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Résumé 

Le rôle important joué par la mitochondrie dans la cellule eucaryote est admis 

depuis longtemps. Cependant, la composition exacte des mitochondries, ainsi que les 

processus biologiques qui s’y déroulent restent encore largement inconnus. Deux facteurs 

principaux permettent d’expliquer pourquoi l’étude des mitochondries progresse si 

lentement : le manque d’efficacité des méthodes d’identification des protéines 

mitochondriales et le manque de précision dans l’annotation de ces protéines. 

En conséquence, nous avons développé un nouvel outil informatique, YimLoc, qui 

permet de prédire avec succès les protéines mitochondriales à partir des séquences 

génomiques. Cet outil intègre plusieurs indicateurs existants, et sa performance est 

supérieure à celle des indicateurs considérés individuellement. Nous avons analysé environ 

60 génomes fongiques avec YimLoc afin de lever la controverse concernant la localisation 

de la bêta-oxydation dans ces organismes. Contrairement à ce qui était généralement admis, 

nos résultats montrent que la plupart des groupes de Fungi possèdent une bêta-oxydation 

mitochondriale. Ce travail met également en évidence la diversité des processus de bêta-

oxydation chez les champignons, en corrélation avec leur utilisation des acides gras comme 

source d’énergie et de carbone. 

De plus, nous avons étudié le composant clef de la voie de bêta-oxydation 

mitochondriale, l’acyl-CoA déshydrogénase (ACAD), dans 250 espèces, couvrant les 3 

domaines de la vie, en combinant la prédiction de la localisation subcellulaire avec la 

classification en sous-familles et l’inférence phylogénétique. Notre étude suggère que les 

gènes ACAD font partie d’une ancienne famille qui a adopté des stratégies évolutionnaires 
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innovatrices afin de générer un large ensemble d’enzymes susceptibles d’utiliser la plupart 

des acides gras et des acides aminés. Finalement, afin de permettre la prédiction de 

protéines mitochondriales à partir de données autres que les séquences génomiques, nous 

avons développé le logiciel TESTLoc qui utilise comme données des Expressed Sequence 

Tags (ESTs). La performance de TESTLoc est significativement supérieure à celle de tout 

autre outil de prédiction connu. 

En plus de fournir deux nouveaux outils de prédiction de la localisation 

subcellulaire utilisant différents types de données, nos travaux démontrent comment 

l’association de la prédiction de la localisation subcellulaire à d’autres méthodes d’analyse 

in silico permet d’améliorer la connaissance des protéines mitochondriales. De plus, ces 

travaux proposent des hypothèses claires et faciles à vérifier par des expériences, ce qui 

présente un grand potentiel pour faire progresser nos connaissances des métabolismes 

mitochondriaux. 

 

Mots clefs: mitochondrie, prédiction de la localisation subcellulaire, apprentissage par la 

machine, bêta-oxydation, dégradation des acides gras, dégradation des acides aminés, acyl-

CoA déshydrogénase, évolution, marqueurs de séquence exprimés. 
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Abstract 

The important role of mitochondria in the eukaryotic cell has long been appreciated, but 

their exact composition and the biological processes taking place in mitochondria are not 

yet fully understood. The two main factors that slow down the progress in this field are 

inefficient recognition and imprecise annotation of mitochondrial proteins.  

Therefore, we developed a new computational tool, YimLoc, which effectively predicts 

mitochondrial proteins from genomic sequences. This tool integrates the strengths of 

existing predictors and yields higher performance than any individual predictor. We applied 

YimLoc to ~60 fungal genomes in order to address the controversy about the localization of 

beta oxidation in these organisms. Our results show that in contrast to previous studies, 

most fungal groups do possess mitochondrial beta oxidation. This work also revealed the 

diversity of beta oxidation in fungi, which correlates with their utilization of fatty acids as 

energy and carbon sources. Further, we conducted an investigation of the key component of 

the mitochondrial beta oxidation pathway, the acyl-CoA dehydrogenase (ACAD). We 

combined subcellular localization prediction with subfamily classification and phylogenetic 

inference of ACAD enzymes from 250 species covering all three domains of life. Our study 

suggests that ACAD genes are an ancient family with innovative evolutionary strategies to 

generate a large enzyme toolset for utilizing most diverse fatty acids and amino acids. 

Finally, to enable the prediction of mitochondrial proteins from data beyond genome 
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sequences, we designed the tool TESTLoc that uses expressed sequence tags (ESTs) as 

input. TESTLoc performs significantly better than known tools.  

In addition to providing two new tools for subcellular localization designed for different 

data, our studies demonstrate the power of combining subcellular localization prediction 

with other in silico analyses to gain insights into the function of mitochondrial proteins. 

Most importantly, this work proposes clear hypotheses that are easily testable, with great 

potential for advancing our knowledge of mitochondrial metabolism.  

 

Keywords: mitochondria, subcellular localization prediction, machine learning, beta 

oxidation, fatty acid degradation, amino acid degradation, acyl-CoA dehydrogenase, 

evolution, expressed sequence tags 
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Introduction 

1 Mitochondria and their importance in eukaryotic cells 

First descriptions of the organelle known as the mitochondrion can be dated back to 1850. 

But it has taken about 100 years of intense work to recognize this organelle as the 

powerhouse of the cell, which provides the energy currency ATP for various biological 

reactions. In the following half century, numerous studies revealed that the role of 

mitochondria in the cell is far more complex than merely being the ATP supplier (McBride, 

Neuspiel et al. 2006). Mitochondria host many life-maintenance processes of the eukaryotic 

cell, including carbohydrate metabolism, fatty acid metabolism, amino acid metabolism, 

heme biosynthesis, coenzyme Q biosynthesis, and Fe-S cluster biosynthesis. Mitochondria 

are also important regulators of the cell, involved in cell cycle regulation and initiation of 

apoptosis. Further, mitochondria are the main source of reactive oxygen species (ROS), 

which may cause oxidative damage of proteins, DNAs and lipids. Malfunction of 

mitochondria is implicated in a variety of diseases. The role of mitochondria in 

neurodegeneration, aging, and tumor formation is receiving increasing interests in 

biomedical studies. 

1.1 Origin and morphology 

It is widely accepted that mitochondria originated from an ancient �-Proteobacterium which 

established endosymbiosis with a host cell (an archaeal or a primitive eukaryotic cell) 

(Andersson, Zomorodipour et al. 1998; Gray 1998). Mitochondria of extant eukaryotes still 

retain many bacterial features, such as a double membrane (Figure 1), their own genome, 
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and transcription/translation machineries. However, during evolution the coding capacity of 

the mitochondrial genome has shrunk drastically. Most of the ancestral bacterial genes 

moved to the nucleus or were lost for good. The coding capacity of contemporary 

mitochondrial genomes varies from ~70 proteins in Reclinomonas americana to three 

proteins in Plasmodium falciparum (Lang, Burger et al. 1997; Conway, Fanello et al. 

2000). These numbers are, by far, less than the number of proteins located in mitochondria. 

According to a recent estimation, animals possess ~1500 proteins in their mitochondria, and 

yeast ~1000 (Meisinger, Sickmann et al. 2008). Therefore, around 99% of mitochondrial 

proteins must be encoded in the nucleus, translated in the cytosol, and imported into 

mitochondria.   

 

Figure 1. Simplified structure of mitochondria. (Figure from 

http://en.wikipedia.org/wiki/File:Animal_mitochondrion_diagram_en.svg)  
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1.2 Protein import 

The machinery importing proteins into mitochondria is not fully understood. While co-

translational import is only little characterized, we know most about post-translational 

import. The import machineries involved consist of two major protein complexes: the 

translocase of the outer membrane (TOM complex) and the translocase of the inner 

membrane (TIM complex), as well as numerous auxiliary chaperone complexes. 

Mitochondrial import machineries are sophisticated and versatile. Four different sorting 

pathways have been identified (reviewed in Bolender, Sickmann et al. 2008), but their 

exact mechanism remains unclear.  

1.2.1 TOM complex 

TOM is a complex residing in the outer membrane of mitochondria (Figure 2). It is 

composed of seven subunits: Tom5, Tom6, Tom7, Tom20, Tom22, Tom40, and Tom70, 

designated according to their molecular weights. These subunits have different roles in 

protein import: Tom20, Tom22, and Tom70 are the receptors; Tom40 forms the import 

channel; Tom5 mediates the insertion of proteins into the import channel; Tom6 and Tom7 

stabilize the TOM complex (Bolender, Sickmann et al. 2008).  

1.2.2 TIM complex 

Two TIM complexes have been identified: The TIM23 complex transports proteins with an 

N-terminal targeting peptide, whereas TIM22 complex transports proteins with internal 

targeting signals (Figure 2). So far identified components of TIM23 complex include 
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Tim23 that forms the transmembrane channel, Tim17 that regulates the Tim23 channel, 

Tim21 that interacts with the TOM complex, and Tim50 that controls the opening/closing 

of Tim23 channel. The TIM22 complex consists of the channel-forming subunit Tim22, 

chaperon-interacting Tim12, and two subunits, Tim18 and Tim54, of unknown function 

(Bolender, Sickmann et al. 2008). 

1.2.3 Import of matrix proteins 

The import of most matrix proteins is guided by the mitochondrial targeting peptide (MTP, 

Figure 2), a poorly conserved N-terminal presequence that usually contains 20-80 residues 

forming a positively charged amphipathic �-helix. The targeting peptide is recognized by 

the receptors Tom20 and Tom22 of the TOM complex, and guides the whole protein 

passing through the Tom40 channel. By interaction of Tom22 and Tim50, the imported 

protein is transferred from the TOM complex to TIM23, and passes the inner membrane 

through the Tim23 channel. Then the matrix heat shock protein 70 drives the imported 

protein into the matrix, where the targeting peptide is removed (Bolender, Sickmann et al. 

2008).  

1.2.4 Import of inner membrane proteins 

Some inner membrane proteins have in addition to the MTP a sorting signal that guides 

their integration into the lipid phase of the membrane (Figure 2). But many inner membrane 

proteins such as the ADP/ATP carrier and phosphate carrier do not possess a MTP. Instead, 

they carry internal targeting signals and form a loop topology when they are recognized by 
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Tom70 and imported through the Tom40 channel. In the intermembrane space, these 

looped proteins bind chaperone complexes such as Tim9-Tim10 and Tim8-Tim13, which 

transfer the proteins to the TIM22 complex in the inner membrane (Endres, Neupert et al. 

1999; Rehling, Model et al. 2003). The imported proteins are then inserted into the inner 

membrane through the Tim22 pores, driven by the membrane potential. 

 

Figure 2. Two main protein import pathways of mitochondria. Presequences direct proteins 

through the TOM complex, TIM23 complex and motor PAM to the matrix; the 

mitochondrial processing peptidase (MPP) removes the presequences. Cleavable inner- 

membrane proteins are released laterally from the TIM23 complex. Carrier precursors with 
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internal targeting signals are recognized by the receptor Tom70 and translocated by the 

TOM complex and the Tim9–Tim10 chaperone of the intermembrane space. The TIM22 

complex promotes insertion of carrier proteins into the inner membrane. MtHsp70, matrix 

heat shock protein 70; PAM, presequence translocase-associated motor; TIM, translocase 

of the inner membrane; TOM, translocase of the outer membrane. Figure and legend from 

(Bolender, Sickmann et al. 2008). 

 

1.2.5 Import of intermembrane space proteins 

The intermembrane space is rich in small proteins carrying cysteine motifs, and the Tim 

chaperones are part of them. These proteins are synthesized in the cytosol without MTP, 

and their import requires the Mitochondrial Intermembrane Space Assembly machinery 

(MIA, Chacinska, Pfannschmidt et al. 2004; Wiedemann, Pfanner et al. 2006). It is believed 

that the central component of MIA, Mia40, binds to the incoming intermembrane-space 

proteins after they pass through the TOM complex, and promotes the assembly of these 

proteins into functional complexes (Figure 3). 
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Figure 3. Mitochondrial intermembrane-space import and assembly machinery. Precursors 

of small intermembrane space (IMS) proteins are translocated through the TOM complex 

and bound by Mia40 through disulphide bonds. The sulphydryl oxidase Erv1 cooperates 

with Mia40 in the oxidation of precursor proteins and their assembly into oligomeric 

complexes. Further factors such as Hot13 support assembly of the protein complexes. Erv1, 

essential for respiration and viability 1; Hot13, helper of TIM13; Mia40, mitochondrial 

intermembrane space import and assembly; TIM, translocase of the inner membrane; TOM, 

translocase of the outer membrane. Figure and legend from (Bolender, Sickmann et al. 

2008). 
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1.2.6 Import of outer membrane proteins 

The mitochondrial outer membrane contains proteins with one or more transmembrane 

domains. For proteins with one or two alpha-helix transmembrane domains, it seems that 

their interaction with the TOM complex is sufficient for transport and insertion into the 

membrane. But proteins with beta-barrel need in addition the sorting and assembly complex 

(SAM) to assist in their import, folding, and membrane insertion (Figure 4, Wiedemann, 

Kozjak et al. 2003; Pfanner, Wiedemann et al. 2004).  The exact process is yet unknown. 

Overall, the mitochondrial protein import mechanism is only partially understood. 

Although MTP is widely used as a marker of mitochondrial proteins, it is estimated that 

more than 50% of mitochondrial proteins do not depend on the presence of a targeting 

signal for the import. So far no universal property of mitochondrial proteins has been 

identified, which makes their recognition challenging. 
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Figure 4. Sorting and assembly machinery of the outer mitochondrial membrane. The 

precursors of beta-barrel proteins are initially imported through the TOM complex, interact 

with small TIM chaperones (Tim9–Tim10 complex, Tim8–Tim13 complex) in the 

intermembrane space, and are inserted into the outer membrane by the SAM complex. 

Other outer membrane proteins—the MDM complex and Mim1—support assembly of 

beta-barrel proteins. Mdm, mitochondrial distribution and morphology; Mim1, 

mitchondrial import 1; Mmm1, maintenance of mitochondrial morphology 1; SAM, sorting 

and assembly machinery; TIM, translocase of the inner membrane; TOM, translocase of the 

outer membrane. Figure and legend from (Bolender, Sickmann et al. 2008). 
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1.3 Metabolic pathways in mitochondria 

Mitochondria labor crucial pathways for eukaryotic cells, including metabolism of 

carbohydrates, fatty acids, and amino acids. The biosynthesis of heme, coenzyme Q, and 

Fe-S centers also take place within mitochondria. The following is a brief summary of the 

major mitochondrial metabolic pathways. 

1.3.1 The tricarboxylic cycle (TCA) cycle 

The TCA cycle converts the intermediate products of fatty acids, amino acids, and 

carbohydrates into CO2 or other chemical compounds, and yields energy from this process 

(Figure 5, Berg, Tymoczko et al. 2002). The TCA cycle not only breaks down molecules, 

but also produces building blocks for other reactions, such as ketoglutarate for glutamate 

synthesis, citrate for cholesterol synthesis, oxaloacetate for glucose synthesis, and succinyl-

CoA for heme synthesis. Therefore the TCA cycle fills a central position in the 

mitochondrial metabolism.    
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Figure 5. The TCA cycle. Figure from (Berg, Tymoczko et al. 2002). 

 

1.3.2 Urea cycle 

The urea cycle breaks down amino acids and converts nitrogen into urea. Two of the five 

reactions in the urea cycle occur in mitochondria, with carbamoyl phosphate synthetase 

converting ATP and bicarbonate to carbamoyl phosphate, and ornithine transcarbamoylase 

catalyzing the reaction between carbamoyl phosphate and ornithine to form citrulline. 

Citrulline is exported out of mitochondria and the remaining reactions of this cycle are 

carried out in cytosol (Figure 6). This pathway is crucial for removing excess amino acids 

and nitrogen from the cell. 
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Figure 6. The urea cycle in mitochondria and the cytosol. Figure from (Berg, Tymoczko et 

al. 2002). 

 

1.3.3 Oxidative phosphorylation  

Oxidative phosphorylation is a mitochondrial process that generates ATP through oxidation 

of nutrients (Figure 7). Electrons from various metabolites are ultimately transferred to 

oxygen, via four complexes residing in the inner membrane of mitochondria: NADH-

coenzyme Q oxidoreductase (complex I), Succinate-Q oxidoreductase (complex II), Q-

cytochrome c oxidoreductase (complex III), Cytochrome c oxidase (complex IV). Protons 

are pumped into the intermembrane space via complex I, III, and IV, to build the proton 

potential which is used by ATP synthase (complex V) to generate ATP. The proton 

potential is also required for the protein import into mitochondria (reviewed in Scheffler 

2008).  
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Figure 7. The electron transport chain and ATP synthesis. Figure from 

http://www.biomed.metu.edu.tr. 

 

1.3.4 Heme biosynthesis 

Heme consists of a porphyrin with an iron atom in its centre. It serves as a prosthetic group 

for hemoproteins and cytochromes. Several steps of heme biosynthesis occur in 

mitochondria (Figure 8). It starts with the conversion of succinyl-CoA, an intermediate 

from the TCA cycle, to �-aminolevulinic acid (ALA). ALA is exported out of mitochondria 

and converted into coproporphyrinogen III through several reaction steps in the cytosol. 

The latter component is imported back into mitochondria, where it is converted into 

porphyrin and then, through the addition of the iron, into heme. 
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Figure 8. Heme biosynthesis. Figure from http://en.wikipedia.org/wiki/Heme. 

 

1.3.5 Iron-sulfur cluster biosynthesis 

Iron-sulfur clusters (ISCs) are ensembles of iron and sulfide that function as co-factors of 

iron-sulfur proteins such as complex I-III of the respiration chain, ferredoxin, glutamate 

dehydrogenase, and DNA glycosylase. ISCs are mainly involved in electron transfer and 

redox reactions, but they also contribute to substrate binding and structural stabilization of 

proteins. Iron-sulfur proteins have been found in mitochondria, cytosol, and nucleus, but 

the synthesis of ISC starts in mitochondria (Figure 9). Reduced iron Fe2+ and sulfur 

released from cysteine are bound to the scaffold proteins Isu1/2 and form the ISC. Then the 

ISCs are transferred to apoproteins in mitochondria, or exported to cytosol to synthesize 

extra-mitochondrial Fe-S proteins.   

 Interestingly, in organisms with degenerated mitochondria, such as Encephalitozoon 

cuniculi and Giardia intestinalis, many of the mitochondrial pathways were lost, while ISC 
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synthesis has remained (Henze and Martin 2003; Goldberg, Molik et al. 2008). This 

suggests that ISC synthesis is one of the most essential contributions of mitochondria to the 

cell and requires the particular environment of this organelle. 

  

 

Figure 9. A model for the mechanism of Fe–S-protein biogenesis in eukaryotes. Pmf 

represent the proton motive force required for the import of reduced iron. Mrs3 or Mrs4 are 

carrier proteins. Isu1/Isu2 (green) serves as a scaffold for the synthesis of the ISC. Metal 

delivery to Isu1/Isu2 is assisted by frataxin (Yfh1; yellow). The cysteine desulfurase Nfs1 

(orange) mediates the release of sulfur from cysteine, with the electron transferred from 

NADH, ferredoxin reductase (Arh1), and ferredoxin (Yah1). Ssq1–ATP, Jac1 and Mge1 

(representing DnaK-, DnaJ- and GrpE-like chaperones, respectively), and the glutaredoxin 
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Grx5 are the chaperone systems required after ISC assembly on the Isu proteins. Isa1/Isa2 

and Nfu1 proteins take part in the ISC biogenesis, but their function is still unclear. The 

maturation of extra-mitochondrial Fe–S proteins requires the cytosolic iron-sulfur protein 

assembly machinery, consisting Nar1, Cfd1 and Nbp35. The ABC transporter Atm1, the 

sulfhydryl oxidase Erv1, and the tripeptide glutathione (GSH) are part of the system that 

exports the yet uncharacterized product of ISC-assembly to the cytosol. ‘*’ denotes 

components encoded by essential genes in yeast. Figure and modified legend from (Lill and 

Muhlenhoff 2005). 

1.3.6 Beta oxidation 

Beta oxidation, the major pathway for fatty acid degradation in the cell, breaks down fatty 

acids in a cyclic four-step process: dehydrogenation, hydration, dehydrogenation, and 

thiolysis (Figure 10). After each cycle, two carbons (� and �) are removed from the fatty 

acid, in the form of acetyl-CoA. This pathway feeds electrons into the respiratory chain for 

energy production, and acetyl-CoA into the TCA cycle, gluconeogenesis, and ketogenesis 

pathways. Beta oxidation disorders in human cause accumulation of acylcarnitine, which 

may lead to life-threatening liver dysfunction (Kompare and Rizzo 2008). 
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Figure 10. One iteration of the beta oxidation spiral.  

 

 Among the various pathways in mitochondria, beta oxidation is a special case 

because it can simultaneously reside in peroxisomes (Poirier, Antonenkov et al. 2006). The 

two pathway forms have very similar components that are difficult to distinguish by 

sequence similarity. Subcellular localization prediction of the components is required in 

order to identify the two forms. Intriguing questions are why the cell needs duplication, 

how prevalent the dual form is throughout the tree of life, and how the duplication arose 

during evolution. The dual localization of beta oxidation will be presented in more details 

in Section 3.1.  

1.4 Mitochondrial diseases 

In human, malfunction of mitochondria can cause disease or even be lethal, and mostly 

entails neuromuscular disorder, due to the high energy demand of brain and muscle cells 

(Smeitink, van den Heuvel et al. 2001). Hereditary mitochondrial diseases are relatively 

frequent (Schaefer, Taylor et al. 2004; Uusimaa, Moilanen et al. 2007), with only a few 
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therapies available. Abnormal mitochondrial function can be caused by both 

mitochondrion-encoded and nucleus-encoded genes. Mutations in mitochondrial DNA have 

been identified in approximately 50% of the known mitochondrial diseases, including 

mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (Fan, 

Civalier et al. 2006), and Leber’s hereditary opticus neuropathy (Martin-Kleiner, 

Gabrilovac et al. 2006). Malfunction of nucleus-encoded mitochondrial proteins such as 

frataxin, whose mutation leads to Friedreich’s ataxia (Priller, Scherzer et al. 1997), is likely 

the cause of the numerous mitochondrial disorders for which no mitochondrial DNA 

mutation has been found. Mitochondrial malfunction can also be the consequence of 

disease. For example, impaired electron transport chain and increased ROS are observed in 

diabetes and obesity (Ritov, Menshikova et al. 2005; Amaral, Oliveira et al. 2008), and 

reduced ATP levels are detected in Alzheimer’s and Parkinson’s disease (Crouch, Cimdins 

et al. 2007; Schapira 2008).  

 With the role of mitochondrial dysfunction in various diseases being increasingly 

appreciated, studies on mitochondria as drug target are emerging (Koene and Smeitink 

2009). Mitochondrial gene therapy, as well as metabolic manipulation of perturbed 

biological processes, have been applied in attempts to correct the dysfunction. 

Mitochondria are also the target of antioxidant drugs, to prevent the damage of proteins, 

DNA, or lipids caused by ROS. In addition, mitochondria are regarded as promising targets 

for cancer therapies, which aim at selectively disabling mitochondria to shut down ATP 
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supply, or alternatively, at stimulating mitochondria to induce apoptosis (Ralph and Neuzil 

2009).  

  

2. Identification of mitochondrial proteins 

Great efforts have been made and are still ongoing to reveal the composition of the 

mitochondrial proteome, and to unravel the biological processes in which the proteome 

takes part. It is the complex nature of mitochondria and the diversity of their proteins 

among and within species that makes this undertaking highly challenging. 

 

2.1 Experimental approaches to identify mitochondrial proteins  

A variety of molecular biology approaches are available today to identify the subcellular 

localization of proteins. These approaches are briefly reviewed below.  

2.1.1 Immonofluorescence analysis of epitope-tagged proteins  

In this approach, antibodies or other affinity reagents that specifically bind to the target 

proteins are labeled with fluorescence, and used to probe where proteins are localized in the 

cell. However, since it requires fixed and permeabilized cells, it cannot capture the 

temporal patterns of protein expression. This approach is usually used for individual 

proteins, but recently a large scale study was reported in the context of the Swedish Human 

Protein Atlas program (Barbe, Lundberg et al. 2008), which aims to label all human 
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proteins with antibodies in order to visualize their localization in different cells and tissues. 

The current release of the Human Protein Atlas contains more than 8,800 antibodies and 

over 7,300,000 images. However, application of immonofluorescence analysis in such 

large-scale studies requires prior knowledge of the target proteins and availability of their 

antibodies, which makes it unsuitable for de novo identification of unknown proteins of a 

given cellular compartment.  

2.1.2 Co-expression of fluorescent proteins  

Localization of proteins can also be visualized via co-expression of a target protein with a 

fluorescent reporter protein, for example the green fluorescent protein (GFP). GFP genes 

are fused with cDNA clones of target proteins to transfect cells, in which GFP is expressed 

together with the target protein and its localization is captured by fluorescence microscopy. 

An advantage of this approach is that it shows the protein’s location in the living cell. A 

proteome-scale co-expression study has been conducted in yeast (Kumar, Agarwal et al. 

2002; Huh, Falvo et al. 2003). Although it works well in many cases, some studies showed 

that changing the natural amino acid sequence of a protein by tagging with GFP may cause 

mis-localization of the fused protein. Furthermore, the tagged proteins have to be expressed 

in high levels to guarantee sufficient signal intensity, which may also lead to artifacts 

(Sickmann, Reinders et al. 2003; Seibel, Eljouni et al. 2007).  
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2.1.3 Transcriptomics approach 

Transcriptomics tracks the expression level of mRNAs under different conditions. Genes 

showing a similar expression pattern often encode functionally or physically interacting 

proteins, which in turn suggests the common subcellular localization (Lascaris, Bussemaker 

et al. 2003). In particular, genes whose expression level changes when cells switch from 

aerobic to anaerobic growth conditions likely encode mitochondrial proteins (DeRisi, Iyer 

et al. 1997). However, as respiration is only one of several mitochondrial functions, a large 

number of mitochondrial proteins remain undetected. Also, it is difficult to distinguish 

mitochondria-located proteins from those that are essential to mitochondrial function, but 

located elsewhere, such as the nucleus-localized ribonuclotide-diposphate reductase 

complex which affects the stability of mitochondrial DNA by modulating the mitochondrial 

deoxynucleoside triphosphate pool (O'Rourke, Doudican et al. 2005).  

2.1.4 Knockout/knockdown phenotype 

Mitochondrial proteins can also be recognized by gene silencing studies. When 

mitochondrial metabolism is turned down or mitochondrial morphology is affected after a 

gene is knocked out or knocked down, it is likely that this gene encodes a mitochondrial 

protein. This method has been applied to mitochondrial gene screens in yeast, fruit fly, and 

Caenorhabditis elegans (Dimmer, Fritz et al. 2002; Chen, Shi et al. 2008; Ichishita, Tanaka 

et al. 2008). But proteins encoded by redundant genes are difficult to find by this approach, 

unless all the copies are knocked out. In addition, proteins encoded by essential genes will 

not be detected, because deletion of these genes leads to cell death.     
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2.1.5 Large-scale proteomics 

The proteomics approach is the most direct way of identifying mitochondrial proteins. 

Mitochondria are first isolated by density gradient centrifugation or antibody-coated beads. 

Proteins are extracted and then separated by methods like two-dimensional polyacrylamide 

gel electrophoresis (2D-PAGE) or sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), and identified by mass spectrometry techniques such as 

liquid-chromatography-tandem MS (LC-MS/MS). Proteomics identification of 

mitochondrial proteins has been applied to rice (Heazlewood, Howell et al. 2003), 

Arabidopsis (Heazlewood, Tonti-Filippini et al. 2004), yeast (Sickmann, Reinders et al. 

2003; Reinders and Sickmann 2007), a few mammals (Taylor, Fahy et al. 2003; Forner, 

Foster et al. 2006; Johnson, Harris et al. 2007), C. elegans (Li, Cai et al. 2009), and the 

protist Tetrahymena thermophila (Smith, Gawryluk et al. 2007). The proteomics approach 

is particularly suited for detecting new mitochondrial proteins, but it has two main 

drawbacks: (i) contamination by proteins from other organelles, which leads to a false-

positive rate up to 40%; and (ii) the low coverage (estimated to be 23~40%) of the 

proteome, because proteins of low abundance or high hydrophobicity often escape 

detection (Pagliarini, Calvo et al. 2008). 

2.1.6 Contribution of experimental studies on mitochondria 

The above mentioned studies have provided valuable information about the composition of 

the mitochondrial proteome and the function of this organelle. Protein sequences and their 

annotation have been compiled in several databases, such as MitoP2 for yeast, Neurospora
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crassa, human, mouse, and Arabidopsis (Elstner, Andreoli et al. 2009), MitoCarta for 

human and mouse (Pagliarini, Calvo et al. 2008), MitoProteome (Cotter, Guda et al. 2004) 

and HMPDb (http://bioinfo.nist.gov/) for human, MitoDrome (Sardiello, Licciulli et al. 

2003) for fruit fly, TRIPLES (Kumar, Agarwal et al. 2002), YMPD (http://bmerc-

www.bu.edu/projects/mito/), and YDPM (Steinmetz, Scharfe et al. 2002) for yeast, and 

AMPDB for Arabidopsis (Heazlewood and Millar 2005). In addition, SWISSPROT stores a 

large number of sequences with experimentally confirmed localization. 

The experimental efforts have identified new pathways to complete our 

understanding of mitochondrial biology, and provided insights into the mechanisms of 

mitochondrial bio-processes. For example, the screening of yeast mitochondrial proteome 

for essential proteins leads to the identification of Mia40, an important component of the 

machinery for import and assembly of mitochondrial intermembrane space proteins 

(Sickmann, Reinders et al. 2003; Chacinska, Pfannschmidt et al. 2004). A comprehensive 

analysis of protein localization in yeast allowed to build the global interaction map of 

proteins in the cell (Huh, Falvo et al. 2003). A systematic screen of a yeast deletion mutant 

library of ~5,000 nonessential yeast genes identified a set of genes involved in 

mitochondrial structure and function, including known genes that were never previously 

related to mitochondrial morphogenesis, and new genes as well (Dimmer, Fritz et al. 2002). 

A genome-wide RNA interference screen in Drosophila revealed novel modulators of 

mitochondrial biogenesis and function, such as klumpfuss in apoptosis, smt3 in protein 

stability and proteolysis, and barren in cell cycle regulation (Chen, Shi et al. 2008).  
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2.2 In silico identification of mitochondrial proteins  

Experimental approaches for identifying mitochondrial proteins can be expensive in time 

and costs, in particular for non-model systems. This sets the stage for computational 

methods, which infer the localization of a protein from its sequence. Design and 

implementation of in silico localization prediction approaches is an active research area, 

and a number of tools have been developed. Computational methods, mostly based on 

machine learning techniques, learn from proteins of known localization the rules that allow 

prediction of unknown ones. Machine learning approaches are especially suitable for 

localization prediction, since the mechanisms of protein sorting to different compartments 

are not well understood, and expert knowledge to guide the prediction is limited. The 

machine learning scheme is able to learn from data the distinctive features of proteins 

targeted to various subcellular compartments, features which are otherwise difficult to 

detect. Several machine learning algorithms have been applied in this context, including 

Naïve Bayes classifiers (Duda, Hart et al. 2001), K-nearest neighbors (Shakhnarovich, 

Darrell et al. 2005), neural networks (Priddy and Keller 2005), and support vector machines 

(Boser, Guyon et al. 1992).  In the world of machine learning, the localization prediction is 

a classification problem. The features used to describe the sequence are called attributes, 

and the subcellular compartment of each sequence is called a class. The following is a brief 

review of some widely used machine learning approaches for classification.  
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2.2.1 Commonly used machine learning techniques for classification 

2.2.1.1 Decision tree

Decision tree is a machine learning algorithm which learns from training data to generate 

IF-THEN rules for classification. The graphical representation of the decision-making 

process resembles a tree (Figure 11), in which the internal nodes specify the attributes, and 

the terminal nodes indicate the classes.  

A decision tree is constructed by selecting attributes to split the data set for 

classifying them as accurately as possible. The selection of attributes is via the calculation 

of information gain (IG), which in turn is evaluated by the reduction of entropy (MacKay 

2003). For an information source S which emits symbols from an alphabet (Berg, 

Tymoczko et al. 2002) with probabilities {p1, p2,…pk}, given that the emission of each 

symbol is independent of the others, the entropy of S is defined as: 

H (S)=�
=

k

1i
ii plogp-                        (1) 

If each element in S is described by the attribute x, which has the value v with probability 

of p(x=v), then the conditional entropy H(S|x) is the entropy of S when the value of x is 

given.  

H(S|x)= �
∈

==
Vv

v)x|v)H(Sp(x                         (2) 

The information gain by knowing x is the reduction of entropy when the value of x is given.  

IG (S|x)=H(S)-H(S|x)                      (3) 
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A number of decision tree algorithms have been developed. Most of them are 

variations of a core algorithm that employs a top-down, greedy search through the space of 

possible decision trees, by selecting at each step the attributes yielding the largest 

information gain. By this principle, decision tree programs construct a decision tree T from 

the given training data. One of the most successful and widely used decision tree 

algorithms is C4.5 (Quinlan 1993), and it has been applied to subcellular localization 

prediction by the tool LOCtree (Nair and Rost 2005). 

One advantage of decision trees is that it generates understandable rules that 

illustrate how the decisions are made. It also indicates which of the attributes are most 

important for the prediction, which can be regarded as feature selection procedure. Another 

advantage of decision trees is the fast computation with large datasets. However, decision 

trees are prone to errors due to class imbalance. It favours the correct classification for data 

belonging to classes of larger size, at the cost of wrong predictions for classes with fewer 

instances.  

.  

 

 

 

 

 

Figure 11. Schema of a decision tree. 
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2.2.1.2 Support Vector Machine 

Support Vector Machine (SVM) is a widely used machine learning method. It is designed 

for the binary classification and separates the two classes by a hyperplane  (Boser, Guyon et 

al. 1992). For data {xi, yi}∈S, where xi is the attribute and yi ∈{1,-1} is the class, SVM 

finds a hyperplane  

w·x+b=0                       (4)  

so that all instances of class=1 are on one side of the hyperplane while those of class=-1 are 

on the other side (Figure 12). The instances that satisfy w·xi+b=1 (H1 in Figure 12) or 

w·xi+b=-1 (H2 in Figure 12) are called support vectors, and for all instances in S,    

yi(w·xi+b) �1, ∀ i.                      (5) 

 

Figure 12. The decision boundary for classification in SVM. Open symbols and filled 

symbols are two classes. Symbols in circles are support vectors. Figure from (Burges 1998). 
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The hyperplane (4) is chosen by maximizing the margin 
||w||

2  between the two 

hyperplanes H1 and H2. This is equal to minimize ||w||, satisfying  

yi(w·xi+b) �1                      (6) 

To find the hyperplane that minimizes ||w||, the question is first transformed to minimize 

2
1 ||w||2, subject to yi(w·xi+b) �1. However, in reality the data may not be linearly separable, 

a few instances may be in the margin area or misclassified while the majority of data is still 

well separated. To allow such error, a slack factor � is introduced in (6) so that  

yi(w·xi+b) �1-�i where �i�0                     (7) 

To control the error, the term C i
i
�ξ  is added to the optimization problem min

2
1 ||w||2, 

which is changed to:  

min 
2
1 ||w||2 C i

i
�ξ , subject to yi(w·xi+b) �1-�i,                  (8) 

where C is a parameter chosen by the user. The higher the value of C, the higher is the 

penalty assigned to errors.  

Using the method of Lagrange multipliers, the form (8) is converted to  

max i
i
�α - )xx(yy

2
1

jiji
j,i

ji •αα� , subject to ii
i

y�α =0, 0��i�C                  (9) 

w= ii
i

i xy� α with �i�0 

The discriminant function for classification is  
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ii
i

i xy� α ·x+b                     (10) 

Some data are not separable even with the slack factor being introduced. To make them 

linearly separable, one way is to project them into a higher dimension �: x-> �(x) (Figure 

13). After the projection, the discriminant function (10) is transformed to 

�φφ	α� )x(),x(y ii
i

i +b,                             (11) 

where �i is the solution to the optimization problem (12) 

 

max i
i
�α - �φφ	αα •� )x()x(yy

2
1

jiji
j,i

ji with constrains ii
i

y�α =0, 0��i�C.                          (12) 

It is not necessary to know exactly the function �(x), since solving the problem just 

requires the product of �(x) and �(xi). If we define a kernel k (x, x`) = �(x)·�(xi), then the 

product can be effectively computed with a proper kernel k without specifying �. 

Commonly used kernels include the polynomial (13) and the RBF kernel (or Gaussian 

kernel, 14) 

k (x, x´)=(x·x´+k)d                      (13) 

k (x, x´)=exp(-	||x- x´||2)                    (14) 

Several subcellular localization prediction tools are built with SVM, such as 

LOCSVMPSI (Xie, Li et al. 2005), and ESLpred (Bhasin and Raghava 2004). SVM is fast 

to compute, and finding the optimal hyperplane is guaranteed. Unlike decision tree, SVM is 

less prone to class imbalance, as the classification boundary is only determined by the 
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support vectors. However, it is difficult to interpret how the classification is made and 

extract the underlining rules. 

 

 

Figure 13. Projection of linearly non-separable data into a higher dimension. Figure from 

http://www.dtreg.com/svm.htm. 

 

2.2.1.3 Artificial neural network 

Artificial neural network (ANN) is a machine learning method that borrows the principles 

of biological neural network. The basic component of an ANN is the neuron, which is a 

computation node that accepts inputs and calculates the output according to a pre-defined 

function. There are multiple types of neural networks as well as the training algorithms, for 

example, the widely used feed-forward neural network and back-propagation algorithm. A 

feed-forward neural network is composed of three parts, an input layer, one or more hidden 

layers, and an output layer (Figure 14). The connection of nodes from different layers has a 
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certain strength, which is called weight. Training of a neural network starts with random 

weights, then calculates the output and the error, which is used to adjust the weights so that 

the error decreases. The procedure is repeated until an error minimum is found (reviewed in 

Krogh 2008). The tool TargetP for MTP recognition is based on ANN (Reinhardt and 

Hubbard 1998).  

One advantage of ANN is its ability to capture long range dependency within input 

data. However, the adjustment of weights is often trapped in a local error minimum instead 

of reaching the global error minimum. As in the case of SVM, the result of ANN does not 

provide straightforward insights into the underlying rules of classification, while the 

computation time is usually longer than SVM. 

 

 

Figure 14. The schema of an artificial neural network. X1 to X7 indicates nodes of the input 

layer. The arrow indicates the direction of data flow. Figure from (Krogh 2008). 
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2.2.1.4 K-nearest neighbors  

K-nearest neighbours (KNN) is a non-parametric learning method which, instead of 

formulating a generalized model, makes predictions by comparing the distance between 

unknown data and known data (Shakhnarovich, Darrell et al. 2005). Given a set of training 

data {(xi,yi)}m in which x are the attributes and y are the classes, and a distance matrix d 

which measures the distance between x, KNN just remembers the data. When a query is 

given, KNN will calculate its distance to each xi, sort the distances, and assign the query to 

the class to which the majority of k nearest data points belongs, where k is predefined by 

the user. KNN is a straightforward method for classification, with easily interpretable 

results. But it is influenced by the class imbalance problem and the definition of distance 

matrix. KNN has been exploited in the localization predictor PSORT (Horton and Nakai 

1997).  

 

2.2.2 Commonly used sequences features for classification 

Compared with the selection of the particular computational algorithm, the choice of 

sequence features that represent the proteins has a higher impact on the accuracy of 

prediction. According to the sequence features used, localization prediction tools can be 

divided into two categories: predictions based on annotation and predictions based on 

sequence, which are reviewed below. 
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2.2.2.1 Annotation-based localization prediction  

Textual descriptions of protein function may bear clues to the localization. For example, if 

the annotation contains terms like “succinate dehydrogenase” and “Krebs cycle”, it is very 

likely that the protein is located in mitochondria. Several predictors use the annotation to 

predict where a protein is destined in the cell. The web-server PA-SUB (Proteome Analyst 

Specialized Subcellular Localization Server) first searches for presumptive homologous 

sequences of the query protein in the SWISSPROT database, and then makes the prediction 

based on keywords in the SWISSPROT entries of matched proteins (Lu, Szafron et al. 

2004). Similarly, ProLoc-GO (Huang, Tung et al. 2008) and LocKey (Lu and Hunter 2005) 

exploit Gene Ontology (GO) terms in the annotation, and SherLoc looks for keywords in 

PubMed abstracts (Shatkay, Hoglund et al. 2007).  

 Another approach relying on sequence annotation makes predictions based on co-

occurrence of functional motifs/domains in proteins from different subcellular 

compartments. The tool PSLT (Sarda, Chua et al. 2005) predicts the localization by 

searching for common InterPro motifs and specific membrane domains.  

 Despite being straightforward and biologically interpretable, annotation-based 

predictions have several limitations. First, homology is inferred from sequence similarity, 

but this alone is not always stringent enough. Second, some biological processes occur in 

multiple subcellular compartments, such as beta oxidation found in mitochondria and 

peroxisomes, and ATP synthesis found in mitochondria, chloroplasts, and vacuoles. 

Obviously, predictions based on imprecise annotation terms are prone to error. Moreover, 
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for many species, particularly the poorly studied, a large portion of proteins have no similar 

sequences in public databases, making the prediction based on annotation unfeasible. 

2.2.2.2 Sequence-based localization prediction 

Sequence-based prediction methods do not rely on homology or annotation of proteins. 

Instead, they search for intrinsic sequence features that distinguish proteins in different 

subcellular locations. The most commonly used feature is the targeting signal, i.e., a short 

peptide motif typically at the N-terminus that guides proteins to their destination. 

Recognized signals include the signal peptide (SP) for proteins exported out of the cell, the 

nuclear localization signal (NLS), the mitochondrial targeting peptide (MTP), the 

chloroplast targeting peptide (CTP), and the peroxisomal targeting signal (PTS). Some 

signals have a clear consensus pattern, for example the NLS and PTS, while others are 

poorly conserved, in particular MTP, and therefore difficult to detect. Several tools identify 

targeting signals from protein sequence, and predict the localization accordingly. Examples 

are MitoProt (Claros and Vincens 1996), TargetP (Emanuelsson, Nielsen et al. 2000), 

iPSORT (Bannai, Tamada et al. 2002), Protein Prowler (Boden and Hawkins 2005), and 

Predotar (Small, Peeters et al. 2004). But these tools only work effectively when: (i) the 

accurate N-terminal sequence of a protein is known, which in itself is a challenge for 

proteins inferred from genomic data; and (ii) the protein carries a known targeting signal, 

which does not apply to all proteins. These two factors limit the sensitivity of localization 

prediction based on targeting signals. 
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Since the protein sorting mechanism in the cell is not fully understood, ab initio 

prediction methods have been developed, which do not rely on any prior knowledge. Ab 

initio methods learn from the sequence the most relevant features that disclose a protein’s 

localization. Clues may be obtained from the amino acid composition or from 

physicochemical properties such as molecular weight, net charge, and hydrophobicity 

(Andrade, O'Donoghue et al. 1998; Guda and Subramaniam 2005). The tools NNPSL and 

Subloc classify proteins according to the frequency of each amino acid (Reinhardt and 

Hubbard 1998; Hua and Sun 2001), while PLOC exploits the dipeptide and gapped amino 

acid pair composition (Park and Kanehisa 2003). Physicochemical properties of amino 

acids are calculated in pSLIP to distinguish proteins from different compartments (Sarda, 

Chua et al. 2005).   

2.2.2.3 Localization prediction based on the integration of multiple protein features 

Several tools combine multiple features to improve prediction accuracy. Targeting motifs 

plus amino acid hydrophobicity are used in PSORTII (Horton and Nakai 1997). Mitopred 

evaluates PI value, amino acid composition, and the presence of functional domains (Guda, 

Fahy et al. 2004). Amino acid composition is combined with physicochemical properties in 

ESLpred (Bhasin and Raghava 2004). Sequence-based and annotation-based prediction are 

exploited together in SherLoc (Shatkay, Hoglund et al. 2007), and the upgraded version of 

MultiLoc2 adds GO terms and phylogenetic profile (Hoglund, Donnes et al. 2006). A more 

detailed list of the various prediction tools is compiled in the Supplementary Table 1 of 

Chapter 4. 
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 For well studied model organisms such as yeast, integration of localization 

information from various experimental and computational approaches yields 

comprehensive and accurate prediction. For example, a Bayesian system was used to 

integrate over 30 features from yeast sequences, including signal peptide, mRNA 

expression level, knockout mutation, various functional motifs, and amino acid 

composition (Drawid and Gerstein 2000). Another study, also on yeast, combined 22 

datasets of reference mitochondrial proteins from previous experiments, such as GFP 

localization, deletion phenotype, orthologs, protein abundance, and MS data, as well as 

computational predictions from PSORT and Predotar (Prokisch, Scharfe et al. 2004). Not 

surprisingly, the integration outperforms simple predictions, but such rich information is 

restricted to only a few well-studied species where abundant experimental data are 

available.  

2.3 Limitations in predicting mitochondria-destined proteins  

2.3.1 Contradictory predictions by available tools 

Many of the prediction tools have been applied to identify the mitochondria proteome in 

species whose whole genome sequence is available. Depending on the approach used, the 

predicted proteomes vary considerably in size, and the sets of proteins predicted as being 

part of the proteome overlap only partially. For example, three predictors iPSORT, PSORT 

II and TargetP have been applied to all hypothetical proteins from ten eukaryotic species, 

including two vertebrates, two arthropods, one nematode, two yeasts, one plant, and two 
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protists (Richly, Chinnery et al. 2003). The same trend was observed in all ten species: the 

number of mitochondrial proteins identified by all three predictors is less than 20% of that 

predicted by at least one predictor.  

When the predictions of diverse tools disagree, deciding which one to trust is a 

conundrum for users. In fact, as the tools are based on different sequence features and 

training sets, they could have complementary prediction power. For example, targeting 

peptide recognition for mitochondrial matrix proteins combined with transmembrane 

domain recognition of mitochondrial membrane proteins may yield a more complete 

repertoire of mitochondrial proteome than any scheme used alone. To fully exploit the 

potential complementary strength of each method, it appears promising to integrate not 

only features, but also the tools exploiting different features. We will address this issue in 

Chapter 1. 

2.3.2 Limited type of data that current tools are applicable to  

Another limitation of the current tools is that they are designed for full-length proteins. 

Many of them require that input data must contain the starting methionine. Therefore, 

large-scale predictions have only been reported in species for which well annotated whole 

genome data are available. But for many organisms, such comprehensive information is 

lacking, which largely precludes in silico identification of their mitochondrial proteome.   
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2.3.3 Can Expressed Sequence Tag data serve for subcellular localization prediction? 

The most abundant available data for non-model organisms are expressed sequence tags 

(ESTs, Parkinson and Blaxter 2009). Unlike genomic data, ESTs correspond to fragments 

of a gene’s coding region, sometimes including 3’ untranslated regions (3’-UTRs). To 

generate ESTs, mRNAs are extracted and reverse transcribed to cDNAs, which are 

sequenced to get single-pass reads (ESTs) of typically 50-500 nt in length. Since ESTs 

exclude non-coding regions, which can make up over 90% of a genome, they can be 

obtained at a lower cost and in a shorter time-frame compared to genomic sequences. 

EST data are available for a large number of species. In September, 2009, the dbEST 

database, a repository of ESTs at National Center for Biotechnology Information (NCBI), 

contained ~63 million entries from over 1,800 species. Among them, ~500 species have 

over 10,000 ESTs, while around 1,000 species have more than 1,000 ESTs. In addition, 

~370,000 clustered EST sequences from 49 organisms, mostly unicellular eukaryotes, are 

compiled in TBestDB, a taxonomically broad database of ESTs (O'Brien, Koski et al. 

2007). Many of these species are poorly studied and cover a much wider taxonomic range 

than all the eukaryotic species with nuclear genomes completely sequenced. Therefore, 

these data should provide valuable insights into the diversity of the eukaryotic proteome. In 

particular for subcellular localization study, ESTs have an additional advantage over 

genome sequences. Distinct products of the same gene, caused by alternative splicing, may 

be destined for different subcellular compartments (Ashibe, Hirai et al. 2007; Hunt, Greene 
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et al. 2007; Ueyama, Lekstrom et al. 2007). This may be recognized by predictions based 

on ESTs. 

 So far, no study has been reported using ESTs for subcellular localization predictions. 

Indeed, the available tools work only poorly on EST-derived protein fragments (referred to 

as EST-peptides hereafter) due to the way ESTs are generated. EST-peptides usually lack 

the N-terminal part of the proteins, where otherwise many targeting signals are located. 

Furthermore, as partial sequences, EST-peptides may have a different amino acid 

composition than full length proteins, which may also cause inferior performance. In order 

to exploit EST data for protein localization prediction, new tools specifically tailored for 

this type of sequence data are needed. We will address this issue in Chapter 4.  

 

3 From protein inventory to biological processes  

Knowing the mitochondrial proteome is only the first step toward elucidating the biology of 

mitochondria. Proteins identified by localization prediction must undergo further analysis 

to reveal their function, the pathways in which they participate, and ultimately how the 

pathways interact to form the metabolic network. Localization prediction not only serves as 

a starting point for subsequent functional analyses. It sometimes provides clues in itself for 

unraveling biological processes, especially those that occur in multiple subcellular 

compartments, where each carries out a distinct role. Beta oxidation is one such process. 
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3.1 The beta oxidation puzzle 

 Initially discovered in rat, beta oxidation is one of the first recognized mitochondrial 

metabolic pathways (Kennedy and Lehninger 1949). However, its localization in most 

other species remains controversial. In mammals, two forms of beta oxidation have been 

identified, the mitochondrial form and the peroxisomal form. Although resembling each 

another in several aspects, the two forms require different enzyme sets (Figure 1 of Chapter 

2) and serve distinct physiological roles (Figure 15). Mitochondria host the beta oxidation 

of all short- and medium-chain, and most long-chain fatty acids. But fatty acids with 

extremely long chains, for example hexacosanoic acid (26 carbons), and several types of 

branched-chain fatty acids, such as pristanic acid (2,6,10,14-tetramethylpentadecanoic 

acid), di- and tri-hydroxycholestanoic acid, are exclusively degraded in peroxisomes 

(Figure 15). In mitochondria, fatty acids are completely oxidized to CO2 and H2O, while 

peroxisomal beta oxidation only shortens fatty acid chains to a certain length, which are 

then imported into mitochondria for further degradation. In contrast, fatty acids can be 

completely degraded by the peroxisomal pathway if it is the only form of beta oxidation in 

the species, as is the case in some plants and Saccharomyces. Therefore, knowing the form 

of beta oxidation in a given species helps to track the degradation path of fatty acids in the 

cell.   
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PEROXISOMAL �-OXIDATION

MITOCHONDRIAL �-OXIDATION

hexacosanoic acid
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long-chain fatty acids
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taurocheriodeoxycholate

taurocholate

medium-chain acyl-CoA

 

 

Figure 15. Simplified scheme depicting the different roles of mitochondria and 

peroxisomes in the beta oxidation of fatty acids. DHCA: dihydroxycholestanoic acid; 

THCA: trihydroxycholestanoic acid (THCA). Colored arrows show the degradation of 

different types of fatty acids. Modified from (Wanders, Vreken et al. 2001). 

Does mitochondrial beta oxidation exist beyond animals? Not long ago, the answer 

was thought to be no. Plants and fungi seemed to possess only peroxisomal beta oxidation. 

While the absence of mitochondrial beta oxidation has been confirmed in several yeast 

species, a recent study suggests the presence of this pathway in another ascomycete fungus, 

Aspergillus nidulans (Maggio-Hall and Keller 2004). The question arises whether other 
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fungi have mitochondrial beta oxidation, and which role it plays in their energy 

metabolism. We will address this question in Chapter 2. 

3.2 Acyl-CoA dehydrogenase  

Investigation of metabolic pathways relies primarily on the study of participating enzymes. 

Acyl-CoA dehydrogenase (ACAD) is the enzyme catalyzing the first reaction in each cycle 

of the mitochondrial beta oxidation spiral (Figure 10). ACAD enzymes are found in all 

three domains of life, with a single protein in Escherichia coli, but a large family of 11 

members in human. The 11 members are not functionally redundant. Each has its own 

substrate preference for fatty acids with different length.  

 The majority of beta oxidation disorders in human are due to ACAD deficiency. 

Several clinic phenotypes caused by ACAD subfamily deficiency have been identified 

(Gregersen, Bross et al. 2004). Their clinical presentation is heterogeneous, but most of the 

cases have onset in infancy or early age. Symptoms range from muscle soreness/weakness, 

hypoglycemia, and coma, to sudden death. For example, deficiency of medium-chain acyl-

CoA dehydrogenase, if untreated, leads to a death rate of 1:5 to 1:4. 

 What is known about ACAD enzymes, as well as mitochondrial beta oxidation as a 

whole, derives mainly from mammals. In other species, the ACAD family has not been 

well characterized, and the substrate preference remains largely unclear. Revealing 

different profiles of ACAD subfamilies in various species will shed light on the diversity of 

mitochondrial fatty acid catabolism across taxa. 
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 Starting from the well-defined ACAD subfamilies in a few model species, 

identification of subfamily members in other taxa requires homology detection. Sequences 

are homologs if they share common ancestors. More precisely, two homologous genes are 

orthologs if they originate from speciation event; they are paralogs if they originate from a 

gene duplication event. Usually these two scenarios can be distinguished by phylogenetic 

analysis. Orthology detection is an important topic in bioinformatics, as orthologs have 

often similar function so that orthology can be used for function annotation. A caveat of 

function inference from homology is that the lack of homologs does not mean the 

corresponding gene function is absent in the species. The function can be carried out by a 

remote homolog with fast evolving sequence obscuring similarity, or by a non-homologous 

gene with the same function. 

 A number of methods exist for orthology inference, from basic sequence similarity 

comparison by BLAST (Altschul, Gish et al. 1990) and FASTA (Pearson 1990), more 

complicated bidirectional best-hit (Remm, Storm et al. 2001; Altenhoff and Dessimoz 2009) 

and reciprocal smallest distance calculation (Deluca, Wu et al. 2006), to sophisticated 

clustering (Remm, Storm et al. 2001; Li, Stoeckert et al. 2003) and tree construction 

algorithms (Wicker, Perrin et al. 2001; Storm and Sonnhammer 2002; Arvestad, Berglund 

et al. 2003). Sequence similarity search for orthologs is fast and straightforward, but it often 

misses the evolutionary context and mixes orthologs with paralogs. Strictly speaking, 

phylogenetic inference is indispensable for ortholog detection. But since evolution 

scenarios can be very complicated, phylogenetic construction, in particular when automated, 
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may lead to incorrect grouping of candidates as orthologs (Altenhoff and Dessimoz 2009). 

In Chapter 3, we described phylogenetic analyses with manual identification and removal 

of paralogs for detecting ACAD subfamilies across eukaryotes. 
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Objectives 

As exemplified in the introduction, our current knowledge concerning the mitochondrial 

proteome is still limited. To advance the understanding of this important organelle, my 

thesis research focuses on two main issues: 

1. the development of tools that effectively recognize mitochondrial proteins from 

genomic data, or alternatively, from EST data 

2. application of the prediction tools for identification and analysis of 

mitochondrial proteins and the processes in which these proteins take part. 
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Chapter 1 Mitochondrial protein prediction by 

integrating heterogeneous tools 

 

Available subcellular localization predictors are built with different training data, 

computational methods, and sequence features. This diversity leads to a bias towards 

certain types of sequences, as well as contradictory predictions from different tools. Both 

empirical and theoretical studies suggest that ensembles of individual predictors are often 

more accurate than the individual ones (Valentini and Masulli 2002; Assfalg, Gong et al. 

2009). We applied the decision tree method to select and integrate available predictors. 

Prior knowledge about protein targeting is incorporated in the decision tree to enhance the 

performance.  
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Abstract
Background: Knowing the subcellular location of proteins provides clues to their function as well
as the interconnectivity of biological processes. Dozens of tools are available for predicting protein
location in the eukaryotic cell. Each tool performs well on certain data sets, but their predictions
often disagree for a given protein. Since the individual tools each have particular strengths, we set
out to integrate them in a way that optimally exploits their potential. The method we present here
is applicable to various subcellular locations, but tailored for predicting whether or not a protein
is localized in mitochondria. Knowledge of the mitochondrial proteome is relevant to
understanding the role of this organelle in global cellular processes.

Results: In order to develop a method for enhanced prediction of subcellular localization, we
integrated the outputs of available localization prediction tools by several strategies, and tested the
performance of each strategy with known mitochondrial proteins. The accuracy obtained (up to
92%) surpasses by far the individual tools. The method of integration proved crucial to the
performance. For the prediction of mitochondrion-located proteins, integration via a two-layer
decision tree clearly outperforms simpler methods, as it allows emphasis of biologically relevant
features such as the mitochondrial targeting peptide and transmembrane domains.

Conclusion: We developed an approach that enhances the prediction accuracy of mitochondrial
proteins by uniting the strength of specialized tools. The combination of machine-learning based
integration with biological expert knowledge leads to improved performance. This approach also
alleviates the conundrum of how to choose between conflicting predictions. Our approach is easy
to implement, and applicable to predicting subcellular locations other than mitochondria, as well as
other biological features. For a trial of our approach, we provide a webservice for mitochondrial
protein prediction (named YimLOC), which can be accessed through the AnaBench suite at http:/
/anabench.bcm.umontreal.ca/anabench/. The source code is provided in the Additional File 2.

Background
The eukaryotic cell is highly organized: various biological
processes are associated with specialized subcellular struc-
tures (such as protein export across the cell membrane),

or confined to particular compartments (e.g., respiration
in mitochondria). Subcellular location provides impor-
tant clues about a protein's function and this knowledge
is therefore used to assist in the annotation of newly dis-
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covered or sequence-inferred proteins. On the other hand,
the location of proteins with known function unravels
where the corresponding biological processes take place
and how they are connected amongst each other. Pro-
teomics and microscopic detection of tagged or labelled
proteins are powerful experimental approaches for deter-
mining protein localization. However, for most species,
these approaches are costly in time and expense, and so
there is a need for in silico prediction. A plethora of bioin-
formatic prediction methods have been developed in the
past [1-21], and a dozen or so computational tools are
publicly available (for a review see [22]). Most of these
tools employ machine learning methods, i.e., they learn
location-specific sequence features from known exam-
ples, and then extrapolate the learned rules to make pre-
dictions for proteins of unknown locations.

The targeting peptide, a conserved sequence motif usually
located at the N-terminus of proteins, is a widely used
sequence feature to identify a protein's location within the
cell. This signal interacts with the import machineries of
organelles such as mitochondria, chloroplasts and the
endoplasmic reticulum. A number of tools use this signal
for identifying proteins imported into organelles, notably
MitoProt [23], TargetP [24], iPSORT [25], Protein
Prowler [26], Signal-CF [27], and Predotar [28]. How-
ever, some organelle-imported proteins lack a N-terminal
targeting peptide (e.g., the ADP/ATP carrier that is embed-
ded in the inner mitochondrial membrane [29]) and
therefore remain undetected by the tools above. In addi-
tion, application of these tools for genome-sequence-
inferred proteins is limited, because the N-terminus of
hypothetical proteins is often uncertain.

Another approach to identifying protein localization is
based on sequence similarity with proteins of known loca-
tion. For instance, a protein which shares a high similarity
with a mitochondrial NADH:ubiquinone oxidoreductase
subunit is very likely located in mitochondria. Sequence
similarity combined with text annotation is used, for
example, by the web-server 'Proteome Analyst Specialized
Subcellular Localization Server' (PASUB) [30]. PSLT [31]
predicts protein localization by searching for particular
protein motifs and membrane domains. The underlying
assumption is that proteins belonging to the same com-
partment share common domains. Both sequence-simi-
larity-based and domain-based predictions have the
limitation of depending on the existence of known
homologs or known domains.

Several prediction tools do not rely on sequence similarity
to known proteins or domains, but instead exploit a pro-
tein's amino acid composition and biochemical proper-
ties. Subloc [32], for instance, classifies proteins

according to amino acid frequency, while CELLO [33]
uses ungapped and gapped amino acid pair composition.

Certain tools combine several inherent sequence features
and some also include textual information. For example,
ESLpred [34] uses n-peptide composition and physico-
chemical properties, together with PSI-BLAST results.
pTARGET [35] calculates scores based on the occurrence
pattern of Pfam domains [36] and amino acid composi-
tion. SherLoc [37] exploits amino acid composition, tar-
geting peptides, and motifs, as well as annotation and text
description drawn from the literature or SwissProt entries.

It has been shown before that combining various predic-
tion methods often yields better accuracy than the indi-
vidual methods [38]. In fact, several of the above
mentioned tools integrate different classifiers. CELLO
[33], for instance, employs a two-level support vector
machine (SVM) classification system. The first level builds
individual SVM classifiers, one each for n-peptide compo-
sition, gapped-dipeptide composition, and so on. Each of
these classifiers generates a probability distribution,
which is then processed by a second-level SVM to calcu-
late the final probability for a protein to belong in a cer-
tain subcellular location. The second-level SVM achieves a
notably higher accuracy than the individual first-level
classifiers. Similarly, SherLoc [37] uses the output vectors
of different sequence-based classifiers and a text-based
classifier as input for the final SVM classifier. An alterna-
tive approach builds Bayesian classifiers based on Markov
chains, and constructs a hierarchical ensemble of these
classifiers [39].

Each of the available localization prediction tools (subse-
quently referred to as LOC-tools) has different strength,
and no tool is clearly and globally optimal. Any given
LOC-tool performs well on certain data but poorly on
others, and often predictions by different tools disagree
(see examples in Table 1). This is not surprising, because
LOC-tools employ different machine learning algorithms,
sequence features, and training data.

This report introduces a comprehensive and simple sys-
tem for protein location prediction. Following the maxim
'unite and conquer', our approach combines the comple-
mentary strengths of existing prediction methods. Using
the example of mitochondrial location, we integrated het-
erogeneous localization predictors by different strategies,
tested performance with known data and selected the
most efficient way of integration. The presented method-
ology is readily applicable to proteins from subcellular
locations other than mitochondria, and even to the pre-
diction of other biological features for which multiple,
heterogeneous tools exist.
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Results
As described in the Method section, we collected ~1,000
yeast proteins, ~1,000 Arabidopsis proteins, and ~3,000
human proteins of known subcellular location. Figure 1
shows the performance of nine individual LOC-tools on
these data sets: TargetP, Subloc, SherLoc, pTARGET, Pre-
dotar, PProwler, PASUB, MitoProt, and CELLO. In the
subsequent step, the predictions of these heterogeneous
tools were integrated by different strategies. We employed
the same procedure for all three datasets. Here, we show
the results for yeast; those for Arabidopsis and human are
given in Additional File 1.

Integration of LOC-tool predictions by grouping and 
majority-win voting
We formed 502 different groups ("voting groups") from
nine individual LOC-tools. The predictions of the tools
within each group are integrated by majority-win voting
(see Methods section). Figure 1 (dots) shows that the per-
formance on mitochondrial proteins varies greatly among
the groups (see also Additional File 1: Figures S1 – S2).
While the False Positive Rate (FPR) is generally low (<
0.05), the True Positive Rate (TPR) varies from 0.26 to
0.75. The best result is produced by the voting group
pTARGET+PASUB+CELLO (TPR: 0.75, FPR: 0.02), but
PASUB alone performs nearly as well (TPR: 0.74, FPR:
0.05). Thus, the gain of integration by majority-win vot-
ing is only moderate.

Integration of LOC-tool predictions by decision tree
For integration by decision trees, we took the predictions
of the LOC-tools as input to construct classifiers by the
C4.5 algorithm [40]. A total of six different decision trees
were built as summarized in Table 2. First, outputs of all
LOC-tools were employed as equivalent attributes. The
resulting decision tree (referred to as LOC-DT, Figure 2a)
recognizes mitochondrial proteins with an average TPR of
0.86 and FPR of 0.07, as evaluated by the ten-fold cross
validation test (Figure 1, open symbols; Additional File 1:
Figures S1 – S2). Note that the decision tree classifiers did
not retain all the LOC-tools provided in the training proc-
ess. The elimination of a given tool is due either to redun-

dancy or to low accuracy such that its inclusion would
cause performance to deteriorate.

Second, we introduced biological expert knowledge into
the construction of decision trees. The mitochondrial tar-
geting peptide (MTP) is a feature exclusive to mitochon-
drial proteins, and four LOC-tools rely on it to make
predictions. In order to better exploit this feature, we
implemented a decision tree integrating four MTP-based
tools used in this study, notably TargetP, MitoProt, Predo-
tar and PProwler. The output of this decision tree (referred
to as MTP-DT) was then combined with the other five
tools by constructing a stacked decision tree (STACK-DT;
Figure 2b). As expected, stacking results in a major per-
formance increase with a TPR of 0.9 and FPR of 0.04.

Effect of including transmembrane domain prediction 
tools
We realized that LOC-tools recognize membrane proteins
less efficiently than matrix proteins (Figure 3). To alleviate
this shortcoming, we integrated the LOC-tools with four
additional tools that predict transmembrane domains
(MEM-tools), i.e., Phobius [41], TMHMM [42],
HMMTOP [43], and SOSUI [44]. The decision trees incor-
porating MEM-tools and LOC-tools are termed LOC-
mem-DT, MTP-mem-DT and STACK-mem-DT (see Table
2).

Figure 3 shows that the integration of MEM-tools with
LOC-tools clearly improves the recognition of mitochon-
drial membrane proteins. It should be noted that such
improvement is not directly reflected in the overall per-
formance, because mitochondrial membrane proteins
account for only ~10% of our dataset.

Out of the six decision trees described above, STACK-
mem-DT displays by far the best performance. Compared
with the best individual LOC-tool and the best voting
group (see above), STACK-mem-DT excels particularly in
its high TPR (Table 3). This result was obtained from a
dataset clustered at a cutoff of 80% sequence identity
(data_C80). We repeated these experiments with datasets
clustered more stringently at a 25% sequence identity cut-

Table 1: Examples of conflicting results from individual prediction tools

Sequence ID1 Experimentally verified location Predictions of mitochondrial location by individual LOC-tools2,3

TargetP Subloc pTARGET SherLoc Predotar MitoProt CELLO PProwler PASUB

YOR297C Mitochondria mit mit mit non non mit non non mit
YDR378C Nucleus mit mit non non non mit mit non non

1 The example sequences are retrieved from the yeast genome database [52]
2 For references see text
3 "mit", predicted as mitochondrial protein; "non", predicted as non-mitochondrial protein
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Prediction performance of individual and integrated tools on yeast mitochondrial proteinsFigure 1
Prediction performance of individual and integrated tools on yeast mitochondrial proteins. Filled symbols: indi-
vidual LOC-tools; Dots: voting groups (tools integrated by majority-win voting); Open symbols: decision trees. The desired 
results are located in the top left of the plot area, representing high true positive rate and low false positive rate. a, the result 
shown at full scale. b, the zoom-in of the region with false positive rate 0~0.25, and true positive rate 0.3~0.95.
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off (data_C25, Additional File 1: Table S2). The outcome
was essentically the same as with data_C80 (Additional
File 1: Table S3), which means that the good performance
of STACK-mem-DT is not a result of data redundancy.

We were concerned that this superior performance was
caused by a 20~50% overlap of our yeast data and the
training data of individual LOC-tools. Therefore, we con-
structed a data subset, excluding proteins present in, or
similar to, the training data of any LOC-tool, to build new
decision trees. The result shows that the superior perform-
ance of STACK-mem-DT over both individual LOC-tools
and majority-win voting is retained with this subset
(Additional File 1: Figure S3).

To dissect how STACK-mem-DT makes its predictions, we
followed the specific decision paths of the mitochondrial
and nuclear proteins listed in Table 1, proteins that indi-

vidual tools predict conflictingly. The mitochondrial pro-
tein follows a path down to SherLoc with all three
predictions being wrong (Figure 4a). But in the end, the
decision tree recognizes the mitochondrial location due to
the two correct predictions made by pTARGET and
PASUB. Similarly, the nuclear protein is first wrongly clas-
sified by CELLO, but the subsequent steps of the path
identify its true location.

Finally, we inspected the paths of three other proteins,
constituents of the mitochondrial outer membrane, the
plasma membrane and the nucleus, respectively. All of
these proteins cannot be distinguished by the individual
LOC-tools (Table 4), nor by trees without MEM-tools.
STACK-mem-DT correctly classifies all three proteins due
to the final two steps in the tree that employ MEM-tools
(Figure 4a, coloured line).

Implementation
STACK-mem-DT was implemented as a webservice, Yim-
LOC, accessible via the public bioinformatics workbench
AnaBench [45]. The current version takes the prediction
results from individual tools as input, and outputs the
prediction for a protein to be mitochondrion-localized or
not. For thorough analyses, we recommend that users
build the decision tree on their local computer, with their
own training data and choice of individual LOC-tools.
The source code is available under the GNU licence.

Discussion
The purpose of this study was to enhance prediction accu-
racy by integrating the available subcellular localization
prediction tools. Successful integration of specialized
tools takes advantage of their complementary strengths,
which are drawn from three sources: the different
sequence features the tools exploit, the different computa-
tional algorithms they employ, and the different training
sets they are built from.

Integration of heterogeneous prediction tools by decision treesFigure 2
Integration of heterogeneous prediction tools by 
decision trees. a, The LOC-DT was built with outputs 
from nine LOC-tools. b, The MTP-DT was built with outputs 
from four tools whose prediction is based on the mitochon-
drial targeting peptide. The output of MTP-DT, together with 
the outputs of five other LOC-tools, was used to construct 
the STACK-DT.

TargetPMitoProtPredotarPProwler

MTP-DT SublocpTARGETPASUBCELLOSherLoc

STACK-DT

MitoProt Predotar

PProwler TargetP SublocpTARGETPASUBCELLOSherLoc

LOC-DT

a

b

Table 2: Decision trees built in this study and the individual tools employed to construct each treea

Decision trees LOC-tools MEM-tools

TargetP Predotar MitoProt PProwler CELLO Subloc pTARGET SherLoc PASUB Phobius TMHMM HMMTOP SOSUI

LOC-DT X X X X X X X X X
MTP-DT X X X X

STACK-DT MTP-DT X X X X X
LOC-mem-DT X X X X X X X X X X X X X
MTP-mem-DT X X X X X X X X

STACK-mem-DT MTP-DT X X X X X X X X X

a "X", if the tool is included in the decision tree listed in the leftmost column (for the references see text)
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Integration by decision tree outperforms group voting
The best performance obtained from majority-win voting
of LOC-tool groups shows almost the same TPR as the
best individual LOC-tool (PASUB in this case), with a
slightly lower FPR. Some of the voting groups yield even
lower TPRs than individual LOC-tools. In contrast, deci-
sion tree classifiers built from the ensemble of LOC-tools
all outperform the individual tools as well as any of the
majority-win voting combinations (see Figure 1. Note that
MTP-DT and MTP-mem-DT are special cases as they were
given only a subset of LOC-tools for training.). The most
effective of the presented integrative predictors is STACK-
mem-DT, which exceeds by far the performance of the

best LOC-tool (TPR of 0.92 compared to 0.75, with the
same FPR of 0.05; Table 3). Yet, for fairness, it should be
stressed that many of the tools have been developed with
the aim of predicting multiple locations, while we opti-
mize here mitochondrial location.

A fair and rigorous comparison of YimLOC with all other
prediction methods should use the same test data, as we
did for the comparison of YimLOC with nine LOC-tools
shown in Figure 1, and in Additional File 1: Figures S1 –
S2. Unfortunately, this is not feasible for some prediction
methods because of several reasons: the training data are
not provided; there are no webservices or software distri-
butions available; the webservices are available but not
tuned for large-scale predictions.

Among the various machine leaning methods, we chose
here decision trees for integration because they have the
advantage that they allow tracing back how the predic-
tions are made, and thus may provide a biological mean-
ingful interpretation of the predictions. Note that for the
more complex problem of predicting proteins targeted to
multiple subcellular locations [4-6], neural network or
Naïve Bayes would be more appropriate than decision
trees, because they allow handling of prediction probabil-
ities in a flexible manner.

Trade-off between sensitivity and specificity
For any given prediction method, an increase of the TPR is
usually accompanied by an increase of the FPR. How to
balance the two rates depends on the purpose of the pre-
diction. If biologists wish to identify all mitochondrial
proteins from a whole genome sequence, they should
choose a prediction method with highest TPR (in this
study the STACK-mem-DT). On the other hand, if the pur-
pose is to determine the subcellular localization of a few
candidate proteins of interest, a prediction method with
lowest FPR should be favoured (in this study the combi-
nation of pTARGET+PASUB+CELLO).

Prediction performance of individual and integrated tools on yeast mitochondrial membrane and matrix proteinsFigure 3
Prediction performance of individual and integrated 
tools on yeast mitochondrial membrane and matrix 
proteins. Loc-tools recognize mitochondrial membrane 
proteins less efficiently than matrix proteins. The effective-
ness of PASUB is due to the fact that it exploits annotations 
and that the portion of annotated mitochondrial membrane 
proteins is higher compared to matrix proteins.

Table 3: Performance1 of the best predictors for the three different prediction schemes

Classes2 Individual tool (PASUB) Combination of tools by voting3 Decision tree classifier 
(STACK-mem-DT)

TPR FPR ACC TPR FPR ACC TPR FPR ACC

Yeast Mit 0.74 0.05 0.69 0.75 0.02 0.84 0.92 0.05 0.95
Non 0.65 0.06 0.99 0.20 0.97 0.05

Arabidopsis Mit 0.75 0.09 0.81 0.67 0.07 0.88 0.87 0.12 0.94
Non 0.83 0.05 0.95 0.09 0.96 0.04

Human Mit 0.87 0.09 0.68 0.88 0.01 0.97 0.90 0.02 0.99
Non 0.65 0.02 0.98 0.02 0.99 0.01

1 TPR: true positive rate; FPR: false positive rate; ACC: accuracy (all correctly predicted instances/all instances)
2 Mit: mitochondrial proteins; Non: proteins of other subcellular locations
3 The best combination of tools is pTARGET+PASUB+CELLO for yeast data, PASUB+MitoPort+CELLO for Arabidopsis data, and pTARGET 
+SherLoc+ PASUB for human data
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Making use of prior biological knowledge
During decision tree construction, LOC-tools are retained
if they have a good overall performance on the training
data. In this process, all tools (and therefore the sequence
features exploited) are considered of equal importance. To
further enhance performance, we put more emphasis on
certain tools based on domain-specific knowledge. In par-
ticular, the mitochondrial targeting peptide (MTP) is spe-
cific to proteins imported into mitochondria, but not all
mitochondrial proteins possess one. Therefore, a tool that
recognizes mitochondrial proteins based on the presence
of MTP has high specificity (a protein with MTP is reliably

targeted to mitochondria), but low sensitivity (mitochon-
drial proteins without MTP cannot be recognized). We
employed four MTP-based tools in this study. Yet, LOC-
DT retained only one of them, although the other three
tools may be complementary in recognizing the various
instances.

Since the targeting peptide is known to be an important
determinant of protein localization, but not necessarily
rewarded by decision trees, we modified the training proc-
ess to make use of this external knowledge. This was
achieved by a two-layer decision tree (STACK-DT, see Fig-
ure 2b). Indeed, STACK-DT performes significantly better
than LOC-DT (see Figure 1, "+"), testifying to the value of
incorporating expert knowledge in decision tree construc-
tion.

Inclusion of transmembrane domain prediction
We observed that LOC-tools often misclassified mito-
chondrial membrane proteins (Figure 3). This may be due
to several reasons: (i) the training sets of some tools do
not include mitochondrial membrane proteins (e.g., Sub-
loc); (ii) mitochondrial membrane proteins typically lack
a targeting peptide, while MTP-based tools rely on the
presence of this signal [46]; and (iii) tools based on amino
acid composition and physicochemical properties may
confuse mitochondrial membrane proteins with mem-
brane proteins from other subcellular compartments. We
have addressed these limitations by building decision tree
classifiers that integrate predictions of both subcellular
localization and transmembrane domains. In fact, infor-
mation on the number of such domains boosts recogni-
tion of mitochondrial membrane proteins from 81% to
89% (Figure 3).

Conclusion
This study devises a simple, practical and highly effective
approach to exploiting complementary bioinformatics
tools by integration through machine learning. Using
mitochondrial location as a test case, we observe that tool
integration with decision trees significantly improves pre-
diction accuracy compared to individual tools or their
simple combination. Inclusion of biological expert
knowledge in machine learning further enhances the per-
formance. Particularly improved is prediction of mem-
brane proteins, which is notoriously difficult. Further, our
approach alleviates the conundrum of how to choose
between conflicting predictions from different LOC-tools.
The methodology is easy to implement and applicable to
the prediction of other biological feature for which multi-
ple, heterogeneous tools exist.

Decision tree topology for the prediction of mitochondrial proteinsFigure 4
Decision tree topology for the prediction of mito-
chondrial proteins. a, STACK-mem-DT; b, MTP-DT. The 
trees were built by C4.5 (see Methods). Each oval represents 
a prediction tool. Filled ovals represent transmembrane 
domain predictors. Rectangle represents a decision: "mit" 
for mitochondrial proteins and "non" for proteins of other 
subcellular locations. If a tool predicts the query protein as a 
mitochondrial protein, the branch (edge) is labeled "mit"; 
otherwise "non". If PASUB makes no prediction, the branch 
is labeled "N". Several decision-making paths are highlighted, 
as follows: Dotted line: for non-mitochondrial protein 
YDR378C. Grey line: for mitochondrial protein YOR297C. 
Blue arrow: the common path for three differently localized 
proteins: mitochondrial (YIL065C), plasma membrane 
(YBR069C) and nuclear (YLL022C). Orange arrow: for 
mitochondrial protein YIL065C. Red arrow: for non-mito-
chondrial protein YBR069C. Green arrow: for non-mito-
chondrial protein YLL022C.
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Methods
Data set
Protein sequences from yeast in Swiss-Prot release 50.3
were selected by the following criteria: 1) they are
encoded in the nucleus; 2) their subcellular location is
experimentally verified; and 3) the localization annota-
tion is not ambiguous (i.e., terms like "probable" or "pos-
sible" are absent from their annotation of subcellular
localization). In addition, we retrieved 522 yeast mito-
chondrial protein sequences from MITOP2 [47], a manu-
ally curated database of nucleus-encoded mitochondrial
proteins with experimental evidence. Sequences having
identities over 80% were clustered by Cd-hit [48] to
reduce data redundancy. The final yeast dataset contains
503 mitochondrial and 872 non-mitochondrial proteins.

In a similar way, Arabidopsis and human protein
sequences from Swiss-Prot were collected. The Arabidopsis
dataset was enriched by sequences from AMPDB [49], a
database for Arabidopsis mitochondrial proteins. After
being clustered with 80% sequence identity, 193 mito-
chondrial and 608 non-mitochondrial proteins constitute
the Arabidopsis dataset. The human dataset contains 353
mitochondrial and 2,679 non-mitochondrial proteins.

In addition, we further clustered the three datasets (yeast,
Arabidopsis, and human) with the threshold of 25%
sequence identity to build more stringent datasets (Addi-
tional File 1: Table S2).

To compile a dataset which does not overlap with the
training data of the LOC-tools employed (see Table 2), we
searched our yeast dataset against the training data of the
nine LOC-tools with BLAST. A protein was removed from
the yeast data if it had >80% identity to a protein in the
training set of any LOC-tool. The remaining proteins con-
stitute a non-overlapping subset of yeast data, which con-
tains 190 mitochondrial and 344 non-mitochondrial
proteins.

Integration of heterogeneous tools
a Prediction by individual tools
We selected nine prediction tools for subcellular localiza-
tion: TargetP [24], Subloc [32], SherLoc [37], pTARGET
[35], Predotar [28], Protein Prowler (PProwler) [26],
PASUB [30], MitoProt [23], and CELLO [33]. The selec-
tion was based on the diversity of the algorithms and the
sequence features they employ. These tools were used as
base-level classifiers, whose prediction results were com-
bined to build new classifiers. Prediction results from
most tools were obtained via web services. The only excep-
tion is MitoProt, which has been installed and run locally.

b Consistent representation of the output from heterogeneous LOC-
tools
LOC-tools output a categorical prediction (mitochondria,
cytoplasm, nucleus, etc.) for each query sequence. Predic-
tions were converted to "mit" for mitochondrial location
and "non" otherwise. A special case is PASUB, which
makes no predictions for proteins that lack significant
similarity to known sequences. In these cases, we issued
"N".

Together with the categorical prediction, LOC-tools also
output a positive numerical value indicating the confi-
dence of prediction. The range of numerical values differs
among LOC-tools. Intuitively, numerical encoding seems
advantageous, since it reflects the confidence that LOC-
tools have in their predictions. However, it also may intro-
duce a hidden bias in the integration, because the various
tools evaluate and measure confidence differently (Addi-
tional File 1: Table S1). For example, CELLO outputs a
score (for example 2.064) to show the reliability that a
protein is affiliated with each of 12 subcellular locations.
In contrast, pTARGET distinguishes nine locations, and
outputs the confidence value in the form of percentage
(for example 98%). Since it is not straightforward to con-
solidate the particular confidence factors of the various
LOC-tools, we decided to use categorical encoding.

c Integration of LOC-tools by grouping and voting
For nine LOC-tools, with group size from two to nine,
there were a total of 502 different groups. Within each
group, predictions of individual LOC-tools were com-
bined with a majority-win voting scheme. A given
sequence was regarded as a mitochondrial protein, if
more than half of the combined tools assigned it to mito-
chondria. No prediction was made if there was a tie.

d Integration of LOC-tools by decision tree
For building decision trees, we used J4.8, a program based
on the C4.5 algorithm [40], available in the Weka package
[50]. Default parameters were employed. The individual
LOC-tools and MEM-tools were used as attributes of input
data, and the prediction results of each tool as attribute
values.

The decision trees were evaluated by a ten-fold cross vali-
dation test, where the data set was equally divided into ten
parts. Nine parts were combined to form the training set
for building the decision tree, which was then evaluated
by the remaining part. The process was repeated ten times.
Alternatively, jackknife test can be employed for examin-
ing the power of a prediction method [1-3]. Although
jackknife test is deemed the most rigorous and objective
[51], it is time consuming, particularly for large datasets.
Therefore, 10-fold cross validation is a good and wildly
adopted alternative.
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The performance of each prediction method was meas-
ured as true positive rate and false positive rate, where

true positive rate (TPR) = true positives/(true positives +
false negatives), and

false positive rate (FPR) = false positives/(true positives +
false positives).
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Figure S1 - Prediction performance of individual and integrated tools on 
Arabidopsis mitochondrial proteins.

Filled symbols: individual LOC-tools; Dots: voting groups (tools integrated by majority-

win voting); Open symbols: decision trees. The desired results are located in the top left of 

the plot area, representing high true positive rate and low false positive rate. 
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Figure S2 - Prediction performance of individual and integrated tools on human 
mitochondrial proteins.  

Filled symbols: individual LOC-tools; Dots: voting groups (tools integrated by majority-

win voting); Open symbols: decision trees. The desired results are located in the top left of 

the plot area, representing high true positive rate and low false positive rate. 
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Figure S3 - Prediction performance of individual and integrated tools on yeast data 
without overlap with the training data of any individual LOC-tool. 

Filled symbols: individual LOC-tools; Dots: voting groups (tools integrated by majority-

win voting); Open symbols: decision trees. The desired results are located in the top left of 

the plot area, representing high true positive rate and low false positive rate. 
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Table S1 The number of predicted classes and the range of numerical prediction values 
from individual LOC-tools 
 

 TargetP Subloc pTARGET SherLoc Predotar MitoProt CELLO PProwler PASUB 

Number of 
classes 4 10 9 9 4 2 12 4 10 

Value range 1-5 1-10 1%-100% 0-1 0-1 0-1 >0 0-1 0-1 
Value of most 

reliable 
prediction 

1 10 100% 1 1 1 The higher 
the better 1 1 

 
 
Table S2 Number of instances in each dataset, after being clustered at threshold of 80% 
sequence identity and 25% sequence identity  
 

 Yeast Arabidopsis Human 
Threshold at clustering 80% 25% 80% 25% 80% 25% 
Mitochondrial proteins 503 446 193 158 353 290 

Non-mitochondrial proteins 872 781 608 383 2679 1505 
Total 1375 1227 802 541 3032 1795 

 
 
Table S3 Performance1 of the best predictors for the three different prediction schemes (for 
dataset clustered at threshold of 25% identity) 

1 TPR: true positive rate; FPR: false positive rate; ACC: accuracy (all correctly predicted instances / all 
instances) 2 Mit: mitochondrial proteins; Non: proteins of other subcellular locations3 The best combination 
of tools is pTARGET+Mitoprot+CELLO for yeast data, PASUB+Sherloc+CELLO for Arabidopsis data, 
and pTARGET +SherLoc+ PASUB+subloc+Mitoprot for human data 

 

Classes2 Individual tool (PASUB) Combination of tools by 
voting3 

Decision tree classifier 
(STACK-mem-DT) 

TPR FPR ACC TPR FPR ACC TPR FPR ACC 

Yeast Mit 0.72 0.05 0.69 0.73 0.04 0.89 0.85  0.06 0.93 Non 0.67 0.06 0.98 0.13 0.97  0.08 

Arabidopsis Mit 0.73 0.10 0.82 0.66 0.04 0.89 0.84  0.11 0.92 Non 0.85 0.06 0.98  0.12 0.96  0.07 

Human Mit 0.86 0.08 0.74 0.86 0.03 0.97 0.91 0.03 0.98 Non 0.72 0.02 0.99  0.03 0.99  0.02 



   

Chapter 2 Plasticity of a key metabolic pathway in fungi 

The presence of mitochondrial beta oxidation in fungi has been elusive. Certain 

experiments demonstrated its absence, while others proved its presence in individual 

species. Further, observations from the few species examined could not be generalized to 

the whole kingdom. To address this problem, we searched computationally for enzymes of 

beta oxidation in ~60 fungi, and we used YimLOC to predict if these enzymes are localized 

in mitochondria.  
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Abstract Beta oxidation is the principal metabolic path-
way for fatty acid degradation. The pathway is virtually
universally present throughout eukaryotes yet displays
different forms in enzyme architecture, substrate specificity,
and subcellular location. In this review, we examine beta
oxidation across the fungal kingdom by conducting a large-
scale in silico screen and localization prediction for all
relevant enzymes in >50 species. The survey reveals that
fungi exhibit an astounding diversity of beta oxidation
pathways and shows that the combined presence of distinct
mitochondrial and peroxisomal pathways is the prevailing
and likely ancestral type of beta oxidation in fungi. In
addition, the available information indicates that the
mitochondrial pathway was lost in the common ancestor
of Saccharomycetes. Finally, we infer the existence of a
hybrid peroxisomal pathway in several Sordariomycetes,
including Neurospora crassa. In these cases, a typically
mitochondrion-located enzyme compensates for the lack of
a peroxisomal one.

Keywords Beta oxidation .Mitochondrion . Peroxisome .

Metabolic compartmentalization

Introduction

Fatty acids play multiple important roles in the living cell.
They are the building blocks of the cell membrane, regulate
enzymes and membrane channels, and serve as signaling
molecules and precursors for hormones. Most importantly,
they store and provide energy (Poirier et al. 2006). Fatty
acids can be utilized as a sole carbon source by numerous
species. The principal pathway for fatty acid degradation is
beta oxidation, by which molecules are broken down in a
repeating spiral of four steps. Each spiral removes two
carbons, in the form of acetyl-CoA, from the fatty acid
chain (Fig. 1). While taxonomically virtually ubiquitous
throughout eukaryotes, beta oxidation displays a startling
diversity of substrate specificity, enzyme architecture, and
subcellular localization across various taxonomic groups
(Wanders and Waterham 2006).

In mammals, fatty acids are degraded in two subcellular
locations: mitochondria and peroxisomes. The reaction
steps in the two organelles are similar, but are catalyzed
by different sets of enzymes (Fig. 1). Mammalian mito-
chondria host two beta oxidation pathways. The type I
pathway degrades medium- and short-chain fatty acids
through four basic reactions involving the enzymes acyl-
CoA dehydrogenase (acyl-CoA-DH), enoyl-CoA hydratase
(enoyl-CoA-HT), 3-OH-acyl-CoA dehydrogenase (3-OH-
acyl-CoA-DH), and 3-keto-acyl-CoA thiolase (3-keto-acyl-
CoA-TH); we will designate these reactions as step 1, 2, 3,
and 4 of beta oxidation. The type II pathway, which breaks
down long-chain substrates, includes only two enzymes
because the final three steps of the reaction are catalyzed by
a single enzyme, the so-called trifunctional enzyme (TFE;
Uchida et al. 1992). In mammalian peroxisomes, it is acyl-
CoA oxidase (acyl-CoA-OX) rather than a dehydrogenase
that performs the first step of beta oxidation, and the
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multifunctional enzyme (MFE) combines the activity of
enoyl-CoA-HT and 3-OH-acyl-CoA-DH to catalyze reac-
tion steps 2 and 3.

In non-animal eukaryotes, fatty acid degradation is less
well studied. For example, in plants, it is disputed whether
beta oxidation operates only in peroxisomes or in mito-
chondria as well (Masterson and Wood 2000). In the fungal
kingdom, the pathway is traditionally thought to be locat-
ed exclusively in peroxisomes. Specifically, the yeasts
Saccharomyces cerevisiae and Candida tropicalis reported-
ly lack a mitochondrion-located pathway (Hiltunen et al.
1992; Kurihara et al. 1992). However, this view is
challenged by recent studies, which show that Emericella
(previously designated Aspergillus) nidulans possesses both
peroxisomal and mitochondrial beta oxidation (Maggio-
Hall and Keller 2004).

Fungal fatty acid degradation has been investigated in
only a small number of species, and the picture emerging is
incoherent. It is unknown which type of beta oxidation is
more representative of fungi, that of Emericella with two
distinct pathways (one each located in mitochondria and
peroxisomes) or that of yeast with a single peroxisomal
pathway. This question can now be readily addressed
because of the recent availability of numerous complete
genome sequences from a taxonomically broad spectrum of
species. For example, a recent in silico study searched for
hallmark beta oxidation enzymes in 34 fungal genomes
published at that time (Cornell et al. 2007). Yet, this study
leaves several central issues unresolved. (a) Since only a
single protein was used to represent a whole pathway, it is
not known whether the enzyme set for a particular pathway
is complete. (b) The enzyme localization was inferred from
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sequence similarity alone, although the homologs from
diverse taxa may well be targeted to different subcellular
locations. Both issues are addressed here, together with a
perspective on global pathway evolution. Specifically, we
conducted a large-scale and detailed in silico analysis of
beta oxidation enzymes from 57 fungal species whose
complete nuclear genome sequences have been released to
date. Genomes were screened for all key enzymes involved
in beta oxidation, subcellular localization of proteins was
predicted independently, and enzymes were mapped on a
phylogenetic tree. This analysis provides new insights into
the diversity of beta oxidation across fungi as detailed
below.

In silico identification of beta oxidation pathways

Enzymes constituting beta oxidation pathways have been
well characterized in several model organisms (Hiltunen
and Qin 2000; Poirier et al. 2006). Although such studies
provide valuable references for in silico identification of
beta oxidation enzymes, we realized that the localization of
this pathway cannot be easily inferred from sequence-
similarity-based function annotation of the participating
enzymes, especially for 3-keto-acyl-CoA-TH. In rat, mito-
chondrial and peroxisomal 3-keto-acyl-CoA-TH share
∼37% sequence identity, so certain remote homologues
match enzymes from both compartments with similar
scores. Thus, unambiguous distinction of beta oxidation
enzymes requires also ab initio prediction of their subcel-
lular localization. Together with this latter approach, ∼94%
of potential 3-keto-acyl-CoA-TH sequences could be
reliably assigned to either mitochondria or peroxisomes
(Supplementary Table 1). The remaining 6% (32 proteins)
have predicted affiliations to both organelles. (Enzymes for
which all protein-family members were assigned to two
locations are labeled gray in Fig. 2; individual proteins are
cross-referenced in Supplementary Tables 2 and 3 and
compiled in Supplementary Table 4) Dually assigned
proteins may represent false positive in silico predictions,
but it is quite likely that they indeed reside in both
organelles as shown experimentally for two enzymes
involved in lipid metabolism, dienoyl-CoA-isomerase and
carnitine acetyl-transferase (Filppula et al. 1998; Kawachi
et al. 1996).

To identify the presence, type, and location of beta
oxidation across fungi, we collected the proteins deduced
from completely sequenced fungal nuclear genomes (Table 1).
We searched by BLAST among these sequences for possible
homologues of well-characterized mitochondrial and perox-
isomal beta oxidation enzymes. For each putative homologue
found, we separately predicted its subcellular localization
(methods are described in the Supplementary Methods). The

combined evidence of both analyses was used to infer where
beta oxidation occurs in a given organism (Table 1).

Mitochondrial beta oxidation in fungi

We searched in fungal sequences for type I and II of
mitochondrial beta oxidation (see “Introduction”), but did
not detect any homolog of TFE, indicating that type II beta
oxidation is absent from fungi. In the following, “mito-
chondrial beta oxidation” refers only to type I.

Sequence similarity plus subcellular localization predic-
tion identified at least one homologue for each of the four
mitochondrial beta oxidation enzymes in over 50% of the
investigated species, including members of all major fungal
groups (Fig. 2; sequence IDs are listed in Supplementary
Table 2). We propose that these species possess an intact
mitochondrial pathway. The corresponding genes generally
occur in sizable families, the largest being acyl-CoA-DH
with up to 10 members with an average family size of five
(Supplementary Table 2).

We encountered incomplete sets of mitochondrial beta
oxidation enzymes in 12 species (Fig. 2, Supplementary
Table 2). Recognizable homologs of 3-OH-acyl-CoA-DH,
which catalyzes step 3 of the reaction, are lacking in two
basidiomycetes (Postia and Phanerochaete) and one asco-
mycete (Ajellomyces). Interestingly, these species possess
tentative homologs of 3-OH-butyryl-CoA dehydrogenase.
Therefore, the three species most probably possess a
functional mitochondrial beta oxidation, but one which is
limited to butyric acid as substrate. Homologues of
enzymes catalyzing both step 3 and 4 are missing in
Candida, Lodderomyces, Eremothecium, and Yarrowia.
Three out of four enzymes seem absent in Pichia stipitis,
Kluyveromyces, and Debaryomyces. Finally none of the
four mitochondrial beta oxidation enzymes could be
detected in the Encephalitozoon, Pichia guilliermondii,
Clavispora, Saccharomyces, Lachancea, and the two
Schizosaccharomyces species (Fig. 2).

The findings described above extend as well as question
conclusions drawn in an earlier investigation of fungal
genomes (Cornell et al. 2007). This previous study used
acyl-CoA-DH as a hallmark of ‘non-peroxisomal’ beta
oxidation. However, acyl-CoA-DH participates also in the
degradation of valine, leucine, and isoleucine. Therefore,
the occurrence of this enzyme is not sufficient to infer
functional beta oxidation outside peroxisomes. In fact, we
found a total of ten fungi possessing acyl-CoA-DH, but
lacking up to three other enzymes of the mitochondrial
pathway (Fig. 2), strongly suggesting the absence of
mitochondrial beta oxidation in these species. Confirmation
of our in silico results comes from experimental studies in
C. tropicalis and S. cerevisiae, showing absence of beta
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Fig. 2 Beta oxidation enzymes mapped on the fungal phylogeny tree.
The tree was built with concatenated homologs of eight proteins: the
two largest subunits of RNA polymerase II (RPB1 and RPB2) and III
(RPC1 and RPC2), mitochondrial and cytoplasmic heat shock proteins
70 (HSP70_mit and HSP70_cyt), elongation factor II (EF2), and 60
kDa chaperonin (CPN60). Multiple alignment was performed with
MUSCLE (Edgar 2004) and tree construction with the Bayesian
program PhyloBayes (Lartillot and Philippe 2004), using the CAT+Γ
model with eight discrete gamma rate categories. Homo sapiens and
Monosiga brevicollis were used as outgroup (not shown). Numbers at
branches indicate posterior probabilities if <100%. Maximum likeli-
hood trees (not shown) display the same topology except for slight
differences in the three branches leading to Clavispora, Eremothe-
cium, and Magnaporthe, which all have insignificant bootstrap
support. The position of Encephalitozoon could not be resolved, and

its branch has been manually added to the tree. Each square represents a
mitochondrial beta oxidation enzyme: (from left to right) acyl-CoA
dehydrogenase, enoyl-CoA hydratase, 3-OH-acyl-CoA dehydrogenase,
3-keto-acyl-CoA thiolase. Each triangle stands for a peroxisomal beta
oxidation enzyme: (from left to right) acyl-CoA oxidase, multifunc-
tional enzyme, 3-keto-acyl-CoA thiolase. Open symbols The
corresponding enzyme was not found. Closed symbols The
corresponding enzyme was found. Gray symbols All homologs of
the corresponding enzymes are predicted to reside in both mitochon-
dria and peroxisomes. 3-OH-butyryl-CoA dehydrogenase instead
of 3-OH-acyl-CoA dehydrogenase was found. Acyl-CoA dehy-
drogenase substitutes for acyl-CoA oxidase. Arrows indicate sug-
gested evolutionary events. Loss of mitochondrial beta oxidation;

loss of both mitochondrial and peroxisomal beta oxidation;
hybrid peroxisomal beta oxidation
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Table 1 Beta oxidation pathways in fungi

Species name Data source Mitochondrial pathway Peroxisomal pathway Hybrid peroxisomal pathway

Ajellomyces capsulatus Broad Institutea ? Y
Aspergillus clavatus Broad Institute Y Y
Aspergillus flavus Broad Institute Y Y
Aspergillus fumigatus Broad Institute Y Y
Aspergillus niger DOE-JGIb Y Y
Aspergillus oryzae Broad Institute Y Y
Aspergillus terreus Broad Institute Y Y
Batrachochytrium dendrobatidis Broad Institute Y Y
Botryotinia fuckeliana Broad Institute Y Y
Candida albicans Broad Institute Y
Candida glabrata Génolevuresc Y
Candida tropicalis Broad Institute Y
Chaetomium globosum Broad Institute Y Y
Clavispora lusitaniae Broad Institute Y
Coccidioides immitis Broad Institute Y Y
Coprinopsis cinerea Broad Institute Y Y
Debaryomyce hansenii Génolevures Y
Emericella nidulans Broad Institute Y Y
Encephalitozoon cuniculi NCBId

Eremothecium gossypii NCBI Y
Filobasidiella neoformans Broad Institute Y Y
Fusarium oxysporum Broad Institute Y Y
Gibberella moniliformis Broad Institute Y Y
Gibberella zeae Broad Institute Y Y
Hypocrea jecorina DOE-JGI Y Y
Hypocrea virens DOE-JGI Y Y
Kluyveromyces lactis Génolevures Y
Laccaria bicolor DOE-JGI Y Y
Lachancea kluyveri SGDe Y
Lodderomyces elongisporus Broad Institute Y
Magnaporthe grisea Broad Institute Y Y
Mycosphaerella fijiensis DOE-JGI Y Y
Mycosphaerella graminicola DOE-JGI Y Y
Nectria haematococca DOE-JGI Y Y
Neosartorya fischeri Broad Institute Y Y
Neurospora crassa Broad Institute Y Y
Phaeosphaeria nodorum Broad Institute Y Y
Phanerochaete chrysosporium Broad Institute ? Y
Phycomyces blakesleeanus DOE-JGI Y Y
Pichia guilliermondii Broad Institute Y
Pichia stipitis Broad Institute Y
Postia placenta Broad Institute ? Y
Puccinia graminis Broad Institute Y Y
Rhizopus oryzae Broad Institute Y Y
Saccharomyces bayanus SGD Y
Saccharomyces castellii SGD Y
Saccharomyces cerevisiae Broad Institute Y
Saccharomyces kudriavzevii SGD Y
Saccharomyces mikatae SGD Y
Saccharomyces paradoxus SGD Y
Schizosaccharomyces japonicus Broad Institute
Schizosaccharomyces pombe Broad Institute
Sclerotinia sclerotiorum Broad Institute Y Y
Sporobolomyces roseus DOE-JGI Y Y
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oxidation activity in isolated mitochondria (Hiltunen et al.
1992; Kurihara et al. 1992).

Some of our in silico results challenge the experimental
data. As stated above, our analyses identified the homo-
logues of all four mitochondrial beta oxidation enzymes in
Neurospora. In contrast, enzyme tests with isolated mito-
chondria failed to detect activities of 3-OH-acyl-CoA-DH
and 3-keto-acyl-CoA-TH, which led to the assumption that
mitochondrial beta oxidation is absent from this fungus
(Thieringer and Kunau 1991). We explain the conflicting
bioinformatic and biochemical evidence as follows. The
cells used in the experiment were cultivated in medium
containing oleate (C18, long-chain fatty acid) as sole carbon
source, while the two mitochondrial enzymes are special-
ized to degrade short-chain fatty acids (Hiltunen and Qin
2000). Since beta oxidation activity in Neurospora requires
substrate induction (Kionka and Kunau 1985), the absence
of enzyme activity is most likely due to lack of expression
rather than lack of genes.

Peroxisomal beta oxidation in fungi

We searched fungal sequences for potential homologues of
acyl-CoA-OX, MFE, and 3-keto-acyl-CoA-TH and then
predicted whether or not these proteins are localized in
peroxisomes. Homologues of all three peroxisomal
enzymes are present in ∼80% of investigated fungal species
(across all groups, Fig. 2, Supplementary Table 3), which
indicates that these taxa host a peroxisomal beta oxidation
pathway. Again, most genes encoding components of beta
oxidation exist in families, the largest being acyl-CoA-OX
with up to 11 members with an average size of two.

Incomplete enzyme sets occur in six ascomycetes:
Ajellomyces, Chaetomium, the two Hypocrea species,
Magnaporthe, and Neurospora. In each instance, it is the
enzyme acyl-CoA-OX (catalyzing step 1 in peroxisomal
beta oxidation) that appears absent (Fig. 2). Previous
experimental studies in Neurospora and Magnaporthe
(Kionka and Kunau 1985; Thieringer and Kunau 1991;

Wang et al. 2007) report beta oxidation activity in isolated
peroxisomes, with acyl-CoA-DH substituting for acyl-CoA-
OX, the former enzyme being typical for the mitochondrial
pathway. Combining the experimental evidence and our
analysis, we conclude that Neurospora and Magnaporthe
possess beta oxidation in both organelles: a canonical
mitochondrial pathway and a hybrid peroxisomal pathway.
This pattern is apparently shared with two other Sordariomy-
cetes, Chaetomium, and Hypocrea (Fig. 2), in which we
observe the same predicted enzyme profile. A hybrid
peroxisomal pathway seems also present in Ajellomyces.
However, its mitochondrial pathway remains obscure be-
cause 3-OH-acyl-CoA-DH could not be unambiguously
identified in this species.

Finally, all peroxisomal (and mitochondrial) beta oxidation
enzymes appear absent in Encephalitozoon and Schizosac-
charomyces, as proposed by others before (Cornell et al.
2007).

Evolution of beta oxidation in fungi

Our study demonstrates convincingly that contrary to
common belief, most fungi host both peroxisomal and
mitochondrial beta oxidation (Table 1). However, the two
pathways show different trends in evolution. To retrace the
evolutionary history of beta oxidation in fungi, we mapped
the presence/absence of individual enzymes on a phyloge-
netic species tree (Fig. 2). This shows that certain losses of
enzymes and pathways are ancient events, whereas others
occurred relatively recently in evolutionary time.

Consistent with previous views (Cornell et al. 2007), the
mitochondrial pathway has been lost early on in the common
ancestor of all Saccharomycetes. Further, our data suggest that
Sordariomycetes have “invented” a hybrid peroxisomal beta
oxidation. In Encephalitozoon and Schizosaccharomyces, we
and others (Cornell et al. 2007) did not detect any enzyme
involved in beta oxidation. Absence of fatty acid degradation
in Encephalitozoon, an obligate intracellular parasite, is not
surprising, given the loss of canonical mitochondria and

Table 1 (continued)

Species name Data source Mitochondrial pathway Peroxisomal pathway Hybrid peroxisomal pathway

Uncinocarpus reesii Broad Institute Y Y
Ustilago maydis Broad Institute Y Y
Yarrowia lipolytica Génolevures Y

Y The pathway exists, ? the type of pathway could not be determined
a Broad Institute of MIT and Harvard (http://www.broad.mit.edu/annotation/fgi/)
b DOE Joint Genome Institute (http://www.jgi.doe.gov/)
c Génolevures Consortium (http://cbi.labri.fr/Genolevures/)
d http://www.ncbi.nlm.nih.gov/Genomes/
e Saccharomyces Genome Database (http://www.yeastgenome.org/)
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peroxisomes all together. In turn, the free-living Schizosac-
charomyces do retain fully functional organelles, but populate
sugar-rich environmental niches. This allows the fission yeast
to specialize on fermentable substrates and lose the capacity
to degrade other carbon sources, including glycerol and fatty
acids.

Conclusion

Our large-scale in silico study reveals a most diverse make-
up of beta oxidation in fungi. The majority, and in
particular early diverging taxa such as Rhizopus and
Phycomyces, possess both mitochondrial and peroxisome-
located pathways. This feature is shared by the sister clade
of fungi, the animals, and thus most likely represents the
primitive state in Opisthokonts. Another noteworthy find-
ing is that certain fungi have lost a functional mitochondrial
pathway, while the peroxisomal pathway remains intact
(e.g., Saccharomyces), yet the inverse case was not
detected. When the peroxisomal enzyme set is incomplete,
it is in all instances acyl-CoA-OX that is missing and which
can be complemented by acyl-CoA-DH to form a function-
al hybrid pathway in peroxisomes.

In summary, beta oxidation is an illustrative example of
the catabolic versatility of the fungal kingdom, with a
spectrum covering from hyper-specialists to most broad
generalists, the latter capable of degrading virtually all
forms of organic matter encountered on Earth.
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Supplementary files 

 
Materials and Methods 

 

Data collection 

Protein sequences deduced from 57 completed fungi genomes was retrieved from Broad 

Institute, DOE Joint Genome Institute, Saccharomyces Genome Database, Génolevures 

Consortium, and NCBI (Table 1). The Uniref90 database was retrieved from UniProt.  

 

Selection of beta oxidation enzymes via similarity search 

We conducted a BLASTP search between the fungal proteins and sequences from 

UniRef90 database, using the threshold e=10-10 for significant matches. If the top hit 

against UniRef90 database was a beta oxidation enzyme, the query protein was annotated 

as such. To infer remote homologs, the enzymes identified were used for a second 

‘transitive’ screen to annotate sequences without any matches in the first run, a procedures 

employed with success by the annotation tool AutoFACT (Koski, Gray et al. 2005). For 

species in which beta oxidation enzymes were not found, we also searched by TBLASTN 

in their genome sequences to avoid false negatives caused by gene prediction error. 

However, it cannot be completely ruled out that some enzymes appear to be missing only 

because of incomplete genome data. For species in which beta oxidation enzymes were not 

found in the genome sequence, we scrutinized other available data sources such as ESTs. 



 

 

 

76

 

Mitochondrial protein prediction 

The subcellular localization prediction of the proteins was based on nine predictors: 

TargetP (Emanuelsson, Nielsen et al. 2000), Subloc (Hua and Sun 2001), SherLoc 

(Shatkay, Hoglund et al. 2007), pTARGET (Guda and Subramaniam 2005), Predotar 

(Small, Peeters et al. 2004), Protein Prowler (PProwler) (Boden and Hawkins 2005), 

PASUB (Lu, Szafron et al. 2004), MitoProt (Claros and Vincens 1996), and CELLO (Yu, 

Chen et al. 2006). All the results were obtained from online servers of the predictors, 

except for MitoProt, which was installed and run locally.  

 

For most proteins, the predictors gave contradictory results. We integrated these predictions 

by employing the tool YimLOC (Shen and Burger 2007), which has been shown to be more 

accurate than any of the individual predictors. We used the YimLOC result as the final 

localization prediction.     

 

Peroxisomal protein prediction 

Six of the nine predictors above include the class “peroxisomes” (SherLoc, pTARGET, 

PProwler, PASUB, PST1 (Neuberger, Maurer-Stroh et al. 2003), and CELLO). Since the 

predictors have low to medium sensitivity for peroxisomal proteins (22%-77%), we 

employed the following scheme to maximize the sensitivity by combing function 

annotation with localization prediction: for a query protein, if 1) by similarity search it is 
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annotated as a peroxisomal beta oxidation enzyme; 2) any of these predictors classifies it 

into peroxisomes; 3) it is not targeted to mitochondria according to YimLOC, this protein 

will be predicted as peroxisome-destined. Dual-localization will be assigned if this protein 

is also recognized as a mitochondrial one by YimLOC.  

 

Phylogenetic inference  

We chose eight proteins that have been successfully used in previous fungal phylogenetic 

analyses. These are the two largest subunits of RNA polymerase II (RPB1 and RPB2), and 

III (RPC1 and RPC2), mitochondrial and cytoplasmic heat shock proteins 70 (HSP70_mit 

and HSP70_cyt), elongation factor II (EF2), and 60kDa chaperonin (CPN60). We used 

Homo sapiens and Monosiga brevicollis as outgroup (not shown). Homologs of these 

proteins were initially searched in each species with a BLASTP cutoff of e=10-100). Only 

unambiguous orthologs were retained, identified by phylogenetic analyses of individual 

proteins (Supplementary Table 5). Protein sequence alignments were generated using 

MUSCLE (Edgar 2004). Aligned sequences were concatenated, and Gblocks (Castresana 

2000) was employed to remove ambiguously aligned regions and highly divergent parts of 

the alignment. Three independent phylogenetic runs were performed with the Bayesian 

program PhyloBayes (Lartillot and Philippe 2004), using the CAT+
 model with eight 

discrete gamma rate categories. After the convergence of likelihood values across 

generations, the final consensus tree was built based on the combined runs. Bayesian 

posterior probabilities were obtained from the majority rule consensus of the tree sampled 
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after 1,000 generations. We also constructed maximum likelihood trees using RAxML 

(Stamatakis 2006) using the WAG+ 
 model with four discrete gamma rate categories, and 

we evaluated the statistical support by 100 bootstrap replicates. 
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Supplementary Table 1 Genome-deduced proteins with significant sequence similarity to 
both mitochondrial and peroxisomal keto-acyl-CoA thiolase 

Sequence ID Species name 
BLASTP score 

to mitochondrial 
enzyme1 

BLASTP score 
to peroxisomal 

enzyme2 

Localization 
prediction3 

HCAG_07123.1 Ajellomyces capsulatus 91.3 125 per 
ACLA_070310 Aspergillus clavatus 196 350 mit 
AFL2G_01917 Aspergillus flavus 211 387 per 
AFL2G_06769 Aspergillus flavus 205 358 mit 

Afu2g11350 Aspergillus fumigatus 202 367 mit 
Afu7g04080 Aspergillus fumigatus 203 385 mit 

fge1_pm_C_2000057 Aspergillus niger 189 338 mit 
AO090003001121 Aspergillus oryzae 212 387 per 
AO090026000515 Aspergillus oryzae 205 358 mit 

ATEG_00456 Aspergillus terreus 196 357 mit 
ATEG_01444 Aspergillus terreus 199 365 mit 
ATEG_03795 Aspergillus terreus 197 331 per 
ATEG_03980 Aspergillus terreus 201 367 mit 
BDEG_06810 Batrachochytrium dendrobatidis 202 399 mit 
BC1G_00632 Botrytis cinerea 210 355 per 
BC1G_03480 Botrytis cinerea 185 332 mit 
BC1G_13290 Botrytis cinerea 192 323 per 

CAWG_01376 Candida albicans 192 358 per 
CAWG_02477 Candida albicans 210 338 per 
CTRG_01068.3 Candida tropicalis 202 357 per 
CTRG_02168.3 Candida tropicalis 211 326 per 

CHG05249.1 Chaetomium globosum 187 334 mit 
CHG08784.1 Chaetomium globosum 199 342 per 
CLUG_04882 Clavispora lusitaniae 196 355 per 
CIMG_01533 Coccidioides immitis 155 310 per 

CC1G_06261.1 Coprinus cinereus 152 281 mit 
AN1050 Emericella nidulans 192 359 per 
AN5646 Emericella nidulans 201 387 per 
AN5878 Emericella nidulans 192 360 mit 

CNAG_00524.1 Filobasidiella neoformans 403 215 mit 
FOXG_02954 Fusarium oxysporum 205 347 per 
FOXG_04827 Fusarium oxysporum 181 270 mit 
FOXG_11385 Fusarium oxysporum 200 345 mit 
FOXG_13516 Fusarium oxysporum 52 80.9 per 
FVEG_01806 Gibberella moniliformis 205 350 per 
FVEG_03315 Gibberella moniliformis 218 305 mit 
FVEG_10433 Gibberella moniliformis 199 345 mit 
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FVEG_13890 Gibberella moniliformis 160 286 mit 
FGSG_04243 Gibberella zeae 197 348 mit 
FGSG_13398 Gibberella zeae 187 329 per 

jgi_Trire2_123720 Hypocrea jecorina 203 343 mit 
jgi_Trire2_75368 Hypocrea jecorina 189 345 per 
jgi_Trive1_73014 Hypocrea virens 199 337 mit 
jgi_Trive1_80821 Hypocrea virens 194 349 per 

jgi_Lacbi1_301021 Laccaria bicolor 160 310 mit 
LELG_02195 Lodderomyces elongisporus 184 326 per 
LELG_05753 Lodderomyces elongisporus 186 325 per 
MGG_09512 Magnaporthe grisea 189 332 mit 
MGG_10700 Magnaporthe grisea 196 349 per 
MGG_13647 Magnaporthe grisea 65.1 123 mit 

jgi_Mycfi1_79474 Mycosphaerella fijiensis 173 308 mit 
jgi_Mycgr1_83653 Mycosphaerella graminicola 202 354 per 

jgi_Necha2 Nectria haematococca 206 342 mit 
jgi_Necha2 Nectria haematococca 209 338 mit 
jgi_Necha2 Nectria haematococca 196 337 per 

NFIA_086620 Neosartorya fischeri 201 364 mit 
NCU04796 Neurospora crassa 204 369 per 
NCU05558 Neurospora crassa 193 336 per 
NCU09646 Neurospora crassa 198 337 mit 
NCU10691 Neurospora crassa 204 369 per 

SNU13439.1 Phaeosphaeria nodorum 216 354 mit 
jgi_Phchr1_125276 Phanerochaete chrysosporium 195 298 mit 
jgi_Phybl_33195 Phycomyces blakesleeanus 436 240 mit 
jgi_Phybl_68683 Phycomyces blakesleeanus 230 183 mit 
jgi_Phybl_69337 Phycomyces blakesleeanus 412 238 mit 
jgi_Phybl_26171 Phycomyces blakesleeanus 192 370 per 
jgi_Phybl_75034 Phycomyces blakesleeanus 201 412 per 
PGUG_01256.1 Pichia guilliermondii 209 367 per 
SCRG_05333 Saccharomyces cerevisiae 196 382 per 
SS1G_04381.1 Sclerotinia sclerotiorum 184 311 mit 
SS1G_08207.1 Sclerotinia sclerotiorum 191 336 mit 

jgi_Sporo1_9693 Sporobolomyces roseus 194 327 mit 
jgi_Sporo1_12251 Sporobolomyces roseus 198 380 per 
UREG_05293.1 Uncinocarpus reesii 202 377 per 

UM01090.1 Ustilago maydis 209 320 mit 
UM02715.1 Ustilago maydis 188 364 per 

 
 
 



 

 

 

82

1 BLASTP search against mitochondrial 3-keto-acyl-CoA thiolase from Rattus norvegicus (P13437)  
2 BLASTP search against two enzymes, peroxisomal 3-keto-acyl-CoA thiolase A (P21775) and B (P07871) 

from Rattus norvegicus. The higher score of the two alignments is reported  
3 mit: mitochondria; per: peroxisomes 
 

Supplementary Table 2-5 mainly compile sequence IDs, and each table is more than two 

pages long. Therefore instead of the tables, their links are provided below:  

Supplementary Table 2 Complete set of mitochondrial beta oxidation enzymes 

assigned in this study (sequences in parentheses are also predicted as peroxisomal 

proteins) 

http://www.springerlink.com/content/46422l55622434v0/MediaObjects/10142_2008_95_

MOESM3_ESM.doc 

Supplementary Table 3 Complete sets of peroxisomal beta oxidation enzymes assigned 

in this study (sequences in parentheses are also predicted as mitochondrial proteins) 

http://www.springerlink.com/content/46422l55622434v0/MediaObjects/10142_2008_95_

MOESM4_ESM.doc 

Supplementary Table 4 Genome-deduced proteins that show significant similarity to 

both mitochondrial and peroxisomal keto-acyl-CoA thiolase, and predicted as 

targeted to both mitochondria and peroxisomes 

http://www.springerlink.com/content/46422l55622434v0/MediaObjects/10142_2008_95_

MOESM5_ESM.doc 

Supplementary Table 5 Protein sequences used for constructing the phylogenetic tree 

http://www.springerlink.com/content/46422l55622434v0/MediaObjects/10142_2008_95_

MOESM6_ESM.doc 



 

Chapter 3 Diversity and dispersal of acyl-CoA 

dehydrogenases 

 

Acyl-CoA dehydrogenases form a large protein family with at least 13 subfamilies. Each 

subfamily has a distinct substrate preference, and accordingly participates in the 

degradation of specific fatty acids or amino acids. Except for a few species, ACAD 

subfamilies have not been well characterized. We screened for ACAD enzymes in 250 

species and integrated the analysis of subcellular localization, taxomonic mapping, and 

subfamily phylogenies in order to survey the substrate specificity, distribution, and 

evolution of ACAD homologs.  





Nucleic Acids Research, 2009, 1–13
doi:10.1093/nar/gkp566

Diversity and dispersal of a ubiquitous protein
family: acyl-CoA dehydrogenases
Yao-Qing Shen*, B. Franz Lang and Gertraud Burger

Robert Cedergren Center for Bioinformatics and Genomics, Biochemistry Department, Université de Montréal,
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ABSTRACT

Acyl-CoA dehydrogenases (ACADs), which are key
enzymes in fatty acid and amino acid catabolism,
form a large, pan-taxonomic protein family with at
least 13 distinct subfamilies. Yet most reported
ACAD members have no subfamily assigned, and
little is known about the taxonomic distribution
and evolution of the subfamilies. In completely
sequenced genomes from approximately 210 spe-
cies (eukaryotes, bacteria and archaea), we detect
ACAD subfamilies by rigorous ortholog identifica-
tion combining sequence similarity search with
phylogeny. We then construct taxonomic subfam-
ily-distribution profiles and build phylogenetic
trees with orthologous proteins. Subfamily profiles
provide unparalleled insight into the organisms’
energy sources based on genome sequence alone
and further predict enzyme substrate specificity,
thus generating explicit working hypotheses for
targeted biochemical experimentation. Eukaryotic
ACAD subfamilies are traditionally considered as
mitochondrial proteins, but we found evidence that
in fungi one subfamily is located in peroxisomes
and participates in a distinct b-oxidation pathway.
Finally, we discern horizontal transfer, duplication,
loss and secondary acquisition of ACAD genes
during evolution of this family. Through these unor-
thodox expansion strategies, the ACAD family is
proficient in utilizing a large range of fatty acids
and amino acids—strategies that could have
shaped the evolutionary history of many other
ancient protein families.

INTRODUCTION

From the last two decades of intensive research especially
in mammals, acyl-CoA dehydrogenases (ACADs) are now
known as a large and biologically important enzyme
family. Genetic defects of the corresponding genes cause

severe health problems in human, including hypoglycemia,
neuromuscular pathology and even death (1). While
ACAD proteins occur in all three domains of life, animals
possess the largest number of distinct subfamilies.
In human, for example, 11 different ACAD enzymes
have been recognized (2–12). These proteins, which in
eukaryotes are localized in mitochondria, share up to
�50% amino acid identity among each other (Table 1)
and catalyze similar biochemical reactions: the oxidation
of diverse acyl-CoA compounds, produced during the deg-
radation of fat and protein, to enoyl-CoA (Figure 1).
ACAD subfamilies are distinguished by the metabolic

pathways in which they participate, and by their substrate
specificity (Figure 1, Table 2). Five subfamilies participate
in b-oxidation of fatty acids, with optimal activity for
acyl-CoA substrates of particular chain length, short
(ACADS), medium (ACADM), long (ACADL), or very
long (ACADV and ACADV2) (11–15). Four other sub-
families are implicated in amino acid degradation. After
removal of the amino groups from isoleucine, leucine,
lysine/trytophan and valine, the remaining branched
acyl-CoA is dehydrogenated by short/branched chain
acyl-CoA dehydrogenase (ACDSB), isovaleryl-CoA dehy-
drogenase (IVD), glutaryl-CoA dehydrogenase (GCDH)
and isobutyryl-CoA dehydrogenase (IBD), respectively
(3,5–7). The most recently identified subfamilies, ACD10
and ACD11, are of yet unknown function (8,9). Two addi-
tional subfamilies have been reported in bacteria: fadE
degrades a broad range of substrates from short to long
chain acyl-CoAs (16,17), while fadE12 prefers medium-
chain length molecules (18). The reaction mechanism
and 3D structure of ACAD enzymes have been reviewed
by others (19,20).
In eukaryotes, b-oxidation involving ACAD enzymes

takes place in mitochondria. Eukaryotes also possess
peroxisomal b-oxidation catalyzed by acyl-CoA oxidase
(ACOX) instead of ACAD proteins. The two families
resemble each other in several aspects. ACOX proteins
share remote yet significant sequence similarity with
ACAD proteins, and also catalyze the conversion of
acyl-CoA to enoyl-CoA. But unlike the ACAD family,
ACOX proteins occur predominantly in eukaryotes, are
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located exclusively in peroxisomes and function by a
distinct enzymatic mechanism: ACOX proteins are
re-oxidized by molecular oxygen, generating H2O2 (20);
ACAD enzymes, in contrast, having only low reactivity
with molecular oxygen, are re-oxidized by electron-trans-
ferring flavoproteins, which in turn pass the electrons to
the respiratory chain, generating H2O. Insight into the
origin of the ACOX family will critically depend on a
better understanding of the ACAD family, which is the
focus of the study reported here.

Our current knowledge about ACAD proteins is limited
to a few model organisms. There has been no comprehen-
sive survey of ACAD enzymes, except for genome-wide
in silico screens in fungi without subfamily identification
(21,22). Further, it is unclear whether the 11 subfamilies
recognized in human are conserved throughout animals
or even beyond. One reason for these shortcomings is
that in public data repositories, sequences are generally
annotated indistinctively as ‘acyl-CoA dehydrogenase’.
This is because in BLAST searches, remote ACAD

Figure 1. Optimal substrates of ACAD subfamilies. C4, etc., length of the acyl-CoA chain. C16:1, unsaturated fatty acid with one double bond.
Subfamilies in the left part of the figure are involved in fatty acid degradation. Those in the right part are involved in amino acid degradation. ‘R’
represents straight alkyl chain.

Table 1. Pairwise sequence similarities between human ACAD subfamily membersa

ACD11 ACADS ACADM ACADL ACADV ACADV2 ACDSB GCDH IVD IBD fadE fadE12

ACD10 46 30 28 25 26 26 27 25 24 24 29 25
ACD11 29 26 26 23 26 26 23 22 27 31 25
ACADS 36 31 35 36 38 30 36 35 26 27
ACADM 32 34 34 37 27 34 33 24 25
ACADL 28 30 33 27 34 32 20 27
ACADV 45 34 30 32 30 24 24
ACADV2 38 29 34 33 25 22
ACDSB 28 33 35 25 24
GCDH 28 27 34 24
IVD 32 24 23
IBD 21 22
fadE 24

aAll subfamily members are from human, except for fadE and fadE12, which are prokaryotic subfamilies. Percentage of identical residues in aligned
region by BLAST. Sequences are obtained from SwissProt. Sequence IDs are listed in Table 2.
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homologs often match members from different subfamilies
with similar scores. For example, a protein from
Janthinobacterium (gi|152980951) shares identities of
28% with ACADS from Mycobacterium, 27% with
ACDSB from rat and 27% with ACADV2 from human.
Evidently, such a lack of distinction by similarity scores
has hampered research on subfamily distribution, diver-
sity and evolution.

As a large number of complete genome sequences
from prokaryotes and eukaryotes have become available,
large-scale subfamily classification and phylogenetic ana-
lysis of the ACAD family are now tractable. Our first step
in this investigation was assignment of ACAD proteins to
defined subfamilies. The most direct way to do so is via
sequence similarity search as employed in previous protein
family studies (23,24). But as illustrated above, it is diffi-
cult to distinguish members of different ACAD subfami-
lies by sequence similarity alone. Another widely used
approach employs sequence profiles, e.g. PFAM domains
(25,26) or hidden Markov models (HMMs) generated
from subfamilies (27,28). But for ACAD enzymes, the
number of confirmed sequences in each subfamily is not
large enough to make reliable profiles. Here we identify
ACAD subfamily members by rigorous ortholog detection
via phylogenetic analysis, an approach successfully
employed in certain genome annotation and comparison
studies (29,30). Our procedure involves reiterative phylo-
genetic tree construction combined with a two-round
BLAST search. Then, based on comprehensive subfamily
assignment, we ascertain the taxonomic distribution of
ACAD proteins and make inferences of their molecular
function and, more generally, the energy sources of a given
organism. We also attempt the inference of a global

ACAD family tree, which, however, proves by far more
difficult than anticipated. Still, for eukaryotic ACAD
genes, we have been able to discern several recurring
evolutionary patterns that we present in the last section
of this article.

MATERIALS AND METHODS

Data collection

We collected the genome-deduced protein sequences of
completed or coding regions-completed genome projects
from 212 species, mostly taken from NCBI (http://
www.ncbi.nlm.nih.gov/Genomes/), Broad Institute of
MIT and Harvard (http://www.broad.mit.edu) and DOE
Joint Genome Institute (http://www.jgi.doe.gov/). This
dataset is composed of 91 bacteria, 29 archaea and 92
eukaryotes. To increase taxonomic coverage in phylo-
genetic analyses, we included proteins of 32 eukaryotes
whose genome sequence is only partially completed, as
well as Expressed Sequence Tag (EST) clusters from six
jakobids that were generated by us in the context of the
Canadian collaborative Protist EST project and retrieved
from the Taxonomically Broad eukaryote EST DataBase
(TBestDB) (31). Jakobids are a group of heterotrophic
flagellates that are believed to diverge close to the eukary-
otic origin (32–35). Since no genome sequences are avail-
able from jakobids, we included EST data of six jakobid
species to obtain a more comprehensive view of the evo-
lution of ACAD enzymes. A detailed list of species names
and data sources is compiled in Table S1. Sequences of
enzymatically characterized ACAD proteins were retrieved
from SwissProt (Table 2) and used as seeds to search
for ACAD subfamilies in collected genomes. In addition,

Table 2. Seed sequences used for BLAST searches

Protein name Molecular function Seed from Sequence IDa Evidence

ACADV Oxidation of very long chain fatty acid Homo sapiens P49748 Experiment
ACADV2 Homo sapiens Q9H845 Experiment
ACADL Oxidation of long chain fatty acid Homo sapiens P28330

Monosiga brevicollisa gi|167537125 BLAST and phylogeny
ACADM Oxidation of medium chain fatty acid Homo sapiens P11310

Batrachochytrium dendrobatidisa BDEG_05327 BLAST and phylogeny
Monosiga brevicollisa gi|167534479

ACADS Oxidation of short chain fatty acid Homo sapiens P16219
Monosiga brevicollisa gi|167515960 BLAST and phylogeny

ACDSB Oxidation of isoleucine Homo sapiens P45954 Experiment
Batrachochytrium dendrobatidisa BDEG_04739 BLAST and phylogeny

IVD Oxidation of leucine Homo sapiens P26440 Experiment
Batrachochytrium dendrobatidisa BDEG_02262 BLAST and phylogeny
Monosiga brevicollisa gi|167524148

GCDH Oxidation of lysine and tryptophan Homo sapiens Q92947 Experiment
Batrachochytrium dendrobatidisa BDEG_05264 BLAST and phylogeny
Monosiga brevicollisa gi|167524186

IBD Oxidation of valine Homo sapiens Q9UKU7 Experiment
Batrachochytrium dendrobatidisa BDEG_03936 BLAST and phylogeny
Monosiga brevicollisa gi|167524677

ACD10 Function unknown Homo sapiens Q6JQN1 cDNA
ACD11 Function unknown Homo sapiens Q709F0 cDNA
fadE Oxidation of fatty acids of different chain length Escherichia coli Q47146 Experiment
fadE12 Oxidation of medium chain fatty acid Mycobacterium tuberculosis P71539 Experiment

aSeeds added in the second round of BLAST search.
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we included sequences of ACOX in the BLAST seed (listed
in Table S2) to exclude potential mix-up of ACAD and
ACOX homologs.

Subfamily assignment

Orthologs of subfamilies were identified by a two-round
procedure combining BLAST search with phylogenetic
inference. Each round included BLAST searches and data
selection followed by phylogenetic analysis. The difference
between round one and two was the set of seed sequences
used for BLAST searches. In round one, the genome-
deduced protein sequences from each species were com-
pared by BLAST with known ACAD proteins (seeds
listed in Table 2), at a threshold of e=1� 10�20. In
total, 2258 sequences matched at least one seed under this
condition. From each species, we selected up to three top
matches for eachACAD subfamily and preliminarily anno-
tated the corresponding proteins as potential homologs of
the corresponding subfamily. As certain query sequences
matched multiple different subfamilies, we analyzed these a
second time by applying the following rule: if a given
sequence matched multiple subfamilies and the e-values
of the matches differed by more than 10-fold, then the
sequence was assigned to the subfamily with the lowest
e-value. This case applied to 1572 sequences. Otherwise,
if e-values of the multiple matches differed less than
10-fold, all preliminary subfamily assignments were
retained and the final annotation was based on the sub-
sequent phylogenetic analysis. This category included 341
sequences. We built a maximum likelihood phylogenetic
tree for each protein subfamily (see procedure below)
using all sequences assigned to this subfamily. From these
trees, we selected slowly evolving and unambiguous ortho-
logs of the initial mammalian seed sequences, i.e. proteins
from Monosiga, the closest unicellular relative of animals
(36), and Batrachochytrium, a member of the earliest diver-
gence in fungi (36). These, combined with the first set of
seeds, formed the second set of seeds used for round two of
BLAST searches (Table 2). The same screening procedure
was applied as in round one, followed by construction of
a phylogenetic tree for each subfamily. Inspection of the
trees showed that certain species possessed multiple mem-
bers of the same subfamily. These extra copies were
removed from the dataset to save computational cost
during subsequent analyses (especially bootstrap, see
below), yielding a non-redundant data set of 861 sequences.
In order to detect paralogs, phylogenetic trees were built
again for each subfamily, this time with the non-redundant
data set. Paralogs were removed from the subfamily until
the gene trees were reconciled with the species tree
(Figure 2). The sequences removed in this step (32 in
total) are considered as ACAD proteins of unknown sub-
family (Table S3). A special procedure was applied to
ACD10 and ACD11. Numerous potential homologs of
ACD10 displayed similar BLAST e-values to ACD11 and
vice versa, and subfamily assignment as described above
was possible only for a few members. The remaining
proteins were grouped into a provisional subfamily
termed as ACD10/11 and further analyzed by a special pro-
cedure as described in the ‘Results and Discussion’ section.

Phylogenetic inference

Multiple protein sequence alignments were constructed
with MUSCLE (37), and alignment logos were created
by WebLogo (38). For phylogenetic analysis, ambiguously
aligned and highly divergent regions of the alignment were
eliminated using Gblocks (39). Maximum likelihood trees
were constructed using RAxML (40) with the WAG+�
model and four discrete g-rate categories. The statistical
support of branches was evaluated by 100 bootstrap
replicates.

Protein domain search

To locate functional domains in ACD10 and ACD11
homologs, we used InterProtScan (41). Protein sequences
were searched against PROSITE patterns, PROSITE
profiles, PRINTS, PFAM, PRODOM, SMART,
TIGRFAMs, PIR SuperFamily and SUPERFAMILY.

Taxonomic distribution profiling

After the subfamily assignment of ACAD proteins, we
compiled the presence/absence of subfamilies in the
genome-derived proteomes of the species included in
this study. This information was mapped on NCBI’s
taxon tree (http://www.ncbi.nlm.nih.gov/sites/entrez?
db=taxonomy).

Targeting peptide prediction

We predicted subcellular location of subfamilies based on
recognition of targeting peptide from four predictors:
TargetP (42), Predotar (43), Protein Prowler (44) and
MitoProt (45). Annotation-based predictors, such as
PA-SUB (46), were excluded from the analysis to preclude
‘prejudicial’ association, because ACAD enzymes are tra-
ditionally annotated as mitochondrial proteins in public
databases. All results were obtained from online servers,
except for MitoProt, which was installed and run locally.
For most proteins, the predictors gave contradictory
results. Therefore, we integrated these predictions via
YimLOC, a tool employing machine learning (MTP-DT
predictor) (47) that is significantly more accurate than
any of the individual predictors. To detect the peroxi-
somal targeting signal, we used the web service PTS1 pre-
dictor (http://mendel.imp.ac.at/mendeljsp/sat/pts1/PTS1
predictor.jsp) (48).

RESULTS AND DISCUSSION

Subfamily assignment of previously unclassified
ACAD proteins

To identify ACAD subfamilies in the genome-derived
proteomes of 250 species (species names are listed in
Table S1 and S3), we initially searched for homologs of
well-characterized subfamily members by BLAST. This
approach failed to distinguish subfamilies in many
instances, especially when query and target sequences
were from taxonomically distant species. As illustrated
by the example of Janthinobacterium (see ‘Introduction’
section), remote homologs often match several subfamilies
with similar scores, and the top hit may not correspond to
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the protein’s true affiliation. Therefore, we developed a
procedure that combines BLAST searches with phyloge-
netic analysis, as described in the ‘Materials and Methods’
section. By this procedure, a total of 702 sequences from
177 species were unambiguously assigned to one of the
ACAD subfamilies (Table S1), with the exception of
ACD10 and ACD11. As all non-animal proteins that
match ACD10 also match ACD11 with similar score
and vice versa, these proteins were classified provisionally
as ACD10/11 and further analyzed with a distinct
approach (see subsequently). Only 32 (4%) proteins,
mostly from prokaryotes and protists, remained unas-
signed (Table S3). These proteins do not form a new sub-
family, because sequence similarity was observed only
between proteins from the same genus and not across
larger phylogenetic distances. Notably, 60 out of the
250 investigated species, predominantly bacteria, appear
to completely lack ACAD genes (Table S3). The subfamily
distribution across taxa is analyzed in more detail
further below.

Distinction of ACD10 and ACD11

The two ACAD subfamilies of unknown function,
ACD10 and ACD11, have only recently been discovered
in human and a few other mammals (8,9). Our subfamily
assignment procedure clearly distinguishes ACD10 and
ACD11 in animals, but fails to do so for other taxa. In
the tree built with all identified ACD10 and ACD11
sequences and the provisional class ACD10/11 (127 pro-
teins from 110 taxa in total; Figure 3C and Figure S1A),
only vertebrate ACD10 and ACD11 form well supported,
distinct and coherent clades. Sequences from other taxa
cannot be placed with confidence.
Further distinction of ACD10 and ACD11 comes

from protein domain analysis. Mammalian ACD10 and
ACD11 proteins are conspicuously longer than those
from other ACAD subfamilies. Domain search with
InterProScan shows that the human ACD11 proteins
carry in their N-terminal region an aminoglycoside phos-
photransferase (APH) domain. In bacteria, this domain is

Figure 2. Flow chart of the procedure for assigning ACAD subfamilies. Blast searches combined with reconciliation of gene and species trees were
used to identify orthologs (see ‘Materials and Methods’ section). Y, yes; N, no.
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involved in antibiotic resistance (49) (Figure 3A), but its
role in eukaryotes is unknown. ACD10 has in addition to
APH an N-terminal hydrolase domain (Figure 3B). Both
domains are absent from other ACAD families. While
screening non-metazoan ACD10/11 for these domains,
we did not detect a single protein including the hydro-
lase domain; the majority of these sequences carry APH
and some lack both domains (Figure 3C). Phylogenetic
trees of fungal and animal homologs place animal
ACD10 and ACD11 into two monophyletic clades to
the exclusion of fungal proteins, suggesting that ACD11
is an ancestral eukaryotic gene from which ACD10 has
arisen in the animal lineage by gene duplication and sub-
sequent addition of the hydrolase domain (Figure S1B).
Therefore, we classify non-metazoan homologs carrying
APH as ACD11 and those without either domain as
ACD11n.
Are eukaryotic ACD10, ACD11 and ACD11n indeed

mitochondrial proteins as traditionally assumed for

the entire ACAD family? A proteomics study of rat
peroxisomal proteins (50) reports the peptides whose
sequence match the mouse homolog of ACD11 according
to our subfamily classification (gi|28280023). In addition,
an enzymatic study of peroxisomal b-oxidation in
Magnaporthe grisea speculates that some of the fungus’
ACAD proteins are imported into peroxisomes to substi-
tute for the ACOX enzyme, whose gene is missing from
the genome (51). Here we predict by in silico methods
the subcellular localization of all ACAD subfamilies pres-
ent in Magnaporthe. Indeed, ACD11n is the only ACAD
member that has the propensity to enter peroxisomes,
pinpointing ACD11n as the hypothetical protein partici-
pating in peroxisomal b-oxidation. The same situation
most likely applies to other fungi that lack ACOX
in their genome, specifically Nectria haematococca,
Hypocrea jecorina and Hypocrea virens (22). This hypoth-
esis can be readily tested experimentally, e.g. by
co-localization of tagged ACAD protein with subcellular

Figure 3. Distinction of ACD10 and ACD11. Protein domains of human ACD11 and ACD10 (Q709F0, A) and ACD10 (Q6JQN1, B). InterProt
domain IDs are as follows: hydrolase domain, IPR005834; APH domain, IPR002575. The ACAD domain is composed of three parts: ACAD
N-terminal domain, IPR013786; ACAD central domain, IPR006091; ACAD C-terminal domain, IPR013764. (C) Domain content of ACD10,
ACD11 and provisional ACD10/11 homologs mapped onto the phylogenetic tree. Taxa representing more than three species are shown in bold.
Clades with bootstrap support value >90 are labeled with asterisk. Taxa that appear twice in the tree are distinguished by the labels ‘ACD10’ and
‘ACD11’. In animals, ACD11 includes (in addition to the common ACAD domains) an APH domain, and ACD10 possesses an APH plus
a hydrolase (Hyd) domain. Exceptions are gi|115941654 of the echinoderm Strongylocentrotus purpuratus, which is more similar to ACD10
but lack the hydrolase domain, and jgi|Dappu1|346313 of the crustacean Daphnia pulex, which shares equal sequence similarity with ACD10 and
ACD11 and lacks both extra domains. Homologs of other eukaryotes, which have an APH domain, but no hydrolase domain, are classified
as ACD11. Sequences lacking both domains are all homologs of fungi, the green algae Volvox carteri and Ostreococcus lucimarinus and the
stramenopiles Aureococcus anophagefferens and Phytophthora ramorum. Bacterial homologs also lack both domains. Those lacking both domains
are classified as ACD11n, see text.

6 Nucleic Acids Research, 2009

90



structures. If true, the reaction mechanism of ACD11n
must have undergone a fundamental adaptation to the
peroxisomal environment.

Notably, peroxisomal localization is predicted for
most eukaryotic members of ACD11n and the entire
ACD11 subfamily (exceptions are listed in Table S4),
while ACD10 displays features typical of mitochondrial
proteins. The predicted subcellular localization should
guide experimental approaches to elucidate these proteins’
molecular function and the specific roles of the APH and
hydrolase domains.

Taxonomic distribution of ACAD subfamilies

Based on the comprehensive annotation, we examined the
presence/absence of ACAD subfamilies across the 250
species investigated here. The distribution profiles of sub-
families differ markedly (Figure 4). Large sets of ACAD
subfamilies are typical for animals with 11 in vertebrates,
as many as initially identified in mammals. In contrast,
fungi possess on average only five subfamilies and these
are involved in both mitochondrial b-oxidation and amino
acid catabolism. A total lack of ACAD genes is observed
in a few fungal lineages (Saccharomyces, Encephalitozoon
and Schizosaccharomyces), all characterized by highly
derived and reduced genomes. In Plantae, only two
ACAD subfamilies, IVD and ACD11, are widely present.
From the other eukaryotic lineages, there are not enough
genome sequences available to infer specific profile fea-
tures. Finally, Archaea have conspicuously small sets of
ACAD subfamilies, and there is much variation among
Bacteria.

Four subfamilies occur in all domains of life: ACADS
(degrading short fatty acids), ACADM, fadE12 (both pre-
ferring medium-length fatty acids) and GCDH (involved
in lysine and tryptophan catabolism). Subfamilies virtu-
ally restricted to a single domain are ACDSB, ACADV
and ACADV2 in eukaryotes, and fadE in bacteria.
Overall, ACAD subfamilies specialized in short-chain
(straight and branched) acyl-CoAs are more broadly dis-
tributed than those preferring long-chain substrates.

We confronted the inferred ACAD subfamily profiles
with experimental evidence. As mentioned earlier, animals
possess 11 out of 13 ACAD subfamilies (Figure 4).
Indeed, fatty acids and amino acids make up an important
part of metazoan nutrition, requiring a host of specialized
enzymes for degrading acyl-substrates of various length
and steric structure. A comparably large repertoire of
ACAD enzymes (the largest in bacteria) is present in the
opportunistic human pathogen, Pseudomonas aeruginosa.
This organism is notorious for its extraordinary metabolic
versatility, capable of utilizing a wide range of organic
compounds including fatty acids and amino acids as an
energy source. The ACAD families in P. aeruginosa iden-
tified here explain the observed efficient use of fatty acids
via b-oxidation (52,53). Only a single ACAD subfamily—
ACADS—is found in Clostridium botulinum, a food-borne
pathogen. Experimental studies confirm that C. botulinum
cannot catabolize long-chain fatty acids. This explains the
documented poor growth of this bacterium on ripened
cheese (54). Finally, many intracellular parasites such as

Rickettsiaceae lack all ACAD genes (Figure 4), reflecting
their reliance on their host for nutrients. In sum, the
above examples illustrate that the in silico-generated
ACAD profiles are in strong agreement with, and explain
well, the biochemical data. Therefore, the presence of
ACAD subfamilies provides a window on an organism’s
biology based on genome sequence alone, when infor-
mation on nutritional requirements and enzymatics are
not available.

Multiple single-purpose enzymes versus single
multi-purpose enzymes

Recent biochemical studies on Aspergillus nidulans
revealed an unexpected substrate range of ACDSB,
which in this organism catalyzes dehydrogenation of not
only isobutyryl-CoA (derivative of isoleucine), but also
2-methyl-butyryl-CoA (derivative of valine) and short-
chain acyl-CoA (55). In human, the latter two compounds
are degraded by IBD and ACADS (Figure 1), two
enzymes that are missing intriguingly in Aspergillus species
and other fungi (Figure 4B).
Insight into the molecular basis of such a broad sub-

strate range comes from directed mutagenesis experiments
of the human ACDSB protein (5). This study shows that
the substitutions Ser177Asn, Leu222Ile and Ala383Thr
lead to significantly higher turnover rates of hexanoyl-
CoA and isobutyryl-CoA (the substrates optimally
degraded by ACADS and IBD, respectively). This pin-
points Ser177, Leu222 and Ala383 as substrate specificity
determinants of human ACDSB (in the following, the
‘specificity’ residues are indicated as NIT and SLA).
To find out the substrate range of ACDSB from other

organisms where experimental data are lacking, we con-
structed a multiple sequence alignment and also super-
imposed the 3D structure of ACDSB, ACADS and IBD
proteins (Figure S2). These alignments show that homo-
logs from all primates and a few other mammals are of the
human type (ACDSB-SLA), whereas all fungal enzymes
are of the Aspergillus type (ACDSB-NIT, with a single
minor exception, Figure 5). From this finding, together
with the subfamily distribution pattern, we predict that
all fungal ACDSB unite three functions in one enzyme,
i.e. the functions of human ACDSB, ACADS and IBD.
(For a hypothesis on the evolution of these three subfami-
lies, see Figure S3.)
The above functional generalization has previously

remained undetected by sequence similarity and phylo-
geny-based function prediction. But as exemplified here,
the prediction of an enzyme’s substrate range can be
improved by integrating subfamily distribution profiles
and function/structure data from ‘model’ enzymes. Such
advanced function prediction provides valuable working
hypotheses that can be tested by targeted biochemical
experimentation.

Evolution of the ACAD family

In an attempt to unravel the origin and evolution of
the ACAD protein family, we built maximum likelihood
phylogenetic trees using proteins drawn from complete
genome sequences and assigned to subfamilies as
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Figure 4. ACAD subfamily distribution mapped on the taxonomy hierarchy from NCBI. Only species whose genome has been completely sequenced
are included in the figure. The sequence IDs are listed in Table S1. A triangle in front of a taxon name indicates that no ACAD subfamily was
detected in the members of this taxon. (A) Subfamily distribution in prokaryotes; (B) subfamily distribution in eukaryotes.
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Figure 4. Continued.
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described above (for the proteins used, see Table S1). The
global trees including all ACAD subfamilies have largely
unsupported topologies likely due to three factors: the
extensive sequence divergence, the relatively short length
of ACAD proteins (100 or less residues after Gblocks
processing, see the ‘Materials and Methods’ section) and
the immense evolutionary time spans in question. Trees of
individual ACAD subfamilies suffer to a lesser degree
from this problem, but only a few trees (ACDSB and
ACADV2) display supported species-tree topology
(Figure S1C–M). Close inspection reveals events of hori-
zontal gene transfers, not only within bacteria but also
within eukaryotes and across domains, in addition to
gene losses and multiple independent gene duplications.
After carefully studying each subfamily tree, we are able
to discern several intriguing evolutionary patterns in
eukaryotes.

Early acquisition of ACAD enzymes in eukaryotes.
ACADS, GCDH, IVD and IBD occur in eukaryotes
and bacteria (Figure 4). Subfamily trees unite eukaryotes
mainly with a-Proteobacteria, to the exclusion of other
prokaryotes. This trend is best supported by GCDH and
IBD (Figure 6A). The tree topology, together with the
taxonomic distribution and the predicted mitochondrial
localization of these subfamilies (data not shown),
suggests that eukaryotes acquired these genes from
a-Proteobacteria via the endosymbiotic event leading to
mitochondria. Yet, our current single-protein tree topo-
logies have numerous branches with weak statistical sup-
port, and trees built with concatenated sequences of
GCDH, IVD, IBD and ACADS do not provide more
information either (Figure S1N). A rigorous test of this
hypothesis would have to rule out horizontal transfer of
the corresponding genes in bacteria, and improve tree
robustness by substantially expanded taxon sampling.

Loss of ACAD genes in fungi and recent recruitment from
�-Proteobacteria. The two ACAD subfamilies fadE12
(typically prokaryotic) and ACADM (eukaryotic) have

the same substrate specificity (Figure 4) (18).
Pezizomycotina (including species such as Neurospora
and Aspergillus) are an intriguing exception: they lack
ACADM, but possess fadE12. Phylogenetic analysis of
fadE12 proteins unites fungal and a-proteobacterial
sequences with high support to the exclusion of other
bacteria, strongly suggesting an a-proteobacterial origin
of the Pezizomycotina genes (Figure 6B and Figure S1I;
see legend of Figure 6 for exceptions). Based on the phy-
logeny and ACAD subfamily distribution, we propose
that initially all fungi possessed ACADM, but this gene
was later lost in the common ancestor of Ascomycota.
After the ascomycete lineages had diverged, the pre-
decessor of Pezizomycotina acquired the functionally
equivalent fadE12 via horizontal gene transfer from
a-Proteobacteria. A similar history involving loss and sec-
ondary acquisition of a bacterial ACAD gene by fungi
apparently applies to ACADL (Figure S1J).

Duplication of ACAD genes in mammals and recent transfer
to other lineages. As mentioned earlier, the two ACAD
subfamilies degrading very long chain fatty acids,
ACADV and ACADV2, are predominantly present in ani-
mals, with only a few exceptions in non-mammalian
eukaryotes (i.e. Phytophthora species) and diverse bacteria
(Figure 4). The phylogenetic tree including both subfami-
lies separates animal ACADV and ACADV2 into two well
supported, distinct and coherent clades, indicating a gene
duplication event prior to the divergence of animals
(Figure 6C and Figure S1O). Homologs of Phytophthora
affiliate (with moderate support) with animal ACADV2,
and the same topology, now with 99% bootstrap support,
are seen in the tree based on ACADV2 only (Figure S1L).
The most parsimonious explanation is that the common
ancestor of these oomycetes has acquired ACADV2
from animals, and transmitted it vertically to extant
Phytophthora species.

Conclusion

Our study of the large and biologically important ACAD
protein family integrates three types of information, tax-
onomic distribution profiles, subfamily phylogenies as well
as functional and structural data from model proteins.
This allows analyses of broad scope leading to improved
molecular function prediction of individual ACAD sub-
families, formulation of working hypotheses for targeted
biochemical experimentation as well as to the discovery of
a most ‘turbulent’ evolutionary history of the ACAD gene
family. A study like this one relies critically on a rigorous
method for identification of orthologs for each paralogous
subfamily as we devised in this report.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Supplementary tables 

(Supplementary Table 1 and Table 3 mainly compile sequence IDs, and each table is more 
than two pages long. Therefore instead of the tables, their links are provided.) 

 

TableS1 List of proteins assigned to ACAD subfamilies in this study 

http://nar.oxfordjournals.org/content/vol0/issue2009/images/data/gkp566/DC1/nar-01024-
h-2009-File009.xls 
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Table S2 ACOX sequences used as BLAST seeds 
ACOX subfamilies SwissPort ID Species name 

ACOX1 O65202 Arabidopsis thaliana 
ACOX1 Q3SZP5 Bos taurus 
ACOX1 Q9Z1N0 Cavia porcellus 
ACOX1 Q15067 Homo sapiens 
ACOX1 Q9R0H0 Mus musculus 
ACOX1 Q8HYL8 Phascolarctos cinereus 
ACOX1 Q5RC19 Pongo abelii 
ACOX1 P07872 Rattus norvegicus 
ACOX1 O74934 Yarrowia lipolytica 
ACOX2 O65201 Arabidopsis thaliana 
ACOX2 Q00468 Candida maltosa 
ACOX2 P11356 Candida tropicalis 
ACOX2 O64894 Cucurbita maxima 
ACOX2 Q99424 Homo sapiens 
ACOX2 Q9QXD1 Mus musculus 
ACOX2 O02767 Oryctolagus cuniculus 
ACOX2 P97562 Rattus norvegicus 
ACOX2 O74935 Yarrowia lipolytica 
ACOX3 Q9LLH9 Arabidopsis thaliana 
ACOX3 O15254 Homo sapiens 
ACOX3 Q9EPL9 Mus musculus 
ACOX3 Q5RAU0 Pongo abelii 
ACOX3 Q63448 Rattus norvegicus 
ACOX3 O74936 Yarrowia lipolytica 
ACOX4 Q96329 Arabidopsis thaliana 
ACOX4 P05335 Candida maltosa 
ACOX4 P06598 Candida tropicalis 
ACOX5 P08790 Candida tropicalis 
ACOXL Q9NUZ1 Homo sapiens 
ACOXL Q9DBS4 Mus musculus 
ACOX Q756A9 Ashbya gossypii 
ACOX P34355 Caenorhabditis elegans 
ACOX Q6FY63 Candida glabrata 
ACOX Q6BRD5 Debaryomyces hansenii 
ACOX Q6CKK7 Kluyveromyces lactis 
ACOX Q9Y7B1 Pichia pastoris 
ACOX P13711 Saccharomyces cerevisiae 
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Table S3 species without ACAD genes, and BLAST results for ACAD members of 

unknown subfamily  

http://nar.oxfordjournals.org/content/vol0/issue2009/images/data/gkp566/DC1/nar-01024-

h-2009-File011.xls 
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Table S4. ACD10, ACD11, and ACD11n homologs that have different targeting siganls 

than the majority of their group 

Species name Subfamily MTP PTS 
Ciona intestinalis ACD10 n n 

Daphnia pulex ACD10 n n 
Nematostella vectensis ACD10 n n 

Rattus norvegicus ACD10 n n 
Strongylocentrotus 

purpuratus ACD10 n n 

   
Equus caballus ACD11 n n 

Strongylocentrotus 
purpuratus ACD11 n n 

   
Micromonas pusilla CCMP 

1545 ACD11 y n 

Ostreococcus sp. RCC809 ACD11 y y 
Chlamydomonas reinhardtii ACD11 n n 
Selaginella moellendorffii ACD11 n n 

   
Ajellomyces capsulatus ACD11n n n 

Aspergillus flavus ACD11n n n 
Aspergillus oryzae ACD11n n n 
Batrachochytrium 

dendrobatidis ACD11n n n 

Candida tropicalis ACD11n n n 
Chaetomium globosum ACD11n n n 

Coccidioides immitis ACD11n n n 
Coprinopsis cinerea ACD11n n n 

Hypocrea virens ACD11n y y 
Laccaria bicolor ACD11n n n 

Pichia guilliermondii ACD11n n n 
Pichia stipitis ACD11n n n 

Postia placenta ACD11n n n 
Puccinia graminis ACD11n n n 

Uncinocarpus reesii ACD11n n n 
Ustilago maydis ACD11n n n 

   
Tetrahymena thermophila ACD11 n n 

Aureococcus 
anophagefferens ACD11n y n 

Emiliania huxleyi ACD11 y n 
MTP: mitochondrial targeting peptide; PST: peroxisomal targeting peptide 
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Supplementary figures 
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Figure S1. Phylogenetic trees of individual and combined ACAD protein subfamilies. 

Numbers at branches are bootstraps values. Only values >50 are shown. A: tree built with 

ACD10, ACD11, and ACD11n sequences from animals, plant, and fungi, suggesting that 

ACD11 is an ancestral eukaryotic gene from which ACD10 has arisen in the animal lineage 

by gene duplication and subsequent addition of the hydrolase domain. Members of ACD11 

are labeled with E (‘Eleven’), and those of ACD10 with T (‘Ten’) preceding the species 

name, the rest are ACD11n. Genomes of a few species encode more than one ACD11n 

member. These homologs are distinguished by numbers preceding the corresponding 

species names. B: tree built with ACD10, ACD11, and ACD11n sequences from 

eukaryotes and bacteria. C-M: phylogenetic trees of individual subfamilies. C, GCDH; D, 

IVD; E, IBD; F, ACDSB; G, ACADS; H, ACADM; I, fadE12; J, ACADL; K, ACADV; L, 

ACADV2; M, fadE. N: phylogenetic tree built with concatenated sequences of GCDH, 

IVD, IBD, and ACADS, the four subfamilies considered more ancient. O: tree built with 

ACADV and ACADV2 sequences. Subfamily members are labeled with V (ACADV) or 9 

(ACADV2, synonym ACAD9) preceding the species name. Bacterial ACADV homologs 

are monophyletic with strong support, but their relationships to one another are 

incompatible with the species tree. This indicates a single gene transfer from animals to 

bacteria followed by further horizontal transfer events within bacteria. 
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Figure S2. Three-dimensional structure alignment of the catalytic center of the human 

ACDSB, ACADS, and IBD proteins. The structures of ACDSB (PDB ID: 2jif), ACADS 

(PDB ID: 2vig) and IBD (PDB ID: 1rx0) from RCSB Protein Data Bank 

(http://www.rcsb.org) were superimposed by STRAP (http://www.charite.de/bioinf/strap/), 

and the alignment was displayed by PyMOL (http://www.pymol.org/). Key residues that 

determine the substrate specificity are as follows: in IBD: Gly172, Trp216, and Ser378 

(blue); in ACADS: Asn188, Ile233, and Thr394 (red); and in ACDSB: Ser210, Leu255 and 

Ala416 (green). After removal of the transit peptide, the three latter residues correspond to 

Ser177, Leu222, and Ala383 in the mature protein. The catalytic reside Glu (the same in 

three sequences) is also shown. FAD, yellow; coenzyme A persulfide, purple. The 

alignment shows that the key residues of ACADS and ACDSB are more similar to one 

another, compared with those of IBD. 
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Figure S3. Distribution of ACADS, ACDSB, and IBD, mapped on a schematic eukaryotic 

species tree. When only one species from a given group appears in the tree, the species 

name is indicated with the group name in parenthesis; otherwise, the group name is 

indicated. Note that confidently alignable regions are too short for phylogenetic analysis of 

the three subfamilies, individually or combined. Our hypothesis on the evolutionary 

relationship of ACDSB, ACADS and IBD is based on several observations. At the level of 

overall sequence similarity, ACDSB, ACADS, and IBD are equally distant from one 

another (see Table 1 of main text), but at the level of substrate specificity-determinant 

residues, ACDSB and ACADS are more similar to each other than to IBD (Figure S2) and 

therefore may originate from a gene duplication event. ACADS has probably given rise to 

ACDSB, since taxonomically the former is much more broadly distributed than the latter 

(see Figure 4 of main text). Taken together, we speculate that at the outset, eukaryotes 

possessed only ACADS and IBD. Subsequent gene duplication of ACADS and paralog 
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divergence gave rise to the ACDSB subfamily in an ancestral eukaryote. Certain animal 

lineages such as crustaceans, mollusks, and vertebrates have held on to all three subfamilies 

for efficient degradation of a large range of fatty acids. In fungi and probably kinetoplastids 

as well, ACDSB acquired the catalytic activities of ACADS and IBD, and functional 

redundancy led to the loss of the two latter genes.  Most variable subfamily combinations 

across taxa suggest multiple, independent events of functional generalization and gene loss.   
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Chapter 4 In silico identification of mitochondrion-targeted 

proteins using EST data  

 

Current localization prediction methods are designed for full-length proteins, which are 

usually inferred from the complete gene sequence. These methods have only limited 

application to ESTs (sequences partially covering coding region of genes) which form a 

rich source to identify mitochondrial proteins in species whose genome sequence is not 

available. To solve this problem, we devised a tool TESTLoc, which is tailored to predict 

the subcellular localization from EST-derived peptides. 
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Abstract 

The majority of mitochondrial proteins are encoded by the nuclear genome, and imported 

into mitochondria during or after translation. However, little is known about the makeup of 

the mitochondrial proteome across eukaryotes. In particular, knowledge about the 

mitochondrial proteome from primitive eukaryotes is paramount for understanding the 

evolutionary transition from an endosymbiont to the mitochondrial organelle. Expressed 

Sequence Tag (EST) data constitute the largest and taxonomically most comprehensive 

body of sequence information on eukaryotes. For example, the newly generated ~50,000 

ESTs from jakobid flagellates, one of the most early diverging eukaryotes, provide a rich 

source for in silico inference of mitochondrial proteins (mit-proteins). Yet, bioinformatics 

tools do not perform well in predicting a protein’s subcellular localization based on ESTs. 

Therefore, we developed a new predictor, TESTLoc, specifically for this purpose. 

TESTLoc predicts subcellular localization using partial protein sequences (EST-peptides), 

conceptually translated from ESTs. We encoded the ESTs peptides with different features 

such as amino acid composition, and used Support Vector Machine (SVM) as 

computational method. The correct reading frame is predicted using an existing algorithm, 

Prot4EST, which requires genome data for training. TESTLoc trained with data from plants 

(TESTLoc-plants) identifies mit-proteins from Arabidopsis (deduced from ESTs) at high 

sensitivity (93.5%) and positive predictive value (68%). We applied TESTLoc-plants to 

jakobids, which predicted known mit-proteins with high sensitivity (93%), but low positive 

predictive value (25%), likely due to the large phylogenetic distance between plants and 
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jakobids. In conclusion, our approach is well suited to predict the mitochondrial protein 

based on EST data, but predictor performance depends critically on the availability of 

training data from closely related taxa.  

 

Key words: subcellular localization prediction, mitochondria, expressed sequence tags, 

support vector machine  
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Introduction  

Mitochondria play an important role in the eukaryotic cell. They are involved in key 

processes such as energy production, metabolism, and regulation of cell death (reviewed in 

(Lang, Gray et al. 1999; Burger, Gray et al. 2003)). In addition, mitochondria bear clues 

about eukaryotic evolution. It is now widely accepted that mitochondria originated from an 

endosymbiotic �-proteobacterium that gradually transformed into an organelle as we know 

it today. During this evolutionary transition, some �-proteobacterial genes migrated to the 

host genome, while others were lost for good. Those genes that took up residence in the 

nucleus are expressed in the cytosol, and their gene products are imported back into 

mitochondria. Indeed, phylogenetic studies have identified a number of nucleus-encoded 

genes of clear �-bacterial origin, which are most likely contributed by the mitochondrial 

ancestor (Brown 2003; Doolittle, Boucher et al. 2003).  

The exact makeup of the mitochondrial proteome is still unclear. Depending on the 

species, between three to ~70 proteins are contributed by the mitochondrial genome (Lang, 

Gray et al. 1999), while the majority of mitochondrial proteins, probably >1,000 

(Meisinger, Sickmann et al. 2008), are encoded by the nucleus and imported into the 

organelle. Current experimental studies on the mitochondrial proteome focus on a few 

species, such as human, Arabidopsis, rice, yeast and Tetrahymena thermophila 

(Heazlewood, Howell et al. 2003; Sickmann, Reinders et al. 2003; Taylor, Fahy et al. 2003; 

Heazlewood, Tonti-Filippini et al. 2004; Forner, Foster et al. 2006; Johnson, Harris et al. 

2007; Reinders and Sickmann 2007; Smith, Gawryluk et al. 2007; Li, Cai et al. 2009), 
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which are all phylogenetically derived. As a consequence, knowledge learnt from these 

species will not likely give insight into the origin of the mitochondrial proteome and how it 

changed in evolutionary time.  

Jakobids are a group of unicellular heterotrophic flagellates. Both their 

mitochondrial gene complement and protein-based phylogenetic studies suggest that 

mitochondria of jakobids are the most primitive ones known, i.e., most closely related to �-

proteobacteria (Lang, Gray et al. 1999; Rodriguez-Ezpeleta, Brinkmann et al. 2007). 

Therefore the jakobid mitochondrial proteome may reveal an intermediate stage of 

evolution, providing insight about gene losses and migrations, as well as protein 

recruitments to mitochondria, events that took place in the course of evolutionary time. 

For a large number of species, including jakobids, experimental identification of the 

mitochondrial proteome still remains too expensive or unfeasible. This has set the stage for 

bioinformatics approaches to predict mit-proteins in silico. Currently around 47,000 

jakobid Expressed Sequence Tags (ESTs) have been generated by the Protist EST Project 

(PEP), a trans-Canadian collaboration (http://megasun.bch.umontreal.ca/pepdb/pep.html). 

This large body of data provides a unique window into the jakobid mitochondrial proteome.  

Today, over 20 computational tools are available to predict the subcellular 

localization of proteins (Supplementary Table 1). They predict the localization of a given 

sequence based on either annotation or the sequence itself. Annotation information from 

query sequences or their homologs, including textual description in SWISSPROT database, 

Gene Ontology database, or pubmed literatures, has been exploited by several predictors 
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(Nair and Rost 2002; Lu, Szafron et al. 2004; Shatkay, Hoglund et al. 2007). Co-occurrence 

of functional motifs or structural domains in proteins has also been used for localization 

predictions (Scott, Thomas et al. 2004; Guda and Subramaniam 2005). Sequence-based 

tools recognize specific targeting signals that guide proteins to different cellular 

compartments (Claros and Vincens 1996; Emanuelsson, Nielsen et al. 2000; Bannai, 

Tamada et al. 2002; Small, Peeters et al. 2004; Boden and Hawkins 2005), or classify 

proteins according to the frequency of each amino acid (Reinhardt and Hubbard 1998; Hua 

and Sun 2001), dipeptide, and gapped amino acid pair composition (Chou 2001; Chou and 

Cai 2002; Park and Kanehisa 2003; Huang and Li 2004), or physicochemical properties of 

amino acids (Sarda, Chua et al. 2005). More recently, a number of predictors combine 

different protein features (Bhasin and Raghava 2004; Guda, Fahy et al. 2004; Nair and Rost 

2005; Xie, Li et al. 2005), or incorporate annotation with sequences-based prediction 

(Blum, Briesemeister et al. 2009). Meta predictors that integrate the prediction from 

heterogeneous tools have also been developed (Liu, Kang et al. 2007; Shen and Burger 

2007; Assfalg, Gong et al. 2009).  

A recent review evaluated the performance of available localization predictors using 

a dataset containing only sequences not included in, or similar to, those in the training set 

of a particular evaluated predictor (Casadio, Martelli et al. 2008). The study suggested five 

best performing tools: BaCelLo (Pierleoni, Martelli et al. 2006), LOCtree (Nair and Rost 

2005), Protein Prowler (Boden and Hawkins 2005), TargetP (Emanuelsson, Nielsen et al. 

2000), and Wolf PSORT (Horton, Park et al. 2007) (for sequence features and 
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computational methods they use, see Supplementary Table 1). These tools recognize 

mitochondrial proteins with sensitivities ranging from 47%-90% for animal, 35%-80% for 

fungi, and 29%-71% for plant sequences.  

Available localization prediction programs are all built from full-length proteins. 

When these tools are tested on protein sequences conceptually translated from ESTs, the 

accuracy of recognizing mitochondrial proteins is very low (<30%, Figure 1). ESTs often 

represent only partial proteins (referred to as EST-peptides from here on) and typically lack 

the N-terminal region. The poor performance of traditional tools is likely due to their 

dependence on protein features (such as targeting signal and sequence motifs) which EST-

peptides lack. In addition, being partial sequences, their amino acid composition may differ 

from that of the full-length proteins. Therefore, we developed a method that is optimized 

for predicting mitochondrial proteins using EST data. Our approach is readily applicable to 

build predictors for all subcellular compartments. 

 

Materials and Methods 

1. Data sets 

1.1 Arabidopsis ESTs data set 

We collected from SWISSPROT full-length Arabidopsis proteins localized in eight known 

subcellular compartments: cytosol (cyt), endoplasmic reticulum (end), extracellular space 

(ext), mitochondria (mit), nucleus (nuc), peroxisomes (per), plasma membrane (pla), and 

vacuole (vac). These sequences were selected by the following criteria: 1) they are encoded 
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by the nucleus; 2) their subcellular localization is experimentally verified; and 3) the 

localization annotation is not ambiguous (i.e. terms like “probable” or “possible” are absent 

from their annotation of subcellular localization). Since we are more interested in 

mitochondrial proteins, we enriched the mitochondrial data by adding sequences from 

Arabidopsis Mitochondrial Protein DataBase (AMPDB) (Heazlewood and Millar 2005). 

Furthermore, the mitochondrial data were divided into two classes: mitochondrial globular 

proteins, and mitochondrial membrane proteins. The ESTs corresponding to these proteins 

were found via a similarity search by BLASTX in dbEST of GenBank, as illustrated in 

Figure 2. The selected ESTs were clustered by Phrap (default parameters, 

http://www.phrap.org), and translated into proteins in the frame indicated by BLASTX 

alignment. Sequence redundancy was reduced so that no pair of sequences shares more than 

60% similarity. We obtained a dataset of 289 EST-peptides. Table 1 compiles all datasets 

generated in the context of this work.   

 

1.2 Plant ESTs data set 

Using the same procedure for Arabidopsis EST selection and translation, EST-peptides 

corresponding to all plant proteins from SWISSPROT with known localization were 

combined to create a dataset of 1108 sequences in total (Table 1). 

 

1.3 Expanded ESTs data 
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The collected plant full-length protein sequences were processed according to the following 

rules, as illustrated in Figure 3: 

If the sequence is shorter than 200 aa, it remains unchanged. 

If the length of the sequence is between 200 to 400 aa, fragments at length ranging 

from 140 to 260 aa will be taken from both the N-terminus and C-terminus. The range was 

based on a survey of the length distribution of ESTs, with means being ~600 nt and 

standard deviation being ~180 nt. The N-terminal fragment will start within 80 aa from the 

starting Met, while the C-terminal fragment will contain the last amino acid. This is to 

simulate the nature of ESTs which usually contains the intact C-terminus, but misses the N-

terminus.  

If the sequence is longer than 400 aa, an additional middle fragment will be taken, 

which starts after the first 80 aa, but before the middle position of the original sequence.   

The fragmented sequences were combined with plant EST-derived peptides to form 

the expanded EST data. The data was clustered using a threshold of 60%, after clustering, 

80% of the remaining sequences share a sequence similarity lower than 50% (Figure 4). 

 

1.4 Jakobid ESTs with “known” subcellular location 

The 20,683 EST clusters from six early diverging jakobid protists from four different 

genera, Jakoba bahamensis, J. libera, Malawimonas californiana, M. jakobiformis, 

Seculamonas ecuadoriensis, and Reclinomonas americana, have already been functionally 

annotated (O'Brien, Koski et al. 2007). The annotation including GO terms of these ESTs 
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from TBestDB was extracted. From the GO annotations, we collected the jakobid 

sequences from nine subcellular compartments, as listed in Table 1. All annotations are 

inferred from sequence similarity with experimentally validated proteins, but none of the 

jakobids proteins has been validated experimentally. 

 

2. Implementation of SVM 

2.1 Attributes used to represent the sequence as input for SVM 

Physicochemical properties. Physicochemical properties of the amino acids can be 

represented by amino acid indices (AAindex), developed by the Amino Acid Index 

Database (http://www.genome.jp/dbget-bin/show_man?aaindex). The database currently 

contains 494 features for each amino acid (alpha-helix, turn and beta-sheet propensity, 

hydrophobicity, bulkiness, etc.). For each feature, its value was calculated for the whole 

sequence, and normalized by the sequence length. All 494 features were calculated, and 

each EST-peptide was converted into a 494-dimension vector. 

 

Amino acid composition. Six different types of amino acid compositions were calculated. 

They are the frequency of: individual amino acid (1st-order), di-peptide (2nd-order), tri-

peptide (3rd-order), tetra-peptide (4th-order), penta-peptide (5th-order), and hexa-peptide 

(6th-order) in the input sequence. For the amino acid composition of Tth-order, the input 

sequence is represented by a vector of size 20T. 
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Grouped amino acid composition. Amino acids are grouped according to their properties 

(Table 2). The alphabet of size 20 for amino acids are replaced by an alphabet of size eight 

(group C) and size ten (group D). Group C classifies amino acids according to their 

chemical properties, which has shown good performance for localization prediction of full-

length proteins in CELLO (Yu, Chen et al. 2006). Group D classifies amino acids 

according to their structure. EST sequences were converted to the new alphabets, and the 

composition of the amino acid groups was used to encode the sequences. Compositions 

from 1st-order to 8th-order were calculated.   

 

Gapped amino acid composition. This feature represents the frequency of two amino acids 

(or amino acid groups) separated by x amino acids (or grouped amino acids) between them, 

x being the gap length. We experimented with the gap length from 1 to 6. Depending on the 

alphabet used, each sequence was represented by a vector of size 400, 64, or 100.  

 

2.2 Parameter selection and evaluation of Support Vector Machine (SVM) predictions 

The SVM package LIBSVM was employed for this study (Fan, Chen et al. 2005), with the 

radial basis function (RBF) adopted as kernel function: K(xi, xj) = exp(-	||xi,-xj||2),  	> 0, 

which requires the selection of kernel parameter 	, and penalty parameter C. To select the 

optimal parameters for SVM training and to evaluate the predictions, we performed a 10-

fold cross validation (10-fold CV), followed by a 10-fold independent evaluation (Figure 

5). We first randomly divided the whole data set into ten groups of equal size. For each 
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iteration of the ten folds, nine groups were combined to build SVM models, and the 

remaining group was used for evaluation. The combined nine groups were again divided 

into ten parts, nine parts were combined and used to train SVM with given C and 	, while 

the remaining part was used to find the optimal combination of the two parameters. Then 

the SVM with selected C and 	 was assessed with the evaluation data.  

 

2.4 Performance evaluation 

The overall accuracy for all classes, as well the sensitivity (SN), specificity (SP), 

positive predictive value (PPV), and Matthews correlation coefficient (MCC) of each class 

are calculated as follows: 

Overall Accuracy (acc) =
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Matthews correlation coefficient (MCCi) = 
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3 Open reading frame (ORF) prediction for ESTs 

Prot4EST (Barbe, Lundberg et al. 2008) was used for the prediction of open reading frame 

(ORF) in ESTs. The non-redundant protein sequence database from NCBI was used for 

BLASTX search, and ORFs were first inferred from the alignment. For ESTs without 

significant matches from BLAST, the tool ESTScan incorporated with Prot4EST was used 

to predict the ORF. ESTScan was trained with annotated Arabidopsis genomic and mRNA 

data collected from the European Molecular Biology Laboratory (EMBL) database, to 

generate the score matrix that represents the species-dependent hexanucleotide biases 

between coding and non-coding regions.     

 

Results and Discussion  

Selection of training set 

To develop a prediction method for ESTs from early diverging eukaryotes such as jakobids, 

one of the challenges lies in the limited training and test data. We performed several pilot 

studies to form the best plant training set. Predictors perform well when trained with 

experimentally verified data and tested with data from the same species. But in jakobids, 

few mitochondrial proteins have been experimentally verified. From a few model species in 

which well characterized localization data are available, we need to choose the one that is 
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phylogenetically closest to jakobids. Both phylogenetic studies, and the mitochondrial 

genome suggest that plant mitochondria more closely resemble the alpha-proteobateria 

ancestor than animals and fungi, and should therefore serve as better training data than the 

latter two.  

On the other hand, plant cells contain chloroplast proteins, while jakobids lack this 

organelle. Since both mitochondria and chloroplasts possess proteins included in 

replication, transcription, translation and energy production that are derived from bacterial 

ancestors, they are likely to share common sequence features. This likely leads to 

misclassification when the model is trained with sequences from an organism bearing 

chloroplasts and tested with those from an organism lacking this organelle. Therefore we 

removed the chloroplast as a class in the prediction. 

A number of proteins with known subcellular location are absent from the collected 

plant EST data set, because they have no corresponding EST sequences in public databases 

(for example, 289 Arabidopsis EST-peptide selected from 1035 full-length proteins). To 

construct a training set with optimal coverage, the missing EST-peptides were substituted 

by artificial ones, generated by breaking up the corresponding full-length proteins into 

overlapping pieces of ~200 residues.   

Using this expanded dataset, we have experimented with different sequence 

features, including amino acid composition, grouped amino acid composition reflecting the 

physicochemical properties, gapped amino acid composition capturing the spatial context, 
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the physicochemical properties of amino acids, as well as their combination. The prediction 

scheme with best performance was tested with jakobid data. 

 

Performance of predictors based on individual features 

Out of the 41 sequence features we investigated, the best prediction was obtained by the 

SVM based on the 4th-order of amino acid composition. For mitochondrial proteins, it 

yielded a sensitivity of 91%, PPV of 68%, and MCC of 0.8. SVMs based on the 6th-order of 

group C amino acid composition, and 7th-order of group D amino acid composition had 

similar performance (Figure 6A).  

The same trend was observed for all three kinds of composition: the higher the 

order of composition, the higher the sensitivity for larger classes, i.e., mitochondria (Figure 

6B). But the trends of PPV (Figure 6C) and MCC are different. At first their values 

increase with the order, reach a peak, then drop when the order continues to increase. This 

suggests that higher order composition makes the scheme remember the instances in the 

training procedure, causing bias towards larger classes to achieve the highest overall 

accuracy. This phenomenon is reflected by increased sensitivity but decreased PPV of the 

largest class, a sign of overfitting.  

Other sequence features such as the gapped amino acid composition and 

physicochemical properties represented by AAindex, did not give satisfying results: all of 

their MCCs are below 0.4 (Supplementary Table 2).  
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Integration of different features 

Previous studies show that integration of multiple sequence features improves the 

performance of localization prediction (Shen and Burger 2007; Blum, Briesemeister et al. 

2009). We integrated all the 41 sequence features described in the Methods section in two 

ways: integration of prediction results, and integration of attributes. The integration of 

prediction results was achieved by a two-layer SVM (Figure 7). The first layer consists of 

SVMs based on each sequence feature, which yielded as output the probability of the query 

sequence belonging to each class. The outputs of all first-layer SVM were combined, and 

served as input of the second-layer SVM. Therefore each sequence was converted to a 

vector of size 369 (nine predictions for each of the 41 features). Instead, the integration of 

attributes combined the vectors of each sequence feature, and the combined feature was 

used as input for SVM. Both integrations yielded much lower performance than the best 

individual predictor (Table 3). It seems that instead of combining the strength of individual 

features, their integration merely averaged their performance. The small improvement of 

integrated prediction suggests that the individual features tested in this study have no 

addictive or complementary effects.  

When only the top three features (4th-order amino acid composition, 6th-order group-C 

composition and 7th-order group-D composition) were combined, the prediction accuracy 

was slightly improved compared to the prediction based on the best individual feature. The 

integration of predictions made from the top three features shows similar performance as 



  141 

 

 

integration of the three features themselves as attributes (Table 3), but is computationally 

much faster than the latter approach and is therefore more practical in application.    

 

 

Implementation of prediction methods and validation with AT data 

Another challenge in the localization prediction based on EST-derived peptides is the 

correct translation. Unlike genomic data, ESTs often lack start codon and 5’-UTR which 

otherwise help detecting the correct reading frame. In addition, ESTs are products of 

single-pass reads containing low quality regions with sequencing errors that increase the 

difficulty to find correct open reading frame (ORF). Several tools have been developed for 

ORF identification in ESTs (Iseli, Jongeneel et al. 1999; Hatzigeorgiou, Fiziev et al. 2001; 

Barbe, Lundberg et al. 2008). Among them, we chose the Prot4EST (Barbe, Lundberg et al. 

2008) for EST translation, which combines similarity-based and machine-learning-based 

prediction of ORF. Prot4EST first searches ESTs against protein databases by BLAST. The 

protein-EST alignment indicates the correct translation frame. The translation is extended 

beyond the aligned region till the start or stop codon. For ESTs of which no similar proteins 

are found, ESTScan integrated within Prot4EST is used to predict the ORF based on 

Hidden Markov Model, which recognizes the species-specific bias in hexanucleotide 

composition associated with coding and non-coding regions (Iseli, Jongeneel et al. 1999), 

and generates a score matrix to represent such bias. To get the score matrix specific to 



142 

 

 

Arabidopsis, we trained ESTScan with Arabidopsis data, as described in the Methods 

section.  

We built a tool named TESTLoc, which takes the EST translation from Prot4EST, 

and predicts the subcellular localization of these translated peptides. The sequence feature 

to use is an option that can be chosen by users. The performance of TESTLoc was 

evaluated with Arabidopsis ESTs, which correspond to Arabidopsis proteins of known 

localization. We used the predictor built with integration of top three attributes. The result 

showed satisfying prediction for most classes, except for the small class of mitochondrial 

membrane peptides, which were predicted as globular mitochondrial proteins (Table 3). All 

the four proteins are ATP synthase subunits (two subunit �, subunit �, and the 24-kD 

subunit). Although the ATP synthase is annotated as inner membrane proteins in 

SWISSPROT, the F1 part of ATP synthase is not embedded within the membrane. So the 

apparent misclassification was an artifact caused by imprecise annotation, which when 

rectified, increased prediction accuracy of this class to 100%.     

 

Application to jakobids ESTs with known location 

We applied TESTLoc on jakobids ESTs of known (inferred) localization (see Methods). 

The results show a two times higher sensitivity in recognizing mitochondrial proteins 

compared to available tools or by homology to Arabidopsis mitochondrial proteins (Figure 

8). But the false positive rate is high (75%). If TESTLoc is applied to infer jakobid 

mitochondrial proteome, most mitochondrial proteins would be identified, but the 
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prediction would also include proteins from other subcellular compartments. Obviously, the 

models trained with plant data perform less well with jakobids than with plant sequences. 

This is not surprising. Already the known mitochondrial targeting signals are poorly 

conserved across larger phylogenetic distances, and the same will likely apply to the hidden 

signals detected by SVM. Therefore, the availability of training data from taxonomically 

close (or moderately distant) relatives is crucial for building a predictor with good 

performance. 

 

Conclusion  

The results described above show that the SVM machine learning method, together with 

sequence features representing various amino acid compositions, predicts the sub-location 

of plant EST-derived proteins two times more accurately compared to existing tools. We 

implemented TESTLoc as a pipeline combining EST ORF prediction and localization 

prediction. This tool performs well for Arabidopsis data, and is able to identify 

mitochondrial proteins from jakobids with high sensitivity, but with low positive predictive 

value. The prediction of the jakobid proteome will improve with two types of new data: (i) 

experimentally validated training data from species closer related to jakobids than plants; 

(ii) non-coding genomic sequences to build species-specific model for ORF prediction by 

Prot4EST, which will soon become available as the Reclinomonas genome project is 

already well underway.  

 



144 

 

 

Acknowledgements 

This work was supported by the Canadian Institute for Health Research (CIHR) Strategic 

Training Grant in Bioinformatics. We would like to thank Geneviève Galarneau for the 

work on TESTLoc, and Jean-François Théroux for implementation of gapped amino acid 

composition in the context of an undergraduate research internship in bioinformatics at the 

Université de Montréal. 

 

 

 

 

 

 

 

 

 

 

 

 



  145 

 

 

 

References: 

Assfalg, J., J. Gong, et al. (2009). "Supervised ensembles of prediction methods for 
subcellular localization." J Bioinform Comput Biol 7(2): 269-85. 

Bannai, H., Y. Tamada, et al. (2002). "Extensive feature detection of N-terminal protein 
sorting signals." Bioinformatics 18(2): 298-305. 

Barbe, L., E. Lundberg, et al. (2008). "Toward a confocal subcellular atlas of the human 
proteome." Mol Cell Proteomics 7(3): 499-508. 

Bhasin, M. and G. P. Raghava (2004). "ESLpred: SVM-based method for subcellular 
localization of eukaryotic proteins using dipeptide composition and PSI-BLAST." 
Nucleic Acids Res 32(Web Server issue): W414-9. 

Blum, T., S. Briesemeister, et al. (2009). "MultiLoc2: integrating phylogeny and Gene 
Ontology terms improves subcellular protein localization prediction." BMC 
Bioinformatics 10: 274. 

Blum, T., S. Briesemeister, et al. (2009). "MultiLoc2: integrating phylogeny and Gene 
Ontology terms improves subcellular protein localization prediction." BMC 
Bioinformatics 10(1): 274. 

Boden, M. and J. Hawkins (2005). "Prediction of subcellular localization using sequence-
biased recurrent networks." Bioinformatics 21(10): 2279-86. 

Brown, J. R. (2003). "Ancient horizontal gene transfer." Nat Rev Genet 4(2): 121-32. 
Burger, G., M. W. Gray, et al. (2003). "Mitochondrial genomes: anything goes." Trends 

Genet 19(12): 709-16. 
Casadio, R., P. L. Martelli, et al. (2008). "The prediction of protein subcellular localization 

from sequence: a shortcut to functional genome annotation." Brief Funct Genomic 
Proteomic 7(1): 63-73. 

Chou, K. C. (2001). "Prediction of protein cellular attributes using pseudo-amino acid 
composition." Proteins 43(3): 246-55. 

Chou, K. C. and Y. D. Cai (2002). "Using functional domain composition and support 
vector machines for prediction of protein subcellular location." J Biol Chem 
277(48): 45765-9. 

Claros, M. G. and P. Vincens (1996). "Computational method to predict mitochondrially 
imported proteins and their targeting sequences." Eur J Biochem 241(3): 779-86. 

Devlin, T. M. (1992). The Textbook of Biochemistry New York, Wiley-Liss Inc. 
Doolittle, W. F., Y. Boucher, et al. (2003). "How big is the iceberg of which organellar 

genes in nuclear genomes are but the tip?" Philos Trans R Soc Lond B Biol Sci 
358(1429): 39-57; discussion 57-8. 

Emanuelsson, O., H. Nielsen, et al. (2000). "Predicting subcellular localization of proteins 
based on their N-terminal amino acid sequence." J Mol Biol 300(4): 1005-16. 

Fan, R. E., P. H. Chen, et al. (2005). "Working set selection using the second order 
information for training SVM." Journal of Machine Learning Research 6: 1889-
1918. 



146 

 

 

Forner, F., L. J. Foster, et al. (2006). "Quantitative proteomic comparison of rat 
mitochondria from muscle, heart, and liver." Mol Cell Proteomics 5(4): 608-19. 

Guda, C., E. Fahy, et al. (2004). "MITOPRED: a genome-scale method for prediction of 
nucleus-encoded mitochondrial proteins." Bioinformatics 20(11): 1785-94. 

Guda, C. and S. Subramaniam (2005). "pTARGET [corrected] a new method for predicting 
protein subcellular localization in eukaryotes." Bioinformatics 21(21): 3963-9. 

Hatzigeorgiou, A. G., P. Fiziev, et al. (2001). "DIANA-EST: a statistical analysis." 
Bioinformatics 17(10): 913-9. 

Heazlewood, J. L., K. A. Howell, et al. (2003). "Towards an analysis of the rice 
mitochondrial proteome." Plant Physiol 132(1): 230-42. 

Heazlewood, J. L. and A. H. Millar (2005). "AMPDB: the Arabidopsis Mitochondrial 
Protein Database." Nucleic Acids Res 33(Database issue): D605-10. 

Heazlewood, J. L., J. S. Tonti-Filippini, et al. (2004). "Experimental analysis of the 
Arabidopsis mitochondrial proteome highlights signaling and regulatory 
components, provides assessment of targeting prediction programs, and indicates 
plant-specific mitochondrial proteins." Plant Cell 16(1): 241-56. 

Horton, P., K. J. Park, et al. (2007). "WoLF PSORT: protein localization predictor." 
Nucleic Acids Res 35(Web Server issue): W585-7. 

Hua, S. and Z. Sun (2001). "Support vector machine approach for protein subcellular 
localization prediction." Bioinformatics 17(8): 721-8. 

Huang, Y. and Y. Li (2004). "Prediction of protein subcellular locations using fuzzy k-NN 
method." Bioinformatics 20(1): 21-8. 

Iseli, C., C. V. Jongeneel, et al. (1999). "ESTScan: a program for detecting, evaluating, and 
reconstructing potential coding regions in EST sequences." Proc Int Conf Intell Syst 
Mol Biol: 138-48. 

Johnson, D. T., R. A. Harris, et al. (2007). "Tissue heterogeneity of the mammalian 
mitochondrial proteome." Am J Physiol Cell Physiol 292(2): C689-97. 

Kumar, A., S. Agarwal, et al. (2002). "Subcellular localization of the yeast proteome." 
Genes Dev 16(6): 707-19. 

Lang, B. F., M. W. Gray, et al. (1999). "Mitochondrial genome evolution and the origin of 
eukaryotes." Annu Rev Genet 33: 351-97. 

Li, J., T. Cai, et al. (2009). "Proteomic analysis of mitochondria from Caenorhabditis
elegans." Proteomics. 

Liu, J., S. Kang, et al. (2007). "Meta-prediction of protein subcellular localization with 
reduced voting." Nucleic Acids Res 35(15): e96. 

Lu, Z., D. Szafron, et al. (2004). "Predicting subcellular localization of proteins using 
machine-learned classifiers." Bioinformatics 20(4): 547-56. 

Maximo, V., J. Lima, et al. (2009). "Mitochondria and cancer." Virchows Arch 454(5): 
481-95. 

Meisinger, C., A. Sickmann, et al. (2008). "The mitochondrial proteome: from inventory to 
function." Cell 134(1): 22-4. 



  147 

 

 

Mootha, V. K., J. Bunkenborg, et al. (2003). "Integrated analysis of protein composition, 
tissue diversity, and gene regulation in mouse mitochondria." Cell 115(5): 629-40. 

Nair, R. and B. Rost (2002). "Inferring sub-cellular localization through automated lexical 
analysis." Bioinformatics 18 Suppl 1: S78-86. 

Nair, R. and B. Rost (2005). "Mimicking cellular sorting improves prediction of subcellular 
localization." J Mol Biol 348(1): 85-100. 

O'Brien, E. A., L. B. Koski, et al. (2007). "TBestDB: a taxonomically broad database of 
expressed sequence tags (ESTs)." Nucleic Acids Res 35(Database issue): D445-51. 

Park, K. J. and M. Kanehisa (2003). "Prediction of protein subcellular locations by support 
vector machines using compositions of amino acids and amino acid pairs." 
Bioinformatics 19(13): 1656-63. 

Pierleoni, A., P. L. Martelli, et al. (2006). "BaCelLo: a balanced subcellular localization 
predictor." Bioinformatics 22(14): e408-16. 

Reinders, J. and A. Sickmann (2007). "Proteomics of yeast mitochondria." Methods Mol 
Biol 372: 543-57. 

Reinhardt, A. and T. Hubbard (1998). "Using neural networks for prediction of the 
subcellular location of proteins." Nucleic Acids Res 26(9): 2230-6. 

Rodriguez-Ezpeleta, N., H. Brinkmann, et al. (2007). "Toward resolving the eukaryotic 
tree: the phylogenetic positions of jakobids and cercozoans." Curr Biol 17(16): 
1420-5. 

Sarda, D., G. H. Chua, et al. (2005). "pSLIP: SVM based protein subcellular localization 
prediction using multiple physicochemical properties." BMC Bioinformatics 6: 152. 

Scott, M. S., D. Y. Thomas, et al. (2004). "Predicting subcellular localization via protein 
motif co-occurrence." Genome Res 14(10A): 1957-66. 

Shatkay, H., A. Hoglund, et al. (2007). "SherLoc: high-accuracy prediction of protein 
subcellular localization by integrating text and protein sequence data." 
Bioinformatics. 

Shen, Y. Q. and G. Burger (2007). "'Unite and conquer': enhanced prediction of protein 
subcellular localization by integrating multiple specialized tools." BMC 
Bioinformatics 8: 420. 

Shen, Y. Q. and G. Burger (2009). "Plasticity of a key metabolic pathway in fungi." Funct 
Integr Genomics 9(2): 145-51. 

Sickmann, A., J. Reinders, et al. (2003). "The proteome of Saccharomyces cerevisiae 
mitochondria." Proc Natl Acad Sci U S A 100(23): 13207-12. 

Small, I., N. Peeters, et al. (2004). "Predotar: A tool for rapidly screening proteomes for N-
terminal targeting sequences." Proteomics 4(6): 1581-90. 

Smith, D. G., R. M. Gawryluk, et al. (2007). "Exploring the mitochondrial proteome of the 
ciliate protozoon Tetrahymena thermophila: direct analysis by tandem mass 
spectrometry." J Mol Biol 374(3): 837-63. 

Taylor, S. W., E. Fahy, et al. (2003). "Characterization of the human heart mitochondrial 
proteome." Nat Biotechnol 21(3): 281-6. 



148 

 

 

Wang, Z. Y., D. M. Soanes, et al. (2007). "Functional analysis of lipid metabolism in 
Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation 
during appressorium-mediated plant infection." Mol Plant Microbe Interact 20(5): 
475-91. 

Xie, D., A. Li, et al. (2005). "LOCSVMPSI: a web server for subcellular localization of 
eukaryotic proteins using SVM and profile of PSI-BLAST." Nucleic Acids Res 
33(Web Server issue): W105-10. 

Yu, C. S., Y. C. Chen, et al. (2006). "Prediction of protein subcellular localization." 
Proteins. 

 
 

 

 



  149 

 

 

Tables 

Table 1. Number of sequences (from Arabidopsis and all plants tested) used in this study  

Classes cyt end ext mit mitm nuc per pla vac total 

Arab ESTs (after clustering) 53 4 9 167 4 40 4 3 5 289 

Plant ESTs 96 6 23 182 32 137 8 6 16 506 

Expanded ESTs 343 26 94 448 70 369 24 8 41 1423 

Expanded ESTs (after clustering) 122 11 48 309 36 260 12 7 29 834 

Jakobid ESTs (before clustering) 65 38 3 114 45 216 13 16 3 513 

Jakobid ESTs (after clustering) 44 38 3 103 40 204 13 16 3 464 

 

Abbreviations: cyt, cytosol; end, endoplasmatic reticulum; ext, extracellular; mit, mitochondrion; mitm, 

mitochondrial membrane; nuc, nucleus; per, peroxisome; pla, plasma membrane; vac, vacuole; No.Seq: 

number of sequences; Arab, Arabidopsis 
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Table 2. Amino acids grouped according to their chemical properties or structures 
 

Group C, showed good performance in CELLO 
Group D: Devlin (Devlin 1992) classifies amino acids along 

structural lines 

Property Amino acid Superstructure Structure Amino Acid 

Acidic D, E 

Monoamino, 

moncarboxylic 

 G,A 

Basic H,K,R Unsubstituted V,L,I 

Aromatic F,W, Y Heterocyclic P,F 

Small hydroxyl S,T Aromatic W,Y 

Sulphur-containing C,M Thioether M 

Aliphatic1 A,G,P Hydroxy S, T 

Aliphatic2 I, L,V Mercapto C 

Amide N,Q Carboxamide N,Q 

  Monamino, dicarboxylic  D,E 

  Diamino, monocarboxylic  H, K, R 
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Table 3 The independent evaluation results of different prediction schemes 
Prediction 

schemes 

 cyt end ext mit mitm nuc per pla vac 

Best result from 

individual 

features1 

SN 53.94 20 81 90.64 72.5 83.1 30 50 80.01 

PP 87.7 20 96 68.34 93.5 89.03 30 50 97.5 

MCC 0.64 0.2 0.87 0.63 0.80 0.79 0.3 0.5 0.87 

 

Integration of 

predictions 

SN 19.32 20 46 82.17 45 77.31 10 0 19.99 

PP 46.83 20 71.17 58.01 91.67 72.06 10 0 50 

MCC 0.21 0.2 0.54 0.42 0.62 0.57 0.09 0 0.30 

 

Integration of 

attributes 

SN 9.22 40 58.5 80.87 42.5 77.31 0 0 16.66 

PP 27.83 40 81.88 55.31 88.33 73.09 0 0 40 

MCC 0.06 0.4 0.65 0.38 0.59 0.58 0 0 0.25 

 

Integration of 

predictions from 

top three features 

SN 48.03 20 77 94.18 62.5 79.99 20 50 66.67 

PP 88.79 20 98 65.82 93.5 95.16 20 33.5 100 

MCC 0.61 0.2 0.86 0.63 0.74 0.81 0.2 0.38 0.79 

 

Integration of 

attributes from 

top three features 

SN 52.2 20 83 93.54 72.5 82.7 30 50 76.68 

PP 88.62 20 96 68.06 93.5 92.56 30 50 100 

MCC 0.64 0.2 0.88 0.65 0.81 0.81 0.3 0.5 0.86 

 

Arabidopsis 

validation 

SN 60.4 100 100 93.4 02 90.2 80 100 100 

PP 86.5 100 100 84.3 0 97.4 100 100 100 

MCC 0.67 1 1 0.72 -0.02 0.93 0.75 0.89 1 
 

1 The result was obtained from SVM trained with 4th-order amino acid composition 

2 the misclassification of Arabidopsis mitochondrial membrane proteins was an artifact caused by imprecise 

annotation 
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Figure legends 

 

Figure 1. Prediction performance of top-ranked available tools and TESTLoc for 

mitochondrial proteins from plant EST-derived peptides. Desired results should be located 

in the top left region of the plot area, indicating high true positive rate and low false 

positive rate. True positive rate=sensitivity, false positive rate=1- positive predictive value 

 

Figure 2. Selection of Arabidopsis ESTs.  

 

Figure 3.  Fragmentation of plant ESTs to expand the EST-peptide data. Bars: full-length 

proteins; lines: fragments of the proteins. Proteins shorter than 200 aa remain unchanged. 

Proteins ranging from 200 to 400 aa were fragmented into two parts, each part ranging 

from 140 to 260 aa: the N-terminus part which starts within 80 aa of the starting 

methionine, and C-terminal part including the C-terminus amino acid. Proteins longer than 

400 aa were fragmented into three parts. In addition to the two terminal parts, a middle-

region piece was created, whose first amino acid was in the N-terminal half part of the 

protein, but after the 80th amino acid.  

 

Figure 4. Sequence identities within expanded data set, calculated from BLASTP 

alignment. 

 

Figure 5. Training and evaluation of SVM. The procedure in each dash box was repeated 

ten times. The whole expanded plant EST-peptides were randomly divided into ten parts, 

with nine parts combined and used to construct the SVM model, and the remaining one to 

evaluate the model. The construction-evaluation procedure was repeated ten times. In each 

round, the combined data for model construction was further divided randomly into ten 

data sets, in which nine sets combined as training data, the rest one as test data. Selection of 
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SVM parameters was done by ten-fold cross validation, and SVM built with optimal 

parameters was assessed by the evaluation data. 

 

Figure 6. The independent evaluation for SVMs based on different orders of amino acid 

composition. A. sensitivity of each class. B. positive predictive value (PPV) of each class. 

C. matthews correlation coefficient (MCC) of each class. Sensitivity for mitochondrial 

proteins increased with order of composition, but dropped for other classes after the 4th-

order. As to PPV, different classes show different trends. The PPV for mitochondrial 

proteins reaches the peak at the 4th-order. The peak of MCC for most classes was obtained 

at the 4th-order. Similar trends were observed for group C and group D composition (see 

Supplementary Table 2).  

 

Figure 7. Integration of predictions from SVM models based on individual features. From 

each of the 41 SVM models built with different sequence features, the probabilities of the 

query sequence predicted as each class were used as input for the 2nd-layer SVM.  

 

Figure 8. Comparison of available tools and TESTLoc for the prediction power on 

recognizing mitochondrial proteins from jakobid ESTs. TESTLoc shows much higher 

sensitivity, but at the cost of low specificity.  
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Figures  

 
Figure 1. Prediction performance of top-ranked available tools and TESTLoc for mitochondrial proteins from 

plant EST-derived peptides. Desired results should be located in the top left region of the plot area, indicating 

high true positive rate and low false positive rate. True positive rate=sensitivity, false positive rate=1- positive 

predictive value 
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Figure 2. Selection of Arabidopsis ESTs.  
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Figure 3.  Fragmentation of plant ESTs to expand the EST-peptide data. Bars: full-length proteins; lines: 

fragments of the proteins. Proteins shorter than 200 aa remain unchanged. Proteins ranging from 200 to 400 

aa were fragmented into two parts, each part ranging from 140 to 260 aa: the N-terminus part which starts 

within 80 aa of the starting methionine, and C-terminal part including the C-terminus amino acid. Proteins 

longer than 400 aa were fragmented into three parts. In addition to the two terminal parts, a middle-region 

piece was created, whose first amino acid was in the N-terminal half part of the protein, but after the 80th 

amino acid.  
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Figure 4. Sequence identities within expanded data set, calculated from BLASTP alignment. 

 

 

 

 

 

 

 

 

 

 

 



158 

 

 

 

 
 
Figure 5. Training and evaluation of SVM. The procedure in each dash box was repeated ten times. The 

whole expanded plant EST-peptides were randomly divided into ten parts, with nine parts combined and used 

to construct the SVM model, and the remaining one to evaluate the model. The construction-evaluation 

procedure was repeated ten times. In each round, the combined data for model construction was further 

divided randomly into ten data sets, in which nine sets combined as training data, the rest one as test data. 

Selection of SVM parameters was done by ten-fold cross validation, and SVM built with optimal parameters 

was assessed by the evaluation data. 
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Figure 6. The independent evaluation for SVMs based on different orders of amino acid composition. A. 

sensitivity of each class. B. positive predictive value (PPV) of each class. C. matthews correlation coefficient 

(MCC) of each class. Sensitivity for mitochondrial proteins increased with order of composition, but dropped 

for other classes after the 4th-order. As to PPV, different classes show different trends. The PPV for 

mitochondrial proteins reaches the peak at the 4th-order. The peak of MCC for most classes was obtained at 

the 4th-order. Similar trends were observed for group C and group D composition (see Supplementary Table 

2).  
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Figure 7. Integration of predictions from SVM models based on individual features. From each of the 41 

SVM models built with different sequence features, the probabilities of the query sequence predicted as each 

class were used as input for the 2nd-layer SVM.  
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Figure 8. Comparison of available tools and TESTLoc for the prediction power on recognizing mitochondrial 

proteins from jakobid ESTs. The open square shows the selection of jakobid mitochondrial proteins by 

blasting with Arabidopsis mitochondrial proteins. TESTLoc shows much higher sensitivity, but at the cost of 

low specificity. 
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Supplementary Table 1 List of available subcellular localization prediction methods 

Sequence feature Name of the 
predictor or author Computational methods 

Sequence similarity and text annotation PA-SUB Naïve Bayes 
EpiLoc Support Vector Machine 

Gene Ontology term ProLoc-GO Genetic algorithm based 
method combined with SVM 

InterPro domains and specific membrane domains PSLT Likelihood calculated by Bayes' 
rule 

Targeting peptide 

Predotar Neural network 
TargetP Neural network 

iPSORT Alphabet indexing and pattern 
rule 

Protein prowler Neural network 
Physicochemical properties pSLIP Support Vector Machine 

Amino acid composition 
Subloc Support Vector Machine 

NNPSL Neural network 

Integrated 

Position-specific scoring matrix 
+ four part amino acid 
composition 

LOCSVMPSI Support Vector Machine 

amino acid composition 
33 physicochemical properties 
dipeptide composition 
PSI-blast result 
Combined feature of the above 

ESLpred Support Vector Machine 

amino acid composition 
quasi-sequence-order (up to 13 
gaps) 
physicochemical properties 
(hydrophobicity, hydrophilicity, 
side-chain volume) 

Cai et al Support Vector Machine 

Evolutionary profiles 
global amino acid composition 
50N-terminal amino acid 
composition 
amino acid composition in three 
secondary structure states 
output of signalP 

LOCtree Support Vector Machine 

Amino acid composition and 
paired amino acid composition Yuan Hidden Markov Model 

A set of sequence-derived 
features PSORTII K Nearest Neighbors 

Features from iPSORT and 
PSORTII, together with amino 
acid content 

WoLF PSORT Weighted K Nearest Neighbors 

Amino acid composition 
+dipeptide+physicochemical Gao, et al K Nearest Neighbors 
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properties 
Pfam domains occurrence, 
amino acid composition and PI 
value 

MITOPRED Score of different features 

Pfam domains occurrence and 
amino acid composition pTARGET Score of different features 

targeting sequence and 
hydrophobicity characteristics MitoProt Multivariate analysis 

amino acid composition, 
targeting signals, motif, and text 
search 

SherLoc Support Vector Machine 
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Supplementary Table 2.  Performance of predictions based on each sequence feature (Each 

number is averaged by 10-round evaluation) 

Matthews correlation coefficient value 
natural amino acid composition 

 cyt end ext mit mit_m nuc per pla voc 
1st-order 0.11 0.3 0.59 0.35 0.54 0.584 0 0 0.23 
2nd-order 0.18 0.17 0.67 0.38 0.764 0.554 0 -0.003 0.56 
3rd-order 0.36 0.2 0.82 0.48 0.814 0.684 0.1 0.5 0.78 
4th-order 0.64 0.2 0.86 0.63 0.804 0.784 0.3 0.5 0.87 
5th-order 0.61 0.2 0.84 0.62 0.764 0.814 0.3 0.5 0.83 
6th-order 0.57 0.2 0.69 0.56 0.614 0.764 0.1 0.4 0.73 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 0.05 0.1 0.3734 0.30 0.49 0.49 0 0 -0.01 
2nd-order 0.008 0 0.46 0.30 0.7 0.51 0 0 0.36 
3rd-order 0.05 0.17 0.66 0.37 0.73 0.54 0 0 0.56 
4th-order 0.25 0.2 0.65 0.38 0.76 0.52 0 0 0.73 
5th-order 0.47 0.2 0.76 0.49 0.77 0.63 0.2 0.5 0.77 
6th-order 0.60 0.2 0.82 0.63 0.80 0.74 0.3 0.5 0.83 
7th-order 0.64 0.2 0.86 0.59 0.74 0.73 0.3 0.5 0.83 
8th-order 0.63 0.2 0.86 0.6 0.70 0.76 0.3 0.5 0.83 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 0.09 0.09 0.46 0.31 0.49 0.46 0 0 0.34 
2nd-order 0.06 0.1 0.59 0.24 0.61 0.43 0 0 0.60 
3rd-order 0.08 0.19 0.64 0.3 0.64 0.45 0 0 0.61 
4th-order 0.27 0.17 0.82 0.41 0.78 0.56 0 0.2 0.77 
5th-order 0.52 0.4 0.84 0.52 0.77 0.66 0.3 0.5 0.83 
6th-order 0.59 0.2 0.89 0.61 0.80 0.72 0.3 0.5 0.85 
7th-order 0.62 0.2 0.85 0.62 0.76 0.77 0.3 0.5 0.83 
8th-order 0.6 0.2 0.76 0.58 0.74 0.75 0.1 0.5 0.83 

natural amino acid 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 0.13 0.39 0.58 0.34 0.67 0.54 0 0 0.45 
two_gap 0.12 0.37 0.76 0.33 0.65 0.51 0 0 0.41 

three_gap 0.08 0.37 0.70 0.34 0.74 0.52 0 0 0.52 
four_gap 0.07 0.2 0.51 0.3 0.64 0.516 0 0 0.44 
five_gap 0.10 0.2 0.53 0.28 0.68 0.51 0 0 0.47 
six_gap 0.07 0.3661 0.65 0.33 0.69 0.50 0 -0.002 0.56 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 0.05 0 0.43 0.27 0.50 0.45 0 0 0.05 
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two_gap 0.09 0.1 0.47 0.24 0.58 0.44 0 0 -0.01 
three_gap 0.16 0.2 0.42 0.25 0.54 0.45 0 0 -0.01 
four_gap 0.14 0.1 0.37 0.24 0.60 0.42 0 0 0.05 
five_gap -0.01 0 0.45 0.26 0.61 0.43 0 0 0.11 
six_gap -0.007 0 0.49 0.19 0.6 0.36 0 0 0 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 0.13 0.1 0.49 0.29 0.70 0.46 0 0 0.28 
two_gap 0.12 0 0.62 0.28 0.50 0.45 0 0 0.15 

three_gap 0.16 0.2 0.51 0.26 0.54 0.43 0 0 0.37 
four_gap 0.11 0.1 0.47 0.26 0.42 0.44 0 -0.002 0.05 
five_gap 0.04 0 0.49 0.28 0.624 0.42 0 -0.004 0.42 
six_gap 0.18 0 0.51 0.22 0.54 0.32 0 0 0.40 

aaindex 0.10 0.3 0.60 0.39 0.60 0.58 0 0 0.31 

sensitivity (%) 
natural amino acid composition 

 cyt end ext mit mit_m nuc per pla voc 
1st-order 7.5 30 54.5 81.22 35 78.47 0 0 16.65 
2nd-order 18.41 20 60.5 80.24 62.5 72.3 0 0 39.98 
3rd-order 35.4 20 81 79.95 72.5 80.39 10 50 66.68 
4th-order 53.94 20 81 90.64 72.5 83.1 30 50 80.01 
5th-order 49.69 20 75.5 96.12 65 76.92 30 50 73.34 
6th-order 42.96 20 57.5 97.1 50 70.38 10 40 63.34 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 5.83 10 32 86.74 35 63.07 0 0 0 
2nd-order 3.33 0 41 81.55 55 68.08 0 0 36.65 
3rd-order 3.33 20 59 84.41 57.5 71.53 0 0 39.98 
4th-order 17.74 20 58.5 79.93 67.5 70.39 0 0 60 
5th-order 41.28 20 73 82.53 67.5 75.76 20 50 63.34 
6th-order 51.36 20 79 90.94 72.5 80.01 30 50 73.34 
7th-order 53.04 20 79 91.26 62.5 76.54 30 50 73.34 
8th-order 52.21 20 77.5 96.13 57.5 71.15 30 50 73.34 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 10.08 10 40 82.19 30 65.77 0 0 23.32 
2nd-order 8.32 10 48.5 74.46 45 65.37 0 0 53.33 
3rd-order 8.32 20 59 77.04 50 66.94 0 0 56.68 
4th-order 29.47 20 81 76.06 70 73.46 0 20 63.34 
5th-order 43.94 40 83 82.22 67.5 78.08 30 50 73.34 
6th-order 49.77 20 83 89.64 72.5 79.23 30 50 76.67 
7th-order 51.36 20 77 95.48 65 75.01 30 50 73.34 
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8th-order 48.79 20 63 96.78 62.5 70 10 50 73.34
natural amino acid composition 

 cyt end ext mit mit_m nuc per pla voc 
one_gap 15.16 40 56.5 76.37 50 75.77 0 0 29.98
two_gap 8.41 40 69 79.29 47.5 73.08 0 0 26.65

three_gap 15.97 40 71 71.85 60 75.37 0 0 39.99
four_gap 10.82 20 46.5 75.43 50 73.47 0 0 29.98
five_gap 10.82 20 44.5 76.34 62.5 69.23 0 0 33.3 
six_gap 8.33 40 60.5 80.9 55 66.52 0 0 46.65

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 5.83 0 36 79.6 37.5 69.62 0 0 3.33 
two_gap 6.74 10 40 79.93 42.5 64.6 0 0 0 

three_gap 16.74 20 40.5 75.74 47.5 65.76 0 0 0 
four_gap 12.5 10 34 77.32 45 64.61 0 0 3.33 
five_gap 0 0 28 82.17 50 66.13 0 0 6.66 
six_gap 0 0 36 79.3 45 60.37 0 0 0 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 10.98 10 44 78.97 55 67.31 0 0 16.65
two_gap 8.32 0 54.5 79.63 35 68.06 0 0 9.99 

three_gap 12.57 20 48 75.72 40 67.69 0 0 23.31
four_gap 8.32 10 42.5 79.61 32.5 66.15 0 0 3.33 
five_gap 1.74 0 40 80.9 45 66.15 0 0 29.99
six_gap 10.98 0 40 74.75 40 61.93 0 0 26.65

aaindex 14.24 30 60.5 78.61 45 78.47 0 0 23.32

specificity (%) 
natural amino acid composition 

 cyt end ext mit mit_m nuc per pla voc 
1st-order 97.84 100 97.74 54.2 99.62 80.72 100 100 99.24
2nd-order 94.55 99.81 98.61 58.69 99.79 83.01 100 99.63 99.43
3rd-order 94.71 100 98.91 69.88 99.65 88.27 100 100 99.84
4th-order 98.37 100 99.69 74.53 99.53 94.3 100 100 99.84
5th-order 98.5 100 99.84 67.58 99.53 99.33 100 100 100 
6th-order 98.95 100 99.84 58.6 99.52 99.77 100 100 100 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 97.38 100 97.91 41.99 99.32 84.27 100 100 99.57
2nd-order 97.37 100 97.66 48.42 99.79 82.7 100 100 97.69
3rd-order 98.63 99.79 98.43 52.67 100 82.21 100 100 99.79
4th-order 96.96 100 98.2 58.19 99.19 81.54 100 100 99.82
5th-order 96.58 100 98.61 68.04 99.48 87.42 100 100 100 
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6th-order 97.99 100 99.02 73.8 99.52 92.63 100 100 100 
7th-order 98.61 100 99.84 69.23 99.54 94.4 100 100 100 
8th-order 98.63 100 99.84 65.04 99.53 98.91 100 100 100 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 95.48 99.36 97.8 47.79 100 79.6 100 100 99.79 
2nd-order 94.64 100 98.83 49.41 99.5 77.61 100 100 99.09 
3rd-order 95.45 99.78 98.42 52.93 99.62 78.19 100 100 98.92 
4th-order 93.31 99.82 98.84 65.82 99.41 83.16 100 100 100 
5th-order 97.39 100 98.99 71.1 99.5 87.79 100 100 100 
6th-order 98.03 100 99.84 72.74 99.53 92.04 100 100 100 
7th-order 98.46 100 99.84 67.91 99.54 97.62 100 100 100 
8th-order 98.46 100 99.84 62.76 99.5 98.89 100 100 100 

natural amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 93.8 99.6 97.53 58.61 99.79 79.52 100 100 99.82 
two_gap 97.28 99.81 99.19 54.7 99.78 79.09 100 100 99.6 

three_gap 91.46 99.81 97.56 62.59 99.81 77.68 100 100 99.8 
four_gap 94.33 100 97.64 54.31 99.38 77.97 100 100 99.52 
five_gap 95.25 100 98.11 52 98.55 81.46 100 100 98.97 
six_gap 96.87 99.42 98.35 52.56 99.61 82.43 100 99.81 99.17 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 97.41 100 97.72 46.95 99.78 75.92 100 100 99.57 
two_gap 97.98 100 97.97 43.95 99.28 79.05 100 100 99.35 

three_gap 95.02 100 97.38 48.83 98 78.87 100 100 99.17 
four_gap 95.49 100 97.07 46.38 99.27 77.38 100 100 99.79 
five_gap 99.6 100 99.58 42.86 98.91 76.95 100 100 100 
six_gap 99.78 100 98.84 39.17 98.97 76.1 100 100 100 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 95.97 99.8 98.51 49.95 99.79 78.58 100 100 99.81 
two_gap 97.69 100 98.31 48.45 99.11 76.89 100 100 99.78 

three_gap 96.23 100 98.23 50.49 99.56 75.7 100 100 99.4 
four_gap 97.07 100 97.86 45.97 99.13 77.62 100 99.8 100 
five_gap 99.58 100 98.23 46.77 99.8 75.55 100 99.57 99.55 
six_gap 97.5 100 99.11 47.11 99.34 70.52 100 100 99.76 

aaindex 93.45 100 96.77 61.55 99.25 80.07 100 100 98.87 

positive predictive value (%) 
natural amino acid composition 

 cyt end ext mit mit_m nuc per pla voc 
1st-order 43.34 30 76.42 53.11 91.67 73.73 0 0 38.33 
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2nd-order 42.45 15 81.17 55.8 97.5 73.51 0 0 85 
3rd-order 57.66 20 86.5 62.45 95 80.65 10 50 96.67
4th-order 87.7 20 96 68.34 93.5 89.03 30 50 97.5 
5th-order 87.14 20 97.5 63.83 93.5 98.54 30 50 100 
6th-order 90.47 20 87.5 58.46 82.67 99.44 10 40 90 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 21.19 10 53.17 49.05 76.67 74.28 0 0 0 
2nd-order 18.33 0 65.84 50.28 96.67 73.49 0 0 41.66
3rd-order 25 15 82.81 53.26 100 72.39 0 0 86.67
4th-order 61.32 20 76 55.43 92 70.12 0 0 95 
5th-order 70.99 20 85.33 62.03 93.5 78.01 20 50 100 
6th-order 84.04 20 88.5 68.35 93.5 85.87 30 50 100 
7th-order 89.78 20 98 64.3 92.67 88.78 30 50 100 
8th-order 89.36 20 98 62.21 92.67 97.29 30 50 100 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

1st-order 31.36 10 63.34 51.25 90 68.72 0 0 56.67
2nd-order 33 10 81.67 48.51 91.67 66.75 0 0 76.67
3rd-order 38.26 20 78.34 51.95 90 66.11 0 0 71.68
4th-order 48.04 15 88 59.12 93 72.49 0 20 100 
5th-order 77.79 40 88.83 63.87 93.5 78.22 30 50 100 
6th-order 83.79 20 98 67.27 93.5 84.49 30 50 100 
7th-order 87.46 20 98 64.38 92.67 94.62 30 50 100 
8th-order 87.64 20 96.67 61 92.67 97.4 10 50 100 

natural amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 39.13 40 69.5 55.07 96.67 71.04 0 0 75 
two_gap 44.5 35 91.34 52.81 96.67 69.64 0 0 70 

three_gap 26.6 35 75.05 56.29 96.67 68.38 0 0 75 
four_gap 30.05 20 67.5 51.91 89.17 69.29 0 0 73.33
five_gap 39.25 20 76 50.4 81.84 72.57 0 0 75 
six_gap 21.25 35 78 52.26 93.34 71.83 0 0 77.5 

group C amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 25.84 0 66 49.54 75 66.62 0 0 10 
two_gap 33.33 10 71.01 47.52 90 68.4 0 0 0 

three_gap 42.91 20 54.17 49.01 72.5 68.75 0 0 0 
four_gap 47 10 52.5 48.47 90 66.84 0 0 10 
five_gap 0 0 83.34 47.87 80.84 66.6 0 0 20 
six_gap 0 0 79.17 44.98 88.33 64.01 0 0 0 

group D amino acid composition 
 cyt end ext mit mit_m nuc per pla voc 

one_gap 45.67 10 61.67 50.69 96.67 67.79 0 0 50 
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two_gap 44.16 0 81.54 50.01 83.33 66.68 0 0 25 
three_gap 52.5 20 63 50.03 81.67 64.89 0 0 65 
four_gap 44.29 10 63 49.09 63.33 67.45 0 0 10 
five_gap 20 0 71.67 50 95 64.07 0 0 63.33 
six_gap 62.23 0 75.84 48.51 80 57.41 0 0 65 

aaindex 31.85 30 69.63 58.14 88.33 72.47 0 0 48.33 

 



 

Conclusions  

With the focus on mitochondria, my thesis includes the development of new effective 

methods for predicting the subcellular localization of proteins, together with the subsequent 

large-scale in silico study of a key mitochondrial metabolic pathway across eukaryotes. 

Several aspects of this work are worthwhile to discuss in a wider context than was possible 

in the corresponding publications or the manuscript. 

1. Localization is an important aspect of protein function 

Our study shows that subcellular location prediction is an important asset in the annotation 

of newly discovered proteins, as it bears important clues about protein function. To reveal a 

protein’s function, many aspects need to be addressed: the biochemical reaction it 

catalyzes, the molecular function it performs, bio-molecules it interacts with, the 

physiological conditions under which it is expressed, and the subcellular compartment 

where it is located. All these aspects are interrelated and interdependent, among which 

localization information provides valuable clues to infer the other aspects of function. A 

good example is the analysis of the ACD11 protein, as we showed in our study. Although 

ACD11 has been identified as a new ACAD family member several years ago, its 

molecular function has remained unknown. We found that this enzyme is present in almost 

all eukaryotic and many bacterial groups, suggesting that it carries out universal and 

fundamental functions for cellular life. Our localization prediction indicates that unlike 

other proteins in the eukaryotic ACAD family, which are always found in mitochondria, 

ACD11 is imported into peroxisomes in eukaryotes. Interestingly, in some fungal species 
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such as Neurospora crassa and Magnaporthe grisea, the peroxisomal beta oxidation is 

active while AOX, the first enzyme catalyzing the peroxisomal beta oxidation spiral, is 

absent. We and others proposed that in these species one of the ACAD enzymes takes over 

the function of AOX  (Wang, Soanes et al. 2007; Shen and Burger 2009). The only clue to 

identify which ACAD carries out this function is the localization information. We found 

that ACD11 is the most likely AOX substitute, because of two reasons: it is present in the 

genomes of the above mentioned fungi, and the only ACAD enzyme that bears the 

peroxisomal targeting signal. Therefore, ACD11 is the key to understand the mechanism of 

the noncanonical peroxisomal beta oxidation and its relationship with the other two forms 

of the pathway. 

 

2. From protein localization to pathway localization 

Knowing the location of proteins with established molecular function helps to infer where 

the corresponding biological process takes place, what the physiological role of this process 

is, and how the various processes are integrated within the cell. In my work, localization 

prediction helped to elucidate where beta oxidation occurs in the eukaryotic cell. As two 

pathways (a mitochondrial and a peroxisomal form) exist, it proved difficult to distinguish 

the components of the two forms due to sequence similarity, especially in species which are 

phylogenetically distant from the model species in which the enzymes have been 
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characterized. But we show that localization prediction allows to clearly identify the 

pathway form that a given component belongs to.  

The accuracy of prediction is crucial for such analysis. In order to get reliable 

localization prediction, we designed the tool YimLoc, which integrates the strength of 

heterogeneous prediction methods built with different training data, computational methods, 

and sequence features. YimLoc, when tested with known data, showed high prediction 

accuracy. The application of this tool to available genomic data revealed a most 

complicated scenario of beta oxidation in fungi. Our findings overturned the previous 

assumption that only the peroxisomal form of beta oxidation is present in this taxa group, 

and showed that the dual localization of this pathway is predominant in fungi. The 

prevalence of mitochondrial and peroxisomal beta oxidation in both animals and fungi 

suggests that the two forms were present in the common ancestor of opisthokonts, with the 

loss of one or both forms in certain fungal lineages.   

 

3. The power of cross-taxon comparison  

In order to gain a deeper insight into the mitochondrial beta oxidation, we applied a 

cross-taxon comparison of its key enzyme—ACAD. Unlike its perosisomal counterpart 

AOX, ACAD has a much broader taxonomic distribution, consists of more subfamilies 

with fine-tuned substrate specificity, and participates in amino acid degradation in addition 

to fatty acid degradation. We combined ortholog detection, phylogenetic reconstruction, 



174 

 

 

and localization prediction to investigate ACAD in more than 200 species, and further built 

the subfamily distribution profiles of ACAD in archaea, bacteria, and eukaryotes. In 

animals, the ACAD function is carried out by a large number of subfamilies, and the 

enzyme of each subfamily has a quite narrow range of substrate specificity. Fungi adopted 

a different strategy, with less numbers of subfamilies, but a broader spectrum of substrates 

for some subfamilies. In plants, only the few subfamilies involved in amino acid 

degradation were identified, in addition to the function-unknown ACD11. Some bacterial 

groups, such as actinobacteria and �-proteobacteria, have a complex profile of ACAD 

subfamilies. But in other bacterial and archaea groups, only a few or even none of the 

subfamilies were found. Confrontation of our results with the literature suggests that the 

ACAD subfamily profile corresponds well to the spectrum of fatty acids utilized. Therefore, 

our in silico analysis provides valuable hints to the energy metabolism of species for which 

experimental data is sparse.  

Distribution mapping combined with phylogenetic analysis of ACAD subfamilies 

suggests a complicated evolution of this enzyme family, likely starting from a few enzymes 

for amino acid and short-chain fatty acid dehydrogenation. During evolution, gene 

duplication, horizontal gene transfer, gene loss, and functional convergence have led to a 

diversified toolset tailored for efficient fatty acids and amino acids utilization depending on 

the energy demand of a given species.  

Our studies of the beta oxidation and ACAD subfamilies exemplify that localization 

prediction, combined with other in silico analyses and experimental observations from 
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model organisms, is a powerful approach to investigate metabolic processes in a 

taxonomically comprehensive manner including species where experimental data are poor. 

Large-scale integrated analysis also permits exploring mitochondria diversity, reflected by 

the different pathways and proteins they host.  

However, one caveat of such genome-wide protein screens is that they are based on 

the identification of orthologs. As mentioned in the introduction, the function of missing 

subfamilies could be present in the species, performed by a protein of unrecognizably low 

sequence similarity, or by another non-homologous protein. However, this problem can 

sometimes be alleviated by carefully investigating the taxonomic distribution of 

subfamilies. For example, the IBD and ACADS are absent in ascomycetes. But more 

detailed inspection indicated that ACDSB in these species also functions as IBD and 

ACADS (a hypothesis that can be easily tested experimentally). Therefore, the apparent 

absence of orthologs should be treated with caution, and may require additional analyses to 

confirm the absence of function. 

 

4 Factors that influence localization prediction accuracy 

Being fundamental to the analysis of organelle biology, localization prediction must be 

accurate. Yet, in silico localization prediction methods are sensitive to many factors, such 

as the training data, the choice of sequence features, and computational methods. All these 

factors need to be considered in order to develop an effective localization predictor. 
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4.1 The influence of training data 

We observed that the scheme trained with full-length sequences does not perform well 

for short fragments of the same sequence such as ESTs. This problem raises concern, as not 

only the number of ESTs is growing exponentially, but the sequence reads get shorter, due 

to the new, massively parallel sequencing technology. Developing effective methods to 

analyze short sequence fragments has become more urgent than ever. And for that, fine-

tuning of prediction schemes for different data sets is of prime importance.  

ESTs data are available for many more species than are genome sequences. In the 

context of my thesis, I developed a new tool TESTLoc to infer mitochondrial proteins from 

ESTs. As a proof of principle, we show that localization prediction based on ESTs is 

feasible, but the prediction scheme must be well adjusted to the data. 

 

4.2 The influence of sequence features 

The choice of sequence features revealed to be crucial, especially for the localization 

prediction based on ESTs. Since we did not know in advance which sequence feature 

would perform well, we experimented with more than 40 different features, and observed 

that the accuracy of the corresponding prediction schemes vary drastically.   

Experimenting with the features also led to the discovery that the prediction based on 

the frequency of four-amino-acid words (4-mers) performed best, suggesting that certain 

localization signals may be captured by such words. However, a preliminary survey did not 
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find overrepresented 4-mers for the proteins from different locations, so that the reason for 

the good performance is currently unknown.  

 

4.3 The influence of computational methods 

The choice of the computation method, here the machine learning approach, also affects 

accuracy to a certain degree, as each method has its intrinsic advantages and limitations. 

For example, SVM is the most frequently used approach in localization prediction, for its 

ability to deal efficiently with large number of features, the control of over-fitting, and its 

robustness against class imbalance. But it is a ‘black-box’ procedure, and the biological 

reasons behind the prediction are difficult to extract. In contrast, decision trees are more 

transparent and generate biological interpretable rules that can be assessed by biologists. 

But it suffers much from class imbalance and biases its prediction towards the larger 

classes while sacrificing the accuracy of smaller ones.  

There is no globally optimal machine learning approach, and the choice of learning 

scheme depends on the practical situation. When the human readability of the prediction 

procedure is important, such as in the case of many medical diagnoses, decision trees and 

KNN are good choices, because their decision-making procedure is easily understandable. 

If the input data is high-dimensional discrete, and neither the training time nor the human 

readability of the result is important, then ANN is the approach to consider. Here, we chose 

decision trees in one project and SVM in another. When integrating available localization 

prediction tools, we used decision tree, because it allowed to see which tool was selected 
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and how the various tools were integrated. For localization prediction based on ESTs, we 

employed SVM to save the computation time due to the large quantity of data and number 

of sequence features to experiment with.  

 

Perspectives 

The methodology and results from our work provide the basis for future investigations in 

several directions.  

One aspect to pursue further addresses subcellular localization prediction for EST-

derived peptides. We have shown that our method works well for plant data. It would be 

worthwhile to build EST-based localization predictors for other defined taxonomical 

groups. Currently, this is possible for animals and fungi, where large-scale ESTs and 

protein data sets are available with well defined localization information.       

Another interesting future project would be to combine localization prediction with 

other data, such as expression patterns deduced from microarrays or EST sequences. This 

would allow to define the localizome (localization of each protein in the proteome, Kumar, 

Agarwal et al. 2002) in the cell. It is well documented that the composition of the 

mitochondrial proteome is dynamic, varying in different cell types and under different 

physiological conditions or developmental stages (Mootha, Bunkenborg et al. 2003). 

Changes of the mitochondrial proteome are also associated with many human diseases, in 

particular cancer (Maximo, Lima et al. 2009). Localization predictions combined with gene 
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expression pattern would reveal such dynamics, which could be used to track the change of 

mitochondria caused by or leading to abnormal cell conditions. 

A third question that should be followed up is the taxonomic broad study of beta 

oxidation. Our study emphasizes the importance of investigating mitochondrial beta 

oxidation across a wider range of taxonomic groups. This will clarify the distribution of 

fatty acid degradation between mitochondria or peroxisomes, as well as track the carbon 

flux between the two organelles. Two groups of eukaryotes are of special interest: animal 

parasites and primitive eukaryotes. Studies in animal parasites, which often depend on fatty 

acids from their host, could lead to new treatment strategies and drug targets. Analyses of 

little derived eukaryotes will help to reconstruct the evolutionary history of this pathway.  

Finally it would be worthwhile to study the enzymatics of ACAD proteins. The 

subfamily assignment and phylogenetic analysis presented in Chapter 3 have identified a 

pool of orthologs for each ACAD subfamily. This information is most valuable for 

inferring the highly conserved residues in each subfamily, which should be functionally 

and/or structurally important. Three-dimensional structures of several human ACAD 

enzymes are available. Mapping the conserved residues onto these structures will shed light 

on the enzymatic mechanism of ACAD proteins, and serve as a guide for the design of new 

experiments such as mutagenesis of these residues to see how the function or structure of 

the corresponding ACAD protein changes. Furthermore, comparisons of conserved residues 

will help to highlight the structural differences among subfamilies, which in turn will be 

instrumental to reveal the mechanism underlying the substrate preference. 
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In sum, in silico analysis of mitochondrial proteins, combined with the formulation 

of working hypotheses and guided experimental validation, is a powerful strategy for 

advancing our knowledge of mitochondrial biology.    
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