
Université de Montréal

AURA: A Hybrid Approach to Identify
Framework Evolution

par
Wei Wu

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en informatique

Décembre, 2009

c⃝ Wei Wu, 2009.

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

AURA: A Hybrid Approach to Identify
Framework Evolution

présenté par:

Wei Wu

a été évalué par un jury composé des personnes suivantes:

Houari A. Sahraoui, président-rapporteur
Yann-Gaël Guéhéneuc, directeur de recherche
Marc Feeley, membre du jury

Mémoire accepté le: .

RÉSUMÉ

Les cadriciels et les bibliothèques sont indispensables aux systèmes logiciels d’aujour-

d’hui. Quand ils évoluent, il est souvent fastidieux et coûteux pour les développeurs de

faire la mise à jour de leur code.

Par conséquent, des approches ont été proposées pour aider les développeurs à migrer

leur code. Généralement, ces approches ne peuvent identifier automatiquement les règles

de modification une-remplacée-par-plusieurs méthodes et plusieurs-remplacées-par-une

méthode. De plus, elles font souvent un compromis entre rappel et précision dans leur

résultats en utilisant un ou plusieurs seuils expérimentaux.

Nous présentons AURA (AUtomatic change Rule Assistant), une nouvelle approche

hybride qui combine call dependency analysis et text similarity analysis pour surmonter

ces limitations. Nous avons implanté AURA en Java et comparé ses résultats sur cinq

cadriciels avec trois approches précédentes par Dagenais et Robillard, M. Kim et al., et

Schäfer et al.. Les résultats de cette comparaison montrent que, en moyenne, le rappel

de AURA est 53,07% plus que celui des autre approches avec une précision similaire

(0,10% en moins).

Mots clés: évolution de logiciel, call dependency analysis, text similarity analysis,

étude empirique.

ABSTRACT

Software frameworks and libraries are indispensable to today’s software systems. As

they evolve, it is often time-consuming for developers to keep their code up-to-date.

Approaches have been proposed to facilitate this. Usually, these approaches cannot

automatically identify change rules for one-replaced-by-many and many-replaced-by-

one methods, and they trade off recall for higher precision using one or more experimentally-

evaluated thresholds.

We introduce AURA (AUtomatic change Rule Assistant), a novel hybrid approach

that combines call dependency and text similarity analyses to overcome these limitations.

We implement it in a Java system and compare it on five frameworks with three previous

approaches by Dagenais and Robillard, M. Kim et al., and Schäfer et al. The comparison

shows that, on average, the recall of AURA is 53.07% higher while its precision is similar

(0.10% lower).

Keywords: software evolution, call dependency analysis, text similarity analy-

sis, empirical study.

CONTENTS

RÉSUMÉ . iii

ABSTRACT . iv

CONTENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ABBREVIATIONS . x

NOTATION . xi

DEDICATION . xii

ACKNOWLEDGMENTS . xiii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: MOTIVATING EXAMPLES 4

2.1 Multi-iteration Algorithm . 4

2.2 One-to-many Change Rules . 5

2.3 Many-to-one Change Rules . 6

2.4 Simply-deleted Change Rules . 7

CHAPTER 3: RELATED WORK . 8

3.1 Survey of Framework Evolution Identification Approaches 8

3.1.1 Capturing API Updates . 8

3.1.2 Matching Techniques . 8

3.1.3 Many-to-one and one-to-many 9

3.1.4 Simply Deleted . 9

vi

3.1.5 Automatic and Thresholds . 10

3.1.6 Types of Changes . 10

3.2 Three Benchmark Approaches . 10

3.2.1 SemDiff . 11

3.2.2 Approach of Kim et al. 14

3.2.3 Approach of Schäfer et al. 21

3.3 Summary . 25

CHAPTER 4: OUR APPROACH: AURA 29

4.1 Background . 29

4.2 Algorithm . 31

CHAPTER 5: IMPLEMENTATION OF AURA 36

5.1 AURA Data Model . 36

5.2 AURA Data Model Builder . 38

5.3 AURA Rule Builder . 39

5.4 AURA Rule Model . 39

CHAPTER 6: EVALUATION OF AURA 41

6.1 Evaluation Design . 41

6.2 Hypothesis and Performance Indicators 41

6.3 Comparison on the Medium-size Systems 43

6.3.1 Comparison with M. Kim et al.’s Approach 43

6.3.2 Comparison with Schäfer et al.’s Approach 45

6.4 Comparison on a Large-size System 45

6.5 Comparison without Simply-deleted Methods 46

6.6 Performance . 47

6.7 Threats to Validity . 47

CHAPTER 7: DISCUSSION OF AURA 49

7.1 Strengths . 49

vii

7.1.1 Higher Recall and Comparable Precision 49

7.1.2 Many-to-one, One-to-many, Simply-deleted Rules 50

7.1.3 Threshold . 50

7.2 Limitations . 51

CHAPTER 8: CONCLUSION AND FUTURE WORK 52

BIBLIOGRAPHY . 53

LIST OF TABLES

3.1 Feature Comparison . 26

3.2 Transformations . 27

3.3 Candidate Rule Generation . 28

6.1 Subject Systems. 42

6.2 Comparison with Simply-deleted Change Rules 44

6.3 Evaluation of a sample of change rules on the large system. 44

6.4 Comparison without Simply-deleted Change Rules 47

LIST OF FIGURES

2.1 Example of many iterations . 5

2.2 Example of a one-to-many change rule 6

3.1 Evaluation Result of SemDiff . 13

3.2 Evaluation Result of the Approach of Kim et al. 19

3.3 Comparison of Total Number of Matches 20

3.4 Comparison of the Precision of Matches 20

3.5 List of Change Patterns . 22

3.6 Evaluation Result of the Approach of Schafer et al. 24

5.1 Diagram of AURA Implementation . 37

5.2 Diagram of AURA Data Model . 37

5.3 Diagram of AURA Data Model Builder 38

5.4 Diagram of AURA Rule Builder . 39

5.5 Diagram of AURA Rule Model . 40

LIST OF ABBREVIATIONS

API Application Programming Interface

AST Abstract Syntax Tree

AURA AUtomatic change Rule Assistant

DOM Document Object Model

FN False Negative

FP False Positive

JAXB Java Architecture for Xml Binding

JDT Java Development Tool

JFC Java Foundation Class

LCS Longest Common Subsequence

LD Levenshtein Distance

SAX Simple API for XML

UML Unified Modeling Language

XML eXtensible Markup Language

XSD XML Schema Definition

NOTATION

A 	 B A should be replaced by B

ALLKR(a) Set of Key Replacement methods which are called by NEW(a)

ALLN(t,a) How many times the Key Replacement method of

target method t are called in NEW(a)

CHCS(t) Set of Co-replacement methods of target method t with

Highest Confidence value

CRMS(t) Candidate Replacement Method Set of target method t

CV(t,c) Confidence Value of candidate replacement method c to target method t

HCS(t) Candidate replacement method set of target method t with

Highest Confidence value

KR(t) Key Replacement method of target method t

KAS(t) Set of Anchors which call Key replacement method of target method t

m1 → m2 Method m1 calls method m2

m1 9 m2 Method m1 does not call method m2

NEW(a) Anchor method a in the NEW release of a program

OLD(a) Anchor method a in the OLD release of a program

Sa Set of anchors

Sgcrm Set of global candidate replacement methods

Stm Set of target methods

Stmca Set of target methods which are called by at least one anchor

Stmuca Set of target methods which are not called by any anchor

[a,b] A match in which method a is replaced by method b

|S| The cardinality of a set S

∆P(A,B) The difference in precision of two approaches A and B

∆R(A,B) The difference in recall of two approaches A and B

To My Family.

ACKNOWLEDGMENTS

I would like to thank my supervisor Yann-Gaël Guéhéneuc. His expertise, encour-

agement and support helped me to overcome the difficulties that I met while carrying out

this work. I really enjoyed working with him.

I would like to thank Giuliano Antoniol, Miryung Kim, Barthélémy Dagenais and

Martin P. Robillard for their valuable advices and comments on this work. I also express

my gratitude to Miryung Kim, Barthélémy Dagenais and Thorsten Schäfer for their gen-

erosities of sharing their experimental results.

I would like to thank the members of my thesis committee: Houari A. Sahraoui,

Yann-Gaël Guéhéneuc and Marc Feeley. I sincerely appreciate their time, comments

and advices.

I would like to thank Ptidej team, GEODES Lab., Soccer Lab., and everybody who

helped me during my study and research at Université de Montréal. Without their help,

I could not have such a wonderful experience here.

Finally, I want to thank my family. Their support and patience are essential to me.

This work has been partly funded by the NSERC Research Chairs in Software Change

and Evolution and in Software Patterns and Patterns of Software.

CHAPTER 1

INTRODUCTION: FRAMEWORK EVOLUTION IDENTIFICATION

Software frameworks1 and libraries are widely used in software development for

cost reduction. They evolve constantly to fix bugs and meet new requirements. In the-

ory, the Application Programming Interface (API) of the new release of a framework

should be backward-compatible with its previous releases, so that programs linked2

to the framework continue to work with the new release. In practice, the API syn-

tax and semantics change [3, 8, 25]. For example, from JHotDraw 5.2 to 5.3, method

CH.ifa.draw.figures.LineConnection.end() was replaced by LineCon

nection.getEndConnector(); such change may have direct consequences on

a program using the JHotDraw framework, such as compile errors, or indirect conse-

quences, such as runtime errors if invoking a deleted method using reflection.

To prevent backward-compatibility problems, developers may delay or avoid using

a new release. Yet, if they want to benefit from new features or security patches, they

must evolve their programs. This evolution process often requires a lot of effort because

developers must dig into the documents and/or source code of the new and previous

releases to understand their differences and to make their programs compatible with the

new release.

Consequently, many approaches have been developed to ease this evolution process

and reduce the developers’ effort. Some require that the framework developers do ad-

ditional work, such as providing explicit change rules with annotations [4], or that they

record API updates to the framework. [10, 15, 18].

To reduce the framework developers’ involvement, some approaches automatically

identify change rules that describe a matching between target methods, i.e., methods

existing in the old release but not in the new one, and replacement methods in the new

release [2, 6, 7, 9, 11, 14, 17, 19, 20, 23, 24, 26, 28].
1Without loss of generality, we use the term “framework” to mean both frameworks and libraries.
2We refer readers to [13] for a discussion on the links between frameworks and programs.

2

However, framework developers may not be willing to build change rules manually

or use specific tools. Also, some previous approaches [6, 24] cannot detect change rules

for target methods not used within the previous releases of the framework and program.

Some [19] cannot identify replacement methods if the names of the old and new releases

are not similar enough. Still, others [6, 14, 19, 20, 24, 28] require context-dependent

thresholds which are chosen through experimental evaluations and may not apply in

different contexts.

Furthermore, no existing approaches can automatically handle one-replaced-by-many

(“one-to-many” in the following) or many-replaced-by-one (“many-to-one”) change rules

and explicitly identify target methods that are simply-deleted, i.e., target methods with

no replacement methods in the new release. It is important to identify these one-to-

many and many-to-one change rules, because they can guide developers towards new

functionalities in the new release. Making simply-deleted methods explicit can release

developers from searching their replacements manually.

In particular, developers should be provided with as many relevant change rules as

possible to save their effort to identify appropriate rules from a potentially very large

code base. Thus, an approach should have the maximum recall [5] without decreasing

its precision [5]. Indeed, it is easier for a developer to discard an inappropriate change

rule among a couple of hundred rules than to identify an appropriate change rule among

thousands of possible method pairs.

Consequently, we propose a novel hybrid language- and context-independent ap-

proach, AURA (AUtomatic change Rule Assistant), that combines the advantages and

overcomes the limitations of previous approaches:

1. It increases recall by combining call dependency and text similarity analyses in a

multi-iteration algorithm.

2. It automatically adapts to different frameworks by not using any experimentally-

evaluated threshold.

3. It automatically generates one-to-many, many-to-one, and simply-deleted change

rules.

3

Using a detailed evaluation on four medium-size real-world systems, we show that

the percentage of one-to-many and many-to-one change rules covers 8.08% of the total

number of target methods. Moreover, the results of the evaluation show that the com-

bination of call dependency and text similarity analyses into a multi-iteration algorithm

improves, on average, recall by 53.07% in comparison to previous approaches with a

slight decrease of 0.10% in precision. In our evaluation, we also apply AURA to Eclipse

and compare its results with those of SemDiff developed by Dagenais and Robillard [6].

We show that the approximate precision of AURA is 92.86% while SemDiff’s is up to

100.00%.

A paper based on part of this work has been accepted for publication on the 32nd

International Conference on Software Engineering (ICSE 2010).

In the remainder of this paper, Chapter 2 presents motivating examples that illustrate

the limitations of previous approaches. Chapter 3 discusses related work. Chapter 4

and 5 describe our approach and its implementation while Chapter 6 evaluates it on five

real-world systems. Chapter 7 discusses open issues and Chapter 8 concludes this paper

and discusses future work.

CHAPTER 2

MOTIVATING EXAMPLES OF FRAMEWORK EVOLUTION

IDENTIFICATION

We illustrate the advantages of AURA with the following motivating examples.

2.1 Multi-iteration Algorithm

Let us assume that a developer must adapt a Client program from using Eclipse

JDT 3.1 to its 3.3 release, as shown in Figure 2.1. The method Indents.computeIn

dentLength(...) was called in 3.1. However this method on longer exists in 3.3.

By manual studying their source code, the following change rules can be identified:

(1) Indents.getChangeIndentEdits(...)

	 IndentManipulation.getChangeIndentEdits(...)

(2) Indents.computeIndentLength(...)

	 IndentManipulation.indexOfIndent(...)

where 	 means “should be replaced with”. To save the effort of manual analysis, the

developer would like to obtain them by using some automatic approach.

Previous approaches using either text similarity or call dependency analyses could

provide the developer with the first change rule but would not readily suggest the second

one, because the method signatures are not similar enough and the callers of the methods

changed as well. AURA would report the two change rules above.

With its multi-iteration algorithm, AURA detects that Indents.getChangeIn

dentEdits(...) is replaced by IndentManipulation.getChangeIndent

Edits(...) in the first iteration. Then, in the following iteration, using the first

change rule, AURA also reports that Indents.computeIndentLength(...)

is replaced by IndentManipulation.indexOfIndent(...). Consequently,

5

// Version 3.1
package org.eclipse.jdt.internal.core.dom.rewrite;
public class SourceModifier implements ISourceModifier {

public ReplaceEdit[getModifications(String source){
...
return Indents.getChangeIndentEdits(...);

}
}
package org.eclipse.jdt.internal.core.dom.rewrite;
class Indents {

void getChangeIndentEdits(...) {
...
int length= Indents.computeIndentLength(...);
...

}
}

// Version 3.3
package org.eclipse.jdt.internal.core.dom.rewrite;
public class SourceModifier implements ISourceModifier {

public ReplaceEdit[getModifications(String source){
...
return IndentManipulation(.getChangeIndentEdits(...);

}
}
package org.eclipse.jdt.core.formatter;
class IndentManipulation {

void getChangeIndentEdits(...) {
...
int length= this.indexOfIndent(...);
...

}
}

Figure 2.1: Example of many iterations

AURA can identify more change rules than previous approaches in a situation where a

set of methods are renamed and–or moved.

2.2 One-to-many Change Rules

Let us assume that a developer must adapt a program built on top of JHotDraw 5.2

to its 5.3 release. The program adds some new commands to the framework. For the

sake of simplicity, let us use CutCommand in Figure 2.2. Syntactically, this command

would not compile with the new release because the expected signature of commands

has changed. Semantically, release 5.3 introduces an undo–redo mechanism that should

be used by the new command if appropriate. Therefore, the developer would expect to

obtain the following change rule automatically, which advices the developer to consider

making the command undoable.

6

// Version 5.2
protected JMenu createEditMenu({

...
menu.add(new CutCommand(‘‘Cut’’, view()), new MenuShortcut(’x’));
...

}

// Version 5.3
protected JMenu createEditMenu({

...
menu.add(new UndoableCommand(

new CutCommand(‘‘Cut’’, this)), new MenuShortcut(’x’));
...

}

Figure 2.2: Example of a one-to-many change rule

(1) CutCommand.CutCommand(DrawingView...)

	 CutCommand.CutCommand(Alignment, DrawingEditor)

and UndoableCommand.UndoableCommand(Command)

Previous approaches, using call dependency or text similarity analyses, would only

report a change rule from CutCommand.CutCommand(DrawingView...) to

CutCommand.CutCommand(Alignment, DrawingEditor), i.e., a rule fixing

the syntactic difference. They would not help the developer in spotting the new feature

provided by the framework with its new feature of undoable commands.

AURA reports a one-to-many change rule that suggests replacing the target method

CutCommand.CutCommand(DrawingView...) with calls to the replacement

methods CutCommand.CutCommand(Alignment,DrawingEditor) and Un

doableCommand.UndoableCommand(Command). Figure 2.2 illustrates the new

implementation where an UndoableCommand now encapsulates CutCommand.

2.3 Many-to-one Change Rules

Let us assume that a developer must adapt a program built on top of JEdit 4.1 to its 4.2

release and the program called methods DirectoryMenu.DirectoryMenu(...),

MarkersMenu.MarkersMenu() and RecentDirectoriesMenu.RecentDi

7

rectoriesMenu(), which are replaced by EnhancedMenu.EnhancedMenu

(...)in the release 4.2.

With previous approaches that generate one-to-one change rules, the developer could

know that DirectoryMenu.DirectoryMenu(...) is replaced by Enhanced

Menu.EnhancedMenu(...), but she would need to find the other two methods man-

ually. Some previous approaches might produce erroneous change rules for the other two

target methods due to their high textual similarity with other irrelevant methods.

With AURA, the developer will be informed that the three methods are replaced by

EnhancedMenu.EnhancedMenu(...), which frees her from manually searching

for replacements or relying on incorrect suggestions.

2.4 Simply-deleted Change Rules

Let us assume a developer who uses JFreeChart 0.9.11 and wants to upgrade her code

to the 0.9.12 release. She will get a compile error on method DefaultBoxAndWhisker

Dataset.createNumberArray(...) because this method does not exist any-

more. Therefore, she could expect an automatic approach to warn her by providing her

with the change rule (∅ is empty set):

(1) DefaultBoxAndWhiskerDataset

.createNumberArray(...)

	 ∅

Previous approaches could not help her because they do not generate simply-deleted

rules explicitly: they would not inform her whether the method has been simply deleted

or if the approach is just unable to find a replacement. Thus, the developers would have

to spend some time and effort to find that there is no proper replacement method.

AURA explicitly generates the change rule above, saving the developer’s efforts

clearing the uncertainty of the approach performing correctly or not.

CHAPTER 3

RELATED WORK

In this chapter, we give a survey about related works first, then introduce three of

them with more detailed information because we will compare with them in Chapter 6,

finally we summarize the limitations of existing works.

3.1 Survey of Framework Evolution Identification Approaches

Several approaches help developers evolve their programs when the frameworks that

they use change. We studied these approaches and identified eight features. Table 3.1

summarizes the different approaches according to their features and highlight the advan-

tages of AURA. In the following, we further define and discuss the different features and

approaches.

3.1.1 Capturing API Updates

Existing approaches of capturing API-level changes either require the framework de-

velopers’ efforts by manually specifying the change rules or by requiring them to use a

particular IDE to automatically record the refactorings performed. Chow and Notkin [4]

presented a method that requires the framework developers to provide change rules with

the new releases. CatchUP! [15] and JBuilder [18] record the refactoring operations in

one release and replay them in another. MolhadoRef [10] also employs a record-and-

replay technique for handling API-level changes in merging program versions. These

approaches are able to provide accurate change rules because of the framework develop-

ers’ involvement, which might not always be available.

3.1.2 Matching Techniques

Previous approaches use different code matching techniques to find change rules

between old and new releases. Dagenais and Robillard developed SemDiff [6], which

9

suggests adaptation to clients by analyzing how a framework adapts to its own changes.

Schäfer et al. [24] mined framework-usage change rules from already ported instanti-

ations. These two previous approaches compute support and confidence values on call

dependency analysis. Godfrey and Zou [14] presented a semi-automatic hybrid approach

to perform origin analysis using text similarity, metrics, and call dependency analyses.

S. Kim et al. [20] automated Godfrey and Zou’s approach. Diff-CatchUp developed by

Xing and Stroulia [29] analyses textual and structural similarities of Unified Modeling

Language (UML) logical design models to recognize API changes. M. Kim et al.’s [19]

approach leveraged systematic renaming patterns to match old APIs to new APIs.

3.1.3 Many-to-one and one-to-many

Godfrey and Zou [14] detected three cases of merging (Clone Elimination, Ser-

vice Consolidation, Pipeline Contraction) and three cases of splitting (Clone Introduc-

tion, Service Extraction, Pipeline Expansion). We extend merging/splitting to many-to-

one/one-to-many change rules. The difference between merging/splitting and many-to-

one/one-to-many change rules is that the former is limited to cases defined by Godfrey

and Zou [14], while the latter includes any case, e.g., new functionality. SemDiff [6] and

Diff-Catch-Up [29] are able to report many-to-one and one-to-many change rules but are

semi-automatic, i.e., developers must manually select correct replacements from a pro-

vided candidate list. M. Kim et al.’s approach [19] automatically reports many-to-one

rules.

3.1.4 Simply Deleted

Simply-deleted target methods have no replacement methods in the new release.

Semi-automatic approaches [6, 14, 29] and those that require framework developers’

involvement [4, 10, 15] are able to report simply-deleted rules. Automatic approaches

[19, 20, 24] do not report this type of change rule explicitly in their results.

10

3.1.5 Automatic and Thresholds

All automatic approaches [19, 20, 24], except record-and-replay ones, use thresholds

to keep a balance between precision and recall [5]. Typically, they use experimentally-

evaluated thresholds to filter out candidate replacement methods, thus potentially in-

creasing precision but decreasing recall.

3.1.6 Types of Changes

Schäfer et al. [24] classified changes between old and new releases into 12 change

patterns. We summarize them into three categories of change rules: (1) method rules: all

the targets and replacements of a change rule are methods; (2) field rules: all the targets

and replacements of a change rule can be methods or fields; (3) inheritance rules: the

inheritance relation changes. We report the types of changes found by each approach

and compare the results in Section 6.

3.2 Three Benchmark Approaches

In the following section, we illustrate in detail three existing approaches [6, 19, 24],

whose results will be compared against those of AURA in Chapter 6. The structure of

the illustration is organized in five parts:

1. Contributions

2. Main Matching Techniques

3. Algorithm

4. Evaluation

5. Conclusion

11

3.2.1 SemDiff

Dagenais and Robillard developed an recommendation system SemDiff [6] based on

call dependency analysis to suggest adaptations to client programs by analyzing how a

program adapts to is own changes.

3.2.1.1 Contributions

SemDiff brings three contributions: (1) a technique to automatically recommend

adaptive changes of non-trivial framework API evolution (users may need to manually

choose the right change from the recommendations), (2) the architecture of a complete

system to track framework evolution and to infer non-trivial changes, and (3) an experi-

ment to evaluate their result on Eclipse.

3.2.1.2 Main Matching Techniques

The main matching technique of SemDiff is call dependency analysis. They differen-

tiate the outgoing calls of the same methods of two releases of a program. First, for each

deleted outgoing call, they build a change set of added outgoing calls. Then, they use

Confidence Value to rank the methods in the change set to recommend adaptive changes.

For a method m deleted from the old release and its potential replacement in the new

release n: Confidence Value is defined as:

12

Rem(m) = {x | x is a method that removed a call to m}

Add(m) = {x | x is a method that added a call to m}

Callees(m) = {x | m calls x}

Callers(m) = {x | x calls m}

Potential(m) =
∪

x∈Rem(m)

Callees(x)

Support(m,n) = |Rem(m)∩Add(n)|

Confidence(m,n) =
Support(m,n)

Max(
∪

c∈Potential(m)Support(m,c))

3.2.1.3 Algorithm

The main steps of the algorithm of SemDiff are:

Step 1: Differentiate the outgoing calls of the same methods existing in both old

and new releases of a program. For each deleted outgoing call m, build a potential

replacement set Pm.

Step 2: Rank the methods in Pm by their Confidence Values.

Step 3: Filter Pm. To reduce the percentage of false positives, they remove the el-

ements in Pm whose Confidence Values are lower than an experimentally-determined

threshold. They found that the value of 0.6 gives the best results.

Step 4: Remove spurious calls. An outgoing call m1 removed from one method in

the new release might be added to another method. In this case, there is no need to find a

replacement for m1, because it is still used. They defined such kind of calls as spurious

calls. They removed all methods of spurious calls in their results.

Because the input of SemDiff is the change sets of software repositories, some parts

of their algorithm, such as change chain detection and partial program analysis, are only

related to this special implementation. For more information on those parts, please refer

to their paper [6].

13

3.2.1.4 Evaluation

They use the number of Errors in Scope and the number of Errors Solved by SemDiff

and Refactoring Crawler (RC) [9] to evaluate their result. Errors in Scope are the un-

solved and deprecated method calls while compiling client programs of the old release

with the new release of a framework. Errors Solved are the compile errors that SemDiff

or RC help solve by providing the correct recommendations. If the correct replacement

method of a broken method call is one of the top three recommendations of SemDiff,

they consider that it is a relevant recommendation.

They choose two modules of Eclipse Java Development Tool (JDT), org.eclipse.

jdt.core and org.eclipse.jdt.ui, from version 3.1 to 3.3 as target framework

systems; and Mylyn version 0.5 to 2.0, JBossIDE version 1.5 to 2.01, and jdt.debug.

ui version 3.1 to 3.3, as client programs. The evaluation result is shown in Figure 3.1,

which is Table 2 in their paper [6].

Figure 3.1: Evaluation Result of SemDiff

In the result of jdt.bebug.ui, there are two numbers in Errors in Scope column,

because within 19 Errors in Scope, five of them are replaced by the methods outside

the target systems. The five broken methods are excluded in the evaluation result. On

average, SemDiff provides relevant recommendations for 89% of broken method calls

of their target systems.

3.2.1.5 Conclusion

SemDiff suggests adaptations to client programs to the new release of a framework

by analyzing how the framework adapts to its own changes. The evaluation on Eclipse
1Confirmed by Dagenais that it was version 1.5 to 2.0, not 1.1-1.5.

14

JDT 3.1 to 3.3 shows that SemDiff can recommend more correct replacement to repair

broken client programs than Refactoring Crawler.

3.2.2 Approach of Kim et al.

Kim et al. (KIM) developed an approach [19] based on text similarity analysis, which

automatically detects structural changes between two releases of a program and presents

them as first-order relational logic rules.

3.2.2.1 Contributions

The approach of KIM brings two contributions. First, it automatically infers possible

changes at or above method level, then uses them to generate matches, i.e., method level

change rules. Second, it summarizes its result in a form of first-order relational logic

rules. For example, if class A in the old release of a program is renamed to B and method

m() of A is moved to class C in the new release. Their approach will generate a change

rule such as:

for all x in A.*(*)

except{A.m()}

classReplace(x,A,B)

3.2.2.2 Main Matching Techniques

The matching technique that KIM used in their work is text similarity analysis. Given

two releases of a program O and N, first, they extracted their method signature sets Mo

and Mn respectively. Then, for each method m in Mo, they used tokenized Longest

Common Subsequence (LCS) to select the most similar replacement method in Mn by

breaking them into tokens starting with uppercase letters.

3.2.2.3 Algorithm

3.2.2.3.1 Definitions and Predicates: The algorithm of the approach of KIM is a

rule-based inference process. The following definitions and predicates are used to illus-

15

trate it:

Change Rule: a quantifier and a scope to which a transformation applies.

for all x in chart.*Plot.get*Range()

except {chart.MarkerPlot.getVerticalRange}

argAppend(x, [ValueAxis]))

Quantifier: an element of the scope.

Scope: a set of source code elements, such as packages, classes, or methods. A scope

can be presented as scope− exceptions, where exceptions is a subset of the scope.

Transformation: nine types of transformation were defined. Please see Table 3.2.

Candidate Rule: similar to change rule. The only difference between them is that a

candidate rule may include one or more transformations, while a change rule only has a

single transformation.

Match: a method-level change rule. If method a() is replaced by method b(), the

match is presented as [a,b]. Many matches can be covered by one change rule.

Given a domain D = Mo −Mn, a codomain C = Mn, a set of candidate rules CR, R a

subset of CR, M a set of matches covered by R, an exception threshold 0 ≤ ε ≤ 1 and a

candidate rule r ∈ CR: for all x in S, t1(x)∧ ·· · ∧ ti(x), where S is a scope and ti(x) is a

transformation applied on x:

16

match(r, [a,b]) = a ∈ S ∧ t1(· · · ti(a)) = b ∧ r covers [a,b]

conflict([a,b], [a′,b′]) = a ≡ a′ ∧ b ̸= b′

positive(r, [a,b]) = match(r, [a,b]) ∧ [a,b] ∈ {D×C} ∧

¬conflict([a,b], [a′,b′]) | ∀ [a′,b′] ∈ M

negative(r, [a,b]) = ¬positive(r, [a,b])

P = {[a,b] | positive(r, [a,b])}

E = {[a,b] | negative(r, [a,b])}

valid(r) =
|P|

|P| + |E|
> (1− ε)

selected(r) = r | ∀r ∈CR, valid(r) ∧ r maximizes |M∪P|

Their algorithm includes four procedures: (1) generating seed matches, (2) generat-

ing candidate rules (3) filtering candidate rules, and (4) generating change rules.

3.2.2.3.2 Generating Seed Matches: First, for each method m ∈ Mo−Mn, KIM find

the most similar substitute s ∈ Mn−Mo by computing tokenized LCS. Then, they use an

empirical threshold γ to select seed matches, i.e., the tokenized LCS between m and s

must be greater than γ . They experimentally determined that γ in the range of 0.65-0.70

(65%-70% tokens are the same) gives good result. Seed matches are not necessarily

correct matches. The Procedure 3 will filter them.

3.2.2.3.3 Generating Candidate Rules: For each seed match [a,b] , KIM build a

set of candidate rules CR. First, they find the set of transformations T = {t1, · · · , ti}
where t1(· · · ti(a)) = b. Second, they generate the token set of the signature T K of a in

which each token starts with a uppercase letter. Third, they replace all tokens in each

subset of T K with wild-card operator ∗. Fourth, they create candidate scope expressions

by replacing the corresponding tokens in T K with each wild-card-operatorized subset.

Therefore, the set of candidate scope expressions CSE of a includes 2n elements, where

17

n is the number of tokens of a. Last, they generate the set of candidate rules CR by

combining each candidate scope expression with each subset of T . Each candidate rule

is a generalization of a seed match.

An example is shown in Talbe 3.3.

3.2.2.3.4 Filtering Candidate Rules: In this procedure, KIM filter CR to select a

subset that covers the largest number of matches. The selected candidate rules may add

a limited number of exceptions to their scope.

First, R the selected candidate rule set and M the match set, that R covers, are set

to /0. Then, they iterate the following operations: ∀ r | selected(r), they update CR :=

CR−{r}, R := R∪{(r,P,E)} and M := M∪P. Here, P and E are the set of positive and

negative matches covered by r respectively. If no r ∈ CR adds more matches to M, the

iteration terminates.

3.2.2.3.5 Generating Change Rules: The difference between a candidate rule and a

change rule is that the former may have more than one transformation while the latter

only has a single one. To convert selected candidate rules to change rules, for each type

of transformations t, KIM combine the scope expressions of all selected candidate rules

that contain t, as the scope expression of the new change rule. They also add the negative

matches of the selected candidate change rules to the exception of the new change rule,

if they do not hold for t.

3.2.2.4 Evaluation

3.2.2.4.1 Indicator: KIM use recall and precision [5] to evaluate the result of their

approach. Because the set relavant rules is a priori unknow in Equation 6.1, they build

a set of correct matches C to simulate it, where C is defined as:

C = Ckim ∪Cother

18

where Ckim and Cother are the manually-confirmed correct match sets found by their

approach and that by others.

Consequently, in the evaluation of their approach, the recall and precision are defined

as:

Recall =
|M∩C|
|C|

Precision =
|M∩C|
|M|

where M is the match set found by their approach.

Because they present the result of their approach in two forms (change rules and

matches), they also use M/R ratio as an indicator to present the conciseness of their

change rules. It is defined as:

M/R ratio =
|M|

|Rules|

where Rules is the set of change rules that their approach find. Higher M/R ratio means

that one change rule can cover more matches on average, i.e., the result is more concise.

3.2.2.4.2 Result: They analyzed several versions of three open source projects: JFree-

Chart, JHotDraw, and JEdit with γ = 0.7 and ε = 0.34. The results are shown in Figure

3.2, which is Table 3 in their paper [19]:

For all the three projects, the top 20% of the change rules covers over 55% of the

matches, and the top 40% of the change rules covers over 70% of the matches.

3.2.2.4.3 Comparison with Other Approaches: KIM compare their approach with

the approaches of Xing and Stroulia (XS) [27], Weißgerber and Diehl (WD) [26]. They

also choose an origin analysis tool developped by S. Kim et al. (KPW) [20] as another

reference approach. KIM use γ = 0.65 and ε = 0.34 to analyze the target projects in the

comparison.

First, they compare the total numbers of matches detected by those approaches and

19

Figure 3.2: Evaluation Result of the Approach of Kim et al.

20

compute the improvement of the approach of KIM. Because they also present their result

in first-order relational logic change rules, KIM compute the decrease in size of the

presentation of change rules as well. The comparison result is shown in Figure 3.3,

which is Table 4 in their paper [19].

Figure 3.3: Comparison of Total Number of Matches

Second, KIM compare the precison of three sets with the other approaches: (1)

KIM ∩Other, (2) KIM −Other, (3) Other −KIM. The result is shown in Figure 3.4,

which is Table 5 in their paper [19].

Figure 3.4: Comparison of the Precision of Matches

Because some matches generated by the approach of WD are redundant, KIM com-

pare the precision in two ways: RCAll (with redundancy) and RCBest (without redun-

21

dancy). For example, between two releases, class A was renamed to B, the approach of

WD will generate rename A to B and move all methods of A to B. In the comparison

of RCAll, all matches are considered, while redundant matches are excluded from the

comparison of RCBest.

3.2.2.5 Conclusion

The approach of Kim et al. automatically detects structural changes of different

releases of programs and represent them as a set of first-order relational logic change

rules, which can reduce the size of presentation of their result. By comparing their

approach with three other approaches, they found that their approach can identify more

matches with higher precision.

3.2.3 Approach of Schäfer et al.

Schäfer et al. (SCF) developped an approach [24] based on call dependency analysis

to mine framework usage change rules from already ported instantiations, i.e., the code

that uses the framework, such as its client programs or its test cases.

3.2.3.1 Contributions

The contribution of the approach of SCF is that it shows that analyzing instantiation

code and association rule mining can find a substantial number of usage changes caused

by conceptual changes of the framework rather than refactorings.

3.2.3.2 Main Matching Techniques

The matching technique used by SCF is association rule mining [1], which use sup-

port and confidence (defined later) to measure the credibility of an association of two

software elements of two releases of a program. If the software elements are methods,

call dependency analysis is needed to compute support and confidence. Because most of

change rules that their approach generates are method level change rules (92% for Struts

22

and 74% for JHotDraw), we can say their main matching technique is call dependency

analysis.

To apply association rule mining to detect change rules of software frameworks,

they define transaction as a combination of facts from same context and belonging to

the same preclassified change patterns. Here, same context means same class or method

declaration and the list of the change patterns is show in Figure 3.5, which is Table 2 in

their paper [24].

Figure 3.5: List of Change Patterns

For example, “method A.a() calls method C.m()” cannot be in the same transaction

with “method B.b() calls method C.n()”, because they are not in the same context; “class

A accesses field C. f ” and “class A implements interface I ”are not allowed in the same

transaction either, because they do not belong to the same pattern.

Given a transaction t ∈ T , T is the set of transactions with the same pattern as t’s,

fa and fc belong to the antecedent and the consequence of t respectively, support and

confidence of fa and fc can be computed as:

23

Ant(t, fa) = t has fa as antecedent

Con(t, fc) = t has fc as consequence

Support(fa, fc) = |{t | Ant(t, fa) ∧ Con(t, fc)}|

Confidence(fa, fc) =
Support(fa, fc)

|{t | Ant(t, fa)}|

3.2.3.3 Algorithm

The algorithm of the approach of SCF includes two parts: (1) generating transaction

sets, (2) mining change rules.

3.2.3.3.1 Generating transaction set: First, for each same context, e.g., same class

and method declarations, in both releases of a program, SCF build possible transactions

according to the change patterns listed in Figure 3.5. Then, they remove the transactions

whose antecedents and consequences are the same.

3.2.3.3.2 Mining change rules: Using the transaction set generated in the previous

part, SCF filter out the change rule candidates CRC(fa, fc) which is defined as:

CRC(fa, fc) = { fa, fc | Support(fa, fc)> γ ∧ Confidence(fa, fc)> ε}

Here, γ and ε are the threshold of support and confidence respectively.

If more than one change rule candidates have the same fa or fc, they use tokenized

Levenshtein Distance (LD) to find the most similar pair. Therefore, the change rules

detected by their approach are one-to-one.

3.2.3.4 Evaluation

With γ = 2 and ε = 0.33, SCF evaluated their approach on Eclipse UI 2.1.3 to 3.0,

JHotDraw 5.2 to 5.3 and Struts 1.1 to 1.2.4, they manually inspected the results and

24

compared them with Refactoring Crawler (RC) [9]. An overview of the results is shown

in Figure 3.6, which is the Table 7 in their paper [24]:

Figure 3.6: Evaluation Result of the Approach of Schafer et al.

SCF classify the change rules generated by their approach into three categories: (1)

changes caused by refactorings (ΣR), (2) conceptual changes (CC), and (3) false positives

(FP). The false negative (FN) column in the tables shows the number of change rules

found by RC, but not the approach of SCF.

The columns 2 to 8 in the table represent the change rules caused by refactorings.

The first number in those cells means the number of rules caused by corresponding

refactoring; the second number is the number of change rules caused by more than one

refactoring operations; the third number means the number of change rules detected by

RC. Because a change rules of the approach of SCF can be caused by more than one

refactoring operations, the sum of the first numbers of columns 2 to 8 of each row might

be greater than the corresponding ΣR.

3.2.3.5 Conclusion

In contrary to other approaches, the approach of Schäfer et al. analyzes instantiation

code, which often exists, to learn how to use the new release of frameworks. Combining

with association rule mining technique, their approach can find more change rules than

refactoring detecting tools with high precision.

25

3.3 Summary

AURA overcomes the following limitations of existing approaches:

• Text similarity-based approaches cannot detect replacement methods that do not

share similar textual names with their target methods.

• Call dependency-based approaches cannot detect replacement methods for target

methods that are not used in frameworks and linked programs.

• No approach can automatically detect many-to-one and one-to-many change rules.

• No approach detects and evaluates simply-deleted methods in their results.

• All automatic approaches except record-and-replay, use thresholds set through ex-

perimental evaluations, which may not apply in all contexts.

26

A
pp

ro
ac

he
s

Fe
at

ur
es

M
ai

n
O

ne
-t

o-
M

an
y-

Si
m

pl
y-

FD
I

M
at

ch
in

g
m

an
y

to
-o

ne
de

le
te

d
M

et
ho

ds
Fi

el
ds

In
he

ri
ta

nc
e

A
ut

o-
T

hr
e-

Te
ch

ni
qu

e
R

ul
es

R
ul

es
R

ul
es

R
el

at
io

ns
m

at
ic

sh
ol

ds
C

ho
w

et
al

.[
4]

Y
es

A
N

o
N

o
Y

es
Y

es
N

o
N

o
N

o
N

o
Se

m
D

iff
[6

]
N

o
C

D
Y

es
Y

es
Y

es
Y

es
N

o
N

o
N

o
Y

es
G

od
fr

ey
et

al
.[

14
]

N
o

T
S,

M
,a

nd
C

D
Y

es
Y

es
Y

es
Y

es
N

o
N

o
N

o
Y

es
C

at
ch

U
p!

[1
5]

Y
es

N
/A

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

N
o

M
.K

im
et

al
.[

19
]

N
o

T
S

N
o

Y
es

Y
es

Y
es

N
o

N
o

Y
es

Y
es

S.
K

im
et

al
.[

20
]

N
o

T
S,

M
,a

nd
C

D
N

o
N

o
N

o
Y

es
N

o
N

o
Y

es
Y

es
Sc

hä
fe

r
et

al
.[

24
]

N
o

C
D

N
o

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

D
iff

-C
at

ch
U

p
[2

9]
N

o
T

S
an

d
SS

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

A
U

R
A

N
o

C
D

an
d

T
S

Y
es

Y
es

Y
es

Y
es

N
o

N
o

Y
es

N
o

Ta
bl

e
3.

1:
Fe

at
ur

e
C

om
pa

ri
so

n.
(A

=
A

nn
ot

at
io

n,
C

D
=

C
al

l
D

ep
en

de
nc

y,
FD

I
=

Fr
am

ew
or

k
D

ev
el

op
er

In
vo

lv
em

en
t,

M
=

M
et

ri
cs

,N
/A

=
N

ot
A

pp
lic

ab
le

,T
S

=
Te

xt
Si

m
ila

ri
ty

,S
S

=
St

ru
ct

ur
al

Si
m

ila
ri

ty
)

27

Tr
an

sf
or

m
at

io
n

D
efi

ni
tio

n
pa

ck
ag

eR
ep

la
ce

(x
:M

et
ho

d,
f:

Te
xt

,t
:T

ex
t)

ch
an

ge
x′

s
pa

ck
ag

e
na

m
e

fr
om

f
to

t
cl

as
sR

ep
la

ce
(x

:M
et

ho
d,

f:
Te

xt
,t

:T
ex

t)
ch

an
ge

x′
s

cl
as

s
na

m
e

fr
om

f
to

t
pr

oc
ed

ur
eR

ep
la

ce
(x

:M
et

ho
d,

f:
Te

xt
,t

:T
ex

t)
ch

an
ge

x′
s

pr
oc

ed
ur

e
na

m
e

fr
om

f
to

t
re

tu
rn

R
ep

la
ce

(x
:M

et
ho

d,
f:

Te
xt

,t
:T

ex
t)

ch
an

ge
x′

s
re

tu
rn

na
m

e
fr

om
f

to
t

in
pu

tS
ig

na
tu

re
R

ep
la

ce
(x

:M
et

ho
d,

f:
Li

st
[T

ex
t]

,t
:L

is
t[

Te
xt

])
ch

an
ge

x′
s

in
pu

ta
rg

um
en

tl
is

tn
am

e
fr

om
f

to
t

ar
gR

ep
la

ce
(x

:M
et

ho
d,

f:
Te

xt
,t

:T
ex

t)
ch

an
ge

ar
gu

m
en

tt
yp

e
f

to
ti

n
x′

s
in

pu
ta

rg
um

en
tl

is
t

ar
gA

pp
en

d(
x:

M
et

ho
d,

t:
Li

st
[T

ex
t]

)
ap

pe
nd

th
e

ar
gu

m
en

tt
yp

e
lis

tt
to

x′
s

in
pu

ta
rg

um
en

tl
is

t
ar

gD
el

et
e(

x:
M

et
ho

d,
t:

Te
xt

)
de

le
te

ev
er

y
oc

cu
rr

en
ce

of
ty

pe
ti

n
x′

s
in

pu
ta

rg
um

en
tl

is
t

ty
pe

R
ep

la
ce

(x
:M

et
ho

d,
f:

Te
xt

,t
:T

ex
t)

ch
an

ge
ev

er
y

oc
cu

rr
en

ce
of

ty
pe

f
to

ti
n

x

Ta
bl

e
3.

2:
Tr

an
sf

or
m

at
io

ns

28

Seed Match [pOld.cOld.aMthd(), pNew.cNew.aMethod()]
T {packageReplace, classReplace}
T K {p, Old, c, Old, a, Method}
CSE {∗.∗ .∗ (), p∗ .∗ .∗ (), · · · , pOld.cOld.a∗ (), pOld.cOld.aMethod()}

CR

{for all x in ∗ .∗ .∗ ()
packageReplace(x,Old,New), · · · ,

for all x in pOld.cOld.aMethod()
classReplace(x,Old,New)
packageReplace(x,Old,New)}

Table 3.3: Candidate Rule Generation

CHAPTER 4

OUR APPROACH: AURA

Our approach is based on call-dependency and text-similarity analyses and a multi-

iteration algorithm. We choose call dependency and text similarity as the main matching

techniques of our hybrid approach for two reasons: previous approaches using these

analyses have good precision [6, 19, 24]; these techniques are compatible with each

other because they apply directly to source code.

According to previous approaches [6, 19, 24], we assume that a target method can

be deleted or replaced by one or more replacement methods and more than one tar-

get method can be replaced by the same replacement method. All replacement meth-

ods are taken from the candidate set of all methods existing in the new release of a

framework or belonging to other frameworks provided by the same vendor. We do not

consider methods from the frameworks of different vendors. For example, when we

analyze org.eclipse.jdt.core, the methods from other Eclipse plug-ins, such

as org.eclipse.jface, belong to the candidate replacement method set, but those

from Sun Java Foundation Classes (JFC) do not.

We include the methods from the frameworks provided by the same vendor only

because framework developers may move methods between their frameworks. This in-

clusion is a good trade-off between accuracy and performance, because a large candidate

set compromises performance but increases precision. After analyzing the results of the

four medium-size subject systems in the evaluation, we found that less than 1% of all

methods were replaced by those from the frameworks of other vendors.

4.1 Background

Call dependency analysis discovers the calls to the methods of frameworks from the

programs using them. These calls reflect the behavior of frameworks more accurately

than text similarity, in particular when detecting many-to-one and one-to-many change

30

rules.

To illustrate the call-dependency analysis used in our approach, let us define an an-

chor as either (1) a pair of methods with the same signature (including return type,

declaring module in which the methods are defined, name, and parameter lists) that exist

in both the old and new releases of the framework or (2) a pair of methods already iden-

tified as target and replacement methods. We also define two predicates for an anchor

a:

OLD(a) = the method of a in the old release

NEW(a) = the method of a in the new release

In the following, we note m1 → m2 if a method m1 calls a method m2 (9 if it does

not). We compute the confidence value (CV) for a given target method t and its candidate

replacement method c as:

CV(t,c) =
A(t,c)
A(t)

, with:

A(t) = |{ a | a is an anchor∧OLD(a)→ t }|

A(t,c) = |{ a | a ∈ A(t)∧NEW(a)→ c }|

The confidence value represents the call-dependency similarity of a target method and

its candidate replacement methods.

To compute the text similarity of two methods, we tokenize each method signature

as proposed by Lawrie et al. [21] by splitting them at upper-case letters and other legal

characters (except lower case letter and numbers), for example ‘_’ and ‘$’ in Java. Based

on the tokenized signatures, our text similarity algorithm computes the similarity of

two methods using first their signatures: (return types, declaring modules in which the

methods are defined, names, and parameter list), then their Levenshtein Distance (LD)

[22], and finally, their Longest Common Subsequence (LCS) [16]. When we compare

the text similarities of two candidate replacement methods to a target method, we first

compare their signature-level similarity. If they are different, we do not compute their

31

LD and LCS. We apply the same strategy to LD and LCS.

We combine LD and LCS to compare the text similarity between two methods, be-

cause LD and LCS pertain to two different aspects of string comparison: LD is con-

cerned with the difference between strings but is not able to tell if they have something

in common, while LCS focuses on their common part but is not able to tell how different

they are.

We use the following example to demonstrate the text similarity comparison process.

Let us assume that we want to find out which one is most similar to target method

int A.ab(int) among int A.a(int), int A.abc(int), int A.abcd

(int) and int B.a(float).

First, we rule out int B.a(float) because only two elements (return value and

method name)of its signature are same to those of the target method, while the other

three have three same elements (return value, declaring module and parameter).

Second, we compute the LDs between remaining candidate methods and the target

methods and rule out int A.abcd(int), because its LD is greater than the other

two.

Last, we calculate the LCS between the two candidate methods and we can know

the most similar one is int A.abc(int), because its LCS is longer than that of

int A.a(int).

By combining the three techniques, we can get the sole most similar method. If

we used only one of them, we would get at least two candidate methods with the same

similarity.

4.2 Algorithm

Using the previous call dependency and text similarity analyses, AURA generates

change rules from the old to the new release of a framework in the following steps:

1. Global Data Set Generation: By differentiating the sets of method signatures in the

old and new releases, we build the set of target methods, Stm; the set of anchors, Sa; and,

32

the set of global candidate replacement methods, Sgcrm, which includes all the methods

defined in the new release. The target methods whose change rules were already detected

in previous iterations are not included in Stm and whose replacements are excluded from

Sgcrm, were added to Sa after being detected.

2. Target Methods Classification: Using call-dependency analysis, we divide Stm in:

Stmca = { t | a ∈ Sa,∃ OLD(a)→ t }

Stmuca = { t | a ∈ Sa,@ OLD(a)→ t }

with: Stm = Stmca ∪Stmuca.

3. Candidate Replacement Method Set Generation: Also, using call-dependency

analysis, for each target method t in Stmca, we build the set of corresponding candidate

replacement methods in the new release, using the predicate:

CRMS(t) = { m | m ∈ Sgcrm ∧a ∈ Sa

∧ OLD(a)→ t

∧ OLD(a)9 m

∧ NEW(a)→ m }.

4. Confidence Value Computation: We compute the confidence value of each candi-

date replacement method c in CRMS(t), with respect to its corresponding target method

t, with t ∈ Stmca. We then generate change rules for all target methods in Stmca using

the confidence values and |HCS(t)|, where HCS(t) = { c | c ∈ CRMS(t),CV(t,c) =

100% }, as follows:

4a. ∀ t | |HCS(t)| = 1: We build the change rule t 	 c and add it to Sa (in the form

33

of an anchor). If Sa does not change, we stop iterating and go to the next step, or we go

back to Step 1.

4b. ∀ t | |HCS(t)| > 1: The relation between t and its candidate replacement meth-

ods is one-to-one or one-to-many. We assign the proper candidate replacement methods

using text similarity analysis and the number N(m,a, t) of times that t and its candidate

replacement methods are called in their anchors, in two steps:

4b1. Key-replacement Methods Identification: We use text-similarity to iden-

tify key-replacement methods for all t . The key-replacement method KR(t) to t is the

only method that is the most similar to t from the candidate replacement methods whose

names are equal to t’s or from the methods in HCS(t).

4b2. Co-replacement Methods Identification: The co-replacement methods to

t are chosen from CHCS(t) using N(m,a, t) and the support S(t,c) defined below. A

target method can have zero or more co-replacement methods regardless of their textual

similarity. We define the CHCS(t) of co-candidate methods and KAS(t) of anchors that

call KR(t), and two counters, such as:

CHCS(t) = { c | c ∈ HCS(t)∧ c is not a key-

replacement method to

any target methods }

KAS(t) = { a | a ∈ Sa ∧NEW(a)→ KR(t) }

N(m,a, t) = |{NEW(a)→ m | a ∈ KAS(t)}|

ALLKR(a) = { k | k is a key-replacement

∧ NEW(a)→ k }

ALLN(t,a) = |{ NEW(a)→ k | a ∈ KAS(t)

∧k ∈ ALLKR(a) }|

34

From an anchor a ∈ KAS(t), we compute the call count of the key-replacement of t:

m = N(KR(t),a, t), the call count of a candidate method c ∈ CHCS(t): p = N(c,a, t),

and the call count of all the key-replacement methods called in a: q = ALLN(t,a). We

compare p with m and q and only keep co-candidate methods meeting the following two

conditions:

• m = p > 1: c is called more than one time and exactly as many as the number of

times that KR(t) is called. In this case, c has a high possibility to collaborate with

KR(t) in the new release.

• q <= p∧ q > 1: c is called as many as (or more than) the number of times that

the key-replacements of all target methods in the same anchor a, and all the key-

replacements are called more than once. In this case, c is likely to collaborate with

all the key-replacement methods.

Then, we select the co-candidate methods left in CHCS(t) with the highest support

S(t,c) as the co-replacement methods, where the support is defined as:

S(t,c) = |{ m | m ∈ {all the methods in the new release}

∧ m → KR(t)∧ m → c }|

For a target method whose replacement methods are detected in this step, if its co-

replacement methods set is empty, AURA generates a one-to-one change rule; otherwise

it generates a one-to-many rule.

4c. ∀ t | |HCS(t)|= 0: We choose the most similar candidate replacement methods

to t from the methods whose name is equal to t’s in CRMS(t) or from all the methods

in CRMS(t). Then, we choose the candidate methods with the highest confidence value

as the replacement methods. The rules detected by this step could be one-to-many rules

if there is more than one candidate method with same text-similarity and confidence val-

ues. In this step, we give text-similarity analysis priority over confidence value, because

35

a confidence value less than 100% indicates a behaviour change in one or more anchors.

5. Text Similarity Only Rule Generation: For each t ∈ Stmuca, we use text similarity

to find its replacement methods with the most similar signatures from Sgcrm. If there

is more than one candidate replacement method, we select one randomly. We could

generate one-to-many rules, if there is more than one candidate method with the same

text-similarity to a target. But according to our evaluation, the most relevant cases are

one-to-one rules.

6. Simply-deleted Method Rule Identification: Finally, we examine the target meth-

ods in Stmuca. If the replacement of one of these methods also exists in the old release,

we mark the target method as simply-deleted method, i.e., a target method with no re-

placement method in the new release. We only identify simply-deleted method rules in

this step because target methods in Stmuca have never been used or their context of use

changed between the old and new releases. Furthermore, their most similar candidate

replacement methods are not methods added to the new release. These target methods

are most likely to be simply-deleted.

CHAPTER 5

IMPLEMENTATION OF AURA

As described in Chapter 4, the algorithm of AURA applies to most of high-level

programming languages, but it is impractical to implement it in all of them and evaluate

it on all of them. Java is a popular Object-Oriented programming language and there

are lots of open-source projects developed in it, so we implemented AURA in Java with

the same name and evaluated on five Java open source projects. The detailed evaluation

result will be presented in next chapter. Our implementation includes four modules:

AURA Data Model and its Builder, AURA Rule Model and its Builder. The diagram of

our implementation is show in Figure 5.1.

The development and deployment of AURA require JDK 1.6 with JAXB 1 (Java

Architecture for eXtensible markup language Binding) support and Eclipse 3.5. JAXB

is a Java package which allows developers to seamlessly exchange data between Java

programs and eXtensible Markup Language (XML) files. With JAXB, developers can

generate Java classes form XML Schema Definition (XSD) files, then use these classes

to load from or to write to XML files in an easier way than Simple API for XML (SAX)

or Document Object Model (DOM). In the following sections, we introduce the func-

tionality and structure of each module.

5.1 AURA Data Model

AURA Data Model stores the information extracted from the source code of the two

releases of a program extracted by AURA Data Model Builder, and the intermediate data

generated by AURA Rule Builder. Its package diagram is shown in Figure 5.2

aura.xsd contains the XSD files used by JAXB to generate Java data classes.

Packages with prefix aura.model.jaxb are automatically generated by JAXB. Pack-

ages with ex after jaxb define the extended classes in automatically generated pack-

1http://java.sun.com/developer/technicalArticles/WebServices/jaxb/

37

Figure 5.1: Diagram of AURA Implementation

Figure 5.2: Diagram of AURA Data Model

38

ages. For simplicity, in the following parts of this chapter, we will elide prefix aura.model.jaxb

or aura.model.jaxb.ex.

commontypes and aura.xsd are shared with AURA Rule Model. se stores the

information extracted from the source codes of the target program. intermediate

and intermediate.methods hold the temporary information during rule gener-

ating, such as anchor, target and candidate method lists. aura.tools includes the

classes provide auxiliary functions for rule generating, for example, computing tok-

enized Levenshtein Distance.

5.2 AURA Data Model Builder

The current version of AURA Data Model Builder is an Eclipse plugin. It extracts

the information needed by call dependency analysis from the source code of the two

releases of a program by parsing the Abstract Syntax Tree (AST) generated by Eclipse

JDT. Its package diagram is shown in Figure 5.3.

Figure 5.3: Diagram of AURA Data Model Builder

aura and aura.handlers are required parts of Eclipse plugins. aura.config

passes the information related to a target program and the path where the change rules

are saved to. The classes in aura.model.builder.se extract target program infor-

mation to AURA Data Model. Most of extracting operations are conducted by a Eclipse

39

AST visitor [12].

5.3 AURA Rule Builder

AURA Rule Builder includes five visitors to IntermediateModel in AURA Data

Model. Each one of the visitors implements a corresponding step in the rule genera-

tion algorithm described in previous chapter. Its class diagram is shown in Figure 5.4.

Figure 5.4: Diagram of AURA Rule Builder

5.4 AURA Rule Model

AURA Rule Model stores and presents the change rules detected by the visitors of

AURA Rule Builder. Its package diagram is shown in Figure 5.5

40

Figure 5.5: Diagram of AURA Rule Model

CHAPTER 6

EVALUATION OF AURA

We now evaluate AURA on several systems by comparing its results to those of

previous approaches.

6.1 Evaluation Design

We implemented our approach as a Java program and evaluate it on five open source

systems meeting the following conditions: (1) different sizes; (2) developed indepen-

dently from each other; and, (3) studied in previous work. The last condition reduces the

bias in the selection of the subject systems and facilitates the comparison with previous

work. Table 6.1 summarizes the five subject systems.

We use the four medium size systems (JFreeChart, JHotDraw, JEdit, and Struts) to

compare AURA with the approaches of M. Kim et al. [19] and Schäfer et al. [24]. We

use the large system (org.eclipse.jdt.core and org.eclipse.jdt.ui) to

compare AURA with SemDiff [6].

We reuse the results of the three approaches provided by their authors because it is

impractical to reanalyse all the target systems and also to avoid experimenter bias.

We include one-to-many change rules by treating them as one-to-one change rules

because previous approaches do not report such rules. We convert many-to-one change

rules into as many one-to-one change rules as target methods.

6.2 Hypothesis and Performance Indicators

Our hypothesis is that AURA will find more relevant change rules than previous

approaches with comparable precision, i.e., it will have a better recall than and similar

precision to those of previous approaches.

We cannot use recall and precision [5] directly to compare the performance of AURA

and previous approaches because the set relevant rules is a priori unknown in:

42

Subject Systems Releases # Methods

JFreeChart 0.9.11 4,751
0.9.12 5,197

JHotDraw 5.2 1,486
5.3 2,265

JEdit 4.1 2,773
4.2 3,547

Struts 1.1 5,973
1.2.4 6,111

org.eclipse.jdt.core 3.1 35,439
org.eclipse.jdt.ui 3.3 47,237

Table 6.1: Subject Systems.

Precision =
|{relevant rules}

∩
{retrieved rules}|

|{retrieved rules}|

Recall =
|{relevant rules}

∩
{retrieved rules}|

|{relevant rules}|

Therefore, to eliminate the influence of this unknown set, we define the set {correct rules},

which can be obtained by manually inspecting the set {retrieved rules} as:

{correct rules} = {relevant rules}∩
{retrieved rules}.

We introduce the differences in precision, ∆P, and recall, ∆R, as two functions of the

change rules detected by two different approaches, A and B:

∆P(A,B) =
PrecisionA −PrecisionB

PrecisionB

=
|{correct rules}A|× |{retrieved rules}B|
|{retrieved rules}A|× |{correct rules}B|
−1

∆R(A,B) =
RecallA −RecallB

RecallB

=
|{correct rules}A|− |{correct rules}B|

|{correct rules}B|

Using ∆P(A,B) and ∆R(A,B), we can compare the precision and recall of two ap-

43

proaches and avoid the influence of the unknown set {relevant rules}. We compute

{correct rules} for AURA on four medium-size systems, JFreeChart, JHotDraw, JEdit,

and Struts by manual inspection. For previous approaches, we use the data provided by

the corresponding authors.

For the two Eclipse plug-ins, org.eclipse.jdt.core and org.eclipse.

jdt.ui, from 3.1 to 3.3, AURA generates more than 4,500 change rules. Thus, it is

impractical to validate all these rules manually. We follow Dagenais and Robillard’s

evaluation method [6]: choose the same three client programs of these plug-ins, i.e.,

org.eclipse.jdt.debug.ui, Mylyn, and JBossIDE; compile them with Eclipse

3.3; use the change rules found by our approach to solve the compile errors in scope i.e.,

compile errors caused by the methods not existing anymore in release 3.3; and, compute

the precision of the change rules that cover these compile errors.

6.3 Comparison on the Medium-size Systems

In Table 6.2, we present the ∆P and ∆R on each subject system between AURA and

M. Kim et al.’s [19] and Schäfer et al.’s [24] approaches, in column 5 and 6. We then

report the average values for each approach in column 7 and 8. In the last three rows,

we present the total average values of AURA compared to the two approaches: ∆R is

53.07% with a precision of 88.25%, while ∆P is -0.10%.

6.3.1 Comparison with M. Kim et al.’s Approach

M. Kim et al. [19] present their results in two formats: first-order relational logic

rules, for example “alge rules of AURA. Therefore, we use the number of matches from

[19] to compare their results with ours.

On average, ∆P is -5.66% while ∆R is 53.21%. We gain in recall at the small expense

of precision.

On JHotDraw from 5.2 to 5.3 and JFreeChart from 0.9.11 to 0.9.12, the ∆Rs are

19.49% and 75.86% while the ∆Ps are -6.69% and 3.50%, respectively. These results

show that the combination of call-dependency and text-similarity analyses improves re-

44

Systems Indicators AURA M. Kim et al.[19] ∆R ∆P Averages
∆R ∆P

JHotDraw # Correct rule 97 81 19.49% -6.69%

53.21% -5.66%

5.2-5.3 Precision 92.38% 99.00%
JEdit # Correct rule 356 217 3

64.29% -13.78%4.1-4.2 Precision 80.18% 93.00%
JFreeChart # Correct rule 155 88 75.86% 3.50%0.9.11-0.9.12 Precision 80.73% 78.00%

Systems Indicators AURA Schäfer et al. [24] ∆R ∆P Averages
∆R ∆P

JHotDraw # Correct rule 97 88 10.23% 4.98%
52.86% 8.24%5.2-5.3 Precision 92.38% 88.00%

Struts # Correct rule 129 66 95.49% 11.50%1.1-1.2.4 Precision 96.56% 85.70%

Total Precision of AURA 88.25%
Average ∆R 53.07%

∆P -0.10%

Table 6.2: Comparison of the results on medium-size systems (with simply-deleted
change rules).

Systems AURA SemDiff [6]
org.eclipse. # Errors in Scope 4
jdt.debug.ui # Found Rules 4 4

3.1 - 3.3 # Correct Rules 4 4

Mylyn # Errors in Scope 2
0.5-2.0 # Found Rules 2 2

Correct Rules 1 2

JBossIDE # Errors in Scope 8
1.5-2.0 4 # Found Rules 8 8

Correct Rules 8 8

Precision 92.86% ≤ 100.00%

Table 6.3: Evaluation of a sample of change rules on the large system.

call with precision comparable to approaches based on text-similarity analyses. A slight

decrease of precision (-6.69%) is acceptable because the recall increases satisfactorily

(19.49%).

On JEdit from 4.1 to 4.2, the ∆R is 64.29% while ∆P is -13.79%. The ∆P decrease

is twice as much as that of JHostDraw from 5.2 to 5.3. Two factors cause this decrease.

First, call-dependency analysis is more sensitive to structural changes than text similarity

analysis. In JEdit 4.2, the API remained quite stable but the implementation of the

methods changed radically. AURA first uses call dependency analysis that generates

irrelevant change rules that could be avoided if it used text similarity analysis directly.

Second, AURA does not use any experimentally-evaluated thresholds that would help

45

balancing recall and precision.

6.3.2 Comparison with Schäfer et al.’s Approach

On average, ∆P is 8.24% while ∆R is 52.86%. AURA has positive ∆R and ∆P both

on JHotDraw from 5.2 to 5.3 and Struts from 1.1 to 1.2.4 in comparison to Schäfer et al.’s

[24]. On JHotDraw from 5.2 to 5.3, the ∆R and ∆P are 10.23% and 5.00%, while they

are 95.49% and 11.50% on Struts from 1.1 to 1.2.4. Text-similarity analysis is the main

contributor to the improvements. In our evaluation, the change rules of 59.05% target

methods (62) of JHotDraw from 5.2 to 5.3 are detected by call-dependency analysis,

while the number for Struts from 1.1 to 1.2.4 is only 17.04% (23). The change rules for

the rest of the target methods are generated by text-similarity analysis.

In Schäfer et al.’s results [24], more change rules were identified than by AURA

using call-dependency analysis because they also generate other types of change rules

that are not in the scope of AURA, such as change rules for fields, inheritance relations,

and methods existing in both the old and new releases. AURA only generates change

rules for methods that physically disappeared in the new release.

6.4 Comparison on a Large-size System

In Table 6.3, we present the results of AURA and SemDiff [6] to solve the compile

errors of three Eclipse 3.1 plug-ins when compiling them against Eclipse 3.3.

In SemDiff [6], correct rules are defined as replacement methods that can be found

in the top three recommendations provided by SemDiff. It is easy for developers to

choose the right replacement from these three. In our approach, we provide only one

recommendation per target method, possibly one-to-one, one-to-many, many-to-one, or

simply-deleted change rule. Therefore, to compare the results of AURA with those of

SemDiff, we must account for this discrepancy in the way correct rules are counted.

3AURA only analyzed the code in packages org.gjt.sp.* and compare the result with corresponding
part of M. Kim et al.’s work [19], because this package contains the source code for the main functions of
JEdit and it is already large enough for manual analysis (444 target methods).

4Confirmed by Dagenais, it is 1.5-2.0

46

If every correct rule was the first recommendation of the top three, SemDiff would

have a precision of 100.00%, comparable to the precision of 92.86% of AURA. How-

ever, it is also possible that the correct rule was the second or third of the top three.

Consequently, for the first recommendation, the precision of SemDiff could be actually

less than 100%, thus AURA is competitive with SemDiff.

Because org.eclipse.jdt.core and org.eclipse.jdt.ui from 3.1 to

3.3 have more than 4500 target methods and SemDiff is a semi-automatic approach, it

is impractical to get {correct rules} manually. Thus, we do not compute ∆R between

AURA and SemDiff.

6.5 Comparison without Simply-deleted Methods

Previous approaches, such as [19, 24], do not explicitly report simply-deleted change

rules in their results. We remove the simply-deleted change rules from AURA results

and compare these with the results of previous approaches to assess their influence on

precision and recall.

As shown in Table 6.4, ∆P is stable and remains similar to that with simply-deleted

method rules (0.24% vs -0.10%). ∆R decreases from 53.07% to 6.80%. The ∆Rs of

AURA to the two approaches [19, 24] are different. The ∆R to Kim et al.’s approach

[19] decreases to 13.34%, while the ∆R to Schäfer et al.’s approach [24] drops to -3.02%.

The sharp decrease of ∆R has two causes. First, a large number of target methods

are deleted from the new releases without replacements. Through manual inspection,

we found that, on average, 31.93% of target methods in the change rules generated by

AURA are simply deleted from the new releases of the four medium-size systems. For

Struts from 1.1 to 1.2.4, this percentage is as high as 57% (77 methods). Second, AURA

and Schäfer et al.’s approach do not have the same scope, so the value of ∆R to their

approach decreases dramatically.

Even with this decrease of ∆R on Struts from 1.1 to 1.2.4. (-15.14%), AURA still im-

proves recall with similar precision when not considering simply-deleted method rules.

47

Systems Indicators AURA M. Kim et al. [19] ∆R ∆P Averages
∆R ∆P

JHotDraw # Correct rule 96 81 18.26% -3.03%

13.34% -5.01%

5.2-5.3 Precision 96.00% 99.00%
JEdit # Correct rule 247 217 3

13.99% -17.00%4.1-4.2 Precision 77.19% 93.00%
JFreeChart # Correct rule 95 88 7.78% 5.00%0.9.11-0.9.12 Precision 81.90% 78.00%

Systems Indicators AURA Schäfer et al. [24] ∆R ∆P Averages
∆R ∆P

JHotDraw # Correct rule 96 88 9.09% 9.09%
-3.02% 8.11%5.2-5.3 Precision 96.00% 88.00%

Struts # Correct rule 56 66 -15.14% 7.12%1.1-1.2.4 Precision 91.08% 85.70%

Precision of AURA 88.58%
Total ∆R 6.08%

Average ∆P 0.24%

Table 6.4: Comparison of the results on medium-size systems without simply-deleted
change rules

6.6 Performance

Since the analyses of AURA and of the previous approaches were conducted on

different hardware and software platforms, the reported performance data are only de-

scriptive and we will not compare them.

The analysis of the four medium-size systems takes less than three minutes on Win-

dows XP SP3 with Intel Core Duo 1.5GHz and 4GB RAM. M. Kim et al. [19] report

computation times of seven minutes on average while Schäfer et al. [24] report less than

30 minutes, but do not specify their software and hardware platforms.

The analyzing Eclipse JDT core and UI 3.1–3.3 takes seven hours on CentOS 5.3

with AMD Opteron Dual-Core 2.4GHz and 16GB RAM. SemDiff [6] took 16 hours on

a Pentium D 3.2Ghz with 2GB of RAM running Ubuntu Server 7.04.

6.7 Threats to Validity

We now discuss the threats to validity of our evaluation following the guidelines

provided for case study research [30].

Construct validity threats concern the relation between theory and observation; in our

context, they are mainly due to errors introduced in the algorithm and the manual valida-

48

tion. We are aware that we could have introduced a bias during the manual validation of

the change rules produced by AURA. We did our best to avoid this bias and provide all

data on-line for further independent validation5. AURA in Step 5 uses a random selec-

tion that could also introduce variation in our results. However, these variations should

occur very rarely.

Threats to internal validity do not affect this particular study, being a systematic

comparison of AURA with previous approaches using well-defined measures, ∆P and

∆R.

Conclusion validity threats concern the relation between the treatment and the out-

come. We used un-biased systematic measures and the data provided by the authors of

previous approaches without any changes other tan those discussed in Section 6. Thus,

we believe that no threats to the validity of our conclusion remain.

Reliability validity threats concern the possibility of replicating this study. We at-

tempted here to provide all the necessary details to re-implement AURA and replicate

its evaluation and comparison. Moreover, all studied systems and data from previous

approaches are publicly available or available upon request to their authors. Finally, the

raw data on which our study is based are available on the Web3.

Threats to external validity concern the possibility to generalize our findings. We

studied five systems of different sizes, belonging to different domains and evaluated by

previous approaches. However, we only analyzed Java code; therefore it is possible that

AURA would perform differently on other programming languages, like C♯ or C++.

Further validation on a larger set of systems and comparison with other approaches are

desirable.

5http://www.ptidej.net/downloads/experiments/prop-icse10b

CHAPTER 7

DISCUSSION OF AURA

We now discuss the strengths and limitations of AURA.

7.1 Strengths

7.1.1 Higher Recall and Comparable Precision

The evaluation results show that AURA has higher recall than and comparable pre-

cision to those of previous approaches. Three factors contribute to the improvement:

1. Combination of call-dependency and text-similarity Analyses: Approaches using

call-dependency analysis can only find change rules whose target and replacement meth-

ods are called by some anchors. For the five systems that we analyzed, on average, only

33.85% of the change rules are found by call-dependency analysis. Schäfer et al. [24]

can found more rules, because they also generate other types of change rules besides

target method change rules.

Approaches using text-similarity analysis find rules for all target methods but with

a higher rate of false positives. In practice, they trade recall for precision using one or

many thresholds.

AURA is able to find change rules for more target methods than previous approaches,

but with a slight loss of precision. The evaluation results show that the ∆R of AURA is

53.07% with about -0.10% lower precision, on average.

2. Multi-iteration algorithm: The multi-iteration algorithm improves both recall and

precision. It impacts positively the results in two cases: the first case is illustrated in Sec-

tion 2; the second case occurs by removing the replacement methods of other already-

detected target methods from the candidate replacement method set of a target method.

For example, if the candidate set of m() is {a(),b()} and in a previous iteration AURA

detected that a() is the replacement of x(), then AURA removes a() from the candi-

50

date replacement method set of m() and immediately identifies its replacement as b().

This second case does not preclude identifying many-to-one change rules in a previous

iteration. On the four medium-size systems, the average precision decreases by 2.50%

if we a use a one-iteration algorithm, calculated after both call-dependency and text-

similarity analyses.

3. Three–Unit text similarity: AURA uses signature-level similarity, LD and LCS,

to compute the text similarity of two methods. On the four medium-size systems, the

average precision decreases by 3.53%, 2.41%, and 4.51% if we remove each step, re-

spectively.

7.1.2 Many-to-one, One-to-many, Simply-deleted Rules

Previous approaches only automatically generate one-to-one change rules. Some

approaches [6, 14] can semi-automatically generate many-to-one and one-to-many rules,

but developers must manually analyze the rules to select the appropriate replacement

methods. AURA applies a call-dependency analysis first and then uses a text-similarity

analysis to overcome this limitation of previous approaches.

None of the previous automatic approaches explicitly reports simply-deleted method

change rules. We manually identified that, in the four medium-size systems, 31.93%

of target methods in the change rules that AURA generated are simply-deleted. We

argue that simply-deleted method rules are as important as other types of change rules

because they are a part of the total change rules of a program. They should be identified,

evaluated and counted in the precision and recall computation.

7.1.3 Threshold

Existing automatic approaches [19, 20, 24], which do not require framework devel-

opers’ involvement, depend on experimentally-evaluated thresholds. These thresholds

cannot be predicted for a new framework without analyzing it and evaluating the result.

We could use the values of the tuned thresholds for some frameworks already analyzed

51

but they might not be applicable.

AURA completely eliminates thresholds and adapts naturally to different frame-

works. It could therefore be used immediately by developers without any settings.

7.2 Limitations

AURA cannot detect one-to-many and many-to-one change rules for target methods

that no anchor calls. However, it can still find one-to-one rule using text similarity

analysis.

Major changes to the internal implementation of anchors compromise the precision

of AURA. For example, the precision of AURA for JEdit from 4.1 to 4.2 decreases by

13.78% wrt. M. Kim et al.’s [19] because, between the two releases, the API remained

quite stable but the implementation of the methods changed radically, thus confusing the

first steps of our approach based on call-dependency analysis. This limitation is shared

by all call-dependency-based approaches.

AURA only generates change rules for methods. During the evaluation of AURA, we

found that some getters are replaced by direct field accesses. Future work includes mod-

ifying the definition of change rules to take into account field and type-related changes

by analyzing inheritance relations and polymorphism.

CHAPTER 8

CONCLUSION AND FUTURE WORK

We presented AURA, a hybrid approach that combines call-dependency and text-

similarity analyses to provide developers with change rules when adapting their pro-

grams from one release of a framework to the next.

Our approach offers the following contributions:

1. It increases recall by combining call dependency and text similarity analyses in a

multi-iteration algorithm;

2. It automatically adapts to different frameworks by not using any experimentally-

evaluated threshold;

3. It reduces developers’ efforts by automatically generating one-to-many and many-

to-one change rules.

The results of the evaluation of AURA on four medium-size systems and in compari-

son to previous work showed that the combination of call-dependency and text-similarity

analyses into a multi-iteration algorithm improves recall on average by 53.07% with a

slight decrease of 0.10% in precision. We also applied AURA on Eclipse and compared

its results with those of SemDiff [6] and showed that the approximated precision of

AURA is 92.86% while SemDiff’s is up to 100.00%.

In future work, we plan to extend our approach in several directions: analyze target

systems in other programming languages than Java; add heuristics that generate change

rules for types and fields by analyzing inheritance relations and polymorphism; combine

AURA with approaches that use other matching techniques; present AURA results in

first-order relational logic rules, as introduced by M. Kim et al. [19]; perform usability

studies to determine the efficacy of AURA.

BIBLIOGRAPHY

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In SIGMOD ’93: Proceedings of the 1993

ACM SIGMOD international conference on Management of data, pages 207–216,

New York, NY, USA, 1993. ACM. ISBN 0-89791-592-5. doi: http://doi.acm.org/

10.1145/170035.170072.

[2] Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic ap-

proach to identify class evolution discontinuities. In IWPSE ’04: Proceedings of

the Principles of Software Evolution, 7th International Workshop, pages 31–40.

IEEE Computer Society, 2004.

[3] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class library

migration. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications,

pages 265–279, New York, NY, USA, 2005. ACM. ISBN 1-59593-031-0. doi:

http://doi.acm.org/10.1145/1094811.1094832.

[4] Kingsum Chow and David Notkin. Semi-automatic update of applications in re-

sponse to library changes. In ICSM ’96: Proceedings of the 1996 International

Conference on Software Maintenance, page 359, Washington, DC, USA, 1996.

IEEE Computer Society. ISBN 0-8186-7677-9.

[5] J. Cohen. Statistical power analysis for the behavioral sciences. L. Earlbaum

Associates, 1988.

[6] Barthélémy Dagenais and Martin P. Robillard. Recommending adaptive changes

for framework evolution. In ICSE ’08: Proceedings of the 30th international con-

ference on Software engineering, pages 481–490, New York, NY, USA, 2008.

ACM. ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.1145/1368088.

1368154.

54

[7] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings via

change metrics. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages, and applications,

pages 166–177, New York, NY, USA, 2000. ACM. ISBN 1-58113-200-X. doi:

http://doi.acm.org/10.1145/353171.353183.

[8] Danny Dig and Ralph Johnson. How do apis evolve? a story of refactoring: Re-

search articles. J. Softw. Maint. Evol., 18(2):83–107, 2006. ISSN 1532-060X. doi:

http://dx.doi.org/10.1002/smr.v18:2.

[9] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated

detection of refactorings in evolving components. In ECOOP ’06: Proceedings of

the 20th European Conference on Object-Oriented Programming. Springer Berlin

/ Heidelberg, July 2006. ISBN 978-3-540-35726-1.

[10] Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. Refactoring-

aware configuration management for object-oriented programs. In ICSE ’07: Pro-

ceedings of the 29th international conference on Software Engineering, pages 427–

436, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2828-7.

doi: http://dx.doi.org/10.1109/ICSE.2007.71.

[11] Beat Fluri and Harald C. Gall. Classifying change types for qualifying change

couplings. In ICPC ’06: Proceedings of the 14th IEEE International Conference

on Program Comprehension, pages 35–45, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2601-2. doi: http://dx.doi.org/10.1109/ICPC.

2006.16.

[12] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-

sign Patterns. Addison-Wesley, Boston, MA, 1995. ISBN 0201633612. URL

http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21.

[13] Daniel M. German and Ahmed E. Hassan. License integration patterns: Addressing

license mismatches in component-based development. In ICSE ’09: Proceedings

55

of the 2009 IEEE 31st International Conference on Software Engineering, pages

188–198, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-1-

4244-3453-4. doi: http://dx.doi.org/10.1109/ICSE.2009.5070520.

[14] Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and

splitting of source code entities. IEEE Trans. Softw. Eng., 31(2):166–181, 2005.

ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.2005.28.

[15] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactor-

ings to support api evolution. In ICSE ’05: Proceedings of the 27th international

conference on Software engineering, pages 274–283, New York, NY, USA, 2005.

ACM. ISBN 1-59593-963-2. doi: http://doi.acm.org/10.1145/1062455.1062512.

[16] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest

common subsequences. Commun. ACM, 20(5):350–353, 1977. ISSN 0001-0782.

[17] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David Notkin. Auto-

mated support for program refactoring using invariants. In ICSM ’01: Proceedings

of the IEEE International Conference on Software Maintenance (ICSM’01), page

736, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1189-9.

[18] Christian Kemper and Charles Overbeck. What’s new with jbuilder. In JavaOne

Sun’s 2005 Worldwide Java Developer Conference, 2005.

[19] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference of structural

changes for matching across program versions. In ICSE ’07: Proceedings of the

29th international conference on Software Engineering, pages 333–343, Washing-

ton, DC, USA, Not Available 2007. IEEE Computer Society. ISBN 0-7695-2828-7.

doi: http://dx.doi.org/10.1109/ICSE.2007.20.

[20] Sunghun Kim, Kai Pan, and E. James Whitehead, Jr. When functions change their

names: Automatic detection of origin relationships. In WCRE ’05: Proceedings

of the 12th Working Conference on Reverse Engineering, pages 143–152, Wash-

56

ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2474-5. doi:

http://dx.doi.org/10.1109/WCRE.2005.33.

[21] D. Lawrie, H. Feild, and D. Binkley. Syntactic identifier conciseness and consis-

tency. In Sixth IEEE International Workshop on Source Code Analysis and Manip-

ulation., pages 139–148, Sept. 2006.

[22] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Technical Report 8, 1966.

[23] Guido Malpohl, James J. Hunt, and Walter E Tichy. Renaming detection. page 73,

2000.

[24] Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes

from instantiation code. In ICSE ’08: Proceedings of the 30th international

conference on Software engineering, pages 471–480, New York, NY, USA, May

2008. ACM. ISBN 978-1-60558-079-1. doi: http://doi.acm.org/10.1145/1368088.

1368153.

[25] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse contracts:

managing the evolution of reusable assets. SIGPLAN Not., 31(10):268–285, 1996.

ISSN 0362-1340. doi: http://doi.acm.org/10.1145/236338.236363.

[26] Peter Weißgerber and Stephan Diehl. Identifying refactorings from source-code

changes. In ASE ’06: Proceedings of the 21st IEEE/ACM International Confer-

ence on Automated Software Engineering, pages 231–240, Washington, DC, USA,

2006. IEEE Computer Society. ISBN 0-7695-2579-2. doi: http://dx.doi.org/10.

1109/ASE.2006.41.

[27] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented

design differencing. In ASE ’05: Proceedings of the 20th IEEE/ACM interna-

tional Conference on Automated software engineering, pages 54–65, New York,

NY, USA, 2005. ACM. ISBN 1-59593-993-4. doi: http://doi.acm.org/10.1145/

1101908.1101919.

57

[28] Zhenchang Xing and Eleni Stroulia. Refactoring detection based on umldiff

change-facts queries. In WCRE ’06: Proceedings of the 13th Working Confer-

ence on Reverse Engineering, pages 263–274, Washington, DC, USA, 2006. IEEE

Computer Society. ISBN 0-7695-2719-1. doi: http://dx.doi.org/10.1109/WCRE.

2006.48.

[29] Zhenchang Xing and Eleni Stroulia. API-evolution support with diff-CatchUp.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 33(12):818 – 836, De-

cember 2007. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/TSE.2007.70747.

[30] Robert K. Yin. Case Study Research: Design and Methods - Third Edition. SAGE

Publications, 3 edition, 2002.

