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ABSTRACT

This paper presents predictive models which combine residential location
with transportation. These models predict residential location and the
use and performance of the transportation system for exogenously given
total housing stock and employment locations. One can use them to deter-
mine the impact on the transportation system of changes in the supply of
housing or reciprocally to determine the impact on housing choices of new
investments in the transportation system. They are formulated as mathe-
matical programs generalizing the Herbert-Stevens model of residential
location to include previously proposed equilibrium models of trip assign-
ment, trip distribution and modal choice. The Kuhn-Tucker conditions
corresponding to each of these models are shown to express short run
equilibrium in the housing market and user-equilibrium on the transpor-

tation network. A solution method is proposed.



I Introduction

Many practical urban planning problems require the prediction of the im-
pact of transportation decisions (new investments, changes in transit
fares, etc.) on residential location, and also the prediction of the im-
pact of changes in some determinants of residential location such as new
housing construction, or changes in income distribution, on the use and
performance of the transportation system. These problems require the
development of combined residential Tocation-transportation models. It
is the purpose of that paper to present such models and explore their

solution methods.

There is by now a long tradition in residential location modelling (Cf.
[27] and [28] for an excellent review of the state of the art). At the
risk of simplifying, two kinds of modelling approaches have been proposed:
microeconomic approaches of which the different versions of the Herbert-
Stevens model are well-known examples [17, 18, 20, 21, 22, 31] - and
maximum entropy approaches [29, 32]. Syntheses of these two approaches

have actually beén proposed by Anas [2,3] and Senior and Wilson [30]. The
most important reason justifying the popularity of mathematical programming
formulations such as the Herbert-Stevens linear programming formulation, is
the interpretation of the dual variab]es; H&rsman and Snickars [21] for
instance indicate how one could use the scarcity'prices associated to the
constraints on the hoﬁsing stock to guide pub]ic investments in hew housing

construction.

Similarly, transportation modelling has made tremendous progress in the

recent past both from a theoretical point of view and a computational



point of view. Precise definitions of traffic equilibrium with con-
gestion have been given and used as a basis for efficient mathematical
programming methods [9,12]. It has been shown that trip distribution
and traffic assignment can be solved simultaneously [7,14] and that

modal choice can be introduced as well [13].

So far however residential location models assume that transport costs
are known and constant and disregard transportation congestion. Recipro-
cally transport models assume that residential location, like employment
location, is exogenously determined. Clearly, due to congestion on the
transport network, residential location and transportation behavior are
interdependent: residential choice depends partly on accessibility to
work which depends on congestion in the transportation system for peak
hour trips,and congestion itself depends on peak hour travel demand which'
depends itself on residential location. This interdependence has to be

taken into account if one is to obtain reliable predictions.

A first attempt at combining a land use model (including service employ-
ment and basic employment location in addition to residential location)
and a transportation model is due to S. Putman [26]. His approach is to
iterate a highly disaggregated Lowry type model [25] with an incremental
loading traffic assignment algorithm. There are several difficulties

with this approach:

1) The Lowry model is not a good residential location model because its
behavioral assumptions are too crude: essentially residential location
is assumed to depend on the disutility of work trips and not on housing
characteristics for instance. Clearly a model based direct1y on house-

hold preferences would give better predictioﬁs. In addition, as stated



above, it does not provide the information given by dual variables in
a mathematical programming approach.

2) Incremental loading traffic assignment is a heuristic approach to solve
the traffic equilibrium problem. At this point of time, there are
efficient and exact traffic assignment methods [9], which are proved
to converge towards a "meaningful” equilibrium (Wardrop's user equilib-
rium). On the other hand, incremental loading techniques converge to
different traffic assignments depending oﬁ increment size mostly [81].

3) Even if one accepted the Lowry model and if the incremental loading
technique was replaced by an "equilfbrium" traffic assignment tech-
nique, the iterative procedure still would not be guaranteed to con-
verge towards any meaningful equilibrium. It might converge towards

different solutions, depending on the starting solution.

The latter point was raised by Boyce who showed in [5] that a combined
Lowry-type residential location model and equilibrium traffic assignment
problem had the same mathematical structure as the combined trip distri-
bution - trip assignment problem for which S. Evans [7]1 and Florian, Nguyen
and Ferland [14] have proposed two different solution procedures which both

converge to the correct equilibrium.

This paper will integrate the Herbert-Stevens residential location model
and a traffic equilibrium model in a unifiéd mathematical programming
framework and will also consider the case of a bimodal equilibrium.

The criterion used to build each relevant mathematical program is thét

its Kuhn-Tucker conditions express simultaneously equilibrium on the



transportation network (Wardrop's user equilibrium principle) and equi-
librium in the housing market with travel costs equal to the "equilibrium"
travel costs. The equilibrium conditions on the housing market are the
"short-run" equilibrium conditions encompassing household taxes and sub-
sidies, by opposition to "long-run” equilibrium conditions where no taxes

or subsidies occur [20,31].

The rest of the paper is organized as follows: Section II restates one
of the possible versions of the Herbert-Stevens model and extends it by
relaxing the no-congestion assumption. Then a suboptimal version of the
Herbert-Stevens model with congestion is formulated using maximum'entropy
methodology. Section III presents a possible solution method to cali-
brate and solve the two models proposed in section II. Section

IV presents a new combined model which inc]ude; the choice between two
modes as well. Section V discusses the possip]e methods for estimating
the bid rentswhichare exogenously given in the model formulations of

sections II and IV. Section VI concludes the paper.

II Combined residential location and transportation models: extensions of
the Herbert-Stevens model

The Herbert Stevens model

Wwe will follow closely in this presentation the version of the Herbert-
Stevens model stated by Senior and Wilson [30]. We want to allocate
households to an exogenous1y given housing stock so as to maximize
aggregate consumer surplus. Employment is given exogenously. The eco-
nomic rationale for this model has been well reviewed in the urban eco-

nomics literature and will not be restated here [1, 22, 18, 20, 31, 281.
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We assume that we know the bid rents of households for different types

of housing in different zones. The Herbert-Stevens model assumes that
each household of a given type has the same level of utility, whatever
its housing choice, and that the household bid rent js a decreasing
function of the level of utility. We will make the additional assump-
tions here, that the bids are linearly decreasing with the cost of travel
between workplace and residence and that the actual rents paid are exoge-
nously given. The former assumption will be discussed in section V. The
latter assumption is appropriate when there is rent control. Finally

we will assume that there is one worker per household.

is the number of working heads of households 1iving in a type K
house in zone i earning income W in a job in zone j.

H  is the number of houses of type k in zone i.

Eg is the number of jobs yielding income W in zone j.
r§ is the actual rent paid for a type k house in zone i.
kw _ kw

where btg is the bid rent by a (j,W) household for a type k house in zone
i, and cij is the cost of travel between i and j. We will assume tempo-
rarily that cij is fixed (this assumption will be relaxed below) and that

6 is independent of w. We require T?? to be solution to the following

problem:



(P1): Max J 3 3§ T BKY (1)
ijkw W U

s.t ; E ng - Eg all j,w (2)

kw .
§ % Tij < H1 all i,k (3)

kw
Tij >0 (4)
~kw _ . kw k

where bij = bij - ry (5)

is the individual consumer surplus.

(P1) is a transportation problem of linear programming in which (1) is
the aggregate.consumér surplus, (2) states that every household must find
a dwelling and (3) states that the supply of the housing stock in a given
zone constrains the number of households thaf can be allocated there.

The dual problem is:

(P10): Min J T oK HE 47T W EY (6)
ikt ojwd

5. t. a§ + vg > BE? all i, §, k, W “ (7)

a% >0 (8)

i
W, .
vj either sign

as can be interpreted as a scarcity rent, v? as a tax or subsidy necessary
for every household to be located somewhere. For the long run equi]ibriﬁm
the expected levels of utility should be adjusted so that these taxes or

subsidies vanish [ 20, 311. The rule of compleméntary slackness entails:

k w o pkw kw _
a; + V3 > bij = Tij 0 (9)
kw o K w_ kw



. kw o K k_ pkw _ W
fe. Ty>0=ay+ry b33 - V3 (11)
k kw _ .k
a; > 0= Z )) Tij = H; (12)
JW
k kw o k _
Hy > § 2:‘ T'ij a; =0 (13)

(11) states that the household's ability to pay after tax and subsidy
corrections is equal to the total price of the housing bundle to which

it is allocated. (11) can be restated as

kw . k k kw w
A S N - 98C.. - V. '
iJ>0 a; + 1y =B oc v (1)

T ij ij

The Herbert-Stevens model with transportation congestion

We now relax the assumption that the travel costs c,, are fixed. We assume

that there is only one mode of transport, the private automobile, that

there is congestion on the road network and that there is a uniform car-

occupancy factor so that it is indifferent to measure flows in vehicles

or in persons.

A is the set of arcs a of the road network.

Sa(va) is the congestion function on link a which we assume to be a convex
and increasing function of the flow Va

h is the path flow on path m between zones i and j.

myij
We want to extend the Herbert-Stevens model so “as to satisfy (11') with
cij replaced by uij’ the user-equilibrium travel cost between iand j.

More precisely we want a solution to the extended problem to satisfy the

following relationships:

kw k w _ okw
Tij >0=a;* vy = Bij - Bu,. (14)

1]
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of + VY >ékw-e .»T"W 0 (15)
J Soi)
. -kw_ k 16
with By e rs (16)
hm,ij >0= g Sa(va) 6am,ij - uij (17)
hooij =0 Z s.(Va) 8o 45 = Yij (18)
1 if a belongs to path m between i and j
with &, ..=
am,1J 1o otherwise
HT i | (19)
jw
k kw k _
jw
The required model is the following. We want TkJ and h m, i3 to be
solution to:
kw *kw a
(P2): Maxzzz‘%T e” 5, (x)dx (21)
kw _ .
s.t. E % Tij % hm,ij all i,j (22)
kw W .
o, = E. 13, 23
; E T1J EJ all j,w (23)
73T <K all i,k (24)
3w ij i
v.=JTT76 < h .. all a
a i3 am,ij m,1J]
kw ,
Tij 20 (25)
hm,ij 20 (26)

(P2) is the maximization of a concave function under linear constraints.

The Kuhn-Tucker conditions are necessary and sUfficient for optimality.



k

Let oy be the dual variable associated with constraint
dual variable. a
dual variable associated wi
It can be shown that the Kuhn
(18), (15), (17), (18), (19) and (20).

generalization of the Herbert-Stevens model,

the transportation network.

A maximum-entropy formulation of the He

ssociated with constraint (23) and Uij =

(24), vg be the

(P2) is therefore the required

euij be the

th the conservation of flows constraint (22).

-Tucker conditions of (P2) are the conditions

when there is congestion on

rbert Stevens-model with transpor-

tation congestion

Model (P2) can be modified to t
degree of suboptimality in the housing market.
Wilson [30] proposed to use maximum entropy methodology to

"suboptimal” model.

hm,ij to be

Min } 2
id

s.t.

(P3)

solution to the following minimization problem.

willl
i

- v
y gkw kW _ o7 [ 35

A I I
all j,w
all i,k
all i,]
m,iJ

a

(x)dx}

generate a

ake into account the possibility of some

Anas [2,3] and Senior and

We will follow this idea here. We require T??land

(27)

(28)

(29)

(30)

(31)

(32)



- 10 -

The parameter p is to be calibrated from observed data. We require that

™ on T = 0 at TV

id iJ iJ

(P3) is the minimization of a convex function subject to linear constraints.

= 0.

The Kuhn-Tucker conditions are necessary and sufficient for optimality.

They are:
kv _ w_k okw_ ~
T'IJ = exp ("]'Vj'ai) exp [LI(BL] GU,'J)] (33)
Mn,ig =~ 07 g SalVa) Sam,i5 = Yij (34)
hm,ij =0~ g Sa(va) 6am,ij 2 uij (35)
a; >0=7 7% T?? = H? (36)
jw F
kw k k _ . '
) Ty <Hj=a;=0 (37)
jw
where Uij = “euij’ a? and vg are the dual variables associated to (30),

(29) and (28).

~ II1 Solution method

We will focus on the solution method for the maximum-entropy version of
the Herbert-Stevens model with transportation congestion (Problem P3).

The same method could be applied to the solution of (P2).

1) Calibration

Let us assume that we know the congestion function on each Tink of the

road netwofk and that a survey allowed us to determine the allocations T%W

1
and therefore the vacancies in the housing stock for each zone and each

housing type as well as the demand for travel } § T?g for each 0D pair. We
4 kw

observe an occupation of housing equal to H?. We can determine the
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equilibrium travel times and therefore the travel costs Eij between all
origin-destination pairs by using a traffic equilibrium technique with
fixed demands such as the one developed by S. Nguyen [9,12] . For calibra-
tion purposes, we assume the travel costs fixed and equal to their
equilibrium values and also thét the inequality constraints (29) are

replaced by the equality constraints
kW_“k '
ZZT-;J"'H-; (29')
jw

That model is then equivalent to the Senior-Wilson maximum entropy version

of the Herbert-Stevens model [30]. u can be calibrated by the method

these authors proposed: Determine u.so that the total observed surplus

7= f%W [ng - r% 6c..] equals the total surplus computed by
wisk 1301 i iJ
the model: Z = ) TkW [ng - rk - oc, .
wijk ij " g i ij
2) Prediction
We now replace u by its Caiibrated value. We solve directly problem

(P3) with inequality constraints. (P3) consists in minimizing a convex
function subject to linear constraints. This problem can be solved by a

technique such as the Frank and Wolfe method]

[15]1. This method has proved
successful in solving analogous problems in the past [11, 12, 13, 14},

A typical iteration of this algorithm requires the solution of a linear
program that determines the descent direction,and the solution of a one-
dimensional minimization problem that determines the step size that

achieves the best improvement in the objective function, given the descent

direction. Consider an intermediate stage of the application of the

! Cf. the Appendix for a formulation of that method.
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W

algorithm when a feasible solution is known: T?j and path flows Eﬁ i3

The descent direction is obtained by solving the problem:

. =kw kw -
WKW, L ..
Min g § E % Chy Y1J % § % Cm.ij Im,id (38)
s.t.- J 7YY= gY all j,w (39)
ik W3
7Y vkY s all 1,k (40)
j W 1) 1
kw .
7 .. = KW '
r)r:\ m>1J kzw Y all 1,3 (41)
kw
Zm,ij > 0, Yij 20 (42)
where ?'1“3’ =1+ T ‘k o ék” (43)

ﬁ%-vEﬁ i3 is the length of path m for 0D pair (i,j) on the network when

the flows are ﬁ' 5 The linear program (38)-(42) simplifies by noting

1 1 *
that ue Cm, i3 may be replaced by — 00 c3 the length of the shortest path

between every pair (i,j) on the network. In an optimal solution, if
~ *
Cm,ij > c3 350 then the corresponding Zm ij = 0, since otherwise the
3 *
solution could be improved by diminishing a Zm,ij for which Cm,ij > c1.j
and augmenting Z?j (the flow on the shortest path). Thus the direction
is obtained by the minimization of the objective function
=kw kw ’
HXXC + 11 er Q7 5) (44)
ik ij 1J i3 U m,1J .

which simplifies to

win TIIITY AT e v (45)
k w id Ik w

. ' =kw kw ; :
or Min % § E é (cij + c$j) Yij ‘ (46)
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The Linear Program (38)-(42) becomes:

. —W  kw 47)
Min J 3 ¥ cis Yis (47),
ijkw 9 Y
kw _ W all j, w (48)
s.t. g § Yij Ej |
kw _ kK all i, k (49)
D1 Yy H
jw
Y‘:”J“ >0 (50)
Where Ekw = ckw + c* (51)

ij = %37 4G
This is a transportation probTem. This problem can be solved by an efficient

code such as the code developed by Harris [19]. The solution elements

are the components of the descent direction vector. We obtain Zm ij by

assigning } } —kg for each (i,j) on the shortest route that was found
k w

while computing the c 15 Let {Y1.j n 1J} be the solution to the linear

program defining the descent direction. The descent direction for the

current iteration is:

Y - T all 1,3,k,w (52)
(Zm,ij - hm,ij) for all m, i and j (53)
— ' ' *
Note that Zm i = 0 for all m except for the shortest path m where
T3~ LI VS | (54)

k w
The optimal step length A* to find the next feasible solution is given by

the solution of the one dimensional minimization problem:

Mmzzzzx /znx1J "H Ekw KKy wolf (o

4 (55)

a
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where

kw _ —kw KW —kw
X{j = 1J (Y ) (56)
¢a='€ia +A(Wafva) (57)
Wo=3ITe . T s | (58)

a o § am,ij “m,ij

)

Flo,) = joasa(x)dx (59)

Note that the path flows hm,ij are redundant in the computation of the
descent direction and of the step length A*. The explicit information
of uti1ized paths between the 0D pairs is not necessary. This property
has been .noted . and used in sevefa1 other cases [9, 13, 14]1. The

complete solution method to (P3) can be summarized as follows.

Step 1: Obtain an initial feasible solution {T i v } to problem (P3).

:

Step 2: For each arc a, compute the current cost c =s, (v ).

Step 3: For each 0-D pair (i,j) determine the shortest path ..,

:

ij
1 x

let ) ¥; be the travel cost on 43
Step 4: Compute: Eﬁg = C?j +1+&nT —kw ju ékw
Step 5: Solve the transportation problem (47) to (50) to obtain 7?? .
Step 6: Initialize =0 for all arcs a. For all (i,j)

set w, =W, + Z ¥ Yk for aet,

a k w 13

Step 7: Stopping criterion:

Compute

—kw gkw _ =kw i s
s 3 Yo- -Tl‘ -
= | g § ) % Cij ( ij 13) * g ¢y (W =V, )
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If A < € (a predetermined tolerance) stop; otherwise continue
to the following step.

Step 8: Solve the one-dimensional problem (55) to determine the optimal

step length A*. Revise the allocations and flows as follows:

=KW _ =KW | . (KW _ KW .
- _ - (- =
Va=vy A (wa va) all a

Return to step 2.

This solution procedure is very similar to the procedure proposed
for the combined trip distribution-trip assignment by Ferland,
Florian and Nguyen [14].

IV A combined equilibrium model for residential location, modal split,
trip distribution and traffic assignment

Florian and Nguyen developed a combined trip distribution, modal split and
trip assignment model [13]. It is possible to extendvit to include the
choice of residential location as well. The model thus obtained can also
be considered as an extension of the Senior-Wilson suboptimal version of

the Herbert-Stevens model [30] or of model (P3) above.

There are two modes: the private automobile and the bus mode. As above
the road network contains a set A of arcs a, each arc having its own
congestion function Sa(va)' There is also a transit network] consisting
of a set S of access arcs, transfer arcs and fransit 1ine‘segments. A
transit 1ine is composed of a number of segments. We associate a time cS

with each arc and line segment, seS, of the transit network as follows:

! Here we follow closely Florian and Nguyen's notation and definitions [13].



- 16 -

- a walking and waiting time with an access arc

- a walking and a waiting time with a transfer arc

- an in-vehicle time with a line segment.

The Tink times c. are not functions of the transit link volumes V-
Therefore there is no congestion effect assumed on the transit network.
Travellers on the transit network choose the shortest path between an
origin and a destination. Let “:g be the constant travel time from i to
j on the transit network. The notation is the same as in previous sec-
tions with some modifications. Now éf? is a function of mode through the
money cost of travel which differs with mode choice. This comes from the
fact that B?g is obtained from the definitioﬁ of the utility function and
the budget constraint of the household and takes into account the money
cost of travel (Cf. Section V below). We have then, B?g,au and é?g’tr

respectively for car and.tvansit. Recall é?? is the consumer surplus

that would be obtained by each worker if travel time was zero.

T?g,au is the number of heads of households that earn w, work in j,

Tive in a type k house and use the car to travel to work.
T:?’tr is the analogous quantity for heads of households that use transit.
h;uij corresponds to the flow of private automobiles using path m

between i and j, converted into person trips by the uniform car-
occupancy factor.

The total flow of vehicles on link a (converted into persons) is:

_ au tr
Va = g § % aam,ij hm,ij Y,

and vzr is the vehicle equivalent of the number of buses that use 1ink a

(again converted into person-trips by using the uniform car-occupancy

Vtr

factor). a

may be COmputed by determining the number of private vehicles
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equivalent to a bus and by considering all the buses that use the link
per time period. The assumptions made on the two modes imply that
private automobiles do not have any influence on the speed or frequency
of buses while buses do interfere with the traffic of automobiles and
increase congestion. This assumes traffic management decisions giving
priority to buses over cars on the road, for instance special bus lanes
on which buses have absolute priority but open to cars in the absence of

buses. (Such a system actually functions in Paris for instance)

kw,au _kw,tr au
ij s Tij and hm i
minimization problem:

We require T to be solution to the following

(ay: Min LT LR a0 TS TR TR TR a0 T
k w

: =k
-u {% ; § E B w,au kW au + 2 Z z Z kw tr TkW tr

1J 1J Wi . K 1J 1]
o J fas (x)dx+zzzzr"‘” tr t"]} (60)
aeA J kw 1
s.t. Z 2 (Tk"‘ au ':‘J”’t") < K all i,k (61)
) Z (T':;’ au Tk’” try o 5‘3.‘ all j,w (62)
i |
kw,au _ au . -
D =) h all i,j 63
£ L L P, 13 | (63)

Tkw,au (64)
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(65)
Tkw,tr s 0
1]
hau.. 20 (66)
m,1J
kw,au _
Ne]tTkwaulnTkwau 0 at Ty =0
kw,tr _
and Tk‘g A pn Tk‘” Ao at Tyy =0
kw au kw tr
(60)is then convex in the variables T, s T43 and h
The Kuhn-Tucker conditions of (P4) are necessary and suff1c1ent for
optimality and are:
Tkg U = exp (- 1-v -0 K) exp [u(Bkw au—Buau)] (67) |
Tkg tr - exp (- 1-v -0 ) exp [u(Bkw tr eu§3)1 (68)
au - au 69
hodg 0= g s, (v,) 8an 43 = Ui | (69)
My T 70
M3 0= g s,(va) Sam,ig = Y3 (70)
& >0= H X ) (Tkw sau 4 7KW, try (71)
i 13
iw .
k kw au , 7k
He > z Z u , ckw,tr k _
1 )=a; =0
Jw 1J 1 (72)
The modal
sha
re for a quadruplet (ko) e o
Tkw,a'u sK,W) s given by:
eXPfu(B au_euau)l N .
eXP [u(B Wotr o tr)] (73)
= = efo‘u(c!a“ oy 2y
;)
EXp[-u(c:au )] ij
(74) re 1J + exp[ -u( .tr
r C 74
ePresents a logit moge )] (74)

1 with
and "c!?r + a,tr generalizeqd
1J GUiJN. (c{?u and cftr costs * C,au +

au
are +ha mawm.. ) ]J eu','j ]
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transit). That expression is independent of w and k, and therefore (74)

represents the modal share for all work-trips between i and j.

(P4) can be calibrated and solved by the same method as (P3). The only
difference is that the linear program that one would have to solve to find
a descent direction in the Frank and Wolfe method would be a bimodal
version of the Hitchcock problem. However, as shown by Florian and Nguyen
[13] this problem can be reduced to an equivalent single mode Hitchcock

problem.

If the two alternative modes of travel were rail transit and the private
car, one would have to extend to residential location the modei developed
by Los [24] for modal choice, mode of access to rail, trip distribution

and traffic assignment. One would obtain a model analogous to (P4) above.
However the linear program one would have to solve to find a descent direc-
tion in’ the Frank and Wolfe algorithm would no longer be reducible to a
Hitchcock problem and the method might not be applicable then with a real-
istic disaggregation of households by income and houses by type, because of

size Timitations of the linear programs that can be solved by general codes.

V Estimation of bid rents

Assume that a household of type w has the fo11owing utility function:

W kw , w .k '
= .o + .« - P
u M1J C .h1 9C1J . : (75)

where M?? is the expenditure on non-locational gdods if the household head

works in j, Tives in i in a house of type k and has income W.
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h? is a vector of housing characteristics for a type k house in zone i.

€43 is the value of the time spent going to work from i to j (It depends
on the mode and possibly on congestion).

Cw and 6 are coefficients of the utility function to be estimated. Notice
that 6 is assumed independent of w. If this were not the case we would
have to compute an average of the ew's, weighted by the relative impor-
tance of each group, in order to use the mode]s‘proposed in the previous
sectiohs of this paper, Let us assume that uw, the level of utility for
group w,is}known. For instance let it be the current observed value of

the utility of each individual household head in group w. For a (j,w)

type household choosing the (i,k) housing bundle we have the budget constraint:

W= b'%’+ M§g+c1!j (76)
where c%j is the money cost of travel between i and j (we could distin-
guish between c%?u and c%?r if there were 2 modes, car and transit) and
where btg, the residual budget, is the bid rent of household (j,w). From

(75) and (76) we obtain the bid rent as a function of the level of

utility and of travel cost.

kw _ oy W oW ko
kw _ kw ;W

where Bkw (uw) =w-u"+ cw hk -c! (79)
iJ 9 ij

The bid rents as given by (78) are used as exogenous data for the models

of the preceding sections.

Therefore, in order to apply any of the models (P1) to (P4) we have to
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k

estimate the bid rents bi?. Two methods have been proposed previously:

1) Estimation of the multiple regression [3, 20, 31]

Mkw

_ W w k

J

with 4 being the constant intercept of the linear regression model,
would give the bid rents for various housing types and locations given
the utility 1eve1l1w. As pointed out by Senior and Wilson [30] this
method assumes that "market expenditures" on housing or on nonlocational
goods, on which the multiple regression model is fitted, are the same as
the "preferred expenditures". This is only the case in the long run
equilibrium if no taxes and subsidies are necessary for all households
to be located i.e. if their utility level has been properly adjusted.
Compounding that problem [16,21] is the fact that in many countries such
as the U.K., Sweden, or Canada, there is rent control, so that rents are
predetermined administratively and do not adjust themselves as market
rents would in a competitive situation. In fact all tenants tend to
enjoy cbnsumer surpluses in such controlled situations. Hence the

second approach to bid rent estimation.

2) Direct determination of the utility functions by household surveys

This is the method proposed by Hfrsman and Snickars [21] and
actually applied to Stockholm. Many methods are available today to
estimate utility functions by interviews (Cf. [23] for a thorough

presentation of the methodology available,)

If the postulated functional form of the utiTity function is not 1iﬁéar

or if the interviews lead to a nonlinear utiiity function, the utility
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function has to be linearized to produce a bid rent that is a linear
function of travel time. One way to do this is to choose a representative
household in each income group and apply a Taylor series expansion of

the first order on the utility function of the representative household

around its current housing situation.
VI Conclusion

This paper has shown that it was possible to combine in an integrated
model a residential location model of the Herbert-Stevens type (or one
of its maximum entropy suboptimal versions) with a transportation model
assuming congestion on the road network. The resulting mathematical
program (P2) satisfies Kuhn-Tucker conditions which express the required
equilibrium conditions on the housing market and the Wardfop's user-
equilibrium conditions on the road network. This mathematical program
can be solved by an algorithm (Frank and Wolfe) which converges to the
equilibrium solution. It is possible to derive a suboptimal version of

the basic model and to extend it to modal choice.

In addition the descent directions of the algorithms to solve (P2) or

(P3) are obtained by solving transportation problems of the same size as
the Herbert-Stevens transportation problem itself (however the size doubles
in the bimodal case). Therefore the level of household or housing type
disaggregation can be the same for (P2) or (P3) as for (P1), the Herbert-
Stevens model itself, and slightly less for (P4), the bimodal version.
(dn.bhe Tatter case, we would have to cut the number of income groups by

half, for instance). 'A possible level of disaggregation is that used by
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Senior and Wilson in their work [30], i.e. 5 social class types, 28 work-
place zones, 6 housing types and 28 possible residence zones. This is
well within the capability of the current best codes for the transpor-
tation problem [19]1. The other computational limit, that on the size of
the networks that can be inputs to the current best shortest path codes,

is not very constrainingl2] .
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APPENDIX

The Frank and Wolfe algorithm [15]

Consider the problem of minimizing a convex function subject to linear

constraints:

Min Z (x) , subject to A X < b ,» X 20.

The detailed steps of the Frank Wolfe algorithm for solving this

problem are:

Step 1

Step 2

Step 3

Step 4

Step 5

1

Given a feasible solution X' , set £ =1

Determine Y£ that minimizes

vz (% Y, subject toAYsb,Ys2o0.

Set the descent direction d¢ = Y% - x&.
If |vz (Xl) d2 | < e, terminate, where ¢ is a suitable

convergence parameter. (Xz is the optimal solution).

Find the optimal step length Az that minimizes
z (Xl + A dz) for 0<Ac<1.

Revise the current solution

2+ L, .2 2.

X =X+ A )

set £=2+ 1 and return to Step 2.






