform parameter tuning

and functional verification. The CA level enables detailed performance

analysis of the application using elaborate platform parameter tuning.

– Use-Model 2 (UM2) describes systems based on structured ASIC (Library-

oriented micro-architecture design). In these systems, a hardware subsystem

is a result of an incremental refinement of an existing reference architecture

specification. Customization of the subsystem specification in these models is

limited by the next type of variations:

o IP module replacements

o Addition of some small number pieces to IP

o Alternation of the IP provision subset.

25

In UM2, the CP level captures the application behavior description in an

architecture agnostic manner. The CP+T level is not used. The PV level

enables software development and functional verification whereas PV+T and

CA support the same activities as in UM1.

– Use-Model 3 (UM3) is a model from the Structured ASICs domain with a

much greater degree of hardware subsystem customization than UM2. This

allows satisfying design performance goals, functional goals or both. In this

model, the designer works with a reference hardware architecture and with

the ability to add custom-designed IP to the interconnection architecture of

the system. In this model, CP, PV, PV+T and CA levels support almost the

same activities as in UM2. The increasing degree of customization in UM3

introduces some design space exploration presented at the CP+T level by

means of high level performance estimation and partitioning of application

functionality.

– Use-Model 4 (UM4) is based on custom designed ASIC. In this model, there

is no initial architecture template; some vendor supplied component models

are still present. Comparing with UM3, much more application functionality

is partitioned into the hardware domain with the aim of realizing it as a

custom logic. The design activity in UM4 is equivalent to that in UM3. There

is one difference, however, in the shifting of emphasis from PV, PV+T to CP

and CP+T levels.

– Finally, Use-Model 5 (UM5) presents a model that allows customization of

all system aspects to achieve maximum performance and functionality. In this

model design space exploration plays an extremely important role. All

abstraction levels are presented in UM5, but the most significant work is

concentrated in the CP and CP+T levels.

26

2.4.3 Open Core Protocol – International Partnership TLM

definition

The Open Core Protocol – International Partnership (OCP-IP) TLM defines a

set of layers of abstraction that together create a link between architecture

exploration and System on chip (SoC) implementation. These layers are: Message

Layer (L-3), Transaction Layer (L-2) and Transfer Layer (L-1) [58].

 The Message Layer or Layer 3 is the highest level of abstraction which can

be used by SoC architects to prove concept tools, to rationalize first order functional

partitioning and to explore some system level architectural concerns. This layer is

also one of executable specifications. L-3 models are untimed and event driven.

 The transaction Layer or Layer 2 serves to make detailed hardware

performance analysis and hardware/software partitioning. At this level, low level

drivers can be interfaced with hardware simulation models and Operating System

simulators can be integrated with hardware emulators. L-2 models are structurally

accurate enough to allow modeling a complete system. An event-driven

computational model contains approximate timing and is highly parametrical.

Computation models at the L-2 level are independent of any bus fabric protocols.

 The transfer Layer or Layer 1 is used by designers to perform detailed tasks

such as modeling the interfaces of embedded processors, creating cycle accurate test

benches and carrying out cycle accurate performance simulations. L-1 models are

clocked cycle-accurate.

2.4.4 TLM evolution

We have only presented some TLM definitions from the myriad available. As we

can see, the necessity of standards in TLM was urgent [59] in order to provide a

possibility for model exchange within companies and across IP producers. Some

attempt has been done early trying to link the Open SystemC Initiative (OSCI) and

OCP-IP TLM world [58]. Furthermore, the initial SystemC definition [7] has been

revised and OSCI TLM levels have become [58]:

– Programmer’s View (PV)

27

– Programmer’s View with Timing (PV+T)

– Cycle Callable (CC).

TLM abstracts away the number of events and the amount of information that has

to be processed during simulation of the minimum required. In SystemC, the TLM

definition of the necessary information is presented to the designer as a TLM API

(Application Program Interface). The OSCI TLM API represents a set of interfaces

that define how models communicate. At PV level, an interface does not contain

communication events, carries little timing information and is implemented as a

function call. At PV+T level, the simulation can switch between two interfaces with

and without timing. This level is characterized by allowing model refinement without

changing the functional description of the model’s behavior. The CC level provides a

cycle accurate modeling style. The interface explicitly describes the cycle-by-cycle

behavior. As the behavior of the model is coupled with the interface, it includes cycle

timing. The CC level uses higher level ports rather than pin-accurate signals while

still remaining at TLM abstraction.

Recently, a new transaction level modeling standard, TLM-2.0, was announced

by OSCI [19]. Standard transaction level modeling approaches aim to enable model

interoperability and exchange within companies and between companies. The new

standard includes some changes. Models have been categorized according several

characteristics such as granularity of time, frequency of model evaluation, functional

abstraction, communication abstraction and use cases. The existence of a variety of

use cases for transaction level modeling is explicitly recognized and TLM-2.0 uses

an approach of distinguishing between APIs on one hand and coding styles on the

other rather than defining an abstraction level around each use case as shown in

Figure 9. The TLM-2.0 standard defines a set of interfaces and describes a number of

coding styles for various use cases. The interfaces are low-level programming

mechanisms for implementing transaction level models and form the normative part

of the standard thereby ensuring interoperability. A coding style is defined as “a set

of programming language idioms that work well together, not a specific abstraction

28

level or software programming interface” [81]. Each coding style supports a range of

abstraction functionality, communication and timing.

Use cases

Software
development

Software
performance

Architectural
analysis

Hardware
verification

TLM-2 Coding styles Each style supports a range of abstractions

Loosely-timed

Approximately-timed

Mechanisms

Blocking
interface

DMI Quantum Sockets
Generic
payload

Non-blocking
interface

Phases

Figure 9: TLM-2.0 approach [81]

 In our work, we have chosen the SystemC terminology for TLM as the

SystemC modeling language was in its standardization process. Now, the SystemC

standardization process has finished with several changes introduced in the new

SystemC TLM definition. In our work, we referred to the terminology initially

proposed in [7].

2.5 Discussion

There are many of codesign methodologies that use different computational

models in system modeling in order to simplify the design process of complex

systems [13, 14, 17, 18, 19]. All modeling elements add to the system description a

multitude of details which are relevant to the particular environment thus allowing

the intermediate system representations to be tightly coupled with the design

environment. In Table I, we summarize different design methodology aspects which

29

influence the transformation process of specification into implementation for some

codesign methodologies (the presented list is not exhaustive).

Table I: Codesign methodologies

Codesign
Environment

Application Specification
language

Model

Vulcan [52] Data oriented HardwareC DFG Set
Cosyma Data oriented Cx Syntactic tree
Ptolemy [18] Real Time Silage CDFG
Polis [17] Control-dominated

systems
Esterel CFSM :Codesign

Finite State
Machines

Cosmos Control-dominated
systems

SDL SOLAR:
communicating
extended FSM

CoWare [4],
SPACE [85]

Various SystemC Discrete Event,
TLM

SPADE [57] Signal processing
applications

C Kahn process
networks

SpecSyn [54] Different SpecCharts Hierarchical
program state
machine (PSM)

Tosca [53] Control-dominated
systems

OCCAM CSP

Chinook [55]

Control-dominated
systems

Verilog

Modal processes

All these methodologies use one specification/description language in their

design cycle. Different computation models provided by some of these design

methodologies are constructed on the top of specification/description language

related to the methodology. Utilization of a restricted computation model has the

advantage that a system might be modeled in an unambiguous way and formal

verification techniques might be applied. A disadvantage consists of a restriction of

the represented application class. For the methodologies that support quite general

computation models, verification by simulation is the only viable solution to test the

model correctness. Formal verification techniques may be used to verify only a part

of the design. In all cases, the process transforming a specification into

30

implementation is highly related to the methodology. There exists a multitude of

methodologies, such as CoWare [4] for example, that support reuse at the component

or module level. It should be noted, however, that we are talking about a finer level

of reuse here, which is that of functional descriptions used inside a module or

component for different design methodologies. These intermediate representations of

a system under design are impossible or difficult to reuse as the computation model

and the specification/description language choice influence the model description

enormously.

31

Chapter 3. Software engineering technologies

The application of software engineering methodologies to hardware and

Hw/Sw design is an active field of research within the hardware design community.

In our research, we have used modern software engineering technologies such as

XML, XSLT and other software engineering paradigms in order to represent the

system model at different abstraction levels with a clear separation from the design’s

environment details. This approach leads to better model reuse and “portability”.

3.1 XML technology [9]

Extensible Markup Language, XML [9], – is a markup language designed to

provide a standard way to describe content.

Markup languages are characterized by:

– Description of the text structure within the document.

– Separation of content from formatting.

 Generalized Markup Languages are HTML (Hypertext Markup Language),

SGML (Standard Generalized Murkup Language) and XML.

HTML, contrary to SGML and XML, is technically a markup language that in

reality is used as a formatting language. In HTML, content and representation are

defined together within the same document.

SGML is a very powerful markup language that is widely used to handle

complex, large documents across platforms. SGML’s complexity and a limited set of

elements for structuring documents in HTML format created the need for XML

creation.

XML is a subset of SGML. It provides many of SGML’s complex features but in

a more manageable form. XML uses element tags to mark up content according to a

set of rules created by the document’s developer called the Document Type

Definition (DTD).

32

XML provides the ability to

– define the new elements and attributes,

– nest document structures within other document structures,

– check the validity of document structure.

With XML, the layout is separate from the content. The mechanism of style

sheets is used to drive the layout in order to display the content across different

applications. XSL, Extensible Stylecheet Language, is a language that implements

the style sheets mechanism for XML. XSL consists of two parts: one is composed of

some formatting features and the other of XSLT. XSLT (XSL transformations)

describes syntax for transforming a document from XML format to another. In the

next subsection, we will give a more detailed description of the role of XSLT in

XML treatment.

3.2 XML processing

Like many formatting languages, XML requires parsers and processors in

order to adequately convert the incorporated content. Parsers currently used for XML

usually take the form of a code library written in programming languages. The parser

verifies the syntax of the DTD and XML document and then the processor provides

access to the content and structure of the document.

There are three different approaches to accessing an XML document in a

program:

– The Document Object Model (DOM),

– The Simple Application Programming Interface (API) for XML (SAX),

– The Extensible Stylesheet Language Transformations (XSLT) approach.

In the DOM approach, the entire XML document is placed in memory as a

hierarchical “tree” and the programmer has the possibility to apply various methods

to locate and manipulate the nodes of the tree.

33

In the SAX approach, a parser analyzes the XML document, identifies each

element as it is encountered and calls methods supplied by the programmer as the

document is read.

The XSLT approach, as we have discussed in the previous subsection, was

initially a composite part of XSL. However, it was quickly discovered that XSLT

abilities to reorganize document structure had far greater use outside of XSL. The

XSLT have become its own recommendation.

An XSLT document contains the transformation rules that can be applied to the

source document tree. The rules are presented as a collection of patterns and

templates. When the pattern is matched, its content is used to fill in the XSLT

template. The resulting tree contains filled templates with the information gathered

from the source tree. A transformation process using XSLT means independence of

source tree organization from the resulting one structure. The XSLT approach is

widely used in XML processing. It provides a “declarative” style of programming

that is different from the procedural programming of DOM and SAX. The

characteristics of three program processing approaches are demonstrated in Table II.

Table II: Decision matrix for selecting an XML processing approach [9]

Criterion/Capability DOM SAX XSLT
Document size Small to

medium
Any Any

Access multiple elements at the same
time

Easy Tricky Possible

Rearrange elements Yes No Yes
Create a new document Yes No Yes
Modify an existing document Yes Tricky but

possible
Yes

3.3 XSD technology [20]

The XML Schema (XSD) is a schema definition language expressed in XML

which is intended to be used to describe structure and to constrain the content of

XML documents [20]. The XML Schema definition language is the current standard

schema language for all XML documents and data. XSD improves on the schema

34

functionality provided by the DTD, which was the original form of schema for XML

documents prior to this technology.

A schema specifies the rules that complying XML documents have to follow to

be considered valid. Validation of XML documents ensures that external data

conforms to the rules defined by the schema, in this manner providing possibilities to

exchange information between applications with greater confidence and with less

custom programming to test or to confirm document structure or that some data is of

a particular type.

3.4 .NET

The Microsoft .NET Framework is a software technology that was intended to

simplify application development in the highly distributed environment of the

Internet [84]. This objective has to be reached by means of providing multiparadigm

support. The .NET Framework includes a large library of precoded solutions to

common programming problems termed the .NET Framework class library. It

includes programming solutions covering a number of areas. In addition, it also

provides functionalities for web application development, XML document

manipulation, cryptography, network communication, data access, database

connectivity, several numeric algorithms, data structures and user interface. The

Common Language Runtime (CLR) acts as an application virtual machine providing

capabilities of independency from the specific CPU that will execute the program.

The common language runtime manages code at execution time, provides core

services such as memory management, thread management, remote execution and

enforces strict type safety and other forms of code accuracy. Programming languages

on the .NET Framework compile into an intermediate language, the Common

Intermediate Language (CIL), which is then compiled into native code in a manner

known as just-in-time compilation (JIT). The common language runtime provides

built-in support for language interoperability, in other words it allows for the ability

of code to interact with code written in different programming languages by means

of specifying and enforcing a common type system and by providing metadata.

35

Language interoperability maximizes code reuse and in this way improves the

efficiency of the development process. All .NET programming languages targeting

language interoperability follow the rules for defining and using types which is

consistent across languages. Metadata defines a uniform mechanism for storing and

retrieving information about types thereby providing descriptive information about

the context, condition of data or some data characteristics. Furthermore, several

elements of the .Net Framework are available as open standards thus creating

possibilities for third parties to develop compatible implementations of the

framework on other platforms leading to .NET Framework portability.

3.5 Hw/Sw design and software engineering technologies

and paradigms

Software engineering technologies and paradigms are actively explored in the

Hw/Sw design domain to increase design productivity and to breakdown the growing

system complexity by raising the level of abstraction. Several system level

languages have been recently proposed to bridge the gap between system modeling

and RTL levels, though these languages have some limitations in terms of visual

descriptions and ease of use at the system level [74]. In order to resolve this problem,

several researchers have proposed to use different software engineering technologies

and paradigms in hardware and Hw/Sw design. In this subsection, we will focus on

the review of several works that have used XML technology for Hw/Sw design, as

we did in ours.

3.5.1 Sesame framework [79]

 C. Erbas and al. [79] have proposed a framework named Sesame for the

system-level modeling and simulation of embedded system architectures. It primarily

focuses on the multimedia application domain to efficiently prune and explore the

design space of the target platform architectures. Sesame recognizes two distinct

models: an application model, describing the functional behavior of an application,

and a platform architecture model that defines architecture resources and captures

36

their performance constraints. For application modeling, Sesame uses the Kahn

process network model of computation. During the execution of the Kahn application

model, each process records its computational and communication actions, such as

reads or executes, thus generating a trace of application events of coarse grain. An

architecture model simulates the performance consequences of the communication

and computation events by parameterization of each component of the architecture

model. In order to cosimulate the application and architecture models, an

intermediate mapping layer is used. The mapping layer executes three functions:

control of the mapping of Kahn processes onto architecture model components,

makes sure that no communication deadlocks occur by providing various strategies

for application event scheduling and dynamically transforms application events into

low-level architecture events to realize flexible refinement of architecture models.

The results of system simulations are performance estimates of the system under

study with some statistical information. To be capable of exploring large parts of the

design space, Sesame uses analytical methods to identify a small set of promising

system architectures for system exploration by simulation. The mapping of an

application model onto an architectural model takes into account three objectives:

maximum processing time, total power consumption and the cost of the architecture.

The mapping is effectuated using multiobjective evolutionary algorithms.

 Sesame’s model description language, which is used to describe the

application model, the architecture model and the mapping which relates two models

for cosimulation, is called YML (Y-chart modeling language) and is XML-based.

The YML language contains several elements and describes simulation models as

directed graphs. Sesame’s application simulator reads an YML application

description file and executes the application model. The object code of each process

is fetched from a shared library; currently C++ processes are supported. The

architecture models are implemented in the Pearl discrete event simulation language

or in SCPEx, which is a variant of Pearl implemented on top of SystemC.

37

3.5.2 Colif [79]

 Colif is a design representation for modeling on-chip communication at

different abstraction levels where component behavior is separated from the

communication infrastructure. In this design representation, system specification is

presented in a modular manner using the concept of object model and defining its

semantics at four abstraction levels of communication refinement. In a modular

system specification, three conceptual entities are used: module, port and net. A

system in Colif is presented as a set of hierarchical modules interconnected by a

communication network which in turn can be composed of hierarchical nets and

ports. This syntactical representation is uniform and can be used to describe

heterogeneous systems. Each module is defined by its interface consisting of a set of

ports and content. The module content can be other module instances or a

composition of tasks. The Colif object model has a declarative part and an instances

part. The declarations represent objects that define a reusable template. The classes

describing Colif objects are polymorphic and their semantics change according to the

abstraction level that is considered. The interface between components is

implemented using the port concept. These are classified into two categories: internal

and external. This allows for providing a mechanism to mix different abstraction

levels within the same description. Furthermore, this concept permits the separation

of behavior and communication. Different port instances are connected using the net

object. The net object can hide very complex behavior. The flexibility of the Colif

representation resides in the permission of the hierarchical structure of modules and

in the generalized net and port concepts.

The format used for Colif representation is XML. Arbitrary complex object-

data models can be created using a special XML dialect called Middle-ML grammar.

In the later stages, a special design tool generates a cosimulation model.

3.5.3 IP-XACT [82]

The IP-XACT design-exchange standard was developed by the SPIRIT

(Structure for Packaging, Integrating and Re-using IP within Tool-flows) consortium

[82], an organization that was formed to resolve the need for an integrated front-end,

38

multi-vendor system design flow in the semiconductor industry. Several companies

signed up for the initiative as the design of complex systems-on-chip was getting

significantly harder, and building an IP-reuse solution to this problem required an

improved integration of various design flows and better interoperability of reusable

IP.

The IP-XACT specification is deliverable for accompanying IP design files

written in different popular design languages such as Verilog, VHDL,

SystemVerilog, SystemC, etc. It is built on W3C standards to allow capture of

metadata that is used across multiple platforms and applications as shown in Figure

10.

IP Views

Generators

Meta Data (XML)

IP Library

Design Environment

IP-XACT for IP descriptions

specifies ...

Figure 10: IP-XACT specification [82]

IP-XACT describes soft IP, hard IP, verification IP and software. The

specification documents the software and hardware views of a design, the interface

of an IP block and the interfaces to standard and custom busses. This allows system

design tools to automatically comprehend IP integration requirements. IP-XACT

covers two aspects of IP integration. It includes a XML schema that creates a

39

common way to describe IP and a tool integration API. The API provides a standard

method for tools to exchange design data.

3.6 Discussion

In this section, we have overviewed Hw/Sw design methodologies using XML

technology in the design cycle. In the Sesame and Colif approaches, XML

technology is used in a similar way: an XML-based description language is created

for model descriptions. In both cases XML descriptions facilitate internal

manipulation of modules. The SPIRIT IP-XACT specification together with its

associated tools was created with the aim of increasing IP reuse.

In the following section, we propose a TLM modeling and simulation

methodology that uses XML technology to increase the possibility of reuse. It should

be noted that reuse is considered at different degrees of granularity that that seen in

the SPIRIT approach. In our methodology, the XML document structure has to

reflect the computational model chosen for modeling and the .NET interoperability

features have to provide a support of several specification/description languages that

can be incorporated in a system specification. Similarly to the SPIRIT approach, our

methodology uses XSD schema technology to validate XML specifications as well

as XSLT transformations to generate the executable system models against “SPIRIT”

generators that enable automated design creation and configuration.

40

Chapter 4. TLM Hw/Sw system specification and

modeling methodology

The TLM paradigm permits a more efficient system exploration and an

increased simulation speed than traditional RTL design. The possibility of easy and

efficient modeling at TLM levels can reduce the development cycle and lead to

accurate implementations. These reasons are at the root of TLM modeling becoming

very popular and widely adopted in the system level community. When we started

our work, there was no accepted methodology for timing specification representation

in TLM. The existing TLM methodologies (Section 2.4) were tightly coupled with

specification/description languages rendering the integration process of timing

specification methodology difficult. They provided reuse at component level and not

at “code” level where code segments written in different specification/description

languages might be merged and simulated together. Recently, works [89] realized in

the context of the MARTE [87] and AADL [88] projects have appeared providing

methods of temporal analysis following the TML 2 standard [81]. MARTE, a UML

profile for Modeling and Analysis of Real-Time and Embedded Systems, and

AADL, an Architecture Analysis and Design Language, are both modeling

formalisms that support the analysis of real-time embedded systems. In this work, the

authors propose a new methodology for SoC/SoPC applications where the separation

of concerns is supported by the MARTE modeling formalism and the description of

communications follows the TLM 2 standard. This standard does not include the CP

and CP+T levels, but we think that system refinement should be done through

multiple abstraction levels, starting from very high abstraction description towards

the detailed RTL description. Furthermore, in the MARTE formalism, several

models of computation and communication used in embedded applications are absent

[89], leading to a limitation of the modeled applications. As the MARTE/AADL

approach was unavailable when we tried to introduce the TLM timing specification

methodology and any existing TLM methodology had not provided a sufficient

separation of concerns, we have decided to define a TLM modeling and simulation

methodology in which we can clearly separate several modeling aspects such as

41

timing, behavior, structure, specification/description languages, simulator details,

etc. To achieve the orthogonalization of modeling concepts, the methodology

presented below uses software engineering technologies and paradigms such as XML

and .Net.

 The next section will detail the TLM Hw/Sw system specification and

modeling methodology.

4.1 Abstract model

The first abstraction level in Transaction Level Modeling is the

Communicating processes level, where the system is modeled as a network of

parallel communicating processes exchanging complex, high level data structures. At

the CP level, we have proposed to use an abstract model for system specification

based on the Kahn process network [8]. In this model, processes communicate

through unbounded FIFOs and it should be mentioned that the Kahn process network

model matches the TLM CP level description. However, we propose to extend the

communication mechanism of the Kahn process network model by adding event

based inter-process communication and shared memory communication. With this

generalization of the Kahn process network computation model, we lose some of its

formal properties, though we have extended a class of applications that was explored

in our methodology. The pure Kahn process network computation model is a

particular case of a generalized model where event-based inter-process

communication and shared memory communication mechanism are absent.

In the proposed abstract model, system functionality has to be distributed

between parallel processes (Figure 11). The initial parallelism granularity has to be

defined by the designer. Each process performs sequential computations locally. The

computation actions can be interleaved with communication actions. Furthermore,

the extraction of different level of concurrency is limited to the number of

independent actions that can be defined by a designer. The designer does not get

support from the methodology in identifying these actions.

42

 The communication scheme in the proposed model allows not only data-

dependent, but also control-dependent synchronization. The data-dependent

synchronization is modeled using FIFOs channels with unbounded capacity like in

the Kahn process network model (rectangles in the Figure 11). The control-

dependent synchronization is implemented by means of events (dashed lines in the

Figure 11).

...
...

...

Figure 11: CP Abstract Model

A transaction in our model refers to the exchange of data or an event

occurring between two processes of a modeled system. By generalizing the Kahn

process network model, we achieve the possibility of enhancing expressiveness for

data dominated as well as control dominated systems.

At the CP level, we construct an untimed system model which includes the

correct ordering of events. The partitioning of functionality between the

communicating nodes has to be done by the designer.

The same abstract model is used in test bench modeling which differs from

system modeling by the introduction of an initial timing annotation of processes in

order to provide more realistic scenarios for simulation.

4.2 XML Abstract model representation

In order to express the CP abstract model, we have chosen the XML

technology [9]. Extensible Markup Language (XML) provides a way to describe

structured data using a set of tags. Since we can define an unlimited set of XML tags,

43

descriptions in this language are very flexible. Furthermore, XML is platform-

independent and is a widely adopted standard, therefore making the retrieving of

information from XML documents possible in a variety of environments.

We have defined several XML tags to describe the CP Abstract Model. A

process’ description and its communication scheme are placed in an XML

specification. Process functionality is described using one of several programming

languages supported by .NET thereby making possible the reuse of functional

specifications written in different programming languages. This feature is supported

by the .NET language interoperability capabilities.

System specification consists of a functional description of the system and a

set of design constraints. In order to unify the functional and non-functional aspects

of the system under development, the proposed methodology presents the system as

an XML tree of nodes containing functional and non-functional specifications. The

initial system specification at the first XML tree level contains the following nodes:

Environment Model, System Model, Simulation Parameters, Shared Code, Shared

Data and Constraints. These are depicted in Figure 12 below.

Figure 12: Graphic representation of the XML system specification

 The structure of the Environment Model node is identical to that of the

System Model node. The only difference between these nodes is the timing

annotation of processes in the Environment Model node at the untimed CP level. This

allows for generation of valid test-vectors for simulation.

The System Model node’s structure is presented in the Figure 13 and consists

from one or several Process nodes and a Process Network node.

44

Figure 13: Graphic representation of the System Model node structure

The Process nodes describe parts of system functionality which are/can be

performed in parallel. As processes can communicate using either FIFOs, shared

memory or through events, the corresponding information has to be presented in the

process description shown in Figure 14.

In order to specify the system at the CP level, the designer has to fill in the

corresponding tags for each process in the XML specification indicating the chosen

transaction mechanism (FIFO, events or shared memory).

Figure 14: Process node structure

Figure 15 illustrates the use of XML tags for process description. The

attribute ProgrammingLanguage defines the specification language used for

expressing process functionality in the Computation node. Each process can be

45

simple or hierarchical (contains other processes); this is indicated using the

ProcessStructure attribute.

Figure 15: XML tags for process description

By default, the process structure is simple. The ProcessName tag contains a name of

a defining process. As each process can communicate through FIFO, shared memory

or by means of events, the corresponding instance names for FIFO and shared

memory have to be indicated in the FIFO and Memory nodes. Computations can

be interleaved with communication actions in processes; for this reason there may be

one or several FIFO, Memory nodes. The Declarations node contains

declarations of local variables. Finally, each process has one or several

Computation elements consisting of Transaction and

ComputationBefore(After)TransactionCode nodes.

4.3 Verification of the model structure

Using XML in system description, we have tried to separate multiple modeling

elements related to the modeling environment, the specification languages and the

simulator. Another advantage of using XML in system description is the possibility

of validating the fact that the XML document contains the desired data and structure

by means of the XML Schema technology [20]. The validation of model structure at

each abstraction level will guarantee the appearance of not many errors during

complex system design.

<Process ProgrammingLanguage="" ProcessStructure="simple"
ProcessName="">
<Fifo FifoName="" />
<Memory MemoryType="" MemoryName="" />
<Declarations />
<Computation>
<ComputationCodeBeforeTransaction />
<Transaction FifoName="" MemoryName="" EventName="" Direction=""
VariableType="" VariableName="" Address="" />
<ComputationCodeAfterTransaction />
</Computation>
</Process>

46

In the presented Hw/Sw simulation and modeling methodology, the XML

specification structure at CP level reflects the CP abstract model. The XML Schema

technology permits to verify whether the system description conforms to the abstract

model and if the XML nodes contain the data of a particular type and a given

structure. According to the particular TLM level, the XML system specification

structure contains its associated elements and the corresponding XML schemas are

used in order to assure the correctness of the automatically transformed code.

Furthermore, this creates a possibility of reuse of different TLM models.

In Figure 16 the representation of the XML schema defining a structure for the

process node is shown. When a designer specifies the process node, its structure

along with some constraints on the data are validated according to the presented

schema.

Figure 16: Graphic representation of XML schema for process description

47

4.4 Simulation model generation

The CP XML system specification is a non executable one. In order to

simulate the system model, this specification is automatically transformed into a

simulation model using XSLT transformations corresponding to each abstraction

level.

EXtensible Stylesheet Language Transformation, XSLT [15], is used to

transform the content of a source XML document into another document having a

different format or structure. We have used XSLT to implement the transformation

of the system representation from one computational model to another. Figure 17

demonstrates a fragment of process node transformation into C# code. We can see

that if the data of the FifoName attribute is not empty, we have to analyze the

transaction Direction (read or write) and retrieve the necessary information to

construct a C# statement.

Figure 17: Fragment of process node transformation

The simulation model generation flow is presented in Figure 18. The XML

language allows the definition of an unlimited number of tags. This feature is a

language advantage though, in the same way it can also be a cause of difficulties. For

each defined tag, we must provide an implementation according to the semantics of

the chosen computation model.

<xsl:if test="Transaction/@FifoName[.!='']">
<xsl:choose>
<xsl:when test="Transaction/@Direction[.='write']">
<xsl:value-of select="Transaction/@FifoName"/>.Write(
 <xsl:value-of select="Transaction/@VariableName"/>);
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="Transaction/@FifoName"/>.Read(
 ref <xsl:value-of select="Transaction/@VariableType"/> O);
</xsl:otherwise>
</xsl:choose>
</xsl:if>

48

Figure 18: Simulation model generation flow

We have defined a limited set of about sixty tags, structurally organized

according to the CP Abstract Model. Process functionality is described using one of

several programming languages supported by .NET thereby making possible the

reuse of functional specifications written in different programming languages. This

feature is supported by the .NET language interoperability capabilities. The

transformation process of the XML non-executable model, with data specified in

different programming languages, into a .NET simulation model is presented in

Figure 19. In simulation models, all transaction implementation details are generated

automatically.

CP (CP+T) XML File

XSLT Processor

XML stream or
C# text stream or
C++ text stream

CP (CP+T) C# XSLT File

CP (CP+T) C++ XSLT File

Simulation Model Files

Figure 19: TLM level Transformation

49

4.5 Abstract model and TLM

System behavior at the CP level is seen as a network of parallel processes

communicating through unbounded FIFOs, shared memory or by events. We have

chosen the .NET Framework as a development environment as it provides multiple

classes for XML parsing, validation, and transformation. This support guarantees

easy XML representation and efficient system description transformations into

simulation models at different TLM abstraction levels. In .NET, we implement

parallel process activities using multithreaded programming. As processes at high

TLM levels exchange complex data structures, the existence of Collections Classes

that group similarly typed objects is very useful. In these Collections, memory

management is handled automatically and the capacity of a collection is expanded as

needed. In the modeling of data dependent synchronization, we have used a Queue

Class to implement an unbounded FIFO. The control-dependent synchronization

used in high level TLM is modeled using the .NET event mechanism.

The XML language allows for the definition of an unlimited set of tags to

structure and encapsulate the data. Difficulties appear in using XSLT as the data

have to be extracted and executable code must be generated by manipulating this

data according to a certain computational model. For example, in the currently

proposed abstract model expressing the CP TLM paradigm, we do not support

dynamic process instantiations.

By using XML, different types of constraints can be expressed in the proposed

abstract model. Firstly, we will concentrate on the temporal type of constraints

associated with different architecture components commonly used in Hw/Sw

systems. To define the architecture constraints, we will use a component library

where with each component we will associate timing information in the form of a set

of temporal constraints. During the transformation of a non-executable specification

into an executable one, the timing information associated with the architecture

component will be incorporated in the simulation model. Our simulation is

performed in several steps. The first step corresponds to system representation at the

CP level. Following this first step, we will continue the simulation using the

50

architecture component’s temporal constraints and we will verify them. The second

step corresponds to system representation at CP+T level. For each simulation,

increasingly more precise timing information concerning communication and

computation is added in a path. In this way we can add to the system description the

implementation details. This process will lead to the system model passing through

all TLM abstraction levels.

When the architecture and explicit timing constraints are not specified in the

model, we suppose that the maximum performance has to be found and that a

number of architecture configurations has to be explored in order to find a better

solution for a given system behavior. When a timing violation is found, the designer

will have to change the architecture constraints if they have been defined, or

“reengineer” the distribution of system functionality between the processes.

According to the type of architectural constraints defined in the application

model, the system model is transformed in one of five TLM use-models presented in

the section 2.4.2. In the case of heavily architecture constrained systems, a system

model is a UM1. For this type of models, the main design activities are concentrated

at the PV+T TLM level. Use-models UM2-UM5 [7] that may be received as a result

of architecture constraints relaxation will require design space exploration based on

performance analysis. A design flow determined by our application model is

presented in Figure 20.

51

Figure 20: Design flow

4.6 Experimentations

4.6.1 System Description

In this subsection, we present a TLM high level model of an audio-video

server system. The initial system specification [13] is as follows: a server system

acting as a video player, allowing users to read or write video or audio sequences.

These sequences are of variable duration (from one minute to several hours) and the

sequence rate may range from 0 to 15 Mb/s. The server has to satisfy a maximum

1000 simultaneous users.

52

4.6.2 Abstract Model of audio-video server system

In order to explore the audio-video server system at the CP level, we have

implemented the test bench or environment and the server CP models (Figure 21).

Figure 21: CP Abstract Models of Test Bench and Server System

An environment model represents a set of users and consists of one Send, one

Receive and 1000 PlayRecord processes. At each moment, PlayRecord processes can

be suspended or reactivated with new data for transmission. The Send process is

responsible of generating different user commands and sending them to the server.

The Receive process interprets server responses and communicates the necessary

information to the corresponding PlayRecord process. As this information must have

an immediate effect, the Receive process communicates with PlayRecord processes

using events. All processes in the Environment Model are annotated with timing

information and, as a consequence, they have some latency during simulation. The

environment model’s goal is to provide valid test-vectors to the system model.

The Server model contains one UsersSupervision and 1000

FragmentSendingReceiving processes. The UsersSupervision process interprets the

received commands, manages access to the sequence bank, allocates and frees the

server resources and initiates transmissions. All Server-Environment

53

communications at the CP level are through FIFOs. In contrast to the Environment

Model, the Server system at CP level is completely un-timed with only deals with

logical event ordering. During a refinement step, we have to ameliorate the system

description by adding the temporal and functional details.

4.6.3 XML server system specification and CP server simulation

model

Initial functional descriptions for each process in the audio-video server system and

environment model have been coded in C#. These descriptions, as well as the

indication of the communication mechanism used for transactions between

communicating processes have been placed in an XML specification. A fragment of

the server system specification is shown in Figure 22.

Figure 22: Fragment of XML server system specification

The XSLT transformation supporting the CP abstract model, based on .NET

features, is applied to the XML specification to create an executable CP level system

model. The Transformation process for C# code generation is presented in Figure 23.

<Process ProgrammingLanguage="C#" ProcessStructure="simple" Type="Send">
 <Fifo Name="CmdSend" />
 <Declarations>
 ArrayList SimultaneousUsers=new ArrayList();
 . . .
 </Declarations>
 <Computation>
 <ComputationCode>...</ComputationCode>
 <Transaction FifoName="CmdSend" Direction="write"
VariableType="ArrayList"
 VariableName="SimultaneousUsers" Delay="delay"
EventName="">
 </Transaction>

54

Figure 23 : CP C# Transformation process

C# XSLT transformation extracts the necessary data from the CP XML description,

completes it and generates C# simulation model files. Figure 24 shows the result of

applying C# XSLT transformation to the XML specification from Figure 22.

Figure 24 : C# code fragment after XSLT transformation

We have simulated the server system in order to verify whether the system

specification was captured properly and also to validate the system functionality

partitioning. The possibility of using XSLT transformations in automatic code

generation facilitates the exploration process. All implementation details of

communication mechanisms corresponding to the CP abstraction level are generated

automatically providing in this way an easy method of high level model creation.

The separation of the system functionality into parallel tasks takes into account some

architectural concerns. Multiple high level models can be created and simulated in

order to decide the final system functionality distribution between processes and the

transaction synchronization types.

During our exploration of different high level server models, we have shown

that we cannot only use FIFOs to model the server communication mechanism. In

ArrayList SimultaneousUsers = new ArrayList(); . . .
while(true){
. . .
CmdSend.Write(SimultaneousUsers);
Thread.Sleep(delay);
} . . .

55

other words, we need the events to describe the reactive server behavior and the

shared memory mechanism for the communication of the

FragmentSendingReceiving processes. The designed CP model is a starting point for

the refinement flow through TLM abstractions.

At the CP+T level, the delay tag is added to the transaction node to designate

explicit temporal constraints in the specification. In our server model we consider

only temporal constraints. Other constraint types can be specified by adding code

with corresponding semantics in the XSLT transformation. At the CP level, any HW

architecture elements are present. At the CP+T level, some explorations may be done

in order to map one or more processes implementing computations into HW

modules. For these sorts of explorations we need a library of temporal descriptions of

common HW modules.

4.7 Conclusion

In this chapter, we have defined a TLM framework for system refinement and

analysis. The goal of the introduction of a new TLM Hw/Sw modeling and

simulation methodology was to provide an approach with separation of concerns,

where the timing aspect could be used not only in simulation exploration but also in

analytical timing verification. We have presented a design flow of this methodology

with the identification of design activities at each abstraction level. Automated

support of the presented methodology is implemented for the high CP, and partially

CP+T, abstraction levels. The example of an audio-video server model is shown to

demonstrate in which way the modeling and refinement process may proceed.

Chapter 5. Timing specification in TLM

Several levels in TLM are characterized by a timing annotation of system

behavior descriptions. In currently existing TLM based design methodologies, the

amount of timing information required at each TLM level is defined by the TLM

APIs (Application Program Interface) which is a set of interfaces describing the

different communication schemes [58]. Following this, the corresponding TLM

simulation models are used in the design space exploration phase leading to final

system implementation. In our TLM methodology, we propose a separation of

concerns, where the timing aspect is separated from functionality. Different

explorations and reduction of the design space can be obtained without any

functional specification. After this step, functional and timing aspects can be merged

for further refinements. Furthermore, several decisions can not only be done without

simulation, but also formally proven.

In the next subsection, we will introduce the notion of timing specifications

and timing constraints. Further, we will consider in which way temporal details will

be incorporated in the initial abstract model in order to express the system at

different TLM abstraction levels.

5.1 Expressing timing

 The temporal behavior of systems is frequently described using event-based

representations where events are characterized by their occurrence times with timing

constraints. A timing model based on min-max-linear constraints was used by

Gahlinger [28], Vanbekbergen et al. [61], McMillan and Dill [29] and other

researchers to solve the problem of the timing verification of interface timing

specifications. This timing model is based on timing diagram analysis and was used

at a low level of modeling.

A timing diagram represents an external view of circuit behavior. More

precisely, it demonstrates the constraints on the timing of critical signal transitions

by showing signal waveforms on the connections between the environment and the

57

circuitry [28]. Because of their simplicity and expressiveness, timing diagrams are

often used to specify the device behavior. A timing specification based on timing

diagram analysis includes timing characteristics which represent relationships

between the times of events. An example of a timing diagram is given in Figure 25

Figure 25: Read-cycle timing diagrams for the 8086 CPU [28]

Graphically, the timing diagram and its characteristics can be presented by an

event graph whose nodes define events represented the changes in the values of

signals whereas the weighted directed edges show the delay constraints between

events. The weights assigned to every arc denote a minimum and a maximum time of

event firing relative to the firing time of its predecessor. It is assumed that the time it

takes to fire a transition is between zero and infinity and there is only one source

event with a firing time of zero.

Definition 1 [32]

An event graph EG can be associated with each timing diagram: EG = (E, C) where

the set of vertices E corresponds to the set of events and the set of directed edges C

corresponds to a set of constraints [] },|),),,({ EeeuleecC jiijijjiij ∈== .

The event graph associated with the timing diagram from Figure 25 is shown in

Figure 26.

58

Definition 2 [32]

To each event ei we assign an occurrence time of ei denoted by t(ei) such that

ijijij uetetl ≤−≤)()(for all Ccij ∈ .

In Figure 26, event c1 is a source. For each arc the first weight number

denotes a lower bound and the second, an upper bound on the delay constraint

between occurrence times of events.

Figure 26: Partial graphic representation of the timing diagram from Figure 25

A definition and an interpretation of four constraint types were given by

Vanbekbergen et al. [61]. Inequalities (1) define linear constraints where the

occurrence time of the event ej has to satisfy simultaneously all delay constraints

connected it to its predecessors. In the second constraint type, the max type (2), in

contrast to linear constraints, only one upper bound, the latest, has to be satisfied. In

the case of min type (3), only one lower bound, the earliest one, has to be satisfied

among all lower bounds. Finally, in the fourth constraint type, the latest upper bound

and the earliest lower bound have to be satisfied. For this constraint type, researchers

did not find any practical use.

() ()iji
i

jiji
i

uetetlet +≤≤+)(min)()(max (1)

() ()iji
i

jiji
i

uetetlet +≤≤+)(max)()(max (2)

() ()iji
i

jiji
i

uetetlet +≤≤+)(min)()(min (3)

() ()iji
i

jiji
i

uetetlet +≤≤+)(max)()(min (4)

59

The interpretation of the four constraint types is given in Figure 27. The black

dots indicate the firing times of the events e1, e2, e3. Suppose that they are 2, 4, 10

time units correspondingly. We want to find a range of timing assignments for the

event ej, having the following delay constraints: e1→ ej = [9, 12]; e2→ ej = [5, 11];

e3→ ej = [2, 7]. The clear boxes indicate the time interval in which ej can fire

according to each constraint considered separately. The shaded boxes demonstrate

the firing interval of event ej according to each constraint type. As it can be observed,

each one of these intervals is different depending on the constraint type.

time

e1

e2

e3

2 4 10

ej

11 14

[9,12]

ej

9

[5,11]

15

ej

12 17

[2,7]

ej

ej

ej

ej

Linear

Max

Min

Type 4

Figure 27: Interpretation of the different types of constraints [61]

One of the problems of timing verification is formulated as finding the

maximum achievable separation sij between each pair of events ei and ej under a

system of one or several types of timing constraints:

))()((max ij
i

ij etets −=

60

For example, consider the subgraph with linear constraints from Figure 28.

Constraints ca → and cb → are linear; the occurrence time of the event c has to

satisfy the following two constraints:

80)()(30)(

60)()(40)(

+≤≤+
+≤≤+

btctbt

atctat

From these two inequalities we have:

30)()(40 ≤−≤− atbt

Thus, [-sba, sab], the maximum separation time between a and b, is [-40, 30].

In event graphs we will use a circle to denote an event with linear constraints,

a square to represent a max event and a pentagon to represent a min event.

Figure 28: Subgraph with linear constraints

The maximum separation calculation determines if the timing specification is

consistent, if at least a feasible timing assignment exists and also gives us the

possibility to verify if all the timing requirements are satisfied for all timing

assignments.

The complexity for deriving the maximum separations of all nodes from a

single node varies with the types of constraints which are allowed (Table III). Some

solutions are graph-based algorithms [25], [29], [38] whereas others use a

reformulation of constraint specifications into a mathematical optimization problem

61

followed by use of existing solvers to resolve the min-max-linear constraint problem

[62].

Table III: Complexity of the maximum separation problem [25]

Constraint type Complexity Proposed by
Linear only O(EC) Shortest-path algorithms
Max only O(C) McMillian & Dill [29],

Vanbekbergen et al. [61]
Max + linear O(E2logE + EC)

conjecture
Ti-Yen Yen et al. [26]

Max + linear O(E5) conjecture Walkup & Borriello [38]
Min + Max NP- complete McMillian & Dill [29]
Min + Max + Linear NP- complete T. M. Burks, K. A. Sakallah [62]

5.2 Timing Analysis

In the following subsections, we will consider timing specifications with

different constraint types and the corresponding graph-based algorithms to resolve

the problem of timing verification. We consider the graph-based interpretation of

timing specifications as being better understood intuitively than a reformulation of

the timing specification into a mathematical optimization problem. Furthermore,

graph-based algorithms are quite simple when compared to complex solvers and can

be easily implemented.

5.2.1 Linear constraint systems

Several design problems require the solution of a set of linear inequalities of

the type:

ijij wetet ≤−)()(, i, j = 0, 1, …, n-1.

A delay constraint ijijiji uetetlet +≤≤+)()()(, can be split into two inequalities

ijij uetet +≤)()(and ijji letet −≤)()(which can be presented by forward and

backward edges correspondingly (Figure 29).

62

Figure 29: Graphic representation of delay constraint

A set of linear inequalities can be presented as a directed graph with n

vertices and m edges, each one weighted by wij. Such a graph is called the constraint

graph and its properties are related to the satisfiability of a set of linear inequalities.

More precisely, the set of linear inequalities presented above, is satisfiable if and

only if the corresponding shortest path problem is consistent [60].

For linear constraint systems, we need to find, for each pair of nodes, a

greatest lower bound and a least upper bound: () ()iji
i

jiji
i

uetetlet +≤≤+)(min)()(max . We

can do this by finding the shortest paths in the corresponding graph. Considering two

nodes in the graph ei and ej, in order to get the least upper bound we have to find the

shortest path from the ei node to ej (sij) and to get the greatest lower bound, we need

to find the shortest path from ej to ei (-sji). As a lower bound in the delay constraint is

presented in the graph by a negative number, to find the shortest paths we use the

Bellman-Ford algorithm [60].

Consider a graph G= (V, E), where for V, a set of vertices and E, a set of

edges, the algorithm finds a vector)(vd for all the shortest-path lengths from a

source Vs ∈ to all Vv ∈ .

Algorithm 1: Bellman-Ford algorithm

0)(←sd
for each }{\ sVv ∈

do ∞←)(vd
end for

for 1←i to 1−V do

 for each edge Evu ∈),(do

 if),()()(vuwudvd +> then

Initialisation

Relaxation step

63

uv

vuwudvd

←
+←

)(

),()()(

π

 end if
 end for
end for
for each edge Evu ∈),(do

 if),()()(vuwudvd +> then
 report that a negative-weight cycle exists

 end if

end for

5.2.2 Max constraint systems

For the timing specification of systems with max-only constraints we have to

find the greatest lower bound and the greatest upper bound:

() ()iji
i

jiji
i

uetetlet +≤≤+)(max)()(max

Our algorithm for finding the maximum separation time between any two events

in a graph with only max constraints is based on the ideas presented in [61].For each

pair of nodes we have to find a greatest lower bound and a greatest upper bound. A

greatest lower bound can be found by minimizing the total delay for all l-bound paths

of the nodes and a greatest upper bound for the events ei and ej can be obtained by

means of maximizing the separations ski for predecessor ek of ej. Then, in order to

compute the maximum separation time between the two events ei and ej we have to

consider two cases:

1. There is a path from ej to ei ending in the source node. In this case all delays

have to be set to their lower bounds.

2. There is no path from ej to ei ending in the source node. For this case we

have to maximize t(ej) - t(ei) by maximizing t(ek) - t(ei) for each predecessor

ek of ej.

Algorithm 2: Maximum separation in max-only constraint
systems

Step 1: if i=j then
return 0

 end if

64

 if max separation already is calculated then
return previously calculated value

 end if
Step 2: if path between ei and ej exists then
 Max = ∞;
 for each vertex k, predecessor of vertex j

 do
 newMax ← MaxSep(ei,ek)-lkj {lkj: lower
 bound of the arc k→j}
 if newMax ≤ Max then

Max=newMax;
 end if
end for

 else
 Max ← -∞;

 for each vertex k, predecessor of vertex i do
 newMax ← MaxSep(ek,ej) + uki { uki: upper
 bound of the arc k→i}
 if Max ≤ newMax then

Max ← newMax
 end if
 end for
 end if
 return Max

The complexity of the algorithm computing the separations sij between all

pairs of events for the graph with number of events (vertices) n and number of edges

e, is O(n·e) ≤ O(n3).

We applied the algorithm presented above to the graph shown in Figure 30[61].

Figure 30: Max only constraint timing model

65

The results are given in Table IV and correspond to what was obtained in [61].

Table IV: Maximum separation time for the timing specification of Figure 30

 A+ B+ A- C+ B-

A+ 0 ∞ 80 ∞ ∞
B+ -135 0 -55 40 25
A- -50 ∞ 0 ∞ ∞
C+ -165 -30 -85 0 -5
B- -135 0 -55 40 0

5.2.3 Max-Linear Systems

Max-linear systems are the most discussed in literature. The max-linear

temporal model is widely used in the description of interfaces. Several algorithms

were proposed to solve the timing verification problem for such systems. McMillan

and Dill [29] proposed a graph-based algorithm with an exponential worst case

running time. An interesting algorithm for max-linear systems was proposed by T. Y.

Yen et al. [26]. According to their experimental results [30], [31] this algorithm is

quite efficient. However, the exact complexity has not been given. The algorithm

uses the “iterative tightening from below” approach and is based on two steps.

The first step consists of the generation of a special intermediate graph,

termed the compulsory graph, containing the arcs representing bounds that must be

satisfied (compulsory bounds). For max events, these arcs represent the lower

bounds whereas for min events they denote upper bounds. Also, for linear

constraints, upper and lower bound arcs are compulsory arcs. From this graph, the

smallest separation values that satisfy the compulsory bounds are obtained such that

they may serve as the initial estimation for the tightening process.

Definition 3 [27]

Given an event graph G=(V, E) and a source node s, the corresponding compulsory

graph Gc=(V, Ec) is a weighted directed graph, where Ec contains the following

edges. For each linear or max constraint cijij EeEc ∈∈ , and has weight

[] lowerceweight ijijc .= . For each linear constraint cjiij EeEc ∈∈ , and has weight

[] upperceweight ijjic .−= . For each node csi Eei ∈, and has weight –MAXINT, where

66

MAXINT is an arbitrary number larger than any sum of the absolute values of the finite

bounds, but obeying the arithmetic rules of finite numbers.

A compulsory graph for the graph presented in Figure 31 (a) is shown in Figure 31 (b).

Figure 31: An event graph (a) and the corresponding compulsory graph (b)

The second step of the algorithm consists of constructing another

intermediate graph, a slack graph, defining the values by which the max (min in the

case of min-linear systems) constraint arcs can be tightened. Following this, the

upper bounds for max constraints and lower bounds for min constraints are

reintroduced in the compulsory graph and the initial separations are iteratively

relaxed according to the slacks.

Definition 4 [27]

Given an event graph G=(V, E), a source node s, and a separation value sepa[i] for

each node Vi ∈ , the slack graph),(ss EVG = is a weighted directed graph where Es

is defined as follows: for each constraint Ecxy ∈ , construct two edges xye and yxe ,

and define

lowercbounde

uppercbounde

xyyx

xyxy

..

..

−=

=

For each boundeij . , when [] ∞≠isepa or [] ∞≠jsepa , add edge ije to Es with edge

weight [] [] [])(. isepajsepaboundeeweight ijijs −−= if the weight is nonnegative.

67

When [] [] ∞== jsepaisepa add edge ije with [] 0=ijs eweight . Mark sij Ee ∈ as

max-optional if ijc is a max constraint; otherwise it is compulsory. If a node u is a

max event and no max-optional edge enters u, add a compulsory edge sue with

weight zero.

In Figure 32 (a) the event graph is shown with the calculated initial time

separations (labels of the nodes). Figure 32 (b) gives the slack graph after the first

iteration. The value inside each node represents its maximal slack.

a

b

s

j

d

e

h

[2,2]

[0,500]

[0,500]

[2,2]

[1,1]

[1,1] 0

[2,∞]

[2,∞]

[1,1]

[1,1]

0

a
0

b
1

s
0

j
0

d
1

e
0

h
0

0

0

500

0

500

0

0
0

0

1
0

2 2

-∞

-∞

1

1

0

(a) (b)

0

2 3

0

0

2

3

0

3

3

f f
0

c c
0

Figure 32: An event graph (a) and the corresponding slack graph in the first
iteration (b)

The pseudo code for two procedures [26], namely the computation of shortest

slack and the maximum separation calculation, is given below.

Algorithm 3: Shortest slack calculation

Shortest slack is calculated from a source node s for
each node in a slack graph Gs
Step 1: Initialization
for each node ei do

Put node ei in Queue Q
Initialize safe slack estimate d[i]←∞
Initialize temporal value for slack m[i]←0
n[i]←number of max-constraints

end for
d[s]←0
Step 2:
while Queue is not empty do

68

 Find node ei in the Queue with a minimum d[i]
 for each edge outgoing from this node in the slack
 graph Gs do
 relax the edges: t←d[i]+weight(i→j)
 if node ej is a max event then
 n[j]--
 m[j]←min(m[j],t)
 if n[j]=0 and d[j]>m[j] then
 d[j]←m[j]
 end if
 else

d[j]←max(d[j],t)
end if
Remove ei from the Queue;

 end for
end while

At the end of the execution of shortest slack procedure, d[i] is a shortest slack

estimate from a source node s for each node ei. This procedure is used for the

computation of the maximum achievable separations for a constraint graph.

Algorithm 4: The MaxSeparation algorithm

The maximum separations are found from a source node s
for an event graph G with max and linear constraints

Step 1: Construct the compulsory constraint graph Gc

Step 2: Calculate longest paths in the graph Gc from a
source node to each other node
if a positive cycle exists then

return inconsistent
end if

Step 3: Initialization of the initial separations
for each node ei do

Set separation from s to ei=the weight of the
longest path from s to ei

end for

Step 4: Iterative relaxation
repeat

Construct the slack graph Gs
Calculate the shortest slack from a source node s to
each node using the previous procedure

 for each node ei do
 if the shortest slack is ∞ then

69

set separation from s to ei ∞
 else if the shortest slack > 0 then
 Increase separation by the shortest

 slack
 end if
 end for
until the shortest slacks do not change
if all constraints in graph G are satisfied then

return problem is consistent
else
 return problem is inconsistent

end if

The authors conjecture that the complexity of this algorithm is O(VE

+V2log(V)).

5.2.4 Min-Max Constraint Systems

McMillan and Dill proved that the problem with max and min constraints is

NP-complete [29]. To prove NP-completeness of the min/max constraint problem

McMillan and Dill used the reduction from 3-SAT.

Theorem 1 [29]

3-SAT is reducible to the min/max problem.

Proof

Let φ be a 3-CNF with n variables a, b, c, …; pa, pb, pc, …na, nb, nc, … corresponding

to the positive and negative literals respectively. Formula φ has m clauses. We

demonstrate the reduction from 3-SAT to the min/max problem that converts

formulas to graphs. Structures within the graph are designed to mimic the behavior

of variables and clauses. Create graph G of a min/max problem as follows:

Let s be a source event and pa, pb, pc, …na, nb, nc, … - events in constraint graph G

subject to the constraints:

vv spsp tt ∂+= , where 10 ≤∂≤
vsp

vv snsn tt ∂+= , where 10 ≤∂≤
vsn

70

The time of each event pv, nv, ranges between 0 and 1 relative to the source event s.

Graphically, this is expressed by the arcs going from the source event to each event

pv, nv (Figure 33). For each pair of events pv, nv we construct a min event mv:

),min(
vvv npm ttt = .

There is also a max event q that is the latest of the mv events:

)(max
,...},,{ jm

cbaj
q tt

∈
=

For each clause we construct a max event fi which is the latest of the corresponding

events pv, nv forming the clause. For example, for the clause pa + pb + pc:

),,max(
cbai pppf tttt =

Finally, we construct a min event r that is the earliest of the fi events:

)(min
1 ifmi

r tt
≤≤

=

We have to find the maximum separation qrs in the constructed constrained graph.

To prove that this reduction works, we have to demonstrate that the maximum

separation qrs equals 1 if and only if the formula φ is satisfiable.

1. Suppose the formula φ has a satisfying assignment. In that satisfying

assignment, at least one literal is true in every clause. For either assignment

of variables 1=vp , 0=vn and 0=vp , 1=vn , it follows that the execution

time of the min events vm coincides with the earlier of vp or vn and is equal

in all cases to 0. A max event q coincides with the latest of the vm events

and, as the vm events fire at 0, thus 0=qt . The firing time of max events f1,

f2 will be always 1 since at least one delay from the events representing

clause variables vp , vn must be 1, leading to the defining of the execution

time of the event r being 1. Thus, 1)max(=−= qrqr tts .

71

2. Suppose now that the maximum achievable separation 1)max(=−= qrqr tts .

This means that 1=rt and 0=qt . As 1=rt and r is a min event, both events

f1 and f2 have to fire at time 1 and thus 1,1
21

== ff tt . Since 0=qt , at least

one delay from each pair vp , vn must be 0. Thus, if 1=vp and 0=vn , this

assignment to the variables satisfies φ because according to the firing time

1,1
21

== ff tt , each triple of events representing a clause in the graph

contains a literal that is assigned TRUE. Therefore we have a satisfying

assignment of the formula φ.

Figure 33 shows an example of the constraint graph corresponding to the 3-SAT

formula))((),,,(dbacbadcba ++++=ϕ .

Figure 33: Reduction from 3-SAT to min/max problem

In the graph above, pentagons represent min events and squares represent

max events. The numbers depicted over the events indicate a solution of the timing

constraints for the satisfiable assignment of the formula φ.

72

5.2.5 Min-Max-Linear Constraint Systems

The general min-max-linear constraint problem is also NP-hard. This was

demonstrated in [62] using a reduction from 0-1 integer programming. This fact

justifies a branch and bound approach for resolving such problems.

McMillan and Dill [29] proposed an algorithm where min constraints are

eliminated by assuming that one of the min constraints is less than the others. An

instance of the max-linear constraint problem is generated by the recursive

elimination of all min constraints. The solution is the maximum of the separations for

all max-linear sub problems.

T. Y. Yen et al. [26] proposed an algorithm that handles all three constraint

types modifying their max-linear algorithm (Algorithm 4 The MaxSeparation

algorithm). In this algorithm, the min constraints are recursively eliminated as

well, as in the McMillan and Dill algorithm, each time generating a max-linear

subproblem. If some min constraint has been satisfied by other constraints, it has to

be chosen; as for each min event, only the earliest constraint has to be found.

Furthermore, when a new sub problem is generated, the algorithm continues with the

current status and not from the beginning in order to optimize the calculation

process.

5.2.6 Assume-Commit Constraint Systems

Assume-commit constraints were introduced to reflect the input/output nature

of events [32, 33, 70]. The maximum separation time computation guarantees that

the given system of constraints is consistent, i.e., that it has at least one solution,

even though this solution may not be realizable if we take into account the

input/output nature of events. The input events are those that cannot be controlled by

the system and the timing for these events has to be satisfied for each value in the

bounded interval [33]. On the contrary, the output events are under the control of the

system and can be constrained in the given interval if needed. Distinguishing the

input/output nature of events led to the definition of two constraint types: commit

constraints and assume constraints.

73

Definition 5 [32]

Consider the events ei and ej with constraint Cij = (ei, ej, [lij, uij]), where

ijijij uetetl ≤−≤)()(. Cij is a commit constraint if ej is an output event; otherwise it

is an assume constraint.

A heuristic method based on the local consistency property was used for

solving interface timing specifications with commit-assume constraints [32] and is

based on the following reasoning.

Definition 6 [32]

An event (node) is said to be a convergence event (node) if it has more than one

parent.

Definition 7 [32]

Let z be a convergent node of event graph EG=(E, C), and P(z) a set of its parents in

EG. Let)','(' CEEG = , where }{\' zEE = , and [] }),,,{(\' CulzeCC i ∈= . The node

z is locally consistent if)(, 21 zPee ∈∀ the maximum separation time 12s of e1, e2

(respectively 21s of e2, e1) computed over EG’ is less than or equal to the maximum

separation time 12s (21s) computed over the subgraph containing only the set of

nodes },,{ 21 zee .

Definition 8 [32]

An event graph, EG=(E, C), is locally consistent if each convergent node z is locally

consistent.

 The local consistency property means that the maximum separation time

between each pair of convergence node parents computed over the graph without this

node and its corresponding constraints is less than or equal to the maximum

separation time computed over the graph formed from the convergence node and its

parents.

74

The idea behind the local consistency property is that the satisfaction of the

local consistency condition guarantees the existence of at least one realizable relative

schedule for each locally consistent node and, correspondingly, for the locally

consistent graph.

In the event graph of Figure 34 (without dashed arcs), nodes ik (k = 1 to 3) are

input events and nodes os (s = 1 to 5) are output events.

Figure 34: Event graph

This graph is not locally consistent. Two convergent nodes, o4 and o5 , do not

verify the local consistency property. The algorithm looks for a locally consistent

graph. In the case when the initial event graph does not verify the local consistency

property, the method determines which commit constraint can be modified or added

without altering the given assume constraints.

For example, for node o5, the maximum separation time between the nodes i2

and i3 computed over the graph without this node and its corresponding constraints

(Figure 35, (a)) is 40)()(40 23 ≤−≤− itit .

The maximum separation time computed over the graph formed from o5, i2 and i3

(Figure 35, (b)) is 30)()(40 23 ≤−≤− itit .

In the example presented, in order to make the graph locally consistent, two

new commit constraints were added (dashed arcs in the Figure 34). The constraint

33 oi → assures the implicit assume constraint between the nodes i2 and i3 makes the

node o5 locally consistent. The constraint 21 oo → has been added explicitly to render

75

o4 locally consistent as node o2 is an output event and is considered as being under

system control. Each locally consistent node can be removed from scheduling it can

always can be scheduled using the As Late As Possible (ALAP) relative schedule.

For node o5: t (o5) = min(t(i2) + 60, t(i3) + 80).

Figure 35: Subgraphs used in the determination of local consistency property
for the node o5.

Algorithm 5: Algorithm for finding a locally consistent
event graph

Step 1: tighten the event graph

Step 2: sort the list of convergence nodes in a reverse
topological order

Step 3:
for each convergence node do

Determine its parents
 for each pair of its parents do
 if not locally consistent then
 if possible to add a commit constraint

 then add it
 else find a commit constraint among the
 upstream ancestors
 end if

 update the list of convergence nodes
 end if
 end for
end for

76

 As mentioned earlier, the timing for input events has to be satisfied

for each value in the bounded interval, i.e., having multiple assume constraints, we

need to satisfy each value from each bounded interval. This means that the assume

constraint interpretation corresponds to the type 4 constraints interpretation from

Figure 27. In [32], the assume constraint type was considered as a special type of

linear constraint though an efficient algorithm to resolve the timing verification

problem with linear-assume constraints has not been given. An equivalent set of min-

max-linear constraints for the type 4 constraints shown in Figure 36 was proposed in

[27].

Figure 36: Transformation of type 4 constraints into min-max-linear constraints

The existence of equivalent min-max-linear expression for type 4 constraints

and the discovered correspondence between type 4 and assume constraints explain

the non-existence of a polynomial time algorithm due to the NP complexity of the

general min-max-linear problem [62]. The mathematical interpretation of assume

constraints completes the mathematical representation of all constraint types

discussed in literature.

5.2.7 Discussion

In previous subsections we have seen graph-based algorithms for timing

specification verification. Another approach used to calculate the maximum

achievable separations for a temporal constraint specification is based on its

reformulation into a mathematical optimization problem. Among the algorithms

77

using this method, we want to mention the works of T. M. Burks and K. A. Sakallah

[62] and Y. Cheng and D.Z. Zheng [30], [31].

T. M. Burks and K. A. Sakallah [62] proposed two methods to solve the min-

max-linear constraint problem: a branch-and-bound algorithm in mathematical

programming and a transformation method based on the linearization of min-max

inequalities into a standard mixed integer linear programming formulation. In both

cases, existing solvers were used to cope with reformulated timing specifications. Y.

Cheng and D.Z. Zheng [30], [31] mathematically reformulated the Yen et al. [26]

algorithm using min-max functions theory.

5.3 Min-max constraint linearization algorithm

In order to cope with a general min-max-linear constraint problem, we propose

a new graph-based algorithm. In our approach, we use the standard linearization

procedure of min-max constraints as in the work of T. M. Burks and K. A. Sakallah

[62], though we interpret it as a graph theory problem thereby obtaining as a result a

set of graphs with only linear constraints to which we apply the shortest path

algorithm to calculate the maximum separation time for all event pairs.

5.3.1 Min-max constraint linearization

The min value z of two integer numbers x and y, z = min{x, y}, or the max

value z = max{x, y} can be found by resolving a set of linear inequalities (Figure

37), where α1, α2 are binary variables and M is a suitably large positive constant.

yxM

Myz

Mxz

yz

xz

yxz

−≥
−−≥

−≥
≤
≤
=

)1(

),min(

1

1

α
α

yxM

Myz

Mxz

yz

xz

yxz

−≥
−+≤

+≤
≥
≥
=

)1(

),max(

2

2

α
α

Figure 37: Min-Max linearization inequalities

78

Consider the subgraph shown in Figure 38 containing a max event tk having two

predecessors ti and tj, and two max constraints: []),,,(iikiik ulttc = ,

[]),,,(jjkjjk ulttc = .

ti tj

ujui

-lj-li

tk

Figure 38: Subgraph with the max constraints

The firing time of the event tk determined by two max-constraints is:

),max(),max(jjiikjjii ututtltlt ++≤≤++

The left part of the inequality is the same as for the linear solution, i.e., we have to

satisfy all lower bounds simultaneously. This means that we can leave the lower

bounds without any transformation in the graph. To find a greatest upper bound in

order to resolve the right part of the inequality shown above, we rewrite it using the

linearization procedure presented in Figure 37 and obtain a set of linear inequalities

shown in Figure 39.

)1(

),max(

α
α

−++≤
++≤

+≥
+≥

++=≤

Mutz

Mutz

utz

utz

ututzt

jj

ii

jj

ii

jjiik

Figure 39: Transformed max constraint

We can observe that all inequalities have only two unknown variables for a given

constant M and a given value of the binary variable α (Figure 39). A solution of such

a linear system of inequalities can be found by a shortest path algorithm applied to a

corresponding graph. We can transform the min constraints to a set of linear

79

inequalities in a similar way as for the max constraints. The firing time of the event tk

determined by two min constraints is:

),min(),min(jjiikjjii ututtltlt ++≤≤++

We transform the left part of the above expression into a set of linear inequalities as

shown in Figure 40.

)1(

),min(

α
α

−−+≥
−+≥

+≤
+≤

≤=++

Mltz

Mltz

ltz

ltz

tzltlt

jj

ii

jj

ii

kjjii

Figure 40: Transformed min constraint

The graph interpretation of the transformed min and max constraints of Figure 39

and Figure 40 is given in Figure 41.

Figure 41: Graph representation of the transformed max and min constraints

According to the last inequality of Figure 37, the constant M in the linearization

procedure of Figure 39 has to verify jjii ututM −−+≥ for max constraints and

jjii ltltM −−+≥ for min constraints. We have also the following system of

inequalities:

80

jijijijijjii uusuuttutut ++≤++−≤−−+

jijijijijjii uusllttltlt ++≤++−≤−−+ since ii ul ≤ and jj ul ≤

The constant M has to be larger than separation between the nodes tj and ti:

for max-only constraint systems the maximum separation between each pair of nodes

tj and ti, as we have seen, is)(max)(max mm
m

kmm
m

uttlt +≤≤+ , where m denotes all

parents of the node tk. In other words, a maximum separation calculated in the graph

where all constraints are considered as being max along upper bounds will be greater

than the corresponding maximum separation for the general constraint system. An

efficient polynomial time algorithm for systems with only max constraints [61] was

used to obtain the separation between all nodes tj and ti. This value was then

employed to obtain an approximate upper bound for M. Thus, for min and max

constraints we take the constant jionlyji uusM ++=
max

)0,(≥ji uu in the case of

finite bounds. If one or more values in the constant M‘s expression are equal ∞, we

will consider that M is equal ∞ and we represent it by an arbitrary number larger than

any sum of the absolute values of the finite bounds.

A max and min function of more than two variables can be replaced by a

composition of two-variable min, max functions. Therefore, from now on, we will

consider two variable min-max constraints.

Algorithm 6: Min-max constraint linearization algorithm

Step 1: Calculate the maximum separations considering all
constraints being max type

Step 2: Calculate the number of min-max events and form
binary vector of parameters αi

Step 3: Construct an intermediate graph where each min
and max node are transformed into “linear” one

Step 4:
repeat

for each min or max node do
 Calculate the constant value M

81

Adjust the weights on the corresponding edges
according to the binary vector value

end for
Calculate the maximum separations using Bellman-Ford
algorithm
if linear solution exists then
 for all i,j do

sij←max(previous(sij),current(sij))
 end for
 end if
until all binary combinations of αi represented by the
binary vector have been explored

Example

In the above presented algorithm, we illustrate an example taken from [26].

In Figure 42 we have a graph with two max events, c and f. There are four max

constraints, a→c, b→c, d→f and e→f.

Figure 42: Initial graph with max constraints

We transformed the two max events in the initial graph in the manner presented by

Figure 41 thus obtaining the “parameterized” graph presented in Figure 43. The

parameters in the graph are the binary values of variables αi. The arcs whose weight

has to be changed according to the binary values αi are represented by the dashed

lines in Figure 43. For each binary value we have to find the linear solution, if it

exists, and take the maximum values of the separations obtained during calculations.

The complexity of the presented algorithm is exponential in terms of min-

max events. If m is a number of min-max events, each with two constraints, we have

82

to explore, in the worst case, 2m subproblems having only linear constraints. Thus,

the algorithm’s complexity is 2mn3 where n is the number of graph nodes and m is the

number of min-max events.

a

b

s

j

d

e

h

-2

2

500

0

500

0

2-2

-1

-1

0

-2

-2

∞

∞

-1

-1

0

c c_z

-1

1+(1-α1)M

-1

1+α1M

f f_z

-1

-1

1+(1-α2)M

1+α2M

0

0

Figure 43: Graph with transformed max constraints

5.3.2 Algorithm Optimization

In order to reduce the number of linear solution explorations, we propose to

employ a procedure used in T.Y.Yen et al.’s algorithm [26] such that we may

eliminate unsatisfied upper bounds of max constraints or unsatisfied lower bounds of

min constraints, as, for both constraint types, only one bound has to be satisfied,

namely the earliest one for min constraints and the latest one for max constraints.

We have presented T. Y. Yen et al.’s algorithm [26] in Section 5.2.3. The general

idea of this algorithm consists of two steps:

1. Satisfaction of all compulsory bounds and obtaining the smallest separation

values that satisfy the compulsory bounds. For max events all lower bounds

have to be satisfied, for min, all upper bounds and for linear constraints, both.

83

2. Construction of the slack graph with values defining an amount by which the

bound value can be tightened and with iterative relaxation of the separations

according to the slacks.

In our algorithm, in order to eliminate the unsatisfied bounds, we construct a

compulsory graph and calculate the smallest separations. Following this step, we

construct the slack graph. If the initial slack values are negative, the corresponding

bounds cannot be tightened and, in the context of our algorithm, we do not need to

explore the corresponding binary combinations for αi.

For the example shown in Figure 42, we have obtained negative slacks for the

max constraints b→c and d→f . This means that constraints b→c_z and d→f_z

(Figure 43) cannot be tightened and the values of α1 = 1 and α2 = 0 have not been

explored, thus leading to the verification of only one parameter combination: α1 = 0

and α2 = 1 instead of four binary combinations. The linear solution corresponding to

the assignments α1 = 0 and α2 = 1 in the parameterized graph (Figure 43) gives us the

solution to the initial problem.

With this kind of optimization, the worst case complexity stays the same, as,

sometimes in the graph, all bounds for min-max constraints can give some amount

by which the bounds can be tightened. We thus have to find the one that provides the

largest or smallest value for the max or min constraint correspondingly, therefore

exploring all binary assignments.

5.3.3 Experimentations

We have applied the presented algorithm with optimization to the graph of

timing specification shown in Figure 42. We have obtained results exploring only

one linear solution. For comparison, Yen et al.’s algorithm requires two iterations

and McMillan and Dill’s almost 500 in order to get the results [26].

The second example that we have used is the Intel 8086 ROM read cycle

from [28]. The exploring system, shown in Figure 44, contains a clock generator, an

address decoder and an address latch. The clock generator emits a clock signal with a

period of 204 ns. The latch holds the address and has a delay of [0, 12] ns. The

84

address decoder has a delay of [0, 30] ns and ensures that only the selected PROM

outputs data into the bus at any given time. The designer’s problem is to verify

whether or not the 2716 PROM is fast enough to work with an 8086 having a clock

period of 204 ns. In timing terms, this means that we have to verify the following

timing requirements:

[]
[]
[]∞=→

∞=→
∞=→

,0

,10

,0

21

23

21

RR

dc

dd

[]
[]
[]∞=→

∞=→
∞=→

,30

,0

,0

31

12

21

cd

da

AA

Figure 44: Intel 8086 ROM read cycle

The timing specification of this example consists of 13 events among which

there are one min event, one max event and the rest are linear events, as shown in

Figure 45. Events c1, c2, c3 are clock transitions; a1 and a2 are, respectively, the

beginning and the end of a valid address on the data/address bus. The events A1 and

A2 are the beginning and end of a valid address at the address latch outputs. The

events r1/R1 and r2/R2 are, respectively, the beginning and the end of the read signal

of the address decoder output. A min event, d2, denotes the end of valid data on the

data/address bus. This event has to occur as soon as either the address or the read

signal is removed. A max event, d1, is the start of valid data on the data/address bus

which depends on the later of the two input signals.

85

Figure 45: Timing specification of the Intel 8086 ROM read cycle

In order to verify the timing requirements we have applied the algorithm to

the system timing specification (Figure 45) and calculated actual timing separations

(Table V).

Table V: Timing separations for the Intel 8086 ROM read cycle

 c1 c2 c3 a1 a2 r1 r2 A1 A2 R1 R2 d1 d2
c1 0 204 612 110 284 369 762 122 296 399 792 572 ∞
c2 -204 0 408 -94 80 165 558 -82 92 195 588 368 ∞
c3 -612 -408 0 -502 -328 -243 150 -490 -316 -213 180 -40 ∞
a1 -10 194 602 0 274 359 752 12 286 389 782 509 ∞
a2 -214 -10 398 -104 0 155 548 -92 12 185 578 358 ∞
r1 -214 -10 398 -104 0 0 548 -92 12 30 578 358 ∞
r2 -622 -418 -10 -512 -338 -333 0 -500 -326 -303 30 -50 ∞
A1 -10 194 602 0 274 359 752 0 286 389 782 509 ∞
A2 -214 -10 398 -104 0 155 548 -92 0 185 578 358 ∞
R1 -214 -10 398 -104 0 0 548 -92 12 0 578 358 ∞
R2 -622 -418 -10 -512 -338 -333 0 -500 -326 -303 0 -50 ∞
d1 -214 -10 398 -104 0 0 548 -92 12 0 578 0 ∞
d2 -214 -10 398 -104 0 155 548 -92 12 185 578 358 0

The results are the same as presented in [28]. As we can see several timing

requirements are violated. A comparison of the actual separations computed by the

algorithm and the required separations is given in the Table VI.

86

Table VI: Required and computed separations for the Intel 8086 ROM read
cycle

Constraints Required time intervals Actual timing separations, []ijji ss ,−

21 dd → [0,∞] [-358,∞]

23 dc → [10, ∞] [-398,∞]

21 RR → [0,∞] [303,578]

21 AA → [0,∞] [92,286]

12 da → [0,∞] [0,358]

31 cd → [30,∞] [40,398]

 In our algorithm, for timing specification with one max and one min event,

we have to explore four linear solutions. By applying the above discussed

optimization technique we have reduced the number of linear solution explorations

to two.

In order to estimate the average complexity of the proposed algorithm, we

have performed several numerical experiments. As there is not enough real data for

the experiments, we have decided, like other researchers [30, 31], to automatically

generate the timing specification graphs, which should be acyclic. In order to respect

this condition, we have used an initial acyclic graph having a solution (Figure 45) for

the generation of larger graphs. We have generated graphs in three manners,

resulting in obtaining graphs of one of three types, as presented in Figure 46.

87

s

Graph G

Graph G

e

s Graph G Graph G e

Graph G

Graph G

(a)

(b)

(c)

Figure 46: Structures of the generated graphs

In Figure 46 (a), the initial graph is merged with other graphs of identical

structure in a parallel manner; in (b) the merging is done in a sequential manner and

in (c) one of the initial graph nodes is replaced by a graph with the same structure. In

all cases, the values of arc weights are randomly generated. In our experiments, we

wanted to compare the linearization algorithm’s efficiency with that of T.Y. Yen et

al’s [26]. The authors conjecture that the complexity of their algorithm is O(VE

+V2log(V)) when it is trying to resolve a max-linear problem. On the other hand, for

min-max-linear problem the algorithm has to be modified and its complexity is

exponential in the worst case. Our algorithm treats all three types of constraints in

optimized and non optimized versions. However, to compare our algorithm with the

most efficient version of the T.Y. Yen et al’s algorithm, we have decided to use in

our experimentations graphs with only linear and max constraints.

88

We have limited the number of nodes to approximately 150 as it is difficult to

generate a large graph with a non cyclic structure having a solution. The hardware

platform for the experiments was a computer with an Intel Pentium 1.5 GHz CPU

and 512 Mb of RAM. The results were measured in number of ticks, which is the

smallest unit available to measure time and is equal to 100 nanoseconds. We have

converted the tick measures to milliseconds. The results are given in Table VII,

which lists the number of constraints representing the number of arcs in the graphs,

the total number of nodes in the graphs and the number of max nodes among them.

The next three columns contain the costs, in milliseconds, for resolving max-linear

problems of different size and complexity for three algorithms: T. Y. Yen et al.’s, the

Linearization algorithm in the non optimized version and the Linearization algorithm

in the optimized version. As the complexity of the linearization algorithm is

exponential in terms of the number of min/max nodes, more precisely O(2mn3),

where m is the number of min/max nodes and n the total number of nodes in a

graph, for certain experiments we do not have the numerical data. For example, for

experiment number 4 (b) with 21 max nodes, we have to explore 221 linear solutions,

leading to very long execution delays. In such cases, we present the timing for the

optimized version of the algorithm.

Table VII: Results of experiments

Graph CPU time

Constraints Nodes/Max nodes Algorithm
of T.Y.

Yen et al.,
in ms

Linearization
Algorithm, in

ms

Linearization
Algorithm with
optimization,

in ms
1. 17 13/2 30 0 (< 100 ns) 0 (< 100 ns)
2. (a) 40 30/7 50 400 0 (< 100 ns)
 (b)38 27/7 40 360 0 (< 100 ns)
 (c)38 27/7 40 400 0 (< 100 ns)

3. (a)84 58/17 360 1698091 881
 (b)76 53/16 250 721056 370
 (c)78 53/15 280 354840 360

4. (a)168 114/12
114/13

3054
3094

290758
595606

40
40

 (b)158 110/21
110/13

2393
2513

 -
277218

1261
60

89

 (c)160 107/21
107/16

2343
2413

-
2297864

1241
80

5. (a)228 152/17 7180 18615658 70
 (b)218 148/18 6109 17256613 140
 (c)220 145/20 5848 - 140

The data presented in the table show that the optimization of the linearization

algorithm significantly reduces the cost incurred by its non optimized version.

Furthermore, in most cases, the optimized version of our algorithm is better than the

max-linear version of T. Y. Yen et al.’s. In [30, 31], the experimental results for T.

Y. Yen et al.’s algorithm are presented and mathematically reformulated using min-

max functions. It is quite difficult to compare these results to our data due to the

different nature of representations and as a consequence of the experimental

parameters. However, for the experiment in [31] with parameters corresponding to

170 constraints and 10 min/max nodes, the execution time is around 50 milliseconds

whereas, in our case, the execution time is between 40 to 80 milliseconds depending

on graph structure. Thus, the complexity of both algorithms is comparable.

The examples presented demonstrate that regardless of the exponential worst case

complexity, the proposed optimized linearization algorithm is quite efficient.

5.4 Timing in TLM

In Transaction Level Modeling, the first level where some quantity of timing

information is added to the system description is the CP+T level. At this level we

have to extract, from the system specification information and perhaps from the CP

simulation results, the first global temporal system model. All architectural

constraints can be presented by their corresponding temporal models and can be

verified analytically using timing verification algorithms and then again verified with

refining functional details by simulation. The Hardware/Software partitioning

process, if needed, can be guided by criteria of temporal constraints realizability. At

the PV and PV+T levels, the communication structure can be explored and verified

using timing analysis.

90

In this subsection, we demonstrate the way in which the presented timing

expression methodology can be applied at different TLM abstraction levels.

5.4.1 Timing modeling at CP+T level

We will demonstrate an application of the proposed timing expression

methodology in the exploration of the CP+T TLM models in the design of an audio-

video server system first described in Section 4.6. For exploration at the CP+T level,

we use a CP audio-video server system model. From the information collected at the

CP level, we have manually created the temporal server model shown in Figure 47.

As shown in the aforementioned figure, events appearing on one server channel are

presented with its temporal relationships. This CP+T temporal model of the audio-

video server system is explored and has to be refined. As we can see, the server’s

temporal model contains several conditional events such as user commands. At the

CP level these commands are modeled using probabilistic generation. Furthermore,

some parameters are defined by their variation intervals, leading to the specification

of timing intervals in a parameterized manner. Thus, the server’s behavior is quite

complex and the corresponding temporal graph includes cyclic treatment,

parameterized borders of the delay intervals and several conditional events

describing nondeterministic behavior. These concepts are not supported by the

previously presented timing expression methodology, which is based on timing

constraint analysis. For this case, we have tried to combine the simulation and the

temporal verification. In order to manage the exploration of the systems with

conditional events and repetitive behavior, we can use dynamic verification that

combines the simulation and analytical methods. We can subdivide the graph with

cyclic behavior into acyclic subgraphs and explore several of them by analytical

methods in the parameterized form. Having the verified subgraphs with timing

intervals presented in parametric form, we can, during the simulation, dynamically

extract the corresponding subgraphs, substitute the simulation values and verify the

system requirements. In this manner we can verify and adjust temporal constraints in

the temporal model and add the behavior details in the simulation model.

91

For the audio-video server model, we have extracted several parameterized

acyclic subgraphs, though all of them gave us trivial solutions. This fact signifies that

each acyclic subgraph in the temporal audio-video server model is not detailed

enough to provide information for temporal analysis. In addition, this also means that

the whole CP+T temporal graph is very complex for the proposed temporal

expression methodology.

Figure 47: Temporal model of the audio-video server system

Our experimentations have demonstrated that the timing constraint analysis is

probably not very appropriate for exploration of high level system descriptions and

for applications with nondeterministic and repetitive behavior. Indeed, for such

systems, the simulation method will be sufficient in providing acceptable simulation

92

speed as there are very little amounts of details regarding system description at the

CP level.

5.4.2 Communication Exploration at PV and PV+T Levels

The TLM paradigm assumes development of system computation structure

separately from development of communication structure in the design flow. In this

subsection, we present a method which uses the min-max-linear temporal model to

explore and refine the system communication structure in the TLM design flow.

Detailed communication structure exploration and refinement is done at the PV and

PV+T abstraction levels. The presented method is an extension and generalization of

a heuristic algorithm based on the local consistency property for assume-commit

constraints systems [32] discussed in Section 5.2.6.

Structurally, modern systems can be seen as one or several processing

components which communicate with each other or/and the environment. The idea of

distinguishing the event’s nature leads to the identification of events that can be

controlled by some component or that can be grouped according to certain

functionality for future implementation as a unique component in the system. A

“subdivision” of the global temporal system specification into regions of events

belonging to some structural or logical unit gives us the possibility to verify the

temporal interactions between the communicating elements and eventually propose a

set of rules thereby defining a protocol of communication assuring the timing

consistency of the system specification. This verification mechanism can be applied

at different abstraction levels providing, in this way, the exploration and refinement

of the system communication infrastructure. In the case of platform-based modeling,

this method can help to adjust several configuration parameters.

Consider the event graph of Figure 48 that represents the temporal

specification of two communicating components. Suppose that in this graph the

events c1i (i=1 to 5) are those of communicating component 1 that can be controlled

by it. Correspondingly, c2j (j = 1, 2) are the events controlled by communicating

component 2. The constraints represented by the arcs finishing at these events are

commit constraints.

93

Figure 48: Temporal specification of two communicating components

There is only one event that cannot be controlled in Figure 48, an event

source labeled a1. Events that cannot be controlled in the system timing specification

are the “true” input events which form assume constraints. In the temporal system

specification, if a certain component cannot control an event associated with it, the

nature of this event must be defined as being “in”. Determining this nature has to be

done judiciously because each communicating component can have several

uncontrolled events. In this case, assume constraints can be generated with

environment events that are generally uncontrollable.

Applying the local consistency verification algorithm (Section 5.2.6) to the

graph in Figure 48, and considering all constraints to be linear, we have obtained a

solution which is presented in Figure 49. In the initial event graph, nodes c14 and c15

are not locally consistent. To change this, we can examine the parents of these nodes

and, since they are events belonging to the same logical partition, i.e. they are

controlled by the same communicating component, we can add the corresponding

commit constraints. Thus, we have generated timing relationships between two

communicating devices which can be thought of as a protocol of communication that

has to be respected to assure temporally correct system functionality.

94

-10, 20
-30, 40

a1

c11 c13 c21

c15

c12 c14 c22

10, 40 10, 20

10, 30 30, 80

40, 60

10, 20

10, 60

20, 50

10, 30

Figure 49: Solution for the temporal specification of Figure 48

In case of presence of multiple uncontrolled events, the assume constraints

generated by them have to be satisfied for all values of bounded intervals. To satisfy

the assume constraints, the algorithm looks for a candidate for a new commit

constraint among the events belonging to the same logical unit.

Let us now consider the fact that component 2 generates only one event, c21

(Figure 50).

-10, 20 -40, 20

a1

c11 c13 c21

c15

c12 c14 c16

10, 40 10, 20

10, 30 30, 80

40, 60

10, 20

10, 60

20, 50

10, 30

Figure 50: Changed temporal specification of Figure 48

In trying to make node c15 locally consistent, we should enforce the implicit assume

constraint between c21 and c16 to be in [-30, 40] by means of inserting the

corresponding commit constraint in the appropriate logical unit. The new commit

constraint is [-40, 20], inserted between events c16 and c13 which are under the

control of communicating component 1. A pseudo code of the algorithm for finding a

realizable timing specification of multiple communicating components is presented

below.

95

Algorithm 7: Algorithm for finding a realizable timing
specification of multiple communicating components

Step 1: Annotate in the timing specification graph events
that can be controlled by the same communicating
component and “true” input events

Step 2:
for each convergence node do
 for each pair of its parents do
 verify the local consistency property
 if the condition does not hold then

if the pair of convergence node parents
 belong to the same component

 then
 add or adjust the commit constraint
 else
 look for a necessary commit constraint
 in the corresponding component
 end if
 else
 signal timing inconsistency
 end if
 end for
end for

5.4.2.1 Experimentations

In this section, we apply the above presented concepts to the timing of bus

arbitration [28] example.

Buses are basic blocks of complex digital systems and often cause some

difficult timing problems. Considering the timing specification of the multi-master

system configuration on an Intel Multibus, we derive a realizable bus arbitration

protocol.

The aforementioned multi-master system configuration involves three

masters: A, B, C. Each master has a distinct priority. Its resolution is handled by the

parallel priority resolution scheme implemented by means of encoder/decoder logic

on Master A. In this example, the bus arbitration concerns Masters B and C, this has

the lowest priority.

96

Consider the following situation. Master C is transferring data and B requests

a bus data transfer. The priority resolution logic at A asserts and removes the

corresponding signals. C is allowed to complete the transfer. Thereafter, Master C

surrenders the bus and B prepares for and begins the transfer. The relevant signals

and events involved in Multibus arbitration with parallel priority resolution are

presented in Figure 51.

Figure 51: Events and signals involved in arbitration [28]

The bus arbitration timing specification for a minimum bus clock of 100 ns

(the maximum bus transfer rate) derived from Intel’s data sheets is presented in [28]

and is given in Figure 52. In this temporal specification, we can distinguish four

groups of events. “True” input events are clock events represented in Figure 52 by

dashed lined white circles. The second group of events contains those controlled by

the bus: R, P, c, b. The third group contains only one event, r, which is the request

event sent by Master B to access the bus for data transfer. Finally, events p, C, B are

controlled by the priority resolution logic and are forming the fourth event group.

Dashed arcs represent the constraints involved in the arbitration process. Now we

can explore the temporal interactions between communicating devices and, if

needed, constrain the temporal specifications inside each group of events and

between groups thereby generating a realizable bus arbitration protocol. In this

example, all temporal constraints are linear.

97

b1 b2 b3 b4 b5

R p C B

r P c b

B1 B2 B3 B4 B5

100,100 100,100100,100 100,100

100,100 100,100100,100100,100

0,35 0,35 0,6015,∞
20,∞

0,30,30,3 0,3

0,3

0,35 22,∞ 25,∞0,70 0,70

37,37

Figure 52: Timing specification of the bus arbitration

We have applied to the graph of Figure 52 the local consistency property method.

The results are given in Figure 53.

Figure 53: Realizable bus arbitration timing specification

The timing depicted on the dashed arcs represents a realizable bus arbitration

protocol on the Intel Multibus system. As we can see, in order to satisfy a priority

resolution delay of 37 ns (constraint R→p), we have to add a constraint to the clock-

request delay (rb →1). If we want to avoid this, faster priority resolution logic has to

98

be chosen. In [28], the timing for the constraint pR → was calculated manually using

the specification of worst-case bounds on the corresponding signals and the

constraint violation was determined; another timing violation was detected using the

simulation method. In both cases, timing violations were discovered, but no solution

was given. In applying our method, we derived a protocol for communicating

components that can satisfy a priority resolution delay of 37 ns thus reducing the

temporal bounds of the events that can be controlled by the system.

5.4.3 Conclusion

In this chapter, we have presented an analytical timing model and the way in

which it may be used in transaction modeling. This allowed for enhancing the TLM

verification simulation method with the analytical one. The presented timing model

is based on temporal constraint analysis for the min-max-linear and commit/assume

constraint types. A new timing verification algorithm was proposed as well as an

optimization technique to improve the algorithm efficiency. This algorithm was used

in combination with the TLM simulation method to explore the CP+T model of the

server application, though, for this kind of application, the presented timing model

was quite restricted to the exploration of the functional specification at a high

modeling level. In contrast, for late phase CP+T level architecture explorations

involving HW modules and exploration of Hw/Sw partitioning, this timing

verification model is very suitable as it matches temporal hardware module behavior.

We have estimated the average verification algorithm performance and showed that

it is acceptable. Furthermore, a second algorithm was proposed for PV+T

communication structure explorations and its successful application was

demonstrated through the bus arbitration example as the temporal inconsistency was

not only discovered but the solution was also proposed. Finally, we can predict that

the most important impact of the proposed timing verification methods on system

exploration performance will be at the late phase of the PV+T level, where many

HW components are involved and the simulation speed drastically decreases.

99

Chapter 6. Conclusions and future work

6.1 Conclusions

In this research, we have presented a timing expression methodology in

Transaction Level Modeling, providing a method to accelerate the overall design

process. This acceleration can be achieved by means of a combination of two

paradigms: a simulation TLM approach on one hand and an analytical timing

expression methodology to specify timing between different transactions on the

other. Two verification methods (simulation and analytical verification algorithms)

provide an excellent solution to the verification and design space exploration of large

designs. Indeed, while several parts can be verified and explored analytically, others

require simulations and some need both methods. The proposed timing expression

methodology is based on previous works and is enhanced with several important

theoretical aspects. We have completed the mathematical representation of all

temporal constraint types discussed in literature by means of discovering the

correspondence between min-max-linear and assume constraints semantics. The

assume constraint type can be modeled as min and max constraints. It corresponds to

the fourth constraint type that was considered as being without any practical usage.

This fact explained the non-existence of a polynomial time algorithm for linear-

assume constraints systems as being due to the NP complexity of the general min-

max-linear problem. We have implemented several existing timing verification

algorithms.

A new general algorithm based on the linearization of min-max inequalities

was proposed as well as an optimization technique that significantly improves its

efficiency. This method has been used in the timing analysis of all four constraint

type systems. Thus, the method can be applied to the exploration of a wider class of

applications than previously presented ones.

The timing expression based on temporal constraint analysis is completely

independent from languages used for system design, providing, in this manner, a

possibility of reuse.

100

In this research, we presented a framework supporting the Transactional Level

Modeling paradigm as one of the promising solutions to cope with the growing

system complexity and the time to market pressure. The proposed framework

provides a general approach in system modeling that separates various application

modeling aspects from system specification: computational models, timing,

specification/description languages, different functional and non functional

parameters. To achieve this separation, we have used software engineering

technologies and paradigms. Using software engineering technologies in TLM

expression eases the creation of high level transaction models and provides a method

to productively explore some architectural concerns at a high abstraction level.

Among the software engineering technologies, we have chosen the .NET

Framework, XML/XSLT and XSD technologies.

The .NET Framework has been chosen because it provides multiple predefined

modeling constructs that allow easy creation of high level transaction models. Some

of these elements are: multithreaded programming to model parallel activities, an

events mechanism and interfaces and different kinds of abstract data types in order to

model transactions The XML technology permitted to powerfully express a system

specification with unifying functional and non-functional aspects such as cost, size,

power dissipation, bandwidth, etc. in a single model framework. In this way, these

constraints can be modeled in the earliest specification phase so that a designer can

deal with them right from the beginning.

The XSLT technology used in the transformation of specification into a

simulation model provides an efficient mechanism for design space exploration at

different abstraction levels. The XSLT transformation contains simulator and

specification language details, i.e. computation models related to the system under

design. XML/XSLT and the .NET language interoperability support render TLM

high level models independent from description and programming languages, in this

way leading to high level functional specification reuse. This will allow reuse at

different design stages, easier design exploration and exchange of specifications

between different users having different HDLs and implementation environments.

101

Using the XSD technology, we have implemented the validation of the

intermediate models’ structures at each abstraction level in order to assure

correctness of the modeling. As the correctness of the design tools is a necessity in

modern conditions, the possibility to guide the designer in the designing process

through multiple abstraction levels respecting several modeling rules guarantees

error reduction in system design. We have implemented a graphic user interface to

isolate the designer from the cumbersome and error prone syntax of the CP and

CP+T abstraction levels.

We have integrated the min-max-linear-assume constraint timing specification

methodology in the TLM design flow in order to represent and explore timing

descriptions at different abstraction levels. We have extended the existing methods to

perform the communication structure exploration and refinement at the PV+T level.

This method can be used in different system design methodologies. The exploration

of communicating components of the temporal model has been done using the local

consistency property method which was generalized to handle min-max events. The

proposed communication structure exploration methodology can be used in

automatic protocol generation, in determining temporal specification inconsistencies

and in adjusting some parameters in case of platform-based design methodologies.

All these features lead to the reduction in the time needed for the exploration of the

communication design space.

6.2 Future work

The presented analytical approach does not support verification of systems with

cyclic non deterministic behavior. Thus, the elaboration of analytical methods to

manage these kinds of behavior as well as parameterized temporal interval

boundaries in the timing specification methodology is an important issue.

To estimate the average performance of the min-max constraint linearization

algorithm, we have used random generated graphs. In the future, we need to collect

numerical data of algorithm execution time for different real applications to confirm

the obtained average case complexity.

102

In order to demonstrate the full strength of the presented analytical approach in

the system verification step, it is necessary to create a library of temporal

descriptions of hardware architecture components. In this case, many design

decisions might be done efficiently without simulation. These decisions concern

Hw/Sw partitioning, the mapping of system functionality to architecture components

and the definition of the system communication infrastructure.

Further development of tools for the TLM framework is needed. The automated

support for the PV and PV+T levels has to be implemented and a link with the

SystemC TLM standard, as well as with other Hw/Sw design methodologies has to

be established. An important contribution to easing the design will be an

implementation of a semi-automated procedure of construction of the initial temporal

specification from an untimed high level functional model. This model might be used

for further exploration and refinement along with the simulation model providing, in

this way, a powerful verification method combining analytical and simulation

techniques.

103

Bibliography

1. S.Abdi, J. Peng, R. Doemer, D. Shin, A. Gerstlauer, A. Gluhak, L. Cai, Q.
Xie, H. Yu, P. Zhang, D. Gajski, System-On-Chip Environment (SCE):
Tutorial, tech. report CECS-TR-02-28, Center for Embedded Computer
Systems, Univ. of California, Irvine, CA, 2002.

2. K. Keutzer, S. Malik, R. Newton, J. Rabaey, A. Sangiovanni-Vincentelli,
“System Level Design: Orthogonalization of Concerns and Platform-Based
Design”, IEEE Trans. On CAD, vol. 19, no.12, Dec. 2000, pp.1523-1543.

3. VCC home page (www.cadence.com/products/vcc.html).
4. CoWare home page (www.coware.com).
5. W. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A. Jerraya, L.

Gauthier, M. Diaz-Nava, “Multiprocessor SoC Platforms: a Component-
Based Design Approach”, IEEE Trans. On Design and Test, vol. 19, no. 6,
Nov-Dec. 2002, pp. 52-63.

6. L. Cai and D. Gajski, “Transaction Level Modeling: An Overview”, Proc. 1st
Int’l Conf. Hrdware/Software codesign and syst. Synthesis
(CODES+ISSS’03), Newport Beach, California, 2003, pp.19-24.

7. A. Donlin, “Transaction Level Modeling: Flows and Use Models”, Proc. 2nd
Int’l Conf. Hrdware/Software codesign and syst. Synthesis
(CODES+ISSS’04), Stockholm, Sweden, 2004, pp. 75-80.

8. G. Kahn, “The semantics of a simple language for parallel programming”,
Proc. IFIP Congress 74, North-Holland Publishing Co., 1974, pp. 471-475.

9. W3C Recommendation, XML 1.0 Specification, 3d ed., 2004,
http://www.w3.org/XML/.

10. N. Pitts, XML Black Book, 2nd edition, Coriolis Technology Press,
Scottsdale, Arizona, 2001.

11. A. Ceponkus, F. Hoodbhoy, Applied XML: A Toolkit for Programmers,
Wiley Computer Publishing, Toronto, ON, 1999.

12. R. Powell, R. Weeks, C# and the .NET Framework, The C++ Perspective,
Sams Publishing, Indianapolis, Indiana, USA, 2002.

13. C.T.I.Comité, Codesign Conception conjointe logiciel – matériel, Eyrolles,
1998 (in French).

14. P. Eles, K. Kuchcinski and Z. Peng, System Synthesis with VHDL, Kluwer
Academic Publishers, 1998.

15. W3C Recommandation, XSL Transformations (XSLT) Version 1.0, 1999,
http://www.w3.org/TR/xslt.

16. J. Lapalme, E. M. Aboulhamid, G. Nicolescu, L. Charest, F. Boyer, J-P
David, G Bois, “.NET Framework - A Solution for the Next Generation
Tools for System-Level Design”, Proc. of the Automation and Test in Europe

104

Conference and Exhibition (DATE 2004), Paris, France, 2004, vol.1 pp. 732-
733.

17. F.Balarin, E. Sentovich, M. Chiodo, P. Giusto, H. Hsieh, B. Tabbara, A.
Jurecska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-
Vincentelli, Hardware-Software Co-design of Embedded Systems – The
POLIS approach, Kluwer Academic Publishers, Norwell, MA, 1997.

18. J. Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt,
“Ptolemy: A framework for simulating and prototyping heterogeneous
systems”, Int. Journal of Computer Simulation, special issue on "Simulation
Software Development", vol. 4, Apr. 1994, pp. 155-182.

19. SystemC 2.1 library, http://www.systemc.org/.

20. W3C XML Schema Recommandation, http://www.w3.org/TR/xmlschema-0/,
2004.

21. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, SpecC: Specification
Language and Methodology, Kluwer Academic Publishers, Jan. 2000.

22. T. Grotker, S. Liao, G. Martin, S. Swan, System Design with SystemC,
Kluwer Academic Publishers, 2002.

23. S. Pasricha, “Transaction Level Modeling of SoC with SystemC 2.0”,
Synopsys User Group Conference (SNUG 2002), Bangalore, India, 2002.

24. SystemC 2.0 functional specification, http://www.systemc.org/.
25. R. Niemann, Hardware/software Co-design for Data Flow Dominated

Embedded systems, Kluwer Academic Publishers, 1998.
26. T.Y. Yen, A. Ishii, A. Casavant, W. Wolf, “Efficient Algorithms for Interface

Timing Verification”, Proc. of the Conf. on European design automation
(DATE 94), IEEE CS Press, Los Alamitos, CA, USA, 1994, pp.34-39.

27. T.Y Yen, A. Ishii, A. Casavant, W. Wolf, “Efficient Algorithms for Interface
Timing Verification”, Formal Methods in System Design, vol. 12, Kluwer
Academic Publishers, 1998, pp. 241-265.

28. A. J. Gahlinger, Coherence and Satisfiability of Waveform Timing
Specifications, doctoral dissertation, Dept. Computer Sciences, Univ. of
Waterloo, Ontario, Canada, 1990.

29. K. L. McMillan, D. L. Dill, “Algorithms for Interface Timing Verification”,
Proc. IEEE Int’l Conf. on Computer Design on VLSI in
Computer&Processors, IEEE CS, Washington, DC, USA, 1992, pp.48-51.

30. Y. Cheng, D.Z. Zheng, “Min-Max Inequalities and the Timing Verification
Problem with Max and Linear Constraints”, Discrete Event Dynamic
Systems: Theory and Applications, vol. 15, Netherlands, 2005, pp. 119-143.

31. Y. Cheng, D.Z. Zheng, “An Algorithm for Timing Verification of Systems
Constrained by Min-max Inequalities”, Discrete Event Dynamic Systems,
published online, Springer Science+Buisiness Media, LLC 2006.

32. A. El-Aboudi, E. M. Aboulhamid, “An algorithm for the verification of
timing diagrams realizability”, Proc. IEEE Int’l Symposium on Circuits and
Systems (ISCAS’99), vol.1, May-June 1999, pp. 314-317.

105

33. A. El-Aboudi, E. M. Aboulhamid, E. Cerny, “Verification of Synchronous
Realizability of Interfaces from Timing Diagram Specifications”, Proc. 10th
Int’l Conf. on Microelectronics (ICM’98), Dec. 1998, pp.103-106.

34. W. Wolf, J. Staunstrup, Hardware/Software Co-design: Principles and
Practice, Kluwer Academic Publishers, Norwell, MA, 1997, pp.307-357.

35. ISO Std. IS 8807, LOTOS a formal description technique based on the
temporal ordering of observational behavior, ISO, February 1989.

36. CCITT Recommendation Z.100, Specification and Description Language
(SDL), ITU, Geneva, 1989.

37. SpecC Language Reference Manual, Version 2.0, December 12, 2002,
www.specc.org.

38. E.A. Walkup, G. Borriello, “Interface timing verification with application to
synthesis”, Proc. of the 31st annual conference on Design automation, ACM
Press, New York, NY, USA, 1994, pp.106-112.

39. R. K. Gupta, G. De Micheli, “Hardware-software Co-synthesis for Digital
Systems”, IEEE Design and Test of Computers, vol. 10, no. 3, Sept. 1993,
pp.29-41.

40. C.A.R. Hoare, “Communicating Sequential Processes”, Communications of
the ACM, vol. 21, no. 8, August 1978, pp. 666-677.

41. A. Jerraya, K. O’Brien, “SOLAR: An Intermediate Format for System-Level
Modeling”, Codesign: Computer Aided Software/Hardware Engineering”,
IEEE Press, Piscataway, NJ, 1994, pp.145-175.

42. D. Pellerin, D. Taylor, VHDL Made Easy!, Pretice Hall, 1997.
43. S. Palnitkar, Verilog HDL, 2nd. Ed., Prentice Hall, 2003.
44. A.A. Jerraya, M. Romdhani, PH. Le Marrec, F. Hessel, P. Coste, C.

Vaderrama, G. F. Marchioro, J.M. Daveau, N. – E. Zergainoh,
“Multilanguage speification for system design and codesign”, chapter in
System Level Synthesis, NATO ASI 1998, Kluwer Academic Publishers,
1999.

45. D. Harel, “StateCharts: A visual formalism for complex systems”, Science of
Computer Programming, vol. 8, no.3, June 1987, pp.231-274.

46. C. A. R. Hoare, “Communicating Sequential Processes”,
http://www.usingcsp.com/ (current Jan. 2005).

47. L. A. Cortés, P. Eles, Z. Peng, A Survey on Hardware/Software Codesign
Representation Models, SAVE project report S-58183, Dept. of Computer
and Information Science, Linkoping Univ., Linkoping, Sweden, June 1999.

48. G. Berry, The Foundations of Esterel, Proof, Language and Interaction:
Essays in Honour of Robin Milner, MIT Press, 1998.

49. E. A. Lee, D. G. Messerchmitt, “Synchronous Data Flow”, IEEE
Transactions on Computers., vol. C-36, no. 1, Jan.1987, pp.24-35.

50. C. G. Cassandras, Discrete Event Systems: Modeling and Performance
Analysis, Aksen Associates, Boston, MA, 1993.

51. M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A.
Sangiovanni- Vicentelli, A Formal Specification Model for
Hardware/Software Codesign, tech. report USB/ERL M93/48, Dept. EECS,
Univ. of California, Berkeley, June 1993.

106

52. R. K. Gupta, C. N. Coelho Jr., and G. DeMicheli, “Synthesis and simulation
of digital systems containing interacting hardware and software components”,
Proc. of the 29th Design Automation Conf. (DAC’92), IEEE CS Press,
Anaheim, CA, 1992, pp. 225-230.

53. A. Balboni, W. Fornaciari, D. Sciuto, “Partitioning and exploration strategies
in the tosca co-design flow”, Proc. of the 4th Int’l Workshop on
Hardware/Software Co-Design, IEEE CS Press, Washington, DC, USA,
1996, pp. 62-69.

54. D. D. Gajski, F. Vahid, S. Narayan, J. Gong, “System-Level Exploration with
SpecSyn”, Proc. of the 35th Design Automation Conf. (DAC 98), San
Francisco, California, 1998, pp. 812-817.

55. The Chinook project,
http://www.cs.washington.edu/research/projects/lis/chinook/www/.

56. E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J. – Y. Brunel,
W.M. Kruijtzer, P. Lieverse, K. A. Vissers, “YAPI: Application Modeling for
Signal Processing Systems”, Proc. 37th Design automation Conf. (DAC’00),
Los Angeles, CA, 2000, pp.402-405.

57. P. Lieverse, P. Van Der Wolf, E. Deprettere, K. Vissers, “A methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems”,
Jurnal of VLSI Signal Processing, vol. 29, no. 3, Nov. 2001, pp. 197-207.

58. A. Colgan, P. Hardee “Advancing Transaction Level Modeling: Linking the
OSCI and OCP-IP Worlds at Transaction Level”, http://www.opensystems-
publishing.com/whitepapers.

59. W. Klingauf, M. Burton, R. Gьnzel, U. Golze, “Why We Need Standards for
Transaction-Level Modeling”, http://www.soccentral.com/.

60. G. De Micheli, Synthesis and Optimization of Digital Circuits, Mc Graw-Hill,
1994.

61. P. Vanbekbergen, G. Goossens, “Specification and Analysis of Timing
Constraints in Signal Transition Graph”, Proc. of the 3rd European
Conference on Design Automation (DAC’92), 1992, pp.32-36.

62. T. M. Burks, K. A. Sakallah, “ Min-Max Linear Programming and the
Timing Analysis of Digital Circuits”, Proc. of the International Conference
on Computer-aided design, Santa Clara, California, United States, 1993,
pp.152-155.

63. A. Tsikhanovich, E. M. Aboulhamid, G. Bois, “A Methodology for Hw/Sw
Specification and Simulation at Multiple Levels of Abstraction”, Proc. of the
5th International Workshop on System-on Chip for Real-Time Applications
(IWSOC), Banff, Canada, 2005, pp. 24-29.

64. A. Tsikhanovich, F. Rousseau, E. M. Aboulhamid, G. Bois “Transaction
Level Modeling in Hardware/Software System Design using .Net
Framework”, Proc. of the Canadian Conference on Electrical and Computer
Engineering (CCECE), Ottawa, Canada, 2006, pp.140-143.

65. A. Tsikhanovich, G. Bois, chapter 8, “Timing specification in transaction
level models”, System Level Design with .Net Technology, E. M.
Aboulhamid, F. Rousseau (ed.), CRC Press, USA, 2010, pp. 203-239.

107

66. A. Tsikhanovich, E. M. Aboulhamid, G. Bois “Timing Specification in
Transaction Level Modeling of Hardware/Software Systems”, Proc. of the
50th Midwest Symposium on Circuits and Systems (MWSCAS), Montréal,
Canada, 2007, pp. 249-252.

67. A. Tsikhanovich, E. M. Aboulhamid, G. Bois “Communication Structure
Refinement using Temporal Constraints Analysis”, Proc. of the 14th IEEE
International Conference on Electronics, Circuits and Systems (ICECS),
Marrakech, Maroc, 2007, pp. 1284-1287.

68. A. Tsikhanovich, E. M. Aboulhamid, G. Bois “Temporal Constraints
Analysis for Timing Verification of Systems”, Proc. of the 20th IEEE
International Conference on Microelectronics (ICM), Sharjah, UAE, 2008.

69. M. Sipser, Introduction to the Theory of Computation, PWS Publishing
company, 1997.

70. E. Cerny, K. Khordoc, “Semantics and Verification of Action Diagrams with
Linear Timing Constraints”, Transactions on Design Automation of
Electronic Systems, vol. 3, no. 1, January 1998, pp.21-50.

71. Embedded Systems Roadmap 2002, Vision on technology for the future of
PROGRESS, ed. by L. D. J. Eggermont, 2002, Technology Foundation
(STW), The Netherlands.

72. International Technology Roadmap for Semiconductors, Design Report,
www.itrs.org, 2007.

73. R. Goering, “Ten 2008 trends in system and chip design”, 2008,
www.scdsource.com

74. W. Raslan, A. Sameh, “Accelerating High-Level SysML and SystemC SoC
Designs”, Design and Reuse Industry articles, www.design-
reuse.com/articles/17562/high-level-sysml-systemc-soc-designs/html.

75. M. Abdurohman, K. Kuspriyanto, S. Sutikno, A. Sasongko, “Transaction
Level Modeling for Early Verification on Embedded System Design”, Proc.
of 8th IEEE Int. Conf. on Computer and Information Science (ICIS),
Shanghai, Chine, 2009, pp. 277-282.

76. S. Mellor, M. Balcer, Executable UML: A Foundation for Model-Driven
Architecture, Addison-Wesley, 2003.

77. A. S. Basu, M. Lajolo, M. Prevostini, chapter “A Methodology for Bridging
the Gap between UML and Codesign”, UML for SoC Design,
Kluwer/Springer, 2005.

78. W. H. Tan, P.S. Thiagarajan, W. F. Wong, Y. Zhu, S. K. Pilakkat,
“Synthesizable SystemC Code from UML Models”, Proc. of the Int.
Workshop on UML for SoC Design (DAC), 2004, pp.23 - 27.

79. C. Erbas, A. D. Pimental, M. Thompson, S. Polstra, “A Framework for
System-Level Modeling and Simulation of Embedded Systems
Architectures”, EURASIP Journal on Embedded Systems, vol. 2007, June
2007, pp. 12-24.

80. W. O. Cesario, G. Nicolescu, L. Gauthier, D. Lyonnard, A. A. Jerraya,
“Colif: A Design Representation for Application-Specific Multiprocessor
SOCs”, IEEE Design and Test of Computers, vol.18, no. 5, September-
October 2001, pp. 8-20.

108

81. OSCI TLM-2.0 User manual, June 2008, http://www.systemc.org/ .
82. The SPIRIT Consortium, www.spiritconsortium.org.
83. R. A. Wyke, A. Watt, XML Schema Essentials, Wiley computer Publishing,

2002.
84. .NET Framework, http://www.microsoft.com/net.
85. SPACE project, http://www.spacecodesign.grm.polymtl.ca.
86. Popularity of .NET is Grinding JAVA’s Market Share, Finds Info-Tech

Research Group”, http://www.reuters.com, 2007.
87. MARTE project, http://www.omgmarte.org/
88. AADL project, http://www.aadl.info/
89. A. Koudri, D. Aulagnier, D. Vojtisek, P. Soulard, “Using MARTE in a Co-

Design Methodology”, in Modeling and Analysis of Real-Time and
Embedded Systems with the MARTE UML profile workshop co-located with
DATE’08, Munich, Germany, 2008, pp. 431-437.

