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RÉSUMÉ

De récentes découvertes montrent le rôle important que joue l’acide ribonucléique

(ARN) au sein des cellules, que ce soit le contrôle de l’expression génétique, la régula-

tion de plusieurs processus homéostasiques, en plus de la transcription et la traduction

de l’acide désoxyribonucléique (ADN) en protéine. Si l’on veut comprendre comment la

cellule fonctionne, nous devons d’abords comprendre ses composantes et comment ils

interagissent, et en particulier chez l’ARN. La fonction d’une molécule est tributaire de

sa structure tri-dimensionnelle (3D). Or, déterminer expérimentalement la structure 3D

d’un ARN s’avère fort coûteux. Les méthodes courantes de prédiction par ordinateur de

la structure d’un ARN ne tiennent compte que des appariements classiques ou cano-

niques, similaires à ceux de la fameuse structure en double-hélice de l’ADN. Ici, nous

avons amélioré la prédiction de structures d’ARN en tenant compte de tous les types

possibles d’appariements, dont ceux dits non-canoniques. Cela est rendu possible dans

le contexte d’un nouveau paradigme pour le repliement des ARN, basé sur les motifs cy-

cliques de nucléotides ; des blocs de bases pour la construction des ARN. De plus, nous

avons dévelopées de nouvelles métriques pour quantifier la précision des méthodes de

prédiction des structures 3D des ARN, vue l’introduction récente de plusieurs de ces

méthodes. Enfin, nous avons évalué le pouvoir prédictif des nouvelles techniques de

sondage de basse résolution des structures d’ARN.

Mots clés : ARN, prédiction de structure, comparaison de structure, évaluation

de structure, appariements non-canoniques.



ABSTRACT

Recent findings show the important role of ribonucleic acid (RNA) within the cell, be

it the control of gene expression, the regulation of several homeostatic processes, in

addition to the transcription and translation of deoxyribonucleic acid (DNA) into protein.

If we wish to understand how the cell works, we first need to understand its components

and how they interact, and in particular for RNA. The function of a molecule is tributary

of its three-dimensional (3D) structure. However, experimental determination of RNA 3D

structures imparts great costs. Current methods for RNA structure prediction by com-

puters only take into account the classical or canonical base pairs, similar to those found

in the well-celebrated DNA double helix. Here, we improved RNA structure prediction

by taking into account all possible types of base pairs, even those said non-canonicals.

This is made possible in the context of a new paradigm for the folding of RNA, based

on nucleotide cyclic motifs (NCM): basic blocks for the construction of RNA. Further-

more, we have developed new metrics to quantify the precision of RNA 3D structure

prediction methods, given the recent introduction of many of those methods. Finally, we

have evaluated the predictive power of the latest low-resolution RNA structure probing

techniques.

Keywords: RNA, structure prediction, structure comparison, structure evalua-

tion, non-canonical base pairs.
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CHAPTER 1

INTRODUCTION

1.1 Subject introduced

Ribonucleic acids (RNA) are one of the three major classes of bio-polymers within

the cell, along with proteins and deoxyribonucleic acids (DNA). It is even speculated

that RNA was the primary product from which life originated; hence the RNA world

scenario [1, 2, 3], following the discovery of the auto-catalytic property of RNA [4, 5, 6].

A vast literature exists concerning the RNA world, so let us guide the curious reader

to interesting and recent works, in particular on the origin of the genetic code and the

translation machinery [7], on the evolution of the 23S molecule [8], the acquisition of

functions by fortuitous ligations [9], self-sustained replication [10], and the unavoidable

folding of random RNA sequences [11].

It has been long believed that RNA served only as a temporary step in the decoding

of DNA into proteins, a process named transcription, as depicted in the central dogma

of molecular biology, elaborated by Francis Crick [12, 13]. However, recent discoveries

attribute broader and vital roles for RNA in the development and maintenance of the

cell, e.g. the translation of RNA coding genes into proteins by the ribosomal complex

(see for instance [14, 15, 16]), control of protein expression levels by RNA interference

(see [17, 18, 19, 20, 21]), molecular recognition by aptamers and riboswitches (see [22,

23]), etc. Hence, one then speaks about non-coding RNA (for example, see [24, 25,

26, 27]), in which more than 600 families are counted for in the Rfam (RNA families)

database [28, 29, 30]) (see also RNAdb [31]). The comprehension of the cell’s working

will necessitate the characterization of its components, and in particular of its coding

and non-coding RNAs, which defines the field of ribonomics [32, 33].

The structure of a bio-polymer is the guarantor of its function. Indeed, it suffices for

the bio-polymer to position properly in 3-D space a few key chemical groups in order for
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it to accomplish its function, for which it has been selected to perform. Hence, in order

to study the function of a molecule, it is preferable to know its 3-D structure. The famous

experience conducted by Anfinsen and colleagues demonstrated that the sequence of

a bio-polymer is enough to encode the structure, and that the native structure is of

minimal free energy [34]. Although this experience has been carried out using a protein,

the same concepts apply also to RNA [35]. This then gives us hope to predict the 3-D

structure of RNAs given their sequences only.

Structure determination can be done via high-resolution experiments, like X-ray crys-

tallography (X-ray) [36] or by nuclear magnetic resonance spectroscopy (NMR) [37]. Al-

though precise, these methods make use of unique equipments and specialized op-

erators. It is without saying that they impart a high cost to the determination pro-

cess (an estimate of a hundred thousand dollars per structure solved by X-ray). The

time span needed to resolve a structure is often measured in years, while robotized,

high-throughput sequencing produces thousands of sequence fragments in a few sec-

onds [38]. The number of solved 3-D structures in the Protein Data Bank (PDB [39]) has

been increasing only modestly in the past years [40]. Structure determination can also

be done at medium- or low-resolution, by chemical or enzymatic probing [41], micro-

chips [42], fluorescence [43], for instance, but they also require particular measuring

instruments and a trained personnel.

That said, we will look at the role of computers for RNA 3-D structure prediction from

sequence, for its ease of use and its low cost per prediction. We will also summarize the

current approaches, highlighting their strengths and weaknesses. We will then propose

a new paradigm in which it will be easier to go from sequence to 3D structure. This

paradigm will be put to use to formulate two structural models: apical RNA transport

and cap-independent translation element. We will also propose new metrics to compare

two RNA models. Finally, we will discuss about the information content of recent low-

resolution structure probing methods.
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1.2 Organization of chapters

In this section we will list all chapters and their content.

1.2.1 Introduction

Chapter 2 introduces all the concepts needed to understand and appreciate the work

done in this thesis. It presents what a ribonucleic acid is and its multiple representations.

1.2.2 The first article

In chapter 3 we will try to put in context what has been done in the first article,

specially pressing on the need to develop a new paradigm.

Chapter 4 is the first article and the core of the thesis. It presents the MC-Fold and

MC-Sym pipeline, along with MC-Cons, and applications to RNA structure predictions.

This paper has been published as:

Parisien M, Major F.

The MC-Fold and MC-Sym pipeline infers

RNA structure from sequence data.

Nature 2008 452:51-55.

(c) 2008 Nature Publishing Group.

Since the paper has only two authors, my contribution to it is unquestionable. Be-

cause of the limitations on the manuscript’s length, we also published an accompanying

text, which is the subject of chapter 5. In it you will find all the details of the pipeline,

including the ins and outs of the three computer programs presented, and MC-Fold’s

mathematical model.

To give an idea of the accomplishment laid out in the paper we unfold the paper’s
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time-line. It is without saying that the year 2007 has been nerve wrecking for me, as the

first drafts of the manuscript weren’t completed before seven months after Nature’s initial

interest in our work. It must also be said that we previously had submitted a manuscript,

which focused on MC-Fold only, to the Proceedings of the National Academy of Sci-

ences of the USA. In that paper we stated that tertiary structure predictions would be

easier if we started from secondary structures which featured non-canonical base pairs,

predicted from MC-Fold. Unfortunately, that statement had not been followed by a good

standing proof, and was therefore not accepted for publication. The creation of the

pipeline followed, with a second publication attempt, now in Nature. At this point, the

output of MC-Fold, that is the secondary structure, could serve as input to MC-Sym,

enabling RNA 3D structure prediction from sequence.
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1.2.3 The second article

Because many 3D prediction methods have recently been proposed [44, 45, 46,

47, 48, 49], and that their results do not always look like RNA but, rather, more like a

blob of atoms, it was then necessary to develop a new measure to compare a model

with the target solution structure. The de facto standard measure is the root mean

squared deviation (RMSD) [50, 51], and has served well the protein structure prediction

community, because in proteins it is the backbone that drives the structure [52, 53, 54],

and side-chains associate less specifically than in RNA [55]. However, it is not able to

pick up the minute details of nucleobase interactions (pairing and stacking) (see [56] for

a discussion of the use of RMSD for RNA modeling), hence the need for a more suited

deviation measure for RNA, which is the subject of chapter 6, and has been published

as:

Parisien M∗, Cruz JA∗, Westhof E, Major F.

New metrics for comparing and assessing discrepancies

between RNA 3D structures and models.

RNA 2009 15:1875-1885.

(c) 2009 RNA Society.

* Equal contribution.

My contribution to that paper is equal to that of Dr. Cruz; we participated to half

of the figures and tables of the article. We also participated in the elaboration of the

manuscript. Me and Dr. Major initiated the work here, in Montréal, so this is why I am

the first author, and Dr. Major the last author. Dr. Westhof is a world-renowned RNA

structure expert and crystallographer. The work in that paper should pave the way for a

critical assessment in RNA structure prediction.
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1.2.4 The third article

Admittedly, nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallog-

raphy (X-ray) are the methods of choice to resolve at the atomic level the conforma-

tion of an RNA molecule. However, these methods come with great cost and compli-

cated lab equipment, and apply not to all RNAs in all environments. Recently, several

low-resolution RNA structure probing methods have been developed. Three of these

methods are gel-based: hydroxyl radical footprinting [57], methidiumpropyl-EDTA [58],

multiplexed hydroxyl radical cleavage (MOHCA) [59], and thus are accessible to any

lab in the world. A more specialized experiment than X-ray, but fast and cheap, is the

small-angle X-ray scattering (SAXS) [60]. All these methods provide clues on the con-

formation of the RNA is solution. However, unlike NMR and X-ray, these low-resolution

experiments yield structural constraints which are noisy and vague.

Given that the MC-Fold and MC-Sym pipeline approach provides all-atoms RNA

models, we used it to generate sets of three-dimensional RNA structures to challenge

these low-resolution data at identifying the native fold adopted by the RNA. The results

of our findings are summarized in this paper and in chapter 8, which at the time of writing

is under peer-review:

Parisien M, Major F.

Determining RNA three-dimensional structures

using low-resolution data.

(submitted)

In that paper I identified RNA molecules which had been the subject of at least

two different probing methods. I also generated the decoy sets, and measured the

performance of the experimental data on these sets. I also made a first draft of the

manuscript, including all figures and tables. Me and Dr. Major looked at the results and

discussed them. I also made additions to our pipeline web site to accommodate these

types of experimental data.
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1.2.5 Exercises in RNA modeling

What is the use of developing tools if we don’t use them! Already, our web site has

been put to use in RNA modeling by members of our lab, more specifically, in A-to-I

editing recognition sites in RNA double helices [61], and in the transcription attenuation

mechanism in bacteria [62]. Here, we provide two RNA modeling attempts. We start

from the sequences and any other experimental evidences collected. These modeling

exercises show how complicated it is to obtain sound, viable and credible RNA models,

despite the RNA’s apparent simplistic folding rules (it’s not just Guanosine with Cytosine

and Adenosine with Uracil). The modeling details can be found in chapter 9. These

models are now in the hands of the labs that have interest in them, such that they are

now currently being challenged and perfected. They should eventually find their way in

molecular and structural biology studies.

1.2.6 The MC-Fold and MC-Sym pipeline web site

Part of the work I done while being a Ph.D. student is the creation and maintenance

of the MC-Fold and MC-Sym pipeline web site, which can be found here:

http://www.major.iric.ca/MC-Pipeline/

The web site features the main entry points to these computer programs:

• MC-Fold; http://www.major.iric.ca/MC-Fold/ [45]

• MC-Sym; http://www.major.iric.ca/MC-Sym/ [45]

• MC-Cons; http://www.major.iric.ca/MC-Cons/ [45]

• A dot-bracket rendering service

• An automatic MC-Sym script generator

• An Interaction Network Fidelity calculator [63]
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The complete web site and its use is described in details in a user’s guide, which can

be found here:

http://www.major.iric.ca/MC-Pipeline/manual.pdf



CHAPTER 2

WHAT IS A RIBONUCLEIC ACID?

This chapter will describe what is a ribonucleic acid (RNA). It is mandatory for the good

understanding of the rest of the thesis. We switch the avaricious reader toward the

reference work of Dr. Saenger on RNA structure [64].

2.1 Nucleobase, nucleotide

A ribonucleic acid is a molecule composed of repeated fundamental units; the nu-

cleobases. Nucleobases come in four types; adenine (A), cytosine (C), guanine (G)

and uracil (U). Each nucleobase is attached to its sugar, a five-membered ring, via the

glycosidic bond to form nucleotides. These nucleotides are linked together, in a linear

fashion, by a cordon, the main chain, that runs from the 5’ end to the 3’ end. Figure 2.1

shows these different concepts.

2.2 Base pair

The ribonucleic acid chain folds on itself such that the nucleobases associate with

one another through hydrogen bonds [65, 66], the base pair. The pairing of two nucle-

obases is done in a specific fashion, which depends on the types of the nucleobases

implicated. In order to describe these pairings, Drs. Leontis and Westhof (LW) proposed

a nomenclature [67], which we adopt here. The reader should note that other nomencla-

tures have been submitted, notably the one used by Saenger [64], the one from Gutell’s

group [68], and a refined version of the LW by Major’s group [69].

Figures 2.2a and 2.2b show the three faces of a nucleobase that can interact with

others: the Watson-Crick (W) face, the Hoogsteen (H) face, and the Sugar (S) face.
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Figure 2.1: Ribonucleic acid. (a) The four nucleobases; adenine (A), cytosine (C), gua-
nine (G) and uracil (U). These images come from the web site newworldencyclope-
dia.org. (b) Two nucleobases with their sugars, nucleotides, linked together by the main
chain, which runs from the 5’ end to the 3’ end. The glycosidic bond attaches the nucle-
obase to its sugar. Colors used indicate the atom types: white and pink, hydrogen; grey,
carbon; red, oxygen; yellow, phosphate and blue, nitrogen.

Hence, to depict a base pair, it suffices to invoke the interacting faces, for example W/W.

Faces are tagged in this way: the Sugar face is the one on the side of the glycosidic

bond. The Hoogsteen face is opposed to the Sugar face. Finally, the Watson-Crick face

is the most remote to the glycosidic bond. We invite the reader to grasp the difference

between the Sugar faces of purines (adenine and guanine: figure 2.2a) and that of

pyrimidines (cytosine and uracil; figure 2.2b).

The relative orientation of the two glycosidic bonds is added to the description of the

base pair. The orientation is either cis or trans. Figure 2.2c shows an example of each.

Some base pairs are called canonical, following the discovery of the structure of DNA

by Drs. Watson and Crick [70]; the nucleobases associate by face complementarity;

guanine with cytosine, and adenine with uracil (or thymine in DNA). This unambiguous

pairing scheme allows for the perfect duplication of DNA [70]. Figure 2.2d shows the

Watson-Crick base pairs in RNA, which are of the type cis W/W in the LW nomenclature



11

(not all cis W/W are canonical though). Other base pairs, called non-canonicals, also

exist in RNA. Many catalogs have been compiled, notably by, Lemieux and Major [69],

the Fox group [71, 72], Gutell’s group [68], and Olson’s group [73].

It is interesting to mention here the concept of isosteric base pair substitution [74,

75]. Indeed, the different types of base pairs occupy respective volumes, and position

the glycosidic bonds in particular manners, such that in an RNA sequence alignment,

given the observed co-variations, it is possible to predict the types of base pairs [76,

77, 78]. For instance, notice the resemblance in size, and the distance between and

the position of the two phosphate atoms, between the G=C and U=A base pairs in

figure 2.2d. These two basepairs can be superimposed on one another at a surprizing

degree of coincidence, despite their different atomic content.

2.3 Double helix

When base pairs stack on one another, for example the pair of nucleotides (i+1, j−

1) on top of the pair (i, j), this yields a double helical structure, like the one shown in

figure 2.3a. Because base pairs are asymmetric with respect to the glycosidic bonds

(figure 2.3c) (i.e. no other in-plane rotations are equivalent), the double helix displays

two grooves, the major and the minor, whose difference is notable when the double helix

is rendered as a volume (figure 2.3b); the major groove is narrow but deep, while the

minor groove is large but shallow. The RNA double helix is mostly found in the A-form

(about eleven base pairs per turn) (DNA is mostly found in the B-form; 10.5 base pairs

per turn, attributable to thymine) [64, 79]. Interestingly, a particular suite of base pairs

and nucleotides can confer to RNA the shape of the DNA double helix [80].

2.4 Folding

The folding of the RNA on itself is a complex phenomena, subject of many studies.

Grossly, the folding proceeds in two successive (overlapping) steps: the formation of
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trans
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(d) Watson-Crick base pairs.

Figure 2.2: Base pairs. (a) The three faces of a purine (adenine or guanine), according
to the Leontis-Westhof (LW) nomenclature. The faces are Watson-Crick (W), Sugar (S)
and Hoogsteen (H), all defined with respect to the glycosidic bond. (b) The three faces
of a pyrimidine (cytosine or uracil), according to the LW nomenclature. (c) The relative
orientation of the glycosidic bonds determines the cis or trans type of pairing. The upper
base pair is an U=A trans W/H while the bottom base pair is an U=A cis W/W. (d) The
canonical Watson-Crick base pairs; The G=C pair (upper) and the U=A pair (lower).
Hydrogen bonds are highlighted by dashed lines. The Watson-Crick base pairs are of
the type cis W/W in the LW nomenclature, since their Watson-Crick faces are interacting,
and the relative orientation of their glycosidic bonds are in cis. Color scheme is the same
as in the previous figure.
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(a) Mesh rendering (b) Volume rendering

major groove

minor groove

(c) Origin of grooves

Figure 2.3: The RNA double helix (PDB file 1D4R). (a) Mesh rendering of a double
helix. Nucleotides are colored in this fashion: adenine, green; cytosine, yellow; guanine,
violet; uracil, red. Slanted bars indicate the double helix’ groove: thin bars for minor
grooves, and thick bars for major grooves. (b) Atomic volume rendering, showing the
water accessible surface area. The electrostatic potential is displayed using a color
gradient, from −5 KT/e (red) to +1 KT/e (blue). (c) Origin of the grooves. Because of
the asymmetry of base pairs with respect to the glycosidic bonds (arrows), the face on
the side of the bonds is in the minor groove, the opposite face in the major groove.

the secondary structure, i.e. the formation of the double helical stems, then the spatial

organization of these double helices and their stabilization by the establishment of long-

distance contacts (base pairs and/or base stacks) [81, 82]. The last phase requires

the presence of positive ions (mono- and di-valent species), to counteract the negative

charges on the main chain. Figure 2.4 sketches a simplified scenario for the folding of

an RNA.

Many research groups have for focus the study of RNA folding, in particular the

groups of Bevilacqua [83], Herschlag [84], Sosnick [85], Thirumalai [86], Tinoco [35, 87],

Woodson [88], and forgive me for all others I forget! Also of intense study are the

subjects of electrostatics [89, 90], water [91], specific and coordinated ionic sites [92],

the ionic cloud [93] alternative folding intermediates and paths [94, 95, 96], contextual
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base pair types [97, 98], to name a few.

(a) (b) (c) (d)

Figure 2.4: Folding of RNA. (a) the poly-nucleotide collapses on itself to form double
helices (tubes). (b) These double helices repel one another because of the negative
charges in the main chain. (c) The addition of positively charged ions, cations, allows
the structure to relax. (d) Formation of long range contacts which stabilize the fold, in
grey.

2.5 Primary, secondary and tertiary structures

A ribonucleic acid can be represented in many ways. In reality, the molecule is de-

fined by the position (and speed) of each of its atoms, most likely in movement because

of the thermal agitation; the three-dimensional (3-D) or tertiary structure. Many experi-

mental methods have for goal to probe or unveil the atomic positions, in particular X-ray

crystallography (electron density maps point to absolute atom positions), and nuclear

magnetic resonance spectroscopy (NMR) (relative atomic positioning using the nuclear

Overhauser effect (NOE) [99]), have the highest resolution of structure determination.

The sequence of nucleotides composing the molecule, the primary structure, is

nowadays easily obtained at low cost, using the modest means of the electrophoresis

migration theory [38, 100].

The secondary structure puts forward the organization of the sequence into double

helices, and is mostly comprised of Watson-Crick base pairs. Although the secondary

structure is settled early in the folding of the RNA [35], it can be called to change dur-

ing the course of folding [101, 102, 103], or in the presence/absence of a ligand for
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riboswitches [22, 23]. This representation seems to be the panacea of RNA structure

prediction because of its symbolic nature (the four nucleobase types) and the yes/no

state of their base pairing status (sequence of length N yields a N2 Boolean grid), at the

contrary of the 3-D structure in which each atomic position must be given in a numeric

form (a sequence of length N, with approximately 30 atoms per nucleotide, yields an

N×30×R3 list).

In most theoretical studies, the secondary structure is considered to be a simple

graph. That is, suppose the base pairs (i, j) and (k, l). Then, if we have k ≤ j, we also

enforce that i ≤ k ≤ l ≤ j [104]. This restrictive definition is useful only to simplify the

algorithms of secondary structure prediction methods (for example Mfold [105]), or to

extract a few properties (for example see [106, 107]). In reality, RNA structures often

contain pseudo-knots [108] (which a 97% majority are of the H-type [109]), hence giving

way to non-simple, secondary structure graphs.

The tertiary structure can therefore be seen as the spatial disposition of the sec-

ondary structure (the double helices in 3-D space). Figure 2.5 shows these different

levels of RNA structure representation. For the tRNA fold, the tertiary structure is stabi-

lized by base triples [110] and long-range base pairs [111]. As much as 25% of the base

pairing energy is attributable to tertiary pairing in the tRNA [110], explaining in part why

tRNA sequences are elusive to accurate secondary structure prediction, and calls for

a more expressive system for symbolic RNA structure representation and computation

(as in [112] for example). Other tertiary structure stabilization schemes can be found,

like the ribose zipper [113], the A-minor motif [114], tetraloop-helix [115, 116], kissing

loops, etc (higher order structure [117, 118, 119]). (see [120] for a recent survey of

these motifs).

Local folds in tertiary structures also participate in the stabilization of the molecule [121,

122, 123]: kink-turn [124], U-turn [125], A-platform [126], UNCG tetraloop [127], GNRA

and CUYG tetraloops [128], lonepair triploop (including the T-loop) [129, 130, 131], he-

lical coaxial stacking [132, 133], etc. and are amenable to prediction from sequence

(see, for instance [77, 134, 135]).
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CHAPTER 3

THE NEED FOR A NEW PARADIGM

In this chapter we will position the work done here with respect to current knowledge. We

will discuss the problematic of RNA structure prediction and present existing approaches

that tackle this problem. We will also state the thesis.

3.1 Problematic

The RNA folding problem [35, 136, 137], the specialized version of the more general

bio-polymer folding problem, is enunciated as this: predict the tertiary structure from the

primary structure. This folding problem still stands despite decades of research (early

computational studies, see [138, 139]), our access to immense computational power

(the Guinness world record holder folding@home project [140]), or our keenness at

attacking the problem (consider these recent attempts [45, 54]). The core of the prob-

lem lies in the Levinthal paradox: how does a bio-polymer fold in a biologically relevant

time scale when the conformational search space seems unbounded [141, 142]. Even

though the folding of a bio-polymer is known to be hierarchical [35, 141], the conforma-

tional search space still remains large, even in a reduced representation [47, 143, 144].

The problem also lies in the delicate balance of the forces acting upon folding [145], and

for RNA, the contribution of water and the ionic cloud [146, 147, 148].

We already exposed the urgent need to solve this problem, as sequences are pro-

duced at the genomic scale, while 3-D structures are solved one-at-a-time, notwith-

standing the protein structure initiative project (http://www.nigms.nih.gov/Initiatives/PSI)

and the Critical Assessment of Techniques for Protein Structure Prediction (CASP)

(http://predictioncenter.org/), which have no equivalent in the RNA field yet. Structure

prediction is useful, particularly because of its broad impact on humanity (functional

inference to drug screening) [149].
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Classical secondary structures, i.e. secondary structures deprived of helical, non-

canonical base pairs, are often too underdetermined to efficiently provide a projection

for tertiary structures, leading to a gap in RNA structure prediction [150]. As a mat-

ter of fact, non-canonical base pairs provide stabilizing energy to the final fold (see,

for instance [110, 151, 152, 153]), as well as restrict the conformational search space

by reducing the degrees of freedom of base paired nucleotides. The consideration of

non-canonical base pairs in an RNA structure prediction method is assuredly a wel-

comed feature. Indeed, non-canonical base pairs are found throughout solved RNA

structures [154], and often participate in small, recurrent motifs [121, 123].

3.2 Nucleotide Cyclic Motif

With the ever increasing number of solved RNA 3-D structures in the PDB, the notion

that RNA is effectively built from small recurring blocks gains appeal [121, 122, 123, 155,

156]. Indeed, recent advances in structural annotations [56, 69, 157], combined to the

mathematical analysis offered by graph-centered algorithms [156, 158], and applied to

large ribosomal RNA structures (the 30S [159] and the 50S [160]), confirm this modular

view of RNA architecture, and forecast its many potent applications [161, 162, 163].

The use of 3-D fragments from the PDB is not new, and perhaps the most eloquent

example of such use is made in the computer program ROSETTA [164, 165, 166, 167],

which enables atomic precision 3-D structure prediction of proteins from sequence [168].

And, for the RNA counterpart: FARNA [44]. The idea behind the fragment assembly

scheme is that local van der Waals and electrostatic interactions are implicitly captured

in these 3-D fragments, hence the imprint of the sequence on the 3-D structure [169,

170, 171].

Hornton’s algorithm applied to graphs of structural annotations of RNA 3-D struc-

tures gives a basis of shortest cycles composing the graphs [156, 158], as shown in

Figure 3.1. These shortest cycles can then be viewed as the fundamental building

blocks of RNA structure. It has been found that too many types of these cycles occur,

such that their subsequent use for structure prediction is prohibitive (Major F, personal
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communication). An astute downsize of the cycle’s types entails the nucleotide cyclic

motifs (NCM [45]), as in Figure 3.2, by abstracting base pair types and neglecting base

stacking interactions. NCMs are recurrent, compact, generally composed of few nu-

cleotides, sometimes recognized as motifs, and captures base pair isostericity. NCMs

are single- and double-stranded motifs that can be welded together as suites to form

complete hairpins (see Figure 5.10). Then, the RNA structure is simply an assembly of

these hairpins.
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Figure 3.1: Minimum cycles basis. (a) 3-D structure of hairpin 2255-2280 of PDB file
1FFK, colored from blue at the 5’-end to red at the 3’-end. (b) Its graph of relations,
where thick lines represent base pairs. Accounted relations are backbone connectivity,
base pairing and base stacking. (c) Its corresponding basis of minimum cycles. A total
of twelve cycles are highlighted in shaded areas.

Here, we capitalize on the hierarchical nature of the RNA folding process in a divide-

and-conquer manner; from the primary structure predict the secondary structure (the

MC-Fold computer program), then, from the secondary structure, predict the tertiary

structure (the MC-Sym computer program). Both prediction steps are unified under a

single and simple model which makes use of a first order object, the nucleotide cyclic

motif (compare NCM Fusion 1 and NCM Fusion 2 in Figure 5.1). Our thesis is that

the Protein Data Bank currently holds enough information on NCMs, such that statistics

on them are able, in return, to predict the native state of an RNA sequence. Further-

more, NCMs ease the prediction of base pair types in 3-D modeling through the NCM
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NCM Occurrence
3 5 / 2%
4 82 / 39%
5 49 / 23%
6 77 / 36%

2_2 1606 / 89%
2_3 66 / 4%
2_4 21 / 1%
2_5 5 / <1%
3_3 23 / 1%
3_2 47 / 3%
4_2 8 / <1%
5_2 3 / <1%

(b)

Figure 3.2: Nucleotide cyclic motifs (NCM). (a) Shown are those that occur most fre-
quently in the PDB. Dots represent nucleotides, thick lines base pairs, and thin lines
nucleotide backbone connectivity. Top row displays single-stranded NCMs, while bot-
tom rows double-stranded NCMs. (b) Occurrences of the various NCMs.

reconciliation process (depicted in Table 5.3).

NCMs enable a new paradigm in which the contributions of all base pair types are

counted for, and not just the canonical ones. Furthermore, the two-stranded versions

of NCMs are efficient to model RNA double helical stems, in contrast with a single-

stranded fragment merging approach, like FARNA [44], which requires large computa-

tional resources [59]. NCMs effectively bridges the gap in RNA structure prediction (to

follow comments in [150]). Chapters 4 and 5 discuss in details this new paradigm and

its power.
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3.3 The master equation

Having identified the Nucleotide Cyclic Motif (NCM) as a first order object for RNA

folding, we now seek to devise a mathematical model which would have a predictive

value following an analysis of these NCMs from a structural database. We stress here

that it is only a model, and many others could be put forth based on the same objects.

Unquestionably, one would like to obtain the simplest model (to abide to the principle

of Occam’s razor). However, there are no known algorithm to obtain such a model,

and we are therefore left with our human intuition (and I would even say “inspiration”).

Without a doubt, in order to devise a model for RNA folding, one has to first inspect RNA

3D structures, and that on many planes of representations (cartoons, balls-and-sticks,

molecular envelopes, base pairs, base stacks, graphs of tertiary interactions, etc). Only

then one can recognize what is like (and what is unlike) an RNA structure.

We have decided to sketch a pseudo-potential energy function, or scoring function,

based on statistics extracted from the Protein Data Bank. The main idea here is that if

Nature uses some NCMs more often than expected, then one reasonable assumption

would be to attribute the use of these NCMs to their thermodynamic stability. We start

with the well-celebrated Boltzmann equation:

Φ(structure|sequence) =−RT · lnΨ(structure|sequence)

where Ψ(structure|sequence) is the probability of observing the structure given a se-

quence. This equation allows us to evaluate the likelyness of many alternative structures

for the same given sequence, to sort them according to their scores, and to obtain the

one of minimum free energy. The −RT factor is simply a coupling constant allowing to

convert probabilities into energies, thus Φ(structure|sequence) represents the energy of

a structure given its sequence.

To proceed further, we kindly ask the reader to refer to Figure 5.10, as it defines cy-

cles, or NCMs, junctions, hinges and base pairs. We also lay down the master equation,
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which is a breakdown of the previous equation into four parts:

Ψ(structure|sequence) =

Ψ(NCMs|sequence)︸ ︷︷ ︸
I

·Ψ(junctions|NCMs)︸ ︷︷ ︸
II

·Ψ(hinges|junctions)︸ ︷︷ ︸
III

·Ψ(pairs|hinges)︸ ︷︷ ︸
IV

where each of the four parts will now be further discussed.

When one looks at the twelve most recurrent NCMs (Figure 3.2), the first question

that comes to mind is are there sequences that prefer particular NCMs? For a fact,

GNRA sequences are preferred in tetraloops (Figure 3.2, NCM type [4]), and UNCG

sequences to a lesser degree. Capturing the fitness of a sequence in an NCM is the

goal of part I of the master equation. Hence, given many possible decompositions

of a structure into NCMs, we would like to score better those that feature the GNRA

sequences into NCMs of type [4].

We now turn our attention to the suites of NCMs, where individual NCMs are welded

together to form junctions (see Figure 5.10). A notable feature of RNA 3D structures is

the predominant occurence of NCM type [2_2] (Figure 3.2b). Single-bulged nucleotides,

as properly described by NCMs types [2_3] and [3_2], are rare (and multiple-bulged

rarer). In order to quantify the many different suites of NCMs a sequence can adopt, we

encoded in a Markov chain the probabilities of observing an NCM of type i followed im-

mediately by another NCM of type j, defining a junction (i, j) (see Figure 5.10). Markov

chains are data structures appropriate to capture the correlation of an event (here NCM

types) on others. We adopt the simplest of the chains which is of order one, meaning

that the probability of a junction (i, j) at NCM j only depends on the type of the previous

NCM i (but could also depend on the previous two ones). This enables us to score better

a structure that features many adjacent NCMs of type [2_2] against one which would be

made of, say, three consecutive NCMs of type [2_3]. This is what part II of the master

equation tries to encode.
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By far the most complicated computation is the one of part III of the master equation.

Simply put, it tries to guess the type of a base pair common to two consecutive NCMs,

an hinge (Figure 5.10). Base pair types are those defined by Leontis and Westhof, which

are described by their interacting edges. Borrowing from an analogy to analog electric

circuits, consider many electrical paths from a single source to a single destination. The

question here would be how the electric current would be divided between the paths

given the electric properties of each path (resistance, capacitance, inductance, etc). For

the problem at hand, our electrical source and destination would be two consecutive

NCMs. The various electrical paths would then be the many different types of base pair

that the sequence could choose from. In Figure 5.10 one could ask what type of base

pair is most likely found between C13 and G17 given that they are at the hinge of NCM

types i (a type [5] NCM) and j (a type [2_3] NCM). One has to consider the possible a

priori types, that is, what a C=G base pair 5’ of a type [5] NCM prefers, then what a C=G

base pair 3’ of a type [2_3] prefers, then check if at least one type is common which

would “convey” the current. A detailed computation of a hinge is given in Table 5.3.

Finally, part IV scores the base pair, regardless of the type (taken into account in

the previous term). Hence, a C=G base pair has a better score than a C=C base pair,

because the latter occurs less frequently in the PDB.

Further instructions on how statistics from the Protein Data Bank are used to de-

rive actual scores for each individual parts of the master equation are discussed in

section 5.1.5. We feel that the master equation sums up the many aspects that are

consequent of the use of Nucleotide Cyclic Motifs as first order objects for the folding of

RNAs. Perhaps there are other significant phenomena that slipped by our concerns. If

so, we would gladly like to be informed of these, so that they could be accounted for in

a refined model.

3.4 Existing approaches

The most prominent approach to RNA structure prediction is the use of the thermo-

dynamics theory in secondary structure prediction. Its main concern is the evaluation of
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the folding free energy, as the RNA collapses on itself to attain its native fold. The latest

model which encompasses this view is the INN-HB model (Individual Nearest Neighbor

- Hydrogen Bond) [172]. Computer programs that use this model are Mfold [105, 173],

Sfold [174, 175, 176], RNAfold [177, 178], RNAsubopt [179], and RNAstructure [180], to

name the most widely known programs. Addition of the persistence length concept has

been figured out [181, 182]. Even though this model seems the most promising because

of its physico-chemical formulation, the thermodynamics data amassed since the 70’(for

example [183]) is still not enough to nail an RNA fold from the sequence [137, 184, 185],

even by using structure probing data [180]. This is due to the fact that the contribution of

non-canonical base pairs is only counted for single mismatches, (which we tried to ad-

dress in this work), and because of the under-characterization of hairpin heads (which

we also address, although in the thermodynamics paradigm some heads seem more

stable than the model predicts [186]) and multi-branched loops (too many possibilities to

address, even though some groups have tackled them, see [187, 188]), which are often

extrapolated from a few data points. McCaskill’s algorithm allows for an estimate of a

base pair probability [189]. An iterative optimization method that combines both exper-

imental and knowledge-based data supersedes the Turner99 thermodynamics model

and thus now serves as the state-of-the-art RNA secondary structure prediction [190].

The enumeration of secondary structures has been proved to belong to the NP-

complete time-complexity class of problems, when considering general-case models

of pseudoknots [191]. For secondary structures without pseudoknots, obtaining the

minimum free energy structure, by filling up a dynamic programming table, takes time

O(N3), for a sequence of length N [105, 192]. Approximations on pseudoknots can cut

the computation time to O(N6) [193], or even O(N5) or O(N4) on simpler pseudoknots

([191, 194], respectively). For pseudoknot-free secondary structures, an upper bound

of O(Ψ(N) ·N2), where Ψ(N) is almost constant, has recently been proposed [195].

Given that the MFE structure may not be the native fold, and thus sub-optimal struc-

tures have to be enumerated (by backtracking in exponential time), further optimiza-

tions to obtain the MFE may appear obsolete (see [196, 197] for recent developments).

Sub-optimal structure enumeration have been proposed by Zuker [198] (which uses a

distance criterion that ensures the generation of non-related structures), and by Schus-
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ter’s group [179] (systematic and exhaustive enumeration). The later implements the

Waterman-Byers algorithm [199, 200]. At this point, we wish to point the reader to these

excellent reviews in RNA secondary structure prediction: [201, 202]. For RNA struc-

ture prediction from multiple-sequence analysis, we suggest the thorough review of Drs.

Gardner and Giegerich [203].

Knowledge-based approaches have also been devised, notably MC-Fold [45] (this

work), CONTRAfold [204], a remake of the thermodynamics table for threading [205] or

enhanced prediction [206], and structure refinement [207]. Attempts to concoct physico-

chemical approaches to the RNA folding problem in 3-D have also been made, notice-

ably by Cao and Chen [144], and by Dokholyan’s group [47]. Of interest, intermediate

folding during transcription (due to pausing [102]) is considered in the kinwalker com-

puter program [103].

It is not at all clear what is the best approach for RNA structure prediction. On

one hand, secondary structure prediction is really fast for hundreds or thousands nu-

cleotides, compared to all-atoms simulated folding (the Folding@home cluster, a world-

wide network of about 250,000 active CPUs, has been used for the study of a twelve

nucleotides hairpin [208]!). However, the former lacks the excluded volume effects, such

that predicting structures with pseudoknots is a tricky business, often resulting in phys-

ically impossible folds. Coarse-grained nucleotide representation (like [47, 48, 144])

allows for faster RNA collapse, but they still rely heavily on the secondary structure, and

thus are not fully ab initio. The RNA folding landscape has been proved quite com-

plex for even a small hairpin [86, 209, 210], with multiple-paths for larger RNA struc-

tures [84, 96]. Chen highlights the complicated nature of RNA folding and what still

needs to be done [147].

3.5 Further on

Although the new RNA folding paradigm has been enunciated and detailed, we pur-

sued further along the path of RNA structure prediction, and the next studies can be

also viewed as part of the new paradigm.
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Because RNA side chains interact in highly specific manners (via hydrogen bonds),

we sought to improve the RNA structure prediction field by shifting the measure of mod-

eling success toward a distance metric which takes into account the specificity of RNA

base pair interactions. The RMSD has been shown to be a deficient measure of base

interaction reproducibility [56] and modeling success [63], at least for RNA, despite its

ubiquitous usage in the sister protein folding field. Symbolic annotations of the interac-

tions between nucleobases can instead be used to compare a 3D model with the solu-

tion structure. Hence, it suffice to reproduce the interactions within the solution structure

to declare that the model is correct, and not necessarily obtain low RMSD values. Dis-

crepancies between the model and the reference structure can also be scrutinized by

comparing the differences in the annotations. Since the introduction of this new dis-

tance metric we realized that much needs to be done in order to produce credible RNA

3D models, despite our recent advances in treating non-canonical base pairs.

The RNA folding paradigm has also been extended to accommodate new RNA struc-

ture probing methods and their data. Hence, RNA models produced using our MC-Fold

and MC-Sym pipeline can be scored against a variety of low- and high-resolution ex-

perimental data, in a effort to produce better RNA models. By generating various decoy

sets which makes use (or not) of long-range base pairing interactions, we investigated

the power of many low-resolution data to identify the native fold.
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4.1 Abstract

The classical RNA secondary structure model considers A•U and G•C Watson-Crick

as well as G•U wobble base pairs. Here we substitute it for a new one, in which sets

of nucleotide cyclic motifs define RNA structures. This model allows us to unify all base

pairing energetic contributions in an effective scoring function to tackle the problem of

RNA folding. We show how pipelining two computer algorithms based on nucleotide

cyclic motifs, MC-Fold and MC-Sym, reproduces a series of experimentally determined

RNA three-dimensional structures from the sequence. This demonstrates how crucial

the consideration of all base-pairing interactions is in filling the gap between sequence

and structure. We use the pipeline to define rules of precursor microRNA folding in

double helices, despite the presence of a number of presumed mismatches and bulges,

and to propose a new model of the human immunodeficiency virus-1 -1 frame-shifting

element.

4.2 Introduction

The number of RNAs found to be involved in non-coding cellular roles is increasing

rapidly and persistently [2, 29], and many RNA transcripts of unknown function have

recently been detected in eukaryotic cell maps [211]. RNAs can be grouped into fam-

ilies that share structural features and function. Therefore, unravelling the structure

provides crucial insights into the way in which RNA works. However, producing RNA

high-resolution structures by X-ray crystallography and NMR spectroscopy is slow com-

pared to sequencing, thus creating an important gap between the number of known

tertiary (three-dimensional, 3D) structures [39] and that of sequences [212].

In the search for an effective RNA structure-determination approach, we examined

different theoretical schemes and studied their relative merit to attain our goal. Hope

came from the fact that secondary structures would provide enough structural con-

straints to automate 3D building [150]. A secondary structure describes the stems of

RNA - crucial building blocks that form when two complementary regions of the se-
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quence base pair and adopt a double-helix structure. A legitimate approximation of

secondary structures considers stems that consist of A•U and G•C Watson-Crick base

pairs as well as G•U wobble base pairs. These base pairs are called ’canonicals’.

Secondary structures can be derived from a sequence by using a combination of

free-energy minimization [213] and covariation analysis [214]. However, the presence of

a few key non-canonical base pairs blurs predictions, because they contribute energies

and complicate covariation interplay [202]. Even when experimental data are consid-

ered (for example, enzymatic or chemical probing), selecting the native amongst many

suboptimal secondary structures remains elusive [180]. More importantly, secondary

structures deprived of non-canonical base pairs are neither adequate to determine 3D

structures nor sufficient to faithfully align sequences of the same family [77, 150, 215].

Recent attempts to replace thermodynamics by statistical scores resulted in either simi-

lar [205] or only slightly improved [204] predictive power. Furthermore, empirical scoring

of 3D structures applies only to very short sequences and requires covariation data [44].

Taken together, these shortcomings and increasing needs for RNA genome-wide anno-

tation prompted us to develop a new approach.

We extended the classical rationale underlying RNA structure prediction by incorpo-

rating all base pairs. To do so, we introduced a new first-order object to represent nu-

cleotide relationships in structured RNAs: the nucleotide cyclic motif (NCM). The NCMs

became apparent to us from an analysis of the X-ray crystallographic structure of the

23S ribosomal RNA of Haloarcula marismortui [156]. Adjacent NCMs share common

base pairs - a property providing enough base-pairing context information to derive an

effective scoring function and making possible the use of the same algorithm for predict-

ing secondary and tertiary structures.

We propose a new RNA-structure-prediction method based on NCMs, implemented

as a pipeline of two computer programs: MC-Fold and MC-Sym (Supplementary Fig. 5.1).

We illustrate the predictive power of the pipeline by reproducing experimentally deter-

mined 3D structures from a single sequence, building 3D structures of precursor mi-

croRNA (pre-miRNA) that are compatible with Dicer docking, and proposing a new 3D

structure of the human immunodeficiency virus (HIV-1) cis-acting -1 frame-shifting ele-
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ment. In practice, judicious pipeline predictions from a single sequence are expected for

fragments of up to approximately 150 nucleotides.

4.3 Folding single sequences

We evaluated the predictive power of MC-Fold by comparing the base pairs in the

lowest-energy (best) predicted structure of each sequence with those found in experi-

mental hairpin loop structures (Table 4.1). Compared to the thermodynamic approach,

MC-Fold predicts over 6% more canonical base pairs, despite a lower positive predic-

tive value, concurrently makes less false positives and negatives, and obtains a higher

Matthews correlation coefficient ratio (MCCR) (see Supplementary Table 5.1). In addi-

tion, the optimal solution for each hairpin includes more than 60% of the non-canonical

base pairs, and this number goes up to more than 80% if the top five solutions are

considered. The low rate of false negatives is a prerequisite for building 3D structures.

We evaluated the predictive power of the MC-Fold and MC-Sym pipeline by analysing

and comparing the best predictions for thirteen experimental 3D structures (Table 4.2).

Eleven of the thirteen examples rank first (that is, match the lowest-energy structure).

Eight of the thirteen examples have MCCRs of 100% (average = 98.2%). Seven of

the thirteen examples combine first rank and 100% MCCRs. The average root mean

squared deviations [51] (r.m.s.d.) of the thirteen examples when optimally superimposed

on their corresponding experimental structures are near 2 ångströms (Å) (Fig. 4.1). The

nucleotides that increase the r.m.s.d. are those with more degrees of freedom, that is,

those not involved in base-pairing interactions (see, for instance, nucleotides A14 and

U16 in the iron-responsive element (IRE) hairpin loop in Fig. 4.1a). Another source

of high r.m.s.d. is the presence of false positives and negatives. For instance, the

telomerase RNA domain IV has an MCCR of 94% and a r.m.s.d. of 3.3 Å (Fig. 4.1b).

Interestingly, the false positive and the false negative are made in the hairpin loop. The

NMR structure has a single-nucleotide bulge, A22, which stacks inside the helix on the

5’ side of a CUAU tetra-loop. The C23•U26 base pair that closes the tetra-loop is sta-

bilized by a single hydrogen bond, and the two bases are perpendicular to each other.
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Although relatively stable, these features are rather rare and might be induced by par-

ticular experimental conditions or structure resolution methods. The NMR hairpin loop

is less stable than the penta-loop proposed by the MC-Fold and MC-Sym pipeline.

When the experimental structure does not correspond to the lowest-energy structure,

it is generally due to the formation of extra base pairs in the latter. The lowest-energy

structure is often referred to the ’ground state’. The base pair formation/disruption

phenomenon is known to be dependent on conformational changes induced by co-

factors [216], which are difficult to represent in any scoring scheme. Consequently,

polymorphic structures are found in MC-Fold’s suboptimal solutions.

The conserved sequence of the Deinococcus radiodurans and Escherichia coli 23S

rRNA helix 40 (ref. [217]) contains an interior loop, , the structure of which

differs whether it is solved by NMR or by X-ray crystallography. The NMR conditions

favour the formation of a non-canonical A•A/A•G base-pair tandem, which MC-Fold

ranks first (shown in bold above). The X-ray crystallographic structure is bound to a

protein that possibly induces the disruption of the A•A non-canonical base pair and the

apparition of a single bulged-out A (shown in bold-italic above), which MC-Fold ranks

fifth.

The ’on’ and ’off’ conformational states of the cytoplasmic eukaryotic rRNA A site [218]

contains an interior loop, , the structure of which differs whether the ribo-

some is active in protein translation (on) or not (off). X-ray crystallographic data of the

Homo sapiens A site reveal these two distinct structures [218]. The on state has two

unpaired A nucleotides that bulge out of the main helix (shown in bold above), whereas

only one A, 3’ of the two bulges in the on state, is unpaired in the off state (shown in

italic above). MC-Fold ranks the on state as sixth and the off state as fourth.

Multi-branched RNAs are made of more than two helical stems that are joined by a

multi-branch loop. We used the pipeline to reproduce the 3D structure of a pre-catalytic

conformation of the hammerhead ribozyme [115] (Fig. 4.1c), as well as that of the recent

NMR structure of the Xenopus laevis 5S rRNA bound to zinc fingers [219] (Fig. 4.1d).

When more than two stems are selected by MC-Fold, the coaxial energies are computed
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and accounted for in the final score (Supplementary Methods). The key base pairs to

project properly the hammerhead in 3D space are located near the multi-branch: the

three base pairs at the bottom of stem II and the C•C base pair in stem I. The C•C base

pair is particularly important to avoid coaxial stacking between stem I and stem III.

Finally, inserting a stem that creates a nested structure generates a pseudo-knot,

as shown in the structure of the yellow leaf virus [220] (Fig. 4.1e). In this model, a

false positive non-canonical A•A base pair is made at the bottom of the upper stem.

Nevertheless, the closest generated model shares 2.7 Å of r.m.s.d. when optimally

superimposed on the NMR structure.

4.4 Folding human precursor microRNAs

When we submitted the pre-miRNA sequences of let-7c, mir-19a and mir-29a, our

predictions were almost identical, and were similar to the A-RNA double helix (Fig. 4.2).

In fact, we did not find any pre-miRNA sequence in mirBase [221] that could not be

folded in the double helix (data not shown), despite an overrepresentation of U•U and

U•C mismatches. The double helix offers a fixed and stable reference to the scissile

phosphates that are cleaved by the Drosha complex upstream of the pre-miRNA [222],

as well as by Dicer near the terminal loop [223].

The pre-miRNA double helix of let-7c (Fig. 4.2a) is bulge-free and presents to Dicer

the expected docking surface [223], despite the non-canonical base pairs. In the 3D

structure of mir-29a (Fig. 4.2b), the unpaired C23 nucleotide stacks inside the helix,

acting as a lever to push the scissile phosphate of A26 into its proper position. Finally,

in the 3D structure of mir-19a (Fig. 4.2c), the two unpaired nucleotides, A56 and U57,

form a bulge behind the docking surface, and hence do not interfere with Dicer binding.

These strict 3D structural restraints should further help in distinguishing between RNA

stem-loop structures that can be processed by Dicer.

The presumed microRNA mismatches, in fact, adopt a geometry isosteric to Watson-

Crick base pairs [74]. Their energies are less than that of canonical ones, which may
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facilitate the unwinding of the double helix and loading of the mature miRNA into the

RNA-induced silencing complex (RISC). Interestingly, we find very few G•A mismatches

in the miRNA region interfacing Dicer because their propensity for the sheared confor-

mation is not isosteric to Watson-Crick base pairs. The sheared geometry distorts the

backbone path of the double helix and, thus, might interfere with Dicer binding. The

natural selection for non-canonical base pairs increases the diversity of possible pre-

miRNA sequences, while increasing target specificity and, simultaneously, decreasing

off targeting.

4.5 Folding using probing data

As shown above, MC-Fold does not always rank experimental and activated struc-

tures first. Reaching these structures is nevertheless of principal importance. Here we

show how experimental data can be incorporated to restrain the conformational space

of MC-Fold to identify such induced structures.

For example, a recent study investigated the yeast transfer RNAAsp structure by

selective 2’-hydroxyl acylation and primer extension (SHAPE) [224]. SHAPE data reveal

the flexible and constrained nucleotides, subject to experimental conditions. The tRNA

sequence tested is deprived of the modified nucleotides, and has been shown to adopt

the cloverleaf structure [225]. The top MC-Fold prediction of this tRNAAsp sequence is

a hairpin, not a cloverleaf.

If we introduce high- and medium-flexibility SHAPE constraints (Supplementary Fig. 5.2),

MC-Fold generates cloverleaf structures and ranks the native one sixth. The D-stem-

loop sequence of this tRNA has a positive folding free energy under the thermodynamic

model. Amongst the solutions, one includes a correct D-stem base-pairing registry

(MCCR of 100%) and the A14•A21 base pair, whereas all other solutions base pair U13

with A21. The A14 inflexibility demonstrated by SHAPE is thus sufficient to discriminate

the native amongst all solutions.

Similarly, by introducing dimethyl sulphate (DMS) data [180], all known canonical
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(with the exception of G56•C28) and all non-canonical base pairs of the E. coli 5S rRNA

are captured in the correct in vivo Y-shaped topology (Supplementary Fig. 5.3a). Inter-

estingly, the MC-Fold optimal solution (Supplementary Fig. 5.3b) of sub-sequence 16 to

69 has a marked resemblance to the in vitro structure that was probed by chemical mod-

ifications [226] and by NMR [227]. The latter suggests further a bias towards structures

in the ground state.

4.6 Consensus structural assignments

Sequences that are functionally related are another source of structural data. Con-

sider the IRE, a hairpin loop found in the 3’ untranslated region of the ferritin and trans-

ferrin receptor mRNAs. IREs are involved in maintaining iron homeostasis in vertebrate

cells by acting as post-transcriptional factors [228]. MC-Fold and MC-Sym best pre-

dictions of several IRE sequences reveal the base pairs and nucleotides found to be

involved in receptor binding (Fig. 4.1a): an upper stem of six base pairs [229], a single

unpaired nucleotide 3’ of the hairpin-loop-flanking base pair [230] and a single (V) or

double (W) bulge in the 5’ strand of the stem.

MC-Cons computes a structural assignment, that is, it assigns to each sequence

the structure that maximizes the overall sum of pairwise structural similarities. The

structural assignment returned when 30 IRE sequences available at Rfam (RNA fam-

ilies database) [28] and their top ten MC-Fold predictions are input to MC-Cons (see

Supplementary Methods) reveals two IRE subclasses (Supplementary Fig. 5.4), corre-

sponding to both helix-bending motifs, V and W. The two subclasses have been shown

to be important in selective repressor binding, in particular to the human iron responsive

protein 2 (ref. [231]). Similarly, using ten yeast tRNA sequences, MC-Cons identified the

cloverleaf structure for each sequence (see Supplementary Fig. 5.5).

Multiple-sequence and low-resolution data can be used in combination. Using four-

teen 5S rRNA E. coli sequences and DMS data, the in vivo 5S rRNA structure is cap-

tured (Supplementary Fig. 5.6). In this case, a high rate of non-canonical false positives

is made in the large hairpin (nucleotides 35-47). This is probably due to the fact that
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the RNA in the crystal structure is bound to the ribosomal complex, in which the large

hairpin makes several contacts with the ribosomal protein L5. However, the consen-

sus structural assignment of the E. coli 5S rRNA sequences without DMS probing data

predicts the in vitro structure (Supplementary Fig. 5.7). Similarly, the Selenocysteine

Insertion Sequence (SECIS) structure is also predicted using seven sequences and

various RNase probing data [232] to block the base pairing of 13 out of 151 nucleotides

(Supplementary Fig. 5.8).

4.7 Modelling HIV-1 frame-shifting element

HIV-1 is known for encoding two proteins, pol and gag-pol [233], using the same

mRNA and a -1 cis-acting frame-shifting mechanism owing to the formation of a struc-

ture downstream of the slippery sequence [234, 235]. Recent NMR data suggest that

this structure could be a hairpin loop with an asymmetric bulge of three nucleotides,

5’-GGA-3’. In a first study, clear NMR signals were obtained by modifying the sequence

to include GC base pairs in the lower stem, therefore introducing a coerced registry. In a

second study, the native sequence was used. However, it was extracted from the mRNA

so that the lower stem was also constrained. Besides, when MC-Fold is run with both

NMR sequences, the best solutions match the structures obtained by NMR.

However, using 50 randomly selected sequences out of the 753 reported in Rfam,

a single and different structure makes the consensus assignment amongst these se-

quences. The principal difference between the new structure and those obtained by

NMR is in the bulge: MC-Fold predicts a double-A bulge, 5’-AA-3’, instead of a 5’-GGA-

3’ bulge (Fig. 4.3). This is a minor difference, but several arguments support it (see

Supplementary Discussion).
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4.8 Discussion

Our results highlight the fact that for effective RNA structure predictions, dealing with

all base-pairing types in both secondary and tertiary structures is of the utmost impor-

tance. A difference between our study and other recent attempts is the use of a first-

order object based on NCMs, which incorporates more base-pairing context-dependent

information; this suggests that it is key in scoring secondary structures.

The lowest free-energy states determined by MC-Fold often differ from active and

experimental states. Furthermore, solving the consensus structural assignment using

MC-Cons occasionally predicts such ground rather than active structures (for example,

in vitro E. coli 5S rRNA). However, we showed that few low-resolution experimental data

could be introduced to bias the search towards experimental and in vivo structures (for

example, tRNA, in vivo 5S rRNA and a SECIS element). Predicting both ground state

and induced fit structures for the same sequence is a strong indication that MC-Fold pre-

dicts correct structures, as well as structures that are accessible to any given sequence.

This is reflected in the high rate of false positives when compared to experimental struc-

tures.

Thanks to the pipeline, RNA modelling is now more accurate and simpler than ever.

The secondary structures generated by MC-Fold are more informative than those de-

prived of non-canonical base pairs and include very few false negatives. Producing

3D models consistent with these secondary structures is now a straightforward and

accessible-to-all online activity. This should translate into keener RNA function hypothe-

ses and less experimental work to verify them.

4.9 Methods summary

The three algorithms and the scoring function are fully described in the Supplemen-

tary Information. A web service of the three algorithms has been made publicly available

on the Internet at http://www.major.iric.ca. The protocols to produce secondary and ter-
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tiary structures using the website are described elsewhere (submitted).
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Predicted base pairs (%) Zipper RNAsubopt MC-Fold

(lower bound) (thermodynamics) (NCM)

PPV = TP
(TP+FP)

59.6 91.8 83.4

STY = TP
(TP+FN)

74.1 74.8 89.9

Matthews =
√

TP
(TP+FN)

TP
(TP+FP)

66.5 82.9 86.6

Table 4.1: Best predictions over 2,093 base pairs (1,784 canonical base pairs) in 264
hairpin loops extracted from 182 different PDB structures. Columns show programs and
rows show coefficients. Zipper is a program that implements a greedy algorithm that
folds a sequence from bottom-up using exclusively tandems of base pairs. This gives
a lower bound on the predictive power. RNAsubopt implements the current thermody-
namics model and enumerates systematically all suboptimal structures. The numbers
of nucleotides in these hairpin loops vary from 8 to 35 base pairs (average = 19.6). The
best value for each row is shown in bold. FN, number of false negatives; FP, number of
false positives; TP, number of true positives; Matthews, Matthews correlation coefficient
ratio; PPV, positive predictive value; and STY, sensitivity.
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RNA (PDB code) Size Rank Matthews r.m.s.d.
(nucleotides) (%) (Å)

Hairpins
Loop E (430D†) 29 1 100 1.7
IRE (1NBR) 29 1 100 2.4
Classical swine fever virus IRES 40 4 100 2.6
domain III (2HUA?)
RNA thermometer (2GIO?) 29 1 100 1.7
Eel UnaL2 LINE 3’ element (2FDT?) 36 1 100 2.0
Telomerase RNA domain IV (2FEY?) 43 1 94 3.3
RNase P RNA P4 (2CD1?) 27 2 96 2.1
GNYA tetraloop (2EVY?) 14 1 100 1.8
U2 snRNA (2O33?) 20 1 100 2.0
Group II intron branchsite (2AHT?) 27 1 96 1.9
Y-shape
Hammerhead ribozyme (1NYI†) 36 1 100 2.7
5S rRNA (2HGH?) 47 1 96 2.9
Pseudo-knot
Yellow leaf virus (2AP5?) 18 1 94 2.7

Table 4.2: The MC-Fold and MC-Sym pipeline is applied to single sequences. Three
different RNA topologies were tested: hairpin, multi-branch (Y-shape) and pseudo-knot.
The best predictions (best MCCRs) are reported. The r.m.s.d. values were calculated
over all heavy atoms. The average MC-Fold real time for all but one sequence is 7 s on
a typical workstation processor (AMD Athlon 64, 2.2 GHz); real time for the 5S rRNA
sequence is 143 s. The best 3D models are selected amongst all models generated
using a probabilistic search over a period of 12 h.
? A recent NMR structure.
† X-ray crystallographic structure.
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5.1 Methods

5.1.1 RNA-Select

Using a simple pair-wise Smith-Waterman sequence comparison, we grouped to-

gether the RNA 3-D structures that have similar sequences. The most recently solved

structure for each group was selected to form RNA-Select (Table 5.2)

5.1.2 NCM database

The NCM database contains lone-pair loops up to six nucleotides (including the

flanking lone base pair; see Fig. 5.1 "output1") and double-stranded NCMs up to eight

nucleotides (including both flanking base pairs). For lone-pair loops, we use the syn-

tax "L-<sequence>", where L is the length of the loop and <sequence> is the se-

quence. Therefore, the NCM database contains 4 types and 5440 different lone-pair

loop NCMs: 64 3-loops (3-AAA, 3-AAC, ... 3-UUU); 256 4-loops (4-AAAA, 4-AAAC,

... 4-UUUU); 1024 5-loops; and, 4096 6-loops. For double-stranded NCMs, we use

the syntax "L1_L2-<sequence>", where L1 is the length of the 5’-strand, L2 is the

length of the 3’-strand, and <sequence> is the sequence. Therefore, the NCM-database

contains 15 types and 407808 different double-stranded NCMs. The 2_2-<sequence>

NCMs represent the 256 base pairing tandems: 2_2-AAAA, 2_2-AAAC, ... 2_2-UUUU.

The 3_2-<sequence> represents 1024 5’-strand single-nucleotide bulges, and the 2_3-

<sequence> the 1024 3’-strand single-nucleotide bulges. Similarly, the 4_2-<sequence>

represents 4096 5’-strand double-nucleotide bulges, and so on; 2_4 (4096 NCMs), 5_2

and 2_5 (2 x 16384 = 32768 NCMs), 6_2 and 2_6 (2 x 65536 = 131072 NCMs), 3_3

(4096 NCMs), 3_4 and 4_3 (2 x 16384 = 32768 NCMs), 3_5 and 5_3 (2 x 65536

= 131072 NCMs), and 4_4 (65536 NCMs). Because there are so many NCMs, the

database is built in a just in time fashion, i.e. instances of the NCMs are built as the

MC-Fold | MC-Sym pipeline needs them.
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5.1.3 NCM building

First, we build a database of RNA backbone templates for each NCM: the phosphate

groups, riboses, and glycosidic bonds. These correspond to each of the 19 NCM types.

Second, we build a database of all possible base pairs: nucleobases and glycosidic

bonds. Third, we align the four atoms of the glycosidic bonds of the base pairs with

those of the backbone templates. A fit is found if the RMSD measured on the anchor

points are within a user-defined precision in Å. Typically, we use values from 0.1 to 1.0

Å (for this study, we used 0.3 for the lone-pair loop and double-stranded NCMs).

5.1.4 MC-Fold structure enumeration

To generate the possible hairpins of a sequence, we first determine a list of initiation

sites, which can be assigned lone-pair NCMs. Then, recursively, we match the rest of

the sequence to double-stranded NCMs (see Fig. 5.10). Since we consider all possible

positions for the initiation sites (even those of more than 6 nucleotides), this assignment

process is in O(N2), where N is the length of the sequence. For each possible hairpin

loop, we must find an assignment of approximately N/2 NCMs for the rest of the se-

quence. Since we have 15 double-stranded NCM types, this process is exponential, in

O(15N/2). This algorithm enumerates all possible NCM construction exhaustively. The

various incompatibilities amongst NCM junctions limit the number of actual construc-

tions, explaining why this algorithm works in practice (see Fig. 5.11).

For multi-branched structures, we use 4 indices: i, j, k, and l, i < j < k < l. We build

stem-loops where the lone-pair of the hairpin is located at (j, k), and the last base pair

in the stem at (i, l). We store them in a hyper-cube [(i, j) (k, l)]. We keep one (the best

energy) stem-loop for each position, E[(i, j) (k, l)]. The time for filling the hyper-cube

stays the same as described above, and the process results in a database of stem-

loops, which we sort by the i indices. We then fill a dynamic programming table using

the following recurrence equation:
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E(i, l) = min



E(i+1, l)

E(i, l−1)

min
i< j<k<l

E [(i, j)(k, l)]

min
i<p<l

E(i, p) + E(p+1, l)

(5.1)

The value E(1,N) gives the best possible energy for an assembly of stem-loops. Note

the similarity between these recurrence equations and those of Nussinov-Jacobson [192].

In the top equation, nucleotide i is free and in the second equation nucleotide l is free.

The third equation is for considering a stem, whereas the last equation is for consider-

ing a multi-branch structure. This process is in O(N4) in time, due to the third equation,

and does not consider pseudo-knotted structures. We do not mark the minimum value

origins, as we do not need to reconstruct the minimum energy structure at this step.

The dynamic programming table is used to enumerate the sub-optimal solutions.

We use the Waterman-Byers algorithm [200], which needs Emin = E(1,N), as well as a

fraction of the energy, ∆, that limits the sub-optimal solutions considered. The energy

of a sub-optimal returned by the algorithm is E, Emin ≤ E ≤ Emin + ∆, which is the

Waterman-Byers condition.

We solve the problem by backtracking over the stem variables. We pick one, two,

three, and so on stems from a list, L, generated a priori. In other words, we com-

pute the Cartesian products, {L}×{L}, {L}×{L}×{L}, and so on. We make sure that the

selected stems are entirely embedded, i.e. j < i’ < l’ < k, as well as that they define

distinct sequence regions, i.e. (i’ > l). Each time a new stem is added, the Waterman-

Byers condition is verified. The current energy is added to the minimum energy of the

remaining sequence, E(j, k) + E(l, N\Ω), which are both available from the dynamic

programming table. Ω is the set of the regions spanned by the previously selected

stems (see Fig. 5.12). At anytime, if it is possible to build a structure that will respect

the Waterman-Byers condition, then we continue the current construction; otherwise we

try the next stem for the current variable or if no more stems are available, we back-

track to the previous stem-variable. This process is exponential and influenced greatly
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by the ∆ value, which determines the probability of satisfying the condition. Haralick

and Elliott developed a probabilistic time complexity model of backtracking algorithms in

1980 [236].

For pseudo-knotted structures, we squeeze in an extra stem, B, in a complete sec-

ondary structure, such that B creates the ABAB configuration with another stem, A,

previously selected in the structure. The ABAB pseudo-knot configuration constitutes

the vast majority of pseudoknots (also called H-type) [109]. Several Aalberts and Hodas

rules about pseudoknot stem lengths were implemented [109]. The total pseudo-knot

energy is that of its constituting stems, including the coaxial stacking contribution. Also,

the Waterman-Byers condition must be relaxed to allow for the initial A-A- stem con-

figuration (on which the ABAB pseudo-knot can form). This increases significantly the

search space size, and thus computation time.

5.1.5 MC-Fold scoring function

MC-Fold generates a set of sub-optimal structures given a single input sequence.

The structures are ranked by their probability of occurrence given the sequence. These

scores are transformed in energies by assuming a Boltzmann distribution:

Φ(structure|sequence) =−RT · lnΨ(structure|sequence) (5.2)

where RT has the value 0.606 kcal/mol.

The scoring function accounts for the probabilities of observing the NCMs given the

sequence, their junctions, the base pairs in the context of the junctions, and the base

pairs themselves, out of any context (Fig. 5.10). As a result, we obtain the following

Master equation:
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Ψ(structure|seq) = (5.3)

Ψ(NCMs|seq) ·Ψ(junctions|NCMs) ·Ψ(hinges|junctions) ·Ψ(pairs|hinges)

When a suite of NCMs is assigned to a sequence, each NCM, ci, is mapped to a

subsequence of the sequence, si. The sequence-NCM affinity is evaluated by the first

term of the scoring function:

Ψ(NCMs|sequence) =
NCMs

∏
i

Ψ(ci|si) (5.4)

which can be written as:

Ψ(ci|si) =
Ψ(si|ci) ·Ψ(ci)

Ψ(si)
(5.5)

using Bayes’s theorem. Since Ψ(ci|si), the probability of ci given si, cannot be com-

puted directly, we compute Ψ(si|ci), the probability of observing si in ci, Ψ(si), the prob-

ability of si, and Ψ(ci), the probability of ci. The probability of si, Ψ(si), is the product of

the occurrence probabilities of each nucleotide in si, or Ψp(si).

Note that in the PDB we do not find every sequence within each NCM. To avoid null

probabilities whenever a sequence cannot be found in a specific NCM, we accept sibling

alternative sequences. Each nucleotide in the sequence is allowed the following IUPAC-

IUB single-letter code lists: A:[A,R,M,N], C:[C,Y,M,N], G:[G,R,K,N], and U:[U,Y,K,N].

Consequently, a sequence of n nucleotides is represented by 4n sequences. We call

the generalized sequence, gsi, the sequence that maximizes the ratio of the actual se-

quence probability within a given cycle on the a priori sequence probability:

Ψ(ci|si) ∝ max
g

Ψ(gsi|ci)
Ψapriori(gsi)

(5.6)



48

Here, the maximization of the ratio prevents the over-generalization of the sequence

into the degenerate N-only sequence.

For computation speedup, all sequence variations of each cycle were pre-calculated,

and their worst probabilities, Ψ(ci|si), were arbitrarily assigned a maximum energy of

+1.0 kcal/mol; the term Ψ(si) has now been absorbed into the scaling of converting the

probability into energy.

The second term evaluates the junction of two cycles, corresponding to a Markov

chain of order 1:

Ψ(junctions|NCMs) =
junctions

∏
( j,k)

Ψ(junction( j,k)|NCM j ∧NCMk) (5.7)

where Ψ(junction( j,k)|NCM j ∧NCMk) is the probability to observe a junction com-

posed of NCM j followed by NCMk. The maximum energy associated with the lowest

junction probabilities was arbitrarily assigned to +1.0 kcal/mol.

When two NCMs are joined, the base pairing type of the common base pair depends

not only on the sequence, but also on the two NCMs. For example, the flanking base

pair of a tri-loop must accommodate the sharp turn of the RNA backbone. Thus, the

hinge can be scored by:

Ψ(hinges|junctions) =
hinges

∏
l

Ψ(hingel|junction( j,k)) (5.8)

where Ψ(hingel|junction( j,k)) is the probability of observing hingel at junction( j,k). Let

Ψ(typem|NCMl
j) be the probability to observe base pairing type m in NCM j in hingel. To

consider all base pairing types of the hinge, we must consider all common base-pairing

types of NCM j and NCMk:
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Ψ(hingel|junction( j,k)) = (5.9)
j

∑
m

k

∑
n

δm,n ·Ψ(typem|NCMl
j) ·Ψ(typen|NCMl

k)

where δ is the Dirac delta function, which ensures that the joint probabilities are

calculated for the common base pairing types only. This computation prevents the in-

corporation of an invalid base pair in the hinge (see Table 5.3).

Finally, once the hinge has been specified, we must quantify the specific nucleotide

association of the base pair. Thus:

Ψ(pairs|hinges) =
pairs
∏

p
Ψ(pairp|hingel) (5.10)

where Ψ(pairp|hingel) is the probability of observing pairp in the hingel. The maxi-

mum energy has been arbitrarily fixed to +1.0 kcal/mol.

5.1.6 Coaxial stacking energetic contributions

The coaxial stacking between two stems is scored accordingly to the creation of a

new 2_2 NCM between the two stems. This NCM is similar to the others of its class,

but lacks one phosphodiester linkage, which is substituted by a base stacking interac-

tion. The total energetic contribution of coaxial stacking, therefore, comes from the new

NCM itself, i.e. its fitness to the sequence, as well as from the two new junctions (-2.9

kcal/mol). An entropy cost of +2.5 kcal/mol is added for the loss of the phosphodiester

linkage. This arbitrary value is a compromise between single and multi-branched struc-

tures: low costs favour multi-branched structures; high costs hairpins.
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5.1.7 MC-Sym structure generation

Libraries of 3-D fragments corresponding to each NCM are built (see NCM building

above). The NCM fusion in MC-Sym is conceptually equivalent to that of MC-Fold, i.e.

all possible NCM 3-D fragments are systematically assigned to the sequence. However,

since MC-Fold has already assigned a score, no scoring is necessary. The concatena-

tion of two adjacent NCMs is done by optimal superimposition of the two copies of the

common base pair in 3-D. Since there are many possible NCM 3-D fragments for each

NCM, an exhaustive assignment is prohibitive. Instead, a Las Vegas algorithm is used

to explore as many structures as possible in a given period of time, fixed for this study

to 12h. The difference between the Las Vegas and the better-known Monte Carlo algo-

rithms is that the former never gives an incorrect result, i.e. all 3-D structures generated

by MC-Sym are consistent with the input constraints.

5.1.8 MC-Fold | MC-Sym pipeline

The pipeline is described in Fig. 5.1. Input 1 is a single sequence. MC-Fold performs

the NCM fusion 1 and returns a sorted list of possible structures in dot-bracket notations

(Fig. 5.13). An MC-Sym input script for any MC-Fold solution can be generated by

providing it in the “mask” field of MC-Fold (see Fig. 5.14). This represents Input 2 in the

pipeline diagram of Fig. 5.1. MC-Sym is invoked and run for 24 hours, producing atomic-

precision 3-D models that satisfy the interactions specified in the script. An RMSD

threshold for each NCM merge, an overall atomic clash constraint, a ribose construction

threshold, an implicit phosphate restraint, a time limit or a maximum number of models,

and a threshold RMSD amongst the models produced parameterize MC-Sym. These

values can be edited in the script generated by MC-Fold. However, default values for

these parameters are fixed, and the scripts generated by MC-Fold can be submitted

to MC-Sym without editing. The output of MC-Sym is a set of 3-D structures in PDB

format [39] (Fig. 5.15).
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5.1.9 MC-Cons

The algorithm MC-Cons does not find a consensus structure deprived of many base

pairs that fit all sequences of an RNA family. Instead, we assign to each sequence one

of its suboptimal predictions that globally optimizes the sum of pair-wise similarities. In

other words, we look for a global and structural consensus assignment (that may include

more than one structures) rather than for a common structure. This is similar to the con-

cept of RNA “shapes” proposed by Reeder and Giegerich [237]. First, a similarity score

is computed for each pair of suboptimal solutions and stored in a similarity matrix. This

score is largely biased towards structural alignment, rather than sequence alignment.

Then, from the similarity matrix, the maximum sum is found by backtracking over all

suboptimal solutions. As the sequence-structure space grows exponentially, a cyclic co-

ordinate method [238], where the optimal structure of one sequence is searched while

all others are fixed, is used as an optimization heuristic. We then apply hierarchical

clustering to unveil the structural features of the consensus assignment.

5.1.10 RNA structure images

The 3-D structures were rendered using PyMOL. The secondary structure were ren-

dered using a modified version of the CONTRAfold renderer [204].

5.2 Discussion

5.2.1 Arguments in favour of a new HIV-1 -1 frameshifting element

First, the double A bulge is conserved across all 753 sequences, suggesting a pos-

sible functional role. It can adopt the A-minor motif that can simultaneously kink the

structure [235] and dock to any tandem of Watson-Crick base pairs [114]. In compari-

son, the GGA bulge is found in half of these sequences (Fig. 5.9), substituted by a GAA

bulge in the other half. G and A have different chemical groups and, in general, cannot
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easily be substituted. Second, the flanking base pair above the bulge can either be GA

or AA, which are frequent and stable at the end of double-helical stems [239]. Third, the

model satisfies enzymatic probing data applied to the native sequence from two stud-

ies [234, 240]. Fourth, the model applies to all HIV-1 subtypes, introducing three times

less NC base pairs in only one rather than three sites in the NMR model [241]. Fifth,

our has lower thermodynamic average energies than the NMR model (-23.0 vs. -21.3

kcal/mol; as computed by the RNAeval program of the Vienna package [178]). Sixth,

the model corroborates with recent enzymatic cleavage data that indicate an unpaired

nucleotide A45 [242].

Predicted base pairs Zipper RNAsubopt CONTRAfold MC-Fold
(%) (lower (thermody- (machine (NCM)

bound namics) learning)
False positives 50.2 6.7 7.5 12.9
False negatives 25.9 25.2 26.9 10.1
True positives 74.1 74.8 73.1 89.9

Canonicals 75.6 88.4 86.3 94.7
Non-canonicals 64.9 N/A 1.4 62.1

Matthews =√
T P

(T P+FN)
T P

(T P+FP) 66.5 82.8 81.4 86.6

Table 5.1: Comparison of the predictive power of three approaches. The predictions
of three approaches are compared over 1968 base pairs (1665 Watson-Crick) in 264
hairpins extracted from 182 different PDB structures. Zipper implements a greedy al-
gorithm that folds a sequence from bottom-up using exclusively tandems of base pairs.
This gives us a lower bound on the predictive power. RNAsubopt implements the cur-
rent thermodynamics model and enumerates exhaustively all suboptimal solutions. For
each approach, the best predicted structures are analyzed. In each row, the best value
is shown in bold. By increasing the number of sub-optimal solutions to 5, the Matthews
coefficient ratios go up to 93.1 (99.1% of the canonical base pairs) and 87.7 (97.3%
of the canonical base pairs), respectively for MC-Fold and RNAsubopt. Interestingly,
MC-Fold’s ratio reaches 92.2 when the top 2 solutions are analyzed (RNAsubopt 86.3).



53

104D 124D 157D 168D 170D 176D 17RA 1A34 1A4T 1A51
1A60 1A9N 1AFX 1AJF 1AJT 1AL5 1AM0 1APG 1ATO 1ATV
1ATW 1AUD 1AV6 1B23 1B36 1B7F 1BAU 1BGZ 1BJ2 1BMV
1BN0 1BR3 1BVJ 1BYJ 1BYX 1BZ2 1BZT 1C0A 1C0O 1C2Q
1C4L 1C9S 1CK5 1CQ5 1CSL 1CVJ 1CX0 1CX5 1D0T 1D0U
1D4R 1D6K 1D9H 1DDL 1DDY 1DFU 1DQF 1DRR 1DUH 1DUL
1DUQ 1DXN 1DZ5 1E4P 1E7K 1E95 1EBR 1EC6 1EFO 1EFS
1EFW 1EHZ 1EJZ 1EKA 1EKD 1EKZ 1ELH 1ESH 1ET4 1EUY
1EVP 1EXD 1EXY 1F27 1F5G 1F5U 1F6U 1F6X 1F6Z 1F7U
1F84 1F85 1F8V 1F9L 1FEQ 1FEU 1FG0 1FHK 1FIX 1FL8
1FMN 1FNX 1FQZ 1FUF 1FYO 1G1X 1G2E 1G2J 1G3A 1G4Q
1G70 1GKW 1GSG 1GTF 1GTN 1GUC 1H0Q 1H2C 1H2D 1H38
1H3E 1H4S 1HC8 1HJI 1HLX 1HO6 1HOQ 1HS1 1HS2 1HS3
1HS4 1HS8 1HWQ 1HYS 1I2X 1I2Y 1I3X 1I3Y 1I46 1I4B
1I5L 1I6U 1I7J 1I9F 1I9K 1I9V 1I9X 1ICG 1IDV 1IE1
1IK1 1IK5 1IKD 1IL2 1IVS 1J1U 1J4Y 1J6S 1J8G 1J9H
1JBR 1JBT 1JID 1JO7 1JOX 1JTJ 1JTW 1JU7 1JUR 1JZC
1JZV 1K1G 1K2G 1K4A 1K4B 1K5I 1K6G 1K6H 1K8S 1KAJ
1KD3 1KFO 1KH6 1KIS 1KKS 1KNZ 1KOC 1KOD 1KOS 1KP7
1KPD 1KPY 1KQ2 1KUO 1KUQ 1KXK 1L1C 1L1W 1L2X 1L3Z
1L8V 1L9A 1LDZ 1LMV 1LNT 1LPW 1LUU 1LUX 1LVJ 1M5K
1M5L 1M82 1M8V 1M8W 1M8X 1M8Y 1MDG 1ME0 1ME1 1MFJ
1MFK 1MFY 1MHK 1MHM 1MIS 1MJI 1MMS 1MNX 1MSY 1MT4
1MUV 1MV1 1MV6 1MWG 1MY9 1MZP 1N1H 1N35 1N38 1N53
1N66 1N77 1N7A 1N8X 1NA2 1NAO 1NB7 1NBK 1NBR 1NC0
1NEM 1NTA 1NTQ 1NTS 1NTT 1NUJ 1NXR 1NYB 1NZ1 1O15
1OKF 1OLN 1OO7 1OOA 1OQ0 1OSU 1OSW 1OW9 1P5M 1P5N
1P5O 1P79 1PBL 1PGL 1PJY 1PVO 1Q29 1Q75 1Q8N 1Q93
1Q96 1Q9A 1QBP 1QC0 1QC8 1QD3 1QES 1QET 1QF6 1QLN
1QU2 1QWB 1R2P 1R3E 1R3O 1R3X 1R4H 1R7W 1R7Z 1RAW
1RC7 1RFR 1RGO 1RKJ 1RLG 1RMV 1RNA 1RNG 1RNK 1ROQ
1RPU 1RXA 1S03 1S2F 1S76 1S9L 1SA9 1SAQ 1SDR 1SDS
1SER 1SI3 1SJ3 1SLP 1SYZ 1SZY 1T0D 1T0E 1T28 1T2R
1T4L 1T4X 1TFN 1TFW 1TJZ 1TLR 1TOB 1TTT 1TUT 1TXS
1U0B 1U2A 1U3K 1U6P 1U8D 1U9S 1ULL 1UTD 1UUD 1UUU
1UVJ 1UVK 1UVL 1UVN 1VFG 1VOP 1VQ7 1WKS 1WNE 1WPU
1WRQ 1WSU 1WTS 1WWD 1WWE 1WWF 1WWG 1XHP 1XJR 1XMQ
1XOK 1XP7 1XPE 1XPF 1XSG 1XSH 1XV0 1XV6 1XWP 1XWU
1Y26 1Y27 1Y39 1Y3O 1YFG 1YFV 1YG3 1YMO 1YN1 1YNC
1YNE 1YSV 1YTU 1YTY 1YVP 1YYK 1YYW 1YZ9 1Z2J 1Z30
1Z31 1Z43 1Z7F 1ZBI 1ZC5 1ZCI 1ZDJ 1ZDK 1ZE2 1ZEV
1ZFV 1ZIF 1ZIG 1ZIH 1ZJW 1ZL3 1ZX7 1ZZ5 205D 216D
219D 246D 247D 255D 259D 280D 283D 28SP 2A0P 2A1R
2A43 2A8V 2A9X 2AB4 2AD9 2ADC 2ADT 2AO5 2ASB 2ATW
2AU4 2AWE 2AWQ 2AZ0 2B3J 2B6G 2BBV 2BE0 2BGG 2BH2
2BJ6 2BNY 2BS0 2BS1 2BTE 2BX2 2C06 2C4Y 2C4Z 2C50
2C51 2CHJ 2CSX 2D17 2D18 2D1A 2ERR 2ES5 2ESI 2EUY
2EZ6 2F4X 2F88 2F8K 2FK6 2FMT 2FQN 2FRL 2FZ2 2G1W
2G8F 2G92 2GBH 2GM0 2TOB 2TPK 2TRA 310D 315D 332D
333D 353D 354D 361D 364D 377D 393D 397D 398D 3PHP
402D 404D 405D 409D 413D 418D 419D 420D 421D 422D
429D 430D 433D 435D 438D 439D 464D 466D 468D 469D
470D 471D 472D 479D 484D 485D 5MSF 6MSF 7MSF 8DRH
8PSH

Table 5.2: RNA-Select. The 531 PDB codes corresponding to the X-ray crystallographic
and NMR structures.
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Number of Probability of appearance Base pairing type
occurences (%)

5’ G-A base pair Ψm|i(typem|NCMl
i)

of NCMi

72 0.889 S/H anti trans
3 0.037 S/W anti cis
3 0.037 S/W para trans
2 0.025 W/H anti trans

3’ G-A base pair Ψn| j(typen|NCMl
j)

of NCM j

161 0.821 S/H anti trans
29 0.148 W/W anti cis
2 0.010 H/W para cis
2 0.010 W/B anti cis
2 0.010 W/H anti trans

G-A base pair j

∑
m

k

∑
n

δm,n ·Ψ(typem|NCMl
j) ·Ψ(typen|NCMl

k) = 0.731of hingel

0.889 × 0.821 = 0.730 S/H anti trans
0.037 × 0.000 = 0.000 S/W anti cis
0.000 × 0.148 = 0.000 W/W anti cis
0.025 × 0.010 ≈ 0.001 W/H anti trans

Table 5.3: Hinge scoring. The score of a GA hinge, l, at the junction of NCMs i (4-GAGA)
and j (2_2-CGAG) is 0.731: the sum of the products of the probabilities of appearance,
Ψ, of the GA base pairing types, m and n, found in the instances of the two NCMs
in RNA-Select, independently of the junction. The sheared GA base pair (S/H anti)
validates the hinge created by the junction of the two cycles since it is the most frequent
among all possible base pairs (probability of 0.730). The Watson-Crick/Hoogsteen is
another valid option, but is less likely to appear in this context (probability of 0.001).
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Figure 5.1: The MC-Fold | MC-Sym pipeline applied to the rRNA loop E. Input 1: Se-
quence of the rat 28S rRNA loop E. NCM Fusion 1: MC-Fold. Two adjacent NCMs
share a common hinge base pair (red and yellow). Output 1/Input 2: The optimal as-
signment contains 13 NCMs (circles), 14 base pairs (lines), and 29 nucleotides (stars).
The three main NCM types are shown: blue) lone-pair loops (GAGA tetraloop; NCM
#1); green) base pair tandems (dark green indicates canonical tandems); and, purple)
bulge and interior loops, an extension of the base pair tandem. The NC UA hinge base
pair (bold line) is common to NCMs #4 and #5, which combination forms the sarcin/ricin
motif. Each stem-loop is one chain of NCMs. Since the output of MC-Fold can be a
multi-branch or pseudo-knotted structure made of more than onoe hairpin, the output
is a set of chains of NCMs. NCM Fusion 2: MC-Sym. Output 2: The closest prediction
(blue) that shares 1.8 Å of RMSD and a representative sampling of structures (light blue)
are shown optimally superimposed on the rat 28S rRNA X-ray crystallographic loop E
structure (gold).
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>tRNA ASP

GCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCGGGGUUCAAUUCCCCGUCGCGGCGC

.................xx.............xxxx.................x...................  High

...............xx..x................xx................xx.................  Medium

(((((((..(((((......)))))((((((.......))))))...((((((...)..))))))))))))..  native − 2TRA  RNK TP FP FN Mthw

(((((((((((((.......))))))(((((.......)))))....((((((...)..)))))))))))).. −59.75 ( −1.25)   1 18  6  6  75.0

(((((((.(((((.......)))))((((((.......))))))...((((((...)..)))))))))))).. −59.73 ( −0.84)   2 19  5  5  79.2

(((((((.(.(((.......))))(((((((.......)))))))..((((((...)..)))))))))))).. −59.47 ( −0.71)   3 19  5  5  79.2

(((((((..((((.......))))(((((((.......)))))))..((((((...)..)))))))))))).. −58.72 ( −0.79)   4 19  5  5  79.2

(((((((.(.(((.......))))(((((((.......)))))).).((((((...)..)))))))))))).. −58.69 ( −0.71)   5 19  5  5  79.2

(((((((..(((((......)))))((((((.......))))))...((((((...)..)))))))))))).. −58.46 ( −0.71)   6 24  0  0 100.0**

(((((((...(((.......)))((((((((.......)))))).))((((((...)..)))))))))))).. −58.25 ( −0.71)   7 19  5  5  79.2

(((((((...((((......))))(((((((.......)))))))..((((((...)..)))))))))))).. −58.23 ( −1.07)   8 23  1  1  95.8

(((((((.((((((......))))))(((((.......)))))....((((((...)..)))))))))))).. −58.02 ( −1.14)   9 23  1  1  95.8

(((((((...(((.......)))((((((((.......)))))))).((((((...)..)))))))))))).. −57.93 ( −0.71)  10 19  5  5  79.2

Figure 5.2: MC-Fold predictions for the yeast tRNAASP. The top ten structures gener-
ated by MC-Fold for the Yeast tRNA under SHAPE constraints are shown. The native
structure (PDB file 2TRA) ranks 6th (Matthews coefficient ratio of 100%). The num-
bers in parenthesis represent the energy contributions of the coaxial stacking. The
nucleotides marked with a dot under the “High” SHAPE constraints have an 8 kcal/mol
penalty if found paired; 4 kcal/mol for “Medium”. Nucleotide 47 is absent. Real time =
159 seconds.

>E.coli 5

1   5   10   15   20   25   30   35   40   45   50   55   60   65   70   75   80   85   90   95  100  105  110  115  120

|   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

UGCCUGGCGGCCUUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

..............x.............................x...........................................................................  strong DMS

......................................x............xx.....x......x......................................................  moderate DMS

(((((((((((....((((((((....(((((((.............))))..)))...)))))).)).(((((((((((((((((...)))))))))))))))))..))))))))))).  native (2AW4)   RNK TP FP FN Mthw

(((((((((((((..(((((((((((..((((((((.(.....).))))))..))))).)))))).)).(((((((((((((((((...)))))))))))))))))))))))))))))). −110.44 ( −2.02)   1 42  8  1 90.6

(((((((((((((..(((((((((((..(((((((((......).))))))..))))).)))))).)).(((((((((((((((((...)))))))))))))))))))))))))))))). −110.08 ( −2.02)   2 42  8  1 90.6

(((((((((((.(..(((((((((((..((((((((.(.....).))))))..))))).)))))).))((((((((((((((((((...)))))))))))))))))))))))))))))). −109.35 ( +0.00)   3 42  8  1 90.6

((((((((((((...(((((((((((..((((((((.(.....).))))))..))))).)))))).))((((((((((((((((((...)))))))))))))))))))))))))))))). −109.29 ( −1.26)   4 42  8  1 90.6

(((((((((((.((.(((((((((((..((((((((.(.....).))))))..))))).)))))).)).(((((((((((((((((...)))))))))))))))))))))))))))))). −109.01 ( +0.00)   5 42  8  1 90.6

(a)

|    |    |    |    |    |    |    |    |    |    |

aGCGCGGUGgUcCCacCUGAcccCAUGCCGaacUCAGaaGUGaAaCGCCGUAGCg

((((((((((((((((((((((((.....))))))))))).)))))))))).))) −45.05 ( +0.00)

20   25   30   35   40   45   50   55   60   65   70

(b)

Figure 5.3: MC-Fold predictions for the E. coli 5S rRNA. a. The top 5 structures gener-
ated by MC-Fold for the E. coli 5S rRNA under DMS constraints are shown. The native
structure (PDB file 2AW4) is not predicted (best Matthews coefficient ratio 90.6%). The
numbers in parenthesis represent the energy contributions of the coaxial stacking. The
nucleotides marked with a dot under the “strong” DMS reactivity have an 8 kcal/mol
penalty if found paired; 4 kcal/mol for “moderate”. Real time = 2131 seconds. b. The
optimal MC-Fold solution of the 16-69 E. coli 5S rRNA subsequence. The NC base pairs
are shown using lowercase letters.
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[J02741_1_400_429] -((((.(.((((((...).))))))))))-

[AY120878_1_50_76] -((((_(.((((((...).))))))))))-

[X13753_1_830_856] -((((_(.((((((...).))))))))))-

[X01060_1_3432_3458] -((((_(.((((((...).))))))))))-

[X01060_1_3950_3976] -((((_(.((((((...).))))))))))-

[X13753_1_1434_1460] -((((_(.((((((...).))))))))))-

[M58040_1_3309_3335] -((((_(.((((((...).))))))))))-

[AJ426432_1_1658_1684] -((((_(.((((((...).))))))))))-

[X13753_1_1481_1507] -((((_(.((((((...).))))))))))-

[BC001188_1_3791_3817] -((((_(.((((((...).))))))))))-

[X01060_1_3482_3508] -((((_(.((((((...).))))))))))-

[X13753_1_1371_1397] -((((_(.((((((...).))))))))))-

[AJ426432_1_1593_1619] -((((_(.((((((...).))))))))))-

[AF171078_1_1416_1442] -((((_(.((((((...).))))))))))-

[AF086786_1_2_28] -((((_(.((((((...).))))))))))-

[S57280_1_391_417] -((((_(.((((((...).))))))))))-

[L39879_1_1190_1219] (((((.(.((((((...).)))))))))))

[M12120_1_24_53] (((((.(.((((((...).)))))))))))

[S77386_1_28_57] (((((.(.((((((...).)))))))))))

[D86625_1_6_35] (((((.(.((((((...).)))))))))))

[AF266195_1_14_43] (((((.(.((((((...).)))))))))))

[BC016354_1_30_59] (((((.(.((((((...).)))))))))))

[AF117958_1_132_161] (((((.(.((((((...).)))))))))))

[AF338763_1_11_40] (((((.(.((((((...).)))))))))))

[M16343_1_1306_1335] (((((.(.((((((...).)))))))))))

[AF285177_1_3_32] (((((.(.((((((...).)))))))))))

[AB062402_1_11_40] (((((.(.((((((...).)))))))))))

[AB073371_1_5_34] (((((.(.((((((...).)))))))))))

[AY112742_1_12_41] (((((-(.((((((...).)))))))))))

[BC019840_1_11_40] (((((-(.((((((...).)))))))))))
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Consensus            ((((((.((((((...).)))))))))))

AY112742_1_12_41     GUcCUGCUUCAACAGUGCUUGAACGGaAC (1st)

BC019840_1_11_40     GUcUUGCUUCAACAGUGUUUGAACGGaAC (1st)

AF086786_1_2_28      −UcGUUCGUCCUCAGUGCAGGGCAACaG− (1st)

S57280_1_391_417     −UcGUUCGUCCUCAGUGCAGGGCAAUaG− (5th)

AF171078_1_1416_1442 −UgGUUCGUCCUCAGUGCAGGGCAACaG− (1st)

AJ426432_1_1593_1619 −AUUAUCGGGAGCAGUGUCUUCCAUAAU− (1st)

X13753_1_1371_1397   −AUUAUCGGGGGCAGUGUCUUCCAUAAU− (3rd)

X01060_1_3482_3508   −AUUAUCGGAAGCAGUGCCUUCCAUAAU− (1st)

BC001188_1_3791_3817 −AUUAUCGGGAACAGUGUUUCCCAUAAU− (3rd)

X13753_1_1481_1507   −AUUAUCGGGGACAGUGUUUCCCAUAAU− (3rd)

AJ426432_1_1658_1684 −UAUAUCGGAGACAGUGAUCUCCAUAUG− (1st)

M58040_1_3309_3335   −UAUAUCGGAGaCAGUGAcCUCCAUAUG− (1st)

X13753_1_1434_1460   −UAUAUCGGAGGCAGUGACCUCCAUAUG− (1st)

X01060_1_3950_3976   −UGUAUCGGAGACAGUGAUCUCCAUAUG− (1st)

X01060_1_3432_3458   −UUUAUCAGUGACAGAGUUCACUAUAAA− (1st)

X13753_1_830_856     −UUUAUCAGUGACAGCGUUCACUAUAAA− (1st)

AY120878_1_50_76     −GgUCGCGUCAACAGUGUUUGAUCGAaC− (1st)

Consensus          (((((.(.((((((...).)))))))))))

AB062402_1_11_40   uUUCCUGCUUCAACAGUGCUUGGACGGAAc ( 1st)

AB073371_1_5_34    uCUCCUGCUUCAACAGUGCUUGGACGGAGc ( 1st)

AF285177_1_3_32    GUUCCUGCUUCAACAGUGCUUGGACGGAAC ( 1st)

M16343_1_1306_1335 GUUCCUGCgUCAACAGUGCUUGGaCGGAAC ( 2nd)

AF338763_1_11_40   UUaCCUGCUUCAACAGUGCUUGAACGGcAA ( 1st)

AF117958_1_132_161 ucUCUUGUUUCAACAGUGUUUGGACGGAac (21th)

BC016354_1_30_59   ucUCUUGCUUCAACAGUGUUUGGACGGAac ( 2nd)

AF266195_1_14_43   AUUCUUGCUUCAACAGUGUUUGAACGGAAU ( 1st)

D86625_1_6_35      GUUCUUGUUUCAACAGUGAUUGAACGGAAC ( 1st)

S77386_1_28_57     GUUCUUGCUUCAACAGUGAUUGAACGGAAC ( 1st)

M12120_1_24_53     GUUCUUGCUUCAACAGUGUUUGAACGGAAC ( 1st)

L39879_1_1190_1219 GUaCUUGCUUCAACAGUGUUUGAACGGaAC ( 1st)

J02741_1_400_429   −aUCUUGCUUCAACAGUGUUUGGACGGAa− ( 1st)

EMBL Number        Sequence / Structure     Rank

(b)

Figure 5.4: Clustering and aligned IRE sequences. a. The results of a hierarchical
clustering of the predicted structures identified by MC-Cons using inputs from MC-Fold.
Each sequence is identified by its EMBL identifier, and as found in the Rfam database.
A structural distance of 0 indicates identical structures. The IRE sequences are clearly
grouped in their respective structural class: the V-bulge (above) and the W bulge (be-
low). The W bulge is recognized in the bracket notation by the typical “((.(.((“, whereas
the V bulge is recognized by “((. ((“. The arrows indicate the C involved in IRE func-
tion. MC-Cons determines the IRE consensus assignment in about 10 minutes. b. The
alignment was made according to consensus structures identified by MC-Cons. The
sequences are divided in two groups: the V-bulge (up) and the W-bulge (down). The
non-canonical base pairs are highlighted using lowercase letters.
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>tRNA−ASN

GACUCCAUGGCCAAGUUGGUUAAGGCGUGCGACUGUUAAUCGCAAGAUCGUGAGUUCAACCCUCACUGGGGUCGCCA

...............xx..xx.............xxx..........x.............................

 >tRNA−GLY

GCGCAAGUGGUUUAGUGGUAAAAUCCAACGUUGCCAUCGUUGGGCCCCGGUUCGAUUCCGGGCUUGCGCACCA

(((((((..(((((.....)))))((((((((...))))))))..((((((...)..))))))))))))....     (    2nd)

........x......x..x.............xxx......................................

 >tRNA−ILE

GGUCUCUUGGCCCAGUUGGUUAAGGCACCGUGCUAAUAACGCGGGGAUCAGCGGUUCGAUCCCGCUAGAGACCACCA

(((((((..(((((.......)))))((((((((...))))))))....((((((...)..)))))))))))).... (    5th)

........x......xx..xx.............xxx..........x.............................

 >tRNA−LYS

UCCUUGUUAGCUCAGUUGGUAGAGCGUUCGGCUUUUAACCGAAAUGUCAGGGGUUCGAGCCCCCUAUGAGGAGCCA

(((((((..(((((......)))))((((((((...))))))))....((((((...)..))))))))))))....  (    1st)

...............xx..x.............xxx..........x.............................

 >tRNA−MET

GCUUCAGUAGCUCAGUAGGAAGAGCGUCAGUCUCAUAAUCUGAAGGUCGAGAGUUCGAACCUCUCCUGGAGCACCA

(((((((..(((((......)))))((((((((...))))))))....((((((...)..))))))))))))....  (    5th)

...............x.................xxx..........x.............................

 >tRNA−THR

GCUUCUAUGGCCAAGUUGGUAAGGCGCCACACUAGUAAUGUGGAGAUCAUCGGUUCAAAUCCGAUUGGAAGCACCA

(((((((..((((........))))((((((((...))))))))....((((((...)..))))))))))))....  (    1st)

...............xx..x.............xxx..........x.............................

 >tRNA−TRP

GAAGCGGUGGCUCAAUGGUAGAGCUUUCGACUCCAAAUCGAAGGGUUGCAGGUUCAAUUCCUGUCCGUUUCACCA

(((((((..(((((.....)))))((((((((...))))))))....((((((...)..))))))))))))....   (    1st)

........x......x..x.............xxx..........x.............................

 >tRNA−ALA

GGGCGUGUGGCGUAGUCGGUAGCGCGCUCCCUUAGCAUGGGAGAGGUCUCCGGUUCGAUUCCGGACUCGUCCACCA

(((((((..(((((......)))))(((((((.....)))))))....((((((...)..))))))))))))....  (   60th)

........x......x...x.............xxxx.........x.............................

 >tRNA−ARG

UUCCUCGUGGCCCAAUGGUCACGGCGUCUGGCUACGAACCAGAAGAUUCCAGGUUCAAGUCCUGGCGGGGAAGCCA

(((((((..(((((......)))))((((((((...))))))))....((((((...)..))))))))))))....  (   48th)

........x......x..x..............xxx..........x.............................

 >tRNA−ASP

UCCGUGAUAGUUUAAUGGUCAGAAUGGGCGCUUGUCGCGUGCCAGAUCGGGGUUCAAUUCCCCGUCGCGGAGCCA

...............x..x..............xxxx......................................

>tRNA−GLU

UCCGAUAUAGUGUAACGGCUAUCACAUCACGCUUUCACCGUGGAGACCGGGGUUCGACUCCCCGUAUCGGAGCCA

(((((((..(((((......)))))((((((((...))))))))...((((((...)..))))))))))))....   (   55th)

...................x.............xxx.......................................

 >tRNA−HIS

GGCCAUCUUAGUAUAGUGGUUAGUACACAACAUUGUGGCUGUUGAAACCCUGGUUCGAUUCUAGGAGGUGGCACCA

((((((((..(((((......)))))(((((((.....)))))))...((((((...)..)))))))))))).)..  (   13th)

................x..xx.............xxxx......................................

 >tRNA−PHE

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

(((((((..((((........))))(((((((.....)))))))....((((((...)..))))))))))))....    4TRA    TP FP FN Mthw

...............xx................xxxx.......................................

>tRNA−VAL

GGUUUCGUGGUCUAGUCGGUUAUGGCAUCUGCUUAACACGCAGAACGUCCCCAGUUCGAUCCUGGGCGAAAUCACCA

(((((((..(((((.......)))))((((((((...))))))))....((((((...)..)))))))))))).... (   11th)

........x......x...xx.............xxx..........x.............................

(((((((..((((.........))))((((((((...))))))))....((((((...)..)))))))))))).... (    2nd)

(((((((..(((((......)))))((((((.(....)))))))....((((((...)..))))))))))))....  (  336th) 23  2  1 93.9

(((((((..(((((......)))))(((((((.....)))))))...((((((...)..))))))))))))....   (    5th) 24  1  0 98.0

(((((((..(((((......)))))((((((.......))))))...((((((...)..))))))))))))....     2TRA    TP FP FN Mthw

Figure 5.5: Consensus structural assignment for yeast tRNA sequences. The yeast
non-mitochondrial tRNA sequences are from the September 2004 edition of the com-
pilation of tRNA sequences and sequences of tRNA genes database. The modified
nucleotides in MC-Fold are treated like their canonical counterparts. The modified nu-
cleotides that cannot adopt the A-RNA helix are constrained. For each tRNA, the an-
ticodon nucleotides are unpaired. The positions marked with ’x’ are either modified
nucleotides that cannot form the A-RNA helix (unpaired), or anticodon nucleotides. The
average real time to fold each tRNA sequence is 223.6 sec. MC-Cons determines the
consensus structural assignment in about 53 minutes.
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>E.coli 1

UGCCUGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   2nd)

>E.coli 2

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCUCAUGCGAGAGUAGGGAACUGCCAGGCAU

>E.coli 3

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   3rd)

>E.coli 4

UGUCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGACAU

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   3rd)

>E.coli 5

UGCCUGGCGGCCUUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

>E.coli 6

UGUCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGACUCCCCAUGCGAGAGUAGGGAACUGCCAGACAU

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   3rd)

>E.coli 8

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   5th)

>E.coli 10

UGUCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCUCAUGCGAGAGUAGGGAACUGCCAUGCAU

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   2nd)

>E.coli 11

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAUCA

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..))))))))))... (   3rd)

>E.coli 14

UGCCUGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGACAU

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   2nd)

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   5th)       41  4  2 93.2

(((((((((((((((((((((((....(((((((.............))))..)))...)))))).))(((...))).((((((((...)))))))).....)))))..)))))))))).   Mathews et al. 33  8 10 78.6

(((((((((((....((((((((....(((((((.............))))..)))...)))))).)).(((((((((((((((((...)))))))))))))))))..))))))))))).   native (2AW4)  TP FP FN Mthw

..................................x..xx............xx.....x......x......................................................   moderate DMS

..........xx..x.............................x...........................................................................   strong DMS

((((((((((.....(((((((((((..((((((.............))))..))))).)))))).))((((((((((((((((((...))))))))))))))))))..)))))))))).   (   5th)

UGCCUGGCGGCCUUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGGCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

Figure 5.6: MC-Cons consensus assignment for the in vivo E. coli 5S rRNA. The ten
sequences were obtained from the 5S ribosomal RNA database. Each sequence was
submitted to MC-Fold. The top 100 structures for each sequence were then submitted
to MC-Cons. The E. coli sequence #5 is the same as used by Mathews and colleagues
(Proc Natl Acad Sci USA. 101, 7287-7292, 2004). For each consensus structure, the
MC-Fold rank is shown in parenthesis. MC-Fold average real time = 925.6 sec. MC-
Cons real time = 2151 sec.
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>E.coli 1

UGCCUGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

>E.coli 2

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCUCAUGCGAGAGUAGGGAACUGCCAGGCAU

>E.coli 3

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

>E.coli 4

UGUCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGACAU

>E.coli 5

UGCCUGGCGGCCUUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAU

>E.coli 6

UGUCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGACUCCCCAUGCGAGAGUAGGGAACUGCCAGACAU

>E.coli 10

UGUCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCUCAUGCGAGAGUAGGGAACUGCCAUGCAU

>E.coli 11

UGCCUGGCGGCAGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGGCAUCA

>E.coli 14

UGCCUGGCGGCCGUAGCGCGGUGGUCCCACCUGACCCCAUGCCGAACUCAGAAGUGAAACGCCGUAGCGCCGAUGGUAGUGUGGGGUCUCCCCAUGCGAGAGUAGGGAACUGCCAGACAU

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).))))))))))))... ( 1st)

((((((((((.(..((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...)))))))))))))))))..))))))))))).   (64th)

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   ( 1st)

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   ( 1st)

(((((((((((.(.((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   ( 6th)

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   ( 1st)

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   ( 1st)

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   ( 1st)

((((((((((.(.(((((((((((((((((((((((((.....))))))))))).)))))))))).)))(((((((((((((((((...))))))))))))))))).)))))))))))).   (12th)

Figure 5.7: Unconstrained MC-Cons consensus assignment for the E. coli 5S rRNA. The
nine sequences were obtained from the 5S ribosomal RNA database. Each sequence
was submitted to MC-Fold. The top 100 structures for each sequence were then sub-
mitted to MC-Cons. The consensus structure resembles that deduced from structural
probing in solution and computer modelling by Brunel et al. (J Mol Biol. 221, 293-308,
1991). For each consensus structure, the MC-Fold rank is shown in parenthesis. MC-
Cons real time = 508 sec.

>Se1

CCCAGAUGAUGGCUUCACUGCUUGAUGGG

((((...(((((((....)))))))))))   (  4th)

....x..........xx............

>Se3

CCCAGAUGAUGCUUUAUCAGGCGGAUGGG

((((...(((((((....)))))))))))   (  1st)

....x.........x..............

>Se5

CCCAGAUGAUAGUGAGGCGCGGCUUGAUGGG

((((...(((((((.....).)))))))))) ( 14th)

....x.........xxx..............

>Se6

CCCAGAUGAUAGUAAGGCGCGGCUUGAUGGG

((((...(((((((.(...)))))))))))) (  3rd)

....x.........x................

>Se7

CCCAGAUGAUCCGACGCGCUUUGGUGAUGGG

((((...((((((((....)))))))))))) (  4th)

....x.............x............

Figure 5.8: MC-Fold predictions for the SECIS element. Positions marked with ’x’ have
high reactivity to single-stranded enzymatic probing, and are penalized by 8 kcal/mol if
they are found base-paired in MC-Fold solutions. The nucleotides that participate in the
formation of the K- turn motif are shown in bold. MC-Cons real time = 23 seconds.
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Figure 5.9: The sequence variations observed in 753 HIV-1 frame-shifting elements.
The sequences were obtained from Rfam. The slippery sequence is located in positions
1-7. The G(G|A)A bulge in the NMR model is located at positions 42-44. The AA
bulge in our model is located at positions 44-45. The drawing was made with WebLogo
(http://weblogo.berkeley.edu/logo.cgi).
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Figure 5.10: Cycles, junctions, hinges, and base pairs. The dots represent nucleotides
and the thick lines base pairs. Two NCMs (left), i and j, are joined, defining a junction
(center above), (i, j), which includes a hinge (center above), l, and corresponding
common pair (right), p. The junction (i, j) and the hinge l are valid, and thus a new NCM
(center below), k, can be added. The arrows indicate the formation of junctions. The
hinges are highlighted using ovals. The sum needed to compute the score resulting
from this particular combination are:

1. Ψ(5-NCM|”CAGUG”), the probability of observing a 5-NCM given ”ACGUU”.
2. Ψ(2_3-NCM|”ACGUU”), the score of assigning a 2_3-NCM to ”ACGUU”.
3. Ψ(junction(i, j)|5-CAGUG,2_3-ACGUU), the probability of observing a junction
between 5-CAGUG and 2_3-ACGUU.
4. Ψ(CG|junction(i, j)), the probability of observing a CG base pair in junction(i, j).
5. Ψ(CG|hingel), the probability of observing a CG base pair given hingel.

Table 5.3 shows how the hinge probability is determined when a base pair tandem is
added to a GNRA tetraloop.
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Figure 5.11: Number of structure vs. sequence lenght. The number of secondary struc-
tures generated by MC-Fold versus the length of hairpin sequences. Each dot repre-
sents one hairpin. The curve for hairpins of 1 to 20 nucleotides is zoomed (inset above).
The thick line shows the theoretical number of structures approximated by an exponen-
tial least square fit. The time required to compute the hairpin structures is proportional
to the number of generated structures (inset below).
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Figure 5.12: Multi-branch construction. Stems are represented by i < j < k < l. EWB(j,k)
represents the best energy between positions j to k, as found in the dynamic program-
ming table at entry (j,k). Ω represents the positions that were previously assigned in
stems.
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Explored 1232736 structures in 00:00:23.

Top 10 solutions:

> mcfold "GGGUGCUCAGUACGAGAGGAACCGCACCC"

GGGUGCUCAGUACGAGAGGAACCGCACCC

(((((((((.((((..))))))))))))) −27.90

(((((((.(.((((..))))).))))))) −26.86

(((((((.((((((..))))))))))))) −26.86

(((((((((.(((....)))))))))))) −26.68

((((((((.(((((..))))))))))))) −26.68

((((((.(((((((..))))))))))))) −26.56

(((((((..(((((..))).))))))))) −26.15

((((((..((((((..)))))).)))))) −25.95

((((((.((.((((..)))))).)))))) −25.93

(((((((..(((((..)))).)))))))) −25.87

(a)
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Figure 5.13: MC-Fold call and output. a. MC-Fold is invoked in a Unix shell with the
sequence of the rat 28S rRNA Loop E. The structures are generated, evaluated, and
sorted by energies, indicated by the numbers on the right of each solution shown in
dot-bracket notation. The number of solutions returned is an option of the program, 10
is the default value. b. Secondary structure of the best solution. A dot-bracket can be
converted in a secondary structure representation. The dotted lines represent canonical
base pairs; the lines non-canonical base pairs.
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// ========= Search =========

explore(

         stem_01

         option( model_limit = 5000, time_limit = 24h )

         rmsd( 1.2 sidechain && !( pse || lp || hydrogen ) )

         pdb( "Build/IRE" zipped ) )

// ========= Constraints / Restraints =========

clash                  ( stem_01 1.5 !( pse || lp || hydrogen ) )

ribose_rst             ( stem_01 method = ccm, threshold = 0.2, pucker = C3p_endo )

backtrack_rst          ( stem_01 method = probabilistic )

implicit_phosphate_rst( stem_01 sampling = 90% )

//=========== Backtrack ===========

stem_01 = backtrack(

         ncm_01

         merge( ncm_02 0.3 )

         merge( ncm_03 0.3 )

         merge( ncm_04 0.3 )

         merge( ncm_05 0.3 )

         merge( ncm_06 0.3 )

         merge( ncm_07 0.3 )

         merge( ncm_08 0.3 )

         merge( ncm_09 0.3 )

         merge( ncm_10 0.3 )

         merge( ncm_11 0.3 )

         merge( ncm_12 0.3 ) )

//========== NCMs ==========

ncm_01 = library(

         pdb( "MCSYM−DB/5/CAGUG/*.pdb.gz" ) #1:#5 <− A13:A17

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_02 = library(

         pdb( "MCSYM−DB/2_3/ACGCU/*.pdb.gz" ) #1:#2, #3:#5 <− A12:A13, A17:A19

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_03 = library(

         pdb( "MCSYM−DB/2_2/AAUU/*.pdb.gz" ) #1:#2, #3:#4 <− A11:A12, A19:A20

         rmsd( 0.5 sidechain && !( pse || lp || hydrogen ) ) )

ncm_04 = library(

         pdb( "MCSYM−DB/2_2/CAUG/*.pdb.gz" ) #1:#2, #3:#4 <− A10:A11, A20:A21

         rmsd( 0.5 sidechain && !( pse || lp || hydrogen ) ) )

ncm_05 = library(

         pdb( "MCSYM−DB/2_2/UCGG/*.pdb.gz" ) #1:#2, #3:#4 <− A9:A10, A21:A22

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_06 = library(

         pdb( "MCSYM−DB/2_2/UUGA/*.pdb.gz" ) #1:#2, #3:#4 <− A8:A9, A22:A23

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_07 = library(

         pdb( "MCSYM−DB/3_2/GCUAC/*.pdb.gz" ) #1:#3, #4:#5 <− A6:A8, A23:A24

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_08 = library(

         pdb( "MCSYM−DB/2_2/UGCG/*.pdb.gz" ) #1:#2, #3:#4 <− A5:A6, A24:A25

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_09 = library(

         pdb( "MCSYM−DB/2_2/GUGC/*.pdb.gz" ) #1:#2, #3:#4 <− A4:A5, A25:A26

         rmsd( 0.1 sidechain && !( pse || lp || hydrogen ) ) )

ncm_10 = library(

         pdb( "MCSYM−DB/2_2/AGCU/*.pdb.gz" ) #1:#2, #3:#4 <− A3:A4, A26:A27

         rmsd( 0.5 sidechain && !( pse || lp || hydrogen ) ) )

ncm_11 = library(

         pdb( "MCSYM−DB/2_2/GAUC/*.pdb.gz" ) #1:#2, #3:#4 <− A2:A3, A27:A28

         rmsd( 0.5 sidechain && !( pse || lp || hydrogen ) ) )

ncm_12 = library(

         pdb( "MCSYM−DB/2_2/GGCC/*.pdb.gz" ) #1:#2, #3:#4 <− A1:A2, A28:A29

         rmsd( 0.5 sidechain && !( pse || lp || hydrogen ) ) )

> mcsym IRE.mcc

//========== Sequence ==========

sequence( r A1 GGAGUGCUUCAACAGUGCUUGGACGCUCC )

//             ((((((.((((((...).)))))))))))

Figure 5.14: MC-Sym input script for the IRE consensus sequence. This script has been
generated by MC-Fold. It can be submitted to MC-Sym without any editing. It produces
the 3-D structure of the main manuscript Fig. 4.2a, shown superimposed with an NMR
structure of the IRE.
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HEADER    Unclassified                           13−AUG−2007 Void

EXPDTA     THEORETICAL MODEL

REMARK  2

REMARK  2 RESOLUTION. NOT APPLICABLE.

REMARK 99

REMARK 99 File generated using mccore 1.6.2 by major@binsrv1.iric.ca

REMARK 99

REMARK 99 Structure modeled using mcsym−4.2.1

REMARK 99

MODEL       48

ATOM 43712 C1*     GA    1    −16.272   6.062  25.553  1.00  0.00

ATOM 43713 C2*     GA    1    −14.796   6.266  25.900  1.00  0.00

ATOM 43714 C3*     GA    1    −14.336   7.153  24.752  1.00  0.00

ATOM 43715 C4*     GA    1    −15.675   7.992  24.361  1.00  0.00

ATOM 43716 C5*     GA    1    −15.972   8.084  22.884  1.00  0.00

ATOM 43717 H1*     GA    1    −16.807   5.761  26.453  1.00  0.00

ATOM 43718 H2*     GA    1    −14.204   5.356  25.992  1.00  0.00

ATOM 43719 H3*     GA    1    −13.814   6.380  24.189  1.00  0.00

ATOM 43720 H4*     GA    1    −15.544   9.028  24.673  1.00  0.00

ATOM 43721 O1P     GA    1    −16.831   8.460  20.250  1.00  0.00

ATOM 43722 O2*     GA    1    −14.686   6.896  27.161  1.00  0.00

ATOM 43723 O2P     GA    1    −19.102   8.528  21.128  1.00  0.00

ATOM 43724 O3*     GA    1    −13.382   8.209  24.719  1.00  0.00

ATOM 43725 O4*     GA    1    −16.755   7.283  25.021  1.00  0.00

ATOM 43726 O5*     GA    1    −17.176   8.849  22.685  1.00  0.00

ATOM 43727 P       GA    1    −17.744   9.116  21.221  1.00  0.00

ATOM 43728 1H5*    GA    1    −16.095   7.085  22.468  1.00  0.00

ATOM 43729 2H5*    GA    1    −15.140   8.563  22.368  1.00  0.00

ATOM 43730 HO2*    GA    1    −13.757   7.019  27.369  1.00  0.00

ATOM 43731 C2      GA    1    −15.345   1.814  25.572  1.00  0.00

ATOM 43732 C4      GA    1    −16.121   3.683  24.673  1.00  0.00

ATOM 43733 C5      GA    1    −16.489   3.099  23.480  1.00  0.00

ATOM 43734 C6      GA    1    −16.262   1.711  23.300  1.00  0.00

ATOM 43735 C8      GA    1    −17.008   5.155  23.298  1.00  0.00

ATOM 43736 H1      GA    1    −15.474   0.148  24.391  1.00  0.00

ATOM 43737 H8      GA    1    −17.370   6.097  22.913  1.00  0.00

ATOM 43738 N1      GA    1    −15.675   1.137  24.423  1.00  0.00

ATOM 43739 N2      GA    1    −14.785   1.083  26.547  1.00  0.00

ATOM 43740 N3      GA    1    −15.550   3.108  25.752  1.00  0.00

ATOM 43741 N7      GA    1    −17.046   4.038  22.624  1.00  0.00

ATOM 43742 N9      GA    1    −16.459   5.010  24.550  1.00  0.00

ATOM 43743 O6      GA    1    −16.521   1.009  22.313  1.00  0.00

ATOM 43744 1H2     GA    1    −14.518   1.522  27.417  1.00  0.00

ATOM 43745 2H2     GA    1    −14.628   0.095  26.411  1.00  0.00

ATOM 43746 C1*     GA    2    −10.780   2.683  24.987  1.00  0.00

ATOM 43747 C2*     GA    2     −9.300   2.811  24.628  1.00  0.00

ATOM 43748 C3*     GA    2     −9.213   4.275  24.216  1.00  0.00

ATOM 43749 C4*     GA    2    −10.592   4.991  24.601  1.00  0.00

...

Figure 5.15: Header of a PDB file generated by MC-Sym.
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6.1 Abstract

To benchmark progress made in RNA three-dimensional modeling and assess newly

developed techniques, reliable and meaningful comparison metrics and associated tools

are necessary. Generally, the average root-mean-square deviations (RMSDs) are quoted.

However, RMSD can be misleading since errors are spread over the whole molecule

and do not account for the specificity of RNA base interactions. Here, we introduce

two new metrics that are particularly suitable to RNAs: the deformation index and de-

formation profile. The deformation index is calibrated by the interaction network fidelity,

which considers base-base-stacking and base-base-pairing interactions within the tar-

get structure. The deformation profile highlights dissimilarities between structures at the

nucleotide scale for both intradomain and interdomain interactions. Our results show

that there is little correlation between RMSD and interaction network fidelity. The defor-

mation profile is a tool that allows for rapid assessment of the origins of discrepancies.

Keywords: RNA; structure; comparative analysis; three-dimensional modeling; RMSD

6.2 Introduction

Determining RNA three-dimensional (3D) structures is key in studying RNA func-

tion [2]. Physical methods such as X-ray crystallography and nuclear magnetic reso-

nance (NMR) spectroscopy are the most common ways for determining RNA 3D struc-

tures at high resolution. However, these methods cannot be applied to all RNAs and

RNA systems. Alternative methods include interactive modeling [46, 118, 243] and con-

formational space searching [44, 45, 47, 48].

The development and improvement of alternative methods are highly dependent on

what we learn from experimentally resolved structures. In particular, close inspection

of rRNA structures revealed the presence of structural motifs that we can recognize

from sequence [77]. To assist the production of new knowledge, systematic methods

to annotate RNA 3D structures [56, 69, 157, 244], discover and analyze structural mo-
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tifs [120, 156, 245, 246, 247], and formally represent RNA structures [163, 248] have

been developed. This systematization of knowledge generation and integration in ever-

improving predictive methods is typical of the postribosomal X-ray crystallographic era.

A problem that has been largely neglected, however, is how one can measure quantita-

tively the improvements brought by new approaches or methods.

The classical index for comparing predictive methods is to benchmark with the aver-

age root-mean-square deviations (RMSDs) after optimal superimposition between the

modeled RNA 3D structures they produce and their corresponding experimental struc-

tures. RMSDs are extremely useful, and obtaining models close to experimental struc-

tures is a noble exercise. RMSDs capture the general 3D shape of an RNA, but give lit-

tle information about its base-pairing and base-stacking patterns, local deviations of the

structure, intradomain deformation, or interdomain deviations. Most importantly, RMSDs

spread errors over the whole molecule to obtain the best global superimposition so that

it is very difficult to localize the origins of the modeling defects and thus to improve the

modeling process [56, 249, 250]. RNA molecules have specific structural features, such

as a modular and hierarchical architecture of structural elements like helices, hairpins,

and single-stranded loops connected by tertiary interactions. In addition, RNA bases as-

sociate in well-defined patterns of pairings that usually stack on each other. As modeling

and predictive methods are getting increasingly accurate, it is now desirable that their

results could be compared based on the reproducibility of these important and specific

RNA structural features rather than on global average measurements. Here, we intro-

duce two new RNA 3D structure comparison tools: (1) an RNA 3D structure comparison

index, the deformation index (DI), which evaluates and indicates the deviations between

two RNA 3D structures with both RMSDs and base interactions; and (2) a deformation

profile (DP), which depicts the conformation differences between two models at local,

interdomain, and intradomain scales. These new tools provide quantitative measures to

compare the accuracy in reproducing the base-base interaction networks of different 3D

models, as well as the ability to evaluate the local and global prediction precision and

quality of RNA molecules.
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6.3 Results

6.3.1 Deformation index

We define the DI as the RMSD between two optimally aligned 3D structures (general

shape) divided by the base interaction network fidelity (INF). The INF is computed from

the base-stacking and base-pairing annotations of both structures. For practical rea-

sons, we use two automated annotation procedures that have been proposed recently:

MC-Annotate [56, 69] and RNAview [157]. Note that the index uses, but is not related

to, the annotation programs, which are obviously prone to the quality of the reference

structures.

6.3.2 Base-stacking and base-pairing interactions

MC-Annotate detects that two bases stack using the Gabb et al. method [251]. The

base-stacking annotation results are described using the Major and Thibault nomen-

clature [252], which indicates the relative orientation of the two bases. The relative

orientation is determined by comparing the direction of the normal vectors of each base,

i.e., the rotational vector obtained by a right-handed axis system defined by atoms N1

to N6 around the pyrimidine ring (Fig. 6.1A).

Two possible relative orientations in each base result in four base-stacking types:

upward (>>), downward (<<), outward (<>), and inward (><) (see Fig. 6.1B). Two

vectors pointing in the same direction (upward and downward) corresponds to the base-

stacking type in canonical A-RNA double helices. Upward or downward is chosen de-

pending on which base is referred to first (i.e., A>>B means B is stacked upward of A,

or A is stacked downward of B). The two other types are, respectively, inward (A><B;

A or B is stacked inward of, respectively, B or A) and outward (A<>B; A or B is stacked

outward of, respectively, B or A).

MC-Annotate uses an unsupervised machine-learning approach to detect H-bonds
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and H-bonding patterns [69], and RNAview uses geometrical constraints [157]. Both

programs describe their base-pairing annotations using the Leontis and Westhof nomen-

clature. Each type describes the interacting edge of the two bases. Three interacting

edges are defined: the Watson-Crick edge: e (cis), 5 (trans); the Hoogsteen edge:

` (cis),0 (trans); and the sugar edge: b (cis),2 (trans) (Fig. 6.1C; [67]). The cis/trans

notation reflects the relative orientation of the backbone according to the median of the

plane formed by the two bases. In Figure 6.1C, the base pair is cis since the riboses

are positioned on the same side of the base-pair plane. When two bases interact by the

same edge, only one symbol is used. For instance, a trans X-Y Hoogsteen base pair is

either written “H/H trans” or X0Y. Figure 6.1D lists all possible base-pairing types that

are described by this nomenclature.

The DI considers the full set of interactions, i.e., base-stacking and base-pairing in-

teractions defined by the classical two-dimensional (2D) structure (A-U and G-C Watson-

Crick and G-U Wobble base pairs that form in the stems); extended 2D structures (the

noncanonical base pairs, but that can be represented in the dot-bracket notation); and

tertiary structure interactions, such as nonhelical stacking and long-range base pairs.

Note that 40% of the interactions in crystallized ribosomal RNAs enter the latter cate-

gory [75].

6.3.3 Interaction network fidelity

A stacking or pairing interaction, I, involves two distinct nucleotides, Ni and N j, i < j,

to form an interaction (Ni, N j, I), where I is one of the above base-pairing or base-

stacking types. The annotation of a 3D structure produces a set, S, of such interactions.

Given the two sets of interactions in two distinct RNA structures, we can then compare

them using simple set theory operations.

Let Sr be the set of interactions in a reference structure (usually an experimentally re-

solved structure) and Sm the set of interactions of a modeled structure. The interactions

found in the intersection of both sets are true positives, TP = Sr∩Sm. The interactions in

Sm that are not present in Sr are false positives, FP = Sm\Sr. The interactions absent in
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Sm but present in Sr are false negatives, FN = Sr\Sm.

The Matthews correlation coefficient (MCC) is estimated by [253]:

MCC =
√

PPV×STY,

where PPV (specificity) =
|TP|

|TP|+ |FP|
,

and STY (sensitivity) =
|TP|

|TP|+ |FN|

When the model reproduces exactly the base interactions of the reference, then |FP|

= |FN| = 0, |TP| > 0, and thus MCC = 1. When the model does not reproduce any of the

interactions of the reference structure, then MCC = 0, since |TP| = 0.

We define the interaction network fidelity (INF) between structures A and B as the

MCC, INF(A,B) = MCC(A,B). We propose a new measure of the resemblance between

two structures A and B (for example, a model and its corresponding experimental struc-

ture), which is quantified by a deviation index,

DI(A,B) = RMSD(A,B) / INF(A,B)

Not having an INF, the DI would simply be the RMSD. However, given an INF from 0

to 1, then the RMSD between A and B could either have a large (and even infinite) DI

if the two structures share no common interactions (INF = 0), or meaningful RMSD as

INF approaches 1 (i.e., the majority of the interactions in A are reproduced in B).

6.3.4 Example: Modeling the rat 28S rRNA loop E 3D structure

Consider the crystal structure of the rat 28S rRNA loop E (PDB code 1Q9A; res-

olution 1.04 Å;[254]) shown in Figure 6.2A. MC-Annotate (Fig. 6.2B) and RNAview

(Fig. 6.2C) were used to compute the base-pairing network of this structure. Since
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RNA structure annotation is subject to interpretation and small geometrical variations -

for instance, MC-Annotate is stricter than RNAview - we therefore take the intersection of

both programs. MC-Annotate also computes the base-stacking network (see Fig. 6.2D).

To illustrate the benchmarking of RNA 3D structure modeling results, we generated

loop E 3D structures using MC-Sym ([45]; see Materials and Methods). We generated

a decoy of 9847 3D structures, where each structure is at least at 1 Å RMSD from each

other. The RMSDs (all atoms but H) between these structures and the crystal structure

range from 1.6 Å to 7.8 Å, whereas the INF values range from 0.49 to 0.89 (Fig. 6.3).

We note that for a given RMSD threshold, we have a wide range of INF values, and for

a given INF threshold, we have a wide range of RMSDs. However, as RMSDs worsen,

the INF values also worsen. We note an absence of population in the upper right corner

(i.e., high RMSD and high INF values). The Pearson correlation coefficient between

RMSD and INF values is P = 0.60 for this particular decoy.

For further analyses, we randomly selected three of the MC-Sym-generated struc-

tures. Structure A is located in the upper-left corner of Figure 6.3 and is shown in

Figure 6.4A. This structure has good RMSDs (1.64 Å) with the crystal structure, and

good INF and DI values, 0.88 and 1.86, respectively. Since RMSDs are averaged val-

ues, they do not inform about the maximum modeling error. Therefore, we also report

the max RMSD(i,j) (j > i), i.e., the maximum RMSD over any sequence fragment defined

by i and j; j > i. If we exclude from the analysis the dangling nucleotide U1 in the crystal

structure, the fragment that has maximum RMSD with the crystal structure is C20-C21

with 1.7 Å. This is shown by the fact that C20 and C21 are base paired in the gener-

ated structures, as annotated by RNAview, but they have problematic geometries in the

crystal structure, as indicated by the absence of annotation by MC-Annotate (Fig. 6.2B).

Structure A contains 29 TP, i.e., 29 of the 30 base interactions (10 base pairs and

20 base stacks) in the crystal structure. Six FP are made: (1, 2) two upward stacking

between C3-U4 and C5-C6. Note that in principle these base-stacking interactions make

sense since they are located in a stem. They were not detected in the crystal structure

by MC-Annotate; (3) a flip of the C20 base around the glycosidic bond creates an inward

stacking A19-C20; (4) as assumed in the modeling, A8-C20 now form a base pair (H/W
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trans); (5) the dangling nucleotide U1 in the models is base paired to G27 as a canonical

W/W cis type; and (6) as assumed in the modeling, U7-C21 now form a base pair (S/H

trans). Due to the C20 base flip, the upward stacking A19-C20 and C20-C21 are not

reproduced, making two FN.

Structure B was selected in the upper right section of Figure 6.3, i.e., it has a good

INF (0.88), but a bad RMSD with the crystal structure (3.76 Å). It is shown in Figure 6.4B.

If we remove U1, the worst fragment is G2-C20 (19-nucleotides [nt] long) with 3.66 Å.

This is shown in Figure 6.4B by a shifted backbone in almost all nucleotide positions.

Structure B contains 28 of the 30 base interactions (10 base pairs and 20 base stacks)

in the crystal structure. Five FP are made. They are the same as in structure A, but the

upward stacking between C5-C6 is absent as in the crystal structure. The two FN due

to the C20 base flip are also present in structure B. In addition, no inward base stacking

is detected between G9 and G18.

Finally, structure C (Fig. 6.4C) was selected in the lower left region of Figure 6.3,

i.e., bad INF (0.71), but relatively good RMSD (2.03 Å). Again, the worst fragment is

G2-C20, but its RMSD is now 2 Å. What hurts the RMSD of this model is related to

difficulties to reproduce the base triple and the A8-C20 base pair of the crystal structure;

typical errors in RNA modeling. In our particular case, it is noteworthy that the bases

in the generated base triple have a more planar geometry than those observed in the

crystal structure (Fig. 6.4D). As for the A8-C20 base pair, its H/W trans type now makes

a consensus between MC-Annotate and RNAview. Structure C contains 21 of the 30

base interactions in the crystal structure. Seven FP are made: (1-5) are the same as

in structure A; but, in addition, (6) an upward stacking between A16-G17 is detected

that was not detected in the crystal structure; (7) the flanking base pair of the GAGA

tetraloop, which is changed to a W/H trans (S/H trans in the crystal). The three FN of

structure B are also made in structure C (two are due to the C20 base flip) (Fig. 6.4E). In

addition, four upward stackings are not detected between A11-C12, C12-G13, A14-G15,

and U4-C5. The outward stacking between G13-G17 and the G9-U10 S/H cis base pair

are also not detected. The tenth FN is the absence of the S/H trans G13-A16 base pair.
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6.3.5 Deformation profile

The DP is a distance matrix representing the average distance between a predicted

model (PM) and reference model (RM). The DP matrix is obtained by (1) computing all

1-nt superimposition of PM over RM and then (2) for each superimposition, computing

the average distance between each base in RM and the corresponding base in PM. Let

RMi and PMi represent the ith nucleotides of RM and PM respectively, let SUP(Ai,Bi)

be the model that results from the superposition of model B over the reference model

A, minimizing the RMSDs between all the atoms of the nucleotides Ai and Bi, and let

AVG_DIST(Ai,Bi) be the average distance between all atoms of the nucleotides Ai and

Bi. Thus, the deformation profile of PM regarding RM is defined as:

DPi, j = AVG_DIST [SUP( RMi, PMi ) j, RM j ].

Figure 6.5 illustrates the process of computing a DP matrix.

Once a pair of nucleotides (PMi, RMi) is superimposed, every other pair of nu-

cleotides will be closer or farther depending on how well PMi predicts RMi. Those

average distances are represented in the ith row of the matrix. Thus, the row average

provides information about local similarity regarding the ith nucleotide. For example, an

individual row with higher values than the rest of the matrix (Figs 6.6, 6.7, represented

as yellow/red rows in the DP matrices) usually means a particularly poorly predicted nu-

cleotide. The jth column of the matrix contains the average atomic distances between

the jth nucleotides of PM and RM, for each superimposition. Thus, the column average

indicates how the distance between PM j and RM j depends on the overall prediction of

all nucleotides. Finally, the main diagonal contains the average atomic distance of each

nucleotide, allowing a perspective of individual nucleotide conformation similarity.

An interesting property of DP is the ability to reveal similarity information at sev-

eral structural scales. The rectangles corresponding to the intersection of two strands

indicate the relative similarity between those strands. This way, one can easily appre-

hend the structural similarity at intradomain (such as between both strands of a helix or
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the nucleotides of a loop) and interdomain scales (such as between two helices or two

loops).

It is worth noticing that values in a DP are not normalized across the whole matrix.

Values close to the main diagonal tend to be smaller than values farther away. This is

because nucleotide pairs closer from the superimposing pair tend to have smaller aver-

age atomic distances than those farther away. Consequently, one should only compare

DP values from regions at similar distances to the main diagonal or, obviously, values

from DPs of distinct models.

6.3.6 Example: The hammerhead ribozyme

To exemplify the deformation profile, we compared three predicted models of a ham-

merhead ribozyme with the reference crystal structure (PDB: 1NYI) [255]. We generated

a decoy of 9999 3D structures, where each structure is at least at 1 Å RMSD from each

other. The RMSDs (all atoms but H) between these structures and the crystal structure

range from 2.5 Å to 15.8 Å. Selecting models from decoys is a thorny question. Here,

we limited our analysis to a series of structural properties offered by the MC-Pipeline

website (see Materials and Methods). We reduced the decoy by performing a five-

clustering of the 10,000 models, and selecting one model per cluster that has a small

volume (<25,000), a good P-Score (<-15), and to either be bipolar or coplanar (at the

>0.7 level) [256]. The “thresholds” were established by comparing each structural prop-

erty with RMSDs to the crystal structure (Supplemental Fig. 7.1). The selected models

and their properties are shown in Table 6.1.

From the modeling results, we further analyzed models 553, 633, and 2698, the re-

sulting DPs of which are pictured in Figures 6.6 and 6.7, and Supplemental Figure 7.2,

respectively. The models share 3.4, 12.2, and 4.9 Å RMSDs with the crystal structure,

respectively. The helical regions of the models score fairly well and much better than

interhelical and interloop regions (Table 6.2). Not surprisingly, nucleotides involved in

canonical WC base pairing are better predicted than nucleotides involved in noncanon-

ical base pairs or in loops. The 3- and 2-nt-long single-stranded regions (L1 and L3)
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present the worst deformation score of all short (<5-nt) contiguous regions (Supplemen-

tal Fig. 7.3), except for L3 in model 2698, which was particularly well predicted. The

difficulty in predicting L1 and L3 also reflects in the poor prediction of the relative po-

sitions of L1 and L3. The main difference between prediction quality among the three

models is due to the relative position of helix H1 with respect to the other two helices.

Noticeably, the coaxial stacking of helices H2 and H3 was reasonably well predicted in

all three models. While model 553 scored well in all helix-helix relative positions, models

633 and 2698 present a displacement of helix H1 regarding H2 and H3. In model 2698,

helix H1 is slightly twisted, which significantly penalizes H1×H2 and, to a lesser extent,

H1×H3. In model 633, helix H1 has its double-helical axis rotated by half a turn, pointing

in the opposite direction of H1 in the reference molecule, which is reflected in the high

values of H1×H2 and H1×H3.

6.4 Discussion

So far, the field of 3D structural modeling has been driven by RMSD comparisons.

In particular, GDT-TS (global distance test) is a measure that accounts for the number of

atoms that are within 1, 2, 4, and 8 Å of the RMSD from a reference structure [257, 258].

A perfect model scores 1.0. Recently, optimal GDT-TS scores of ∼0.35 for a tRNA (∼75

nt) and 0.20 for the P4-P6 domain of a group I intron (∼150 nt) have been reported [48].

In our study, the optimal score for the hammerhead ribozyme (∼40 nt) is 0.68. However,

when objectively selecting models from decoys by applying K-clustering, GDT-TS scores

of 0.20, 0.06, and 0.60 are obtained, respectively. In comparison, protein structure

predictions now reach GDT-TS scores as high as 0.75 on average [259]. These results

highlight the fact that there is a need for improved RNA model selection and generation

methods.

RMSD-based measures might be a sufficient criterion for modeling protein struc-

tures since the backbone trace is indicative of the structure and correct positioning of

the side chains [260]. However, RNA structures contain specific patterns of interacting

side chains that are characteristic of folded modules and typical to each overall architec-
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ture [119]. To evaluate adequately the accuracy of a predicted model, it is key to assess

how well such tertiary modules and the non- Watson-Crick base pairs have been repro-

duced. We show that, in the context of the modeling example we used, the Pearson

coefficient between RMSD and INF values (P = 0.6) presents little correlation between

the two indexes. Our results further show that RMSDs do not provide information about

the quality and fidelity of the base interaction network. Besides, the Pearson coefficient

for structures with RMSD ≤3.0 Å (P = 0.2) is even weaker. These results point to the

potential risk of using averaged values such as RMSD in evaluating the quality of RNA

3D models and, thus, the structure prediction methods that generate them. Besides, if

the correlation on a small hairpin RNA example is already low, then it is expected to be

even lower on larger RNAs.

Besides, the INF is less subject to variations than RMSD for an RNA under thermal

motion [261]. Intrahelical distortions include: collective atomic motion resulting in slight

helix twisting that rarely affect base-base interactions (Fig. 6.4B), and relative atomic

motion that is handled by discretizing the base-base interactions using symbolic anno-

tation [56, 67, 69, 157]. Interhelical disposition from thermal motion affects the angle

between helices, which greatly affects atomic distances and thus RMSD. However, such

changes in general concern only a small fraction of the base-base interactions, and thus

do not affect much the INF (Table 6.1).

In the structure prediction field, models <3 Å of RMSD from an experimental structure

are considered accurate. Our results suggest extreme prudence at this particular value,

since in our test case the INF value of such models can be as low as 0.7. In our example,

structure C has an INF of 0.71. This structure, despite 21 TP, also had seven FP and 10

FN. If we look between 3 and 5 Å of RMSD, then INF values can be as low as 0.5; with a

wider range of INF values (0.5-0.9) located at or near 4 Å of RMSD. Clearly, assessing

the quality and accuracy of any given RNA 3D model needs both the RMSD and INF

values.

Capturing the dissimilarity between two structures in a single value, as does RMSD,

is a practical way of assessing the accuracy of predicted models. However, a single

value cannot provide enough information about the shape of the actual structure and the
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local dissimilarities. Understanding the contribution of individual domain - nucleotides,

helices, single-stranded regions - to an overall dissimilarity score demands the interven-

tion of a human expert, which is not compatible with the analysis of dozens or hundreds

of candidate models produced by automatic prediction tools. The proposed deformation

profile provides a compact representation of RNA model dissimilarities from nucleotide

length to intradomain scales and can be used in complement to the DI to fully assess

the quality of predicted models.

Consequently, a full quantification of the comparison between two RNA 3D structures

should include the overall RMSD, max RMSD(i,j), INF, as well as the DI. If only one

value is to be used, then the DI is the most significant one since it reflects the overall

features encoded by the RMSD calibrated by the quality of the reproduced interaction

network, which is encoded by the INF value. As the size of modeled RNAs increases,

the importance of using both quantifiers increases as well since the correlation between

RMSD and INF values is expected to decrease. Finally, phosphate or backbone atom-

only, as well as canonical base-paired region-only RMSD, should be avoided since they

are not indicative of the quality of the produced models, and the field has now made

sufficient progress in RNA 3D modeling and prediction methods so that all-atom models

are now the gold standard.

6.5 Materials and Methods

6.5.1 Generating MC-Sym decoys

To generate a decoy for the Loop E, we produced an MC-Sym script from the dot-

bracket notation supported by the RNAview annotated secondary structure,

“((((((((.((((..))))))))))))”. The Dot2Sym program is an MC-Tool to gen-

erate MC-Sym input scripts from dot-bracket notations (see Supplemental Information).

Note that no base-pairing type information is used, and MC-Sym in such a case attempts

all consistent base-pairing types. For the hammerhead ribozyme, we also obtained a

first script from Dot2Sym using the following dot-bracket input:
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“((((((...((((((((..))))))))(((((..)))))))))))”. The script was manu-

ally edited and can be found in the provided Supplemental Information. We reduced the

10,000 structure decoys to a list of five models using the five-clustering and the following

SQL query:

SELECT * FROM BKOiY0dM2m T1 INNER JOIN (SELECT MIN(PScore) AS

minP, Cluster FROM BKOiY0dM2m WHERE ((Bipolar >= 0.7) OR

(Coplanar >= 0.7)) and Volume <= 25000 and PScore <= -15 GROUP

BY Cluster) T2 ON T1.PScore = T2.minP and T1.Cluster =

T2.Cluster WHERE T1.Volume <= 25000

See the MC-Sym FAQ (http://www.major.iric.ca/MC-Sym/faq.html), commands.html

page generated by MC-Sym, and the MC-Pipeline website for details (http://www.major.iric.ca/MC-

Pipeline). The 3D structures were visualized and rendered using Pymol [262].

6.5.2 RMSD

RMSD values were for all-atom but H, as computed using the MC-RMSD program.

MC-RMSD is part of the MC-Tools, which are available from the authors.

6.5.3 Deformation profile

All the data processing, PDB file manipulation, and superimposition used to compute

the Deformation Profile were done in Python using Bio.PDB (http://biopython.org) and

NumPy (http://numpy.scipy.org/). The script to produce DP matrices is available from

the authors.
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(a)

(b)

(c)

(d)

Figure 6.1: Base-stacking and base-pairing nomenclature. (a) Normal vectors in pyrimidines
and purines. Using a right-handed axis system, the normal vector in the pyrimidine (left) comes
out of the paper plane (atom numbers counterclockwise), whereas it is reversed in the pyrimidine
ring of the purine (atom numbers clockwise). (b) The four base-stacking types. Using the normal
vectors (represented by arrows), we can distinguish three types of base stacking. If base A is
below base B, the normal vector of A points B, and both normal vectors point in the same
direction (left), then base B is stacked upward of A (or symmetrically base A is stacked downward
of B). If the normal vectors of A and B point toward each other (middle), then bases A and B
stack inward. If the normal vectors flee each other (right), then bases A and B stack outward.
(c) Base edges. Each base is divided into three edges: the Watson-Crick (W) edge is at the
tip of the base and where the chemical groups involved in Watson-Crick base pairs interact; the
Hoogsteen (H) edge is on the opposite side of the ribose; and the sugar (S) edge is on the side
of the ribose. Here is a cis A-U Watson-Crick base pair, and we write W/W cis and represent
it using the black dot. The fact that any edge in any base can interact with any other edge in a
partner results in six different base-base interactions: W/W, W/H, W/S, H/H, H/S, and S/S. Since
there are two possible relative orientations of the ribose according to the place formed by the
two bases of a base pair, then this nomenclature describes 12 different base-pairing patterns.
(d) The 12 base-pairing patterns, or types, and their associated symbols.
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(a)

(b) (c) (d)

Figure 6.2: The rat 28S rRNA loop E structure. (a) Stereoview of the crystal structure
(PDB code 1Q9A). (Green) Adenosines, (yellow) cytosines, (violet) guanosines, (red)
uracils. The thread through the phosphate atoms is shown using a cylinder. Each
base ring is filled and highlighted by thick covalent bonds. The H-bonded bases of
the characteristic loop E structure, here the G9-U10-A19 base triple, are linked with
dotted lines. Note that U1 in this crystal structure is not paired with G27. The image
was generated using Pymol. (b) Secondary structure annotated by MC-Annotate. (c)
Secondary structure annotated by RNAview. (d) Stacking annotation.
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Figure 6.3: Distribution of (RMSD, INF) values. For each MC-Sym generated structure,
the RMSD and INF values when compared with the crystal structure are plotted. The
oblique line is the linear regression (P = 0.6). The horizontal line is at an INF of 0.85,
and the vertical line at 2.0 Å RMSD.
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(a) (b) (c)

(d)

(e)

Figure 6.4: Three models of the rat 28S rRNA loop E. The models are shown colored and the
crystal structure in gray (PDB code 1Q9A). (Blue) Well modeled regions (RMSD < 0.5 Å), (red)
badly modeled regions (RMSD > 3.0 Å). The models were optimally aligned (all atoms but H)
with the crystal structure. (a) Model with a good INF (0.88; TP 29; FP 6; FN 2) and good RMSD
(1.64 Å); DI = 1.86. (b) Model with a good INF (0.88; TP 28; FP 5; FN 3), but bad RMSD (3.76 Å);
DI = 4.30. Although the geometry of the base pairs is well conserved, the thread through the
phosphate atoms is shifted. (c) Model with a bad INF (0.71; TP 21; FP 7; FN 10), but good
RMSD (2.03 Å); DI = 2.85. The thread through the phosphate atoms is well superimposed,
but the base-pairing geometry is wrong. Structural features that lead to a bad INF include: (d)
base-stacking parameters that differ between the crystal (yellow) and model (blue) structures,
such as G9, which shows a high rise in the crystal structure when compared with the model, and
A19, for which a tilt can be observed between the crystal and model structures; and (e) base-
pairing parameters that differ between the crystal and model structures, such as C20, which flips
(propeller twist of 180◦) between the crystal and model structures.
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Figure 6.5: Building steps of the deformation profile. (a) A predicted model (PM) will be
compared with the reference model (RM). After superimposing PM over RM, minimizing
the RMSD between nucleotides 2 (b) and 4 (c), the average distances between all atoms
of corresponding nucleotides is calculated and recorded in DP matrix (d).
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(a)

(b)

(c)

(d)

(e)

Figure 6.6: Deformation Profile between predicted model 553 and the hammerhead
ribozyme crystal structure. (a) DP matrix. Blue and pink squares inside the matrix
correspond to intra- and interdomain similarity relationships, respectively. Numbers in
the left top corner of each square are the average value of all positions inside the square.
Color scale goes from 0 Å (white) to (but not including) 20 Å (dark green) in 10 equal
steps and from 20 Å (yellow) to 80 Å (red) in five equal steps. (b) Average values of rows
(green), columns (black), and main diagonal (red) of the matrix. (Shaded green regions)
Helical strands. (c) 3D structure of the model. Each nucleotide is colored according to
the respective row average value, from minimum (white) to maximum deformation (red)
value. (d) Superimposition of the model and reference 3D structures. (e) Interaction
network of the original molecule.
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(a)

(b)

(c)

(d)

(e)

Figure 6.7: Same as Figure 6.6 but for model 633.
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Intradomain Model 553 Model 633 Model 2698
Helix H1 2.31 3.04 3.04
Helix H2 2.79 3.67 3.89
Helix H3 1.68 2.08 2.03
Loop L1 4.92 4.28 4.72
Loop L3 4.43 4.46 1.18

Interdomain Model 553 Model 633 Model 2698
H1 × H2 8.88 21.85 13.25
H1 × H3 7.59 25.47 9.10
H2 × H3 3.85 5.85 6.49
L1 × L3 20.26 34.54 13.13

Table 6.2: Intradomain and interdomain scores for all helices, loops, helix-helix, and
loop-loop combinations. The intradomain score of domain D is the average of all posi-
tions (i, j) of the Deformation Profile where both nucleotides i and j belong to D. The
interdomain score of domains D1×D2 is the average of all positions (i, j) and (k, l) of the
deformation profile where nucleotides i and j belong to D1 and j and k belong to D2.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7.1: Structural parameters for decoys of the Hammerhead Ribozyme. In all figures, each decoy
is localised in a two dimensional coordinate system using the plus (+) symbol. (abc) Bipolar, coplanar and
random measurements against RMSD. These measurements describe the field of nucleobase normal vec-
tors, which has been found to be highly organised in solved RNA structures [256]. An horizontal threshold
has been set at 0.7 given the bipolar scores of low RMSD decoys. (d) PScore against RMSD. The PScore
measures the A-RNA likeliness of the phosphate chain, by evaluating the probabilities of valence angles
of three consecutive atoms, and the torsion angles of four consecutive atoms. The probabilities, P, are
then converted in pseudoenergies, E, using the well celebrated Boltzmann relation: E = -RT log(P). (e)
Approximated ellipsoidal volume against RMSD. The volume is computed as descibed by Hao et al. [263].
An horizontal threshold has been set at 25 thousand, given the volumes of low RMSD decoys. (f) RMSD
ranges within each of the 5-clusters. (g) GDT-TS against RMSD. GDT-TS measures the average percent-
age of atoms of the decoy within 1, 2, 4, and 8 Å from the target structure [257, 258]. The higher the value,
the better the decoy compared to the target structure. (h) Volume against bipolarity in which there is no
correlation.
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(a)

(b)

(c)

(d)

(e)

Figure 7.2: Same as Figure 6.7 but for model 2698.
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Figure 7.3: Deformation score of all short (<5 nt) contiguous regions.
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8.1 Abstract

Despite recent improvements in our understanding of the RNA folding process and

structure prediction algorithms, determining RNA three-dimensional (3-D) structures re-

quires the exploitation of experimentally determined structural data. Here, we introduce

an alternative method to determine RNA 3-D structures using low-resolution data when

high-resolution methods such as X-ray crystallography and NMR cannot be applied. We

generated sets of 3-D models of the Escherichia coli tRNAVAL and the P4-P6 fragment

of the Tetrahymena thermophila group I intron using the MC-Fold and MC-Sym pipeline.

We then filtered the models using experimental data of single and combinations of hy-

droxyl radical footprinting (OH), methidiumpropyl-EDTA (MPE), multiplexed hydroxyl rad-

ical cleavage (MOHCA), and small-angle X-ray scattering (SAXS) as a measure of their

discriminative power to identify the native structures. We show that: 1) The precision of

the structures generated by MC-Sym is higher than that of the experimental data tested

in the context of this study; 2) OH-derived constraints are precise and discriminate with

atomic precision, whereas 3) EDTA-based constraints allow for distinguishing the global

shape of RNA structures given their radius of gyration is greater that the probe length; 4)

SAXS is a promising approach to high-throughput RNA structure determination. How-

ever, unlike EDTA, SAXS-derived constraints cannot be directly exploited to guide the

structure generation algorithm.

8.2 Introduction

Ribonucleic acid (RNA) is one of the central molecules of cellular information trans-

fer [13, 264]. Characterising the reactions and knowing how RNA participates increase

our comprehension of how cells function. Structure is one of our best hints about

RNA function, and high-resolution methods such as X-ray crystallography and nuclear

magnetic resonance (nmr) spectroscopy are routinely applied to determine RNA three-

dimensional (3-D) structures. However, these methods cannot be applied to all RNAs

and in all cellular conditions. RNA 3-D structures can alternatively be predicted compu-
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tationally or modelled interactively [44, 45, 46, 47, 48]. However, a major problem with

almost all computational structure prediction methods is the generation of many different

and energetically similar structures from which it is difficult to identify the native and ac-

tive conformations. The problem is partially related to the facts that RNAs have a great

potential to accommodate various reactions under several contextual conditions, for in-

stance riboswitches, ribozymes, and microRNAs are subject to conformational induction

in presence of their respective cofactors [216].

To help sort through many plausible models, much effort is being invested in us-

ing low-resolution experimental methods and data. These include variants of hydroxyl

radicals footprinting [57], the ethylenediaminetetraacetic acid (EDTA) variants uridine-

EDTA [265] and methidiumpropyl-EDTA (MPE) [58]; and, multiplexed hydroxyl radical

cleavage analysis (MOHCA) [59]. Another emerging structure probing technique show-

ing promises to accelerate the systematic resolution of RNA structures is small-angle

X-ray scattering (SAXS) [60]. Here, we compare the above structure probing methods

for their discriminative power to identify experimentally resolved structures from sets of

theoretically generated all-atom models.

8.3 Results

8.3.1 Conformational sampling

We chose two well-studied RNAs: the Eschericia coli valine tRNA (tRNA), which has

been solved in solution (PDB code 2K4C [261]), and the group I intron of the Tetrahy-

mena thermophila P4-P6 domain (P4-P6), which structure has been determined by X-

ray crystallography (PDB code 1GID [116]). These structures have been used as bench-

marks for RNA secondary and tertiary structure prediction methods [48, 58, 59, 266].

We also chose these RNAs for the availability of structure probing data.

To challenge the RNA structure probing methods thoroughly, we needed an RNA

structure generator capable of sampling the global shapes and producing atomic reso-
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lution models of the conformational space accessible to the tRNA and P4-P6 sequences.

All-atoms were also desirable models to assess the reproducibility of the base pairs and

stacks, and thus proper volume, electron density, and quality of the backbone paths.

To the best of our knowledge, only the most recent version of the MC-Sym computer

program [63, 215, 267] combines the desired attributes.

We built two sets of 3-D models for each RNA. The first set is termed “low”, where

we only exploit local information, i.e. we input the right stems and their coaxial stacking.

The second set is termed “high”, where we exploit some additional long-range distance

base pairs. For the extra base pairs in the high set, we exploited structural data that

have previously been inferred from sequence covariation analysis [139, 268, 269, 270].

Such long-range interactions are extremely valuable in the context of modelling since

they provide strong constraints on the conformational search space by bringing together

nucleotides that are distant in the sequence. The low and high sets simulate realistic

situations of any RNA modeller in the first stage of his work, i.e. access to either a

single or multiple sequences. Only in the latter scenario one can count on inferring

a few covariations. Fig. 8.1 shows the distribution of the root-mean-square deviations

(RMSD) (all-atoms) to their respective experimental structures of the models generated

for both RNAs. For the tRNA, the RMSD range from about 6.1 up to 25.1 Å and 3.6

up to 12.4 for the tRNA low and tRNA high sets respectively. For P4-P6 domain which

contains twice the number of nucleotides of the tRNA (158 vs. 76), the RMSD range

from 13.1 to 49.4 Å and 6.9 to 14.2 Å for the low and high sets respectively. We note

that the inclusion of a very few long-range tertiary contacts (see Methods) significantly

affect the RMSD distributions of the generated models. For instance, the RMSD peaks

shown on Fig. 8.1 go from 17 down to 5 Å and from 43 down to 9 Å for the tRNA and

P4-P6 respectively.

8.3.2 Discriminative power of low-resolution experimental data

We use the correlation between the experimental data fitness and RMSD to assess

the relative power of each experimental methods to discriminate the native fold among
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the sets of models (Figs 8.2 and 8.3). A visual inspection clearly shows that the best

correlation is from using MOHCA on the P4-P6 low set (r2 = 0.995). The next-best

method is SAXS, again on the P4-P6 low set (r2 = 0.347 in the RMSD region below 25

Å), as well as on the tRNA low set (r2 = 0.234; in the RMSD region below 15 Å). The r2

is below 0.2 for all other methods and model sets, indicating that for a any given fitness

value many different models would qualify and any given RMSD distance to the solution

structure a wide range in the fitness is observed.

The correlation of MPE on the tRNA low set is r2 = 0.158. The problem of selecting

one or a few models that represent the native fold is thus complicated in this case. One

cannot simply pick the model that best fit the experimental data because the range in

RMSD is quite large. Consider as another example the RMSD range of the OH fit above

the 0.5 line in Fig. 8.2a).

Therefore, we devised a selection procedure (see Methods) that yields a handful of

similar models that collectively best fit the experimental data. The selection procedure is

repeated a hundred times, and then averaged on all selected models. We feel that this

procedure is robust since the RMSD standard deviations between the selection cycles

are small (around 1 Å on low sets, and around 0.5 Å on the high sets; Tables 8.1 and 8.2,

values in parenthesis).

Results of applying the selection procedure on all sets are presented in Table 8.1

(tRNA) and Table 8.2 (P4-P6). For each individual and combination of experimental

methods, the mean RMSD and Global Distance Test (GDT-TS [257, 258]) are shown.

These measures show how close the selected models are compared to the experi-

mentally resolved structure. Another interesting measure is the Q-value, which is the

percentage of models in a set that have RMSD lower than the average RMSD. Lower Q

values indicate that the selected structures have not been chosen by chance. On the

low sets, SAXS seems the best method for both structures (Q=3.2 and 0.7 for the tRNA

and P4-P6 respectively). MOHCA performs well but on the P4-P6 low set only (Q=0.4).

MPE on the tRNA low set is less selective (Q=11.6) than SAXS.

Importantly, OH footprinting is of no help at the low modelling resolution. However, as
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the models gain in precision and get closer to the native fold, OH footprinting becomes

increasingly discriminative. For instance, for the P4-P6 models selected from the high

set and involving OH, we get Q-values of 2.0 and 11.5 for respectively OH+SAXS and

OH+MOHCA. In the case of the tRNA high set, when only OH data are considered we

get Q=36.9, and when OH+MPE are considered then we get Q=40.6. It is interesting to

mention that OH data have been exploited in conjunction with MOHCA for the elucidation

of the native fold of the P4-P6 domain [59]. It was found that the addition of OH data to

that of MOHCA selects worst models than MOHCA data alone, most likely due to “kinetic

traps”. The two RNA structure generators used in this experiment were FARNA [44]

and NAST [48], which are energy-driven and hence susceptible to fall in local energy

minima. In comparison, MC-Sym is geometrical constraint rather than energy based,

and we found that incorporating OH data to that of MPE, MOHCA, and SAXS helps for

identifying better models than without OH data. Here, we found that OH data are more

useful to filter generated model sets (MC-Sym approach) than to guide the generation

process itself (FARNA and NAST approaches).

8.4 Discussion

The observation of quite high Q-values for the high tRNA set (Table 8.1) indicates

that either: i) our models in the high set are too precise for the resolution of the experi-

mental methods tested here; or, ii) the tRNA is too small or compact to make a notable

difference upon substantial conformational changes, i.e. the length of the EDTA probe

is comparable to the radius of gyration of this tRNA.

Also noteworthy is the difference in the interpretation of the EDTA-based distance

data between MPE and MOHCA. For MPE, the models are gratified for their fit to various

distance constraints proportionally to the cleavage intensity at the measured sites (see

Equation 1 in Methods), whereas in MOHCA, the cleavage intensities are not taken into

account, and thus the models are penalised for distance violations from the estimated

tether probe length. We reinterpreted the MPE data for the tRNA, MPE* and MPE**,

in a MOHCA-like fashion, i.e. any site with a cleavage intensity ratio I/<I> above 1.0
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should be within 30 Å of the probe’s base, or else the excess distance D = (d− 30) is

scored as ∆2 for MPE* (within 35 Å for MPE**). Fig. 8.4 shows how MPE* and MPE**

vary with RMSD. On the high tRNA set, both MPE* and MPE** do not point to a model

that is native-like. Given that the tRNA fold has the potential to be caught in many

conformations [271], then it would be interesting to compare buffer solutions between

the MPE-based probing and, say, that of SAXS, or to revisit how the EDTA-based data

should be interpreted. That said, the radius of gyration of the tRNA has been measured

to be about 23.5 Å [272], which is within the range of the tether probe.

For computational cost, computing the fitness to OH data is not efficient because it

requires the ASA (see Methods). However, computing the fitness to MPE data is efficient

since it provides distance constraints that can be used either in the model generation

process or as a postprocessing step of it. Computing the fitness of MOHCA data is

also efficient since it also provides distance constraints. Finally, evaluating the fitness to

SAXS data is not efficient since it requires complex numerical computations and must

consider the first hydration shells of the footmark on the scattering data, particularly

in the case of RNAs. Progress toward fast SAXS profile evaluation is however under

investigation by us in collaboration with Yang and Roux at the University of Chicago

(unpublished).

As we can see from our results, there is plenty of space for improving RNA low-

resolution structure determination methods, both at the RNA probing methods and qual-

ity of the models. It would be pleasant to select the best models using theoretically-

derived force-fields, such as Amber and CHARMM, but unfortunately this is an even

more difficult problem and for sometimes we rather focus our efforts on resolving low-

resolution RNA structures experimentally.
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8.5 Methods

8.5.1 Sets of 3-D models

We used the latest version of the MC-Sym computer program to generate the sets of

models. MCSym uses nucleotide cyclic motifs (NCM), which are either single-stranded

fragments closed by a single base pair (hairpin loops) and double-stranded fragments

that are flanked by two base pairs (tandem of base pairs, bulge and interior loops) [63].

The fragments are either taken from the PDB when instances of the given sequence

exist, or built by homology modelling otherwise. MC-Sym generates all-atom mod-

els. The use of NCMs reproduces accurately inter-nucleotide interactions such as the

GNRA/receptor in the group I intron and the base triples in the tRNA structure. MC-Sym

runs on desktop computers.

For the tRNA, we started with the secondary structure with the addition of in-stem

non-Watson-Crick base pairs, such as the A14-A21, A26-G44, C32-A38, and U54-A58.

The T-loop structure was imported from the PDB file 2K4C since it folds independently

and in a well-defined motif [130, 131, 273, 274]. We also used the Fuller-Hodgson rule

for the anticodon loop [275], i.e. we stacked nucleotides 34 to 38 as in an A-RNA helix.

The coaxial stacking between the Acceptor and the T stems, as well as between the An-

ticodon and the D stems was used so that the four stems define two helices [135, 139].

The conformational sampling of the low tRNA set was made in three stages. First,

we sampled and generated structures for the two helices: axis 1 formed by the T- and

acceptor-stem; and, axis 2 by the D- and anticodon-stem. Second, the two helices are

positioned relative to each other by sampling the dinucleotide 8-9 conformation. Finally,

we completed the tRNA structure by building the D and variable loops by sampling trin-

ucleotides using singlestranded fragments extracted from the PDB. The conformational

sampling of the tRNA high set was also made in three stages. The first stage is identical

to that of the tRNA low set, but we selected the conformations of the D-stem that formed

the base triples 8-14-21, 9-12-23, and 13-22-4620. We also appended nucleotides 18

and 19 to form long-range base pairs with the T-loop nucleotides 55 and 56, respec-

tively [139, 268]. Second, we positioned the two helices relative to each other using
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the dinucleotide 7-8. Finally, we added the 15-48 long-range base pair [139, 268], and

completed the D and variable loops. Fig. 8.5 shows the information used for modelling

the tRNA sets, and gives an idea of the conformational search space explored for each.

For the group I intron P4-P6 domain, we used a similar procedure as that of the

tRNA. We divided the domain into two components: the P5-P4-P6 coaxial stems (axis

1), and the P5a and P5b coaxial stems (axis 2). We extracted the P5c stem and

tetraloop receptor from PDB file 1GID. The tetraloop receptor adopts a specific struc-

ture that contains an adenosine platform [126] and a UA_handle [276]. In the first stage,

we sampled and generated structures for each stem. For the P4-P6 low set, we then

positioned the two components relative to each other by sampling the 122-126 and

196-199 strands using trinucleotide fragments extracted from the PDB. Hence, given no

other long-range distance constraints, MC-Sym generated P4-P6 domain structures in

the familiar U-shape, but also in the L- and flat shapes. For the P4-P6 high set, we

added the long-range base pair 153-250 observed in the crystal structure [116]. This

type of interaction was first postulated by Michel and Westhof [118]. Later, Murphy &

Cech using protection data showed this interaction stabilises the P4-P6 domain tertiary

structure [277]. Costa & Michel showed the interaction can be predicted by covariation

analysis data [270], and it was further characterised by computer modelling [269], X-ray

crystallography [116], and structural analysis [276]. For both sets, in the final stage we

completed the domain by adding the A-rich loop (183-186) and the P6 tail (254-260).

Fig. 8.6 shows the information used in the modelling of the P4-P6 sets and gives an

idea of the conformational search space explored for each.

8.5.2 Hydroxyl radical footprinting

Cleavage of the RNA backbone by hydroxyl radicals (OH) provides a way to distin-

guish the inside and outside of a folded RNA molecule [278]. As the RNA folds in its

native state, sections of the backbone may become protected from the solvent, which

provides structural information. OH footprinting is gel-based [57] and amenable to robust

and automated analysis [279]. OH attack the backbone chain to cleave it. Backbone
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atoms that are buried inside the RNA are less prone to these attacks. Hence, the OH

footprint measures the accessibility of backbone atoms to the solvent at the nucleotide

level, and the greater the cleavage activity the more accessible are the backbone atoms.

To evaluate the fit of a 3-D model to the OH footprint, we first calculate the sum of the

accessible surface area (ASA) of all backbone hydrogen atoms per nucleotide (NASA)

in the model using the MSMS computer program [280]. We take the radius of a water

probe (1.4 Å) as an approximation of the radius of the hydroxyl radical to evaluate the

ASA. Then, we perform a linear least-squared best fit between the experimentally mea-

sured cleavage intensity and the NASA. The fit is quantified by the Pearson’s correlation

coefficient. For the tRNA, we used for the footprint profile the calculated NASA of the

PDB solution structure (2K4C). For P4-P6 domain, we used published data [281].

8.5.3 Methidiumpropyl-EDTA

The methidiumpropyl (MPE) version of ethylenediaminetetraacetic acid (EDTA) is an-

other gel-based method that provides distance constraints between different fragments

of an RNA molecule [58], similarly to uridine-EDTA [265]. The idea behind these meth-

ods is the insertion of an Fe(II)-EDTA moiety at a specific position, and the consequent

backbone cleavage pattern defining the accessibility and reach of the tether. EDTA

combined with selective 2’-hydroxyl acylation and primer extension (SHAPE) [224], and

a force-field based on a united residue representation [47], has proven to be sufficient

to reproduce the tRNA fold with high accuracy (< 4 Å; P atoms in the secondary struc-

ture) [58].

Let us say that the Fe(II)-EDTA probe is attached at nucleotide position P. From

the cleavage intensities, I at nucleotide S, a pseudo-potential energy, E, is assigned

proportionally to I: E = -ln(I/<I>), where <I> is the profile’s mean intensity. Then, for each

pair of phosphate atoms (P, S) separated by a distance D, an energy, ε, is assigned in a

stepwise manner:
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ε =


−E, if D(P,S) ≤ 25Å,

−2E/3, if D(P,S) ≤ 30Å,

−E/3, if D(P,S) ≤ 35Å,

0, otherwise

(8.1)

We sum all ε for all probing experiments P and for all nucleotide positions S. The

lower the energy, the better the fit with the pairwise distance constraints. In our study,

we used the MPE data published by the Weeks’s group on the tRNA-ASP structure [58].

We assumed that the MPE profiles for the tRNA-ASP would be appropriate for the tRNA-

VAL by inserting an extra dummy nucleotide in the variable loop of the tRNA-ASP profile

to match the sequence length of the tRNA-VAL.

8.5.4 Multiplex hydroxyl radical cleavage analysis

Another gel-based probing method that uses EDTA is the multiplexed hydroxyl rad-

ical cleavage analysis (MOHCA) [59]. Here, the EDTA probe cleavage agents are ran-

domly inserted in the sequence. Then, the positions of radical hydroxyl cleavage is read

in a two-dimensional gel against the positions of the cleavage agents, yielding a group

of pairwise distance constraints corresponding to the reach of the probe’s tether. The

analysis of MOHCA data has recently been automated [282]. In the context of RNA

modelling, the procedure generates pairwise distance constraints, which we assign be-

tween C1’ backbone atoms. For each distance constraint, a squared penalty score, ∆2,

is given for any distance d beyond 30 Å; ∆ = (d− 30). Hence, the fit of a model is the

sum of its penalties. Since MC-Sym does not make use of internal energy, there is no

need for a coupling constant between the MOHCA distance violations and the energy

of a structure. For our study, we used the distance constraints for the native state of the

P4-P6 domain [59].
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8.5.5 Small-angle X-ray scattering

The idea is to bombard the RNA in solution with X-rays and to inspect how the scat-

tering profile varies, averaged over all orientations of the RNA and according to small

incident angular changes of the X-ray beam [283]. SAXS data can be used in two dif-

ferent ways: first, by comparing directly a theoretical scattering curve with that obtained

experimentally. The Fourier transform of the scattering curve gives the pair-density dis-

tribution function, P(r) (PDDF), i.e. the pairwise distance distribution between electrons

of the molecule. Despite its usefulness in molecular modelling, as the PDDF of a set of

structures can be computed quickly and compared easily to the experimental PDDF, the

numerical methods used and the dependance of P(r) on Dmax (the maximum pairwise

distance observed) introduce large error bars plaguing the PDDF; second, by obtaining

a beads model whose density agree with the scattering curve, and then building a set of

structures that fit the beads model. We favour the first approach because of the degen-

eracy of the beads solutions and the inappropriateness of the beads model generators

since they were developed in the context of globular protein structures.

In RNA, because of the high residency of water molecules in both the minor and

major grooves [91], a new and fast method employed here explicitly takes into account

the scattering of the first hydration shells. This method has been developed in collab-

oration with Yang and Roux at the University of Chicago (unpublished). In a modelling

context, a theoretical scattering curve is compared to an experimental one. This type

of experience produces data that are not readily expressible as distance constraints.

Alternatively, one could use P(r) at the expense of a greater incertitude. In our study,

we use the SAXS data provided by the Bax’s lab for the tRNA [261], and the SAXS data

from Doniach’s lab for the P4-P6 domain [60].

8.5.6 Normalized Z-score

To express the fitness of a model to various experimental data types, we first com-

pute a normalised Z-score, Ze(x), for the fitness of the model x in an experiment type
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e. Then, the total fit, Z(x), is simply given by = ∑e Ze(x). The Z-score, Z(x) = (x−µ)/σ ,

takes into account the mean, µ, and the standard deviation, σ , of the fits of all models

for each experiment type. The normalised Z-score is Ze(x) = (Ze(x)−Zmin
e )/(Zmax

e −Zmin
e ),

so that each experimental data type contribution is between zero and one, where one

signifies the best fit (care is taken to properly compute Ze(x) given that the highest or

lowest experimental fit value is the best).

8.5.7 Model selection procedure

A question that naturally arises is how can we select a few representative structures

that best fit the experimental data. Declaring the best-fit model as the native fold is

dangerous because many models fit the data. Therefore, we sort the models from best

to worst fit and we choose the top N models, where N is picked randomly between 100

and 500. We define this set as promising, and we partition it into 10 subsets using the

K-clustering algorithm based on root-mean-square deviations (RMSD). We expect the

K-clustering (K=10) to yield subsets of 10 to 50 members each. We choose the centroid

centre of the subset, which on average fits best the experimental data. We define this

model as the representative of the native fold. Because of the stochastic nature of the

greedy K-clustering method, this selection procedure is repeated a hundred times, and

we report the averaged RMSD and Global Distance Test (GDT-TS [257, 258]) between

the centroids and corresponding reference structures.
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Experiment Resolution
OH MPE SAXS <RMSD> <GDT-TS> N Q

tRNA_low ([6.1, 25.1] Å)

� � � 15.92 0.07 2406 51.5
(0.64) (0.01)

� � � 10.97 0.10 3277 11.6
(0.57) (0.02)

� � � 9.11 0.20 2974 3.2
(1.10) (0.05)

� � � 10.09 0.14 3997 7.0
(0.98) (0.03)

� � � 9.16 0.18 4241 3.3
(1.06) (0.03)

� � � 11.32 0.10 3276 14.3
(0.65) (0.01)

� � � 9.46 0.17 4798 4.4
(1.06) (0.04)

tRNA_high ([3.6, 12.4] Å)

� � � 5.46 0.38 2535 36.9
(0.81) (0.05)

� � � 5.71 0.35 2566 47.0
(0.20) (0.01)

� � � 6.56 0.30 1649 74.4
(0.19) (0.02)

� � � 5.55 0.38 2043 40.6
(0.20) (0.02)

� � � 6.26 0.33 2890 65.8
(0.49) (0.03)

� � � 7.51 0.25 1995 90.8
(0.52) (0.02)

� � � 6.34 0.31 2760 68.8
(0.56) (0.03)

Table 8.1: Performance of experimental data for the tRNA model sets. The first
three columns are the experimental data sets: OH (hydroxyl radical footprinting); MPE
(methidiumpropyl-EDTA); and, SAXS (smallangle X-ray scattering). A filled square in a
column indicates that the experimental data from this method were considered in the se-
lection; the empty square indicates that they were not. <RMSD> is the average RMSD
in Å for 100 selection procedures (see Methods). <GDT-TS> is the average GDT-TS
for 100 selection procedures. N indicates the total number of structures selected. Q is
the percentage of structures in the set that have lower RMSD than <RMSD>. Values in
parenthesis are the standard deviations.
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Experiment Resolution
OH MOHCA SAXS <RMSD> <GDT-TS> N Q

P4-P6_low ([13.1, 49.4] Å)

� � � 43.78 0.01 2770 84.0
(1.79) (0.00)

� � � 16.57 0.06 2558 0.4
(0.50) (0.01)

� � � 17.46 0.05 3029 0.7
(1.17) (0.01)

� � � 19.76 0.04 3234 1.9
(1.59) (0.01)

� � � 16.72 0.06 2382 0.4
(1.18) (0.01)

� � � 17.35 0.06 2695 0.6
(1.19) (0.01)

� � � 17.57 0.05 2799 0.7
(1.27) (0.01)

P4-P6_high ([6.9, 14.2] Å)

� � � 9.47 0.33 7556 52.5
(0.09) (0.00)

� � � 8.76 0.27 2939 21.8
(0.21) (0.01)

� � � 10.34 0.22 887 81.2
(0.34) (0.01)

� � � 8.30 0.27 1735 11.5
(0.16) (0.02)

� � � 7.48 0.35 6128 2.0
(0.05) (0.00)

� � � 8.42 0.31 6765 14.4
(0.09) (0.00)

� � � 7.48 0.35 6834 2.0
(0.07) (0.00)

Table 8.2: Performance of experimental data for the P4-P6 model sets. The first three
columns are the experimental data sets: OH (hydroxyl radical footprinting); MOHCA
(multiplexed hydroxyl radical cleavage analysis); and, SAXS (small-angle X-ray scat-
tering). A filled square in a column indicates that the experimental data from this
method were considered in the selection; the empty square indicates that they were
not. <RMSD> is the average RMSD in Å for 100 selection procedures (see Methods).
<GDT-TS> is the average GDT-TS for 100 selection procedures. N indicates the total
number of structures selected. Q is the percentage of structures in the set that have
lower RMSD than <RMSD>. Values in parenthesis are the standard deviations.
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Figure 8.1: Conformational sampling RMSD ranges. All-atoms RMSD (Å) are computed
against the tRNA solution structure (PDB code 2K4C) and P4-P6 crystal structure (PDB
code 1GID). a) Low tRNA set. b) High tRNA set. c) Low tRNA set. d) High P4-P6 set.
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Figure 8.4: Reinterpretation of MPE data for tRNA. Distances that are: a) beyond 30 Å;
and, b) beyond 35 Å. A quadratic penalty function is applied to: c) low set; and, d) high
set.
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Figure 8.5: tRNA conformational sampling. (Top) Low set. a) Secondary structure
coloured by stems: Acceptor (green); D (cyan); Anticodon (orange); and, T (yellow). All
other nucleotides are in magenta. bc) Two views of twenty centroid centres (thin tubes)
that are optimally aligned on the solution structure (PDB file 2K4C, thick tube). The
colours are the same as in a. (Bottom) High set. d) The secondary structure and three
base triples (8-14-21, 9-12-23, and 13-22-46) and three long-range base pairs (15-48,
18-55 and 19-56) shown using dashed lines. ef) Two views of twenty centroid centres
(thin tubes) that are optimally aligned on the solution structure (PDB file 2K4C, thick
tube).
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CHAPTER 9

MODELING RNA

In this chapter we will discuss in details the modeling of two RNA molecules. It will

highlight the use of the MC-Fold and MC-Sym pipeline. After all, it’s pointless to develop

tools if we don’t use them afterward. Corollary to this exercise is the inherent difficulty of

modeling RNA, despite its apparent low-complexity alphabet {A,C,G,U} and base pairing

rules {A=U,C=G,G=U}.

As best resumed by late Dr. Cedergren and Dr. Major, modeling, “the process of

combining, interpreting, and interpolating structural data, is the framework in which such

an expression and synthesis can be made. Models serve to summarize and condense

massive amounts of data into a visual, comprehensive format” [284]. The world leading

expert on RNA modeling is Dr. Eric Westhof. His many modeling attempts are rich in

hints on how to model RNA (and automate it). For recent RNA models made in our

research lab we invite the reader to look at references [61] and [62].

9.1 Apical RNA transport

A notable feature of protein synthesis is the in situ sub-cellular localization of gene

products, which explains why virtually all cells are polarized. The general belief is that

proteins are transported once translated. However, messenger RNAs (mRNA) have also

been found to be localized [285]. In Drosophila, it is estimated that about 70% of genes

are subcellularly localized before translation [286]. Still in Drosophila, a conserved el-

ement in the wingless mRNA has recently been characterized [287]: WLE3. Here, we

refine the sequence alignment and secondary structure, and propose three-dimensional

models for a significant subset of known apically localized elements.

We first start the modeling process with an initial multiple-sequence alignment, shown



118

in Figure 3 of [287]. The alignment provides sequences of similar lengths, suitable for

the analysis by MC-Fold and MC-Cons. For each sequence, the top 100 sub-optimal

structures were generated using MC-Fold. Then, using MC-Cons, a consensus struc-

tural assignment has been built. The sequences shown in Figure 3B of [287] served to

build the consensus structure. Then, a total of nineteen sequences, including some from

Figure 6 of [287], have been aligned on the consensus structure, to yield a 52-position

multiple-sequence alignment shown in Figure 9.1. It is remarkable how complex is the

alignment, already articulated in Dr. Krause’s group [287], and its plasticity foretells an

elaborate search scheme for linear scans of this element in whole genomes.

To further analyze the alignment, we used the RNA structure logo web server [288,

289] to produce Figure 9.2a. All nineteen sequences have been built in 3D using MC-

Sym; Figure 9.2b. From these we can deduce certain features:

• The sequence is U-rich in 5’ of the hairpin, while A-rich in 3’.

• Bulges don’t seem to be tolerated between positions 3 to 10, and 17 to 25, inclu-

sively. Bulges in the 3’-arm seem to be tolerated at only certain positions.

• Position 46 seem to provide for an unpaired nucleotide, but of any type.

• A perfectly conserved U=A base pair is found at positions 19=36, at a fixed dis-

tance from the hairpin’s head.

• All hairpins seem to occupy the same volume.

• There seem to be no distinct electrostatic feature, except the disruption of the -1.5

kT/e isopotential surface at the location of bulged nucleotides, which could serve

to lure the proteic complex (data not shown).

Hence, we have summarized in a 3D model all known apically localized sequences of

the wingless 3’-UTR transcript. The model can now serve to propose new experiments

to narrow down the specificity of binding to the localization proteic complex, and to unveil

other genes which could potentially be transported apically. To be continued...
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U−GCUUGCAU−A−CU−GCUUUGGCCAGG−ACCA−AAACG−UAUGCG−AAGUG D_melanogaster

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

U−GCUUGCAC−A−CU−GCUUUGGCCAGG−ACCA−AAACG−UAUGCG−AAGUG D_teissieri

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−A−CU−GCUUUGGCCAGG−ACCA−AAACG−CAUGCG−AAGAA D_erecta

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAC−A−CU−GCUUUGGCCAGG−ACCA−AAACG−UGUGCG−AAGUG D_yakuba

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−A−CU−GCUUUGGUCAGG−ACCA−AAACG−UAUGUG−AAGUG D_takahashii

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−A−CU−GCUUUGGCCAGG−ACCA−AAACG−GAUGUG−AAGUG D_ficusphila

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUCGCAU−A−CU−GCUUUGGCCAGG−ACCA−AAACG−UAUGUG−GAGAU D_auraria

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−A−CU−GCUUUGGCCAGG−ACCA−AAACG−UAUGCA−AAGUG D_ananassae

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUUCAUGU−U−−GCUUUGGCCGGG−CUCA−AAGCA−GAUGGA−AAGCG D_pseudoobscura

(−((((((((.(−(−−(((((((((..)−))))−)))))−))))).−)))))

1 2345678901 2  345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−ACUUGCAU−U−UG−GCUUGGGCCUGG−ACCCUAAGCA−AAUGUC−AGGUU D_prosaltans

(−((((((((−(−(.−(((((((((..)−)))).)))))−))))).−)))))

1 23456789 0 12 345678901234 5678901234 567890 12345

# #### ### # #  #########  # #### ##### ####   #####

U−AUUUGCAU−U−UG−GCUUGGGCCUGGACCCC−AAGCA−AAUGUCCAAGUA D_willistoni

(−((((((((−(−(.−(((((((((..).))))−)))))−))))..))))))

1 23456789 0 12 34567890123456789 01234 567890123456

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAUUU−C−−GCUUUGCCCAGC−UGCA−AAACG−CAUGUU−AAGCA D_robusta

(−((((((((.(−(−−(((((((((..)−))))−)))))−))))).−)))))

1 2345678901 2  345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−UUCC−AAUUUGCCCAGC−UGCA−AAUCG−CAUGUU−AAGCA D_hydei

(−((((((((−(.(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0123 456789012345 6789 01234 567890 12345

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−U−CCCGCUUUGCCCAGC−UGCA−AAGUA−CAUGUU−AAGCA D_mojavensis

(−((((((((−(−(..(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 123456789012345 6789 01234 567890 12345

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−U−CC−GCUUUGCCCAGC−UGCA−AAACG−CAUGUU−AAGCA D_virilis

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

U−GCUUGCAU−U−GC−GCUUUGCUCGGC−UGCA−AAGCA−AAUGUU−AAGCA Z_tuberculatus

(−((((((((−(−(.−(((((((((..)−))))−)))))−))))).−)))))

1 23456789 0 12 345678901234 5678 90123 456789 01234

# #### ### # #  #########  # #### ##### ####   #####

A−AUUU−CAA−U−U−−UUUAAGAAAA−C−AUUU−UAAAA−AUUG−U−AAAUU TLS_orb

(−((((−(((−(−(−−(((((((((.−)−))))−)))))−))))−.−)))))

1 2345 678 9 0  1234567890 1 2345 67890 1234 5 67890

# #### ### # #  #########  # #### ##### ####   #####

C−UUGAUUGU−A−U−−UUUUAAAUUAAU−UCUU−AAAAACUACAAA−UUAAG TLS_K10

(−((((((((−(−(−−(((((((((..)−))))−))))).))))).−)))))

1 23456789 0 1  234567890123 4567 890123456789 01234

# #### ### # #  #########  # #### ##### ####   #####

GUGCUC−UCA−A−C−−AAUUGUCGCC−G−UCACAGAUUG−UUGU−UCGAGCC GLS_grk

(.((((−(((−(−(−−(((((((((.−)−)))).)))))−))))−..)))))

123456 789 0 1  2345678901 2 3456 78901 2345 6789012

# #### ### # #  #########  # #### ##### ####   #####

|   |    |    |    |    |    |    |    |    |    |

1   5   10   15   20   25   30   35   40   45   50

Figure 9.1: Multiple-sequence alignment for the WLE3 element. A total of nineteen
sequences are aligned. Each sequence is represented by a block of four rows. The
first row features the sequence and its name tag. Insertions are marked using the ’-’
symbol. The second row keeps count of the sequential nucleotide number, starting from
position one. The third row marks with ’#’ the positions which are base paired. A total of
nineteen base pairs are highlighted and serves as anchor points to make the alignment.
Finally, The fourth row shows the secondary structure adopted. Here also, insertions
are marked using the ’-’ symbol.
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(a)

(b)

Figure 9.2: RNA structure for the WLE3 element. (a) Structure logo. For each position
in the alignment, the height of a column is proportional to the frequency of appearance
of the symbol in that column. The height of M symbol is proportional to the mutual in-
formation contained in a co-varying base pairing scenario. (b) 3D structures. Cross-eye
stereo view for the nineteen sequence studied. The nucleotides are colored from blue
5’ to red 3’. The perfectly conserved U=A base pairs are rendered as atomic spheres.
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9.2 Cap-independent translation element

Initiation of translation of mRNA into proteins relies on a sequence motif situated in

the 5’-end of the messenger which recruits the ribosomal complex [290, 291]. However,

certain viruses lack this cap motif, and lean instead on a cap-independent translation

element (CITE) [292]. Recently, a first CITE has been identified in a pea enation mo-

saic virus RNA 2: PTE [293]. The structure of this CITE has been investigated using

enzymatic (RNase 1) and chemical (SHAPE [224]) probing. A 3D modeling could now

be sketched.

Starting from two sequences, PTE-PMV and PTE-PEMV, and the SHAPE data, a

consensus structural assignment has been found using MC-Fold and MC-Cons, shown

in Figure 9.3a. The SHAPE data provides clear evidence for the hairpin heads of SL1

and SL2. The pseudoknot has been put in evidence by sequence mutation; mutations in

the region between H2 and H3 destabilized the structure, and rendered the nucleotides

between SL1 and SL2 prone to SHAPE attacks (i.e. more flexible thus unpaired), indi-

cating a connection between the two sequence parts.

To test the pseudoknot hypothesis we used a coarse-grained representation of RNA

as in NAST [48]. Although extremely rare, parallel-running strands can form base pairs.

Hence, the pseudoknot has been tested in the parallel and the anti-parallel cases. It

turned out that the parallel case produced structures with real knots that cannot be un-

folded, thus cannot be folded. Because NAST operates at a coarse-grained level, RNA

single strands can go through one another, allowing folds featuring real knots (imagine

pulling on both the 5’ and 3’ ends of the RNA once it is folded; can it be unfolded to a

straigth line without the need to cross single-stranded regions?). The anti-parallel case

did produce credible structures, at the least were unfoldable (by our previous imaginary

thought experience). It also suggested a coaxial arrangement of H2, H3 and SL1 into

an axis, and SL2 and PK into another axis.

All-atoms 3D Modeling by MC-Sym proceeded with a divide-and-conquer approach:

each of the five stems, H2, H3, SL1, SL2 and the PK, was generated independently.

Next, we assembled the two main axis, by coaxially stacking the stems. Finally, complete
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models were assembled by bringing together the two main axes, and adding the few

nucleotides left.

The PTE-PMV models exhibit a more constrained conformational space (angle be-

tween the two main axes) because of the few nucleotides flanking its pseudoknot. There-

fore, all 3D models of PTE-PEMV have been aligned to all those of PTE-PMV, to identify

the activated and common tertiary fold. The closest RMSD found between the two

sequences is at 2.6 Å, and the optimal superposition of PMV and PEMV is shown if

Figure 9.3b.

Additional structure probing could be performed to confirm the fold. In particular,

hydroxyl radical footprinting [57] could be done to verify the protection of specific nu-

cleotides in the pseudoknot core [278]. Furthermore, the footprint on the RNA following

the binding of the elF4E subunit of elF4F protein could be unveiled [294]. Then the spe-

cific sequence or molecular requirements could be tested to custom-tailor a descriptor

(see, for instance [232]), which can, in turn, be used to scan virus genomes for other

such CITE elements.
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>PEMV

AACACGUGGGAUAGGGGAUGACCUUGUCGACCGGUUAUCGGUCCCCUGCUCCUUCGAGCUGGCAAGGCGCUCACAGGUU

(((((((((((.[[[[.....(((((((((((((...))))))]]]](((((..))))).))))))).)))))))))))

               *                 ** **              * *                        

>PMV

CAGCAGAGACACGGGA−−CG−CCACACCACCUUUG−CAGAGGUGCCCUUGGGAAACCAAUGGUGUGG−GGUCUCA−CUG

(((.(((((((.[[[[−−..−(((((((((((((.−.))))))]]]](((((..))))).)))))))−)))))))−)))

|−−−H2−−−−| |PK|     |−H3−−||−−−−−SL1−−−−−||PK||−−−SL2−−−−| |−−H3−| |−−−−H2−−−|

(a)

(b)

Figure 9.3: RNA structure for the PTE element. (a) Sequence and secondary structure
for PTE-PMV and PTE-PEMV. Positions highly reactive to SHAPE are marked with a
star. The pseudoknot base pairs are tagged with brackets []. Extent of helical regions
are also delineated; H2, H3, SL1, SL2 and PK. (b) Stereo view of the optimal superpo-
sition of PTE-PEMV (tube) on PTE-PMV (ribbon). Stems are colored like; orange:H2,
green:H3, cyan:SL1, marine:SL2 and red:PK. All-atoms RMSD is 2.6 Å.



CHAPTER 10

CONCLUSION

As the title of this thesis suggests, we have devised a new paradigm for the folding of

ribonucleic acids. We will here summarize what has been done in the context of my

Ph.D. studies, and possible research avenues to explore in the future.

10.1 On successes...

Recall that the principal goal of this thesis is to predict the structure of an RNA given

its sequence. This goal is more known as the bio-polymer folding problem. An exact

solution to this problem is within scope since 1) Anfinsen and colleagues demonstrated

that the fold of a protein (hence, a bio-polymer) is encoded in its sequence, and that

the adopted fold is the one of minimum free energy [34]; 2) RNA is believed to fold

hierarchically [35], and its 3D structure is glass-like (low entropy) [256]; 3) the database

of solved structures is ever-growing, providing more input data to new and powerful data-

mining methods, which, altogether, has the potential to extract the folding rules from this

database (shown herein); and, 4) Advances in biophysical studies of RNA refine our

folding models (for instance, see [85, 93, 148]).

Because atomic-resolution structure determination is extremely expensive, we ask

how precise can we be in predicting structures using computers only. The first pa-

per published in this thesis addresses this question. The most prominent approach to

RNA structure prediction is a physico-chemical formulation best known as the INN-HB

(Individual Nearest Neighbor - Hydrogen Bond) model [172], which makes into play ther-

modynamics parameters for stacks of base pairs. This method predicts RNA secondary

structure from sequence, mainly by using the dynamic programming approach. These

parameters have been collected for more than 30 years now, and still have not pinned

down the RNA folding problem. Furthermore, sketching an RNA tertiary structure from
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a secondary structure is a hefty task, considering the many degrees of freedom an

unpaired nucleotide has.

Solution structure of the ribosomal complex by X-ray in early 2000 [159, 160] has

opened a new era in RNA structure prediction. Indeed, an analysis of the structural

content of the RNA portion of the ribosome shows that RNA is made of small and recur-

ring blocks [156], often part of more elaborate motifs [121, 123, 295]. By using a small

subset of these blocks, which we called Nucleotide Cyclic Motifs (NCM, Figure 3.2), we

asked if this could be a viable alternative to the INN-HB model, by providing not only

a hint on their relative stability for secondary structure prediction (already established

here [205]), but also actual 3D instances for RNA tertiary structure prediction.

We took the NCM as a first order object to: 1) provide statistics on their relative

thermodynamics stability given their sequences; 2) devise a model which predicts RNA

secondary structure from sequence based on these statistics, MC-Fold; and, 3) use ac-

tual NCM instances from the PDB in MC-Sym. The welding of two consecutive NCMs at

their common base pair limits the possibilities in base pair types and solves the spanning

tree problem from earlier MC-Sym versions, in which some inter-nucleotide relations had

to be left aside (see Dr. Lemieux’s Ph.D. thesis [161]). A welcomed feature of NCMs is

that they capture all base pair types, and not only the canonical ones (that are similar

to those found in the DNA double-helix), and they provide a unified framework for RNA

secondary and tertiary structure prediction (NCM fusion 1 and 2, Figure 5.1).

The results of our work have been published in Nature (reference [45] and chapter 4).

The mathematical model and algorithms used are described in details in the accompa-

nying text (chapter 5). We have shown that the new paradigm is not worse than the

thermodynamics approach (Table 4.1 and 5.1) on hairpins extracted from the PDB, and

allows for atomic precision RNA 3D models (Table 4.2 and Figure 4.1). Using the NCM

paradigm, we also made 3D structure prediction for microRNA hairpins, that are pro-

cessed by the Dicer protein complex [223], a step in RNA interference. We explain how

the RNA double-helix can still be processed even though it contains non-canonical base

pairs, bulges (insertions) and deletions (see Figure 4.2). We also proposed an alter-

native structure for the HIV-1 frame-shifting element (Figure 4.3). Although the whole
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HIV-1 genome has been further characterized [296, 297], it is not clear from these recent

studies if our model has been confirmed or invalidated.

To further extend the paradigm, we needed a new distance measure to quantify the

success (or failure) of our (and future) RNA modeling attempts. Already, the root-mean-

square-deviation (RMSD) was showing weaknesses in RNA structure comparison [56].

However, RMSD is the standard in structure comparison, so any new structure com-

parison method should have an equivalent distance measure. We took advantage of

the fact that RNA side chains, the nucleobases, associate in specific manners through

hydrogen bonding. This allows us to move away from the atomic positions to a simpler

symbolic nomenclature, which describes base pairs through their interacting edges (the

Leontis-Westhof (LW) nomenclature [67, 69]). Furthermore, nucleobases stack onto

one another, also captured into a symbolic annotation [251, 298].

The base pairings and stackings found in a 3D structure define its Interaction Net-

work (IN). By comparing the interaction annotations between a reference structure and

a model, we can now measure how well the model reproduces the base pair and stack

interactions, the Interaction Network Fidelity (INF), regardless of the minute atomic de-

tails inside the 3D structures. We then defined the Deformation Index (DI) as the RMSD

divided by the INF. Hence, on one hand, if a 3D model cannot reproduce the interaction

network of the reference structure (INF ≈ 0), then its RMSD to the reference structure

is meaningless, and the modeling attempt should be qualified as a failure. On the other

hand, the DI shifts attention to RMSD when the model reproduces the IN (INF ≈ 1). As

a matter of fact, we demonstrated that there is no correlation between RMSD and INF,

that is, we can build good RMSD models with bad INF, and vice-versa. We favor the INF

over the RMSD, since an RNA molecule will most likely conserve its interaction network

over its global shape (measured by the RMSD); a small angle change between the two

arms in the tRNA fold has dramatic influence on the RMSD, even though the IN remains

essentially the same. To spot the cause of a deviation between a model and a reference

structure we introduced a Deformation Profile (DP), which highlights the regions that are

poorly modeled. Taken together, these two new distance metrics should challenge the

RNA modeling community to perfect RNA structure prediction. These results have been
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published in RNA (reference [63] and chapter 6).

Many low-resolution RNA structure probing methods have recently been developed,

as an alternative to more costly but more precise techniques as NMR and X-ray. Our

paradigm would be incomplete if we left aside these methods. Hence, we have im-

plemented and evaluated the predictive power of the data issued from such methods.

The results are not published at the time of writing, but are under peer review. It is

the subject of chapter 8. We found that small-angle X-ray scattering (SAXS) offers the

best structure discrimination power over all RNA sizes utilized. Hydroxyl radical foot-

prints are even more discriminative of the native fold, but require RNA models that are

very precise. EDTA-based approaches, that attach a probe in a particular spot on the

3D structure and then observe the consequent backbone cleavage pattern within the

probe’s reach and backbone accessibility, are also quite revealing of the fold, as long as

the probe’s length is smaller than the radius of gyration of the molecule under study (or

else the probe will have access to a significant fraction of the nucleotides composing the

RNA).

That said, we can conclude that we have made significant steps to:

1. better predict the RNA secondary and tertiary structures, by using the NCM paradigm,

which naturally embraces all base pairings.

2. better compare RNA 3D structures, by introducing the Deformation Index and the

Deformation Profile.

3. better determine RNA 3D structure, using data from the latest low-resolution ex-

perimental methods.

4. provide the RNA modeling community with a web site that implements all our con-

cepts and findings.
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10.2 On failures...

I have spent a significant portion of my time (≈ 9 months) trying to find the Holly

Grail of molecular biology, that is, a function f that takes as parameter an RNA atomic

structure ~R and returns a score, say E = f (~R), with which one could sort many 3D

models and obtain the native fold from the model that shows the best score. I have not

succeeded yet to obtain such an f . Despite this, the history of my attempts is interesting

(as this medium allows me to discuss about ∼negative∼ results).

We first tackled this problem by computing a deformation matrix from which the co-

efficients represent “spring constants” [299], their magnitude indicating how easy or stiff

it is to deform a base pair and a base pair stack in an RNA structure. The base pair and

base pair stack parameters were those of Olson’s group [300, 301]. Then, the energy

of an RNA 3D structure is simply the sum of all its deformed base pairs and base pair

steps. This approach did not work very well since it could not detect the proper base

pairing types among many RNA decoys. Furthermore, base pairs and base pair steps

may have multiple energy minima that our model would not be able to capture (because

it is just a simple spring model with one rest position per parameter). This is a dead-end.

We then turned our attention to classical mechanical force-fields (FF), and in par-

ticular to the Amber ’99 FF [302], because of its general acceptance for nucleic acid

modeling (most tweaked for nucleic acids; [303, 304]). We already knew that it failed to

identify the native fold in a set of decoys for a few RNA sequences. Since the two main

non-bonded interactions in an RNA molecule are base stacking and pairing, we won-

dered if, by adding extra terms to the FF, it could now properly identify the native fold.

The idea here is to decompose f in more basic and orthogonal weighted wi phenomena

fi, like:

f (~R) = w1× f1(~R)+w2× f2(~R)+ · · ·

We took the non-bonded terms of Amber ’99 to describe the Coulomb and the van
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der Waals force-fields. For stacking, we added the π-π interaction, following the studies

of Dr. Hunter’s group in DNA [169, 170]. This interaction is best described as the

influence of π-electron clouds above and under cyclic rings, such as nucleobases in

nucleic acids [305]. Although this model has been invalidated for RNA [306], we still

believe in the effects of π-π interactions on the structure, because: 1) the invalidation

has been carried out on cytosine dimers only (not exhaustive); and, 2) these have been

made in the context of “old” quantum-mechanical methodologies and parameters (Dr.

Hunter’s π-π parameters date back to 1971 [307]), and therefore should definitively be

revisited. Stacking interaction is still subject to many research studies (see [308] for a

recent review).

For pairing, mostly mediated through hydrogen bonds (Hbond), given the apparent

directionality preferences between donor and acceptor groups (see, for instance, in the

sibling protein prediction field [309]), we used an anisotropic formulation to score them,

as prescribed here [310].

To see if we gained any discriminative power we used MC-Sym to generate ten

thousand 3D models of a simple RNA duplex with four consecutive non-canonical base

pairs. This duplex has been solved by NMR, but the structure is not disclosed in the

PDB yet (hence, at the time of writing we cannot provide the modeled RNA sequence).

The generated models have been partitioned by the base pair suite they feature; the

goal here is to predict the correct base pair suite adopted by the mismatches. If we look

at the score distributions for each suite of base pairs, the f function should, in theory,

identify the native suite of base pairs. Figure 10.1 shows the distribution of energies or

scores per suite. We compare side-by-side the Amber ’99 FF, the Amber ’99 FF with a

Generalized-Born Solvent-Accessibility (GBSA) implicit solvation model [311], and our

own f -score. We will let the reader draw its own conclusions from our results, given that

the base pair suite adopted by the duplex in solution is #3.
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10.3 On the future...

Our failure to devise an f function made us wonder if the numeric domain, i.e. the

xyz position of each atom, is an appropriate vehicle to capture the various factors (elec-

trostatics, van der Waals, etc) at play in RNA folding. This is, however, the ultimate goal,

but the intensive quest for a physico-chemical formulation has given mixed results so

far. The discrete states by which RNA nucleobases associate now fall into the symbolic

domain, which is appropriate for machine-learning techniques. We are now investigat-

ing the predictive power of decision trees, such as ID3 [312] or C4.5 [313], to infer the

base pair type of a base pair, given its nucleotide neighbors in an RNA duplex. The

advantage of a decision tree over f is that it allows to predict the base pair type based

on a few symbols only (like the type of nucleotides ACGU), rather than necessitating a

3D ~R, a few hundred of atomic positions. Preliminary results are encouraging, but still

need further investigations.

Failure to predict larger RNA secondary structures also raises eyebrows, following

the tremendous effort to quantify the folding free energy of smaller RNA duplexes. We

already discussed some possible explanations for this, like base triples, ionic cloud,

kissing loops, etc, but one avenue left unexplored are the very basic principles of RNA

folding; events that happen in a timely and locally fashion. The use of the dynamic

programming algorithm, with its global optimization result, implies that the RNA chain,

while collapsing on itself, has a certain sense of “omnipotence”. This is not in-line with

recent results on RNA folding, where pausing during transcription may have its word to

say on the final fold [102]. Furthermore, the complex RNA folding landscape combined

to the 5’-to-3’ RNA synthesis can lead to viable intermediates [314]. And, the RNA chain

can form early and local motifs, such as lonepair triloops [95].

One very interesting point of view is to look at the affinity of a small stretch of an

RNA sequence against the rest of the sequence. The affinity can be best measured

by MC-Fold’s force-field, which takes into account all base pair types (canonical as well

as non-canonical). The affinity or density plot is computed in this fashion: consider all

stems an RNA sequence can make. For each stem consider the energy density instead
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of the total energy. The density is obtained by dividing the total energy by the stem’s

length. Then, plot this energy density for all nucleotides in the stems. For the asparagine

version of tRNA, this is shown in Figure 10.2. We can see that 1. the D- and T-loop

hairpins are clearly identified (nucleotides 16 and 57 respectively) as the sequences

near these hairpins find no attractive/complementary sub-sequences elsewhere in the

sequence, leading to low energy densities, and 2. the first collapse of the most energy

dense region would yield the T-stem, in accord with tRNA melting experiences [315],

if we admit that, more less, unfolding is folding with the arrow of time flowing in the

opposite direction (the T-stem/loop persists at high temperatures compared to the other

stems in the tRNA). These two features of the density graph, that is, the absence and/or

the best affinities, could be exploited to better RNA secondary structure predictions. The

interest in this view comes from the fact that the secondary structure prediction, by MC-

Fold and other thermodynamics-based approaches, for this particular RNA sequence

is a three-way junction, and not the famous cloverleaf four-way junction! One could

devise a folding algorithm in which the densest stem first form, then the density plot is

recomputed (because pieces of the sequences are now no more available), and process

applied recursively. This algorithm is local, timely and greedy. More research must be

done to verify if this folding principle would apply to other RNA sequences. Variants with

saddle points could also be envisaged (similar to [316] or [317]).

Allow me to finish on this most humorous note;

-“because, I’m Billy Mitchell”

Billy Mitchell, explaining why his Pac-Man can go through a monster without dying. He

was the first to make a perfect Pac-Man gameplay, hence to obtain the highest possible

score of 3,333,360.

ref: http://www.youtube.com/watch?v=Ok6kiLK0Idc
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Figure 10.2: Mean energy density for tRNA-ASP. For all possible stems given the se-
quence, the best energy is shown for all nucleotides participating in that stem. The
energy is converted into mean energy by dividing the total energy of the best stem by its
length. Nucleotides that have zero mean energy are modified nucleotides known to re-
main unpaired. In tRNA-ASP, nucleotide 47 is absent to conform to the tRNA nucleotide
numbering convention. The dotted horizontal line indicates the nucleotides involved in
the lowest energy density stem.
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