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Résumé 

Les micelles polyioniques ont émergé comme des systèmes prometteurs de 

relargage de médicaments hydrophiles ioniques. Le but de cette étude était le 

développement des micelles polyioniques à base de dextrane pour la relargage de 

médicaments hydrophiles cationiques utilisant une nouvelle famille de copolymères bloc 

carboxymethyldextran-poly(éthylène glycol) (CMD-PEG). Quatre copolymères CMD-PEG 

ont été préparés dont deux copolymères identiques en termes de longueurs des blocs de 

CMD et de PEG mais différent en termes de densité de charges du bloc CMD; et deux 

autres copolymères dans lesquels les blocs chargés sont les mêmes mais dont les blocs de 

PEG sont différents. Les propriétés d’encapsulation des micelles CMD-PEG ont été 

évaluées avec différentes molécules cationiques: le diminazène (DIM), un médicament 

cationique modèle, le chlorhydrate de minocycline (MH), un analogue semi-synthétique de 

la tétracycline avec des propriétés neuro-protectives prometteuses et différents antibiotiques 

aminoglycosidiques. La cytotoxicité des copolymères CMD-PEG a été évaluée sur 

différentes lignées cellulaires en utilisant le test MTT et le test du Bleu Alamar. La 

formation de micelles des copolymères de CMD-PEG a été caractérisée par différentes 

techniques telles que la spectroscopie RMN 1H, la diffusion de la lumière dynamique 

(DLS) et la titration calorimétrique isotherme (ITC). Le taux de relargage des médicaments 

et l’activité pharmacologique des micelles contenant des médicaments ont aussi été évalués. 

Les copolymères CMD-PEG n'ont induit aucune cytotoxicité dans les hépatocytes humains 

et dans les cellules microgliales murines (N9) après 24 h incubation pour des 

concentrations allant jusqu’à 15 mg/mL. Les interactions électrostatiques entre les 

copolymères de CMD-PEG et les différentes drogues cationiques ont amorcé la formation 

de micelles polyioniques avec un cœur composé du complexe CMD-médicaments 

cationiques et une couronne composée de PEG. Les propriétés des micelles DIM/CMD-

PEG ont été fortement dépendantes du degré de carboxyméthylation du bloc CMD. Les 

micelles de CMD-PEG de degré de carboxyméthylation du bloc CMD  ≥ 60 %, ont 

incorporé jusqu'à 64 % en poids de DIM et ont résisté à la désintégration induite par les sels 

et ceci jusqu'à 400 mM NaCl. Par contre, les micelles de CMD-PEG de degré de 
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carboxyméthylation ~ 30% avaient une plus faible teneur en médicament (~ 40 % en 

poids de DIM) et se désagrégeaient à des concentrations en sel inférieures (∼ 100 mM 

NaCl). Le copolymère de CMD-PEG qui a montré les propriétés micellaires les plus 

satisfaisantes a été sélectionné comme système de livraison potentiel de chlorhydrate de 

minocycline (MH) et d’antibiotiques aminoglycosidiques. Les micelles CMD-PEG 

encapsulantes de MH ou d’aminoglycosides ont une petite taille (< 200 nm de diamètre), 

une forte capacité de chargement (≥ 50% en poids de médicaments) et une plus longue 

période de relargage de médicament. Ces micelles furent stables en solution aqueuse 

pendant un mois; après lyophilisation et en présence d'albumine sérique bovine. De plus, 

les micelles ont protégé MH contre sa dégradation en solutions aqueuses. Les micelles 

encapsulant les drogues ont maintenu les activités pharmacologiques de ces dernières. En 

outre, les micelles MH réduisent l’inflammation induite par les lipopolysaccharides dans les 

cellules microgliales murines (N9). Les micelles aminoglycosides ont été quant à elles 

capable de tuer une culture bactérienne test. Toutefois les micelles aminoglycosides/CMD-

PEG furent instables dans les conditions physiologiques. Les propriétés des micelles ont été 

considérablement améliorées par des modifications hydrophobiques de CMD-PEG. Ainsi, 

les micelles aminoglycosides/dodecyl-CMD-PEG ont montré une taille plus petite et une 

meilleure stabilité aux conditions physiologiques. Les résultats obtenus dans le cadre de 

cette étude montrent que CMD-PEG copolymères sont des systèmes prometteurs de 

relargage de médicaments cationiques. 

 

Mots-clés : Dextrane, Micelles polyioniques, Diminazène, Médicaments hydrophiles, 

Minocycline, Neuro-inflammation, Aminoglycosides, Stabilité des micelles.  



 

 

III

Abstract 

Polyion complex (PIC) micelles have emerged as promising delivery systems of 

ionic hydrophilic drugs. It was the aim of this study to develop dextran-based PIC micelles 

for the delivery of hydrophilic cationic drugs using a new family of carboxymethyldextran-

block-poly(ethylene glycol) (CMD-PEG) copolymers. Four CMD-PEG copolymers were 

prepared: (i) two copolymers identical in terms of the length of CMD and PEG blocks, but 

different in terms of the charge density of the CMD block; and (ii) two copolymers in 

which the charged block is the same, but the PEG block is of different molecular weight. 

The micellization of CMD-PEG copolymers and drug delivery aspects of the resulting 

micelles were evaluated using different cationic drugs: diminazene (DIM), a model cationic 

drug, minocycline hydrochloride (MH), a semisynthetic tetracycline antibiotic with 

promising neuroprotective properties and different aminoglycoside antibiotics. The 

cytotoxicity of CMD-PEG copolymers was evaluated in different cell lines using MTT and 

Alamar blue assays. CMD-PEG micelles encapsulating different drugs were characterized 

using different techniques, such as 1H NMR spectroscopy, dynamic light scattering (DLS), 

and isothermal titration calorimetry (ITC). The pattern of drug release and pharmacological 

activity of micelles-encapsulated drugs were also evaluated. The CMD-PEG copolymers 

did not induce cytotoxicity in human hepatocytes and murine microglia (N9) in 

concentrations as high as 15 mg/mL after incubation for 24 h. Electrostatic interactions 

between CMD-PEG copolymers and different cationic drugs triggered the formation of PIC 

micelles with a CMD/drug core and a PEG corona. The properties of DIM/CMD-PEG 

micelles were strongly dependent on the degree of carboxymethylation of the CMD block. 

Micelles of CMD-PEG copolymers having degree of carboxymethylation ≥ 60%, 

incorporated up to 64 wt% DIM, resisted salt-induced disintegration in solutions up to 400 

mM NaCl and sustained DIM release under physiological conditions (pH 7.4, 150 mM 

NaCl). In contrast, micelles of CMD-PEG of degree of carboxymethylation ~ 30% had 

lower drug content (~ 40 wt% DIM) and disintegrated at lower salt concentration (∼ 100 

mM NaCl). The CMD-PEG copolymer that showed the most satisfactory micellar 

properties, in terms of high drug loading capacity, sustained drug release and micelles 
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stability was selected as a potential delivery system of minocycline hydrochloride (MH) 

and different aminoglycosides. CMD-PEG micelles encapsulating either MH or 

aminoglycosides had small size (< 200 nm in diameter), high drug loading capacity (≥ 50 

wt% drug) and sustained drug release. These micelles were stable in aqueous solution for 

up to one month, after freeze drying and in the presence of bovine serum albumin. 

Furthermore, the micelles protected MH against degradation in aqueous solutions. 

Micelles-encapsulated drugs maintained their pharmacological activity where MH micelles 

reduced lipopolysaccharides-induced inflammation in murine microglia (N9) cells. And 

aminoglycosides micelles were able to kill a test micro-organism (E. coli X-1 blue strain) in 

culture. Aminoglycosides/CMD-PEG micelles were unstable under physiological 

conditions. Micelle properties were greatly enhanced by hydrophobic modification of 

CMD-PEG. Thus, aminoglycosides/dodecyl-CMD-PEG micelles showed smaller size and 

better stability under physiological conditions. The results obtained in this study show that 

CMD-PEG copolymers are promising delivery systems for cationic hydrophilic drugs.       

 

Keywords : Dextran, Polyion complex micelles, Diminazene, Hydrophilic drugs, 

Minocycline, Neuroinflammation, Aminoglycosides, Micelles stability.  
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1.1. The need for new drug delivery systems 

Potency and therapeutic effects of many drugs are limited or otherwise reduced 

because of their unfavorable physiochemical and/or pharmacokinetics properties. For 

example, instability, limited solubility, accumulation in non-target sites leading to side 

effects and low bioavailability are just a few of the properties that limit therapeutic benefit 

of many drugs.[1] Discovery of new drugs may improve these unfavorable properties. 

However, discovery and development of new drugs are very long processes with enormous 

expenditure. In the United States, the average time to discover, develop and approve a new 

drug is approximately 14.2 years [2, 3] with an average development cost of $ 802 million.[4] 

A large fraction of the rising health care expenses is accounted for by expenses on 

pharmaceuticals, which have grown rapidly over the last two decades.[4] Properly designed 

drug delivery systems can minimize the cost of developing new drugs by optimizing the 

properties of existing drugs. The search for new drug delivery technologies is also fueled 

by pharmaceutical companies aiming at registering off-patent or about to be off-patent 

products. The nano-based drug delivery market is expected to increase from its current 

value at $3.4 billion (about 10% of the total drug delivery market) to about $26 billion by 

2012.[5] The following sections describe the current challenges that face the pharmaceutical 

formulator and can be overcome through the development of new drug delivery systems. 

1.1.1. The solubility challenge 

Poor water solubility of drugs presents a challenge for the development of 

successful drug formulations for either oral or parenteral administration. For orally 

administered drugs, drug aqueous solubility is a key factor that determines its dissolution 

rate in the gastrointestinal (GI) fluids and hence, its oral bioavailability. Only soluble drug 

molecules can be absorbed by the cellular membranes and reach their target after oral 

administration.[6] Moreover, oral administration of poorly water soluble drugs quite often 

leads to low and highly variable bioavailability.  
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Poor aqueous solubility could also result in serious side effects for drugs 

administered by intravenous (IV) injection. Water insoluble drugs form aggregates after IV 

injection leading to blockage of blood vessels and embolism.[7] Drug aggregates could also 

lead to local toxicity at the site of accumulation and/or reduced systemic availability. Other 

problems associated with the administration of poorly water soluble drugs are summarized 

in Figure 1.1.[8]  

  

 

 

 

 

 

 

 

 

Figure 1.1. Different problems associated with the administration of poorly water soluble 

drugs.[8]  

 

A Biopharmaceutics Classification System (BCS) class I drug (high solubility-high 

permeability) is ideal in terms of solubility and bioavailability.[9] Advances in the fields of 

combinatorial chemistry and/or biologically based high-throughput screening have resulted 

in the availability of large number of new drugs. Most of these newly developed drugs 

belong to BCS Class II (low solubility-high permeability) or Class IV (low solubility-low 

permeability).[10] It is estimated that about 40% of newly developed drug candidates lack 

adequate water solubility.[11-13] These insoluble drug candidates are usually rejected by the 

pharmaceutical industry and never enter a formulation development stage.[13] Examples of 
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water insoluble drugs include anticancer drugs since many of them are bulky polycyclic 

compounds like  paclitaxel, tamoxifen, camptothecin, phenytoin, cyclosporine-A, digoxin, 

nitroglycerin and sulphathiazole.[14] The modified Noyes-Whitney equation (equation 1) 

identifies possible parameters that can be modified to enhance the dissolution rate of water 

insoluble drugs.[15, 16] 

 

          

Where dC/dt is the rate of dissolution, A is the surface area available for dissolution, D is 

the diffusion coefficient of the compound, Cs is the solubility of the drug in the dissolution 

medium, C is the concentration of drug in the medium at time t and h is the thickness of the 

diffusion boundary layer adjacent to the surface of the dissolving particle. The dissolution 

rate can be increased by increasing the surface area available for dissolution (e.g. by 

decreasing the particle size of the drug and/or by optimizing the wetting characteristics of 

the substance surface), by decreasing the boundary layer thickness, by maintaining sink 

conditions for dissolution and, by improving the apparent solubility of the drug under 

physiologically relevant conditions. One strategy to increase drug solubility is to create 

various drug salts, which not only improve drug aqueous solubility but also retain its 

biological activity. Other approaches to improve drug aqueous solubility include the use of 

clinically acceptable organic solvents, mixtures of cosolvents, surfactants or pharmaceutical 

excipients, such as cyclodextrins.[16] However, these approaches often end-up in serious 

side effects.[12, 17] For instance, the water-insoluble anticancer drug paclitaxel (Taxol®) is 

formulated in a 1:1 mixture of Cremophor®-EL and ethanol. Cremophor® EL causes many 

side effects, such as hypersensitivity, nephrotoxicity, neurotoxicity, vasodilatation, difficult 

breathing, lethargy and hypotension.[17, 18]  

1.1.2. Poor oral absorption 

Oral dosage forms are, so far, the most preferred drug formulations by the patient, 

clinician and pharmaceutical manufacturer. In the United States over 80% of drugs 

administered to produce systemic effects are marketed as oral dosage forms (e.g. tablets, 

dt 

dC AD (Cs-C) 

h 
= (1) 
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capsules). From the patient point of view, oral administration is “natural”, easy, safe and 

less painful than injection. For the clinician, oral administration improves the therapeutic 

outcome since the patient has more chances to adhere to the prescribed therapeutic regime. 

Oral drug products are more profitable for the pharmaceutical manufacturer since they 

require less strict conditions during their manufacturing compared to parentral products 

(e.g. sterility etc).  

Successful oral drug therapy is faced by several obstacles. The very first 

prerequisite for successful oral therapy is the adequate drug absorption from its site of 

administration. Factors affecting oral drug absorption can be broadly divided into three 

main categories: (i) physicochemical variables, (ii) physiological variables and (iii) dosage 

form variables.[19] Rate and extent of drug absorption are governed by a complex interplay 

of all these factors. Physicochemical properties that influence oral drug absorption include 

its oil/water partition coefficient (Ko/w), its degree of ionization in biological fluids as 

determined by its pKa and pH of the surroundings and its molecular weight. The drug Ko/w 

is one of the most important physicochemical properties that govern its oral absorption. 

This is not surprising since the cell membrane is lipidic in nature while the surrounding 

fluid into which the drug should dissolve is water. Therefore, for a drug to be adequately 

absorbed it should have enough hydrophilicity to dissolve in the GI fluids and enough 

lipophilicity to cross the cell membrane.  

According to the fluid mosaic model (Figure 1.2), the cell membrane is composed 

of a lipid bilayer in which the lipid portions (long tails) are arranged inside the bilayer 

while the polar portions (round head) point outward. The membrane is crossed by 

transmembrane (or integral) proteins whereas peripheral proteins are attached to the inner 

surface of the membrane. The outer surface has carbohydrates attached to lipids and 

proteins.[19, 20] The cell membrane has small water-filled channels or pores that allow 

absorption of water, ions or small water soluble molecules. The effective radius of these 

pores was estimated to be 7-8.5 Å and 3-3.8 Å in human jejunum and ileum, 

respectively.[21]  
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Figure 1.2. Schematic representation of the fluidic mosaic model of the cell membrane. 

http://lamp.tu-graz.ac.at/~hadley/nanoscience/week4/membrane.jpg 

Passive drug absorption through the cellular membranes can take place by either 

transcellular or paracellular pathways. Transcellular absorption involves passage of the 

drug through the lipophilic cell membrane, therefore it requires adequate lipophilicity of the 

drug (1 < Ko/w < 105). In contrast, paracellular absorption takes place by diffusion through 

space between adjacent cells. The presence of tight junctions between the cells limits the 

absorption through this pathway to water soluble small molecules (Ko/w < 1 and molecular 

weight < 500 g/mol).[22, 23] In order to correlate the physicochemical properties of drugs to 

their absorption, Lipinski et al. developed the so-called “rule of 5”.[24] The rule states that a 

new drug candidate is likely to have poor absorption or membrane permeability if: 

1. It has more than 5 hydrogen bond donors. 

2. It has more than 10 hydrogen bond acceptors. 

3. Its molecular weight is greater than 500 g/mol. 

4. Its Log Ko/w is greater than 5. 
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5. The above rules only apply to compounds that undergo passive membrane 

transport. 

The incredible advances in the areas of biotechnology, molecular biology and 

biochemistry have led to the advent of new classes of therapeutic agents. Peptides, proteins, 

oligonucleotides, DNA and small interfering RNA (siRNA) are examples of these new 

therapeutics that present major challenges to drug delivery scientists. For instance, high 

water solubility and high molecular weight of peptide and protein drugs significantly 

reduce their permeability through the cell membranes.[25, 26] Also DNA and siRNA have 

poor penetration through the cellular membranes due to their high molecular weight and 

strong anionic charges.[27-29] The unique physicochemical properties of these therapeutics 

have motivated drug delivery scientists to develop new delivery systems or explore new 

routes of drug administration. Thus, nasal, pulmonary and transdermal administration are 

some of the less conventional routes of drug administration that are currently being 

explored for the delivery of such new therapeutics.[30-33] 

1.1.3. The stability challenge 

Instability in solution, in vitro or in vivo is one of the hurdles that reduce the 

usefulness of many therapeutic agents. For instance, instability in solution prevents the 

development of liquid dosage forms for antibiotics, such as tetracyclines. Instead, these 

drugs are formulated in solid dosage forms or powders ready for reconstitution at the time 

of use. Indeed, liquid dosage forms are more desirable in many occasions, such as 

ophthalmic use, pediatric patients, geriatric patients and patients with difficulty in 

swallowing.[34, 35] Moreover, liquid dosage forms are the first choice when rapid onset of 

action is required like in analgesia and migraine.[36] Chemical degradation of drugs 

decreases their potency leading to non effective therapy. The picture is further complicated 

by the fact that chemical degradation of drugs often results in the formation of toxic 

degradants with subsequent serious side effects to the patients. For example, 

epianhydrotetracyline and m-aminophenol are toxic degradants of tetracycline and p-

aminosalicyclic acid, respectively.[37] Chemical instability of drugs in solution could result 

from hydrolysis, oxidation, photolysis, racemization or decarboxylation.[37]  
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  Adequate in vivo stability in the gastrointestinal fluids and in the blood is a key 

factor that ensures adequate bioavailability, low clearance and long circulation time. The 

vast majority of peptide and protein drugs are unstable in the GI tract due to enzymatic 

degradation and/or instability in the harsh acidic conditions in the stomach.[38] 

Consequently, these drugs are given by subcutaneous or IV injections. Injections are not 

patient friendly and lead to side effects.  In addition, DNA instability and degradation by 

nucleases in the plasma and in the cytoplasm are challenges that need to be addressed for 

successful gene therapy.[39] For all these reasons, much effort has been continuously 

devoted to the development of drug delivery systems that improve drug stability, both in 

vitro and in vivo.    

1.1.4. Unfavorable pharmacokinetics 

The ultimate goal of drug therapy is to achieve and maintain effective drug 

concentration at its site of action, which is usually located away from the site of 

administration. As soon as a drug appears in the blood stream, it is subjected to distribution 

to various organs and tissues. These organs include the liver and kidney, which metabolizes 

the drug and excretes it from the body, respectively. As a result, drug concentration at the 

site of action decreases over time and repeated dosing becomes necessary. Moreover, the 

drug may be metabolized and/or excreted before reaching its site of action leading to 

therapy failure. Repeated administration usually results in poor compliance and eventually 

poor therapeutic outcome. In this regard, drug delivery systems that release their cargo in a 

sustained, controlled, stimuli-responsive or delayed manner are much appreciated. These 

delivery systems reduce the frequency of administration, enhance drug efficacy by its 

localization at the site of action and reduce the required dose.[40] 

The lack of “targetability” is another inherent undesirable pharmacokinetic property 

of most drugs. Following absorption, drugs are usually distributed non-specifically 

throughout the whole body including healthy tissues. This leads to numerous side effects, 

which are particularly alarming for cytotoxic drugs whose accumulation in healthy tissues 

leads to serious adverse effects and limits the allowable dose.[41] Moreover, the widespread 

distribution into the whole body dilutes the drug and decreases its concentration at the 
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target sites. This increases the required doses, which in turn increases the cost of therapy 

and induces more side effects. Therefore, a delivery system that maximizes drug 

concentration in pathological tissues and minimizes its concentration in healthy tissues can 

enhance the drug therapeutic index, reduce the cost of therapy and improve the overall 

therapeutic outcome. This led to the appearance of the concept of drug targeting, which can 

be defined as selective drug delivery to certain organ, tissue or cell within the body where 

its action is needed.[42] Historically, the 19th century “magic bullet” idea of Paul Ehrlich 

was the first drug targeting proposal. He proposed that if a substance “magic bullet” would 

have a specific affinity for disease-causing microorganisms; it would reach these 

microorganisms and destroy them without affecting healthy tissues. Nowadays drug 

targeting is a well-known drug delivery strategy that is achieved by either passive or active 

mechanisms.[43]     

1.2. Polymeric nanoparticulate drug carriers 

Scientists ever-expanding knowledge of the human body has led to the identification 

and understanding of the mechanisms underlying many challenging diseases. Many of these 

diseases can not be treated by conventional drug delivery systems.[44] This increases the 

demand for new drug delivery systems/technologies, which require multidisciplinary 

collaboration from physical, chemical, biological and engineering scientists.[45] An ideal 

drug delivery system should improve aqueous solubility of insoluble drug, enhance its 

bioavailability, maintain effective drug concentration in the blood over prolonged period of 

time, reduce side effects associated with drug administration, stabilize the drug both in vitro 

and in vivo and deliver the drug, passively or actively to its target.[46] It should also be cost-

effective and acceptable by the patients. To meet all these requirements, the last few 

decades have witnessed considerable interest in the development of new drug delivery 

systems.[44, 47-49] Advances in the fields of polymer chemistry and polymer colloid physico-

chemistry have resulted in the availability of many tailor-made polymers. This development 

changed the conventional role of polymers in drug delivery systems. Polymers were 

typically used for decades as additives or coatings in conventional drug delivery systems 

(e.g. tablets, suspensions, capsules) to solubilise, stabilize or control drug release.[47, 50, 51] 
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New polymers with tunable properties are now major components of many drug delivery 

systems.  

1.3. Advantages of polymeric nanoparticles as drug carriers 

Polymeric nanoparticulate drug carriers hold a promising future due to their superior 

performance relative to other drug carriers. Firstly, polymers can be designed to be 

biocompatible and/or biodegradable, which increases the safety of the resulting 

nanoparticles.[28] Secondly, polymers physicochemical properties (e.g. hydrophilicity/ 

hydrophobicity balance, charge, molecular weight) can be tuned resulting in nanoparticles 

with various adjustable properties (e.g. size, surface charge). Moreover, polymeric 

nanoparticles can be coated with hydrophilic polymers, such as poly(ethylene glycol) 

(PEG), which decreases the adsorption of opsonin proteins in the blood. This  helps 

nanoparticles escape recognition by the mononuclear phagocytic system (MPS) and 

circulate longer in the blood.[52] Polymeric nanoparticles usually have a molecular weight 

above the threshold for glomerular filtration (42-50 kDa for water soluble synthetic 

polymers), which is another factor prolonging their residence time in the blood.[44, 53] 

Surface of polymeric nanoparticles can be decorated with ligands/antibodies to direct them 

to certain target in the body.[54] Some polymeric nanoparticles achieves high drug loading, 

which maximizes drug/excipients ratio. Incorporation of drugs in polymeric matrices 

controls their release, which can be sustained or stimuli responsive.[55] Drug release from 

the so-called smart nanoparticles can be effected under different external stimuli (i.e. 

change in pH, temperature or ionic strength).[56] This allows drug release in certain 

pathological area in the body.[57] Absorption of nanoparticles is better than that of 

microparticles due to their small size.[58] In addition, nanoparticles small size allows them 

to accumulate, passively in solid tumors, infarcts and inflamed tissues through the so-called 

enhanced  permeability and retention effect (EPR).[59] This effect relies on the 

pathophysiological characteristics of solid tumors, which are characterized by 

hypervascularity, incomplete vascular architecture, poorly aligned endothelial cells and 

wide fenestrations.[14, 60] These characteristics make the vasculature of pathological tissues 

more “leaky” than that of healthy tissue. Leaky vasculature together with impaired 
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lymphatic drainage facilitates accumulation of macromolecules and nanoparticles in 

pathological tissues. The EPR effect is applicable to any macromolecule with molecular 

weight greater than 40 kDa. Exploiting the EPR effect, drug concentration in the tumor of 

10-30 times higher than that in the blood was achieved.[61] Moreover, the EPR effect results 

in prolonged drug retention in pathological tissues (e.g. tumor or inflamed tissue) for 

several weeks.  

Despite the great potential of polymer chemistry, the number of synthetic polymers 

suitable for in vivo applications is limited.[62] A candidate polymer should be biodegradable 

and/or biocompatible to be considered for in vivo drug delivery. In case a polymer is not 

biodegradable it should be totally eliminated from the body in a reasonable period of time. 

This allows repeated administration without any risk of uncontrolled accumulation. The 

polymer and its degradation products, if any, must be non toxic and non immunogenic. 

Examples of polymers approved by US-FDA (United States Food and Drug 

Administration) for administration in human beings are poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene glycol) 

(PEG), and poly(methyl methacrylate) (PMMA).[63] 

Polymeric nanoparticles are colloidal drug carriers that vary in diameter between 10 

and 1000 nm. Polymers used in the fabrication of nanoparticles can be categorized, 

according to their source, into natural, synthetic or semisynthetic. Natural polymers are 

generally safer and biocompatible, though the synthetic ones are more appealing due to the 

greater control over their physicochemical properties. Natural polymers that have been used 

in the formulation of nanoparticles for drug delivery applications include proteins (e.g. 

collagen, gelatin and albumin) and polysaccharides (e.g. dextran, chitosan, hyaluronic acid, 

pullulan, cellulose and inulin).[64, 65] Examples of synthetic polymers used in the 

manufacture of nanoparticles include aliphatic polyesters, polyanhydrides, polyorthoesters 

and polycyanoacrylates.[66] Aliphatic polyesters (e.g. PLA, PGA, PLGA and PCL) are, so 

far, the most widely used synthetic polymers in the preparation of drug-loaded 

nanoparticles. One advantage of aliphatic polyesters is their biocompatibility and their 

controlled degradation to biocompatible monomers.[65] Controlled polymer degradation 

results in controlled release of encapsulated drugs. Aliphatic polyesters are degraded by 
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bulk hydrolysis of their ester bonds.[67] Their degradation products (e.g. lactic acid or 

glycolic acid) are removed from the body by normal metabolic pathways.[68] These 

degradation products, however, can create acidic microenvironment, which can degrade 

some acid-labile drugs like protein therapeutics. 

1.4. Classes of polymeric nanoparticles 

Pharmaceutically interesting polymeric nanoparticulate drug carriers include 

nanospheres, nanocapsules, polymeric micelles, dendrimers and polymersomes. Each class 

of these nanocarriers has its own advantages and shortcomings. The type of nanoparticulate 

carrier obtained from a given polymer depends on the polymer physicochemical properties 

and the method used to fabricate the nanoparticles. Based on the nanoparticle type, drugs 

may be encapsulated or dissolved into the nanoparticles core, dispersed in the polymeric 

matrix or adsorbed to the nanoparticles surface (Figure 1.3).  

1.4.1. Nanocapsules 

Polymeric nanocapsules are colloidal drug carriers with a solid polymeric shell 

surrounding a core that is liquid or semisolid at room temperature. The core is used as a 

reservoir space for encapsulation of different drugs (Figure 1.3). Nanocapsules shell is 

usually a single polymeric layer formed during polymerization at the interface between the 

dispersed and continuous phases of the emulsion used in nanocapsules preparation. The 

shell can also be formed by precipitation of a preformed polymer at the surface of emulsion 

droplets. Double coated nanocapsules have been prepared through coating of poly(methyl 

methacrylate) (PMMA) nanocapsules by hydroxypropyl methyl cellulose.[69] Recently, 

nanocapsules having a core of liposomes coated by alternating layers of polycation (poly 

(allylamine hydrochloride)) and polyanion (poly (acrylic acid)) were prepared. This new 

hybrid system combined the advantages of both liposomes and nanocapsules.[70] 
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Figure 1.3. Different polymeric nanoparticulate drug carriers.  
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Traditionally, the nanocapsules core consisted of a lipophilic solvent, usually oil 

into which hydrophobic drugs were dissolved. The oil type affects drug loading capacity: 

high drug solubility in the oil gives high drug loading capacity.[71] Application of 

nanocapsules with an oily core is limited to encapsulation of hydrophobic drugs.[72] To 

overcome this limitation, nanocapsules with aqueous core suitable for encapsulation of 

water soluble drugs have been developed recently.[72, 73] Polymeric nanocapsules have been 

useful in the encapsulation and delivery of hydrophobic drugs (e.g. indomethacin[74], 

methotrexate[75], paclitaxel[76], spironolactone[77]), proteins (e.g. insulin[78], salmon 

calcitonin[79]) and water-soluble therapeutics (e.g. oligonucleotides[72], chlorhexidine 

digluconate[80]
).  

1.4.2. Nanospheres 

Contrary to nanocapsules, nanospheres are matrix-type polymeric systems into 

which the drug is dissolved or entrapped in the matrix or adsorbed to the surface (Figure 

1.3). Advantages of nanocapsules over nanospheres include their low polymeric content 

and high loading capacity for hydrophobic drugs.[81] Therefore, they have higher 

drug/polymer ratio. Polymers typically used in the preparation of nanocapsules and 

nanospheres include aliphatic polyester homopolymers, such as PLA, PLGA and PCL and 

poly(alkylcyanoacrylates) (PACA).[82-84] These nanoparticles have found wide spread 

applications in enhancing in vivo performance and delivery of various drugs through 

different routes of administrations (e.g. IV, oral, ocular).[85-88]  

Following parenteral administration, nanoparticles with hydrophobic surfaces are 

coated by a group of plasma proteins, of which opsonin proteins facilitate recognition and 

uptake by the mononuclear phagocytic system (MPS) cells.[89] Uptake of nanoparticles by 

these cells depends greatly on their surface chemistry. It is affected by neither the type of 

the polymer used in nanoparticles preparation nor by their morphology (e.g. nanocapsules 

or nanospheres). This significantly reduces the residence time of nanoparticles in the blood 

and results in nanoparticles accumulation in the liver spleen and bone marrow. For 

instance, bare poly(methyl methacrylate) nanoparticles had a half life in the blood of only 3 

min.[90]Although this phenomenon was found useful in the treatment of liver and spleen 
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diseases, it is undesirable when drug action is needed in other tissues.[91, 92] Thus, 

gentamicin-loaded PLGA nanospheres were designed for the treatment of experimental 

Brucellosis in mice. Following IV injection, gentamicin-loaded PLGA nanospheres 

accumulated preferentially in the liver and spleen, the target organs for Brucella 

melitensis.[93] Adsorption of serum proteins by nanoparticles has also been useful in drug 

targeting to the brain. Thus, doxorubicin-loaded poly(butyl cyanoacrylate) (PBCA) 

nanoparticles coated by 1% polysorbate 80 resulted in drug level in the brain that was 60 

times higher than that of non-coated nanoparticles.[94] Polysorbate coat facilitated 

adsorption of plasma proteins, especially apolipoprotein E (Apo-E), which helped the 

nanoparticles cross the blood brain barrier (BBB).[95]    When it comes to treating diseases 

away from the liver and spleen, nanoparticles that evade the uptake by MPS cells are 

needed. This is usually achieved by coating nanoparticles with hydrophilic polymers. 

Hydrophilic polymers allow nanoparticles to escape recognition by the cells of the immune 

system and stay in the circulation for time long enough to target various pathological 

tissues in the body.[89] Surface modification with PEG or “pegylation” is the most widely 

used approach to prepare long circulating or “stealth” nanoparticles.[96, 97] Thus, 

copolymers, such as PLA-PEG[98], PLA-PEG-PLA[99], PLGA-PEG[100], chitosan-PEG[101] 

and PCL-PEG[102] have been used in the preparation of drug loaded nanocapsules and 

nanospheres.   

1.4.3. Polymersomes 

Polymersomes (polymeric vesicles) are vesicular structures formed by the hydration 

of amphiphilic block copolymers (Figure 1.3).[103] They were first introduced by Kunitake 

et al. in 1981 in an attempt to overcome the inherent disadvantages of liposomes.[104] 

Polymersomes are analogues of liposomes since both are vesicular structures but they have 

different composition of the shell, which consists of amphiphilic copolymers in 

polymersomes and lipids in liposomes. Unlike liposomes which are formed by small 

molecular weight lipids, polymersomes are formed by high molecular weight amphiphilic 

copolymers of different architectures (e.g., diblock, triblock, graft and dendritic polymers). 

This makes polymersomes wall thicker, stronger, tougher and thus, more stable than 
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conventional liposomes.[105] Polymersomes presents a number of advantages for biomedical 

applications: high stability, tunable membrane properties, versatility and ability to 

encapsulate different types of drugs including hydrophilic, hydrophobic or ionized.[105] 

Examples of amphiphilic block copolymers that form polymersomes are poly(butadiene)-

PEG[106], PCL-PEG[107, 108], polystyrene-dextran[109], PLA-PEG[110], poly(propylene 

sulfide)-PEG[111], polyphosphazenes containing PEG and ethyl-p-aminobenzoate side 

groups [112]. For biomedical applications, biodegradable polymers are always preferred. 

Aqueous core of polymersomes acts as a reservoir space for encapsulating water soluble 

drugs whereas the thick polymeric shell can be used to integrate hydrophobic molecules 

(Figure 1.3). This property has been taken advantage of in the preparation of polymersomes 

loaded with cocktail anticancer drugs. Thus, doxorubicin, a hydrophilic anticancer drug was 

encapsulated in the aqueous core while the hydrophobic anticancer drug paclitaxel was 

integrated in the thick polymersomes wall.[113] Polymersome drug cocktail showed a higher 

maximum tolerated dose and reduced tumors growth more effectively and for longer 

durations than free drugs. This shows the potential of polymersomes in mutlti-drug therapy 

and its attractiveness as a carrier for wide range of drugs. 

1.4.4. Dendrimers 

Dendrimers (from the Greek word dendron, meaning tree) are a fairly new class of 

colloidal drug carriers (Figure 1.3). They are globular branched nanostructures with core-

corona architecture. The core is a single atom or a group of atoms having at least two 

identical chemical functionalities. The branches that stem from the core are composed of 

repeating units with at least one junction of branching. Branching results in a series of 

radially concentric layers or generations.[13, 39] Dendrimers possess several features that 

make them attractive nanocarriers for drug delivery applications. Firstly, it is possible to 

fine-tune their properties to suit certain therapeutic needs. Secondly, their surface can be 

engineered with countless functional groups that are used to attach a drug or targeting 

moiety. This together with their small size (10-100 nm in diameter) makes them ideal 

carriers for drug targeting. Thirdly, the cavities or spaces between branches (especially in 

higher generations) are used for encapsulation of different drugs.[114, 115] Despite these 
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numerous advantages, cationic dendrimers, such as polyamidoamine (PAMAM) and 

polypropyleneimine (PPI) are cytotoxic.[116] Dendrimers cytotoxicity can be reduced by 

modifying their surface with hydrophilic polymers, such as PEG. Thus, PEGylated 

PAMAM and PPI dendrimers not only showed less cytotoxicity, haemolytic activity and 

immunogenicity compared to the parent compound but also had higher drug loading, 

stability and longer circulation time in the blood.[116-119] Another strategy to increase the 

PAMAM dendrimers biocompatibility while maintaining their ability to encapsulate siRNA 

involved the synthesis of internally cationic dendrimers with neutral surfaces.[120] 

Dendrimers have been used as delivery vehicles for various hydrophobic drugs to improve 

their aqueous solubility and to enhance their therapeutic efficacy.[121, 122] Furthermore, 

surface functional groups have been used for the loading of various hydrophilic drugs. 

Thus, surface amino groups of dendrimers have been used to encapsulate DNA, 

oligonucleotides or siRNA through electrostatic interactions.[123] Dendrimers/ 

oligonucleotides complexes decreased oligonucleotides degradation by RNase and showed 

improved transfection efficiency.[123, 124] Some dendrimer-based products have been 

approved by the FDA. VivaGel™ (Starpharma) is a vaginal microbicide gel for the 

prevention of sexually transmitted diseases. SuperFect®, developed by Qiagen, is used for 

gene transfection in a broad range of cell lines.[125] 

1.4.5. Micelles of amphiphilic copolymers 

 Polymeric micelles are colloidal drug carriers formed in aqueous media through self 

assembly of amphiphilic copolymers of different architectures (e.g. block, graft, 

random).[126] Polymeric micelles have size in the range of 5-100 nm and a core-corona 

structure (Figure 1.3).[12] Copolymers that form micelles in water have two segments with 

different affinities to water: one is hydrophilic while the other is hydrophobic. When these 

copolymers are dissolved in water, hydrophobic segments tend to aggregate and withdraw 

from the aqueous environment to minimize system free energy. Above certain 

concentration of the amphiphile in water, called the critical association concentration 

(CAC), the copolymer self assemble resulting in the formation of polymeric micelles. The 

driving force of self assembly is entropy gain of the solvent due to removal of hydrophobic 
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segments from the aqueous environment.[127] Self assembly in water of a certain amphiphile 

results in polymersomes or micelles according to the weight fraction of its hydrophilic 

block (f), the molecular weight of the amphiphile and the effective interaction parameter of 

its hydrophobic block with H2O (χ). For block copolymers with a high χ, polymersomes are 

formed when f = 20-40%. Worm-like micelles are formed at 40% < f < 50% whereas 

spherical micelles are obtained for copolymers with f  = 50-70%.[128, 129] 

 Polymeric micelles are interesting nanocarriers for drug delivery applications due to 

their unique segregated core-corona structure that provides them with numerous 

advantages. The micelles lipophilic core offers a microenvironment for the solubilisation of 

hydrophobic drugs. In this regard, polymeric micelles are much more efficient and safer 

than other formulations currently in use. For example, the water-insoluble anesthetic agent 

propofol is formulated as an oil-in-water microemulsion, which is unstable against dilution, 

causes pain on injection and poses risk of hyperlipidemia.[130, 131] To overcome these 

drawbacks, propofol was encapsulated in polymeric micelles of poly(N-vinyl-2-

pyrrolidone)-block-poly(D,L-lactide).[132] Sodium deoxycholate used for the solubilisation 

of amphotericin B is known to be haemolytic, whereas Cremophor®EL used for the 

solubilisation of numerous anticancer drugs has numerous side effects.[133] In addition to 

their well-established safety profiles, polymeric micelles are known to remarkably increase 

the solubility of numerous hydrophobic drugs. Polymeric micelles of PLA-PEG increased 

aqueous solubility of paclitaxel and doxorubicin, two clinically important anticancer drugs, 

by 5000-fold and 12 000-fold, respectively.[134, 135] Encapsulating hydrophobic drugs within 

the micelles core not only improves their solubility but also sustains their release, protects 

them against degradation, modifies their biodistribution, decreases their side effects and 

increases their overall therapeutic efficacy.[136-139] The hydrophilic corona of polymeric 

micelles maintains their water solubility and colloidal stability, reduces their uptake by the 

cells of the immune system and prolongs their circulation time. Micelles corona has also 

been used to attach targeting ligands so that the micelles accumulate selectively in certain 

tissue in the body. Thus, certain cancers have over-expression of peripheral benzodiazepine 

receptor (PBR), which was used to prepare paclitaxel-loaded PBR-targeted micelles. These 

micelles showed a significantly higher toxicity against human glioblastoma cancer cells in 
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vitro.[140] Examples of other receptors that are over-expressed by cancer cells and have been 

used to prepare targeted polymeric micelles are folate and transferrin.[12]   

 Poly(ethylene glycol) is the most commonly used corona-forming segment of 

polymeric micelles, though other hydrophilic polymers, such as poly(N-vinyl-2-

pyrrolidone) have been used.[132, 141] Various polymers have been used as core-forming 

segments of polymeric micelles.[142] Examples of these polymers include aliphatic 

polyesters (e.g., PLA, PCL, PLGA), polyethers (e.g., poly(propylene oxide)) and poly(L 

amino acids).[60] Poly(L amino acids) commonly used as core-forming segments in 

polymeric micelles include poly(aspartic acid) (PAsp), poly(glutamic acid) (PGlu), poly(L 

lysine) (PLL) and poly(histidine) (PHis). Since these amino acids are hydrophilic, they 

should be hydrophobized in order to form the micelles core.[44, 60] Many polymeric 

micelles-based anticancer drug formulations have progressed well beyond 

experimental/conceptual stages where many formulations are now in clinical trials (Table 

1.1).[14]  

Table 1.1. Polymeric micelles-based formulations in clinical trials.[14, 143] 

Trade name Drug Polymer Phase completed Ref. 

NK-911 Doxorubicin PEG-PAsp-DOX Phase I [144] 

SP-1049C Doxorubicin PEG-PPO-PEG Phase I [145] 

PAXCEED® Paclitaxel PEG-PDLLA Phase II [146] 

Genexol®-PM Paclitaxel PEG-PDLLA Phase II [147] 

NK-105 Paclitaxel PEG-PPBA Phase I [148] 

NK-012 SN-38 PEG-P(Glu) Phase I [149] 

 PEG: poly (ethylene glycol); PAsp: poly (aspartic acid); PDLLA: poly(D,L lactide); PPBA: 

poly(4-phenyl-1-butanoate)l-aspartamide; P(Glu): poly(glutamic acid);  SN-38: 7-ethyl-10-

hydroxycamptothecin. 
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1.4.6. Polyion complex (PIC) micelles  

Polyion complex (PIC) micelles were described for the first time in the mid 90’s 

independently by Kataoka and Kabanov groups.[150, 151] Since then PIC micelles found 

applications in various fields including delivery of ionic therapeutics.[152] This special class 

of micelles is formed by electrostatic interactions between an ionic-neutral copolymer of 

different architectures (i.e. block, graft, random) and an oppositely charged species. For 

drug delivery applications, the oppositely charged species is a therapeutic entity (e.g. drug, 

DNA or protein). In aqueous media, PIC micelles have a core-corona structure. The neutral 

water-soluble segment of the polymer forms the corona while the ionic segment-drug 

complex forms the core. Since their introduction, these colloidal carriers have been given 

different nomenclatures by different research groups. Thus, the term PIC micelles has been 

proposed by Kataoka and co-workers[153], Kabanov and co-workers[154] have been using the 

term block ionomer complexes, BIC, while Stuart and co-workers[155] use the term complex 

coacervates core micelles, C3Ms. The term PIC micelles will be used throughout the 

following sections. 

1.4.6.1. Driving force for PIC micelles formation 

Electrostatic interactions between oppositely charged polyelectrolytes (e.g. a pair of 

oppositely charged homopolymers, an ionic polymer and an oppositely charged drug) are 

mainly driven by entropy gain of the system due to release of small molecular weight 

counter ions.[156] Charge neutralization due to these interactions creates hydrophobic 

domains, which leads to precipitation and phase separation in water especially in the 

vicinity of charge stoichiometric compositions (Figure 1.4).[157] Replacing one of the 

interacting polyelectrolytes by an ionic-neutral copolymer endows the system with the 

amphiphilicity required for self assembly and micelle formation.[152] The neutral polymer 

segments that form the PIC micelles corona ensure water solubility of the micelles even 

under charge stoichiometric conditions (Figure 1.4). Moreover, the hydrophilic shell 

stabilizes the micelles against aggregation or phase separation. Depending on the chemical 

nature of the various PIC micelles components, other forces such as metal-ligand 
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Figure 1.4. Schematic illustration of PIC micelles formation from a pair of oppositely 

charged species.  

1.4.6.2. Advantages of PIC micelles as drug delivery systems 

PIC micelles are unique amid colloidal polymeric drug carriers in that they are used 

exclusively for encapsulation and delivery of ionic drugs. Ionic drugs usually have high 

water solubility, a property that makes their encapsulation into other nanoparticles 

tricky.[161] Moreover, these drugs have low affinity for the hydrophobic core of other 

nanoparticles and tend to diffuse out in the aqueous medium resulting in very low 

encapsulation efficiency.[162, 163] Thus, PLGA nanospheres encapsulated ~ 1 wt% 

gentamicin, a cationic water soluble aminoglycoside antibiotic.[92] A given dose of this drug 

formulation has polymer concentration that is 100 times higher than that of gentamicin. 

This is not desirable from toxicological point of view since it subjects the body to 

chemicals that can be avoided by properly selecting the drug carrier. In this regard, PIC 

micelles have higher drug loading capacity for ionic drugs.[164] In most cases, PIC micelles 

have almost complete drug incorporation since micelle formation relies on electrostatic 
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interactions between the polymer and the oppositely charged drug. For instance, PEG-g-

chitosan formed PIC micelles with all-trans retinoic acid that incorporated more than 80 

wt% drug.[165] The same micelles encapsulated another anionic drug, diammonium 

glycyrrhizinate (DG) with encapsulation efficiency higher than 96%.[166] PIC micelles are 

usually prepared in aqueous media limiting the use of organic solvents. Residuals of 

organic solvents in pharmaceutical preparations should be minimal since they could cause 

several side effects and pose risk to the human health.[167] Moreover, organic solvents may 

inactivate or denaturate delicate biotherapeutics, such as peptides and proteins.[168] 

Fabrication of PIC micelles involves simple mixing in aqueous solvents without the need of 

vigorous processing conditions, such as heat, sonication, or emulsification. This certainly 

avoids any deleterious effects on drugs stability and activity. Similar to micelles of 

amphiphilic copolymers, PIC micelles have excellent colloidal stability, small size and 

narrow size distribution. Corona forming blocks in PIC micelles are usually selected to 

provide the micelles with long circulation properties. Moreover, targeting ligands can be 

attached to the micelles corona to direct them towards certain organ or tissue in the body. 

Thus, Wakebayashi et al., synthesized α-lactosyl-PEG-poly(2-(dimethylamino) ethyl 

methacrylate) (lactose-PEG-PDMAEMA) as gene carriers for selective transfection of 

hepatic cells.[169] Lactosylated PIC micelles showed substantially higher transfection 

efficiency compared to non-lactosylated micelles in HepG2 cells having asialoglycoprotein 

(ASGP) receptors. This higher transfection efficiency was attributed to possible specific 

interaction between ASGP receptors and lactose moieties of the micelles. Having this in 

mind, Yang et al., reported the preparation of lactose-conjugated PEG-g-chitosan PIC 

micelles for liver-targeted delivery of diammonium glycyrrhizinate.[166] Three drug 

formulations were administered IV to rats: drug solution in PBS, micelles of PEG-g-

chitosan and micelles of lactose-PEG-g-chitosan.  Pharmacokinetics analysis showed that 

the micelles modified with lactose had more ability to deliver the drug to the liver.[169] 

1.4.6.3. Preparation methods for PIC micelles 

The most commonly used method for preparation of drug-loaded PIC micelles is 

simple mixing of the drug and polymer aqueous solutions under proper conditions of 
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drug/polymer molar charge ratio, polymer concentration, pH and ionic strength.[170-173] This 

method is not suitable for the encapsulation of water-insoluble ionic drugs. Other methods, 

such as dialysis, solvent evaporation and thin film hydration have been adopted for the 

incorporation of such drugs. Dialysis and solvent evaporation methods typically involve 

dissolving the polymer in water and dissolving water-insoluble drugs in a water miscible 

organic solvent, such as dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) or 

ethanol. The drug and polymer solutions are mixed and the organic solvent is removed by 

dialysis against water or by evaporation under reduced pressure. Gradual removal of the 

organic solvent induces micelles formation and drug encapsulation. These two methods 

have been used for the preparation of all-trans retinoic acid/PEG-g-chitosan PIC 

micelles.[165, 174] Thin film hydration method was used to prepare amphotericin B-loaded 

poly(2-ethyl-2-oxazoline)-b-poly(aspartic acid) (PEOz-b-PAsp) PIC micelles.[175] Polymer 

and drug were dissolved in a suitable volatile organic solvent, such as DMF. A thin film is 

then formed by the evaporation of the organic solvent under reduced pressure followed by 

hydration with aqueous solvent. The free drug was removed by filtration. PIC micelles 

preparation by simple mixing of drug and polymer aqueous solutions is advantageous over 

other methods for scale-up production since it results in high yield and does not involve 

vigorous processing conditions. 

 

1.4.6.4. Classification of copolymers used for PIC micelles formation 

PIC micelles for biomedical applications have been developed using a wide range of 

ionic-neutral copolymers. Based on their architecture, these copolymers can be divided into 

4 main categories (Figure 1.5): 

1. Block copolymers: linear copolymers where the end group of one block is 

covalently linked to the head of another block giving diblock or triblock 

architectures.[157]  

2. Graft copolymers: branched copolymers with a comb-like architecture where 

different branches emanate from one main chain.  
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3. Random copolymers: linear copolymers with the building blocks arranged 

randomly.[176] 

4. Alternating copolymers: linear copolymers with perfectly alternating 

arrangement of their building blocks.  

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Architectures of different copolymers used in the preparation of PIC micelles.  

 

Copolymers used for PIC micelles formation can also be classified according to the 

charge of their ionic segment into two groups: cationic and anionic copolymers.  

1.4.6.4.1. Cationic copolymers 

Polycation-neutral copolymers as the name implies have two segments; one is 

neutral while the other contains ionizable cationic functional groups able to interact 

electrostatically with negatively charged species. The cationic functional groups are 

primary, secondary, tertiary or quaternary amines. Other ionizable cationic groups, such as 

amidine and guanidine are also used.   According to the chemical nature of the polyamine 

segment, these copolymers can be classified into: (i) copolymers based on poly(amino 

acids), (ii) copolymers based on poly(acrylamides), (iii) copolymers based on 
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polyethylenimines, (iv) copolymers based on polysaccharides and (v) copolymers based on 

poly(pyridines). Examples of these different cationic copolymers are given in Table 1.2.  

Table 1.2. Different cationic copolymers used in the preparation of PIC micelles  

Polyamine Examples Ref. 

Poly(amino acids) 

PEG-b-PLL, PLL-b-PEG-b-PLL, PEG-g-PLL, PEG-b-thiol-

PLL, PLL-g-DEX, PEG-b-PLL dendrimer, PLL-g-DEX, 

PLL-g-polysaccharide (dextran, amylase, maltose), PNIPAM-

g-PLL, PEG-b-PDMAPA, PEG-b-PEDA 

[177-182] 
[183-191]

Poly(acrylamides) 

PHPMA-b-PTMAEMA, PHPMA-b-PDMAPMA, PEG-b-

PDEAEMA, random copolymers of 2-(dimethylamino)ethyl 

methacrylate (DMAEMA) with triEGMA or  NVP,PEG-b-

PDMAEMA, PVP-b-PDMAEMA, thiol-PEG-b-PDMAEMA, 

α-lactosyl-PEG-b-PDMAEMA, acetal-PEG-b-PDMAEMA  

[169, 

179, 192-

203] 

Polyethylenimines PEI-g-PCL, PEG-b-PEI, PEG-g-PEI, PNIPAM-g-PEI  [204-210]

Polysaccharides PEG-g-chitosan 
[165, 

166, 168] 

Poly(pyridines) 
PEG-b-PQ4VP, PEG-b-PQ2VP, PEG-b-P4VP,  

PEG-b-P2MVP, PS-b-P2VP-b-PEG 

[155, 

208, 211-

213]  

Poly(spermine) PEG-b-PSPM  [214] 

PLL: poly(L lysine); DEX: dextran; PNIPAM: poly(N-isoproply acrylamide); PDMAPA:  

poly(3-dimethylamino) propyl aspartamide; PEDA: poly(ethylenediamine aspartamide); 

PHPMA: poly-N-(2-hydroxypropyl) methacrylamide; PTMAEMA: 

poly(trimethylammonioethyl methacrylate); PDMAPMA: poly(N-[3-(dimethyl amino) 

propyl]methacrylamide); PDEAEMA: poly(2-(diethylamino) ethyl methacrylate); 

PDMAEMA: poly(2-(N,N-dimethylamino)ethylmethacrylate); triEGMA: ethoxytriethylene 

glycol methacrylate, PVP: poly(N-vinylprrolidone; PEI: polyethylenimine; PQ4VP: 

poly(N-methyl-4-vinylpyridinium sulfate); lyso: lysozyme; PQ2VP: poly(N-methyl-2-vinyl 



26 

 

 

pyridinium iodide); P4VP: poly(4-vinylpyridine); P2MVP: poly(2-methyl vinyl 

pyridinium); PS-b-P2VP-b-PEG: poly(styrene-b-2-vinyl pyridine-b-ethylene glycol). 

1.4.6.4.2. Anionic copolymers 

Anionic functional groups of the polyanion-neutral copolymers commonly used in 

PIC micelles preparation are carboxylate and sulfonate. Analogous to polycations, 

polyanionic copolymers are classified according to the chemical nature of their charged 

segment into: (i) copolymers based on poly(amino acids) (e.g. PEG-b-poly(aspartic acid) 

(PEG-b-PAsp)[150, 159, 160, 170, 215-217], PEG-g-PAsp[218],  poly(2-ethyl-2-oxazoline)-b-

poly(aspartic acid) (PEOz-b-PAsp)[175], poly(2-isopropyl-2-oxazoline)-b-poly(aspartic acid) 

(PiPrOz-PAsp)[219], PEG-b-poly(L-glutamic acid) (PEG-b-PGlu)[158, 220, 221]); (ii) copolymers 

based on polyacrylic acid (PAA) (e.g. PEG-b-poly(methacrylic acid) (PEG-b-PMAA)[222-

225], polystyrene-b-PNIPAM-b-PAA (PS-b-PNIPAM-b-PAA)[226], PNIPAM-b-PAA[227]); 

and (iii) others (poly(N-vinylpyrrolidone)-b-poly(styrene-alter-maleic anhydride) (PVP-b-

PSMA)[164]).  

The vast majority of copolymers used in the formulation of PIC micelles for 

biomedical applications have PEG as their neutral segment. This derives from its biological 

inertness, hydrophilicity, biocompatibility and ability to reduce protein adsorption over the 

micelles surface. Other neutral hydrophilic polymers, such as PVP, PNIPAM, PEOz and 

PiPrOz have also been used as corona forming blocks in PIC micelles. The attractiveness of 

PNIPAM, PEOz and PiPrOz as corona forming blocks relies on their thermo-sensitive 

properties. In aqueous solutions these polymers exhibit reversible thermo-responsive phase 

transition. This property has been exploited to prepare smart drug carriers that release their 

payload in certain pathological tissues with abnormally elevated temperature, such as 

certain types of cancer.[228, 229] 

1.4.6.5. Properties of PIC micelles  

1.4.6.5.1. Particle size and size distribution 

Most PIC micelles designed for biomedical applications are intended for parenteral 

administration. Therefore, particle size and size distribution are two crucial parameters 
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since they affect PIC micelles safety, biodistribution and stability.[230] Although the 

smallest capillaries in the body are 5-10 µm in diameter, the size of nanoparticles intended 

for parenteral administration and any possible aggregates should be far below this size to 

avoid blocking blood vessels and emboli formation.[39] Moreover, in order to attain 

longevity in the blood, nanoparticles diameter should be ≤ 200 nm since the sub-200 nm 

size along with biocompatibility allows nanoparticles to escape recognition by the MPS 

cells.[231, 232]  

Particle size of PIC micelles is dependent on many factors including chemical 

nature of their components, the ratio at which these components are mixed, pH and ionic 

strength of the medium. The molar charge ratios at which the drug and polymer are mixed 

greatly influence size and polydispersity index of the resulting PIC micelles. Micelles size 

is also affected by the order of addition (i.e. drug is added to polymer or vice versa). When 

a drug is added to an oppositely charged polymer in amounts such that the polymer is in 

excess, two species usually exist in solution: drug-polymer complex and free polymer. This 

usually gives micelles with high polydispersity indices where two or more populations exist 

in solution.[233]  Further increase in drug concentration relative to polymer concentration 

neutralizes free polymer chains resulting in monodispersed micelles at charge neutrality.  

For instance, Harada and Kataoka[153] showed that diameter and polydispersity index of 

lysozyme/PEG-b-PAsp micelles were dependent on their mixing ratio, r (the ratio of the 

number of aspartic acid residues in PAsp to the total number of arginine and lysine residues 

in lysozyme).  Micelles diameter remained constant ~ 50 nm in the range of 0.125 ≤ r ≤ 1.0 

and increased almost linearly from ~ 50 to ~ 80 nm when r increased from 1.0 to 4.0. 

Polydispersity index decreased from 0.1 to 0.05 when r increased from 0.125 to 1.0 and 

remained constant thereafter. Constant micelles size at r < 1.0 was attributed to the 

formation of stoichiometric micelles (r = 1.0) where all PEG-b-PAsp in solution 

participated in micelles formation leaving excess lysozyme free in solution. At r > 1.0 

thickness of the micelles shell increased due to the increased number of PEG-b-PAsp 

chains in the micelles, which led to increasing the overall micelles size.  

1.4.6.5.2. Surface charge 
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Nanoparticles surface charge or zeta potential is one of the key factors that 

determine their in vitro stability, biodistribution and in vivo fate.[97] Nanoparticles with 

charged surfaces, either positive or negative have better in vitro colloidal stability since 

electrostatic repulsions reduce particle aggregation.[234, 235] Cell surface is negatively 

charged due to the presence of sulfated proteoglycans.[236]  Thus, positively charged 

nanoparticles have a better chance to interact with the cells than neutral or negatively 

charged ones. Although this improves the cellular uptake of positively charged 

nanoparticles, it typically results in non-specific distribution and uptake by various non-

target tissues. Moreover, positively charged nanoparticles form aggregates with negatively 

charged serum proteins following IV injection. These aggregates cause transient embolism 

in the lung capillaries.[237] Negatively charged liposomes with diameter ~ 200 nm were 

shown to be cleared from the blood at a rate higher than that of neutral ones.[238] For all 

these reasons, PIC micelles for drug delivery applications usually have a neutral PEG 

corona. The PIC micelles surface charge is determined by measuring their ζ potential (see 

below).  

1.4.6.5.3. Effect of pH on PIC micelles formation and stability 

The extent to which solution pH affects PIC micelles formation and stability 

depends on the type of the polyelectrolytes used in the complex formation. Thus, PIC 

micelles formed by a pair of strong polyelectrolytes are not affected by pH change since the 

charge density of these polyelectrolytes is fixed.[152] In contrast, charge density of weak 

polyelectrolytes is strongly affected by pH change. Consequently, there exists a pH range 

for which polyelectrolytes have enough charge density to promote PIC micelles formation 

and stability.  The width of this pH range depends on whether the micelles are formed by 

two weak or one weak and one strong polyelectrolyte. Above or below this pH range, one 

of the polyelectrolytes becomes neutral resulting in micellar disassembly.[239-241] This pH 

responsiveness, although compromises micelles stability, has been taken advantage of in 

the preparation of PIC micelles that release their payload in response to change in pH of the 

surroundings. For instance, PIC micelles of PEG-b-PMMA/PLL dissociated at pH 5.0 

showing their ability to release their cargo in the acidic environment of the endosomes (pH 
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~ 5-6) following endocytosis.[223, 242] Yang et al., reported that the release rate of 

diammonium  glycyrrhizinate (an anionic drug) from its PIC micelles with PEG-g-chitosan 

was faster at higher pH values due to the decrease in chitosan degree of ionization.[166] In 

addition to its influence on PIC micelles electrostatic interactions, pH affects other forces 

that contribute to PIC micelles formation and stability, such as hydrogen bonding. Thus, 

Gohy et al., reported that poly (2-vinylpyridine)-b-poly(ethylene glycol) (P2VP-b-PEG) 

and poly(methacrylic acid)-b-poly(ethylene glycol) (PMAA-b-PEG) did not form PIC 

micelles at low pH values, instead they formed micelles with a core formed by the 

hydrogen bonding between neutral PMAA and PEG chains.[243]  

1.4.6.5.4. Effect of ionic strength on PIC micelles stability 

PIC micelles are strongly sensitive to changes in ionic strength of the medium since 

salts cause charge screening and weakening of electrostatic interactions between oppositely 

charged polyelectrolytes.[168, 244] Therefore, PIC micelles dissociate above certain salt 

concentration called critical ionic strength, Icr. Critical ionic strength is dependent on the 

nature of PIC micelles constituents, their charge density, pKa, pH, mixing ratio, micellar 

concentration and the type of added salt.[225] PIC micelles formed by a combination of 

driving forces, such as electrostatic, hydrophobic and metal coordination are much more 

resistant to increase in salinity than those formed by electrostatic interactions only.[245, 246] 

For biomedical applications, PIC micelles should be stable under physiological conditions 

(NaCl concentration of 0.15 M and pH 7.4). These conditions are challenging for many PIC 

micelles formulations. Thus, Yuan et al., reported that PIC micelles of lysozyme/PEG-b-

PAsp disintegrated after NaCl concentration of 0.05 M at pH 7.4.[241] In addition, 

Nishiyama et al., reported that PIC micelles of cisplatin/PEG-b-PAsp were stable at 

physiological salt concentration and 37 ºC for 10 h, after which the micelles 

disassembled.[247] Accordingly, several strategies have been proposed to improve PIC 

micelles stability under physiological conditions. Two eminent approaches include core-

cross linking and hydrophobic modification of the ionic polymers. Thus, siRNA/PEG-b-

PLL micelles with disulfide cross-linked core were stable against increase in salt 

concentration up to 0.3 M, well above the physiological salt concentration.[173] In addition,  
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lysozyme/PEG-b-PAsp micelles cross linked by glutaraldehyde resisted increase in salinity 

up to 0.2 M.[241] Hydrophobic modification of the ω end of PEG-b-PAsp by different 

hydrophobic groups (e.g. phenyl, naphthyl and pyrenyl) improved the stability of 

lysozyme/PEG-b-PAsp micelles against increase in salinity. However, non of these 

hydrophobized derivatives yielded stable micelles under physiological conditions.[248] 

1.4.6.5.5. Colloidal stability of PIC micelles 

PIC micelles colloidal stability refers to their ability to remain stable in solution 

without macroscopic phase separation. At charge neutrality ratios, electrostatic interactions 

between oppositely charged polyelectrolytes result in phase separation and precipitation. In 

contrast, if a neutral segment is linked to one of the interacting polyelectrolytes, soluble 

colloidal particles (PIC micelles) are formed instead. Therefore, PIC micelles colloidal 

stability is determined by the balance between the tendency of the interacting species to 

phase separate and the tendency of the neutral blocks to stabilize the micelles and keep 

them in solution.[152] Hence, PIC micelles colloidal stability is governed by the factors 

affecting the strength of electrostatic interactions (e.g. pH, ionic strength, charge density) 

and the factors affecting neutral blocks stabilizing effect (e.g. block length, molecular 

architecture, temperature, block length ratio of corona to core forming monomers, 

Ncorona/Ncore). For pharmaceutical applications, PIC micelles should be colloidally stable in 

solution for periods long enough to permit accurate dosing in vitro and delivery of the drug 

to its target in vivo without precipitation or phase separation. Moreover, these micelles 

should maintain their integrity and colloidal stability after freeze drying and reconstitution 

since freeze dried formulations have enhanced shelf life and are easy to handle and 

transfer.[249] PIC micelles of lysozyme/PEG-b-PAsp prepared at charge neutrality showed 

no precipitation even after one month of storage at room temperature.[153] Size of 

heparin/PEG-b-PDEMAEMA PIC micelles was not affected by freeze drying and 

reconstitution.[233]   

1.4.6.5.6. Critical association concentration (CAC) of PIC micelles                                                   

Critical association concentration (CAC) or the concentration below which PIC 

micelles dissociate is one of the factors that determine their in vivo stability due to micelles 
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dilution in the body.[177] CAC of PIC micelles prepared at charge neutrality is usually very 

low and affected by the nature of their constituents, their charge density, Ncorona/Ncore and 

whether there are additional forces that participate in micelles formation (e.g. hydrophobic 

interactions).[250] For instance, CAC of antisense-oligonucleotides/PEG-b-PLL micelles 

was ~ 0.2 mg/mL whereas that of PEG-b-PLL/PEG-b-PAsp micelles was below 0.01 

mg/mL.[177, 251] 

1.4.6.6. Methods used to characterize PIC micelles 

1.4.6.6.1. Dynamic light scattering (DLS) 

DLS has been the method of choice to determine PIC micelles hydrodynamic radius 

(RH). DLS measurements involve determining the time dependence of the light scattered 

from a small region of solution over a certain period of time.[252] In case of coherent and 

monochromatic light, such as the light of a laser beam, it is possible to observe the time-

dependent fluctuations of the scattered intensity. These fluctuations are due to Brownian 

motion of the particles in solution, which makes the distance between them constantly 

changing with time. Scattered light then undergoes either constructive or destructive 

interference by the surrounding particles and within this intensity fluctuation, information is 

obtained about the time scale of particles movement. Scattered light intensity is measured 

with a detector, such as a photomultiplier tube capable of operating in the photon counting 

mode. Analysis of the time dependence of intensity fluctuation gives the diffusion 

coefficient (D). The diffusion coefficient of the particles is used to calculate RH from the 

Stokes Einstein equation (equation 2). RH is the radius of a hypothetical hard sphere having 

the same diffusion coefficient as the particle in question. 

 

  

  

 

 

Where RH is the hydrodynamic radius, k is the Boltzmann’s constant, T is the absolute 

temperature, η is the solvent viscosity and D is the diffusion coefficient.  

__________ RH  (2) 

6πηD 

kT 
=  
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DLS data is analyzed by the cumulant method or inverse Laplace transform (ILT) 

programs, such as CONTIN. RH obtained from the cumulant method of analysis is the 

weighted distribution of all objects present in solution, weighted with their relative 

scattering power. Therefore, cumulant analysis is best suited for solutions having 

monodispersed particles. CONTIN analysis is preferred for heterodisperse or polydispersed 

systems.[152] 

1.4.6.6.2. Static light scattering (SLS) 

In a typical SLS experiment, one measures the intensity of light scattered by a given 

solution as a function of the scattering angle and concentration of the solution. The light 

scattered by a dilute polymer solution can be expressed by equation 3[177]:  

 

 

 

 

Where C is the concentration of the polymer, ∆R(Θ) is the difference between the Rayleigh 

ratio of the solution and that of the solvent, Mw, app is the apparent weight average 

molecular weight of the polymer, q is the magnitude of the scattering vector, Rg is the  

radius of gyration, A2 is the second virial coefficient, and K = (4π2 n2 (dn/dc)2 )/(NA λ
4) (N 

is Avogadro’s number and dn/dc is the refractive index increments). The Mw, app of the PIC 

micelles is obtained from Zimm plot of the data. The association number of the micelles is 

obtained by dividing micelles Mw, app by molecular weight of a single polyanion/polycation 

constituting chain, assuming that PIC micelles have composition equal to the mixing 

ratio.[177] SLS measurements have also been used to determine CAC of PIC micelles since 

the scattering intensity is a sensitive function of the weight average molecular weight of the 

micelles.[253] Intensity of light scattered by PIC micelles at a fixed angle (i.e. 90º) has been 

frequently used to monitor micelles stability as a function of solution pH, ionic strength and 

storage under different conditions.[170, 233, 247] 

1.4.6.6.3. ζ potential measurements 

= + (1+ q2 Rg
2/3) (3) __________ __________ 2A2C 

1 ∆R (Θ) 

KC  Mw, app 
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ζ potential of PIC micelles is usually determined via light scattering detection in the 

so-called Zetasizer. ζ potential is calculated from micelles electrophoretic mobility in 

response to an applied external electric field using Smoluchowski equation. ζ potential 

measurements are used to determine PIC micelles surface charge and to confirm the 

formation of PIC micelles with core-corona structure. Thus, neutral ζ potential values 

observed for lysozyme/PEG-b-PAsp micelles were taken as an indirect evidence for the 

formation of PIC micelles with lysozyme/PAsp core coated by neutral PEG corona.[153] 

Furthermore, ζ potential measurements have been used to confirm drug encapsulation into 

PIC micelles. Drug incorporation into the micelles neutralizes both the polymer and drug 

charges, which decreases the absolute value of micelles ζ potential. For instance, the 

encapsulation of all-trans retinoic acid into PEG-g-chitosan PIC micelles resulted in 

decreasing their ζ potential.[165] 

1.4.6.6.4. 1H nuclear magnetic resonance (1H NMR) 

  In the PIC micelles literature, 1H NMR studies have been used to confirm the 

formation of micelles with core-corona structures. This takes advantage of the restricted 

motion of the drug and polymer segments forming the core, which results in significant line 

broadening and/or disappearance of the signals due to corresponding protons. In contrast, 

protons of the polymer segments forming the corona maintain their mobility and thus, 

appear well resolved.[254] Thus, for all-trans retinoic acid (ATRA)/PEG-g-chitosan micelles, 

the specific 1H NMR signals of ATRA and chitosan were not visible in either D2O or 

DMSO. This was in contrast to the signals of PEG, which were visible in both solvents. 

These results confirmed that the PIC micelles have ATRA/chitosan core and a PEG 

corona.[165]  

1.4.6.6.5. Isothermal titration calorimetry (ITC) 

Electrostatic interactions taking place during PIC micelles formation can be 

characterized by isothermal titration calorimetry (ITC) if they are associated with 

generation (exothermic reaction) or absorption (endothermic reaction) of heat. ITC 

monitors heat change due to these interactions and determines thermodynamic parameters 

of the binding. ITC is the only instrument that in a single experiment determines 
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thermodynamic parameters of the binding including binding constant (K), reaction 

stoichiometry (N), enthalpy change (ΔH) and entropy change (ΔS).[255, 256]   

ITC is composed of two cells (reference and sample) and an injection syringe 

(Figure 1.6, left). The reference and sample cells are made of a thermally conducting 

material, surrounded by an adiabatic jacket. A typical ITC experiment involves addition at 

a constant temperature of aliquots of known volume of ligand solution from the syringe 

into the sample cell containing macromolecule solution. Addition of ligand is automated by 

a highly precise syringe stirred at desired speed by a computer-controlled stepper motor. 

Each injection of the syringe solution triggers the binding reaction and, depending on the 

binding affinity and the concentration of reactants in the cell, a certain amount of 

ligand/macromolecule complex is formed. Heat released or absorbed during complex 

formation causes a difference in temperature between the reference and sample cells. 

Consequently, ITC raises or lowers the thermal power (μcal/sec) required to keep a 

constant temperature difference (close to zero) between the sample and the reference cell. 

After each injection, the system reaches equilibrium and the temperature balance is 

restored. The recorded signal shows a typical deflection pattern in the form of a peak (raw 

data). Integrating the area under the peak with respect to time provides the heat change per 

injection (Figure 1.6, right). As the interaction in the cell finishes, the heat signal 

diminishes until only the background heat due to ligand dilution is observed. The heat 

change profile as a function of the ligand/macromolecule molar ratio can be analyzed to 

give thermodynamic parameters of the interaction under investigation. Thermodynamics of 

binding between poly(ethylene glycol)-b-poly(2-(diethylamino)ethyl methacrylate) and 

Plasmid DNA were studied by ITC.[195] 
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Figure 1.6. Diagram of ITC showing cells and syringe (left) and representative ITC data 

(right).  

www.microcalorimetry.com  

 

1.4.6.6.6. Other methods 

In addition to the previously described methods, many other techniques have been 

used to characterize PIC micelles and study their formation, structure, dynamics and 

functions. Thus, gel retardation assays have been used to detect complex formation between 

siRNA and polycations and to qualitatively confirm the absence of free siRNA.[173, 257] 

Fluorescence resonance energy transfer (FRET)[258] and circular dichroism (CD)[216] have 
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been used to study secondary structures of DNA and protein/peptide entrapped in PIC 

micelles. Imaging techniques that have been used to visualize PIC micelles include atomic 

force microscopy (AFM)[233], transmission electron microscopy (TEM)[165], scanning 

electron microscopy (SEM)[259] and cryogenic transmission electro microscopy (cryo-

TEM)[260]. Enthalpy changes associated with the complexation in PIC micelles have been 

studied by differential scanning calorimetry (DSC)[261].  

1.4.6.7. Applications of PIC micelles as drug delivery systems 

1.4.6.7.1. PIC micelles as non-viral gene vectors  

Gene therapy is the delivery of genes to cells and tissues to treat a disease, such as 

hereditary diseases  in which a non-functional mutant gene is replaced by a functional one. 

Gene therapy has a great potential not only in the treatment of hereditary diseases but also 

in the treatment of acquired diseases, such as cancer and infectious diseases. In addition to 

delivery of functional genes, silencing of defective genes can be achieved by the 

conventional antisense technology or more recently by sequence specific gene silencing 

using small interfering RNA (siRNA).[27, 262]  Efficient gene delivery is hindered by many 

obstacles including poor tissue penetration due to large molecular weight and anionic 

nature of the genes, difficulty of targeting genes to the nucleus, instability and rapid in vivo 

elimination and poor transfection efficiency.  

In order to overcome these obstacles either viral or non viral gene vectors are used. 

Although viral vectors have the advantage of high transfection efficiency, their potential 

safety risks, as well as immunogenicity justify the search for alternative non-viral vectors. 

Among different non-viral gene vectors, those based on electrostatic interactions between 

DNA and cationic lipids (i.e. lipoplexes)[263] or DNA and cationic polymers (i.e. 

polyplexes)[264] are the most studied systems. Lipoplexes and polyplexes are not soluble at 

charge stoichiometric ratios due to charge neutralization. Water solubility of lipoplexes and 

polyplexes is preserved by using an excess of the cationic species resulting in numerous 

side effects after in vivo administration.[262] In contrast, PIC micelles, as polyplexes, have 

the ability to condense DNA and maintain their water solubility at stoichiometric ratios, 

thanks to their neutral corona (usually PEG). To be viable gene vectors, PIC micelles 
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should be stable under physiological conditions, their DNA payload should be kept 

encapsulated as long as the micelles are circulating in the blood and it should be released 

once the micelles are inside the target cells.  

The literature shows numerous examples of PIC micelles being used as non-viral 

gene vectors. For instance, PEG-b-poly(amino acids) copolymers (e.g. PEG-b-PLL, PEG-b-

PGlu) have been frequently used for the delivery of DNA, oligonucleotides and siRNA. 

Plasmid DNA (pDNA) encapsulated in PIC micelles of PEG-b-PLL was more resistant to 

degradation by nucleases than free pDNA.[180] Moreover, pDNA was more tolerable to 

physiological conditions when encapsulated in PIC micelles than pDNA encapsulated in 

polyplexes (pDNA/PLL) or lipoplexes (pDNA/lipofectamine).[258] Transfection efficiency 

of pDNA/PEG-b-PLL PIC micelles in cultured 293 cells increased with increasing the 

length of PLL segment or the mixing charge ratio (PLL/pDNA) suggesting that the 

transfection efficiency is related to the degree of pDNA condensation.[265] Following IV 

injection, naked pDNA was cleared from the blood stream within 5 minutes. In contrast, 

pDNA/PEG-b-PLL micelles had a considerably higher blood retention time. Moreover, in 

vivo gene expression was observed for up to 3 days post-injection of the micelles.[266]  

Despite these advantages of PIC micelles as gene vectors, their stability in the blood 

was not enough to permit their clinical application. To address this issue, the core of PEG-

b-PLL micelles entrapping DNA was cross linked by disulfide bonds, which are stable in 

the blood and readily hydrolyzed in the cytoplasm due to the presence of high 

concentrations of glutathione.[267] Interestingly, core-cross linked PIC micelles were stable 

under physiologic conditions and showed 100-fold higher siRNA transfection efficiency 

compared to non cross-linked micelles, which were not stable at physiological ionic 

strength.[173]
  

In addition to PIC micelles of PEG-b-poly(amino acids), those based on cationic 

aliphatic polyesters were used as delivery vectors for siRNA. Thus, Xiong et al., evaluated 

a novel family of PEG-b-PCL based copolymers with polyamine side chains on the PCL 

block for siRNA delivery. Polymers studied were PEG-b-PCL with grafted spermine (PEG-

b-P(CL-g-SP)), grafted tetraethylenepentamine (PEG-b-P(CL-g-TP)), or grafted N,N-

dimethyldipropylenetriamine (PEG-b-P(CL-g-DP)).[257] The siRNA formulated in PEG-b-
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P(CL-g-SP) and PEG-b-P(CL-g-TP) micelles demonstrated effective endosomal escape and 

efficient gene silencing. Another PCL-based copolymer for siRNA delivery was a cationic 

triblock copolymer consisting of PEG, PCL and poly(2-aminoethyl ethylene phosphate) 

(PEG-b-PCL-b-PAEEP).[268] Based on MTT assays, these new polymers were not cytotoxic 

even at polymer concentration of 1 mg/mL. PIC micelles of siRNA/PEG-b-PCL-b-PPEEA 

were effectively internalized into HEK293 cells, resulting in significant gene silencing 

activity. These studies demonstrated the promise of PIC micelles as efficient non-viral gene 

vectors. 

1.4.6.7.2. PIC micelles as delivery systems for anticancer drugs 

Cisplatin (cis-dichlorodiammineplatinum(II); CDDP) is an anticancer drug that is 

widely used for the treatment of many malignancies, including testicular, ovarian, bladder, 

head and neck, small-cell, and non-small-cell lung cancers.[269] However, its clinical use is 

limited due to emergence of intrinsic and acquired resistance and severe side effects.[270, 271] 

Moreover, it is cleared from the body by glomerular filtration within 15 min following IV 

injection.[44] PIC micelles of CDDP and PEG-b-poly(amino acids) copolymers have been 

developed in order to increase the drug half life in the blood and to enhance its 

accumulation in solid tumors.  

When aqueous solutions of CDDP and poly(amino acids) are mixed, metal 

complexation between platinum of CDDP and carboxylic acid groups of the poly(amino 

acid) segment of the copolymer trigger formation of PIC micelles. CDDP/PEG-b-PAsp 

micelles sustained drug release for over 50 h in the presence of 150 mM NaCl. Following 

IV injection to Lewis lung carcinoma-bearing mice, micelles showed a 4.6-fold higher 

CDDP accumulation in tumor sites compared to free CDDP. However, in vivo anti-tumor 

activity of micelles-encapsulated drug was similar to that of the free drug.[272] To improve 

micelles stability under physiological conditions and increase their blood circulation time, 

PEG-b-PAsp was replaced by PEG-b-PGlu. PGlu has a more hydrophobic backbone due to 

the presence of one additional CH2 group, which can increase micelles stability. This 

modification resulted in better control over drug release from the micelles under 

physiological conditions. Thus, 50% CDDP was released after 30 h and 90 h from PEG-b-
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PAsp and PEG-b-PGlu micelles, respectively.[158] Furthermore, CDDP/PEG-b-PGlu 

micelles showed longer circulation in the blood, 11% of the injected dose was detected in 

the blood at 24 h post injection, compared to 1.5% in the case of CDDP/PEG-b-PAsp 

micelles at the same time. Tumor accumulation of CDDP/PEG-b-PGlu micelles was 20-

fold higher than that of free CDDP, indicating tumor-selective targeting by the EPR effect. 

Intravenous injection of CDDP/PEG-b-PGlu micelles to tumor bearing mice showed 

complete tumor regression for more than 80% of the treated mice, with only minimal body 

weight loss (within 5% of the initial weight). In contrast, treatment with free CDDP at the 

same dose exhibited tumor regression for only 15% of treated mice and significant body 

weight loss (20% of the initial weight). The CDDP/PEG-b-PGlu micelles are now 

undergoing a phase I/II clinical trial as NC-6004 in the UK.[273, 274] 

Photodynamic therapy (PDT), which involves photosensitizers accumulation in 

solid tumors followed by local photoirradiation of solid tumors with light of a specific 

wavelength, is a promising physical approach of cancer treatment.[275, 276] Following 

photoirradiation, PSs generate reactive oxygen species (ROS), such as singlet oxygen, 

which results in photochemical destruction of tumor tissues. However, PSs readily form 

aggregates, resulting in self quenching and significant reduction in singlet oxygen 

production.[277] Moreover, PDT causes skin hyperphotosensitivity requiring the patient to 

stay in a darkened room away from light for at least 2 weeks. These side effects result from 

lack of tumor selectivity of currently approved PSs, such  as Photofrin® 

(polyhematoporphyrin esters, PHE).[278] To overcome these drawbacks and enhance the 

efficacy of PDT, phthalocyanine (Pc), an anionic photosensitizer dendrimer was 

encapsulated into PIC micelles of PEG-b-PLL.[275] The micelles showed significantly 

higher in vivo PDT efficacy than Photofrin®  in mice bearing human lung adenocarcinoma 

A549 cells. Micelles-treated mice did not show skin phototoxiciy, which was apparently 

observed for Photofrin®-treated mice, under identical conditions. Other anticancer drugs 

that have been successfully encapsulated into PIC micelles are shown in Table 1.3.  
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Table 1.3. Different drugs that have been encapsulated into PIC micelles  

Polymer Drug Application Ref. 

PEG-b-PMAA cisplatin anticancer [224] 

PEG-g-chitosan ATRA anticancer [165] 

PEG-b-PLL dendrimer phthalocyanine PDT [279] 

PEG-b-PLL anionic porphyrin PDT [181] 

PEG-b-PAsp cationic porphyrin PDT [215] 

PS-b-PNIPAM-b-PAA/ 

PEG-b-P4VP 
ibuprofen 

anti-inflammatory, 

analgesic 
[226] 

PEG-b-PAsp vasopressin ADH [160] 

PLL-g-DEX DNA gene therapy [187] 

PEG-b-MAA/PDMAEMA DNA gene therapy [280] 

PAA-b-pluronic-b-PAA doxorubicin anticancer [281] 

PEG-b-PDMAEMA heparin anticoagulant [233] 

PEG-g-chitosan DG anti-inflammatory [166] 

PEG-b-PMAA: PEG-b-poly(methacrylic acid); ATRA: all-trans retinoic acid; PEG-b-PLL: 

PEG-b-poly(L lysine); PDT: Photodynamic therapy; PEG-b-PAsp: PEG-b-poly(aspartic 

acid); PS-b-PNIPAM-b-PAA: poly(styrene)-b-poly(N-isoproply acrylamide)-b-poly(acrylic 

acid); PEG-b-P4VP: PEG-b-poly(4-vinylpyridine); PLL-g-DEX: poly(L lysine)-g-dextran; 

ADH : antidiuretic hormone; PDMAEMA: poly(2-(N,N-dimethylamino) ethyl 

methacrylate); DG: diammonium glycyrrhizinate.  
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1.4.6.7.3. PIC micelles as delivery systems for other drugs 

In addition to their usefulness in gene and cancer therapy, PIC micelles have found 

applications as delivery systems for other drugs (Table 1.3). Thus, the antifungal drug 

amphotericin B (AmB) was encapsulated into PIC micelles of PEOz-b-PAsp to reduce its 

cytotoxicity and enhance its efficacy.[175] Prolonged release of the drug from micelles 

effectively inhibited the growth of Candida albicans even after three days of 

administration. Moreover, AmB-loaded micelles showed lower cytotoxicity, in vitro and 

higher potency than the commercial AmB formulation, Fungizone®.  PIC micelles of poly 

(N-vinylpyrrolidone)-b-poly(styrene-alter-maleic anhydride/chitosan were used as a 

delivery vehicle for coenzyme A (CoA).[164] CoA was released from the micelles in 

response to change in solution pH and ionic strength showing the potential of these 

micelles for drug delivery applications. 

1.5. Nanoparticles based on modified dextran as drug carriers 

From toxicological point of view, biopolymers are ideal for pharmaceutical 

applications since they are biocompatible and biodegradable. Amongst biopolymers, the 

polysaccharides class offers the advantages of structural diversity, functional versatility and 

abundance in nature. According to their charge, polysaccharides can be classified into 

neutral, cationic or anionic. Chitosan (cationic), hyaluronic acid (anionic) and dextran 

(neutral) are the most frequently used biopolymers in the preparation of polysaccharides-

based nanoparticles.  

Dextran (Figure 1.7) is synthesized from sucrose by different bacterial strains. It is 

consisting of α-(1-6) linked D-glucose units with varying degrees of α-(1-3) branching 

depending on the bacteria used in its preparation.[282] The degree of branching may vary 

between 0.5 and 60%. Branching at α-(1-2) and α-(1-4) is also possible.[283] Dextrans 

obtained from Leuconostoc mesenteroids NRRL B-512 are of particular pharmaceutical 

interest.[282] They are characterized by their content of 95% α-1,6-glucopyranosidic 

linkages and 5% 1,3-linkages.  
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Figure 1.7. Chemical structure of dextran showing α(1-6) glycosidic linkages and α(1-3) 

branching.  

 

Dextran is soluble in many solvents including water, mild acidic and alkaline 

conditions [284], dimethyl sulfoxide, formamide, glycerol, and ethylene glycol.[285] Dextran 

is not absorbed orally since its hydrophilicity prevents its transcellular absorption while its 

size prevents its paracellular absorption in the GI tract.[286] It is degraded into low 

molecular weight fractions during passage through the GI tract.[287] Dextran is 

depolymerized by various α-1-glucosidases (dextranases) available in various organs, 

including the liver, kidney, spleen and the lower part of the GI tract.[288] The presence of 

high concentrations of dextranases in the colon allowed the preparation of colon-targeted 

dextran-based drug delivery systems for the local treatment of various colon disorders, such 

as irritable bowel syndrome, colon cancer and ulcerative colitis.[289-292] 

The pharmacokinetics of intravenously administered dextran are dependent on its 

molecular weight. Mehvar et al.[286] studied molecular weight dependence of dextran 

pharmacokinetics in rats by measuring dextran concentrations in serum and urine after IV 

injection of five different molecular weights: 4, 20, 40, 70, and 150 kDa. Dextran of high 

molecular weights (i.e. 40, 70 and 150 kDa) was detectable in the blood for up to 12 h post-

dosing. In contrast, dextran having molecular weights of 4 and 20 kDa was rapidly 

eliminated so that it was undetectable in the blood 1.5 and 3 h post-dosing, respectively. 
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Chang et al.[293] showed that neutral dextran is eliminated in rats by glomerular filtration 

without any tubular secretion or reabsorption. Therefore, renal clearance of dextran is 

reported as a fraction of the glomerular filtration rate.  

Dextran is clinically used as plasma volume expander, peripheral flow promoter and 

antithrombolytic agent for more than 5 decades.[294, 295] Other biomedical applications of 

dextran include its use as a drug carrier system. Thus, dextran hydrogels have been used for 

the delivery of various drugs, such as salmon calcitonin and vitamin E and as scaffolds for 

vascular tissue engineering.[296-298] Dextran has also been used for the preparation of 

macromolecular prodrugs through conjugation with different drugs and proteins either 

directly or through a spacer.[295] Furthermore, dextran-based nanoparticles served as 

delivery vehicles for several hydrophobic and hydrophilic drugs. Native dextran lacks the 

amphiphilicity required to form nanoparticles since it is highly water soluble and neutral. 

Therefore, dextran-based nanoparticles are obtained either by hydrophobic modification of 

dextran or by electrostatic interactions between ionic dextran derivatives and oppositely 

charged drugs. 

1.5.1. Nanoparticles of hydrophobically modified dextran (HM-DEX) 

Hydrophobic modification of dextran facilitates its self assembly into nanoparticles 

and creates microreservoirs suitable for solubilization of hydrophobic drugs. The structural 

features of dextran (Figure 1.7) with numerous hydroxyl groups along its backbone gives 

diversity in the type of bonds that can be used to attach a hydrophobic moiety. Thus, 

different hydrophobic moieties have been linked to dextran by ester, ether, amide and many 

others bonds. Table 1.4 gives examples of the various hydrophobic moieties that have been 

used to modify dextran. 
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Table 1.4. Different hydrophobic compounds used to modify dextran. 

Hydrophobic moiety Resulting polymer  Ref. 

PCL 

 

PCL-g-DEX [299-301] 

PLGA 

 

PLGA-g-DEX [302] 

Polyethyleneglycolalkyl ether 

 

PEG-Cn-g-DEX [303] 

Phenoxy, C6 and C10 alkyl chains  

 

 

 

DEX-Px, DEX-C6x, 

DEX-C10x 

[304] 

Cholic acid  

 

Cholate and 

deoxycholate esters of 

dextran  

[305] 
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Deoxycholic acid  

 

2-methoxypropene 

OCH3

 

Ac-DEX [306] 

PLA 

 

PLA-g-DEX [307] 

Styrene 

 

PS-g-DEX 

PS-b-DEX 

[308, 309] 

IBCA 

 

PIBCA-g-DEX 

PIBCA-b-DEX 

[310] 

MMA 

 

PMMA-b-DEX [311] 



46 

 

 

PLGA: poly(lactic-co-glycolic acid); PCL: poly(ε-caprolactone); PLA: poly(lactic acid); 

IBCA: isobutyl cyanoacrylate; MMA: methyl methacrylate; PS: polystyrene; Ac-DEX: 

acetalated dextran. 

Drug-loaded nanoparticles of HM-DEX have been prepared by different methods 

based on the solubility characteristics of HM-DEX and the drug. For instance, cyclosporin 

A(CsA)-loaded PEG-Cn-g-DEX micelles were prepared by the dialysis method.[303] CsA 

solution in ethanol was mixed with aqueous solution of PEG-Cn-g-DEX followed by 

dialysis against water. Gradual replacement of the organic solvent with water induces 

micelles formation and simultaneous drug incorporation in micelles core. Other examples 

of drug-loaded HM-DEX nanoparticles and their preparation methods are given in Table 

1.5.   

 

Table 1.5.  Methods used for the preparation of drug-loaded HM-DEX nanoparticles 

Polymer Drug Preparation method 
Drug contenta   

(% w/w) 
Ref. 

PLGA-g-DEX amphotericin B dilaysis 4.2 [312] 

PLGA-g-DEX clonazepam dialysis 10.2 [313] 

PLGA-g-DEX amphotericin B dialysis 4.8-18.9 [314] 

PLGA-g-DEX doxorubicin dialysis 5.7-7.5 [302] 

PCL-g-DEX tamoxifen nanoprecipitation  3.8-43.5 [315] 

PCL-g-DEX indomethacin dialysis ND [299] 

PCL-g-DEX coumarin-6 oil/water emulsion ND [316] 

PEG-Cn-g-DEX cyclosporin A dialysis 1.5-4.8 [303] 

Ac-DEX ovalbumin double emulsion  3.7 [306] 
a: Drug content = weight of drug in nanoparticles X 100 / total weight of nanoparticles. 

ND: not determined. 
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Nanoparticles of HM-DEX usually have a core-corona structure with the 

hydrophobic chains forming the core and dextran forming the corona. Nanoparticles core is 

used to solubilise hydrophobic drugs (Table 1.5) whereas the dextran shell reduces protein 

adsorption and uptake by the MPS cells and thus, prolong the nanoparticles circulation in 

the blood. The configuration of dextran chains over nanoparticles surface had a crucial role 

in determining their interaction with biological systems.[317, 318] Thus, PCL-g-DEX 

nanoparticles with dextran chains organized as larger and looser loops adsorbed higher 

amounts of bovine serum albumin compared to nanoparticles having dextran chains 

arranged in dense and compact configuration.[319] Moreover, PMMA nanoparticles with 

dense brush-like dextran shell had significantly higher blood circulation time than uncoated 

PMMA nanoparticles. Uncoated PMMA nanoparticles were eliminated from the blood in 

few minutes whereas DEX-PMMA nanoparticles were slowly eliminated over a period of 

more than 48 h.[90]  

1.5.2. Nanoparticles based on ionic dextran derivatives 

These nanoparticles are formed by electrostatic interactions between ionic dextran 

derivatives, either anionic or cationic and an oppositely charged polymer, protein, drug or 

DNA. Contrary to nanoparticles of HM-DEX where dextran forms the nanoparticles shell, 

nanoparticles of ionic dextran have a core of dextran electrostatically linked to a drug. 

Dextran sulfate (anionic), diethylaminoethyl-dextran (DEAE-DEX) (cationic) and dextran-

spermine (DEX-SPM) (cationic) are the most commonly used ionic dextrans for 

nanoparticles formation (Figure 1.8). Dextran sulfate forms nanoparticles by strong 

electrostatic interactions with positively charged polymers, such as chitosan [259, 320, 321], 

polyethylenimine (PEI) [322, 323], poly(L lysine) (PLL)[324] and polyallylamine.[325] 

Nanoparticles of dextran sulfate/chitosan have been used to encapsulate several drugs, such 

as insulin, amphotericin B and doxorubicin.[321, 326, 327] Cationic dextrans (e.g. DEAE-DEX 

and DEX-SPM) have been used as non-viral gene vectors due to their ability to condense 

DNA.[328, 329] 
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Figure 1.8. Chemical structure of dextran sulfate, DEAE-dextran and DEX-SPM. 

 

1.6. Thesis rationale and research objectives 

1.6.1. Rationale 

Dextran is a well-known biocompatible and biodegradable polysaccharide that has 

been in clinical use for more than 5 decades.[295] Different kinds of dextran-based drug 

carrier systems, such as nanoparticles, microparticles and hydrogels have been prepared 

and evaluated for the delivery of numerous drugs. Among these different carriers, 
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nanoparticles are, on many levels, the most promising ones because of their outstanding 

performance, both in vitro and in vivo. Most of these drug carriers were designed to 

encapsulate hydrophobic drugs. Little work was devoted to the development of dextran-

based nanoparticles for the delivery of ionic water soluble drugs. PIC micelles are formed 

by electrostatic interactions between an ionic drug and oppositely charged copolymer. PIC 

micelles have found several applications in drug delivery due to their unique characteristics 

of straightforward preparation, small size, high drug loading capacity and excellent 

colloidal stability.[153, 164, 177] However, very few PIC micelles were based on 

polysaccharides, such as chitosan and none at all was based on dextran. This, together with 

the success of PEGylated nanoparticles and the favorable properties of dextran prompted us 

to develop dextran-block-PEG copolymers suitable for drug delivery applications. Dextran 

block of these copolymers was functionalized by connecting carboxymethyl groups at 

different degrees of substitution to give a new family of carboxymethyldextran-PEG 

(CMD-PEG) block copolymers.[330] When CMD-PEG copolymers are mixed with cationic 

drugs, PIC micelles are expected to form by electrostatic interactions between CMD 

segment of the copolymer and the cationic drug. These micelles are expected to have a 

CMD/cationic drug core surrounded by a PEG corona. Drug incorporation into the micelles 

core should sustain its release and protect it against degradation in solution. PEG corona of 

the micelles should prevent aggregation in solution and prolong their circulation in the 

blood. It was the overall aim of this project to develop PIC micelles based on CMD-PEG 

block copolymers for the encapsulation of different cationic drugs, such as aminoglycoside 

antibiotics and tetracycline antibiotics.  

Physicochemical properties of PIC micelles, as well as their performance as drug 

delivery systems are affected; to a great extent by the properties of the copolymers used to 

formulate them.[251, 331] Thus, relative block length of the ionic-neutral copolymer segments, 

charge density of the ionic block and the presence of other forces that assist in PIC micelles 

formation (e.g. hydrophobic interactions, metal coordination or hydrogen bonding) have 

been shown to affect PIC micelles properties.[152] To reveal the effect of these parameters 

on the properties of CMD-PEG micelles, we developed four CMD-PEG copolymers: (i) 

two copolymers identical in terms of the length of CMD and PEG blocks, but different in 
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terms of the charge density of the CMD block; and (ii) two copolymers in which the 

charged block is the same, but the PEG block is of different molecular weight. The 

micellization of these four copolymers with a model water soluble cationic drug, 

diminazene diaceturate was studied. The polymer that showed the most satisfactory results 

in terms of various drug delivery aspects, such as high drug loading, controlled drug release 

and micelles stability was chosen for encapsulation of other cationic drugs, such as 

aminoglycoside and tetracycline antibiotics (different properties of the drugs used in this 

thesis are given in appendix D).  

1.6.2. Research objectives 

1. To synthesize and characterize a series of CMD-PEG copolymers of different 

relative block lengths and ionic charge densities.  

2. To study the effect of CMD-PEG relative block length and ionic charge density on 

the properties of PIC micelles formed with a model water soluble cationic drug, 

diminazene diaceturate.  

3. To develop and characterize a CMD-PEG micelle formulation encapsulating 

minocycline hydrochloride, a neuroprotective tetracycline as a potential treatment of 

several diseases, such as stroke, amyotrophic lateral sclerosis and Parkinson’s 

disease.   

4. To develop and characterize CMD-PEG PIC micelles formulations encapsulating 

various aminoglycoside antibiotics, such as neomycin and paromomycin for the 

treatment of bacterial infections caused by gram negative bacteria.  

5. To improve the stability of aminoglycosides/CMD-PEG micelles against increase in 

salinity by hydrophobic modification of the CMD block. 
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2.1. Abstract 

The micellization of a model cationic drug, diminazene diaceturate (DIM) and a 

series of new diblock copolymers, carboxymethyldextran-poly(ethylene glycols) (CMD-

PEG), were evaluated as a function of the ionic charge density or degree of substitution 

(DS) of the carboxymethyldextran block and the molar ratio, [+]/[−], of positive charges 

provided by the drug to negative charges provided by CMD-PEG. Micelles ([+]/[−] = 2) 

incorporated up to 64% (w/w) DIM and ranged in hydrodynamic radius (RH) from 36 to 50 

nm, depending on the molecular weight and DS of CMD-PEG. The critical association 

concentration (CAC) was on the order of 15–50 mg/L for CMD-PEG of DS > 60%, and ca. 

100 mg/L for CMD-PEG of DS ∼ 30%. The micelles were stable upon storage in solution 

for up to 2 months and after freeze-drying in the presence of trehalose. They remained 

intact within the 4 < pH < 11 range and for solutions of pH 5.3, they resisted increases in 

salinity up to ∼0.4 M NaCl in the case of CMD-PEG of high DS. However, micelles of 

DIM and a CMD-PEG of low DS (30%) disintegrated in solutions containing more than 0.1 

M NaCl, setting a minimum value to the DS of copolymers useful in in vivo applications. 

Sustained in vitro DIM release was observed for micelles of CMD-PEG of high DS ([+]/[−] 

= 2). 

2.2. Author Keywords 

Polyion complex micelles; Dextran; Electrostatic interactions; Polyelectrolytes; 

Diminazene diaceturate; Hydrophilic drug 

2.3. Introduction 

Polysaccharides are ubiquitous components of traditional pharmaceutical 

formulations where they act as coatings or suspending agents, tablet binders and extended-

release matrix formers.[1, 2] They are also known to possess self-assembling qualities and to 

undergo stimuli-responsive transformations, such as heat- or salt-triggered gelation. More 

recently, polysaccharide-based nanostructures have emerged as promising materials for 
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biological and medical applications.[3] Micellar systems based on dextran[4], cellulose 

ethers[5], poly(ethylene glycol)(PEG)-grafted chitosans[6], hyaluronan-block-poly(2-ethyl-2-

oxazoline)[7] or pullulans, have been shown effective nanocarriers for various drugs and 

proteins. [6-9] In most cases polysaccharide nanoparticles were designed for the delivery of 

hydrophobic drugs. Fewer studies have been devoted to polysaccharide-based nanoparticles 

for the delivery of highly water soluble drugs. To address this issue, we developed a 

straightforward synthesis of carboxymethyldextran-block-poly(ethylene glycol)s (CMD-

PEG, Figure 2.1).[10] The CMD-PEG copolymers were designed specifically as substrates of 

tunable charge density, able to form polyion complex (PIC) micelles upon interaction with 

an oppositely charged drug. The charge density of the ionic segment cannot be adjusted 

readily in the case of diblock copolymers used in most PIC-micelle-based drug delivery 

systems, in which the ionic fragment is usually a poly(amino acid) bearing a charge on each 

repeat unit. Since the number of charged groups linked to the ionic segment determines the 

loading efficiency and drug release characteristics of PIC micelles, the control of charge 

density adds a new dimension in the design of drug-loaded PIC micelles which we set 

about to explore. 

We compare the properties of PIC micelles formed by four CDM-PEG copolymers: 

(i) two copolymers identical in terms of the length of each block, but different in terms of 

the charge density of the CMD block and (ii) two copolymers in which the charged block is 

the same, but the neutral block is of different molecular weight. This strategy enabled us to 

determine the optimal charge density required to form stable micelles with high drug 

loading efficiency, small size, and suitable drug release profiles of diminazene 

diaceturate(DIM), a dicationic molecule used as model drug. DIM is effective in the 

treatment of trypanosomiasis in animals.[11] It has been used previously to demonstrate the 

formation of PIC micelles with poly(aspartic acid)-block-poly(ethylene glycol)[12] and 

poly(ethylene oxide)-block-poly(L-glutamate).[13]   
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Figure 2.1. Idealized  chemical structure of carboxymethyldextran-block-poly(ethylene 

glycol) (CMD-PEG); n represents the number of ethylene glycol units, m is the number of 

glucopyranose rings of the polysaccharide block, and x represents the fraction of glucose 

units of the dextran chain that bear a carboxymethyl group. The polysaccharide segment 

consists of a random distribution of glucopyranose units and carboxymethyl glucopyranose 

units. 

 

We characterize the micelles formed between diminazene and the four CMD-PEG 

copolymers and assess the effect of charge density on the physico-chemical properties of 

the micelles, on their stability as a function of salinity, pH, and storage time, and on the 

drug release kinetics. In order to determine the level of drug loading as a function of charge 

density, we used static and dynamic light scattering which, together with 
1
H NMR 

spectroscopy, allow one to characterize drug-loaded micelles and to detect drug molecules 

dissolved in the aqueous medium (free drug). 
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2.4. Materials and methods 

2.4.1. Materials 

Trizma
®

hydrochloride (Tris–HCl), diminazene diaceturate (≥ 90% pure, as stated by 

the supplier), d(+) trehalose dihydrate, Amberlite
® 

IR-120 and all other chemicals were 

purchased from Sigma–Aldrich Chemicals (St. Louis, MO, USA). The drug (m.p. = 215–

217 ºC) was used without further purification. The purity of DIM was estimated to be ≥ 

96% on the basis of the 1H NMR spectrum of DIM in D2O. Dextran-PEG (DEX-PEG) 

samples were synthesized as described previously.[10] Dialysis tubing (SpectraPore, 

MWCO: 1000 or 3500 g/mol) was purchased from Fisher Scientific (Rancho Dominguez, 

CA, USA). All solvents were reagent grade and used as received.  

2.4.2. Synthesis of carboxymethyldextran-block-poly(ethylene glycols) 

(CMD-PEG) 

CMD-PEG samples of high charge density were obtained according to the protocol 

previously reported.[10] The method is described briefly below and the amounts of reagents 

and solvents employed in each synthesis are given in Table 2.1. Sodium hydroxide was 

added to a solution of DEX-PEG in an isopropanol–water mixture (85:15 v:v) kept at room 

temperature. The reaction mixture was heated to 60 ºC and kept at this temperature for 30 

min. Monochloroacetic acid was added portion-wise to the mixture while stirring. The 

reaction mixture was kept at 60 ºC for 90 min. It was cooled to room temperature, 

transferred in a dialysis bag and dialyzed against water for 24 h. The purified copolymers 

were isolated by lyophilization and characterized by 
1
H NMR (D2O, 400 MHz) δ/ppm: 5.07 

(anomeric proton on glucopyranose bearing a carboxymethyl group at C2), 4.89 (anomeric 

proton on glucopyranose unsubstituted at C2), 4.15–4.08 (–CH2COONa), 3.97–3.36 (CMD 

C-2 to C-6 glucopyranosyl protons), 3.61 (PEG, –CH2CH2O–), 3.29 (–OCH3). It was found 

advantageous to carry out the carboxymethylation of DEX40-PEG140 copolymer on the 

crude mixture of DEX40-PEG140/PEG-NH2 (Table 2.2) since the separation of this 
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copolymer resulted in low yield (~30 %) due to the partial solubility of DEX40-PEG140 in 

hot ethanol. 

To prepare samples of low degree of carboxymethylation, such as 30-CMD68-

PEG64, the carboxymethylation was achieved by adding monochloroacetic acid to a stirred 

solution of DEX68-PEG64 in aqueous NaOH kept in an ice/water bath, followed by 

treatment at 60 ºC for 1 h. The resulting polymer was purified as described above.
1
H NMR 

(D2O, 400 MHz) δ/ppm: 5.07 (anomeric proton on glucopyranose bearing a carboxymethyl 

group at C2), 4.88 (anomeric proton on glucopyranose unsubstituted at C2), 4.15–4.08       

(–CH2COONa), 3.95–3.36 (CMD C-2 to C-6 glucopyranosyl protons), 3.61 (PEG,–

CH2CH2O–), 3.29 (–OCH3). 

 

Table 2.1. Experimental conditions for the carboxymethylation of DEX-PEG copolymers 

Polymer 

DEXn-PEGm  

NaOH 

(mmol)

MCAa 

(mmol) 

Isopropanol / 

Water (mL) g       mmol Glub 

85-CMD40-PEG140 
c 2.20d - 16.51 8.80 9.95 / 1.75 

80-CMD40-PEG64 0.50 2.19 10.68 5.69 6.43 / 1.17 

60-CMD68-PEG64 0.27 1.6 7.50 4.00 4.53 / 0.80 

30-CMD68-PEG64 0.50 3.0 24.00 14.0 0.00 / 4.00 

a MCA: monochloroacetic acid. 
b Glu: glucopyranosyl.  
c : The prefix denotes the degree of  carboxymethylation of the dextran block. 

d: Mixture of DEX40-PEG140 and unreacted PEG-NH2.   

2.4.3. Methods 

2.4.3.1. General methods 

1H NMR spectra were recorded for solutions in D2O (25 ºC) using a Bruker AV-400 
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MHz spectrometer operating at 400 MHz. Chemical shifts are given relative to external 

tetramethylsilane (TMS = 0 ppm). Gel permeation chromatography (GPC) measurements 

were carried out using a GPC system with an Agilent 1100 isocratic pump, a Dawn EOS 

multiangle laser light scattering detector (Wyatt Technology Corp., Santa Barbara, USA) 

and an Optilab DSP interferometric refractometer (Wyatt Technology Corp.) using PL-

aquagel-OH 40 (8 μm) and PL-aquagel-OH 30 (8 μm) columns (Polymer Laboratories, 

Amherst, MA, USA) eluted with a pH 7.02 buffer composed of 0.2 M NaNO3, 0.01 M 

NaH2PO4, 0.08 mM NaN3 at a flow rate of 0.5 mL/min. Solutions for analysis had a 

polymer concentration of 10.0 mg/mL and the injection volume was set at 100 μL. For 

dn/dc measurements, solutions of each polymer of concentration ranging from 0.2 to 1.0 

mg/mL were prepared in the same buffer. UV–vis absorption spectra were recorded with an 

Agilent 8452A photodiode array spectrometer. Zeta-potential measurements were carried 

out with a Malvern ZetaSizer Nanoseries ZS (Malvern Instruments, Worcestershire, UK). 

Lyophilizations were performed with a Virtis (Gardiner, NY, USA) Sentry Benchtop (3L) 

freeze-dryer. Melting point was measured with a Büchi 535 capillary melting point 

apparatus (Büchi, Switzerland). 

2.4.3.2. Light scattering 

Static (SLS) and dynamic (DLS) light scattering experiments were performed on a 

CGS-3 goniometer (ALV GmbH) equipped with an ALV/LSE-5003 multiple-τ digital 

correlator (ALV GmbH), a He-Ne laser (λ = 632.8 nm), and a C25P circulating water bath 

(Thermo Haake). The SLS data were analyzed according to the Zimm method.[14] The 

refractive index increment (dn/dc) values of the CMD-PEG samples (Table 2.2) and of 

diminazene diaceturate (0.2543 mL/g) in Tris–HCl buffer, pH 5.3 were measured using an 

Optilab DSP interferometric refractometer (Wyatt Technology Corp.). The dn/dc value of 

the micelles was calculated from Eq. (1).[15, 16]  
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Where (dn/dc)CMD-PEG  and (dn/dc)drug are the refractive index increments  of CMD-PEG 

and diminazene diaceturate, respectively, and  WCMD-PEG and Wdrug are the weight fractions 

of  CMD-PEG and diminazene diaceturate, respectively. A cumulant analysis was applied 

to obtain the diffusion coefficient (D) of the micelles in solution. The hydrodynamic radius 

(RH) of the micelles was obtained using the Stokes-Einstein Eq. (2),  

           
Hs

B

R6

Tk
D

πη
=                                                                   (2) 

Where ηs is the viscosity of the solvent, kB is the Boltzmann constant, and T is the absolute 

temperature. The constrained regularized CONTIN method was used to obtain the particle 

size distribution.[17] The data presented are the mean of six measurements ± S.D.  Solutions 

for analysis were filtered through a 0.45 μm Millex Millipore PVDF membrane prior to 

measurements. 

Table 2.2. Molecular properties of the CMD-PEG samples prepared 

Polymer dn/dca (mL/mg) Mw
b (g mol-1) Mn

b (g mol-1) DSc

85-CMD40-PEG140
d 0.1416 14,800 10,800 0.86 ± 0.09 

80-CMD40-PEG64 0.1434 12,200 10,200 0.76 ± 0.08  

60-CMD68-PEG64 0.1376 16,800 13,400 0.62 ± 0.06 

30-CMD68-PEG64 0.1392 15,900 12,000 0.31 ± 0.03 

a: Values recorded for polymer solutions in 25 mM Tris–HCl pH 5.3, 25 ºC.  
b: From GPC measurements in aqueous NaNO3 (0.2 M)/NaH2PO4 (0.01 M)/NaN3 (0.8 

mM); pH 7.02.  
c: Degree of substitution: mol fraction of glucopyranose units carrying a –CH2–COONa 

group; determined by potentiometric titration.  
d: In this nomenclature, the prefix denotes the degree of carboxymethylation of the dextran 

block; the subscripts designate the average number of glucopyranosyl and –CH2–CH2–O– 

repeat units of the CMD and PEG segments, respectively. 
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2.4.3.3. Preparation and characterization of the micelles 

2.4.3.3.1. General method 

Stock solutions of the diblock copolymers (1.0 g/L) and diminazene diaceturate (4.0 

g/L) were prepared in Tris–HCl buffer (25 mM, pH 5.3). Specified volumes of the 

diminazene diaceturate solution were added dropwise to a magnetically stirred polymer 

solution over a 10-min period to obtain solutions with a [+]/[−] ratio ranging from 0.2 to 

5.0. For simplicity reasons the [+]/[−] ratio was calculated assuming a drug purity of 100%. 

The uncertainty of the ratio is estimated to be ∼0.08 knowing that the purity of the drug is 

≥96%. The volume of each sample was adjusted to 5.0 mL by addition of the same buffer. 

The final CMD-PEG concentration was 0.2 g/L in all samples. 

2.4.3.3.2. pH studies 

A micellar solution (CMD-PEG: 0.2 g/L; [+]/[−] = 2.0) was prepared in 25 mM 

Tris-HCl buffer, pH 5.3. Aliquots of this solution were treated either with 1.0 N NaOH or 

with 1.0 N HCl to obtain solutions ranging in pH from 11 to 2. After each pH adjustment, 

the sample was stirred for 5 min prior to measurement. The hydrodynamic radius, 

polydispersity index and scattered light intensity of an aliquot of the sample were 

determined by DLS. A control experiment was carried out with CMD-PEG solutions (0.2 

g/L) treated in the same pH range. The mean ± S.D. of six measurements was determined. 

2.4.3.3.3. Ionic strength studies 

Micellar solutions (CMD-PEG: 0.2 g/L; [+]/[−] = 2.0) were prepared in a 25 mM 

Tris–HCl buffer of pH 5.3. Aliquots of a NaCl stock solution (2.5 M) in the same buffer 

were added to the micellar solutions in volumes such that [NaCl] in the sample ranged from 

50 to 600 mM. The mixture was stirred for 5 min and the volume of each sample was 

adjusted to 5.0 mL with Tris–HCl buffer, pH 5.3. The hydrodynamic radius, polydispersity 

index and scattered light intensity of an aliquot of each sample were determined by DLS 

measurements. The mean ± S.D. of six measurements was determined. 
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2.4.3.3.4. Critical association concentration 

Micellar solutions were prepared using the general procedure described above, with 

a polymer concentration of 0.2 g/L and [+]/[−] = 2. The micellar solutions were serially 

diluted with Tris–HCl (25 mM, pH 5.3) and the intensity of light scattered by the solutions 

was determined by DLS at a scattering angle of 90º. Six consecutive scattered light 

intensity measurements were performed. Their average value is reported. Normalized 

intensities, IC/I0.2 where IC is the intensity of the light scattered by a solution of 

concentration c and I0.2 is the intensity of the light scattered by a solution of polymer 

concentration 0.2 g/L were plotted against polymer concentration. The CAC was 

determined from the plot, following methods reported previously.[18]  

2.4.3.3.5. Zeta-potential 

The ζ-potential of polymer micelles (CMD-PEG concentration: 0.2 g/L) of various 

[+]/[−] molar ratios, prepared in Tris–HCl buffer (25 mM, pH 5.3) following the general 

procedure described above, was measured for solutions kept at 25 ºC. Each sample was 

measured four times and the mean ± S.D. is presented. The ζ-potential of the particles was 

calculated from the electrophoretic mobility values using Smoluchowski equation. 

2.4.3.3.6. Stability of micellar solutions upon storage 

The RH and size distribution of polymer micelles (CMD-PEG concentration: 0.2 

g/L), [+]/[−] = 2), prepared in Tris–HCl buffer (25 mM, pH 5.3) following the general 

procedure described above, were measured by DLS as described above at various time 

intervals up to 60 days. Solutions were kept at 25 ºC between measurements.  

2.4.3.3.7. 1H NMR spectra of DIM/CMD-PEG mixtures 

Specified volumes of a DIM stock solution in D2O (10 g/L) were added dropwise to 

a magnetically stirred solution of CMD-PEG in D2O over a period of 10 min in amounts 

necessary to prepare mixed solutions of CMD-PEG (3.0 g/L) with [+]/[−] ranging from 0.2 

to 10.0. 1H NMR spectra of the mixed solutions were recorded as described above. 
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2.4.3.3.8. Lyophilization/redissolution of DIM/CMD-PEG micelles 

Micellar solutions of DIM/85-CMD40-PEG140 (10 mL, polymer concentration: 0.2 

g/L; [+]/[−] = 2.0) in a Tris–HCl buffer (25 mM, pH 5.3) or in aqueous trehalose (5%, w/v) 

were frozen by placing the glass vials containing the samples in a dry ice/acetone mixture 

(temperature: −78 ºC). After 30 min the vials were placed in the freeze-dryer and 

lyophilized for 48 h. The resulting powder was rehydrated with deionized water (10 mL) to 

reach a polymer concentration of 0.2 g/L. The resulting mixture was stirred at room 

temperature for 10 min and analyzed by DLS.  

2.4.3.3.9. Diminazene release studies 

The release of diminazene diaceturate from micelles (3.0 mL, [DIM] = 1.2 g/L, 

[+]/[−] = 2) in a Tris–HCl buffered saline (25 mM, pH 5.3, 0 mM NaCl or 25 mM, pH 7.4, 

150 mM NaCl) was evaluated by the dialysis bag method at 37 ºC against the buffer (200 

mL) used to prepare the micelles and using a dialysis membrane of MWCO = 3500 

g/mol).[19, 20] The concentration of diminazene in the dialyzate was determined from the 

absorbance at 370 nm using a calibration curve. A control experiment to determine 

diminazene diffusion through the membrane in the absence of the polymer was carried out 

using a solution of diminazene (1.2 g/L, 3 mL) in the same Tris–HCl buffer. The 

concentration of diminazene released from the micelles is expressed as the cumulative 

percentage of the total drug available and plotted as a function of dialysis time. 

2.5. Results and discussion 

2.5.1. Synthesis of carboxymethyldextran-block-poly(ethylene glycol)s 

The ionic diblock copolymers CMD-PEG were obtained by reaction of 

monochloroacetic acid (MCA) with DEX-PEG in the presence of sodium hydroxide.[10] 

Reaction conditions were adjusted in order to obtain copolymers of desired degree of 

substitution (DS), defined as the molar fraction of glucopyranose rings bearing a –

CH2COO− group. To obtain a high substitution level (DS > 0.50), solutions of DEX-PEG 
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in a 85/15 (v/v) isopropanol/water mixture were treated with aqueous NaOH (9.0 M) at 60 

ºC.[21] To achieve moderate carboxymethylation yields (DS ≤ 0.30), MCA was added to a 

solution of DEX-PEG in aqueous NaOH cooled to ∼0 ºC, with subsequent treatment at 60 

ºC for 1 h.[22] All CMD-PEG samples were isolated as their sodium salts. The successful 

incorporation of carboxylate groups onto the dextran block was ascertained by analysis of 

the 1H NMR spectrum of the CMD-PEG samples, which exhibits two doublets (δ 4.89 and 

5.07 ppm) ascribed to the resonance of the anomeric protons, a series of signals between δ 

4.08 and 4.15 ppm, due to the methylene protons α to the carboxylate group, and two 

signals characteristic of the PEG block: a singlet at δ 3.28 ppm due to the methoxy end 

group of the PEG block and a broad signal at δ 3.60 ppm due to the –CH2–CH2–O– 

groups.[10] The average molar mass of the CMD-PEG diblock copolymers measured by gel 

permeation chromatography are listed in Table 2.2, together with the degree of substitution 

(DS) of the polymers determined by potentiometric titration carried out following the 

procedure reported previously.[10]  

2.5.2. Preparation and size of diminazene/CMD-PEG micelles 

Simple mixing of diminazene diaceturate (pKa = 11)[23] and CMD-PEG in a Tris–

HCl buffer (25 mM) of pH 5.3 should trigger the formation of micellar complexes via 

electrostatic interactions, since both DIM and CMD-PEG are fully ionized at this solution 

pH. These conditions were used throughout, unless specified otherwise. Evidence for the 

formation of nanoparticles was provided by dynamic light scattering (DLS) measurements, 

exemplified in Figure 2.2 (top) which presents the size distribution recorded for a solution 

of diminazene/60-CMD68-PEG64 of charge ratio [+]/[−] = 2.0, where [+]/[−] is the ratio of 

the molar concentration of positive charges provided by the drug to that of the negative 

charges provided by the polymer. The changes in the particles hydrodynamic radius (RH) 

and polydispersity index (PDI) as a function of the ratio [+]/[−] are shown in Figure 2.2 

(bottom) for the same drug/CMD-PEG system. Particles of RH ∼50 nm with a PDI of ∼0.5 

were detected in mixed solutions containing a large excess of polymer ([+]/[−] < 0.2) 

signaling the formation of loose polymer/drug aggregates as a result of the competition 
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between drug/polymer attractive forces and repulsive forces between the negative charges 

on the CMD segments. The hydrodynamic radius and polydispersity index of the scattering 

objects reached minimum values, ∼20 nm and 0.05, respectively, in mixed solutions of 

[+]/[−]∼1, i.e., when charge neutralization is achieved. Further increase in drug 

concentration, with respect to polymer concentration, resulted in a gradual increase in the 

size of the nanoparticles until [+]/[−]∼2, implying further incorporation of diminazene 

within the micellar core, as observed also by 1H NMR spectroscopy (see below). No 

changes in RH or PDI took place upon further addition of drug, signifying that micelles with 

[+]/[−]∼2 are unable to incorporate additional drug molecules. The RH and PDI values 

recorded for all DIM/CMD-PEG systems are listed in Table 2.3 for solutions containing 0.2 

g/L of polymer and drug in amounts such that [+]/[−] = 2.0. The hydrodynamic size of 

DIM/85-CMD40-PEG140 micelles is slightly larger than that of DIM/80-CMD40-PEG64. This 

difference in size can be attributed to the difference in the length of the PEG segment of the 

two copolymers (140 EG units or Mn (PEG) ∼ 6200 g/mol vs. 40 EG units or Mn (PEG) ∼ 
2800 g/mol). Diminazene/CMD-PEG micelles of low polydispersity index, such as those 

represented in Figure 2.2 for systems of [+]/[−] > 1 were prepared by dropwise addition of 

a drug solution to a magnetically stirred polymer solution. This method consistently led to 

micelles of identical size for a given [+]/[−] ratio. However, when the drug solution was 

added in one shot to the polymer solution, the resulting micelles were significantly more 

polydisperse in size (PDI > 0.1). These PDI values are similar to those reported by 

Govender et al. in the case of DIM/poly(aspartic acid)-block-PEG systems which were 

prepared by a “one-shot” mixing.[12] In order to ascertain reproducibility of the micellar 

properties, throughout this study diminazene/CMD-PEG nanoparticles were prepared via 

the dropwise addition of the drug solution to the polymer solution. 
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Figure 2.2. (top):  Distribution of the hydrodynamic radius (RH) of micelles in a solution of 

DIM/60-CMD68-PEG64 ([+]/[-] = 2; polymer concentration: 0.2 g/L; solvent: Tris-HCl 

buffer, 25 mM, pH 5.3; temperature: 25 oC; θ: 90 oC); (bottom): plots of the changes of RH 

() and the polydispersity index (PDI, ) as a function of [+]/[-] in mixtures of DIM and 

60-CMD68-PEG64; polymer concentration: 0.2 g/L; temperature: 25 oC; θ: 90 oC. 
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Table 2.3. Characteristics of DIM/CMD-PEG micelles ([+]/[−] = 2)a in a Tris–HCl buffer 

(25 mM, pH 5.3) for four different diblock copolymers 

Polymer RH (nm)b PDIb 
CAC 

(g/L) 

Mw,app 

(X 10-6 

g/mol) 

NDIM Nagg 

% 

DIMc 

85-CMD40-PEG140
 48.7 ± 0.6 0.05 ± 0.03 0.048 8.25 12300 363 64.3 

80-CMD40-PEG64 43.5 ± 0.7 0.01 ± 0.01 0.032 7.21 10400 348 62.0 

60-CMD68-PEG64 36.9 ± 0.5 0.02 ± 0.01 0.014 4.99 7300 174 60.1 

30-CMD68-PEG64 49.7 ± 0.6 0.10 ± 0.02 0.095 3.89 3700 178 41.4 

a: [+]/[−]: ratio of the molar concentration of positive charges provided by the drug to that 

of negative charges provided by the polymer. 
b: Mean of six measurements ± S.D. 
c: % DIM loading = weight of drug/(weight of micelles)×100. 

 

In the case of DIM/30-CMD68-PEG64, micelles of uniform size distribution were 

obtained only for [+]/[−] > 1.6. The micelles were larger than DIM/60-CMD68-PEG64 

micelles of identical [+]/[−] ratio (Table 2.3). The backbone of the two copolymers (30-

CMD68-PEG64 and 60-CMD68-PEG64) is the same, but 30-CMD68-PEG64 contains about 

half as many charges as 60-CMD68-PEG64. Consequently, the level of drug incorporation in 

30-CMD68-PEG64 micelles is lower, for identical [+]/[−], compared to the situation in 

DIM/60-CMD68-PEG64.With fewer drug molecules bound to the CMD segments, the 

micellar core remains more hydrated leading to the formation of larger micelles.  

The apparent molecular weight (Mw, app) of DIM/CMD-PEG nanoparticles ([+]/[−] = 

2) was obtained by a Zimm plot analysis of static light scattering measurements. From this 

value, and knowing the weight average molecular weight of individual chains determined 

by GPC (Table 2.2), it is possible to estimate (1) the aggregation number (Nagg) of the 

micelles, defined here as the number of CMD-PEG chains associated in each micelle and 
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(2) the number (NDIM) of drug molecules incorporated in a micelle. In this calculation, it is 

assumed that there is no free drug in the mixed solutions and that each carboxylate 

substituent of the CMD block is bound to one diminazene molecule. Values of Mw, app, NDIM 

and Nagg calculated for micelles formed by CMD-PEG samples of different block lengths 

and degrees of substitution are listed in Table 2.3. The Nagg value depends primarily on the 

length of the CMD block: it is the same for the two copolymers, 30-CMD68-PEG64 and 60- 

CMD68-PEG64, which differ greatly in DS but are of identical length. The Nagg and NDIM of 

micelles formed by two polymers with similar DS and CMD block length, but different 

PEG segments (85-CMD40-PEG140 and 80-CMD40-PEG64) are similar, implying that the 

PEG segments play a passive role in directing the micellar composition, which is driven 

primarily by the CMD block. Control experiments using isothermal titration calorimetry 

confirmed the absence of interactions between PEG and DIM (Supporting information). 

2.5.3. Determination of the [+]/[−] ratios corresponding to the onset of 

micellization and to the maximum drug loading capacity by 1H 

NMR spectroscopy 

Incorporation of drug molecules in the core of polymeric micelles restricts the 

motion of the protons linked to the drug as well as that of the polymer fragments directly 

bound to the drug. This loss of mobility is reflected by a significant line broadening and/or 

disappearance of the 1H NMR signals due to the corresponding protons. We used this 

inherent property of solution NMR spectroscopy to detect the [+]/[−] ratio for which the 

drug is effectively entrapped into micelles (onset of micellization) as well as the [+]/[−] 

value for which the maximum loading capacity of a PIC micelle is attained. The method 

also allows one to ascertain the absence of free drug in a PIC-micelle formulation. It is 

described in detail, since it is applicable readily to other drug/diblock copolymer systems.  

The 1H NMR spectrum of diminazene diaceturate in D2O at room temperature 

(Figure 2.3, bottom) presents signals at δ 7.5 and 7.7 ppm, attributed to the aromatic 

protons, Hc and Hd, respectively[24], as well as singlets at δ 1.92 and 3.63 ppm assigned, 

respectively, to the methyl (Ha) and methylene (Hb) protons of the aceturate counterions. 
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Also shown in Figure 2.3 are the 1H NMR spectra of drug/60-CMD68-PEG64 solutions of 

different [+]/[−] ratios. Turning our attention first to the signals of these spectra 

corresponding to the drug, we note that (1) the signals at δ 1.92 and 3.63 ppm due to the 

drug counterion (aceturate) are sharp and well resolved in all spectra, indicating that the 

aceturates remain in solution, preserving their freedom of motion; (2) the signals in the 

aromatic region (δ 7.5 and 7.7 ppm) due to the protons of the drug are strongly affected by 

the presence of the polymer. They appear weak and broadened in the spectrum of the 

mixture with [+]/[−] = 0.2. Moreover, in the spectrum of this system, the signal attributed to 

the resonance of the protons Hd undergoes a significant upfield shift, implying a change in 

the local environment of these protons upon binding to the polymer linked carboxylates. 

Both signals in the aromatic region vanish in spectra of mixed solutions of [+]/[−] = 1.0–

2.0. They reappear in spectra of mixtures with [+]/[−] > 2.0, signaling the presence of free 

drug in the micellar solution, as seen in Figure 2.3 (right) where we present spectra of 

mixed systems with [+]/[−] = 4 and  10. 

In the 1H NMR spectra of mixed systems, one notices also changes in the signals 

due to the resonance of protons linked to the polymer. Thus, signals at δ 4.08–4.15, 4.89 

and 5.07 ppm ascribed to protons of the CMD block decrease in intensity with increasing 

[+]/[−]. They are still detectable in mixed solutions of [+]/[−] = 0.8, but disappear for 

mixed systems of [+]/[−] > 1, signaling severe loss of mobility of the CMD block under 

these conditions (Figure 2.3). In contrast, the signals due to the PEG protons (–CH2–CH2–

O–, δ 3.61 ppm) remain unaffected by changes in [+]/[−], an indication that the PEG chains 

preserve their mobility within the corona of the PIC micelles. As noted earlier, signals due 

to the DIM protons are visible in spectra of mixed systems with [+]/[−] > 2, yet the signals 

due to the CMD protons remain undetectable up to [+]/[−] = 10, the highest ratio tested. 

Thus the PIC micelles preserve their integrity even in the presence of a large excess of free 

drug.  
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Figure 2.3. 1H NMR spectra recorded for diminazene diaceturate (DIM, lower spectra) and 

solutions of DIM and 60-CMD68-PEG64 of 0 < [+]/[-] < 2 (left) and [+]/[-] = 4, 10 (right); 

polymer concentration: 3.0 g/L, solvent: D2O; temperature : 25 oC.  

 

Taken together, the results of 1H NMR experiments suggest the formation of 

micelles with some ordered structure, presumably a core-corona system, where PEG 

segments form a highly hydrated corona surrounding a core composed of diminazene 

electrostatically bound to CMD segments. Remembering that each drug molecule possesses 

two cationic centres, the 1H NMR data may be taken as an indication that micelles formed 

upon charge neutralization ([+]/[−]∼1), in which each drug molecule interacts with two 

polymer-bound carboxylates, are able to incorporate additional drug molecules, until only 

one of the two binding sites of the drug is involved in the complexation. This conclusion 

can be drawn from the combined facts that (i) signals ascribed to protons of the CMD block 

gradually decrease in intensity in spectra of mixed solutions of 0 < [+]/[−] < 1 and (ii) in 

the same mixed systems, signals of protons linked to the drug cannot be detected, whereas 
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signals due to the drug protons reappear in mixtures of [+]/[−] > 2, a ratio corresponding to 

maximum drug loading in micelles of this copolymer. For this ratio, the weight percent 

loading of drug in the micelle ranges from ∼40 to ∼65 wt% depending on the type of 

CMD-PEG (Table 2.3). An identical spectroscopic analysis was performed also to monitor 

the interactions between DIM and the copolymer 30-CMD68-PEG64, which has a lower DS 

than 60-CMD68-PEG64, but has the same molar mass. The DIM/30-CMD68-PEG64 mixed 

system followed the same trends as those depicted in Figure 2.3, except that the signals due 

the drug aromatic protons and the CMD protons remained detectable as long as [+]/[−] < 

1.6, confirming the observation from DLS experiments (see above) that micelles of this 

copolymer only form in solutions of [+]/[−] > 1.6. In the case of the samples 85-CMD40-

PEG140 and 80-CMD40-PEG64, the 1H NMR experiments revealed trends similar to those 

exhibited by the DIM/60-CMD68-PEG64 system. The results of the 1H NMR study go 

beyond mere structural information. They indicate that for in vivo applications it is crucial 

to use drug-loaded micelles of 1 ≤[+]/[−]≤ 2 in order to ascertain the absence of free drug, 

which is easily accessible to the external harsh conditions, such as those found in the GIT. 

2.5.4. Critical association concentration of diminazene/CMD-PEG 

micelles 

The minimal polymer concentration for which PIC micelles can be detected for a 

given [+]/[−] ratio, or critical association concentration (CAC), is an important parameter 

controlling the in vivo stability of a drug delivery system subjected to extensive dilution 

upon administration.[25] The CAC value of diminazene/CMD-PEG micelles depends on the 

chemical composition of the ionic diblock copolymer and on the level of drug loading 

within the micelle. It was determined for micelles formed in Tris–HCl buffer, pH 5.3 by 

each of the four diblock copolymers in the presence of diminazene in amounts such that 

[+]/[−] = 2.0. Micellar solutions ranging from 5 x 10−3 g/L to 0.2 g/L were prepared by 

dilution of a stock micellar solution (CMD-PEG: 0.2 g/L). The intensity of the light 

scattered by each solution was measured. The CAC values (Table 2.3) were taken as the 

concentration corresponding to the onset of the increase in scattered light intensity, 
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determined graphically from plots of IC/I0.2 vs. CMD-PEG concentration, where IC is the 

intensity of light scattered by a solution of CMD-PEG of concentration c and I0.2 is the 

intensity of light scattered by a solution of CMD-PEG concentration = 0.2 g/L, as shown in 

Figure 2.4. The CAC value of all micelles is very low, (<0.1 g/L of polymer) vouching for 

the stability of the micelles against dilution. The lowest value was recorded for micelles 

formed by the copolymer of longest CMD block and highest DS (60-CMD68-PEG64), 

presumably as a consequence of their high drug loading capacity. The length of the PEG 

block has only a minor influence on the CAC value of the micelles, as seen by comparing 

the values determined for 85-CMD40-PEG140 and 80-CMD40-PEG64 (Table 2.3). Similar 

trends have been reported in previous studies of other micelles.[26]  

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Plots of the changes as a function of polymer concentration of the ratio (IC/I0.2) 

of the intensity of light scattered by a solution of DIM and 60-CMD68-PEG64 () or 30-

CMD68-PEG64 () of concentration c to that of a solution of DIM and polymer of 

concentration 0.2 g/L; solvent: Tris-HCl buffer, 25 mM, pH 5.3; the arrows indicate the 

critical association concentration.  
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2.5.5. Effect of salt (NaCl) on micelle formation and stability 

Low molecular weight salts screen the charges of the ionic diblock copolymer, such 

that above a given salt concentration the micellar assemblies fall apart.[27, 28] For in vivo 

applications it is crucial to ascertain that a specific drug/diblock copolymer system can 

resist the salinity of the biological milieu. Therefore we evaluated by light scattering 

measurements the salt concentration beyond which diminazene/CMD-PEG micelles do not 

form, using aqueous DIM/CMD-PEG solutions containing from 0 to 0.6 M [NaCl]. Figure 

2.5, bottom, illustrates the dependence on salt concentration of the micellar RH and the 

scattered light intensity in the case of the DIM/85-CMD40-PEG140 system (polymer 

concentration: 0.2 g/L; [+]/[−] = 2.0). The profile can be divided into three domains: (i) for 

0 < [NaCl] ≤ 0.2 M, both RH and the scattered light intensity (ISc) increase; (ii) for 0.2 < 

[NaCl] ≤ 0.4 M, RH increases whereas ISc sharply decreases; and (iii) for [NaCl] > 0.4 M, 

RH decreases while the scattering intensity remains weak and constant. The micelles of 

diminazene and 80-CMD40-PEG64 as well as the copolymer of lower DS (60-CMD68-

PEG64) respond to changes in salinity according to the same three-zone pattern.  

The increase of RH and ISc in region I may be attributed to an overall increase in 

micellar size as a result of partial salt-induced dehydration of the PEG corona, which 

facilitates merging of micelles upon collision and promotes the formation of large micelles. 

In this region, the salinity is too low to disrupt the drug/CMD-PEG ionic interactions within 

the core of the micelle. Micelles begin to show signs of disintegration for [NaCl] ~ 0.3 M 

as detected by a decrease in scattered light intensity. This salt concentration corresponds to 

the beginning of region II. The disintegration of the micelles occurs gradually by 

progressive loosening of the core interactions and expansion of the micelle size. The 

breadth of region II is narrow, however, and in solutions of [NaCl] > 0.4 M the solution 

contains primarily isolated drug molecules and polymer chains, with possibly loose 

drug/polymer associates. Thus, all CMD-PEG micelles in which the DS of the CMD block 

was 60% or higher are able to resist salt-induced disintegration up to 0.4 M, a value 

significantly higher than the physiological salt concentration (0.15 M).  
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Figure 2.5. Plots of the changes of RH of micelles () and the intensity of scattered light (I, 

) as a function of NaCl concentration in mixtures of DIM and 30-CMD68-PEG64 (top) or 

85-CMD40-PEG140 (bottom) in Tris–HCl buffer, 25 mM, pH5.3; polymer concentration: 0.2 

g/L; [+]/[−] = 2; temperature: 25 ºC; θ: 90º; the hatched area corresponds to region II (see 

text). 
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neutralization ([+]/[−] = 2). For this system, a plot of ISc vs. [NaCl] (Figure 2.5, top) reveals 

that region I is limited to 0 < [NaCl] < 0.05 M and region II spans from 0.05 to 0.15 M. 

Solutions of higher [NaCl] exhibit low scattered light intensity ascribed to the presence of 

loosely bound objects with RH ~ 60 nm. This observation leads us to conclude that the drug 

loading must be above a threshold value for charge neutralized PIC micelles to remain 

stable under physiological conditions. In the micelles studied here, this value is reached for 

diminazene/60-CMD68-PEG64 ([+]/[−] = 2.0) micelles, but not for diminazene/30-CMD68-

PEG64 ([+]/[−] = 2.0). This result sets the lowest limit for the charge density of diblock 

copolymers useful in PIC-type drug delivery systems. 

2.5.6. Zeta-potential studies 

The interactions of nanoparticles with cells and cellular components are governed, 

at least in part, by their surface charge. The zeta (ζ) potential of DIM/85-CMD40-PEG140 

micelles in Tris–HCl (25 mM, pH 5.3) ranged from ∼ −7.6 mV for [+]/[−] = 0.6 to ∼ −3.4 

mV for [+]/[−] = 2, as expected since their charge is determined by that of the corona 

(PEG). 

2.5.7. Effect of solution pH on the stability of diminazene/CMD-PEG 

micelles 

Since the formation of polyion micelles relies on electrostatic interactions between 

oppositely charged drug and copolymer, there may exist pH conditions for which one of the 

interacting components will be neutral, triggering the disruption of the micellar core. In the 

case of the micelles described here, these conditions are attained when pH < 4 

(neutralization of CMD-PEG) or pH > 11 (neutralization of diminazene). The pH 

dependence of the RH of micelles and of the intensity of the light scattered by the solutions 

was monitored by DLS measurements which indicated that diminazene/85-CMD40-PEG140 

micelles (polymer concentration: 0.2 g/L; [+]/[−] = 2, Figure 2.6) were of constant size (RH ∼50 nm) and scattering intensity for 4 < pH< 11. Solutions brought to pH < 4.0 rapidly lost 
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their ability to scatter light, presumably as a consequence of the near complete destruction 

of the micellar assemblies. In the high pH region (pH > 11), similar changes in the 

scattering characteristics of the samples took place, although the decrease in scattering 

intensity was not as severe. Similar DLS measurements carried out with polymer solutions 

(0.2 g/L) in the absence of drug gave no evidence of polymer self-assembly. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Plots of the changes of RH of micelles () and of the intensity of scattered light 

(I, ) as a function of solution pH in mixtures of DIM and 85-CMD40-PEG140 in 25 mM 

Tris–HCl; polymer concentration: 0.2 g/L; [+]/[−] = 2; temperature: 25 ºC; θ: 90º. 
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environment of endosomes (pH∼5–6) or lysosomes (pH ∼ 4–5) following cellular uptake 

of the PIC micelles.[29] Nonetheless, the pH window of micellar stability (4–11) prohibits 

the use of DIM/CMD-PEG micelles in oral formulations, unless care is taken to avoid 

premature drug release in the stomach, such as application of an appropriate enteric 

coating.[30] 

2.5.8. Storage stability of diminazene/CMD-PEG micelles 

We assessed the stability of diminazene/CMD-PEG micelles ([+]/[−] = 2.0) in Tris–

HCl buffer, pH 5.3 at room temperature by following the evolution of their RH over a 

period of 2 months. In the case of diminazene/80-CMD40-PEG140, for instance, the micelle 

RH increased slightly (from 48.5 to 60.1 nm) over the course of the first week and remained 

constant upon further storage. Tests carried out with micelles of diminazene/CMD-PEG of 

different composition yielded similar trends, confirming the stability of the micelles. A 

slight increase in size over the first few days after micelle preparation was noticed in all 

cases. Initial experiments carried out on micellar formulations in Tris–HCl buffer (pH 5.3, 

[+]/[−] = 2.0) indicated that redissolution of the lyophilized micelles was incomplete, even 

after treatment in a sonicator bath. Moreover, the size and size distribution of the micelles 

were significantly larger, compared to those of the micelles prior to freeze-drying, with an 

RH approximately twice that of the original value and a PDI > 0.10. However, micellar 

solutions complemented with 5% (w/v) of the cryoprotectant trehalose readily dissolved in 

water after freeze drying, yielding diminazene/CMD-PEG micelles of size slightly larger 

than the original micelles. Thus, diminazene/85-CMD40-PEG140 micelles had RH values of 

50 and 75 nm, respectively, before and after freeze-drying/redissolution. The tendency of 

nanoparticulate formulations to agglomerate upon freeze-drying has been observed 

previously. Addition of cryoprotectants or cross linking of the micellar core are effective 

means to prevent agglomeration.[31-33] 
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2.5.9. Drug release studies 

The release of diminazene diaceturate from DIM/CMD-PEG micelles ([+]/[−] = 2.0) 

was monitored in vitro by the dialysis bag method using micelles formed between the drug 

and 85-CMD40-PEG140, which were shown to be stable under physiological conditions, as 

well as micelles formed with 30-CMD68-PEG64 known to disintegrate under these 

conditions. The profile recorded under physiological conditions of pH and ionic strength 

([NaCl] = 0.15 M, Tris–HCl buffer 25 mM, pH 7.4) (Figure 2.7) reveals complete drug 

release after ∼8 h. Nonetheless this profile differs significantly from that recorded for a 

drug solution used as control, especially in the initial part of the release experiment, 

implying that micelles sustain the drug release over 8 h. In salt-free conditions 

diminazene/85-CMD40-PEG140 micelles retained ∼ 40% of the drug after 24 h (50% after 8 

h, Figure 2.7), while diminazene/30-CMD68-PEG64 nanoparticles released ∼ 72% drug after 

8 h. These release profiles differ from observations of Prompruk et al. who noted that 

DIM/poly(aspartic acid)-PEG micelles undergo immediate DIM release upon dialysis.[19] 

We suggest that the enhanced stability of DIM/CMD-PEG micelles, compared to 

DIM/poly(aspartic acid)-PEG micelles, may be due to the formation of hydrogen bonds 

between the drug and the CMD block which possesses a large number of hydroxyl groups 

able to interact with the drug. This synergistic effect of weak bonds is akin to the stabilizing 

effect of drug/polymer hydrophobic interactions taking place in DIM/poly(aspartic acid-

stat-phenylalanine), which exhibits sustained drug release[19] or between poly(L-aspartic 

acid)-PEG in its free acid form and [Arg8]-vasopressin.[34] In our case, however, the 

enhanced stability is an inherent property of the charged copolymers. 
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Figure 2.7. Release of DIM evaluated by the dialysis bag method from (■) DIM alone in 

Tris–HCl 25 mM,  [NaCl] = 150 mM, pH 7.4; (▼) DIM/85-CMD40-PEG140 micelles, 

[+]/[−] = 2, in 25 mM Tris–HCl, [NaCl] = 150 mM, pH 7.4; (▲) DIM/85-CMD40-PEG140 

micelles, [+]/[−] = 2, in 25 mM Tris–HCl [NaCl] = 0 mM, pH 5.3, and (□) DIM/30-

CMD68-PEG64 at [+]/[−] = 2, in Tris–HCl, 25 mM [NaCl] = 0 mM, pH 5.3. 

2.6. Conclusion 

Four different CMD-PEG block copolymers have been tested for their ability to 

form PIC micelles with a cationic water soluble drug. The micelles formed were of small 

size (36–50 nm) and unimodal size distribution (PDI < 0.1). Properties of the micelles, such 

as their stability under different salt concentrations and drug release patterns depend 

primarily on the degree of substitution of the CMD block, which was readily adjusted by 

the synthesis protocol. Stable micelles with sustained drug release are formed if the DS of 

the CMD block exceeds a threshold value (∼40%). 1H NMR spectroscopy was used to 

determine the [+]/[−] molar ratio for which complete drug incorporation in the micelle core 

is achieved and the maximum drug loading attained. Further studies are aimed at widening 

the scope of drug/CMD-PEG micelles by assessing the characteristics of micelles formed 

by CMD-PEG and other cationic therapeutic agents, proteins and peptides. The in vivo 
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properties of drug/CMD-PEG micelles will be monitored next, since preliminary studies 

indicate that CMD-PEG samples present no toxicity towards several cell lines (Maysinger 

et al., unpublished data). 

2.7. Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the online version, 

at doi:10.1016/j.ijpharm.2007.12.029. 
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Appendix A. Supporting information (SI.2) 
 

Isothermal titration calorimetry (ITC) 

ITC Measurements were carried out with a VP-ITC instrument (from Microcal Inc) 

operated at 298 K. Samples of DIM and PEG 5000 were prepared in 25 mM Tris-HCl 

buffer adjusted to pH 5.3 ± 0.05. Prior to measurements all the solutions were degassed 

under vacuum for about 10 min to eliminate any air bubbles. The drug solution (3 g/L, 5.8 

mM) was placed in a 300 µL continuously stirred (300-rpm) syringe and added to a 1.43 

mL sample of PEG 5000 solution (0.092 g/L, 0.018 mM). The titration was performed by 

consecutive injections (10 µL) of the drug solution into the PEG solution. Heats of dilution 

were determined in blank titrations by injecting aliquots (10 µL) of the drug solution (3 

g/L, 5.8 mM) into the same buffer solution (1.43 mL). A total of 28 aliquots were injected 

into the sample cell in intervals of 325 S. The calorimetric data were analyzed and 

converted to enthalpy change using Microcal ORIGIN 7.0.  

PEG 5000 in its (-OH) form was chosen to be identical as the one in the block 

copolymers used in the study. Other experimental conditions, such as the drug and PEG 

concentrations were the same like those used in micelles preparation. Under the 

experimental conditions used, no interaction was detected between DIM and PEG since the 

ITC profiles of injecting DIM into PEG solution were not different from those of injecting 

DIM into the buffer (the blank) (Figure SI.2.1).  
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Figure SI.2.1. ITC profiles for titration 

of DIM into PEG solution in Tris-HCl 

buffer. A and B upper panel: raw 

power data, lower panel: integrated 

heats of interaction. A: titration of 

DIM into PEG, B: titration of DIM into 

the buffer, C: total energy exchanged 

as a function of the DIM/PEG molar 

ratio for titration of DIM into PEG and 

DIM into the buffer (blank).
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3.1. Abstract 

Minocycline hydrochloride (MH), a semisynthetic tetracycline antibiotic with 

promising neuroprotective properties, was encapsulated into polyion complex (PIC) 

micelles of carboxymethyldextran-block-PEG (CMD-PEG) as a potential new formulation 

of MH for the treatment of neuroinflammatory diseases. PIC micelles were prepared by 

mixing solutions of a Ca2+/MH chelate and CMD-PEG copolymer in a Tris-HCl buffer. 

Light scattering and 1H NMR studies confirmed that Ca2+/MH/CMD-PEG core-corona 

micelles form at charge neutrality having a hydrodynamic radius ~ 100 nm and  

incorporating ~ 50 wt-% MH. MH entrapment in the micelles core sustained its release for 

up to 24 h under physiological conditions. The micelles protected the drug against 

degradation in aqueous solutions at room temperature and at 37 ºC in the presence of fetal 

bovine serum. The micelles were stable in aqueous solution for up to one month, after 

freeze drying and in the presence of fetal bovine serum and bovine serum albumin. CMD-

PEG copolymers did not induce cytotoxicity in human hepatocytes and murine microglia 

(N9) in concentrations as high as 15 mg/mL after incubation for 24 h. MH micelles were 

able to reduce the inflammation in murine microglia (N9) activated by lipopolysaccharides. 

These results strongly suggest that MH PIC micelles can be useful in the treatment of 

neuroinflammatory disorders.  

3.2. Author Keywords 

Dextran, drug delivery systems, calcium complexes, minocycline, 

neuroinflammation, polyion complex micelles.  

3.3. Introduction 

There is increasing evidence from studies in cell cultures, in animal models, and 

clinical trials that some antibiotics might have beneficial anti-inflammatory effects in the 

central nervous system.[1, 2]  For example, the tetracycline antibiotic minocycline exerts 

antioxidant and anti-inflammatory effects in hyperactivated microglia in animal models of 
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stroke, inhibiting their activation and proliferation.[1, 3-5] Microglia comprise approximately 

12% of cells in the brain and predominate in the gray matter.[6] They typically exist in their 

surveyance state characterized by a ramified morphology and monitor the brain 

environment. Microglia are readily activated by a variety of stimuli, including pathogens 

producing pro-inflammatory cytokines and particulate matter (e.g. axonal debris). The 

microglial protective and destructive role depends on the degree of their activation and 

therefore agents which can modulate the activation process are clinically useful to shift the 

balance in favor of microglial protective state.[7]  Minocycline seems to be one such agent 

which has been explored as a monotherapy or in drug combinations. However, its poor 

stability and the numerous side effects related to the large doses required present serious 

limitations in terms of clinical applications. 

Minocycline is routinely administered orally for the treatment of infectious and 

inflammatory diseases, such as acne vulgaris, rheumatoid arthritis, and some sexually 

transmitted diseases, in doses on the order of 3 mg kg-1 day-1. [8]  It was shown to induce 

neurorestoration in various animal models when applied intraperitoneally in doses of up to 

200 mg kg-1 several times a day.[9, 10]      

Oral formulations for the treatment of bacterial infections contain minocycline 

hydrochloride (MH, Figure 3.1), which is an ionic compound very soluble in water.[11, 12]  

MH is well absorbed when administered orally. However, due to its numerous side effects 

it is recommended to administer it intravenously (IV).[10] It was noted, however, that after 

IV administration of MH, the levels of the drug in the brain were significantly lower than 

its concentration in the plasma, possibly as a consequence of the short MH lifetime in the 

bloodstream.[10]  MH is notoriously unstable in aqueous solution, especially in acidic or 

alkaline media where it undergoes epimerization at C4.
[11, 13, 14]  The resulting epi-MH is 

much less potent than MH and is prone to further degradation upon exposure to oxidants or 

to light.[15]    
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Figure 3.1. Chemical structures of minocycline hydrochloride (left panel) and CMD-PEG 

block copolymer (right panel).  

The poor stability of MH in biological environment and serious side effects require 

new approaches for its administration in clinics. Thus, several research groups have 

developed and evaluated new means of MH delivery.  For instance, Hu et al. have 

demonstrated that MH entrapped within PEGylated liposomes retained its activity and the 

effectiveness of IV injection of MH PEGylated liposomes every five days was comparable 

to that of daily intraperitoneal injection of MH alone.[16]  Core-shell nanoparticles with an 

inner core serving as nanocontainer for the drug and a shell providing both colloidal 

stability in aqueous media and stealth properties in the bloodstream were also assessed as 

delivery vehicles for MH. Thus, Liang et al. have prepared a micellar formulation of MH 

by entrapping it into octadecyl quaternized carboxymethyl chitosan nanoparticles.[17]  The 

MH-loaded nanoparticles were ~ 290 nm in size and contained up to 22 wt% MH. In vitro 

studies indicated that the drug could be released from the particles, but no further data on 

the effectiveness of the formulation were presented so far. Another promising approach 

consists in converting minocycline into alkanoyl-10-O-minocycline, a hydrophobic 

derivative of minocycline known to retain the antioxidant, anti-inflammatory, and antibiotic 

activities of minocycline.  In aqueous media, alkanoyl-10-O-minocyclines self-assemble 

into nanoparticles expected to partition favorably in the blood-brain barrier and to possess 

enhanced stability, compared to minocycline.[9]  The encouraging results reported on the 

use of nanoparticles for the IV administration of MH prompted us to assess formulations of 

MH using polyion complex (PIC) micelles which also belong to the class of core-shell 
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nanoparticles.[18-20] The solid core of PIC micelles contains an ionic drug neutralized by the 

ionic segment of an oppositely-charged hydrophilic diblock copolymer.[19, 21] The shell of 

PIC micelles is formed by the second segment of the diblock copolymer, usually a PEG 

chain selected in view of its hydrophilic, non toxic properties and its outstanding stealth 

characteristics in vivo.[22, 23] PIC micelles have found clinical applications in cancer 

chemotherapy and in gene delivery.[24-26] The usefulness of PIC micelles in drug delivery 

derives from their small size (~ 100 nm), high drug loading, ease of fabrication and 

handling, thermodynamic stability, and design flexibility. Since MH is an amphoteric 

molecule with an isoelectric point of 6.4, it does not interact strongly with polyelectrolytes 

under physiological conditions.[11]  Consequently, MH is not suitable, per se, for 

incorporation into PIC micelles. It is important to recall here that, like all tetracycline 

antibiotics, MH is a metal-binding antibacterial agent, known to form complexes with 

divalent or trivalent cations by chelation of the C11-C12-C1 carbonyl functionalities.[27-29]  

Previous studies have shown that, in combination with the plasma protein-bound fraction of 

MH, the calcium -bound fraction represents more than 99% of MH concentration in the 

plasma.[30] Depending on the metal salt to drug relative concentrations, MH can form 1:1 or 

2:1 metal ion: drug chelates with calcium or magnesium ions.  The 1:1 chelated form of 

MH is neutral under physiological conditions (pH 7.4), whereas the 2:1 metal ion: MH 

chelate is cationic, since the pKas of MH are 5 and 9.5 for the C7 and C4 amino groups, 

respectively.[31] This cationic form of MH should be able to undergo electrostatic 

interactions with polyanions and form PIC micelles with an appropriate hydrophilic anionic 

diblock copolymer. To test this hypothesis, we selected carboxymethyldextran-block-

poly(ethylene glycol) (CMD-PEG, Figure 3.1), a diblock copolymer that consists of a 

neutral polyethylene glycol block linked to an anionic carboxymethyldextran block in 

which approximately 85 % of the glucose units bear carboxylate groups.[32] This copolymer 

is known to be non-toxic and to form PIC micelles, 30-50 nm in radius, with cationic water 

soluble drugs, such as diminazene diaceturate, presenting high drug loading, sustained drug 

release and excellent stability.[33] The Ca2+/MH/CMD-PEG micelles are not intended for 

oral administration since calcium is known to reduce the absorption of MH by 27%.[34] 
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The objectives of the studies reported here were to prepare CMD-PEG based PIC 

micelles loaded with the 2:1 Ca2+/MH chelate and to assess their anti-inflammatory activity 

in activated microglia cells. 1H NMR spectroscopy was used to detect the formation of 

core-shell micelles in mixed solutions of CMD-PEG and 2:1 Ca2+/MH.  The size of the 

micelles and their stability under various conditions were assessed by dynamic light 

scattering (DLS) measurements.  Since MH in aqueous media is prone to rapid degradation, 

we assessed the stability upon storage in ambient conditions and at 37 oC of MH entrapped 

into PIC micelles. The viability of human hepatocytes and murine microglia (N9) treated 

with CMD-PEG was assessed using several biochemical assays. The release of the drug 

from the micelles was determined and nitric oxide release was tested in the presence and 

absence of ternary Ca2+/MH/CMD-PEG micelles in N9 microglia cells activated by 

lipopolysaccharides. The results of this study give strong indications that ternary 

Ca2+/MH/CMD-PEG micellar formulations can act as effective delivery systems for MH to 

attenuate the excessive microglia activation commonly observed in several 

neurodegenerative disorders.  

3.4. Experimental part 

3.4.1. Materials 

Water was deionized using a Millipore MilliQ system.  Minocycline hydrochloride, 

trizma®hydrochloride, amberlite® IR-120, lipopolysaccharides, bovine serum albumin 

(BSA), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were 

purchased from Sigma Aldrich, St. Louis, MO. Dialysis membranes (Spectra/por, MWCO: 

6-8 KDa, unless otherwise indicated) were purchased from Fisher Scientific (Rancho 

Dominguez, CA). The block copolymer CMD-PEG (Figure 3.1) was synthesized starting 

with dextran (Mn 6,000 g/mol) and α-amino-ω-methoxy-poly(ethylene glycol) (Mn 5,000 

g/mol), as described previously.[32] The degree of carboxymethylation of the dextran block, 

defined as the number of glucopyranose units having carboxymethyl groups per 100 

glucopyranose units, was 85 %. The average number of glucopyranosyl and of –CH2-CH2-
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O- repeat units of the CMD and PEG segments, were 40 and 140, respectively. Penicillin, 

streptomycin and Griess Reagent (1% sulphanilamide, 0.1% N-(1-naphthyl)-

ethylenediamine dihydrochloride, 5% phosphoric acid) and fetal bovine serum were 

purchased from Invitrogen (Carlsbad, CA). Human hepatocytes and murine microglia (N9) 

cell lines were from ATCC. An alamar blue (7-hydroxy-3H-phenoxazin-3-one-10-oxide 

sodium salt) stock solution was purchased from Trek Diagnostic Systems, (Cleveland, 

Ohio).  

3.4.2. Preparation of MH-loaded CMD-PEG micelles 

Stock solutions of CaCl2 (1.27 mg/mL, 8.63 mM), MH (2.33 mg/mL, 4.71 mM) and 

CMD-PEG (0.5 mg/mL, 1.74 mM -COONa) were prepared in Tris-HCl buffer (10 mM, pH 

7.4). The solution pH was adjusted to 7.4 using 0.1 M NaOH if necessary. Specified 

volumes of the CaCl2 solution were added to the MH solution to attain a Ca2+/ligand molar 

ratio of 2/1. The CaCl2/MH solution was magnetically stirred for 10 min and added over a 

10-min period to a magnetically stirred CMD-PEG solution, in amounts such that the [+]/[-

] ratio ranged from 0.5 to 2.0, where [+]/[-] is the ratio of the molar concentrations of 

positive charges provided by the Ca2+/drug complex to the negative charges provided by 

the polymer. In solutions of pH 7.4, the Ca2+/MH complex has one positively charged 

group (C4 dimethylammonium, Figure 3.1) while all the carboxylate groups of CMD-PEG 

are negatively charged (weak polyacid of pKa ~ 4.5). The CMD-PEG concentration was 0.2 

mg/mL in all samples.  Samples were stirred overnight before measurements. 

3.4.3. Characterization 

1H NMR spectra were recorded on a Bruker AV-400 MHz spectrometer operating at 

400 MHz. Chemical shifts are given relative to external tetramethylsilane (TMS = 0 ppm).  

Samples for analysis were prepared by adding aliquots of a CaCl2 solution (20.4 mg/mL, 

D2O, pH 7.4) to a MH solution in D2O (9.3 mg/mL, pH 7.4) such that the Ca2+/drug molar 

ratio was 2:1. The resulting solutions were stirred for 10 min.  They were added to a stirred 

solution of CMD-PEG in D2O (pH 7.4,) in amounts such that the [+]/[-] ratio ranged from 
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0.25:1 to 1.5:1. The final polymer concentration was 2.0 mg/mL in all the samples. Control 

solutions of MH, Ca2+/MH, and MH/CMD-PEG in D2O were prepared keeping the same 

concentrations as the metal Ca2+/ MH/CMD-PEG solutions. All samples were stirred for 

1.0 h before measurements.  

Dynamic light scattering (DLS) measurements were performed on a CGS-3 

goniometer (ALV GmbH) equipped with an ALV/LSE-5003 multiple-τ digital correlator 

(ALV GmbH), a He-Ne laser (λ = 632.8 nm), and a C25P circulating water bath (Thermo 

Haake). The scattered light was measured at a scattering angle of 90°. A cumulant analysis 

was applied to obtain the diffusion coefficient (D) of the micelles in solution. The 

hydrodynamic radius (RH) of the micelles was obtained using the Stokes-Einstein equation. 

The constrained regularized CONTIN method was used to obtain the particle size 

distribution. Samples were filtered through a 0.45 µm Millex Millipore PVDF membrane 

prior to measurements. The data presented are the mean of six measurements ± S.D.  

HPLC analysis of MH was performed on an Agilent Technologies HP 1100 

chromatography system equipped with a quaternary pump, a UV-visible diode array 

detector, a column thermostat and a HP Vectra computer equipped with the HP-

Chemstation software. The assay was carried out at 25 ºC using a 250 x 4.6 mm column 

filled with 5 µm-reversed phase C18 Hypersil® BDS (Thermo, Bellefonte, PA) eluted at a 

flow rate of 1.5 mL/min with a phosphate buffer (25 mM, pH 3.0)-methanol-acetonitrile, 

85:10:5 v/v/v/ mixture.[12] The injection volume was 40 µL and the run time was 30 min. 

MH, monitored by its absorbance at 255 nm, had a retention time ~16 min. A calibration 

curve (r2 ≥ 0.999) of MH was prepared using standard solutions ranging in concentration 

from 20 to 80 µg/mL prepared immediately prior to the assay.  

3.4.4. Stability studies 

To test the stability of MH-micelles in serum, Ca2+/MH/CMD-PEG micelles (CMD-

PEG: 0.2 mg/mL, [+]/[-] = 1.0, [Ca2+]/[MH] = 2:1) in Tris-HCl buffer (10 mM, pH 7.4) 

were prepared as described above. One set of solutions was supplemented with BSA (0, 5, 

10, 20, 30 and 40 mg/mL). Another set of samples was supplemented by 5 % fetal bovine 
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serum (FBS). Samples without serum were kept at room temperature for up to 30 days.  

Serum and BSA-containing solutions were incubated at 37 ºC for 24 h. Samples were 

analyzed by DLS at various time intervals to determine the RH and polydispersity index of 

the micelles. 

The chemical stability upon storage of MH was tested using micelles (CMD-PEG: 

0.1 mg/mL, [Ca2+]/[MH] = 2, [+]/[-] = 1.0) prepared, as described above, with stock 

solutions of MH (1 mg/mL), CMD-PEG (0.53 mg/mL), CaCl2 (0.54 mg/mL), in 10 mM 

Tris-HCl buffer, pH 7.4. The samples were kept at room temperature or at 37 ± 0.5 ºC 

without protection against light. Samples containing 5 % fetal bovine serum were prepared 

as well and kept at 37 ºC. At different time intervals, aliquots of the solutions were 

analyzed by HPLC. The data presented are the mean of three measurements ± S.D. 

To assess the micelle integrity upon freeze-drying, Ca2+/MH/CMD-PEG micellar 

solutions (3 mL, polymer concentration: 0.1 mg/mL; [+]/[-] = 1.0, [Ca2+]/[MH] = 2) in a 

Tris-HCl buffer (10 mM, pH 7.4) were frozen in a dry ice/acetone bath.  They were 

lyophilized for 48 h.  The resulting powder was rehydrated with deionized water (3 mL) to 

reach a polymer concentration of 0.1 mg/mL. The resulting micellar solution was 

magnetically stirred for 10 min and the RH and polydispersity index of an aliquot were 

determined by DLS. 

3.4.5. Drug release studies  

Identical measurements were performed with solutions (3.0 mL) in Tris-HCl buffer 

(10 mM, pH 7.4, [NaCl] = 0 or 150 mM) of MH, CaCl2/MH, and Ca2+/MH/CMD-PEG 

micelles obtained as described above with a 2:1 Ca2+/drug ratio, a 1:1 [+]/[-] ratio and 

[MH] = 0.75 mg/mL. The solutions were introduced in a dialysis tube (MWCO = 6-8 kDa).  

They were dialyzed against 150 mL of the same buffer at 37 °C. At predetermined time 

intervals, 3 mL aliquots were taken from the release medium and replaced by 3 mL of fresh 

buffer. The concentration of the drug was determined from the absorbance at 246 nm of the 

release medium samples and using a calibration curve. The cumulative percent of drug 

released was plotted as a function of dialysis time. 
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3.4.6. Cell survival and nitrite release determinations 

Human hepatocytes were cultured in Human Hepatocyte Cell Culture Complete 

Media. Murine microglia (N9) cells were cultured in IMDM media containing 5% fetal 

bovine serum and 1% penicillin-streptomycin. Cells were maintained at 37˚C (5% CO2) in 

a humidified atmosphere. For the Alamar blue assay, human hepatocytes and N9 cells were 

seeded in black, clear bottom 96-well plates (Corning) at a density of 5x104cells/cm2 and 

1x104 cells/cm2, respectively. For the MTT assay and nitrite measurement,  hepatocytes and 

N9 cells were seeded in 24-well plates (Sarstedt, Montreal, QC, Canada) at a density of 

5x104 cells/cm2 and 2x105 cells/cm2, respectively. 

Cells were given fresh media (IMDM, 5% FBS, 1% penicillin-streptomycin for N9 

cells; Human Hepatocyte Complete Media for hepatocytes) 24 h after seeding. They were 

treated with free MH (50 μg/ml), the Ca2+/MH complex (dose equivalent to 50 μg/ml MH), 

Ca2+/MH/CMD-PEG micelles (dose equivalent to 50 μg/ml MH), or CMD-PEG (0.1 – 15 

mg/ml) with or without concomitant addition of lipopolysaccharides (LPS; 10 μg/ml) for 

24 hours (37˚C, 5% CO2, humidified atmosphere).  

The alamar blue stock solution was diluted with fresh cell culture media to 10% v/v 

ratio. After cell treatment, media from each well were aspirated and 250 μL of the Alamar 

blue-media mixture were added to each well and incubated with the cells for 1 h at 37˚C 

(5% CO2, humidified atmosphere). The intensity of fluorescence at 590 nm of the reduced 

resazurin (excitation wavelength: 544 nm) was measured from the well bottom using a 

spectrofluorometer (FLUOstar OPTIMA). The percent viability was expressed as the 

fluorescence counts from treated samples over the untreated control. The colorimetric MTT 

assay was performed to assess the viability of N9 cells. One hour before the end of the 

treatment, MTT (12 μM, dissolved in sterile PBS) was added to the cells.  Following a 1-h 

incubation at 37°C, media were removed, cells were lyzed, and formazan was dissolved 

with dimethyl sulfoxide. The absorbance of the recovered formazan was measured at 595 

nm using a Benchmark microplate reader (Bio-Rad, Mississauga, ON, Canada). All 

measurements were done in triplicates in three or more independent experiments.  Nitrite 
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(NO2¯) release from N9 cells was measured using the Griess Reagent (1% sulphanilamide, 

0.1% N-(1-naphthyl)-ethylenediamine dihydrochloride, 5% phosphoric acid). After 

treatment, 50 μL of the supernatant from each well were mixed with 50 μL of Griess 

reagent in a clear bottom 96-well plate, and incubated at room temperature for 15 min. 

Absorbance at 548 nm of each sample was measured in triplicates using the microplate 

reader.   

3.5. Results and Discussion 

3.5.1. Preparation, characterization, and stability of ternary 

Ca2+/MH/CMD-PEG nanoparticles 

At the onset of the study, it was important to confirm that the 2:1 Ca2+/MH chelates 

interact electrostatically with the carboxylate groups of CMD-PEG to form core-shell 

nanoparticles and that competing electrostatic interactions between Ca2+ and the polymer 

carboxylates do not disrupt the Ca2+/drug chelation. 1H NMR spectroscopy, DLS, and 

isothermal titration calorimetry (ITC) measurements were performed to address these 

issues.  The 1H NMR assay employed  takes advantage of the fact that signals due to the 

resonance of low mobility protons broaden, and often cannot be detected at all, under 

conditions used to measure 1H NMR spectra of soluble polymers.[35] Thus, entrapment of 

the drug within the core of a micelle can be monitored readily by changes in the intensity 

and shape of 1H NMR signals, as exemplified in Figure 3.2 which presents 1H NMR spectra 

of solutions in D2O (pH 7.4) of MH, with spectral assignments taken from literature 

data[36],  of the 2:1 Ca2+/MH chelate,  of CMD-PEG, and of a mixture of CMD-PEG and the 

2:1 Ca2+/MH chelate.  The composition of this mixture was such that the molar ratio, [+]/[-

], of positive charges provided by the 2:1 Ca2+/MH chelate to the negative charges provided 

by the diblock copolymer is equal to 1 (charge neutralization).  Turning our attention first 

to the 1H NMR spectrum of the chelate (Figure 3.2B),  we note that upon binding of MH to 

Ca2+ the quartet due to the aromatic protons H8 and H9 decreases in intensity and new 

signals appear further downfield. The signal at 3.69 ppm due to H4 is also affected 
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significantly. These spectral shifts reflect conformational changes of MH upon chelation of 

C11-C12-C1 carbonyl functionalities by the cations.[27] The 1H NMR spectrum of CMD-PEG 

(Figure 3.2C) presents signals at δ 4.08-4.15, 4.89, and 5.07 ppm, ascribed to protons of the 

CMD block, and a broad strong singlet centered at δ 3.61 ppm due to the PEG methylene 

protons (-CH2-CH2-O-).[33]  The 1H NMR spectrum of a mixed solution of the diblock 

copolymer and the drug chelate in amounts corresponding to charge neutralization (Figure 

3.2D) is remarkably featureless: signals in the aromatic region due to the protons of 

chelated MH are undetectable. In the high field spectral range, one can observe a weak and 

broad signal (δ ~ 2.7 – 3.0 ppm) that can be ascribed to MH protons with restricted motion 

and (ii) a strong singlet at δ 3.61 ppm due to the PEG methylene protons.  Signals due to 

the protons of the CMD block are undetectable. The preservation of the PEG signals, 

together with the disappearance of signals due to the drug chelate and to the CMD block, 

are diagnostic in indentifying the formation of nanoparticles with a CMD/drug chelate  

rigid core and a shell made up of flexible hydrated PEG chains.  Figure 3.2E presents the 
1H NMR spectrum of a mixture of MH and CMD-PEG of drug and polymer concentrations 

identical to those of the ternary Ca2+/MH/CMD-PEG system analyzed in Figure 3.2D. The 

signals of the drug and of the polymer are sharp and well resolved, confirming that, at pH 

7.4, the drug does not interact with the polymer in the absence of Ca2+ ions.   
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Figure 3.2. 1H NMR spectra of MH (A), Ca2+/MH, ([Ca2+]/[MH] = 2.0) (B), CMD-PEG  

(C), Ca2+/MH/CMD-PEG (CMD-PEG concentration = 2.0 mg/mL, [+]/[-] =1.0, 

[Ca2+]/[MH] = 2.0) (D) and MH/CMD-PEG ([+]/[-] =1.0) (E) in D2O, room temperature, 

pH 7.4 and representative illustrations of the species examined. 
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1H NMR spectra of Ca2+/MH/CMD-PEG mixtures of [+]/[-] > 1.0 (i.e., [+]/[-] = 

1.25 and 1.5) were recorded as well (Figure SI.3.1, supporting information). They present 

signals characteristic of the metal ion/MH complex in addition to signals due to the 

micelles, confirming that maximum drug loading is achieved at charge neutrality (i.e., 

[+]/[-] = 1.0). The actual drug loading of the micelles at charge neutrality is identical to the 

theoretical drug loading, or ~ 50 wt-% of the micelles, since no signals of the free drug 

were detectable in the 1H NMR spectrum of the micelles at charge neutrality (Figure 3.2D). 

This drug loading capacity is significantly higher than the capacity of other nanoparticulate 

carriers, such as liposomes[37] and poly(lactide-co glycolide) (PLGA) nanoparticles[38], 

which usually have low encapsulation efficiencies for water soluble ionic drugs. High 

loading of drug delivery systems is highly desirable from the toxicological point of view, as 

it enhances the drug/excipients ratio and avoids overloading the body with unwanted 

chemicals. 

To confirm the formation of nanoparticles upon mixing the 2:1 Ca2+/MH chelate 

and CMD-PEG, we analyzed by DLS a series of solutions in which the polymer 

concentration was kept constant (0.2 mg/mL) while the 2:1 Ca2+/MH chelate concentration 

was increased such that the charge ratio in the mixture covered the 0 < [+]/[-] ≤ 2 range.  

Mixed solutions of [+]/[-] < 0.5 did not scatter light.  In mixed solutions with a [+]/[-] ratio 

of 0.5, micellar objects were detected. They had a hydrodynamic radius (RH) of ~ 100 nm 

and a polydispersity index (PDI) of ~ 0.2 (Figure 3.3A).  In solutions of this composition, 

only part of the copolymer carboxylate groups is neutralized by the Ca2+/MH chelate. The 

repulsion between residual carboxylates prevents the formation of tight micelles.  The RH 

value of the micelles decreases to ~ 80 nm as the [+]/[-] ratio reaches 0.75, a consequence 

of the progressive neutralization of the carboxylate groups by added Ca2+/MH chelate.  For 

[+]/[-] > 0.75, the micelle size gradually increases, indicating that additional metal ion/drug 

complex is incorporated within the micelle core.  The micelle RH reaches ~ 105 nm in 

solutions of [+]/[-] = 1.0. For this composition, which will be used in further studies, the 

amount of MH incorporated in the micelles accounts for ~ 50 wt-% of the total micelles 
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weight.  The polydispersity index (PDI) of the micelle population was ~ 0.1 for [+]/[-] > 

0.75, indicating the formation of monodispersed nanoparticles.  

The Ca2+/MH/CMD-PEG micelles ([+]/[-] = 1.0, pH = 7.4) exhibited remarkable 

stability upon storage at room temperature for periods of 1 month, or longer.  Their size and 

polydispersity index remained constant and no aggregation was detected.  Moreover, 

micellar solutions of Ca2+/MH/CMD-PEG were readily reconstituted after freeze drying by 

simple solubilization in water of the lyophilized powder, even in the absence of 

cryoprotectants.  Upon re-dissolution, the micelles recovered their size (RH ~ 100 nm) and 

colloidal stability. The micelles stability upon freeze drying and reconstitution is an 

important criterion for a pharmaceutically viable formulation, since the shelf life of a drug 

formulation in the powder form tends to be much longer than in solution. Also powders are 

easier to handle, store and transfer. 

Control experiments were carried out to confirm that addition of Ca2+ to a solution 

of either CMD-PEG or MH does not trigger the formation of nanoparticles.  The intensity 

of light scattered at an angle of 90° was determined as a function of added Ca2+ for 

solutions of increasing [Ca2+] in the ternary Ca2+/MH/CMD-PEG system and in the binary 

systems Ca2+/ CMD-PEG and Ca2+/MH  (Figure 3.3B).  For the ternary system, the 

scattered light intensity underwent a sharp increase for [Ca2+] > 0.15 mg/mL ([+]/[-] = 

0.75), an indication of the presence of micelles which, given their size, scatter light 

extensively. The intensity of scattered light for mixtures of either Ca2+/CMD-PEG or 

Ca2+/MH mixtures was weak, independently of [Ca2+]. These results, together with the 1H 

NMR results, confirm that PIC micelles incorporating MH only form in the presence of 

both the polymer and Ca2+.  The association constants of Ca2+/MH and Ca2+/CMD-PEG, 

8.9 ± 0.7 x104 M-1 and 1.17 ± 0.03 x 104 M-1, respectively, determined by isothermal 

titration calorimetry (ITC), indicate that the affinity of Ca2+ ions for MH is ~ 8 times higher 

than that for CMD-PEG (Supporting information). Therefore, in tertiary mixtures of 

Ca2+/MH/CMD-PEG, Ca2+ ions preferentially bind to MH.  
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Figure 3.3. A:  Hydrodynamic radius (RH, ♦) of Ca2+/MH/CMD-PEG micelles as a 

function of the [+]/[-] ratio; solvent: Tris-HCl buffer (10 mM, pH 7.4; CMD-PEG 

concentration: 0.2 mg/mL, [Ca2+]/[MH] = 2).  

B: Scattered light intensity as a function of calcium chloride concentration from solutions 

of Ca2+/MH/CMD-PEG micelles (■), Ca2+/MH (▲) and Ca2+/CMD-PEG (○); solvent: Tris-

HCl buffer (10 mM, pH 7.4), CMD-PEG concentration: 0.2 mg/mL. 
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3.5.2. Stability and release of MH entrapped in Ca2+/MH/CMD-PEG 

nanoparticles ([+]/[-] = 1.0, pH 7.4)  

Minocycline hydrochloride is known to degrade rapidly in aqueous solutions 

exposed to ambient light and temperature. A number of studies have shown that chelation 

of MH with Ca2+ significantly enhances the stability of the drug in solution.[12, 29]   It was 

important to confirm that the stabilizing effect of Ca2+ was preserved upon binding of the 

chelate to CMD-PEG and subsequent micellization.  We set about to determine the 

changes, as a function of storage time, of the MH concentration in solutions of ternary 

Ca2+/MH/CMD-PEG micelles ([+]/[-] = 1.0, pH = 7.4) and to compare it to [MH] in 

solutions of the drug alone, MH/CMD-PEG mixtures and the 2:1 Ca2+/MH chelate stored 

under the same conditions.  We used a standard HPLC assay for the quantitative analysis of 

MH.[12] Representative chromatograms for samples stored at room temperature are depicted 

in Figure 3.4. From the chromatograms of the solution of MH alone recorded after various 

storage periods (Figures 3.4A), one can conclude that after ~ 2 weeks, nearly all the drug 

has degraded into several faster eluting derivatives, as reported previously.[12] The same 

behavior was observed for the MH/CMD-PEG mixture (Figure 3.4B), confirming the NMR 

and DLS results that the polymer does not interact with MH in the absence of metal ions.  

Chromatograms recorded for the Ca2+/MH chelate solution (Figures 3.4C) display a 

band corresponding to MH, as the main component, even after 3 weeks of storage.  

Chromatograms of solutions stored for 2 weeks or more present in addition a weak slower 

eluting band, attributed to the MH C4 epimer based on previous studies.[12, 39] 

Chromatograms corresponding to solutions of Ca2+/MH/CMD-PEG micelles ([+]/[-] = 1.0) 

are presented in Figure 3.4D.  Their features are similar to those of the chromatograms 

recorded for the Ca2+/MH chelate solutions, confirming that the enhanced stability provided 

to the drug by Ca2+ is not affected upon incorporation of the chelate in polymer micelles.  

We note that the intensity of the band ascribed to the elution of the MH C4 epimer is 

slightly weaker in the chromatograms recorded for micellar solutions, compared to 

solutions of the Ca2+/MH chelate. This observation gives some indication that the MH 
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epimerization at C4 is somewhat slower when the Ca/MH chelate is entrapped within 

micelles, possibly as a consequence of CMD-PEG/MH chelate electrostatic interactions 

that may take place within the micellar core.  The concentrations of MH in solutions of MH 

alone, of Ca2+ chelated MH, and the micellar formulation are listed in Table 3.1 for various 

times during a 3-month period of storage at room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Chromatograms recorded upon storage at room temperature for up to 3 weeks 

of MH in Tris-HCl buffer (10 mM, pH 7.4) (A), MH/CMD-PEG (B), Ca2+/MH 

([Ca2+]/[MH] = 2.0) (C), Ca2+/MH/CMD-PEG ([+]/ [-] = 1.0, [Ca2+]/[MH] = 2.0) (D), 

[CMD-PEG] = 0.1 mg/mL. For elution conditions: see experimental section. 
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Table 3.1. Residual amount of MH upon storage at room temperature of various 

formulations of the drug in Tris-HCl buffer of pH 7.4.a 

Time (days) MHb MH/CMD-PEGc Ca2+/MHd Ca2+/MH/CMD-PEGd,e 

0 99.7 ± 1.9 100.5 ± 0.6 102 ± 0.5 98.4 ± 1.2 

1 99.3 ± 1.4 101.1± 0.2 98 ± 1.2 98.9 ± 1.3 

7 73.6 ± 0.4 72.6 ± 0.6 92.5 ± 0.6 98.3 ± 0.8 

14 7.8 ± 0.6 7.6 ± 0.5 90.6 ± 1.4 96.3 ± 0.7 

21   84.2 ± 0.9 90.9 ± 1.2 

28   80.9 ± 1.1 86.3 ± 1.3 

35   75.1 ± 0.9 81.5 ± 0.9 

42   72.0 ± 0.1 77.3 ± 1.8 

56   64.6 ± 1.4 73.4 ± 2.3 

96   48.4 ± 3.0 68.2 ± 0.6 
a: amounts are expressed in percent of the initial MH concentration. 
b:  solution of MH (0.3 mg/ mL). 
c: concentrations of MH and CMD-PEG are the same as those in Ca2+/MH/CMD-PEG 

micelles. 
d: [Ca2+]/[MH] = 2.0. 
e: [+]/[-] = 1.0. 

 

The drug stability at 37 °C was lower than at room temperature.  Nonetheless, the 

CMD-PEG copolymer still acts as a protective environment for the metal ion/drug 

complex. The concentrations of MH in solutions of MH alone, of Ca2+ chelated MH, and 

the micellar formulation are listed in Table 3.2 for various times of storage at 37 oC. Next, 

in an attempt to simulate the environment of the drug upon injection in vivo, we assessed 

the stability of MH in formulations incubated at 37oC in the presence of serum proteins. 

Addition of serum greatly enhances the stability of uncomplexed MH.  Similar effects were 

reported previously in the case of drugs, such as curcumin and attributed to the formation of 
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protein/drug complexes.[40] MH is known for its affinity to interact with serum proteins.[41]  

The micellar constructs maintained their protective effects even in the presence of serum 

proteins: after a 7-day incubation at 37 oC with serum, ~ 75 % of the drug was intact when 

complexed within Ca2+/MH/CMD-PEG micelles, whereas only ~ 30 % of the drug was still 

present in a sample of free drug treated in the same conditions (Table 3.2). 

 

 

Table 3.2. Residual amount of MH upon storage at 37 ºC of various formulations of the 

drug in Tris-HCl buffer of pH 7.4 and in the same buffer containing 5% fetal bovine 

serum.a 

Time 

(days) 

MHb Ca2+/MHc Ca2+/MH/CMD-PEGc,d 

No serum 5% serum No serum 5% serum No serum 5% serum 

0 102.3±1.3 97.1±1.3 98.9±1.6 98.3±1.4 98.1±1.3 96.6±0.5 

1 96.8±0.7 95.0±0.7 92.9±0.9 92.6±1.5 90.5±0.8 89.5±1.7 

7 3.5±0.0 31.5±0.8 64.9±2.4 76.4±0.6 66.6±1.0 74.0±2.9 

16 - 20.6±0.0 59.0±3.7 65.5±1.7 67.9±5.7 69.7±2.4 

22 -  56.6±1.6 60.7±0.5 66.6±0.5 66.6±0.3 

29 -  47.6±1.0 61.5±0.7 60.4±0.7 63.3±0.6 
a: amounts are expressed in percent of the initial MH concentration. 
b:  solution of MH (0.3 mg/ mL). 
c: [Ca2+]/[MH] = 2.0. 
d: [+]/[-] = 1.0. 

 

We conducted also in vitro drug release studies in order to assess the suitability of 

the micelles to act as drug delivery systems. The release of MH from Ca2+/MH/CMD-PEG 

micelles was evaluated by the dialysis bag method, coupled with quantitative analysis of 

the drug using its UV absorbance at 246 nm (Figure 3.5).[42] The micelles released ~ 50% 
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and 75 % drug after 8 h and 24 h, respectively. The drug release from the micelles was 

slightly faster under physiological salt concentrations (150 mM NaCl), which may be 

attributed to the weakening of the electrostatic interactions between Ca2+/MH and CMD-

PEG upon addition of salt.[19, 33] Control experiments carried out with a solution of the 

Ca2+/MH chelate revealed that drug release from this solution was significantly faster than 

from a Ca2+/MH/CMD-PEG micellar solution (Figure 3.5).  After 8 h, ~ 88 % of the drug 

was released in the case of Ca2+/MH solution, whereas for micellar solutions only 50 % 

drug was released after the same time. The sustained MH release from the micelles is 

expected to reduce the frequency of its administration, which results in fewer side effects 

and better patient compliance.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Release profiles  for MH kept at 37 ºC in Tris-HCl buffer (10 mM, pH 7.4) in 

the case of Ca2+/MH  (●), Ca2+/MH/CMD-PEG [NaCl] = 0  (■) and Ca2+/MH/CMD-PEG 

[NaCl] = 150 mM (▼). [+]/[-]  for micelles = 1.0 and [Ca2+]/[MH] = 2.0. 
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serum.  Although the interactions of the micelles with serum are the most relevant to the 

situation in vivo, BSA, which is the most abundant protein is serum, is often used as a 

model since its size and conformation are known precisely.[43] The intensity fraction 

distribution of the RH of Ca2+/MH/CMD-PEG micellar solutions ([CMD-PEG]: 0.2 mg/mL, 

[+]/[-] =1.0) and various amounts of BSA, from 0 to 40 mg/mL, are presented in Figure 

3.6A. The RH of BSA under the measurement conditions (5 mg/mL, pH 7.4) was 4.2 ± 0.1 

nm, in agreement with reported values (Figure 3.6A, top trace).[43, 44]  The RH value of 

Ca2+/MH/CMD-PEG micelles in the absence of BSA was 84 ± 2 nm (Figure 3.6A, bottom 

trace).  The presence of a signal ~ 4 nm in all BSA/micelle mixed systems, together with a 

signal ~ 90 nm indicates that the micelle integrity is preserved in the presence of BSA. The 

micellar size distribution in solutions of highest BSA concentration is slightly broader than 

in solutions devoid of BSA, possibly as a consequence of some level of BSA adsorption 

onto the micelles.  BSA, which is negatively charged under physiological conditions (pH 

7.4) could act as competing polyelectrolyte for PIC micelles and polyelectrolyte 

complexes.[19, 45] The  stability of Ca2+/MH/CMD-PEG micelles in the presence of BSA 

concentration as high as 100 times the polymer concentration is probably a consequence of 

the limited access of negatively charged BSA to the positively charged Ca2+/MH chelate 

due to its entrapment in the micelles  core.   

DLS analysis of Ca2+/MH/CMD-PEG micelles incubated for 24 h at 37 °C with 5%  

fetal bovine serum  also revealed the presence of two size populations (Figure 3.6B): (i) 

small objects of RH ~ 7 nm, identified as serum proteins by comparison with the serum DLS 

data (Figure 3.6B, top trace) and (ii) larger objects of RH, identical, within experimental 

uncertainty, to the RH of micelles incubated under the same conditions, but in the absence 

of serum (Figure 3.6B, bottom trace).  These observations confirm that the micelles 

withstand the serum environment and that protein adsorption onto micelles occurs to a 

limited extent, if at all.[46] 
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Figure 3.6. A: Normalized size distributions of Ca2+/MH/CMD-PEG micelles upon 

incubation at 37 °C for 15 h with various amounts of BSA.  Also shown are the size 

distributions recorded for micelles alone (bottom trace) and BSA alone (5 mg/mL) (top 

trace); [+]/[-]  for micelles = 1.0 and [Ca2+]/[MH] = 2.0.   

B: Normalized size distribution of Ca2+/MH/CMD-PEG micelles upon incubation at 37 °C 

for 24 h with 5 % serum; also shown are the size distributions of micelles alone after 

incubation for 24 h at 37 °C (bottom trace) and of 5 % serum alone (top trace); [+]/[-]  for 

micelles = 1.0 and [Ca+2]/[MH] = 2.0. 
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3.5.3. Cytotoxicity and anti-inflammatory effects of Ca2+/MH/CMD-PEG 

micelles 

The cytotoxic effect of CMD-PEG on the viability of human hepatocytes and 

murine microglia was evaluated by the MTT and Alamar Blue assays and confirmed by cell 

counting.  Hepatocytes were selected since the liver represents the main organ in which 

biotransformation of drugs and foreign substances takes place, while the inflamed microglia 

are the main targets of the drug in the central nervous system.[47] Cell viability did not 

change significantly after a 24 h-incubation with CMD-PEG up to a concentration of 15 

mg/mL (Figure SI.3.2, supporting information). The concentrations of CMD-PEG assessed 

were within the theoretical concentration range needed to achieve clinically relevant 

minocycline concentrations. It is anticipated that the PEG corona will prolong the micelles 

circulation in blood and reduce their uptake in the liver, as demonstrated previously with 

other PEGylated micelles.[48]  

The usefulness of micelle-entrapped MH  for attenuation of microglia activity  was 

tested in N9 microglia cells treated with lipopolysaccharides, (LPS), which are known 

inducers of microglia activation leading to the release of cytokines and nitric oxide.[49] 

Minocycline can inhibit the LPS-induced microglia activation and, in turn, reduce the 

amount of nitric oxide (NO) released.[50, 51] In the murine microglia (N9) model, a LPS dose 

of 10 μg/mL induced significant release of NO after 24 h (3.8 ± 0.1 a.u. compared to the 

untreated control (Figure 3.7)). The cells were subjected to concomitant treatments with 10 

μg/mL LPS and 50 μg/mL MH in three formulations: MH, Ca2+/MH, and Ca2+/MH/CMD-

PEG micelles or with 10 μg/mL LPS and 10 mg/mL CMD-PEG, in the absence of MH.  As 

expected, MH alone greatly reduced the NO release (0.3 ± 0.01 a.u.). A similar effect was 

induced by Ca2+/MH/CMD-PEG micelles and by Ca2+/MH chelate at concentrations 

equivalent to 50 μg/mL (Figure 3.7). This result confirms that MH is released from the 

micelles in a pharmacologically active form and that the presence of the polymer or of 

CaCl2 does not affect the drug activity. Unexpectedly, a control measurement that involved 

concomitant administration of LPS and CMD-PEG revealed that the polymer itself reduced 
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NO release by ~ 60%, compared to NO release level of the control measurement in the 

absence of CMD-PEG. If such an effect could be obtained in animal models and eventually 

in humans it could be of a significant relevance for improvement of minocycline 

effectiveness in an additive or even synergistic manner. We are currently pursuing these 

studies to assess if this polymer indeed does not only serve as a drug carrier but can also 

enhance beneficial anti-inflammatory effect of minocycline and other anti-inflammatory 

agents.  The exact mechanism of this polymer-induced reduction in NO release is not clear 

and requires further investigations.  .  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Amount of NO released in N9 microglia cells treated with MH alone, Ca2+/MH 

complex, Ca2+/MH/CMD-PEG micelles or CMD-PEG, all in the presence or absence of 10 

μg/ml of lipopolysaccharide under normal cell culture conditions. Cells were treated for 24 

h after which nitrite content in the media was measured using the Griess Reagent. All 

measurements were done in triplicates in three independent experiments. ** p<0.01, *** 

p<0.001 
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3.6. Conclusions 

Complexation of the minocycline calcium chelate into CMD-PEG PIC micelles 

leads to a significant drug stabilization upon storage and in the presence of serum under 

physiological conditions.  A similar approach may be suitable for other antibiotics and 

therapeutic agents whose stability can be increased in this manner.  Preliminary in vitro 

results indicate that while encapsulating MH into Ca2+/MH/CMD-PEG micelles has its own 

merit in stabilizing the drug, controlling its release, and reducing protein adsorption, neither 

CaCl2 nor the polymer negatively affect the anti-inflammatory activity of the drug.  These 

observations need to be strengthened by in vivo investigations aimed at assessing if such 

formulations permit administration of MH in smaller but still effective doses which could 

significantly reduce the extent and severity of its undesirable side effects.  

3.7. Appendix B. Supplementary data 

Supporting information for this article is available at the bottom of the article’s 

abstract page which can be accessed from the journal’s homepage at http://www.mbs-

journal.de. 
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Appendix B. Supporting information (SI.3) 

 

Isothermal titration calorimetry (ITC) studies 

ITC Measurements were carried out with a Microcal VP-ITC instrument (Microcal 

Inc., Northampton, MA). The experiments were carried out in 10 mM Tris-HCL pH 7.4.  

Prior to measurements all the solutions were degassed under vacuum for about 10 min to 

eliminate any air bubbles. In a typical experiment, 10 µL aliquots of CaCl2 solution (3.75 

mM) were injected from a 300 µL continuously stirred (300-rpm) syringe into a 1.43 mL 

sample of MH solution (0.25 mM). In another set of experiments, CaCl2 solution (7.5 mM) 

was injected into a 1.43 mL sample of CMD-PEG copolymer solution (1 mM 

carboxylates). Heats of dilution and mixing were determined in control experiments by 

injecting aliquots (10 µL) of CaCl2 solution into the buffer (1.43 mL). A total of 28 aliquots 

were injected into the sample cell in intervals of 300 s. The calorimetric data were analyzed 

and converted to enthalpy change using Microcal ORIGIN 7.0. The enthalpy change for 

each injection was calculated by integrating the area under the peaks of the recorded time 

and then corrected with control experiments. The binding parameters (N, K, ∆H, ∆S) were 

determined by fitting the data using the fitting models available in Microcal ORIGIN 7.0 

software.  
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Figure SI.3.1. 1H NMR spectra of Ca2+/MH/CMD-PEG micelles prepared in D2O at  [+]/[-] 

of 1.25 (A) and 1.5 (B).    

 

 

 

 

 

 

 

 

 

 

 

 

Figure SI.3.2. Cytotoxicity of CMD-PEG block polymer in human hepatocytes and murine 

microglia after treatment for 24 h with different polymer concentrations under normal cell 

culture conditions. Cell viability was assessed using the MTT and Alamar blue assays. All 

measurements were done in triplicates in three or more independent experiments.
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4.1. Abstract 

The aim of this study was to develop and characterize carboxymethyldextran-b-PEG 

(CMD-PEG) micelles as delivery systems for aminoglycoside antibiotics. Calorimetric 

studies showed that electrostatic interactions between different aminoglycosides and CMD-

PEG were associated with proton uptake by the drugs from the buffers. The number of 

protons uptaken was temperature and pH dependent. CMD-PEG micelles incorporated up 

to 50 wt% drug and had a drug/CMD-PEG core and a PEG corona. Micelles incorporating 

neomycin were smaller in size and more resistant to salt-induced disintegration than those 

of paromomycin. However, both neomycin and paromomycin micelles were unstable under 

physiological conditions (pH 7.4, [NaCl] = 150 mM). Hydrophobically modified CMD-

PEG (dodecyl-CMD-PEG) and guanidylated paromomycin were prepared to increase 

micelles stability under physiological conditions. Guanidylated paromomycin formed 

smaller and more stable micelles than paromomycin, though the micelles were unstable 

under physiological conditions. In contrast, micelles of neomycin/dodecyl-CMD-PEG 

resisted salt-induced disintegration for up to 200 mM NaCl, well above the physiological 

salt concentration. Different aminoglycosides were released from the micelles in a 

pharmacologically active form as indicated by their ability to kill a test micro-organism in 

culture. These results warrant in vivo evaluation of the optimal aminoglycoside/CMD-PEG 

micelle formulations.  

4.2. Author Keywords 

Aminoglycosides; Polyion complex micelles; Dextran; Isothermal titration 

calorimetry; Hydrophobic modification; Micelles stability. 

4.3. Introduction 

Aminoglycosides are a group of structurally diverse polyamines that have been 

frequently used in the treatment of serious infections caused by aerobic gram negative 

bacilli, such as pneumonia, urinary tract infections and peritonitis.[1, 2] The antibacterial 
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activity of aminoglycosides results from their interaction with prokaryotic ribosomal RNA 

(rRNA).[3] Aminoglycosides therapy is associated with a host of side effects due to drug 

accumulation in healthy non-target tissues. Nephrotoxicity and ototoxicity are the most 

common side effects of aminoglycosides and they are usually dose-limiting factors. 

Nephrotoxicity of aminoglycosides results from the accumulation in the kidney of a 

relatively high percentage (~ 10%) of the intravenously administered dose.[4] Moreover, 

aminoglycosides are administered parenterally or locally, rather than orally due to their 

poor absorption in the gastro-intestinal tract as a consequence of their highly polar cationic 

nature.[2, 5] 

In view of the clinical importance of aminoglycosides, much effort has been 

directed towards their encapsulation into different drug delivery systems to modify their 

biodistribution, limit their toxicity and increase their oral bioavailability. Drug delivery 

systems tested include liposomes[6-8], polymeric nanoparticles[9], solid lipid nanoparticles[10] 

and polyelectrolyte multilayers.[11] Liposome-encapsulated aminoglycosides showed 

enhanced activity against resistant strains of Pseudomonas aeruginosa due to enhanced 

entry into the bacterial cell. Transmission electron microscope (TEM) confirmed that 

liposomes interact intimately with the outer membrane of Pseudomonas  aeruginosa, 

leading to membrane deformation.[7] Each of the nanocarriers tested so far, suffer from 

several drawbacks. Liposomes, for example, have limited stability in the presence of blood 

lipoproteins, low encapsulation efficiency, osmotic fragility and are unstable upon 

storage.[9, 12, 13] Poly(lactic-co-glycolic acid) (PLGA) nanoparticles have limited drug 

loading efficiency (e.g. ~ 1 wt% for gentamicin). Gentamicin microspheres, although 

effective in reducing splenic infections in mice, triggered pulmonary embolism due to 

particles aggregation.[14]  

Polyion complex (PIC) micelles form by electrostatic interactions between an ionic 

dihydrophilic copolymer and an oppositely charged compound, such as drug, protein or 

nucleic acid.[15-18] PIC micelles present a number of advantages for biomedical applications, 

including ease of fabrication, excellent colloidal stability in aqueous media, high drug 

loading capacity, small size and narrow size distribution. They are thermodynamically 
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stable and resist disintegration upon dilution as long as their concentration exceeds the 

critical association concentration (CAC), which usually is very low. PIC micelles usually 

have a poly(ethylene glycol) (PEG) corona, which prolongs their circulation time in the 

blood allowing them to accumulate passively in tissues of leaky vasculature, such as tumors 

and inflamed tissues.[19] Carboxymethyldextran-b-PEG (CMD-PEG) copolymers are a new 

family of dextran-based anionic copolymers known to be non-toxic and to form PIC 

micelles with a number of cationic drugs.[20, 21] CMD-PEG PIC micelles had small size, 

high drug loading capacity and were stable upon freeze drying and in presence of serum 

proteins. The shortcomings of the drug carriers used, so far to deliver aminoglycosides and 

the favorable properties of CMD-PEG micelles motivated us to exploit them for 

aminoglycosides encapsulation and delivery.   

The objectives of this study were to formulate and characterize PIC micelles of 

CMD-PEG and two aminoglycoside antibiotics: neomycin sulfate and paromomycin sulfate 

(Figure 4.1). Neomycin and paromomycin are examples of 4, 5-disubstituted 2-

deoxystreptamine aminoglycosides. Their structures differ by the 6´ substituent: 6´ 

hydroxyl group in paromomycin is replaced by an amino group in neomycin. Neomycin 

and paromomycin are positively charged at pH 7.4 making them suitable for PIC micelles 

formation with polyanions, such as CMD-PEG. The thermodynamics of the interaction 

between either neomycin or paromomycin and CMD-PEG were studied by isothermal 

titration calorimetry (ITC). Factors affecting the formation and stability of 

aminoglycosides/CMD-PEG micelles, as well as optimal conditions for their preparation 

were characterized by 1H NMR spectroscopy and dynamic light scattering (DLS). Drug 

release from the micelles, as well as the ability of the released drugs to kill a test micro-

organism in culture was also investigated. 

One of the limitations of PIC micelles is their sensitivity to changes in ionic strength 

of the medium. Thus, small molecular weight salts screen the charges of oppositely charged 

species in the micelles core leading to micellar disassembly after certain salt 

concentration.[22] Herein we proposed two approaches for CMD-PEG micelles stabilization 

against increase in salinity: (i) hydrophobic modification of CMD-PEG copolymers by 
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grafting dodecyl chains at different grafting densities and (ii) guanidylation of 

paromomycin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Chemical structures of neomycin, paromomycin (top) and CMD-PEG block 

copolymer (bottom).  
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4.4. Materials and methods 

4.4.1. Materials 

Trizma® hydrochloride (Tris-HCl), sodium cacodylate, HEPES, Tricine, 

Amberlite® IR-120, neomycin sulfate, paromomycin sulfate and all other chemicals were 

purchased from Sigma-Aldrich Chemicals (St. Louis, MO). Dextran was purchased from 

Fluka Chemical Co. (Buchs, Switzerland) and its number average molecular weight was 

determined to be 6400 g/mol by gel permeation chromatography. Dialysis tubing 

(SpectraPore, MWCO: 1,000 or 6,000-8,000 g/mol) was purchased from Fisher Scientific 

(Rancho Dominguez, CA). All solvents were reagent grade and used as received. The block 

copolymer CMD-PEG (Figure 4.1) was synthesized starting with dextran (Mn 6,000 g/mol) 

and α-amino-ω-methoxy-poly(ethylene glycol) (Mn 5,000 g/mol), as described 

previously.[23] The degree of carboxymethylation of the dextran block, defined as the 

number of glucopyranose units having carboxymethyl groups per 100 glucopyranose units, 

was 85%. The average number of glucopyranosyl and of –CH2-CH2-O- repeat units of the 

CMD and PEG segments, were 40 and 140, respectively. Detailed procedures for synthesis 

of guanidylated paromomycin are given as supplementary data (Figure SI.4.1).  

4.4.2. Methods 

4.4.2.1. General methods 

1H NMR spectra were recorded for solutions in D2O (25 ºC) using a Bruker AV-400 

MHz spectrometer operating at 400 MHz. Chemical shifts are given relative to external 

tetramethylsilane (TMS = 0 ppm). Lyophilization was performed with a Virtis (Gardiner, 

NY) Sentry Benchtop (3L) freeze-dryer. UV–vis absorption spectra were recorded with an 

Agilent 8452A photodiode array spectrometer. Steady-state fluorescence spectra were 

recorded using a Varian Cary Eclipse fluorescence spectrophotometer.  
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4.4.2.2. Synthesis and characterization of hydrophobically modified CMD-PEG [24] 

 CMD-PEG (288 mg, 0.97 mmol carboxylate) was dissolved in deionized water (120 

mL) and the pH was adjusted to 4.0 using 1.0 N HCl. N-Ethoxycarbonyl-2-ethoxy-1,2-

dihydroquinoline (EEDQ) (216 mg, 0.87 mmol) was dissolved in absolute ethanol (120 

mL) and the resulting solution was added gradually to CMD-PEG. The apparent pH of the 

water/ethanol mixture was adjusted to 4.0 and kept at this value for 30 min. Subsequently, 

dodecylamine (162 mg, 0.87 mmol) was added and the pH was increased to 9.0 by 1.0 N 

NaOH and the reaction mixture was stirred for 1.0 h at this pH. The ethanol was removed 

under reduced pressure at 50 °C and the product was recovered by freeze drying. The 

resulting dodecyl-CMD-PEG was purified by soxhlet extraction with hexane for 24 h to 

remove the unreacted dodecylamine and EEDQ. Dodecyl-CMD-PEG was converted to its 

free acid form by treatment with a cation exchange resin (Amberlite® IR 120). It was 

characterized by 1H NMR spectroscopy of its solution in DMSO-d6. The grafting density 

(defined as the number of dodecyl chains per 100 glycopyranose units) was determined 

from the 1H NMR spectrum in DMSO-d6  as the ratio between the area of the signal due to 

terminal methyl protons of the dodecyl chain (0.85 ppm) and the integral due to dextran 

anomeric protons (4.66 ppm) (Figure 4.2). 
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Figure 4.2. 1H NMR spectra of CMD-PEG block copolymer (top spectrum) and dodecyl38-

CMD-PEG copolymer (bottom spectrum) recorded in DMSO-d6 at room temperature. 
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Two water-soluble dodecyl-CMD-PEG copolymers were obtained by amide bond 

formation between dodecylamine and CMD-PEG carboxylate groups: dodecyl18-CMD-

PEG and dodecyl38-CMD-PEG where 18 and 38 are the grafting densities of the dodecyl 

chains. FTIR spectrum of dodecyl38-CMD-PEG copolymers (Figure SI.4.2) show bands at 

1546 cm-1 and 1644 cm-1, attributed to the amide II and amide I vibration bands, 

respectively. Critical association concentration (CAC) was ~ 100 μg/mL for both 

dodecyl18-CMD-PEG and doecyl38-CMD-PEG (Figure SI.4.3, supporting information). 

4.4.2.3. Isothermal titration calorimetry (ITC) 

ITC Measurements were carried out with a Microcal VP-ITC instrument (Microcal 

Inc., Northampton, MA). The experiments were carried out at pH 7.0 and 8.0. The buffer 

solutions used at pH 7.0 were 10 mM phosphate, 10 mM HEPES, 10 mM sodium 

cacodylate and 10 mM Tris-HCl while at pH 8.0 the buffers used were 10 mM phosphate, 

10 mM HEPES, 10 mM Tricine and 10 mM Tris-HCl. Sufficient NaCl was added to each 

buffer solution to bring the total [Na+] to 50 mM. The experiments at pH 7.0 were carried 

out at 25 ºC and 37 °C while those at pH 8.0 were carried out at 25 ºC. The heat capacity 

change (∆Cp) associated with the binding of either neomycin sulfate or paromomycin 

sulfate to CMD-PEG was determined in sodium cacodylate buffer (10 mM, pH 7.0) by 

performing additional experiments at 20 ºC and 45 ºC. Solutions of neomycin sulfate, 

paromomycin sulfate and CMD-PEG were prepared in the buffers and their pH values were 

adjusted as required. Prior to measurements all the solutions were degassed under vacuum 

for about 10 min to eliminate any air bubbles. In a typical experiment, 10 µL aliquots of 

neomycin sulfate solution (6.0 g/L, 6.6 mM, 39.6 mM amine) or paromomycin sulfate 

solution (5.65 g/L, 7.92 mM, 39.6 mM amine) were injected from a 300 µL continuously 

stirred (300-rpm) syringe into a 1.43 mL sample of CMD-PEG solution (0.75 g/L, 2.61 mM 

carboxylate). Heats of dilution and mixing were determined in control experiments by 

injecting aliquots (10 µL) of each drug solution into the same buffer (1.43 mL). A total of 

28 aliquots were injected into the sample cell in intervals of 300 s. The calorimetric data 

were analyzed and converted to enthalpy change using Microcal ORIGIN 7.0. The enthalpy 
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change for each injection was calculated by integrating the area under the peaks of the 

recorded time and then corrected with control experiments. The binding parameters (N, K, 

∆H, ∆S) were determined by fitting the data using the fitting models available in Microcal 

ORIGIN 7.0 software.  

4.4.2.4. 1H NMR spectra of aminoglycosides/CMD-PEG mixtures 

 Specified volumes of aminoglycosides stock solutions in D2O were added dropwise 

to a magnetically stirred solution of CMD-PEG in D2O over a period of 10 min in amounts 

such that [amine]/[carboxylate] ranged from 1.0 to 5.0. The [amine]/[carboxylate] is the 

ratio of the molar concentrations of amino groups provided by the drugs to that of 

carboxylate groups provided by the polymer. The effect of salt on different neomycin 

micelles was studied by preparing the micelles in D2O at pH 7.4 and [NaCl] = 150 mM 

(polymer concentration: 2.0 g/L; [amine]/[carboxylate] = 2.5). 

4.4.2.5. Light scattering studies 

Dynamic light scattering experiments (DLS) were performed on a CGS-3 

goniometer (ALV GmbH) equipped with an ALV/LSE-5003 multiple-τ digital correlator 

(ALV GmbH), a He-Ne laser (λ = 632.8 nm), and a C25P circulating water bath (Thermo 

Haake). A cumulant analysis was applied to obtain the diffusion coefficient (D) of the 

micelles in solution. The hydrodynamic radius (RH) of the micelles was obtained using the 

Stokes-Einstein equation (1),  

 
Hs

B

R6

Tk
D

πη
=                                                                      (1)  

where ŋs is the viscosity of the solvent, kB is the Boltzmann constant, and T is the absolute 

temperature. The constrained regularized CONTIN method was used to obtain the particle 

size distribution. The data presented are the mean of six measurements ± S.D.  Solutions for 

analysis were filtered through a 0.45 μm Millex Millipore PVDF membrane prior to 

measurements. 
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4.4.2.6. Preparation and characterization aminoglycosides/CMD-PEG micelles 

4.4.2.6.1. General method 

Stock solutions of CMD-PEG or dodecyl-CMD-PEG (1.0 g/L) and aminoglycosides 

(4.96 and 5.27 g/L for paromomycin sulfate and neomycin sulfate, respectively) were 

prepared in phosphate buffer (10 mM, pH 7.0). Specified volumes of the drugs solutions 

were added dropwise to a magnetically stirred polymer solution over a 10-min period to 

obtain solutions with [amine]/[carboxylate] ratio ranging from 1.0 to 5.0. The volume of 

each sample was adjusted to 2.5 mL by the same buffer. CMD-PEG concentration was 0.2 

g/L in all samples. Hydrodynamic radius (RH), polydispersity index (PDI) and intensity of 

scattered light of an aliquot of the samples were determined by DLS. 

4.4.2.6.2. pH studies  

 A micellar solution (polymer concentration: 0.2 g/L; [amine]/[carboxylate] = 2.5) 

was prepared in phosphate buffer (10 mM, pH 7.0) following the general procedures 

described above. Aliquots of this solution were treated with either 1.0 N NaOH or 1.0 N 

HCl to obtain solutions with pH values ranging from 9.0 to 2.0. After each pH adjustment, 

the sample was magnetically stirred for 5 min before measurements. Solutions of polymers 

alone (in absence of drugs) were treated in the same way described above and used as 

controls. RH, PDI and intensity of scattered light were determined by DLS. The mean ± 

S.D. of six measurements were determined.  

4.4.2.6.3. Effect of salt (NaCl) on micelles formation and stability 

Micellar solutions (polymer concentration: 0.5 g/L; [amine]/[carboxylate] = 2.5) 

were prepared in 10 mM phosphate buffer (10 mM, pH 7.0). Aliquots of a NaCl stock 

solution (2.5 M) in the same buffer were added to the micellar solutions in volumes such 

that [NaCl] in the sample ranged from 10 to 400 mM. The mixture was stirred for 5 min 

and the volume of each sample was adjusted to 2.5 mL with the same buffer. pH of 

solutions having [NaCl] = 150 mM  was increased to 7.4 by the addition of 1.0 M NaOH, 
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followed by overnight stirring. RH, PDI and intensity of scattered light were determined by 

DLS. The mean ± S.D. of six measurements were determined. 

4.4.2.7. Effect of freeze-drying on micelles integrity 

Micellar solutions (polymer concentration: 0.2 g/L; [amine]/[carboxylate] = 2.5) in 

a phosphate buffer (10 mM, pH 7.0) were frozen by placing the glass vials containing the 

samples in a dry ice/acetone mixture (temperature: -78 ºC).  After 30 min the vials were 

placed in the freeze-dryer and lyophilized for 48 h.  The resulting powder was rehydrated 

with deionized water to reach a polymer concentration of 0.2 g/L. The resulting mixture 

was stirred at room temperature for 10 min and analyzed by DLS.  

4.4.2.8. Effect of dilution on micelles integrity 

 Micellar solutions were prepared as described above in phosphate buffer (10 mM, 

pH 7.0) with a polymer concentration of 0.5 g/L and [amine]/[carboxylate] = 2.5. The 

micelles were serially diluted to different polymer concentration using the same buffer and 

hydrodynamic radius and intensity of light scattered of aliquots were determined by DLS. 

The relative scattered light intensity (intensity of scattered light at certain polymer 

concentration/intensity at polymer concentration of 0.5 g/L) was plotted against polymer 

concentration. Critical association concentration (CAC) was determined from the plot 

following methods reported previously.[20]  

4.4.2.9. Drug release studies 

 The release of neomycin from micelles was evaluated by the dialysis bag method at 

37 ºC. The micellar solution (3.0 mL, neomycin: 2.0 g/L, [amine]/[carboxylate] = 2.5) was 

introduced into a dialysis membrane of MWCO = 6.0-8.0 kDa and dialyzed against 25 mL 

of 10 mM phosphate buffer containing either 0 mM NaCl (pH 7.0 or 7.4) or 150 mM NaCl 

(pH 7.0 or 7.4). A control experiment to determine the drug diffusion through the dialysis 

membrane was carried out in the absence of the polymer. At predetermined time intervals, 

5 mL aliquots were taken from the release medium and replaced by equal volumes of fresh 

buffer. Neomycin concentration in the release samples was determined using the 
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derivatizing agent o-phthaldialdehyde following reported procedures.[25] Briefly, 1 mL of 

each sample was mixed with 1 mL of o-phthaldialdehyde solution in isopropanol (1 

mg/mL). Next, 1.5 mL isopropanol was added to prevent precipitation of neomycin/o-

phthaldialdehyde complex and the volume of each sample was completed to 5.0 mL by 

borate buffer (50 mM, pH 9.0). The samples were allowed to stand for 1 h at room 

temperature. Subsequently, neomycin concentration was determined using a UV–visible 

spectrophotometer at the wavelength corresponding to maximum absorbance of 

neomycin/o-phthaldialdehyde complex (λmax = 335 nm). A calibration curve of neomycin 

was prepared before each determination.   

4.4.2.10. Minimal inhibitory concentration (MIC) determination 

 Micelles of aminoglycosides/CMD-PEG were prepared in deionized water at drug 

concentration of 0.3 g/L and [amine]/[carboxylate] = 2.5. Micellar solutions were diluted 

using sterile Luria-Bertani media (LB) in a 96 wells plate to get drug concentrations of 

0.25, 0.50, 0.75, 1.00, 2.00, 4.00, 8.00, 16.0 and 32.0 µg/ mL. E. coli X-1 blue strain was 

grown at 37 °C in 2 mL sterile LB to mid log phase (until absorbance at 595 nm reaches 

0.6) and this suspension was shaken for homogeneity before adding 1 μL in each well. 

Blank samples were prepared without E. coli X-1 blue strain. After shaking the plate at 37 

°C for 5 h, the absorbance at 595 nm of each well was monitored. The lowest concentration 

at which the absorbance at 595 nm was the same as the blank samples was considered to be 

the MIC. MIC determination was done in triplicate in all cases. 

4.5. Results and discussion  

4.5.1. Isothermal titration calorimetry (ITC) studies 

PIC micelles formation relies on electrostatic interactions between an ionic 

copolymer and an oppositely charged drug.[26-28] In vitro and in vivo performance of PIC 

micelles depends to a large extent on the strength of these electrostatic interactions.[29] This 
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necessitates a thorough characterization of these interactions and understanding the factors 

affecting them.  

4.5.1.1. Buffer and pH dependence of aminoglycosides and CMD-PEG interactions 

We used ITC to study the binding of neomycin sulfate and paromomycin sulfate to 

CMD-PEG at 25 and 37 ºC in four buffers with different ionization enthalpies (∆Hion) at pH 

7.0 and 8.0. Figure 4.3 shows the corrected integrated heats for the titration of neomycin 

(panels A, B and E) and paromomycin (panels C, D and F) into CMD-PEG in four different 

buffers at pH 7.0 (panels A, C, E and F) and 8.0 (panels B and D). The integrated heats of 

the interaction were corrected by subtracting the corresponding dilution heats resulting 

from injecting identical amounts of drugs into buffers. The thermodynamic parameters 

resulting from the data fit are presented in Table 4.1, 4.2 and 4.3. By inspecting Figure 4.3 

and Table 4.1, 4.2 and 4.3, one notices that at pH 7.0 and 8.0 at either 25 ºC or 37 ºC, the 

binding of neomycin and paromomycin to CMD-PEG was exothermic in the following 

buffers: cacodylate, HEPES, Tricine and phosphate and endothermic in Tris-HCl. The 

observed enthalpy change (∆Hobs) was buffer dependent and its magnitude at pH 7.0 

followed the following order: cacodylate > phosphate > HEPES > Tris-HCl whereas at pH 

8.0 the order was: phosphate > HEPES > Tricine > Tris-HCl.  This signifies that the 

observed enthalpy change (∆Hobs) was not intrinsic to the binding of neomycin and 

paromomycin to CMD-PEG but it also contains contribution from the buffer ionization. 
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Figure 4.3. Corrected integrated injection heats plotted as a function of the 

[amine]/[carboxylate] ratio for the titration of either neomycin sulfate (A, B, E) or 

paromomycin sulphate (C, D, F) into CMD-PEG copolymer in different buffers at pH 7.0 

(A, C, E, F) or 8.0 (B, D) at 25 °C (A, B, C, D) or 37 °C (E, F). 
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Table 4.1. Thermodynamic parameters for the binding of neomycin sulfate to CMD-PEG at pH 7.0 and 8.0, at 25 °C and a Na+ 

concentration of 50 mM.   

pH 7.0 pH 8.0 

Binding 

parameter 

Cacodylatea Phosphatea HEPESa Tris-HCla Phosphateb HEPESb Tricineb Tris-HClb 

N 3 3 3 3 0.3± 0.02 0.52± 0.02 0.63±0.02 0.46± 0.009 

K  (X103)(M-1) 6.02 ± 1.6 0.89 ± 0.57 59.9± 98 2.69±0.59 6.64± 2.4 2.49±0.34 2.59 ±0.3 1.54±0.06 

∆Hobs (kcal/mol) -2.51±0.09 -1.25± 0.25 -0.77± 0.03 0.61 ±0.01 -2.45 ± 0.30 -1.81±0.10 -0.92±0.03 0.52±0.01 

T∆Sobs (kcal/mol) 2.63 2.77 5.75 5.30 2.75 2.81 3.72 4.88 

∆G (kcal/mol) -5.15 -4.02 -6.52 -4.69 -5.2 -4.62 -4.64 -4.36 

 
a: Data was fitted using a model for three sequential binding sites. 
b: Data was fitted using a model for single set of binding sites. 
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Table 4.2. Thermodynamic parameters for the binding of paromomycin sulfate to CMD-PEG at pH 7.0 and 8.0, at 25 °C and a Na+ 

concentration of 50 mM.  

pH 7.0 pH 8.0 

Binding parameter Cacodylatea Phosphatea HEPESa Tris-HClb Phosphateb HEPESb Tricineb Tris-HClb 

N 3 3 3 0.72±0.00 0.55± 0.02 0.40± 0.02 0.58±0.02 0.53± 0.04 

K  (X103) (M-1) 14.1±4.2  1.83± 0.09 2.63±0.58 2.69±0.05 1.3±0.12 0.82 ±0.04 0.89±0.04 1.25 ±0.19 

∆Hobs (kcal/mol) -1.53±0.01 -1.20±0.01 -0.66±0.02 0.53±0.00 -3.04±0.18 -2.06±0.12 -0.73±0.03 0.33 ±0.03 

T∆Sobs (kcal/mol) 4.11 2.97 3.65 5.21 1.2 1.91 3.27 4.55 

∆G (kcal/mol) -5.64 -4.17 -4.31 -4.68 -4.24 -3.97 -4.00 -4.22 

 
a: Data was fitted using a model for three sequential binding sites. 
b: Data was fitted using a model for single set of binding sites. 
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Table 4.3. Thermodynamic parameters for the binding of neomycin sulfate and paromomycin sulfate to CMD-PEG at pH 7.0 and at 37 °C 

and a Na+ concentration of 50 mM.  

Neomycin Paromomycin 

Binding parameter Cacodylatea Phosphatea HEPESa Tris-HCla Cacodylatea Phosphatea HEPESa Tris-HClb 

N 3 3 3 3 3 3 3 0.73 ± 0.01

K  (X103)(M-1) 2.96± 1.3 0.93 ± 0.34 3.06± 0.98 1.87±0.41 1.67±0.08  2.05±0.07 3.63±0.6 1.72±0.14 

∆Hobs (kcal/mol) -2.96 ±0.16 -2.27± 0.26 -1.02± 0.06 0.50 ±0.02 -2.69±0.02 -1.72±0.01 -0.77±0.01 0.39 ±0.01 

T∆Sobs (kcal/mol) 1.95 1.94 3.90 5.14 1.87 2.96 4.27 4.99 

∆G (kcal/mol) -4.91 -4.21 -4.92 -4.64 -4.56 -4.68 -5.04 -4.60 
 

a: Data was fitted using a model for three sequential binding sites. 
b: Data was fitted using a model for single set of binding sites. 
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According to the proton linkage theory, the observed enthalpy change (∆Hobs) is 

related to buffer ionization by the following relationship[30]: 

∆Hobs = ∆Hint + ∆n ∆Hion                     (2) 

Where  ∆Hint is the intrinsic binding enthalpy (the enthalpy that is determined in a buffer 

with negligible ionization enthalpy), ∆n is the number of protons released or uptaken 

during the binding and ∆Hion  is the buffer heat of ionization. Thus, by plotting ∆Hobs against 

∆Hion of different buffers, the slope of the straight line gives the number of protons linked 

to binding and the intercept gives the intrinsic binding enthalpy (∆Hint). The binding is 

accompanied by proton release to the buffer if the slope is negative and by proton uptake 

from the buffer if the slope is positive. The relationship between ∆Hobs and ∆Hion was linear 

with positive slopes in all cases signifying that the binding of neomycin and paromomycin 

to CMD-PEG was accompanied by proton uptake from the buffers (Figure SI 4.4). The 

numbers of protons uptaken during the binding, as well as the intrinsic thermodynamic 

parameters are listed in Table 4.4. The pKa values of neomycin sulfate amino groups range 

from 6.92 to 9.51 while those of paromomycin sulfate range from 7.07 to 9.46.[31]  The pKa 

values of the free base forms are 5.74-8.8 for neomycin [32] and 6.5-9.13 for 

paromomycin.[33] At pH 7.0, the fraction (fion) of a given drug amino group of known pKa 

that exists in the protonated (-+NH3) state is given by the Henderson-Hasselbalch equation 

(Equation 3): 

 

 

Based on this equation, at pH 7.0 neomycin sulfate has 5.33 out of its 6 amino 

groups in ionized state while neomycin free base has 4.5 amino groups in ionized state. At 

the same pH, paromomycin sulfate has 4.41 out of its 5 amino groups in ionized state while 

paromomycin free base has 3.98 protonated amino groups. Thus, in order to be fully 

protonated at pH 7.0 and 25 ºC, neomycin sulfate should uptake 0.67 protons from the 

buffer (0.11 proton/amino group) while neomycin free base needs 1.5 protons (0.25 

protons/amino group). Paromomycin sulfate needs 0.59 protons (0.11 protons/amino group) 

while paromomycin free base needs 1.02 protons (0.20 protons/amino group) to attain full 

1 
(3) fion = 

1+107-pKa
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ionization state. The protons needed to achieve full ionization state are uptaken from the 

buffers. Data in Table 4.4 shows that ∆n uptaken by neomycin and paromomycin at pH 7.0 

and 25 ºC to attain full ionization is closer to the number of protons needed by the free base 

form and not the sulfate salt form for both drugs. This indicates that the complex formation 

takes place between CMD-PEG and the free base form of the drug, even though the sulfate 

forms were used in the experiments. Barbieri and Pilch[33] reported similar findings for the 

binding of paromomycin sulfate to the 16S rRNA A-site. They attributed their findings to 

the dilute state of paromomycin sulfate in the experiments (drug concentration: 0 to 45 µM) 

or to the presence of 150 mM NaCl, which, according to the authors, breaks electrostatic 

bond between the drug amino groups and the sulfate anions. 

Table 4.4. Intrinsic thermodynamic parameters and number of uptaken protons for the 

binding of paromomycin sulfate and neomycin sulfate to CMD-PEG at pH 7.0 (25 °C and 

37 °C) and at pH 8.0 (25 °C) and a Na+ concentration of 50 mM.  

 pH 
T  

(°C) 

∆na  

 

∆Hint 
b

 

(kcal/mol) 

T∆Sint
c
 

(kcal/mol) 

∆Gd 

 (kcal/mol) 

Neomycin 

7.0 25 0.23 ± 0.10 -1.99 ± 0.15  3.1 ± 0.9 -5.09 ± 1.05 

7.0 37 0.29 ± 0.01 -2.68 ± 0.20 1.99 ± 0.13 -4.67 ± 0.33 

8.0 25 0.29 ± 0.02 -3.03 ± 0.29 1.67 ± 0.06 -4.70 ± 0.35 

Paromomycin 

7.0 25 0.17 ± 0.00 -1.45 ± 0.01 3.16 ± 0.49 -4.61 ± 0.50 

7.0 37 0.24 ± 0.00 -2.24 ± 0.01 2.48 ± 0.20 -4.72± 0.21 

8.0 25 0.34 ± 0.01 -3.54 ± 0.19 0.56 ± 0.05 -4.10 ± 0.14 

 a: Number of protons uptaken per amino group. 
b: Obtained from equation 2. 
c: Calculated using the standard relationship T∆Sint = ∆Hint - ∆G  
d: Calculated using the standard relationship   ∆G = -RT ln K 

 

Similar behaviour observed in our experiments under relatively higher drug 

concentration (6.6 mM for neomycin and 7.92 mM for paromomycin) and lower salt 
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concentration (50 mM NaCl), warrants investigation into the reason behind this 

observation. Proton uptake has also been observed during the interaction between different 

cationic compounds and DNA and was attributed to shift of pKa of the cationic species to 

higher values upon binding. [34-36] The number of protons uptaken during the binding (∆n) 

of neomycin and paromomycin to CMD-PEG increased by increasing pH of the solution. 

Thus, pH increase form 7.0 to 8.0 resulted in increasing ∆n from 0.23 to 0.29 protons/NH2 

for neomycin and from 0.17 to 0.34 protons/NH2 for paromomycin (Table 4.4). The 

increased ∆n resulted in more exothermic ∆Hobs since the proton uptake is an exothermic 

process (Figure 4.3).[34]  Similar observations were reported for the binding of neomycin 

and paromomycin to the A site of 16S rRNA.[37] Similar increase in ∆n was observed by 

increasing temperature from 25 to 37 °C at pH 7.0 (Table 4.4), which may be attributed to 

the temperature-induced decrease in pKa. pKa values of paromomycin amino groups were 

reported to decrease by an average of 0.026 pH units per 1 ºC increase in temperature.[33]  

4.5.1.2. Intrinsic thermodynamic parameters for binding of neomycin and 

paromomycin to CMD-PEG 

Thermodynamic parameters listed in Table 4.4 are intrinsic to the binding of 

neomycin and paromomycin to CMD-PEG and are independent of the buffers used. At pH 

7.0 and 25 °C, the entropic contribution (T∆Sint) to the binding was 3.10 and 3.16 kcal/mol 

for neomycin and paromomycin, respectively. Thus, at pH 7.0 and 25 ºC, the entropy 

change (T∆Sint) accounts for 61 and 68% of the driving force for the binding of neomycin 

and paromomycin to CMD-PEG, respectively. This observation is in good agreement with 

a report on the binding of the same drugs to the A site of 16S rRNA for which it was 

reported that 72% of the driving force for the binding of paromomycin to RNA was derived 

from entropic contributions.[31] Electrostatic interactions between aminoglycosides and 

either RNA or CMD-PEG are associated with counter ions release, which results in entropy 

gain of the system. [38, 39] A temperature increase from 25 to 37 °C at pH 7.0 reduced T∆Sint 

for both neomycin and paromomycin (Table 4.4). A pH increase from 7.0 to 8.0 at 25 °C 

resulted in a more pronounced decrease of T∆Sint. The decrease in T∆Sint as the temperature 
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or pH increases is attributed to the increase in the number of protons uptaken (∆n) during 

the binding of neomycin and paromomycin to CMD-PEG (Table 4.4). Being an 

enthalpically favoured process, proton uptake increases the enthaplic contribution and 

decreases the entropic contribution to the binding free energy. Entropy loss as a result of 

temperature or pH increase was nearly compensated for by the gain in enthalpy (∆Hint) 

resulting in an average decrease of ∆G of around 0.4 kcal/mol with the increase in 

temperature or pH (Table 4.4). The data in Table 4.4 shows also that neomycin has more 

binding affinity to CMD-PEG than paromomycin at 25 ºC and pH 7.0. The higher binding 

of neomycin is enthalpic in origin due to the difference in ∆n, which was higher for 

neomycin (0.23 protons/NH2) compared to that of paromomycin (0.17 protons/NH2).  

4.5.1.3. Heat capacity change (∆Cp) determination 

The heat capacity change (∆Cp) upon binding of neomycin and paromomycin to 

CMD-PEG was determined by carrying out ITC experiments for solutions at different 

temperatures under identical pH and buffer conditions. The heat capacity change at 

constant pressure is the temperature derivative of the enthalpy change (equation 4).  

 

 

 

Plotting ∆Hobs versus temperature yields ∆Cp as the slope of the straight line. We 

determined ∆Cp for the binding of neomycin and paromomycin to CMD-PEG in sodium 

cacodylate buffer at pH 7.0 by carrying out ITC experiments at 20, 25, 37 and 45 °C. ∆Cp 

values were -243.3 and -324.95 cal.mol-1.K-1 for neomycin and paromomycin, respectively. 

These values are not attributed to electrostatic interactions only but should also contain 

contribution from hydrophobic and other interactions. Similar negative ∆Cp values were 

reported for the interaction between dextran sulfate and a series of positively charged 

drugs.[40] Heat capacity changes reflect change in solvent accessible surfaces upon binding. 

Burial of non polar surfaces results in negative ∆Cp while burial of polar surfaces gives 

p 

(4) 
∂ ∆Hobs 

∂ T 
∆Cp = 
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positive ∆Cp.
[41, 42] Electrostatic interactions are also known to increase the magnitude of the 

negative values of ∆Cp.
[40, 43, 44]  

4.5.2. 1H NMR studies 

We used 1H NMR to probe the structure of the PIC micelles formed by electrostatic 

interactions between CMD-PEG and either neomycin sulfate or paromomycin sulfate. 

Previous studies showed that the formation in water of nanoparticles with core-corona 

structures can be detected by 1H NMR spectroscopy.[45, 46] This takes advantage of the fact 

that protons of the polymer segments forming the core have restricted movement and thus, 

their signals appear broad or did not appear at all. In contrast, protons of the polymer 

segments forming the corona maintain their mobility and their signals appear well resolved.  
1H NMR spectrum of neomycin sulfate (Figure 4.4A) shows three signals for the three 

anomeric protons on the three amino sugars at 5.2, 5.34 and 5.87 ppm. The axial and 

equatorial methylene protons on the substituted cyclohexane ring resonate at 1.66 and 2.2 

ppm, respectively. The other neomycin protons show a series of signals between 3.16 to 

4.45 ppm.[47] Figure 4.4B shows the 1H NMR spectrum of CMD-PEG, which presents 

signals at δ 4.08-4.15, 4.89, and 5.07 ppm, ascribed to protons of the CMD block, and a 

broad strong singlet centered at δ 3.61 ppm due to the PEG methylene protons (-CH2-CH2-

O-).[20] The spectrum of neomycin/CMD-PEG micelles ([amine]/[carboxylate] = 2.5, pH 

7.4, [NaCl] = 0 mM) (Figure 4.4C) features only a strong signal at δ 3.61 ppm, ascribed to 

PEG protons. The signals due to the protons of neomycin and CMD segment of the 

polymer disappeared almost completely confirming the formation of PIC micelles with 

neomycin/CMD core and PEG corona (Figure 4.4C). Spectra of micelles prepared at 1.5 ≤ 

[amine]/[carboxylate] ≤ 2.5 were similar to that presented in Figure 4.4C. Micelles having 

[amine]/[carboxylate] < 1.5 or > 2.5 showed signals characteristic of free drug. This 

confirms that maximum drug loading was achieved for mixture having 

[amine]/[carboxylate] = 2.5. Micelles of this composition have 50 wt% drug, which was 

taken as the actual drug loading since their NMR spectrum shows no signals of free drug 

(Figure 4.4C). The stability of these micelles was challenged by recording their 1H NMR 
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spectrum under physiological conditions (pH 7.4, [NaCl] = 150 mM) (Figure 4.4D). Under 

these conditions, the micelles showed signs of disintegration as evidenced by the 

appearance of signals characteristic of neomycin protons (indicated by arrows in Figure 

4.4D). The micelles disintegration is not complete, however since the intensity of neomycin 

peaks is much smaller than that of neomycin alone recorded under similar conditions 

(Figure 4.4A). Identical 1H NMR experiments performed on the paromomycin/CMD-PEG 

micelles showed results similar to those of neomycin /CMD-PEG.  

Salt-induced disintegration has been observed for several PIC micelles and was 

attributed to the weakening of electrostatic interactions in the micelles core.[48] PIC micelles 

ability to resist salt-induced disintegration depends on many factors including strength of 

the electrostatic interactions, pKas of the interacting groups, presence of additional driving 

forces (e.g. hydrophobic interactions, hydrogen bonding) and polymer architecture. 

Hydrophobic modifications of polymers and cross linking of micelles core have been 

suggested for PIC micelles stabilization.[49, 50] Yuan et al., reported that PIC micelles of 

lysozyme/poly(ethylene glycol)-b-poly(aspartic acid) with hydrophobic groups (phenyl, 

naphthyl and pyrenyl) attached to the ω-end of the polymer had smaller critical association 

concentration and better tolerability to salt-induced disintegration.[49] Herein we 

hypothesize that hydrophobically modified CMD-PEG could lead to more stable micelles. 

To test this hypothesis, we prepared two hydrophobically modified CMD-PEG polymers 

that differ in the grafting density of dodecyl chains: dodecyl18-CMD-PEG and dodecyl38-

CMD-PEG. 1H NMR spectrum of dodecyl38-CMD-PEG in D2O (Figure 4.4E) shows 

signals characteristic of CMD block (at δ 4.08-4.36, 4.89, and 5.07 ppm) and PEG (at δ 

3.61 ppm), in addition to signals of dodecyl chains (at δ 1.18 ppm for –(CH2)10-CH3 and at 

δ 0.78 ppm for –(CH2)10-CH3).  

To test the ability of dodecyl38-CMD-PEG to stabilize the micelles, 1H NMR spectra 

of its micelles with neomycin were recorded in absence (Figure 4.4F) and presence (Figure 

4.4G) of 150 mM NaCl at pH 7.4. As expected the spectrum of the micelles prepared in the 

absence of salt shows only signals attributed to PEG corona of the micelles (Figure 4.4F). 

Interestingly, neomycin/dodecyl38-CMD-PEG micelles prepared under physiological 
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conditions (pH 7.4, [NaCl] = 150 mM) (Figure 4.4G) did not show any signs of micelles 

disintegration. This confirms the ability of this copolymer to stabilize the micelles against 

salt-induced disintegration. These results were confirmed by other techniques, such as 

dynamic light scattering studies (see below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. 1H NMR spectra of neomycin sulfate (A), CMD-PEG (B),  neomycin/CMD-

PEG micelles (pH 7.4, 0 mM NaCl) (C), neomycin/CMD-PEG micelles (pH 7.4, 150 mM 

NaCl) (D), dodecyl38-CMD-PEG (E), neomycin/dodecyl38-CMD-PEG micelles (pH 7.4, 0 

mM NaCl) (F) and neomycin/dodecyl38-CMD-PEG micelles (pH 7.4, 150 mM NaCl) (G). 

All micelles were prepared in D2O at polymer concentration of 2.0 g/L, neomycin 

concentration of 2.1 g/L and [amine]/[carboxylate] = 2.5.   
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Table 4.5. Characteristics of aminoglycosides/CMD-PEG micelles ([amine]/[carboxylate] 

= 2.5) in a phosphate buffer (10 mM, pH 7.0) 

Micelle RH
a PDI % Drugb

Neomycin/CMD-PEG 74.9±1.8 0.03±0.03 50 

Paromomycin/CMD-PEG 130.1±0.5 0.08±0.03 49.8 

Neomycin/dodecyl18-CMD-PEG 63.3±0.6 0.08±0.05 50 

Paromomycin/dodecyl18-CMD-PEG 48.5±0.4 0.02±0.03 49.8 

Neomycin/ dodecyl38-CMD-PEG 40.5±0.4 0.06±0.03 50 

Paromomycin/dodecyl38-CMD-PEG 54.5±1.2 0.03±0.02 49.8 

6'''-guanidino-paromomycin/CMD-PEG  110±2.2 0.08±0.02 50 

5''-deoxy-5''-guanidino-paromomycin/CMD-PEG 83.8±2.6 0.04±0.05 50 

a: Mean of six measurements ± S.D. 
b: % drug loading = weight of drug/(weight of micelles)×100. 

 

4.5.3. Size of aminoglycosides/CMD-PEG micelles 

Neomycin and paromomycin micelles with different polymers were prepared in 

phosphate buffer (10 mM, pH 7.0) at different [amine]/[carboxylate] ratios. The RH of 

micelles plotted as a function of [amine]/[carboxylate] are presented in Figure 4.5. All 

drug/polymer mixtures prepared at [amine]/[carboxylate] < 1.0 did not scatter enough light 

indicating the absence of nanoparticles. Paromomycin/CMD-PEG micelles at 

[amine]/[carboxylate] = 1.0 showed RH ~100 nm and polydispersity index (PDI) ~ 0.3. 

Increasing [amine]/[carboxylate] to 1.5 resulted in a drop of RH to ~ 70 nm and PDI to 0.2 
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(Figure 4.5A). RH of the micelles gradually increased by further increase in 

[amine]/[carboxylate] probably as a consequence of incorporating more drug in the 

micelles core. RH levelled off at [amine]/[carboxylate] = 2.5, after which it remained 

constant confirming the NMR results that  maximum drug loading was achieved at this 

point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Effect of the [amine]/[carboxylate] molar ratio on the hydrodynamic radius of 

paromomycin sulfate (panel A) and neomycin sulfate (panel B) micelles with different 

polymers: CMD-PEG (▲), dodecyl18-CMD-PEG (●), dodecyl38-CMD-PEG (■). Micelles 

were prepared in phosphate buffer (10 mM, pH 7.0) at polymer concentration = 0.2 g/L.   
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RH of neomycin/CMD-PEG micelles slightly decreased by increasing the 

[amine]/[carboxylate] ratio and levelled off at [amine]/[carboxylate] = 2.5, again reaching 

the maximum drug loading (Figure 4.5B). PDI was < 0.1 for both neomycin and 

paromomycin micelles prepared at [amine]/[carboxylate] > 1.5 indicating the narrow 

particle size distribution of the micelles.[17] Neomycin micelles had smaller size than those 

of paromomycin (Table 4.5) presumably as a result of tighter electrostatic interactions in 

the core of neomycin micelles due to the presence of an additional amino group in 

neomycin (Figure 4.1). This amino group has pKa of 9.24, which makes it fully ionized at 

pH 7.0.[31]  

Figure 4.5 shows also the RH of neomycin and paromomycin micelles prepared with 

dodecyl18-CMD-PEG and dodecyl38-CMD-PEG plotted as a function of 

[amine]/[carboxylate] ratio. Hydrophobic modification of CMD-PEG significantly affected 

the size of its micelles with paromomycin. Thus, paromomycin/CMD-PEG micelles were 

almost twice as big as those of paromomycin/dodecyl-CMD-PEG micelles at identical 

[amine]/[carboxylate] ratios and polymer concentration. Similar effect was observed for 

neomycin micelles (Figure 4.5B). No significant difference in size was detected between 

paromomycin micelles with either dodecyl18-CMD-PEG or dodecyl38-CMD-PEG 

copolymers (Figure 4.5A). Yet, neomycin/dodecyl38-CMD-PEG micelles were smaller than 

those of neomycin/dodecyl18-CMD-PEG (Table 4.5). PIC micelles have well-solvated core 

and corona.[48] The core of aminoglycosides/CMD-PEG micelles is expected to be hydrated 

and swollen since it is formed by hydrophilic compounds (neomycin and paromomycin-

electrostatically linked to CMD segment of the polymer). On the other hand, 

aminoglycosides/dodecyl-CMD-PEG micelles may have less hydrated core due to the 

presence of hydrophobic dodecyl chains. Less hydrated core together with hydrophobic 

interactions between dodecyl chains probably resulted in PIC micelles with tighter core and 

hence, a smaller size. Gao et al., reported similar results where lysozyme /poly(1-

tetradecene-alt-maleic acid) complexes were smaller than those of 

lysozyme/poly(isobutylene-alt-maleic acid), which was attributed to hydrophobic 

interactions in the case of poly(1-tetradecene-alt-maleic acid).[18]    
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4.5.4. Effect of salt on micelles formation and stability  

 Figure 4.6 shows the effect of salt on the neomycin and paromomycin micelles 

integrity in terms of intensity of scattered light and micelles size. Micelles were prepared in 

phosphate buffer (10 mM, pH 7.0) with CMD-PEG and dodecyl-CMD-PEG polymers. 

Turning our attention first to aminoglycosides micelles with unmodified CMD-PEG, 

paromomycin/CMD-PEG micelles rapidly disintegrated upon increasing salt concentration 

(Figure 4.6A). They lost ~ 80% of their scattered light intensity at [NaCl] of 50 mM and 

disintegrated almost completely at [NaCl] of 100 mM. Neomycin/CMD-PEG micelles were 

more resistant to salt-induced disintegration. For instance, they maintained the same 

scattered light intensity for [NaCl] ≤ 50 mM, after which the intensity rapidly decreased 

reaching ~ 30% of the initial value at [NaCl] = 100 mM (Figure 4.6C). The different salt 

tolerance for neomycin and paromomycin micelles may be attributed to stronger 

electrostatic interactions in the core of neomycin micelles due to the presence of an 

additional amino group. Salt had similar effect on the size of both neomycin/CMD-PEG 

and paromomycin/CMD-PEG micelles (Figure 4.6B and D). Size of both micelles 

increased upon increasing [NaCl] up to 50 and 150 mM for paromomycin and neomycin 

micelles, respectively. Further increase in [NaCl] led to decrease in micelles size, probably 

as a sign of micelle disintegration. Salt causes dehydration of the micelles PEG corona, 

which facilitates the formation of bigger micelles.[20] These results of instability of 

aminoglycosides/CMD-PEG micelles under physiological salt concentration (150 mM 

NaCl) are in agreement with those shown by NMR studies (see above). 
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Figure 4.6. Effect of salt on the intensity of scattered light and hydrodynamic radius of 

paromomycin (panels A and B) and neomycin (panels C and D) micelles with different 

CMD-PEG copolymers: dodecyl38-CMD-PEG (■), dodecyl18-CMD-PEG (●), CMD-PEG 

(▲). Micelles were prepared in phosphate buffer (10 mM, pH 7.0) at final polymer 

concentration = 0.5 g/L and [amine]/[carboxylate] = 2.5. Relative scattering intensity = 

intensity at certain salt concentration/ intensity at salt concentration = 0.  

 

Figure 4.6 shows also the effect of salt on the stability of aminoglycosides/dodecyl-

CMD-PEG micelles. Hydrophobic modification of CMD-PEG copolymers greatly 

enhanced the stability of their micelles with aminoglycosides against increase in salinity. 

Thus, the neomycin/dodecyl18-CMD-PEG micelles maintained their initial size and ~ 40 % 

of their scattering intensity at [NaCl] = 150 mM (Figure 4.6C and D). Better ability to resist 
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salt-induced disintegration was achieved by increasing the level of dodecyl modification of 

CMD-PEG. For instance, neomycin/dodecyl38-CMD-PEG micelles maintained the same 

size and ~ 80% of their initial scattered light intensity for salt concentrations up to 200 mM, 

well above the physiological salt concentration. Hydrophobic modification of CMD-PEG 

had a less pronounced effect on paromomycin micelles stability against increase in salinity. 

Yet, the micelles of paromomycin/dodecyl38-CMD-PEG maintained their initial size and ~ 

80% of their initial scattered light intensity at [NaCl] = 100 mM, compared to negligible 

scattered light intensity for paromomycin/CMD-PEG micelles at the same [NaCl]. 

Interestingly, neomycin/dodecyl38-CMD-PEG micelles prepared under physiological 

conditions ([NaCl] = 150 mM and pH 7.4) showed no signs of micelles disintegration even 

after three month of micelles storage at room temperature. From these results it can be 

concluded that the level of CMD-PEG hydrophobic modification, as well as the basicity of 

the aminoglycoside amino groups are major factors determining micelles stability against 

increase in salinity. Enhanced stability of neomycin/dodecyl38-CMD-PEG against salt-

induced disintegration is probably due to the participation of electrostatic and hydrophobic 

interactions in the formation of tighter micelles core. Similar results were reported 

previously for other PIC micelles.[18, 49] 

In addition to hydrophobic modification of CMD-PEG, we prepared guanidylated 

paromomycin as another approach to increase stability of PIC micelles against salt-induced 

disintegration. Guanidine groups are more basic than amino groups, planar and exhibit 

directionality in their hydrogen bonding interactions.[51] Therefore, we hypothesize that 

guanidylated paromomycin could have stronger electrostatic interactions with CMD-PEG 

than paromomycin leading to more stable micelles. To test this hypothesis, we prepared  

6'''-guanidino-paromomycin and 5''-deoxy-5''-guanidino-paromomycin (Figure SI.4.1, 

supporting information) and tested the stability of their micelles with CMD-PEG at 

different salt concentrations. Guanidylated paromomycin showed better ability to withstand 

salt-induced disintegration. Thus, 6'''-guanidino-paromomycin/CMD-PEG micelles retained 

~ 40 % of their initial scattering intensity at 50 mM NaCl compared to ~ 20 % for 

paromomycin at the same salt concentration (Figure SI.4.3A, supporting information). 
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Replacement of paromomycin 5'' hydroxyl group by a guanidine group (5''-deoxy-5''-

guanidino-paromomycin) resulted in a much better stabilizing effect against salt. As 

illustrated in Figure SI.4.3A, 5''-deoxy-5''-guanidino-paromomycin/CMD-PEG micelles 

maintained the same scattered light intensity for [NaCl] ≤ 50 mM and ~ 30% of their initial 

scattered light intensity at [NaCl] = 100 mM. This enhanced stability of guanidylated 

paromomycin micelles might result from stronger interactions between guanidine groups of 

the drug and carboxylate groups of CMD-PEG.  

4.5.5. pH studies 

4.5.5.1. Effect of pH on the self assembly of CMD-PEG and dodecyl-CMD-PEG in 

aqueous solution 

 Figure 4.7 shows the effect of pH on the intensity of light scattered by different 

CMD-PEG polymeric solutions. Intensity of light scattered by unmodified CMD-PEG 

solutions was very small and almost constant over the 2-9 pH range. This indicates that 

CMD-PEG, under these conditions does not self-assemble into nanoparticles. In contrast, 

dodecyl-CMD-PEG showed pH-dependent self assembly. Thus, intensity of light scattered 

by dodecyl-CMD-PEG solutions was small and constant over the pH range 7-9. At pH < 

6.0, intensity of scattered light increased for both dodecyl18-CMD-PEG and dodecyl38-

CMD-PEG and continued to increase with further decrease in pH. Below pH 5.0, intensity 

of light scattered by dodecyl18-CMD-PEG was less than that of dodecyl38-CMD-PEG. At 

pH > 6.0, carboxylate groups of CMD-PEG are ionized leading to electrostatic repulsion 

that prevents self assembly. Dodecyl-CMD-PEG did not show self assembly at pH > 6.0 

probably because electrostatic repulsions between ionized carboxylate groups offset 

hydrophobic attractions by dodecyl chains. Electrostatic repulsions were absent in acidic 

solutions due to neutralization of carboxylate groups, though CMD-PEG did not form 

nanoparticles due to lack of amphiphilicity. In contrast, dodecyl-CMD-PEG formed 

nanoparticles in acidic solutions due to absence of electrostatic repulsions and presence of 
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hydrophobic interactions between dodecyl chains. At pH 3.0, RH of dodecyl38-CMD-PEG 

and dodecyl18-CMD-PEG were 99.72 ± 8.9 nm and 87.81 ± 7.7 nm, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Effect of pH on the intensity of light scattered by polymeric solutions of 

dodecyl38-CMD-PEG (■), dodecyl18-CMD-PEG (▲), and CMD-PEG (●). Solutions were 

prepared in 10 mM phosphate buffer at polymer concentration of 0.2 mg/mL.   

 

4.5.5.2. Aminoglycosides/CMD-PEG micelles 

The solution pH affects the formation and stability of aminoglycosides/CMD-PEG 

PIC micelles since it affects the degree of ionization of both the drugs and the polymer.  We 

examined by DLS the effect of pH on the integrity of different aminoglycosides/CMD-PEG 

micelles in terms of intensity of scattered light and hydrodynamic radius (Figure 4.8). One 

notices that both the intensity of scattered light and RH were almost constant for 4.0 ≤ pH ≤ 

7.0 for all the drugs studied. This pH range corresponds to full ionization of both the drugs 

and polymer. Therefore, electrostatic interactions between the drugs amino groups and 

CMD-PEG carboxylate groups are most favourable. Scattered light intensity decreased by 

decreasing pH below 4.0 signalling the formation of loose drug/polymer associates due to 
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neutralization of CMD-PEG. Similar decrease in scattered light intensity was observed at 

pH values > 7.0 due to neutralization of the drugs.  

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 4.8. Effect of pH on the intensity of scattered light (A and B) and hydrodynamic 

radius (C and D) of CMD-PEG micelles with different aminoglycosides: neomycin (▲), 

paromomycin (Δ), 6'''-guanidino-paromomycin (○) and 5''-deoxy-5''-guanidino-

paromomycin (●). Micelles were prepared in phosphate buffer (10 mM, pH 7.0) at final 

[CMD-PEG] = 0.5 g/L. Relative scattering intensity = intensity at certain pH/ intensity at 

pH 7.0.  

Scattered light intensity for neomycin and 5''-deoxy-5''-guanidino-paromomycin 

micelles at pH 7.4 was higher than that of paromomycin micelles (Figure 4.8). Moreover, 

the size of neomycin and 5''-deoxy-5''-guanidino-paromomycin was smaller than that of 
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paromomycin micelles. These observations may be attributed due to the presence of an 

additional amino group and a guanidine group in neomycin and 5''-deoxy-5''-guanidino-

paromomycin, respectively. These groups are highly basic and are almost completely 

ionized at pH 7.4 resulting in stronger interactions with CMD-PEG carboxylate groups. 

Identical experiments carried out on the micelles of aminoglycosides/dodecyl-CMD-PEG 

showed similar effect of pH on the micelles formation and stability. 

4.5.6. Effect of freeze drying on micelles integrity 

Both neomycin/CMD-PEG and paromomycin/CMD-PEG micelles were readily 

dispersed in distilled water after freeze drying without the need of lyoprotectants. However, 

the freeze drying process increased the size of the micelles from 85.1 ± 1.5 to 118.48 ± 2.8 

nm and from 149.0 ± 4.8 to 168.9 ± 5.4 nm for neomycin and paromomycin micelles, 

respectively. Size of neomycin/ dodecyl18-CMD-PEG micelles also increased after freeze 

drying and reconstitution from 63.3 ± 0.7 nm to 78.8 ± 0.9 nm. In contrast, neomycin/ 

dodecyl38-CMD-PEG micelles showed RH ~ 40 nm both before and after freeze drying, in 

the absence of cryoprotectants showing the ability of these micelles to withstand the 

stresses of the freeze drying process.  

4.5.7. Effect of dilution on micelles stability 

 Micelles used for in vivo applications are subjected to extensive dilution upon 

intravenous administration. Therefore, they should be stable against dilution for a period of 

time long enough to allow delivery of the encapsulated drug to its target.[52] Figure 4.9 

shows the hydrodynamic radius and scattered light intensity plotted as a function of 

polymer concentration for neomycin/CMD-PEG and paromomycin/CMD-PEG micelles. 

Both micelles were prepared in phosphate buffer (10 mM, pH 7.0) at [CMD-PEG] = 0.5 

g/L and serially diluted to different polymer concentrations using the same buffers. 

Micelles dilution decreased the scattered light intensity due to a decrease in micelles 

concentration. Micelles critical association concentration (CAC) (the minimal polymer 

concentration for which micelles can be detected) was determined from the plot as the 
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concentration corresponding to the onset of the increase in the scattered light intensity 

(Figure 4.9).[53]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Effect of dilution on the hydrodynamic radius (A) and relative intensity of 

scattered light (B) for neomycin/CMD-PEG micelles (■) and paromomycin/CMD-PEG 

micelles (●). Relative scattering intensity = intensity at certain CMD-PEG 

concentration/intensity at CMD-PEG concentration of 0.5 g/L.   

The CAC values were 0.0625 and 0.125 g/L for neomycin and paromomycin 

micelles, respectively. Neomycin micelles were more resistant to dilution than those of 

paromomycin as indicated by their lower CAC. This may be attributed to tighter 
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interactions in the core of neomycin micelles due to the presence of an additional amino 

group. The size of both micellar systems was not affected by the dilution and remained 

constant for polymer concentrations as low as 0.05 g/L. 

4.5.8. Drug release studies 

The release of neomycin from its PIC micelles with CMD-PEG and dodecyl38-

CMD-PEG was evaluated by the dialysis bag method (Figure 4.10). Neomycin release 

experiments were carried out in phosphate buffer at different pH values and different salt 

concentrations since these factors are known to affect drug release rate from PIC 

micelles.[20, 28] Neomycin rapidly diffused out through the dialysis membrane in the absence 

of polymers and almost complete release was achieved after 4 h (Figure 4.10). In contrast, 

micelles-encapsulated neomycin showed slower release rate under all the conditions 

studied. Neomycin release rate from the micelles was strongly affected by ionic strength of 

the release medium. For instance, the slowest release rate was detected in phosphate buffer 

at pH 7.0-7.4 and 0 mM NaCl. Under these conditions neomycin was slowly released from 

the micelles where ~ 30% was released after 24 h. Neomycin release rate was significantly 

increased by increasing [NaCl] from 0 to 150 mM. Thus, after 24 h percent drug released 

increased from ~ 30 % at pH 7.4, [NaCl] = 0 mM to ~ 70% at pH 7.4, [NaCl] = 150 mM. 

Higher drug release rate in the presence of 150 mM NaCl confirms that drug is released by 

an ion exchange mechanism.[54] Similar observations were reported for other PIC 

micelles.[28] Despite higher neomycin release rate under physiological conditions (pH 7.4, 

[NaCl] = 150 mM), the micelles were still able to sustain drug release for more than 24 h 

(Figure 4.10). Neomycin release rate from the micelles was not affected by increasing pH 

from 7.0 to 7.4 neither in presence nor in absence of 150 mM NaCl. Neomycin/dodecyl38-

CMD-PEG micelles showed drug release rate that was not significantly different from that 

of neomycin/CMD-PEG micelles.  It is noteworthy that no burst drug release was detected 

even in the presence of high salt concentration confirming that the drug is located in the 

micelles core. Drug located near nanoparticles surface rapidly diffuses out in the release 

medium giving a burst release effect.[28]   
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Figure 4.10. Release profiles at 37 °C in 10 mM phosphate buffer of neomycin from: 

neomycin alone (■); neomycin/CMD-PEG micelles, pH 7.0, [NaCl] = 0 mM (●);  

neomycin/CMD-PEG micelles, pH 7.4, [NaCl] = 0 mM (▼); neomycin/CMD-PEG 

micelles, pH 7.0, [NaCl] = 150 mM (♦); neomycin/CMD-PEG micelles, pH 7.4, [NaCl] = 

150 mM (▲); neomycin/dodecyl38-CMD-PEG micelles, pH 7.4, [NaCl] = 150 mM (○). 

([neomycin] = 2.0 g/L, [amine]/[carboxylate] = 2.5).  

 

4.5.9. Antibacterial activity of micelles-encapsulated aminoglycosides 

ITC studies showed that neomycin sulfate and paromomycin sulfate bind to CMD-

PEG in a pattern similar to their binding to the A site of 16S rRNA.[31, 37] The reason behind 

this similarity may be that binding in both cases is triggered by electrostatic interactions 

between aminoglycosides amino groups and phosphate groups in rRNA or carboxylate 

groups in CMD-PEG. It should be recalled here that the antibacterial activity of 

aminoglycosides derives from their binding to 16S rRNA. Therefore, it was important to 

confirm that interactions between aminoglycosides and CMD-PEG did not affect their 
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ability to bind to 16S rRNA.  Antibacterial activity of many aminoglycosides encapsulated 

in CMD-PEG micelles was evaluated by exposing a test organism (E. coli X-1 blue strain) 

to different drug concentrations and determining the lowest concentration that prevents 

detectable bacterial growth (minimal inhibitory concentration, MIC). Antibacterial activity 

of several aminoglycosides (neomycin, paromomycin, tobramycin and amikacin) was not 

altered by their encapsulation in CMD-PEG micelles. Thus, whether drugs were free or 

encapsulated in PIC micelles, MICs were 2-8, 4-8, 2.5-5 and 2-8 μg/mL for amikacin, 

neomycin, paromomycin and tobramycin, respectively. These results confirm that 

encapsulation of aminoglycosides in CMD-PEG micelles did not reduce their antibacterial 

activity. Similar results were reported for ciprofloxacin encapsulated in 

polyethylbutylcyanoacrylate nanoparticles and amphotericin B encapsulated in poly(lactic-

co-glycolic acid) nanoparticles.[55, 56] 

4.6. Conclusion 

PIC micelles were formed by electrostatic interactions between two 

aminoglycosides: neomycin sulfate and paromomycin sulfate and different CMD-PEG 

copolymers. ITC studies showed that interactions between either neomycin or 

paromomycin and CMD-PEG were accompanied by uptake of protons from the buffer, the 

number of which was pH and temperature dependent. PIC micelles of 

aminoglycosides/CMD-PEG had a core consisting of drug/CMD complex and a PEG 

corona. Aminoglycosides/CMD-PEG micelles were unstable under physiological 

conditions (pH 7.4, [NaCl] = 150 mM). Interestingly, micelles stability under these 

conditions was significantly improved by hydrophobic modification of CMD-PEG. 

Optimal micelle formation (neomycin/dodecyl38-CMD-PEG) resisted salt-induced 

disintegration for up to 200 mM and sustained drug release under physiological conditions 

for more than 24 h. They maintained their integrity after freeze drying and upon storage at 

room temperature for up to 3 months. Favourable micelles properties (e.g. small size, 

ability to withstand increases in salinity and change in pH) were observed for drugs having 

more cationic groups (neomycin and 5''-deoxy-5''-guanidino-paromomycin rather than 
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paromomycin) and polymer having both carboxylate and dodecyl groups (dodecyl-CMD-

PEG rather than CMD-PEG). Other aminoglycosides (e.g. gentamicin, amikacin and 

tobramycin) were also successfully encapsulated in CMD-PEG micelles. Further in vivo 

evaluation of micelles-encapsulated aminoglycosides is under way since preliminary 

experiments indicated that drugs encapsulated in the micelles retained their antimicrobial 

activity.    

4.7. Acknowledgments 

The work was supported in part by a grant of the Natural Sciences and Engineering 

Research Council of Canada to FMW. GMS acknowledges financial support by the 

Ministry of Higher Education, Egypt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



191 

 

 

 

4.8. References 

[1] Daniel SP, Malvika K, Christopher MB, John EK. Thermodynamics of 

aminoglycoside-rRNA recognition. Biopolymers 2003, 70: 58-79. 

[2] Hombach J, Hoyer H, Bernkop-Schnürch A. Thiolated chitosans: Development and 

in vitro evaluation of an oral tobramycin sulphate delivery system. Eur. J. Pharm. 

Sci. 2008, 33: 1-8. 

[3] Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16s 

ribosomal-RNA. Nature 1987, 327: 389-94. 

[4] Nagai J, Takano M. Molecular aspects of renal handling of aminoglycosides and 

strategies for preventing the nephrotoxicity. Drug Metabol. Pharmacokinet. 2004, 

19: 159-70. 

[5] Roberta C, Alessandro B, Valerio P, Elisabetta M, Gian Paolo Z, Maria Rosa G. 

Duodenal administration of solid lipid nanoparticles loaded with different 

percentages of tobramycin. J. Pharm. Sci. 2003, 92: 1085-94. 

[6] Halwani M, Mugabe C, Azghani AO, Lafrenie RM, Kumar A, Omri A. Bactericidal 

efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. J. 

Antimicrob. Chemother. 2007, 60: 760-9. 

[7] Mugabe C, Halwani M, Azghani AO, Lafrenie RM, Omri A. Mechanism of 

enhanced activity of liposome-entrapped aminoglycosides against resistant strains 

of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50: 2016-22. 

[8] Abraham AM, Walubo A. The effect of surface charge on the disposition of 

liposome-encapsulated gentamicin to the rat liver, brain, lungs and kidneys after 

intraperitoneal administration. Int. J. Antimicrob. Agents 2005, 25: 392-7. 

[9] Lecaroz MC, Blanco-Prieto MJ, Campanero MA, Salman H, Gamazo C. Poly(D,L-

lactide-co-glycolide) particles containing gentamicin: Pharmacokinetics and 



192 

 

 

 

pharmacodynamics in Brucella melitensis-infected mice. Antimicrob. Agents 

Chemother. 2007, 51: 1185-90. 

[10] Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid 

nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm. 2002, 

238: 241-5. 

[11] Chuang HF, Smith R, xe, C, Hammond PT. Polyelectrolyte multilayers for tunable 

release of antibiotics. Biomacromolecules 2008, 9: 1660-8. 

[12] Mugabe C, Azghani AO, Omri A. Preparation and characterization of dehydration-

rehydration vesicles loaded with aminoglycoside and macrolide antibiotics. Int. J. 

Pharm. 2006, 307: 244-50. 

[13] Bridges PA, Taylor KMG. The effects of freeze-drying on the stability of liposomes 

to jet nebulization. J. Pharm. Pharmacol. 2001, 53: 393-8. 

[14] Prior S, Gander B, Irache JM, Gamazo C. Gentamicin-loaded microspheres for 

treatment of experimental Brucella abortus infection in mice. J. Antimicrob. 

Chemother. 2005, 55: 1032-6. 

[15] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and 

pharmaceutical applications. Adv. Drug Deliv. Rev. 2003, 55: 403-19. 

[16] Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and 

oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 2002, 54: 715-58. 

[17] Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic 

cores for delivery of anticancer drugs. J. Controlled Release 2006, 114: 163-74. 

[18] Gao G, Yao P. Structure and activity transition of lysozyme on interacting with and 

releasing from polyelectrolyte with different hydrophobicity. J. Polym. Sci. Pol. 

Chem. 2008, 46: 4681-90. 



193 

 

 

 

[19] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-

chemotherapy - mechanism of tumoritropic accumulation of proteins and the 

antitumor agent smancs. Cancer Res. 1986, 46: 6387-92. 

[20] Soliman GM, Winnik FM. Enhancement of hydrophilic drug loading and release 

characteristics through micellization with new carboxymethyldextran-PEG block 

copolymers of tunable charge density. Int. J. Pharm. 2008, 356: 248-58. 

[21] Soliman GM, Choi AO, Maysinger D, Winnik FM. Minocycline block copolymer 

micelles and their anti-inflammatory effects on microglia. Macromol. Biosci. In 

press.  

[22] Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, 

Yamasaki Y, Kataoka K. Environment-responsive block copolymer micelles with a 

disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 2009, 

10: 119-27. 

[23] Hernandez OS, Soliman GM, Winnik FM. Synthesis, reactivity, and pH-responsive 

assembly of new double hydrophilic block copolymers of carboxymethyldextran 

and poly(ethylene glycol). Polymer 2007, 48: 921-30. 

[24] Mauzac M, Jozefonvicz J. Anticoagulant activity of dextran derivatives. Part I: 

Synthesis and characterization. Biomaterials 1984, 5: 301-4. 

[25] Suchitra S. Sampath, Robinson DH. Comparison of new and existing 

spectrophotometric methods for the analysis of tobramycin and other 

aminoglycosides. J. Pharm. Sci. 1990, 79: 428-31. 

[26] Kawamura A, Harada A, Kono K, Kataoka K. Self-assembled nano-bioreactor from 

block ionomers with elevated and stabilized enzymatic function. Bioconjugate 

Chem. 2007, 18: 1555-9. 

[27] Chelushkin PS, Lysenko EA, Bronich TK, Eisenberg A, Kabanov VA, Kabanov 

AV. Polyion complex nanomaterials from block polyelectrolyte micelles and linear 



194 

 

 

 

polyelectrolytes of opposite charge: 1. Solution Behavior. J. Phys. Chem. B 2007, 

111: 8419-25. 

[28] Yang KW, Li XR, Yang ZL, Li PZ, Wang F, Liu Y. Novel polyion complex 

micelles for liver-targeted delivery of diammonium glycyrrhizinate: In vitro and in 

vivo characterization. J. Biomed. Mater. Res. Part A 2009, 88A: 140-8. 

[29] Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block 

copolymer micelles: Preparation, characterization and application in drug delivery. 

J. Controlled Release 2005, 109: 169-88. 

[30] Baker BM, Murphy KP. Evaluation of linked protonation effects in protein binding 

reactions using isothermal titration calorimetry. Biophys. J. 1996, 71: 2049-55. 

[31] Kaul M, Barbieri CM, Kerrigan JE, Pilch DS. Coupling of drug protonation to the 

specific binding of aminoglycosides to the A site of 16 S rRNA: Elucidation of the 

number of drug amino groups involved and their identities. J. Mol. Biol. 2003, 326: 

1373-87. 

[32] Botto RE, Coxon B. Nitrogen-15 nuclear magnetic resonance spectroscopy of 

neomycin B and related aminoglycosides. JACS 1983, 105: 1021-8. 

[33] Barbieri CM, Pilch DS. Complete thermodynamic characterization of the multiple 

protonation equilibria of the aminoglycoside antibiotic paromomycin: A 

calorimetric and natural abundance 15N NMR study. Biophys. J. 2006, 90: 1338-49. 

[34] Ehtezazi T, Rungsardthong U, Stolnik S. Thermodynamic analysis of polycation-

DNA interaction applying titration microcalorimetry. Langmuir 2003, 19: 9387-94. 

[35] Lobo BA, Koe GS, Koe JG, Middaugh CR. Thermodynamic analysis of binding 

and protonation in DOTAP/DOPE (1:1): DNA complexes using isothermal titration 

calorimetry. Biophys. Chem. 2003, 104: 67-78. 

[36] Takahashi M, Maraboeuf F, Morimatsu K, Selmane T, Fleury F, Norden B. 

Calorimetric analysis of binding of two consecutive DNA strands to RecA protein 



195 

 

 

 

illuminates mechanism for recognition of homology. J. Mol. Biol. 2007, 365: 603-

11. 

[37] Kaul M, Pilch DS. Thermodynamics of aminoglycoside-rRNA recognition: The 

binding of neomycin-class aminoglycosides to the A site of 16S rRNA. 

Biochemistry 2002, 41: 7695-706. 

[38] Ou Z, Muthukumar M. Entropy and enthalpy of polyelectrolyte complexation: 

Langevin dynamics simulations. J. Chem. Phys. 2006, 124: 154902-11. 

[39] Hofs B, Voets IK, Keizer Ad, Stuart MAC. Comparison of complex coacervate core 

micelles from two diblock copolymers or a single diblock copolymer with a 

polyelectrolyte. PCCP 2006, 8: 4242-51. 

[40] Santos HA, Manzanares JA, Murtomäki L, Kontturi K. Thermodynamic analysis of 

binding between drugs and glycosaminoglycans by isothermal titration calorimetry 

and fluorescence spectroscopy. Eur. J. Pharm. Sci. 2007, 32: 105-14. 

[41] Mazur S, Tanious FA, Ding D, Kumar A, Boykin DW, Simpson IJ, Neidle S, 

Wilson WD. A thermodynamic and structural analysis of DNA minor-groove 

complex formation. J. Mol. Biol. 2000, 300: 321-37. 

[42] Privalov PL, Makhatadze GI. Contribution of hydration and non-covalent 

interactions to the heat capacity effect on protein unfolding. J. Mol. Biol. 1992, 224: 

715-23. 

[43] Lee C-F, Allen MD, Bycroft M, Wong K-B. Electrostatic interactions contribute to 

reduced heat capacity change of unfolding in a thermophilic ribosomal protein 

L30e. J. Mol. Biol. 2005, 348: 419-31. 

[44] Goncalves E, Kitas E, Seelig J. Structural and thermodynamic aspects of the 

interaction between heparan sulfate and analogues of melittin. Biochemistry 2006, 

45: 3086-94. 



196 

 

 

 

[45] Hrkach JS, Peracchia MT, Bomb A, Lotan n, Langer R. Nanotechnology for 

biomaterials engineering: Structural characterization of amphiphilic polymeric 

nanoparticles by 1H NMR spectroscopy. Biomaterials 1997, 18: 27-30. 

[46] Jeong YI, Kim SH, Jung TY, Kim IY, Kang SS, Jin YH, Ryu HH, Sun HS, Jin SG, 

Kim KK, Ahn KY, Jung S. Polyion complex micelles composed of all-trans retinoic 

acid and poly (ethylene glycol)-grafted-citosan. J. Pharm. Sci. 2006, 95: 2348-60. 

[47] Reid DG, Gajjar K. A proton and carbon 13 nuclear magnetic resonance study of 

neomycin B and its interactions with phosphatidylinositol 4,5-bisphosphate. J. Biol. 

Chem. 1987, 262: 7967-72. 

[48] Voets IK, de Keizer A, Stuart MAC. Complex coacervate core micelles. Adv. 

Colloid Interface Sci. 2009, 147-148: 300-18. 

[49] Yuan X, Harada A, Yamasaki Y, Kataoka K. Stabilization of lysozyme-

incorporated polyion complex micelles by the ω-end derivatization of poly(ethylene 

glycol)-poly(α,ß-aspartic acid) block copolymers with hydrophobic groups. 

Langmuir 2005, 21: 2668-74. 

[50] Yuan X, Yamasaki Y, Harada A, Kataoka K. Characterization of stable lysozyme-

entrapped polyion complex (PIC) micelles with crosslinked core by glutaraldehyde. 

Polymer 2005, 46: 7749-58. 

[51] Luedtke NW, Baker TJ, Goodman M, Tor Y. Guanidinoglycosides: A novel family 

of RNA ligands. JACS 2000, 122: 12035-6. 

[52] Torchilin VP. Structure and design of polymeric surfactant-based drug delivery 

systems. J. Controlled Release 2001, 73: 137-72. 

[53] Li Y, Kwon GS. Methotrexate esters of poly(ethylene oxide)-block-poly(2-

hydroxyethyl-L-aspartamide). Part I: Effects of the level of methotrexate 

conjugation on the stability of micelles and on drug release. Pharm. Res. 2000, 17: 

607-11. 



197 

 

 

 

[54] Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin. 

Drug Deliv. 2006, 3: 139-62. 

[55] Page-Clisson ME, Pinto-Alphandary H, Ourevitch M, Andremont A, Couvreur P. 

Development of ciprofloxacin-loaded nanoparticles: Physicochemical study of the 

drug carrier. J. Controlled Release 1998, 56: 23-32. 

[56] Bang J-Y, Song C-E, Kim C, Park W-D, Cho K-R, Kim P-I, Lee S-R, Chung W-T, 

Choi K-C. Cytotoxicity of amphotericin B-incorporated polymeric micelles 

composed of poly(DL-lactide-co-glycolide)/dextran graft copolymer. Arch. 

Pharmacal Res. 2008, 31: 1463-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



198 

 

 

 

Appendix C. Supporting information (SI.4) 

 
SI.4.1. Synthesis and characterization of guanidylated paromomycin  

SI.4.1.1. Synthesis of compound 3 (6'''-guanidino-paromomycin) (Figure SI.4.1) 

NaOH (0.80 g, 20 mmol) was dissolved in H2O (5 mL) and this solution was added 

to a solution of compound 1 (0.50 g, 0.26 mmol) in 1,4-dioxane (15 mL). After 16 h, a TLC 

indicated a complete consumption of the starting material and showed the formation of a 

new baseline product (mobile phase: CHCl3:AcOH:MeOH, 20:5:3). A MS analysis 

confirmed the formation of the 6'''-NH2 product. m/z calcd for C65H77N5O22 g
+: 1280.5, MS 

found: 1280.6. Dioxane was evaporated under reduced pressure, and the free amino 

compound was decanted in the remaining water as a white gum (0.33 g). A minimum of 

MeOH (3 mL) was added to this white gum and this solution was transferred in water (50 

mL) to obtain a white precipitated that was recovered by filtration. Lyophilization afforded 

a dry product to which CHCl3 (20 mL), Et3N (0.11 mL, 0.78 mmol) and reagent 2 (0.21 g, 

0.47 mmol) were added and the solution was refluxed for 18 h. After evaporation of the 

solvent under reduced pressure, the residue was dissolved in a minimum CH2Cl2 and 

loaded onto a silica gel column. The elution was done with 0 to 5% MeOH in CH2Cl2 to 

obtain the desired N-Cbz protected guanidylated paromomycin (0.41 g, 72%). m/z calcd for 

C72H84N7O26 [M+H]+: 1462.5, MS found: 1462.7. This N-Cbz protected guanidylated 

paromomycin (0.41 g, 0.28 mmol) was dissolved in MeOH (5 mL) and H2O was added 

until the solution became cloudy. 20% Pd(OH)2/C (80 mg) and few drops of AcOH were 

added and the suspension was stirred under hydrogen atmosphere (hydrogen balloon) until 

the conversion of the starting material into the product was completed as indicated by MS 

analysis (6 h). The mixture was filtered through a layer of Celite on cotton, concentrated 

under vacuum, washed with CH2Cl2 twice, dissolved in water and lyophilized to afford 

compound 3 (240 mg, 90%) as a per acetate salt. m/z calcd for C24H48N7O14 [M+H]+: 658.3, 

MS found: 658.4.  

Compound 1 was treated with aqueous NaOH to selectively unprotect the 6'''-NH2 

group via a 6 member cyclic carbamate. The resulting free amino group was guanidylated 
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with reagent 2 and N-Cbz hydrogenolysis afforded the desired 6'''-guanidino-paromomycin 

(3). 

 

SI.4.1.2. Synthesis of compound 5 (5''-deoxy-5''-guanidino-paromomycin) 

Compound 4 (1.2 g, 0.86 mmol) was dissolved in THF (30 mL), few drops of H2O 

(0.1 mL) and PPh3 (0.27 g, 1.0 mmol) were added. 18 h later, the solvent was evaporated 

under reduced pressure and the residue was taken in a minimum of CH2Cl2 and loaded on a 

silica gel column. The elution was done with 4 to 8 % MeOH in CH2Cl2 to obtain the pure 

5''-amino compound (0.20 g, 17%). m/z calcd for C70H81N6O23 [M+H]+: 1373.5, MS found: 

1373.8. This 5''-amino compound (0.20 g, 0.15 mmol) was dissolved in CHCl3 (20 mL), 

Et3N (0.041 mL, 0.30 mmol) and reagent 2 (0.80 mg, 0.18 mmol) were added and the 

solution was refluxed for 18 h. After evaporation of the solvent under reduced pressure, the 

residue was dissolved in a minimum CH2Cl2 and loaded onto a silica gel column. The 

elution was done with 2 to 7% MeOH in CH2Cl2 to obtain the desired N-Cbz protected 

guanidylated paromomycin (0.20 g, 83%). m/z calcd for C87H95N8O27 [M+H]+: 1683.6, MS 

found: 1684.0. This N-Cbz protected guanidylated paromomycin (0.20 g, 0.12 mmol) was 

dissolved in 80% aqueous acetic acid (5 mL) and the solution was heated at 60 °C until a 

MS analysis showed total conversion of the starting material into the benzylidene 

deprotected product (5 h). The solution was evaporated under reduced pressure and the 

residue was dissolved in MeOH (3 mL) and H2O was added until the solution became 

cloudy. 20% Pd(OH)2/C (40 mg) and few drop of AcOH were added and the suspension 

was stirred under hydrogen atmosphere (hydrogen balloon) until the conversion of the 

starting material into the product was completed as indicated by MS analysis (6 h) m/z 

calcd for C80H91N8O27 [M+H]+: 1595.6, MS found: 1595.9. The mixture was filtered 

through a layer of Celite on cotton, concentrated under vacuum, washed with CH2Cl2 twice, 

dissolved in water and lyophilized to afford compound 5 (105 mg, 87%) as a per acetate 

salt. m/z calcd for C24H49N8O13 [M+H]+: 657.3, MS found: 657.4.  

In order to obtain a different guanidylated paromomycin, the known compound 4 

was treated with PPh3 under Staudinger conditions and the resulting amine was 
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guanidylated with reagent 2. Benzylidene deprotection with aqueous AcOH followed by N-

Cbz hydrogenolysis afforded the desired 5''-deoxy-5''-guanidino-paromomycin (5). 

 

SI.4.2. Steady-state fluorescence spectroscopy 

Pyrene (1 X10-6 M) was used as a probe to investigate the micropolarity sensed in 

its solubilization site from measurement of the pyrene polarity index (I1/I3), which is the 

ratio of the intensities of the first and third vibronic peaks in the fluorescence spectrum. 

Pyrene was excited at 334 nm and the emission spectra were scanned from 350 to 550 nm. 

The samples studied were dodecyl-CMD-PEG. I1/I3 ratios were plotted versus polymer 

concentration and the critical association concentration (CAC) values were determined 

from the graph as the concentration corresponding to the first drop in I1/I3. 
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Figure SI.4.1. Synthesis of 6'''-guanidino-paromomycin (3) and 5''-deoxy-5''-guanidino-

paromomycin (5). 
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Figure SI.4.2. FTIR spectra of CMD-PEG sodium salt (A), dodecyl38-CMD-PEG free acid 

(B), and dodecyl38-CMD-PEG sodium salt (C) (powder sample) in the region of 1200-1900 

cm-1.   

 

 

 

 

 

 

 

 

 

 

 

Figure SI.4.3. Plot of intensity ratio (I1/I3) of pyrene emission spectra (λex = 335 nm) versus 

concentration of dodecyl18-CMD-PEG (●) and dodecyl38-CMD-PEG (▲) in water.    
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Figure SI.4.4. Observed enthalpy change (∆Hobs) plotted as a function of the buffer heat of 

ionization for the titration of either neomycin sulfate (▲: pH 7.0, 25 °C, R2 = 0.923; □: pH 

7.0, 37 °C, R2 = 0.989; ∆: pH 8.0, 25 °C, R2 = 0.962) or paromomycin sulfate (■: pH 7.0, 

25 °C, R2 = 0.978; O: pH 7.0, 37 °C, R2 = 0.969; ♦: pH 8.0, 25 °C, R2 = 0.984) into CMD-

PEG in different buffers. The solid lines represent the linear regression fit of the 

experimental data. 
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Figure SI.4.5. Effect of salt on the intensity of scattered light (A) and hydrodynamic radius 

(B) of and 6'''-guanidino-paromomycin/CMD-PEG micelles (♦) and 5''-deoxy-5''-

guanidino-paromomycin/CMD-PEG micelles (◊) prepared in phosphate buffer (10 mM, pH 

7.0) at [CMD-PEG] = 0.5 g/L. Relative scattering intensity = intensity at certain salt 

concentration/ intensity at salt concentration = 0. 
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The design and evaluation of new drug delivery systems remain an active area of 

research both in academia and industry.[1] The  aim of these new drug carriers is to 

maximize efficacy of existing and new drugs and to minimize side effects and toxicity 

associated with their administration.[2] To reach this goal, many new delivery systems have 

been devised, amongst which, polymeric nanoparticles are by far the most promising ones. 

Polymers have been a conventional passive component of many drug formulations and it is 

only recently that polymers become active drug carriers. This development was made 

possible by advances in polymer synthesis and polymer physico-chemistry, which resulted 

in custom-made polymers with diverse structures and functionalities.[3] Micelles of 

amphiphilic copolymers, polyion complex (PIC) micelles, dendrimers, polymersomes, 

nanospheres and nanocapsules are examples of polymeric nanoparticles that are being 

currently under extensive investigation. The extraordinary performance of these 

nanoparticles in terms of maximizing drug efficacy, improving patient compliance and 

reducing drug adverse effects have resulted in their appreciation by the pharmaceutical 

industry. A number of successful nanoparticulate drug formulations are already on the 

market while many other are undergoing clinical trials.[4, 5]  

Although polymeric nanoparticles have been widely used for site specific delivery 

of various drugs, their use for the delivery of ionic water soluble drugs is limited due to 

poor encapsulation efficiency. This limitation has been overcome by the advent of a 

relatively new class of polymeric micelles called PIC micelles that opened a new avenue 

for the encapsulation of ionic drugs.[6] PIC micelles enjoy high drug loading efficiency 

since drug encapsulation relies on electrostatic interactions between the ionic drug and an 

oppositely charged copolymer. Other features of PIC micelles that make them attractive 

drug carriers include ease of fabrication, ability to encapsulate a wide range of ionic drugs, 

excellent colloidal and thermodynamic stability, small size and narrow size distribution. 

PIC micelles have been adopted for several applications including gene therapy, cancer 

therapy and many others due to their exciting properties.  

The present project is an attempt to devise PIC micelles formulations that could 

provide effective delivery of two important classes of antibiotics: aminoglycosides and 
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tetracyclines. Aminoglycosides and tetracyclines are broad spectrum antibiotics that need 

new means of their formulation and delivery. For instance, efficacy of aminoglycosides is 

limited by the nephrotoxicity and ototoxicity associated with their use. These side effects 

could be avoided by proper selection of a PIC micelles formulation that selectively 

maximizes drug concentration in diseased tissue and minimizes it in healthy tissues. 

Furthermore, tetracycline antibiotics, such as minocycline have shown new promising 

neuroprotective properties in several animal models.[7] However, minocycline clinical use is 

limited by its instability in aqueous solutions and its poor pharmacokinetics, which could 

be improved by its encapsulation into a suitable PIC micelles formulation. Thus, a novel 

family of carboxymethyldextran-PEG (CMD-PEG) block copolymers suitable for PIC 

micelles formation with cationic drugs, such as aminoglycosides and tetracyclines was 

developed in this project. Dextran was selected partly due to its well known safety and 

biodegradability and partly due to its structural features that allow introduction of different 

functional groups.[8, 9] PEG was selected in view of its hydrophilicity, biocompatibility and 

ability to prolong circulation time of several nanoparticulate drug delivery systems.[10]  

5.1. Synthesis of CMD-PEG block copolymers 

Carboxymethyldextran-block-PEG (CMD-PEG) (Figure 2.1, Chapter 2) is an 

anionic dihydrophilic block copolymer having carboxymethyl (-CH2COONa) groups 

grafted on the dextran chain. The synthesis protocol of DEX-PEG copolymers involved a 

straightforward end-to-end coupling of DEX-lactone and PEG-amine via a lactone 

aminolysis reaction under mild conditions. Conversion of the neutral DEX-PEG 

copolymers into the corresponding polyanionic CMD-PEG copolymers was achieved by 

carboxymethylation of the dextran block. The degree of substitution (DS) of the dextran 

block, defined here as the molar percent of glucopyranose rings bearing –CH2COONa 

groups was readily controlled by varying the reaction conditions. Thus, CMD-PEG 

copolymers with high carboxylate contents were obtained by treating solutions of DEX-

PEG in an isopropanol/water (85/15 v/v) mixture with aqueous NaOH solution (9.0 M) at 

60 ºC followed by addition of monochloroacetic acid.[11] CMD-PEG with moderate 
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carboxylate contents were obtained by carrying out the carboxymethylation reaction in 

aqueous solution.[12] CMD-PEG copolymers have a random distribution of carboxymethyl 

groups along the dextran chain. 

5.2. CMD-PEG copolymers candidates 

Electrostatic interactions between polyanionic CMD-PEG copolymers and cationic 

drugs trigger formation of PIC micelles with a drug/CMD ionic complex core and a PEG 

corona. Relative block length of CMD and PEG segments and charge density of the CMD 

block can affect the properties of the resulting PIC micelles.[13-15] To address this issue, four 

CMD-PEG copolymers were prepared: (i) two copolymers identical in terms of the length 

of CMD and PEG blocks, but different in terms of the charge density of the CMD block 

(30-CMD68-PEG64 and 60-CMD68-PEG64); and (ii) two copolymers in which the charged 

block is the same, but the PEG block is of different molecular weight (80-CMD40-PEG64 

and 85-CMD40-PEG140). To select a CMD-PEG copolymer with optimal properties in terms 

of high drug loading, controlled drug release and micelles stability, the micellization of 

these copolymers and a model cationic drug, diminazene diaceturate (DIM) was studied. 

DIM has two amidino groups with pKa of 11 (Figure 2.3, Chapter 2), which makes them 

fully ionized at physiological pH of 7.4.[16] DIM was selected to characterize the micelles of 

different CMD-PEG copolymers since it formed PIC micelles with other polyanionic 

copolymers, such as PEG-b-PAsp and PEG-b-PGlu.[17, 18] Micelles of 85-CMD40-PEG140 

showed the most satisfactory results in terms of drug loading efficiency, controlled drug 

release and micelles stability (Table 5.1). Therefore, this copolymer was selected for 

encapsulation of other cationic drugs, such as aminoglycosides and minocycline.  

5.3. Preparation of CMD-PEG PIC micelles    

PIC micelles are generally prepared by simple mixing of aqueous solutions of the 

oppositely charged polymer and drug. PIC micelles of DIM/CMD-PEG were prepared by 

either drop-wise or “one shot” addition of DIM solution to CMD-PEG solution. Average 

size was almost the same for micelles obtained by both methods. In contrast, micelles 
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prepared by the drop-wise addition method had much smaller polydispersity index (PDI) 

confirming their unimodal size distribution. DIM/PEG-b-PAsp micelles prepared by the 

“one shot” addition method were polydisperse in size (PDI ~ 0.2).[18]  Thus, the drop-wise 

addition method was used for the preparation of CMD-PEG micelles encapsulating 

minocycline and aminoglycosides (AGs) and resulted in monodispersed micelles (PDI < 

0.1).  

5.4. Formation, structure and drug loading of CMD-PEG 

micelles  

CMD-PEG copolymers have carboxylic acid groups with pKa ~ 4.5 while the 

investigated drugs have cationic groups with different pKas:  ~ 11 for DIM amidino groups, 

9.5 for minocycline C4 amino group (Figure 3.1, Chapter 3) and 7.0-9.5 for neomycin and 

paromomycin amino groups (Figure 4.1, Chapter 4). At pH 7.4, these drugs and CMD-PEG 

copolymers have oppositely charged groups that interact together leading to formation of 

PIC micelles. It is noteworthy that electrostatic interactions between DIM and CMD (in the 

absence of PEG) led to phase separation and precipitation. Replacement of CMD with 

CMD-PEG endowed the system with the amphiphilicity required for PIC micelle formation 

(Figure 5.1). 1H NMR studies confirmed that CMD-PEG copolymers formed PIC micelles 

with PEG corona and CMD/drug core with all the studied drugs (i.e., DIM, MH and AGs) 

(Figure 5.1). The entrapment of a drug in the core of nanoparticles is of prime importance 

since this protects the drug against degradation in harsh physiological environments, 

controls the drug release and modifies its pharmacokinetics.[19] For example, MH 

encapsulated in the core of CMD-PEG micelles was significantly more stable against 

degradation in aqueous solutions than the free drug (Figure 3.4, Chapter 3).  
1H NMR was also used to determine the onset of micellization (the [+]/[-] ratio at 

which the micelles form) and [+]/[-] ratio for maximum drug loading. These two properties 

were dependent on the drug and the CMD-PEG copolymer used to formulate the micelles. 

In the case of DIM micelles, the onset of micellization was affected by the molecular 

weight of neither CMD nor PEG. In contrast, it was dependent on the degree of substitution 
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(DS) of the CMD block. Thus, core-corona micelles were observed at [+]/[-] ≥ 0.8 for 

copolymer having DS  ≥  60% and at [+]/[-] ≥ 1.6 for copolymer with DS ≤ 30%. It should 

be recalled here that CMD-PEG copolymers do not form PIC micelles by themselves and 

that a certain number of DIM molecules should be ionically-linked to the polymer chains to 

create the hydrophobic domains necessary for micelles formation. Consequently, the 

polymers having lower DS (i.e., fewer carboxylate groups) needs higher [+]/[-] ratio to 

achieve the same drug concentration obtained at certain [+]/[-] for polymer with high DS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Formation and structure of drug-loaded CMD-PEG PIC micelles. 
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The drugs used in this project have different physicochemical properties, which 

affected the properties of the resulting micelles. Thus, for the same polymer (i.e., 85-

CMD40-PEG140), micelles form at [+]/[-] ~ 1.0 for DIM and MH and at [+]/[-] ~ 2.0 for 

neomycin and paromomycin. This difference is presumably attributed to the presence of 

aromatic rings in DIM (Figure 2.3, Chapter 2) and MH (Figure 3.1, Chapter 3), which assist 

in creating the hydrophobic domains needed for micelles formation. Neomycin and 

paromomycin are very hydrophilic molecules (Figure 4.1, Chapter 4), therefore more drug 

molecules need to be neutralized to achieve the required amphiphilicity. Maximum drug 

loading was also dependent on the drug and the copolymer (Table 5.1). For all the studied 

copolymers and drugs, maximum drug loading was achieved at charge ratios corresponding 

to CMD-PEG neutralization, after which free drug was detectable in solution. This 

confirms that drug encapsulation takes place primarily by electrostatic interactions. 

Interestingly, 85-CMD40-PEG140 copolymer had drug loading capacity  ≥ 50 wt% for all the 

studied drugs showing its potential as a drug delivery system. 
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Table 5.1. Characteristics of different CMD-PEG micelles.  

Drug Polymer % Druga RH
b CAC (g/L) 

DIM 85-CMD40-PEG140
c 64.3 48.7 ± 0.6 0.048 

DIM 80-CMD40-PEG64 62.0 43.5 ± 0.7 0.032 

DIM 60-CMD68-PEG64 60.1 36.9 ± 0.5 0.014 

DIM 30-CMD68-PEG64 41.4 49.7 ± 0.6 0.095 

MH 85-CMD40-PEG140 50 99.0 ± 2.7 ND 

Neomycin 85-CMD40-PEG140 50 74.9±1.8 0.060 

Neomycin dodecyl18-CMD-PEG 50 63.3±0.6 ND 

Neomycin dodecyl38-CMD-PEG 50 40.5±0.4 ND 

Paromomycin 85-CMD40-PEG140 49.8 130.1±0.5 0.120 

Paromomycin dodecyl18-CMD-PEG 49.8 48.5±0.4 ND 

Paromomycin dodecyl38-CMD-PEG 49.8 54.5±1.2 ND 

a: % maximum drug loading = weight of drug/(weight of micelles)×100. 
b: Mean of six measurements ± S.D. RH measured for micelles prepared at [+]/[-] = 2.0 for 

DIM, 1.0 for MH and 2.5 for neomycin and paromomycin. 
c: In this nomenclature, the prefix denotes the degree of carboxymethylation of the dextran 

block; the subscripts designate the average number of glucopyranosyl and –CH2–CH2–O– 

repeat units of the CMD and PEG segments, respectively.  

ND: not determined. 
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5.5. Size and polydispersity of CMD-PEG micelles 

The size and polydispersity of nanoparticles affect their in vivo fate, effectiveness 

and safety. For instance, oral absorption of nanoparticles ~ 100 nm in diameter was 

reported to be 15 to 250-fold higher than that of micro-sized particles.[20] The diameter of 

all CMD-PEG micelles was ≤ 200 nm, except those of paromomycin/85-CMD40-PEG140 

(Table 5.1). This sub-200 nm size and biocompatibility of CMD-PEG copolymers are 

expected to increase the circulation time of the micelles in the blood.[21, 22] The size of 

CMD-PEG micelles was dependent on the drug and copolymer used in micelle formation 

(Table 5.1). For the same copolymer (i.e., 85-CMD40-PEG140), micelles size increased in 

this order: DIM micelles < neomycin micelles < MH micelles < paromomycin micelles. 

The exact mechanism behind this size difference is not clear. However, since the 

copolymer and experimental conditions (polymer concentration, pH and ionic strength) are 

identical, the difference in micelles size could be attributed to different physicochemical 

properties of the encapsulated drugs (e.g. pKa, hydrophilicity/lipophilicity balance and 

molecular weight). Thus, DIM micelles had the smallest size probably due to high basicity 

of the drug amidino groups (pKa = 11), and the presence of hydrophobic aromatic groups 

(Figure 2.3, Chapter 2). Neomycin micelles were smaller than those of paromomycin 

probably because neomycin has an additional amino group (Figure 4.1, Chapter 4). Higher 

basicity of the drugs cationic groups might lead to tighter electrostatic interactions in the 

micelles core, which resulted in smaller micelles.  

The presence of hydrophobic groups along CMD-PEG copolymer chains affected 

the size of their PIC micelles with neomycin and paromomycin (Table 5.1). Thus, dodecyl-

CMD-PEG micelles encapsulating neomycin or paromomycin were significantly smaller 

than those of the corresponding CMD-PEG. Polymeric micelles of amphiphilic copolymers 

have a so-called “solid core” in aqueous solutions due to the generally high glass transition 

temperature, Tg, of the core forming segments and the almost complete absence of solvent 

in the micellar core. In contrast, PIC micelles have a hydrated core since they are formed by 

electrostatic interactions, a relatively weak driving force compared to hydrophobic 

interactions.[15] PIC micelles of dodecyl-CMD-PEG may have hydrophobic interactions 
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between dodecyl chains in the micelles core leading to less hydrated core and thus, smaller 

micelles. Less hydrated core might also be the reason behind smaller size of DIM/60-

CMD68-PEG64 micelles compared to those of DIM/30-CMD68-PEG64 (Table 5.1).  

5.6. Micelles critical association concentration (CAC)       

  Compared to surfactant micelles, polymeric micelles have lower CAC, which 

guarantees their thermodynamic stability against extensive dilution in vivo.[23] CAC of DIM 

micelles with different CMD-PEG copolymers was dependent on the degree of substitution 

(DS) and the length of the dextran block (Table 5.1). The lowest CAC was recorded for 

micelles formed by the copolymer of longest CMD block and highest DS (60-CMD68-

PEG64), presumably as a consequence of their high drug content. The length of the PEG 

block has only a minor influence on the CAC of the micelles, as seen by comparing the 

values determined for 85-CMD40-PEG140 and 80-CMD40-PEG64 (Table 5.1). The CAC was 

also affected by the drug used to formulate the micelles. Thus, CAC of neomycin micelles 

was half that of paromomycin micelles, probably due to stronger electrostatic interactions 

between neomycin and CMD-PEG. 

5.7. Effect of salt on CMD-PEG micelles stability 

Small molecular weight salts weaken electrostatic interactions in PIC micelles core 

leading to micellar dissociation after certain salt concentration.[24] For DIM micelles with 

different CMD-PEG copolymers, micelles ability to withstand salinity was dependent on 

the DS of the dextran block. Thus, micelles of DIM and copolymers of DS ≥ 60% remained 

stable at NaCl concentrations as high as 300 mM, a value significantly higher than the 

physiological salt concentration (150 mM). This was in contrast with micelles of DIM and 

copolymers of DS ≤ 30%, which disintegrated at NaCl concentrations ≥ 100 mM. 

Aminoglycosides micelles were generally less resistant to increase in salinity than DIM 

micelles with the same CMD-PEG copolymer. Moreover, neomycin micelles were more 

resistant to salt-induced disintegration than those of paromomycin probably due to stronger 

interactions in the core of neomycin micelles. Nevertheless, stability of neomycin micelles 
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at physiological salt concentration was not enough to permit in vivo application. To 

increase stability of aminoglycosides micelles, two approaches were devised: hydrophobic 

modification of CMD-PEG by grafting dodecyl chains to the CMD backbone and 

guanidylation of paromomycin. Interestingly, neomycin and paromomycin micelles with 

dodecyl-CMD-PEG were more tolerable to increase in salinity than those with CMD-PEG, 

probably due to participation of hydrophobic interactions between dodecyl chains in 

micelle stabilization. Stability of dodecyl-CMD-PEG micelles was dependent on the drug 

and grafting density of dodecyl chains: more stable micelles were observed for neomycin 

and copolymers having higher dodecyl content. Neomycin/dodecyl38-CMD-PEG micelles 

resisted salt-induced disintegration for NaCl concentration up to 200 mM. Furthermore, 

guanidylated paromomycin/CMD-PEG micelles were more resistant against salt-induced 

disintegration than those of paromomycin, probably because guanidine groups are more 

basic than amino groups.[25] Therefore, stability of CMD-PEG PIC micelles against 

increase in salinity was dependent on the forces that trigger micelle formation (i.e., whether 

electrostatic interactions only or combination electrostatic and hydrophobic interactions) 

and on the ionic charge density of the cationic drug used to form the micelles.  

5.8. Effect of pH on micelle formation and stability 

Solution pH affects the degree of ionization of CMD-PEG carboxylate groups and 

the drugs cationic groups. Thus, there was a pH range for which the drug and CMD-PEG 

had adequate charge density to form stable PIC micelles. For the same polymer (i.e., 85-

CMD40-PEG140), this pH range was dependent on the drug, probably because the studied 

drugs have different pKas. DIM showed the widest pH range of micelles stability: micelles 

were stable in the pH range 4.0-11.0. In contrast, neomycin and paromomycin micelles 

were stable over a narrower pH range (4.0-7.4 and 4.0-7.0 for neomycin and paromomycin, 

respectively). This may attributed to the presence of two amidino groups in DIM (pKa ~ 

11), which remain positively charged at higher pH values compared to the amino groups of 

neomycin (highest pKa ~ 9.5) and paromomycin (highest pKa ~ 9.4).[16, 26] 
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5.9. Stability of CMD-PEG micelles 

  Nanoparticulate drug delivery system should be colloidally stable for periods of 

time long enough to permit accurate dosing, in vitro and to allow safe delivery of the drug 

to its target, in vivo. Furthermore, nanoparticles should maintain their integrity during 

freeze drying and recover their size after reconstitution in a suitable solvent. CMD-PEG 

micelles encapsulating different drugs were colloidally stable in solutions kept at room 

temperature without phase separation or aggregation for periods longer than two months. 

Moreover, all the micelles maintained their size and stability after freeze drying and 

reconstitution in the absence of cryoprotectants, except DIM micelles which needed the 

presence of 5% (w/v) trehalose.  

5.10. Drug release from CMD-PEG micelles 

Following characterization of different drug delivery aspects of CMD-PEG 

micelles, it was necessary to confirm that the micelles can sustain the release of different 

drugs. For DIM micelles, CMD-PEG copolymers of higher DS showed better control over 

the drug release rate. Thus, micelles of copolymers having high DS (e.g., 85-CMD40-

PEG140) released ∼ 50% DIM after 8 h, compared to ∼ 72% after the same time for 

micelles of copolymers having low DS (e.g., 30-CMD68-PEG64). Different drugs 

encapsulated in CMD-PEG micelles were released in a sustained fashion when compared to 

free drugs. For instance, in vitro testing demonstrated that neomycin was slowly released 

from the micelles where ~ 25% drug was released after 8 h, compared to ~ 100% in the 

case of drug alone. CMD-PEG micelles of different drugs showed higher drug release rate 

in the presence of physiological salt concentration, probably as a consequence of 

weakening of electrostatic interactions in the micelles core. Nevertheless, CMD-PEG 

micelles sustained the release of minocycline and neomycin for up to 24 h under 

physiological conditions (i.e., pH 7.4, 150 mM NaCl). This confirms the potential of these 

micelles to reduce the frequency of drug administration.  
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5.11. Cytotoxicity of CMD-PEG copolymers 

Since CMD-PEG copolymers were designed for drug delivery applications, it was 

imperative to evaluate their cytotoxicity in different cell line. Thus, CMD-PEG cytotoxicity 

was evaluated in two cell lines: human hepatocytes and murine microglia. The liver 

represents the main organ in which biotransformation of drugs and foreign substance takes 

place while the inflamed microglia are the main target for minocycline micelles in the 

central nervous system.[27] CMD-PEG did not reduce the viability of both cell lines when 

treated for 24 h at polymer concentrations as high as 15 mg/mL. This confirms the 

biocompatibility of CMD-PEG copolymers. Indeed, these polymers will be diluted in the 

blood stream following IV injection and local concentrations in the liver tissues are not 

expected to reach such high levels. Moreover, the PEG corona of the micelles is expected 

to prolong the micelles circulation in blood and reduce their uptake in the liver, as 

demonstrated previously with other PEGylated nanoparticles.[28]  

5.12. Pharmacological activity of micelles-encapsulated drugs 

The biocompatibility and other favorable properties of CMD-PEG micelles 

warranted biological evaluation of micelles-encapsulated drugs. Thus, anti-inflammatory 

activity of micelles-encapsulated MH was evaluated in murine microglia (N9) cells 

activated by lipopolysaccharides (LPS). Micelles-encapsulated MH reduced inflammation 

in microglia cells to levels similar to those observed for the free drug. Preliminary 

experiments showed that CMD-PEG copolymer (in the absence of MH) reduced LPS-

induced inflammation in N9 microglia, which could enhance the anti-inflammatory activity 

of MH in either additive or even synergistic manner. Furthermore, the minimal inhibitory 

concentration (MIC) in E. coli of different aminoglycosides encapsulated in CMD-PEG 

micelles was comparable to that of free aminoglycosides. These results confirmed that 

different drugs were released from CMD-PEG micelles in a pharmacologically active form. 

Furthermore, the presence of CMD-PEG copolymers did not reduce the pharmacological 

activity of encapsulated drugs.  
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6.1. Conclusions 

Different carboxymethyldextran-PEG block copolymers (CMD-PEG) of tunable 

charge density were developed for the enhanced delivery for cationic drugs. CMD-PEG 

PIC micelles encapsulating different cationic drugs demonstrated several favorable 

properties: high drug loading capacity, small size and colloidal stability in solution and 

after freeze drying. CMD-PEG micelles had a PEG corona and a drug/CMD core. Drug 

encapsulation in the micelles core sustained its release and protected it against degradation 

in aqueous solutions. Different drugs were released from CMD-PEG micelles in a 

pharmacologically active form. Micelles properties were greatly affected by ionic charge 

density of CMD-PEG copolymers and the type of encapsulated drug. To obtain stable PIC 

micelles, ionic charge density and chemical composition of PIC micelles components need 

to be carefully considered. Physiological conditions (pH 7.4 and 0.15 M NaCl) 

compromised stability of some aminoglycosides micelle formulations, which was greatly 

enhanced by hydrophobic modification of CMD-PEG copolymers. A similar strategy may 

be appropriate to stabilize PIC micelles of other ionic copolymers. By virtue of their 

biocompatibility, small size and ability to reduce adsorption of plasma proteins, CMD-PEG 

micelles are expected to be viable delivery systems for cationic drugs. Collectively, the 

results presented in this thesis will assist in understanding the relationship between 

structural features of ionic drugs and polymers and properties of the resulting PIC micelles. 

This will help in the preparation of PIC micelles with optimized properties that can improve 

therapeutic efficacy and reduce side effects of many ionic drugs.       

6.2. Future work 

The encouraging results obtained in this thesis justify in vivo evaluation of a number 

of CMD-PEG formulations. Thus, minocycline and neomycin micelles will be evaluated, in 

vivo to determine their pharmacokinetics and biodistribution. Furthermore, neuroprotective 

effects of minocycline micelles will be evaluated in mice having unilateral cortical cerebral 

ischemia. Micelles of hydrophobically modified CMD-PEG need to be evaluated more in 

depth for better understanding of the mechanism of micelle stabilization. Other ionic 
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copolymers that form unstable PIC micelles will be modified and their stability against 

increase in salinity will be investigated. This will determine whether the observed 

stabilization effect is specific to CMD-PEG or general phenomena. 

When it comes to the usefulness of DEX-PEG copolymers as delivery systems for 

drugs other than the cationic ones, a number of experiments may be suggested. Firstly, 

CMD-PEG copolymers will be exploited as delivery vehicles for hydrophobic drugs (e.g., 

anticancer drugs) by increasing the grafting density of dodecyl chains or using more 

hydrophobic moieties (e.g., PCL). Secondly, DEX-PEG copolymer will be converted into a 

polycation by attachment of positively charged moieties (e.g., arginine) to the dextran 

block. The resulting positively charged polymers will be used as non-viral gene vectors for 

the encapsulation and delivery of DNA, siRNA or oligonucleotides.  



 

Appendix D. Supporting information (SI.5): Properties of the 

drugs used in this thesis 

 

1. Diminazene diaceturate (DIM) 

1.1.  Indications 

DIM (Figure SI.5.1) is a cationic molecule belongs to the group of aromatic 

diamidines. DIM is used in tropical countries for the effective treatment of trypanosomiasis 

in cattle, sheep and goats.[1] It is given as an intramuscular injection of 3-5 mg/kg.   

1.2.  Physicochemical properties 

DIM contains two benzamidine moieties linked via a triazene at the 4 position of 

each ring. The triazene link is susceptible to cleavage resulting in the formation of 4-

aminobenzamidine and a 4-amidinophenyldiazonium salt.[2] DIM is unstable under acidic 

conditions where its half-life at pH 3, is 35 min, decreasing to 1.5 min at pH 1.75. The pH-

rate profile of DIM showed a region (pH 1–4) where specific acid catalysis was dominant, 

followed by a transitional region (pH 5–7), and finally a region (pH > 7) where uncatalysed 

degradation was most important.[2] In this thesis DIM was used as a model cationic drug to 

study the effect of relative block length of CMD-PEG copolymer segments and charge 

density of the CMD block on the properties of the resulting PIC micelles. DIM is water 

soluble, readily available and inexpensive. DIM was shown previously to form PIC 

micelles with other anionic block copolymers such as poly(ethylene glycol)-block- 

poly(aspartic acid)[3] and poly(ethylene glycol)-block-poly(L-glutamate).[4]   

 

 

 

Figure SI.5.1. Chemical structure of diminazene diaceturate 
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2. Minocycline hydrochloride (MH) 

2.1.  Indications 

Minocycline hydrochloride (MH) (Figure SI.5.2) is a semisynthetic tetracycline 

antibiotic with a broad spectrum activity against a wide range of microbes including both 

Gram negative and Gram positive bacteria and both aerobes and anaerobes.[5] MH acts by 

binding to the 30S ribosomal subunit of bacterial ribosomes and interferes with protein 

translation, thereby inhibiting bacterial protein synthesis.[6] Minocycline is routinely 

administered orally for the treatment of infectious and inflammatory diseases, such as acne, 

rheumatoid arthritis, and some sexually transmitted diseases, in doses on the order of 3 mg 

kg-1 day-1.[8]  In addition to its antimicrobial activity, recent studies have shown that 

minocycline is effective as a neuroprotective agent in animal models of many diseases such 

as Huntington’s disease[7], Parkinson disease[8], stroke[9], amyotrophic lateral sclerosis[10], 

traumatic brain injury[11], spinal cord injury[12], focal cerebral ischemia[13] and global 

cerebral ischemia.[14] The mechanisms underlying this neuroprotective effect have been 

shown to involve the inhibition of enzymes linked with cytokine production, such as nitric 

oxide synthase and interleukin-1β converting enzyme. More importantly, minocycline was 

shown to have strong, acute anti-inflammatory effects in the brain, as it can penetrate the 

blood brain barrier and inhibit activation of immune cells and microglia, limiting the 

release of cytokines, and reducing the overall neuroinflammation.[15] 

 

 

 

 

Figure SI.5.2. Chemical structure of minocycline hydrochloride 
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2.2.  Physicochemical properties 

Tetracyclines have in common a fused 4-ring structure, and differ in the chemical 

groups at the 5, 6, and 7 positions. MH was first isolated in 1967, and it contains a 

dimethylamino group at the 7 position (Figure SI.5.2).[16] MH, like other tetracycline 

antibiotics, is stable in the dry powder state for at least 3-4 years.[17] In aqueous solutions, 

however, it is unstable and undergoes a number of degradative changes including 

epimerization and oxidation.[18] MH is more susceptible to oxidation than other 

tetracyclines since its D ring (Figure SI.5.2) is a substituted p-amino phenol. The absence 

of hydroxyl groups at both C5 and C6 prevents the formation of anhydro, or iso compounds, 

which are the common degradation products of other tetracyclines. The stability of 

tetracyclines in solution is dependent on the solution pH, being more stable in acidic 

solutions.[18]  The most common transformation reaction of MH is epimerization, a steric 

rearrangement in the configuration of the dimethylamino group at C4 leading to the 

formation of epi-MH.[19] The pharmacological activity of MH epimer is less than 5 % of the 

parent compound. After 24 h storage at room temperature, MH solutions (10 mg/mL) in 5 

% sucrose and phosphate buffered-saline (PBS) pH 7.4 were discoloured and 

precipitated.[15] MH solutions kept at pH 4.2 and 6.2 maintained 90 and 76 % of their initial 

potency after storage for one week at room temperature, respectively.[18]  

2.3.  Biopharmaceutical properties 

MH has a broader antimicrobial activity compared to other tetracyclines.[5] The 

recommended dosage of minocycline is 100 to 200 mg/day.[16] Oral administration of 200 

mg MH results in almost complete absorption, producing a peak serum concentration of 3 

to 5 μg/mL with a half-life of 11 to 13 h.[6] Tetracyclines are ion chelators and compounds 

containing iron, aluminum hydroxide, sodium bicarbonate, calcium or magnesium salts can 

reduce their absorption. For instance, administration of MH with milk reduces its oral 

absorption by 27%.[20] Intravenous administration of 200 mg MH produces peak serum 

concentrations of about 6 μg/mL.[21] Intravenous doses of minocycline in rats producing 

serum concentrations of both 3.6 μg/mL and 13 μg/mL have been shown to reduce infarct 

size in a model of stroke.[22] Therefore, standard MH doses in human are expected to have 
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neuroprotective effects. MH has an isoelectric point of 6.4, which is about one pH unit 

higher than that of other tetracyclines. This allows MH to diffuse more easily into lipoid 

tissues at physiological pH, including brain, thyroid and fat tissues.[17] Therapy with MH is 

well tolerated when it is used for short durations in doses up to 200 mg/day.[9]  Long-term 

treatment, although recognized as generally safe, has resulted in serious side effects in 

some cases. These include gastrointestinal adverse effects and dizziness[23], staining of 

teeth[24], autoimmune hepatitis[25, 26], lupus[27], hypersensitivity syndrome and serum 

sickness[28]. MH is not recommended for use in young children, pregnant women, patients 

who are hypersensitive to tetracyclines, or patients with renal insufficiency. 

3. Aminoglycosides  

3.1.  Indications 

Aminoglycosides (Figure SI.5.3) are a group of structurally diverse polyamines 

either derived from Streptomyces spp. (streptomycin, neomycin and tobramycin) or 

Micromonospora spp. (gentamicin) or synthesised in vitro (netilmicin, amikacin, arbekacin 

and isepamicin).[29] Aminoglycosides are active against a wide spectrum of micro-

organisms, including Gram-positive and Gram-negative bacteria, mycobacteria and 

protozoa. They have been frequently used in the treatment of serious infections caused by 

aerobic Gram negative bacilli such as pneumonia, urinary tract infections and peritonitis.[30, 

31] Today most frequently used aminoglycosides are gentamicin, tobramycin and amikacin, 

whilst streptomycin remains an important drug in the treatment of tuberculosis, brucellosis, 

tularaemia and plague. Paromomycin and spectinomycin have been used to treat intestinal 

protozoal pathogens and Neisseria gonorrhoeae infections, respectively.[29] The 

antibacterial activity of aminoglycosides results from their interaction with the aminoacyl 

site of 16S ribosomal RNA (rRNA) within the 30S ribosomal subunit.[32]  

 

 

 

 

 



227 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure SI.5.3. Chemical structure of neomycin and paromomycin. 

 

3.2.  Physicochemical properties 

Aminoglycosides are polycationic molecules highly soluble in water. Chemically 

there are two major classes of aminoglycosides that contain a central aminocyclitol moiety 

(2-deoxystrptamine (2-DOS)), with one class consisting of 4,5-disubstituted 2-DOS 

compounds and the other consisting of 4,6-disubstituted 2-DOS compounds. Examples of 

the 4,6-disubstituted 2-DOS class include tobramycin, kanamycins A and B, and amikacin, 

while examples of the 4,5-disubstituted 2-DOS class include neomycin B, paromomycin I, 

and lividomycin A. 

3.3.  Biopharmaceutical properties 

Aminoglycosides are administered parenterally or locally, rather than orally due to 

their poor absorption in the gastro-intestinal tract as a consequence of their polar cationic 

nature.[31, 33] The poor cellular penetration of aminoglycosides limit their activity against 

intracellular pathogens.[34] Aminoglycoside antimicrobial activity is mostly concentration-
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dependent, which means that higher concentration of the antibiotic (relative to the minimal 

inhibitory concentration (MIC) against a given organism) induces more efficient killing of 

the organism. High peak concentrations enhance efficacy whilst lower trough 

concentrations reduce the incidence of nephrotoxicity. Therefore, aminoglycosides should 

be given as once-daily administration to achieve these optimal concentrations and results in 

improved efficacy and toxicity outcomes.[35] Nephrotoxicity and ototoxicity are the most 

common side effects of aminoglycosides and they are usually dose-limiting factors in the 

successful therapy using aminoglycosides. The nephrotoxicity of aminoglycosides results 

from the accumulation of a relatively high percentage (~ 10 %) of the intravenously 

administered dose in the kidney.[36]   
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