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Summary 
 

Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor (TNF) 

receptor family, and is widely expressed in human normal tissues and 

malignant tumors. It is a decoy receptor of three TNF family members, i.e., 

FasL, LIGHT and TL1A. The interaction of DcR3 and its ligands will not 

transmit signal into cells via DcR3 because DcR3 is a soluble protein 

without a transmembrane and intracellular segment. Thereby, DcR3 

competitively inhibits signaling through three functional receptors, i.e., Fas, 

HVEM/LTβR and DR3. 

In previous studies, we found that DcR3 could modulate immune cell 

function, and protect islet viability. Herein, we generated DcR3 transgenic 

(Tg) mice driven by the human β-actin promoter to further investigate the 

function of DcR3. 

Interestingly, the DcR3 Tg mice developed a lupus-like syndrome at 6 

months of age. They presented a variety of autoantibodies including anti-

nucleus and anti-dsDNA antibodies. They also manifested renal, dermal, 

hepatic and hematopoietic lesions. Compared to lpr and gld mouse lupus 

models, DcR3 Tg mice more closely resembled human SLE in terms of 

Th2-biased immune response and anti-Sm antibody production. 
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Furthermore, we found that DcR3-producing hematopoietic cell were 

sufficient to cause these pathological changes. Mechanistically, DcR3 may 

break T-cell homeostasis to interfere with peripheral tolerance, and then 

induce autoimmunity.    

In humans, we detected high DcR3 levels in SLE patient sera. The high 

DcR3 levels were related to elevated IgE titer in some SLE patients, as was 

the case in the mouse model. Therefore, DcR3 may represent an important 

pathogenetic factor of human SLE.  

Utilizing the DcR3 Tg mouse, we further elucidated the mechanism by 

which DcR3 protected islets from primary nonfunction (PNF). Blocking of 

LIGHT and TL1A signaling by DcR3 are involved in such protection. 

Moreover, by mRNA microarray we identified possible downstream 

molecules, which may mediate such protection. We confirmed that 

Adcyap1 and Bank1 played critical roles in mediating DcR3’s effect in 

islet protection.  

Our studies resolved a puzzle about the relationship between the Fas/FasL 

apoptosis signaling pathway and the pathogenesis of human SLE. DcR3 

can block Fas/FasL pathway even if there is no genetic mutation in Fas and 

FasL. DcR3 can simultaneously interfere with LIGHT and TL1A signaling 

to cause a more complex phenotype than the simple Fas or FasL mutation 
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in patients. DcR3 can also be employed as a potential diagnostic parameter 

for SLE. The discovery of the mechanism of DcR3 in protecting islets 

allows us to explore novel therapeutic targets to protect islet graft.  

  

 

 

 

 

Key words:  DcR3; transgenic; systemic lupus erythematosus; islet transplantation; 

primary nonfunction ( PNF). 
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Résumé 
 

Le récepteur DcR3 (Decoy receptor 3) est un membre de la famille des 

récepteurs aux facteurs de nécrose tumorale (TNF). Il est fortement 

exprimé dans les tissus humains normaux ainsi que les tumeurs malignes. 

DcR3 est un récepteur pour trois ligands de la famille du TNF tels que  

FasL,  LIGHT et TL1A. Étant une protéine soluble donc dépourvue de la 

portion transmembranaire et intracytoplasmique, le récepteur DcR3 est 

incapable d’effectuer une transduction de signal intracellulaire à la suite de 

son interaction avec ses ligands. De ce fait, DcR3 joue un rôle de 

compétiteur pour ces derniers, afin d’inhiber la signalisation via leurs 

récepteurs fonctionnels tels que Fas,  HVEM/LTβR et DR3. 

Lors de nos précédentes études, nous avons pu démontrer, que DcR3 

pouvaist moduler la fonction des cellules immunitaires, et aussi protéger la 

viabilité des îlots de Langerhans. À la suite de ces résultats, nous avons 

généré des souris DcR3 transgéniques (Tg) en utilisant le promoteur du 

gène β-actine humaine afin d’étudier plus amplement la fonction de ce 

récepteur.  

Les souris Tg DcR3 ont finalement développé le syndrome lupus-like 

(SLE) seulement après l’âge de 6 mois. Ces souris présentent une variété 
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d'auto-anticorps comprenant des anticorps anti-noyaux et anti-ADN. Elles 

ont également manifesté des lésions rénales, cutanées, hépatiques et 

hématopoïétiques.  Contrairement aux modèles de lupus murin lpr et gld,  

les souris DcR3 sont plus proche du SLE humain en terme de réponse 

immunitaire de type Th2 et de production d'anticorps d'anti-Sm. En péus, 

nous avons constaté que les cellules hématopoïétiques produisant DcR3  

sont suffisantes pour causer ces pathologies. DcR3 peut agir en perturbant 

l’homéostasie des cellules T pour interférer avec la tolérance périphérique, 

et ainsi induire  l'autoimmunité.  

Chez l'humain, nous avons détecté dans le sérum de patients SLE des 

niveaux élevés de la protéine DcR3. Chez certains patients, comme chez la 

souris, ces niveaux sont liés directement aux titres élevés d’IgE. Par 

conséquent, DcR3 peut représenter un facteur pathogénique important du 

SLE humain.  

 L’étude des souris Tg DcR3, nous a permis aussi d’élucider le mécanisme 

de protection des îlots de Langerhans. Le blocage de la signalisation des 

ligands LIGHT et TL1A par DcR3 est impliqué dans une telle protection. 

D'ailleurs, nous avons identifié par ARN microarray quelques molécules 

en aval de cette interaction, qui peuvent jouer un rôle dans le mécanisme 
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d’action. Nous avons par la suite confirmé que Adcyap1 et Bank1 joue un 

rôle critique dans la protection des îlots de Langerhans médiée par DcR3. 

 Notre étude a ainsi élucidé le lien qui existe entre la signalisation 

apoptotique médiée par Fas/FasL et la pathogénèse du SLE humain. Donc, 

malgré l’absence de mutations génétiques sur Fas et FasL dans le cas de 

cette pathologie, DcR3 est capable de beoquer cette signalisation et 

provoquer le SLE chez l’humain. Ainsi, DcR3 peut simultanément 

interférer avec la signalisation des ligands LIGHT et TL1A et causer un 

phénotype plus  complexe que les phénotypes résultant de la mutation de 

Fas ou de FasL chez certains patients. DcR3 peut également être utilisé 

comme paramètre  diagnostique potentiel pour le SLE. Les découvertes du 

mécanisme de  protection des îlots de Langerhans par DcR3 ouvrent la 

porte vers de nouveaux horizons afin d'explorer de nouvelles cibles 

thérapeutiques pour protéger la greffe d'îlots.  

 

 

 

 

 

Mots clés : DcR3; transgénique; systemic lupus erythematosus; transplantation d'îlots; 

PNF. 
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 1.  Decoy receptor 3 

 

1-1. General information about DcR3 

Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor receptor 

(TNFR) family. Its full-length complementary DNA was first isolated from 

human fetal lung in 1998 by Pitti et al (1). The DcR3 gene is mapped to 

chromosome 20q13.3, a region associated with gene amplification and 

rearrangement in human cancer (2,3). The DcR3 cDNA encodes a 300-aa 

secreted protein that lacks transmembrane and intracellular domains in its 

sequence (1,4). It contains 4 conserved cysteine-rich domains (CRD) as 

other members of TNFR family, and one N-linked glycosylation site 

(Fig.1). There are two transcription variants of DcR3 at the 5' untranslated 

region but they encode the same protein (NM_032945.2 and 

NM_003823.2). DcR3 is expressed in humans, chicken (5), and Conger 

myriaster (6). The rodents do not have any homologue of DcR3 according 

to genome-wide computer search. 

DcR3 is present in the normal human fetal lung, brain, and liver, also in the 

adult spleen, colon, lung, and activated T cells (1,7). More interestingly, it 

is highly expressed in many malignant tumors/cells. Overexpression of 

DcR3 has been reported in 34% (27/79) gastric carcinoma (8), in 44% 
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(30/68) gastrointestinal tract adenocarcinomas (9), in 63%-73% (185/294- 

163/223) colorectal tumors (10), in 60% (29/48) hepatocellular carcinoma 

(11), in 67% (10/15) pancreatic cancer (12), and in 83% (15/18) of 

high-grade gliomas (13). It is also found in lymphomas, renal cancers and 

ovarian cancers (14,15,16). According to our ELISA analysis, about 

50–60% of various tumors overexpressed DcR3 (17). 

 
Figure 1. The homology of the amino-acid sequences between DcR3 and OPG (osteoprotegerin, a 

typical member of TNFR family) (source: ref.1) 

Arrow: the putative signal cleavage site; 

CRD: the cysteine-rich domains; 

Asterisk: the N-linked glycosylation site.  
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1-2. Biological function of DcR3 and its molecular mechanism  

Although the DcR3 does not transmit signal into cells, it is able to bind 

three TNF family members, i.e., FasL (Fas ligand), LIGHT 

(lymphotoxin-like, exhibits inducible expression, and competes with HSV 

glycoprotein D for HVEM) and TL1A (TNF-like molecule 1A) (1,4,9,18). 

Such competition will disturb the interaction of these molecules with their 

functional receptors, i.e., FasL with Fas, LIGHT with HVEM (herpesvirus 

entry mediator protein) (19,20) and LTβR (lymphotoxin  receptor) 

(21,22), and TL1A with DR3 (death domain-containing receptor 3) (18). 

As a consequence, DcR3 competitively suppresses signaling through these 

receptors, and interferes with their functions. A brief review of the 

functions of Fas, LIGHT and TL1A is given below. 

1-2-1. Fas and FasL: Fas antigen, also known as CD95 or APO-1, is a 

principal death receptor to trigger apoptosis signaling pathway (Fig.2). 

Various types of cells express Fas, including most immune cells (i.e., T 

cells, activated B cells, mononuclear phagocytes) and some non-immune 

cells in the liver, lung, heart (23) and islets of Langerhans (24). Fas 

contains a conserved “death domain” in its cytoplasmic region. FasL is a 

homotrimeric membrane protein which is predominantly expressed on 

activated T cells. When FasL binds to Fas, it clusters 3 or more Fas 
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molecules to form the death-induced signaling complex (DISC). The 

death domain of the Fas polymer recruits Fas-associated death domain 

(FADD). The death effector domain of FADD consequently binds to 

FADD-like ICE (FLICE), or more commonly known as pro-caspase 8. 

FLICE can be cleaved into p10 and p18 subunits through self-proteolysis, 

and form an active heterotetramer enzyme. Active caspase-8 is then 

released into the cytoplasm to cleave and activate downstream effector 

caspases, such as caspases 3, 6, or 7. This eventually leads to DNA 

fragmentation, membrane blebbing, and cell death.  

 
Figure 2: The apoptotic signal pathway of Fas / FasL (CD95/CD95L). (source: ref. 25) 
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The Fas/FasL apoptosis signaling pathway is involved in T-cell 

homeostasis, the establishment of immune privilege, cytotoxic T-cell 

activity (26) and tumor cell survival (27). 

Besides triggering Fas positive cell to apoptosis, FasL may also act as a 

costimulator by retrograde signal transmission into FasL expressing cells 

by “reverse signaling” (28).  

 

1-2-2. LIGHT and HVEM/LTβR: LIGHT is a type-II transmembrane 

protein (29), and is highly expressed on activated lymphocytes, CD8+ T 

cell lines, granulocytes, and monocytes (22). LIGHT, as a costimulator 

through the LIGHT/HVEM interaction, contributes to T-cell activation 

and modulates T-cell responses (30,31,32). The LIGHT/HVEM signaling 

has been involved in graft-versus-host diseases (33,34). On the other 

hand, the LIGHT/LTβR signaling plays various biological activities, 

including the induction of apoptosis (35,36,37), organogenesis of lymph 

nodes (38), restoration of secondary lymphoid structure and function 

(39,40), and production of cytokines (41). Moreover, LIGHT produced 

by activated lymphocytes can induce apoptosis of tumor cells expressing 

both LTβR and HVEM (22). 
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1-2-3. TL1A and DR3: TL1A (TNFSF15/VEGI) is the most recently 

identified member of the TNF superfamily. It has been shown to be 

highly expressed on the membrane of endothelial cells, dendritic cells 

and peripheral CD4+CCR9+ T cells (18,42). It is also a soluble protein 

(often called vascular endothelial growth inhibitor [VEGI]), which is 

present in body fluids or secreted by TNF-α−treated chondrocytes 

(43,44). DR3 is a high affinity receptor for TL1A (18) and contains a 

death domain similar to Fas. DR3 is not only a transmembrane receptor 

on lymphocytes, but also function as a "decoy" receptor when secreted 

without the transmembrane domain. The signaling through DR3 can 

either induce apoptosis or activate NF-κB (45). In T cells, TL1A activates 

NF-κB and cIAP-2 as a costimulator through ligation with DR3, and 

leads to elevated secretion of IFN-  and GMCSF, but not apoptosis (46). 

This mechanism is involved in certain inflammatory diseases 

(inflammatory bowel disease, mucosal inflammation, and atherogenesis)  

(47,48,49). Furthermore, the TL1A/DR3 signaling regulates osteoblast 

differentiation and apoptosis, and may contribute to arthritis and bone 

cancer (50). 
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In addition to FasL, LIGHT and TL1A, there is some indication that DcR3 

might bind to other additional ligand(s) (51), but this has not been proven. 

Although mice do not express DcR3, studies by our team and Bossen et al. 

have showed that human that DcR3 can bind to mouse FasL, TL1A and 

LIGHT, and exert biological functions (4,52,53). DcR3 influences multiple 

physiological functions such as the induction of apoptosis (1,9,22,37,54), 

regulation of T-cell migration (55), regulation of angiogenesis (56), and 

modulation of macrophage and dendritic cell differentiation (57,58).  

 

1-3. Regulation of DcR3 expression 

The molecular mechanism regulating DcR3 expression in normal cells is 

not well elucidated. We know that DcR3 expression depends on the 

transcription factor NF-κB and the activation of mitogen-activated protein 

kinases (MAPK), such as extracellular signal-regulated kinase 1 and 2 

(ERK1/2) and c-Jun NH2-terminal protein kinase (JNK) (59). A very 

recent study showed that serum DcR3 levels have cyclic changes according 

to the menstrual cycle and DcR3 expression in endometrial cells is 

modulated by sex hormones (60). This study also suggested that the sex 

hormone-related signaling pathways may participate in the regulation.  
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In tumors, gene amplification and overexpression of DcR3 are frequently 

observed (1, 9). However, they are not always concurrent (9,61). Protein 

overexpression may not depend on genomic change, and the gene 

amplification may not cause the protein overexpression either. These 

suggest that the gene amplification is neither sufficient nor necessary for 

the overexpression of DcR3, and there are other mechanisms to modulate 

its expression level. Further studies found that insulin-like growth factor-1 

induced activation of the PI3K/Akt/NF- B signaling pathway is important 

to regulate endogenous DcR3 expression in human pancreatic carcinoma 

(62). Interestingly, DcR3 overexpression positively relates to Epstein-Barr 

virus (EBV) infection in lymphomas (63). Here, DcR3 expression is 

induced by Rta, a transcriptional activator encoded by EBV (64). Rta not 

only directly binds to the Rta-responsive element (RRE) sequence located 

in the DcR3 promoter region, but also enhances PI3-K activity. Besides, 

the coordinate transcriptional regulation of overlapped genes may be 

involved in the mechanism. The DcR3 gene is located in a gene-rich 

cluster and partially overlaps with exons 32 through 35 of the novel 

helicase-like gene (NHL) (Fig. 3), which relates to multiple inherited 

human neoplastic disorders (9).  Such overlapping structures could cause 

coordinate transcriptional regulation (65 ) that may contribute to the 

up-regulation of DcR3 in tumors or other diseases.  
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Figure 3. Genomic structure of DcR3 and adjacent genes. (source: ref. 9) 

Shaded boxes: Exons, each color represents one gene;  

Arrows: The translation initiation methionine and the direction of protein translation;  

*: One of DcR3 transcript variants overlaps the NHL helicase sequence with exons 32 through 35.  

 

1-4. Immunity and DcR3 

DcR3 plays a complex role in immune modulation. DcR3 primarily 

downregulates immune function. It could suppress T- and B-cell activation 

and T-cell proliferation (66), inhibit T-cell and macrophage chemotaxis 

(13,55,66), impair macrophage function (67), as well as induce apoptosis 

of dendritic cells (68). On the other hand, activated T cells secrete DcR3, 

which can prevent T cells from activation-induced cell death (AICD) (1) 

and enhance T-cell activation and cytokine production through 
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costimulation (69,70,71). It also regulates the differentiation of dendritic 

cells and macrophages (57, 58), and the expression of adhesion molecules 

on endothelial cells (72). The complexity of the bioactivity of DcR3 hints 

that DcR3 may participate in multiple physiological procedures and 

precisely adjust different signaling pathways according to certain 

circumstances.  

 

1-5. Cancer and DcR3 

As described, DcR3 overexpression is found in diverse malignant tumors. 

Clinical studies also show relationship between DcR3 levels and 

malignancy, tumor stage and prognosis. Higher serum DcR3 levels are 

associated with poorer differentiation, later tumor stages and worse 

outcomes (8,15,73 ,74). These observations and in vitro experiments 

(1,12,75) support the notion that tumors may benefit from the elevation of 

DcR3 levels to overcome immune surveillance. Indeed, DcR3 may provide 

several advantages to tumors: 

1) DcR3 may inhibit NK cell and cytotoxic T lymphocyte activity through 

blocking of the Fas/FasL, LIGHT/ HVEM-LTβR death signaling pathway; 
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2) DcR3 may suppress the tumor-reactive lymphocyte activation and 

cytokine production by repressing costimulation of LIGHT and TL1A, or 

by modulation of dendritic cells; 

3) DcR3 may restrain T lymphocyte chemotaxis by the activation of 

LIGHT reverse signaling; 

4) DcR3 may induce angiogenesis of tumors by neutralization of TL1A; 

5) DcR3 may disturb mononuclear phagocyte differentiation, adhesion and 

antigen presenting functions (57,72). 

Several questions remain to be answered. Which cells do contribute to 

increased serum DcR3 levels in tumor patients? Tumor cells, 

tumor-reactive immune cells, or both? Is DcR3 elevation a cause or a 

consequence of oncogenesis? In other words, could occasional elevated 

DcR3 levels induce malignant changes, or existing malignant cells and/or 

tumor-reactive immune cells over secrete DcR3? We do not have definitive 

answers to these questions. 

In our study, DcR3 transgenic mice do not produce any conspicuous 

tumors when expressing folds higher endogenous DcR3 than those 

observed from tumor patients (data not shown). This suggests that sole 

DcR3 overexpression may not be sufficient to induce but functions as an 

accessory factor to carcinogenesis. Up-regulated DcR3 levels, which are 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL      BING HAN 13

caused by virus infection, endocrine disturbances, improper gene 

regulation, may assist the malignantly transformed cells to escape immune 

surveillance. In any case, DcR3 is becoming a useful early diagnostic and 

prognostic marker of various malignant tumors.  

In summary, DcR3 is a multifunctional regulator. It is not absolutely 

needed for normal physiological functions since rodents do not have it at 

all. Its biological function in humans might be fine tuning of certain 

signaling pathways. It may involve multiple organ development, immune 

system maturation, peripheral tolerance maintenance and tissue repair. 

Dysfunction of DcR3 may result in a variety of disorders in humans, and 

its expression could be used to monitor conditions of these diseases. 
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 2. Systemic lupus erythematosus (SLE) 

 

Systemic lupus erythematosus (SLE) is an autoimmune disease 

characterized by the production of many different autoantibodies against 

cell components, especially nuclear components, with involvement of 

multiple systems, and variable symptoms. Excessive autoantibodies lead to 

formation of immune complexes, with deposition in different tissues 

causing inflammation and consequent tissue damage. The clinical 

manifestations of SLE vary greatly. The course of the disease is 

characterized by alternative relapse and remission. 

 

2-1. Epidemiology of SLE 

Although about 20 percent of SLE patients are diagnosed before age 16 

(76)， SLE mainly affects child-bearing age females, and the disease lasts 

for life (77). It is more frequent among Asians, Afro-Americans and 

Afro-Caribbeans than Caucasians and Blacks in Africa (78,79,80). The 

prevalence of SLE is highly varied according to regions. In the USA, it is 

from 40 to 150 cases per 100,000 (81,82); in Asia, 50 to 100 cases per 

100,000 (83); about 20 to 70 per 100,000 in Europe (84,85,86). The 
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incidence has nearly tripled in the past 40 years, but this maybe due to 

improved detection of mild forms of the disease (87). 

 

2-2. Pathoaetiology of SLE 

Immune complex deposition, inflammation and vascular abnormalities are 

the basic pathological changes of SLE. Their central pathogenesis is the 

production of autoantibodies. Both T and B lymphocytes are necessary for 

the generation of autoantibodies. These antibodies aim several self 

molecules in the nucleus, cytoplasm, and cell surface, as well as some 

soluble molecules such as IgG and coagulation factors. Antinuclear 

antibodies are most common. The anti-double stranded DNA (ds-DNA) 

and anti-Sm antibodies are unique in SLE, and are thought to be the main 

reasons of tissue damage. When soluble self-antigens are exposed to 

autoantibodies, they form immune complexes, which are deposited in 

tissues, especially the joints, glomeruli and vascular wall. The deposited 

immune complexes will activate the complement system, which will then 

recruit and activate inflammatory cells, such as neutrophils and 

macrophages. These inflammatory cells will secrete reactive intermediates 

to mediate local inflammation. Subsequently, this leads to tissue damage 

and clinical symptoms. 
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In addition to T and B lymphocyte function which is important for 

autoantibody generation, other risk factors such as hormones, 

environmental elements and genetic susceptibility are also critical in SLE 

pathogenesis. 

 

2-2-1. Hormones  

Sex hormones are crucial in the pathogenesis of SLE. SLE is marked with 

female predominance. The female to male ratio of SLE patient rises from 

puberty (3: 1) and peak during child-bearing years (10-15: 1), it then 

decreases after menopause (8: 1) (88). High-estrogen levels, in the cases of 

early menarche, estrogen treatment, or Klinefelter’s syndrome that are 

characterized by hypergonadotrophic hypogonadism, could significantly 

increase the risk of SLE (89,90). Moreover, abnormalities of sex hormone 

metabolism including redundancy of 16 hydroxyestrone (91) and reduction 

of androgens (testosterone, dihydrotestosterone, dehydroepiandrosterone 

(DHEA) and dehydroepiandrosterone sulfate (DHEA-S) (92 ,93 )) are 

observed in both male and female SLE patients.  

Besides sex hormones, gonadotrophin releasing hormone (GnRH) (94) and 

hormones in the hypothalamo–pituitary–adrenal (HPA) axis (such as 
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cortisol, prolactin and thyrotropin releasing hormone) ( 95 , 96 ) also 

influence the invasion and/or activity of SLE. 

 

2-2-2. Genetic factors  

SLE shows a strong familial aggregation (10–12%) among first degree 

relatives (97). Moreover, the concordance of SLE in identical twins is 

significantly higher than that in dizygotic twins (25–50% vs. 5%) (98). 

These observations suggest that the genetic factors play an important role 

in the pathogenesis of SLE. Although few SLE cases (<5%) are caused by 

single gene mutations (99), SLE is primarily a polygenic inheritance 

disease, which needs at least four susceptible genes to cause disease 

manifestation ( 100 ). More than 100 potential risk genes have been 

identified in the last few decades. Some of them were confirmed to have 

strong association with SLE. Those include: the genes of human leukocyte 

antigen (HLA) class II [HLA-DRB1*0301/*0302 (DR3), 

DRB1*1501/*1503 (DR2), DRB1*08 (DR8) (101,102,103)], genes of 

some classical complement activation pathway components [C1q, C1r/s 

(104), C2 (105,106), C4 (107,108,109)], the FCGR genes [FcgR IIa (110), 

IIb (111) and IIIa (112)], and some genes related to immune regulation, 

e.g., TNF-α (113,114), PDCD1 (115,116) and CTLA-4 (117,118).  
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In addition to these candidate genes, 13 susceptibility loci show significant 

linkage to SLE, according to a genome-wide linkage analysis (Fig. 4) (119). 

Eight of them (1q23, 1q25-31, 1q41-42, 2q35-37, 4p16-15.2, 6p11-21, 12 

q24, and 16q12) were confirmed by a number of studies (120,121,122,123, 

124,125,126,127,128,129,130). 

 

 

Fig. 4 The susceptibility loci of SLE (source: ref.131) 

 

2-2-3. Environmental factors  

The genetic idiosyncrasy and hormonal surroundings create a 

predisposition to SLE, while environmental factors can trigger the 
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initiation of SLE. Ultraviolet (UV) light, especially UVB, can bring  

about keratinocytes apoptosis, and then expose some self-antigens to the 

immune system  triggering autoimmunity (132). Some chemicals, such as 

aromatic amines, hydrazines and their derivatives, are present in many 

drugs, agricultural and industrial products (even tobacco). They can 

potentially ignite a lupus-like syndrome ( 133 ). Infections in early 

childhood seem to affect the SLE risk in later life (134,135). Furthermore, 

the deficiency of vitamin D also has been found to be associated with SLE 

(136). 

 

2-2-4. Apoptosis and SLE 

Apoptosis, also called programmed cell death, is a process when cells 

undergo an ordered destruction and clearance, without releasing 

inflammatory intracellular contents into the extracellular environment. 

Apoptosis can be initiated by ligation of cell surface death receptors with 

their ligand(s), or by deficiency of survival stimuli. The former is called 

activation-induced cell death, and the latter is called passive cell death. In 

activation-induced cell death, ligated death receptor will activate caspase 8 

(and caspase 10 in humans). While lack of survival stimuli will increase 

permeability of mitochondria and lead to release of cytochrome C. 
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Cytochrome C then couple with apoptosis activating factor-1 to induce 

activation of caspase 9.  The activation of caspase 8 or caspase 9 is 

followed by the activation of an enzymatic cascade, nuclear condensation 

and fragmentation, and plasma membrane blebbing (137). Among all the 

cell death receptor/ligand signaling pathways, Fas/FasL-mediated 

apoptosis pathway is the best characterized (Fig 5). This pathway is crucial 

for the development of immune tolerance (138,139).  

During the immune system maturation, self-tolerance is developed through 

apoptosis of auto-reactive lymphocytes in central lymphoid organs. 

Immature T/B cells with high affinity receptor of self-antigen will be 

induced to apoptosis. This is called central tolerance. But not all of the 

self-antigen can be presented in central lymphoid organs. Some 

auto-reactive lymphocytes can escape from negative selection. In 

peripheral, apoptosis of activated lymphocytes following an immune 

response maintains homeostasis of peripheral lymphocytes numbers, and 

contributes to peripheral tolerance to self-antigens (140,141). Disturbance 

in these apoptotic processes might break the balance present in the immune 

system and may predispose to autoimmunity. Some lupus-prone murine 

models support this assumption. The lpr/lpr and gld/gld mice, which have 

mutation in the Fas and FasL respectively, spontaneously develop 
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lymphadenopathy and lupus-like syndrome characterized by the presence 

of autoantibodies to nuclear antigens ( 142 ). Another model is the 

exogenous soluble Fas (sFas)-induced autoimmune symptoms in CD1 

mouse (143). These models suggest that the disorder or blocking of 

Fas/FasL pathway will result in defect of peripheral autoreactive 

lymphocyte elimination that occurs through Fas-mediated apoptosis (144). 

However, in humans, Fas or FasL gene defects only cause the 

lymphoproliferative syndrome (ALPS) (140,145) with rare autoimmune 

manifestations (146). Most SLE patients do not have abnormality in their 

Fas/FasL gene structure and expression (147,148,149). Only sFas levels 

relate to SLE activity (150,151). Otherwise, apoptosis of peripheral 

lymphocytes in SLE patients is not compromised or even enhanced 

(152,153). This suggests that the relationship between apoptosis and 

self-tolerance in humans is much more complex than in mouse.   

Apoptotic cells may also expose intracellular and cryptic epitopes to the 

immune system (154). The degradation and modification of cellular 

constituents during apoptosis could induce immunogenicity (155,156). If 

apoptotic residues can not be cleared in due time, e.g., due to deficiencies 

in complement factors or CD14 ( 157 , 158 ), autoimmunity may be 

stimulated. 
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2-3. Mouse models of SLE 

Although no single animal model perfectly recapitulates human SLE, some 

animal models can help us understand the etiology and pathogenesis of this 

disease. There are many inbred strains of spontaneous SLE-prone mice, 

including MRL/lpr, MRL/gld, NZB (New Zealand Black), F1 hybrids of 

NZB×NZW (New Zealand White) (B/W F1), and BXSB mice. Each of 

these have their own genetic background and autoimmune characteristics 

(table 1). More gene manipulated models are being generated, such as 

transgenic or gene knockout mice, which may help clarify the significance 

of target molecules in SLE. 

 

Strain  Photo-dermatitis Histopathologic features  

  Sensitivity Igs at DEJ IC-GN Arteritis Arthritis

NZB - + + (IgM) + - - 

NZB/KN + (alopecia) unknown + (IgM) + - + 

B/W F1 - + ++ (IgG) +++ - - 

MRL/lpr ++ +++ + (IgG) +++ + + 

MRL/n ++ (aged) - + (ANA) + + + 

BXSB - ++ + (IgG) +++ - - 

Table 1. Characteristics of lupus-prone mouse strains (source: ref.159) 
Igs at DEJ: immunoglobulins deposits at the dermoepidermal junction;  
IC-GN: immune complex glomerulonephritis;  
ANA: epidermal nuclear staining. 
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2-4. Clinical features of SLE 

2-4-1. Symptoms  

The clinical course and outcome of SLE are extremely variable. 

Glomerulonephritis, arthritis, systemic small arteries vasculitis, rashes, 

haemolytic anemia and thrombocytopenia, which are caused by immune 

complexes deposition and/or autoantibody-induced ADCC, are the most 

common clinical symptoms of SLE. 

 

2-4-2. Diagnosis 

The American College of Rheumatology (ACR) classification criteria, a 

generally-accepted diagnostic standard, were devised in 1982 and revised 

in 1997 (160). Any combination of 4 or more of the following 11 criteria, 

well-documented at any time during a patient's history, makes it likely that 

the patient has SLE (specificity and sensitivity are 95% and 75%, 

respectively). 

1. Malar rash: fixed erythema, flat or raised, over the malar eminences;  

2. Discoid rash: erythematous circular raised patches with adherent 

keratotic scaling and follicular plugging; atrophic scarring may occur;  

3. Photosensitivity: exposure to ultraviolet light causes rash;  
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4. Oral ulcers: includes oral and nasopharyngeal ulcers, observed by a 

physician;  

5. Arthritis: nonerosive arthritis of two or more peripheral joints, with 

tenderness, swelling, or effusion;  

6. Serositis: pleuritis or pericarditis documented by ECG or rub or 

evidence of effusion;  

7. Renal disorder: proteinuria >0.5 g/d or 3+, or cellular casts;  

8. Neurologic disorder: seizures or psychosis without other causes;  

9. Hematologic disorder: hemolytic anemia or leukopenia (<4000/L) or 

lymphopenia (<1500/L) or thrombocytopenia (<100,000/L) in the absence 

of offending drugs;  

10. Immunologic disorder: anti-dsDNA, anti-Sm, and/or anti-phospholipid;  

11. Antinuclear antibodies: an abnormal titer of ANA by 

immunofluorescence or an equivalent assay at any point in time in the 

absence of drugs known to induce ANAs.  
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2-4-3. Therapy 

In the absence of specific therapy aiming at the pathogenesis, successful 

therapy of SLE depends on treating both underlying inflammation and 

symptoms. Currently immunosuppression is the major SLE therapy 

available. Four main classes of drugs, i.e., corticosteroids, non-steroidal 

anti-inflammatory drugs (NSAIDs), antimalarials and cytotoxic agents, are 

used.  

High doses of corticosteroids remain the first line of treatment for many 

manifestations of SLE, especially in severe disease with renal, CNS and 

hematological involement. But it causes many hazardous side effects, such 

as infection, hyperlipidaemia, hypertension, osteoporosis, diabetes, and 

insomnia (161). The combined use of NSAIDs, antimalarials and cytotoxic 

agents can reduce the steroids’ dosage and side effects to a relative low 

level.  

Antimalarials are commonly employed to treat patients with fatigue, 

arthralgia/arthritis and rash, but without major organ damage. Antimalarials 

can interfere with immune cellular functions, affect immune responses, and 

modulate cytokine levels in SLE patients. Antimalarials also improve skin 

lesions against the damaging effects of ultraviolet light. In these ways, 

antimalarials have the potential to keep SLE in remission.  
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Active lupus with major organ involvement often requires prompt, 

aggressive therapy with cytotoxic agents. Cytotoxic agents were primarily 

known to interrupt nucleic acid and protein synthesis in malignant cell.  

Then its immune inhibition was discovered. The use of cytotoxic agents in 

SLE benefits controlling active disease, reducing the rate of disease flares, 

and reducing steroid requirements.  

Currently, there are many new treatments under investigation (162). Some 

biological agents (e.g., antibodies) have been tested in clinical trials. They 

either modulate or inhibit T-cell activation, T- and B-cell interactions, 

anti-dsDNA antibody production, immune complexes deposition, 

complement activation/deposition, and cytokine activity. A hormonal 

modulator, DHEA, has also shown promising therapeutic effect in SLE 

patients. In addition, a small number of very severe refractory lupus 

patients (7 cases) received high-dose chemotherapy and autologous stem 

cell transplantation to gain remission (163). 

Other than pharmacological treatment, management of daily life can help 

SLE patients to control the disease. These therapies include avoiding 

sunlight over-exposure, low saturated fat and a high fish oil diet, stress 

avoidance, and smoking cessation. 

 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL      BING HAN 27

2-4-4. Prognosis  

In many countries, the survival rate of SLE exceeded 80-90% in 5 years 

post-diagnosis, but decreases to 60-80% in next 10 years (164,165, 

166,167). The major causes of mortality are organ failure (especially renal 

failure), thrombocytopenia, cardiovascular diseases, infections, high SLE 

disease activity index (SLEDAI) (165,168). Proper and timely treatment in 

experienced hospitals is very important to improve the long-term survival 

rate (169). 

 

SLE is a common chronic disease that seriously imperils the survival and 

life quality of patients. There is no cure due to the ambiguous etiology. 

Investigation of SLE pathogenesis will help us to develop specific 

treatments. 
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 3. Diabetes Mellitus 

 

Diabetes mellitus is a syndrome (includes excessive urine production, 

increased fluid and food intake, body weight loss, changes in energy 

metabolism, even blurred vision and renal failure) as results of abnormal 

high blood glucose levels. This metabolism disorder has two most common 

forms: type 1 diabetes mellitus (T1DM) is caused by insufficient insulin 

production that mainly follows after autoimmune damage to pancreatic 

islets; type 2 diabetes mellitus (T2DM) is caused by failed response to 

insulin in effective organ (such as liver and muscle), but the level of insulin 

are normal or even elevated before the late stage of the disease. Besides, 

some pregnant women may suffer gestational diabetes mellitus due to 

carbohydrate intolerance. 

 

3-1. The Epidemiology of Diabetes Mellitus  

Nowadays, more than 170 million people live with diabetes worldwide 

(170), and that number will double in the next 20 years (171) (Fig. 5).  

T1DM is one of the most common chronic childhood disease whose 

incidence is about 20 to 30 per 100 000 children per year in the United 
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Kingdom, Finland, Norway and Sweden, but is much lower in Asian, 

Indian, Middle Eastern and African populations (172,173). The incidence 

of T1DM is increasing rapidly worldwide, and is estimated to exceed 

30-50 per 100,000 a year by 2010 (173). Studies showed 2.5-3% annual 

global increase rate of incidence of T1DM with a larger increase in some 

central and eastern European countries, some Asian countries and Australia 

(174,175). The largest rate of increase was seen in 0-4 year old children 

(173). 

T2DM usually occurs after the age of 30, but it can exist without any 

symptoms for many years. The first diagnosis is sometimes made through 

incidental abnormal blood or urine glucose tests, or through associated 

complications (176). It constitutes more than 90% of overall diabetes cases 

in the world (177) with large geographical prevalence variation, even 

within the same or similar ethnic groups (178,179). The greatest increase 

of T2DM is in the developing countries of Asia, Africa, and South 

America, which are evolving with rapid cultural and social changes, ageing 

populations, urbanization, and unhealthy lifestyle and behavioral patterns 

(180). Another worrisome T2DM increase is in children and adolescents. 

The proportion of T2DM in new-onset diabetes during children and 

adolescents has increased more than 15 folds (<3% vs. 45%) in last 15 
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years (181). The increase of T2DM incidence closely parallels the increase 

of obesity. This unprecedented twin epidemic is termed as "diabesity" 

(171).  

 

 

 
Figure 5.  The geographic distribution of DM prevalence  

(source: http://www.eatlas.idf.org/atlas.html?id=0） 
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3-2. The pathoaetiology of Diabetes Mellitus 

T1DM had been defined as “insulin-dependent diabetes mellitus” due to 

the insufficient insulin in the body and the necessary treatment by artificial 

insulin even in its earliest stage.  It is also called "juvenile diabetes" 

sometimes, because its onset is mainly in childhood although a few cases 

occur in adulthood, which is also called latent autoimmune diabetes of 

adults (182). T-cell-mediated autoimmune attack to the beta-cells of 

Langerhans islets is believed to be the major cause of the disease (Fig 6).  

 
Fig. 6 The pathogenesis of T1DM. (source: ref. 183) 

β-cell antigen is presented on the cell surface by MHC class I molecule. CD8+ T cells recognize this 
antigen and damage β-cell through the secretion of INF-  or TNF/TRAIL or the perforin/granzyme 
system. The dendritic cells in islets take up cell components from dead β-cells, and present them to 
CD4+ T cells in lymph nodes. Active CD4+ T cells move into the islets to mediate killing through 
the Fas/FasL pathway.  
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T2DM was called “non-insulin-dependent diabetes” in contrast to T1DM. 

A deficient reaction to insulin in liver and muscle initiates this disease. In 

these tissues, glucose processing is compromised. Thereafter, unprocessed 

glucose accumulates in circulation and reduces islet beta cells’ response to 

glucose (Fig7). T2DM patients are not ketosis-prone and do not depend on 

exogenous insulin. However, they may need insulin treatment to control 

hyperglycemia if the diet and /or oral hypoglycemic agents do not work 

well. 

 
Figure 7.  Pathophysiology of T2DM (source: ref. 170) 

A variety of factors contribute to insulin resistance. Compromise of insulin action in major target 
tissues leads to increased circulating free fatty acids and hyperglycaemia, which will impair β-cell 
viability and worsen insulin resistance. 
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Like systemic lupus erythematosus, a combination of hereditary and 

environmental factors causes these metabolism dysfunctions, either in 

T1DM or T2DM. Clinical trials show that the concordance rates of 

monozygotic twins are around 50% in both T1DM and T2DM 

(184,185,186). These results suggest that the genetic factor is not the only 

protagonist in the etiology of DM. In other words, the trigger by 

environmental factors is also necessary to diabetes onset. T2DM seems to 

be familial (187,188). In addition to genetic factors, a similar lifestyle of 

members in the same family may also play a role. 

 

3-2-1. Genetic Factors  

Most diabetes, both T1DM and T2DM, are polygenic. There are only 1-5% 

cases (mainly neonatal diabetes mellitus and maturity-onset diabetes of the 

young) that are due to monogenic mutations (189). Although there are 

many diabetes risk genes, which have been identified by different studies, 

only a few of these findings are confirmed, i.e., HLA-DQ8 and DQ2, 

MICA-5 (MHC class I chain-related genes allele 5), KIR (killer 

immunoglobulin- like receptors) (190), CTLA4 (cytotoxic lymphocyte 

antigen 4), LYP (Lymphoid tyrosine phosphatase)/PTPN22 ( 191 ) to 

T1DM; TCF7L2  (Transcription Factor 7-Like 2) ( 192 ), CAPN10 
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(calpain 10) (193), PPARG (peroxisome proliferator-activated receptor 

gamma), KCNJ11 (194,195) to T2DM. As obesity contributes to T2DM, 

genes involved in obesity should also be considered risk factors for T2DM. 

More than 22 genes, which encode members of the leptin–melanocortin 

pathway, proinflammatory cytokines and uncoupling proteins (UCPs), are 

related to obesity risks (196). 

 

3-2-2. Environmental Factors 

Various environmental factors can influence diabetes morbidity. 

 

a. Viral infection: 

T1DM pathogenesis somewhat relates virus infection. Many viruses can 

trigger cell damaging processes in their host, such as Coxsackie B virus, 

mumps, echovirus, cytomegalovirus, Epstein-Barr virus (EBV), some 

retrovirus, rotavirus, parvovirus B19 and rubella virus (197). These viruses 

can induce autoimmunity through 1) direct infection of islets (198), 2) 

molecular mimicry, i.e., viral protein sharing similar peptide sequences 

with cellular autoantigens (199), or 3) activation of innate immunity (200). 
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b. Environmental contaminants and chemicals: 

The increase of contaminants in the environment or occupational contact of 

certain chemicals could be potential risk factors of DM. For T1DM, higher 

intake of nitrates, nitrites, and N-nitroso compounds, as well as higher 

serum levels of polychlorinated biphenyls seem to link to higher incidence  

(201,202,203,204,205). Arsenic and 2,3,7,8-tetrachlorodibenzo-p-dioxin 

exposure is directly associated with T2DM risks (206,207,208,209).  

 

c. Lifestyle and social factors: 

Human behavior largely influences the incidence of DM (210). Decreased 

breastfeeding and early exposure to dietary cow-milk/cereals will raise the 

future risk of T1DM in the infants (211,212), while early supplement of 

vitamin D can decrease T1DM risks (213). The “Westernized food”, or 

energy-dense food, contributes to obesity, thereby increases the risk of 

T2DM (214). Physical activity is another effective behavior factor. Regular 

physical activity can reduce the risk of T2DM by 15-60% (195). 

Socio-economic and psychosocial factors could also indirectly affect the 

prevalence of DM through the change of lifestyle, nutrition, and natural 

environment (197,215,216).    

 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL      BING HAN 36

d. Perinatal factors and postnatal growth: 

Perinatal factors associated with increased T1DM risk to infant may 

include older maternal age at birth (217), excessive maternal weight gain, 

amniocentesis, preeclampsia (218), cesarean section delivery, complicated 

delivery, and maternal-fetal blood group incompatibility (219,220). Size at 

birth and early postnatal growth rates, which may reflects the fetal 

nutritional conditions, are significantly associated with the risk of diabetes, 

both T1DM and T2DM (221,222,223). 

 

3-2-3. Accelerator hypothesis  

Recent evidences indicate that incidence of both T1DM and T2DM 

increase in parallel with obesity (224,225). Meanwhile, the important role 

of insulin resistance in the early stages of T1DM development has been 

widely accepted (226,227). These findings led to a new theory called 

“accelerator hypothesis”. This hypothesis proposes that “T1DM and 

T2DM are the same disorder of insulin resistance set against different 

genetic backgrounds” (228). Excess bodyweight is the central point to the 

development of diabetes, both T1DM and T2DM. Weight gain increases 

insulin resistance and consequently results in hyperglycemia. Long-term 

high blood glucose induces apoptosis and immunogenicity of beta cells. 
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Based on these pathological changes, individual gene polymorphism and 

constitution, determine the tempo of beta cell loss and the age of onset, i.e., 

the manifestation of T1DM or T2DM. This hypothesis deems that T1DM 

and T2DM are subsets of the same disease. Thus, control of weight gain 

could prevent DM by slowing its progress. 

 

3-3. The clinical features of DM 

3-3-1. Symptoms and complications 

Hyperglycemia is the principal cause of diabetes symptoms and 

complications. The classical diabetes triad symptoms are polyuria, 

polydipsia and polyphagia, i.e., frequent urination, increased thirst and 

fluid intake, increased appetite. Symptoms may develop quite rapidly 

(weeks or months) in T1DM, particularly in children. T1DM may also 

cause rapid weight loss and implacable fatigue. However, symptoms 

usually develop much slowly and mildly, sometimes may be even absent, 

in T2DM.  

Ketoacidosis (DKA), an extreme state of metabolic dysregulation, may be 

the most common acute complication of DM. It is characterized by the 

acetone smell in the patient's breath, Kussmaul breathing, polyuria, nausea, 

vomiting and abdominal pain, and psychological disturbance. Severe DKA 
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can cause coma and even death (229). It is mainly present in patients with 

T1DM, but also observed in patients with T2DM under certain conditions. 

Another serious acute complication is hyperosmolar nonketotic state, 

which is more common in T2DM (230). It is mainly the result of 

dehydration due to loss of body water.  

Prolonged high blood glucose levels along with abnormal lipid levels lead 

to blood vessels lesion (angiopathy), which subsequently induces chronic 

multiple organ complications, including blindness, renal failure, lower 

limb gangrene and cardiovascular diseases. 

Nosogenetic effects of hyperglycemia mainly attribute to the formation of 

advanced glycation end-products (AGEs). Hyperglycemia in diabetes 

increases the formation and accumulation of AGEs. AGEs can interact 

with cell-surface receptor of AGE (RAGE), leading to cell activation and 

increasing expression of extracellular matrix proteins, vascular adhesion 

molecules, cytokines, growth factors, and the generation of reactive 

oxygen intermediates. Moreover, certain AGEs precursor can covalently 

crosslink proteins and change their structure and function. These 

pathologic changes result in almost all the diabetes complications, both 

micro- and macroangiopathies. 
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3-3-2. Diagnosis 

The diagnostic criteria are based on the WHO recommendations of 1999. 

They incorporate both fasting criterion and 2-h-after-glucose-load (oral 

glucose tolerance test (OGTT)) criterion into a practicable diagnostic 

classification (table 2) (231). About 7% of people with impaired fasting 

glucose and impaired glucose tolerance will eventually progress to overt 

diabetes every year without proper treatment (232,233). If a pregnant 

woman has any two of the followings, she will be diagnosed as gestational 

diabetes: 1) fasting plasma glucose more than 5.3 mmol/dl, 2) 1-hour 

glucose level of OGTT more than 10 mmol/dl, 3) 2-hour glucose level of 

OGTT more than 8.6 mmol/dl (234).  

There are some other accessorial clinical tests to value the status of DM. 

For examples, urine ketones test can indicate the severity of T1DM; the 

glycosylated hemoglobin test will give information about how well the 

blood glucose is controlled. 

 

Table 2. Diagnostic criteria of diabetes mellitus and other categories of hyperglycemia 
(source: ref. 231) 

Glucose load=75 g glucose orally. 
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3-3-3. Therapy 

Diabetes mellitus is a chronic disease currently without a cure. The goal of 

therapy is to maintain blood glucose level as close to normal as possible to 

prevent either acute or chronic complications.  

 

3-3-3-1. Diabetes education and lifestyle intervention 

Self-monitoring the blood glucose of diabetes patient is very important to 

keep both short-term and long-term blood glucose levels within acceptable 

bounds. Proper diet, regular physical exercise, moderate body weight and 

refrain from smoke and alcohol will help the patient to control the blood 

sugar and greatly reduce the risk of progression (232, 233). It is very 

necessary to impart related knowledge to the diabetes patients and help 

them modify their lifestyle.  

 

3-3-3-2. Insulin and other medications 

T1DM patients, as well as T2DM patients who do not respond to oral 

medications, need insulin therapy to survive. There are several different 

insulin types and administration methods available currently.  
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Besides insulin, many choices of drugs can be used to modulate glucose 

levels, especially for T2DM. The mechanism and active site of these 

medications are shown in Table 3 

Additionally, since cardiovascular disorders, such as hypertension, 

coronary artery disease and cerebrovascular disease, occur very often in 

T2DM (235), the management of cardiovascular risk factors is necessary 

and beneficial (236). 

 

Classification Medication Route The way it works 

Sulfonylureas Glimepiride, 
Glipizide, Glipizide 

ER, Glyburide  

Oral Increases insulin production 

Biguanides Glucophage, 
Glucophage XR 

Oral Lowers glucose from digestion 

Alpha-Glucosidase 
Inhibitors 

Glyset and Precose Oral Slows digestion, slows glucose 
production 

Thiazolidinediones Actos and Avandia Oral Lowers glucose production 

Meglitinides Prandin and Starlix Oral Increases insulin production 

DPP-4 Inhibitors Januvia Oral Lowers glucose by blocking an 
enzyme 

Incretin Mimetics Byetta Injectable Helps the pancreas make insulin, 
slows digestion 

Anti-hyperglycemic Symlin Injectable Controls postprandial blood glucose 

 
Table 3. Medications for Diabetes (source: ref.237) 
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3-3-3-3. Organ and cell transplantation 

The DM, in particular T1DM, has no cure. A potential cure for it is 

transplantation, either at the organ level or cell level. 

a. Pancreas transplantation 

Pancreas transplantation is an effective treatment for diabetes mellitus, 

especially for the end-stage renal complication. It was first successfully 

performed in combination with kidney transplant in 1966 (238). The 

improvements in surgery and immunosuppressors have significantly 

increased the graft survival rate; the 5-year graft survival rate is around 

50%-70% ( 239 ). Pancreas transplant can achieve long-term 

normoglycemia, reduce mortality, and ameliorate diabetic complications 

(240). However, pancreas transplantation is still a high-risk operation with 

some severe postoperative complications. Moreover, the availability of 

organ donors and side effects of immunosuppressants are also limiting 

factors for popularization of this treatment.  

 

b. Islet transplantation 

Islet transplantation was applied to treat insulin-dependent diabetes since 

the 1970’s, but it had hardly achieved desirable long-term effectiveness 
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until the advent of a steroid-free immunosuppressive protocol in 2000 

(241). The adoption of the Edmonton protocol, which uses steroid-free 

immunosuppression, has elevated the success of islet transplantation 

greatly. Most recipients could attain an insulin-independence immediately 

after transplantation (242,243). However, a large islet mass (> 10,000 islet 

equivalents (IEQ)/kg recipient body weight) derived from multiple donors 

(2-4) is necessary to achieve insulin independence (244) because of the 

loss of a large number of transplanted islets in the first 10–14 days after 

transplantation despite efficient immunosuppressive regimens (245,246). 

Experimental models also show that early damage results in 60% loss of 

the transplanted syngeneic islet mass in the peri-transplant period 

(247,248). This early stage non-rejective graft failure or the primary 

non-function (PNF) is becoming a bottleneck for the development of islet 

transplantation since the improvement of immunosuppressive agents. PNF 

reduces effective grafted islet mass, and then increases the metabolic load 

to surviving islets. This overloading reduces islet survival time and 

diminishes the long-term insulin independence, which is frequently (~90%) 

lost in 5 years after islet transplantation (249,250).  

The reasons for PNF include oxidative stress in the islets during 

pretransplant manipulations (251,252), loss of trophic factors for the 
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isolated islets (253), host innate immunity and inflammatory responses 

( 254 ), and failure of revascularization of islet graft ( 255 , 256 ). 

Proinflammatory cytokines (e.g., TNF-α, IL-1, and IFN-γ)-triggered 

multiple signaling pathways (e.g., c-Jun NH2-terminal kinase (JNK1) 

(257), Fas/FasL (258), nuclear factor- B, and transcription factor signal 

transducer and activator of transcription (STAT) (259)) contribute to the 

occurrence of PNF. Prevention of islet graft PNF through improvement of 

islet isolation and culture technology, application of inflammation 

inhibitors, and genetic modification to repress islet apoptosis would likely 

make a significant impact on the efficacy of islet transplantation.   

 

c. Stem cell transplantation 

Recent research showed that embryonic, fetal and adult stem/progenitor 

cells including putative multipotent pancreatic stem/progenitor cells have a 

potential for self-renewal of islet β-cells (260,261). The transplantation of 

insulin-producing β-cell derived from either wild-type or genetically 

modified stem/progenitor cells, or the expansion and differentiation of 

putative multipotent pancreatic stem/progenitor cells in vivo, may be 

promising alternative therapies for T1DM or T2DM in humans.  
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3-3-3-4. Gene therapy 

Gene therapy of DM has been under investigation intensely in recent years. 

Studies include genetic modification of graft islets, genetically engineered 

ectopic insulin production, preventing or curing autoimmunity (262). All 

these therapies require an effective gene delivery system, which is the 

bottleneck of the gene therapy. The disadvantages (such as oncogenicity, 

efficacy and immunogenicity) of viral gene delivery systems limit its 

clinical usefulness. With future advances in gene delivery technologies, 

gene therapy may be a potential cure to DM. 
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Hypothesis and Objective 

The etiology of SLE remains unclear. Disorder of lymphocyte apoptosis 

can lead to lupus-like syndromes in mouse models. But in humans, the 

relationship between SLE and lymphocyte apoptosis is a puzzle. DcR3, a 

native block of apoptosis, may play a role in pathogenesis of human SLE 

via interruption of lymphocyte apoptosis.  

Our group pioneered the research on the biological functions of DcR3. We 

discovered its roles in the modulation of T-lymphocyte functions (7,55) 

and reported its expression in varied malignant tumors (17). Moreover, we 

showed protective effect of DcR3 on islet transplantation (53).  

As part of my Ph.D. Program, the important- role of DcR3 in the 

pathogenesis of SLE both in a mouse model and in patients has been 

investigated. The mechanisms of DcR3’s effect on islet protection have 

been further studied. The details are provided in the following 3 chapters.    
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Article 1. 

Overexpression of human decoy receptor 3 in mice results in 

a systemic lupus erythematosus-like syndrome 

Bing Han , Paul A. Moore, Jiangping Wu , Hongyu Luo   

 

Arthritis Rheum. 56(11):3748-58, 2007.  

 

Summary: In this paper, we showed that overexpression of DcR3 induced 

lupus-like syndromes in transgenic mouse model. We also found enlarged 

memory T cell pool in DcR3 transgenic mouse. Furthermore, we 

demonstrated that DcR3 could disturb AICD of T lymphocytes.  Our 

results imply that DcR3 may play an important role in SLE pathogenesis 

through interfering lymphocyte homostasis. 

 

 

Bing Han performed all assays and experiments, and processed and 

analyzed data; Paul Moore constructed DcR3 plasmid and synthesized 

recombinant DcR3; Jiangping Wu and Hongyu Luo directed the 

experiment design and data analysis.
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ABSTRACT 

 

Objective 

Decoy receptor 3 (DcR3), a tumor necrosis factor receptor family member, 

is a secreted protein that can enhance cell survival by interfering with 

multiple apoptosis pathways. This study was undertaken to investigate the 

role of DcR3 in the pathogenesis of autoimmune disease. 

 

Methods 

We generated transgenic mice with actin promoter-driven expression of 

human DcR3 and investigated the development of autoimmune disease in 

these mice. 

 

Results 

T cell immune responses were compromised in young DcR3-transgenic 

mice. Beyond 5-6 months of age, transgenic mice developed a systemic 

lupus erythematosus (SLE)-like syndrome, with numerous features of the 

disease. They produced autoantibodies against double-stranded DNA. 

Their kidneys showed pathologic changes indicative of glomerular 

nephritis and IgG and C3 deposition, and proteinuria, leukocyturia, and 

hematuria, were evident. Aged transgenic mice also developed skin lesions 
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and lymphocyte infiltration in the liver, and exhibited leukopenia, anemia, 

and thrombocytopenia. The SLE-like syndrome penetrance in 

DcR3-transgenic mice was sex associated, occurring in 60% of females 

versus 20% of males. Exogenous recombinant DcR3 or endogenous DcR3 

produced by transgenic T cells effectively protected T cells against 

activation-induced apoptosis in vitro. Probably as a consequence of this, 

CD4 cells with a phenotype of previous activation were increased in the 

peripheral blood of transgenic mice beyond 6 months of age. 

 

Conclusion 

These results show that DcR3 overexpression could lead to an SLE-like 

syndrome in mice. 
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Systemic lupus erythematosus (SLE) is a potentially severe autoimmune 

disease of undetermined etiology, with genetic, environmental, and sex 

factors as contributing elements. It is a polygenic disease, and as many as 

30 susceptibility loci with possible links to its pathogenesis have been 

identified in mice (1). Among suspected pathogenic genes, a sizable 

number are in the apoptosis pathway (2). Indeed, in prototypical murine 

SLE models (i.e., lpr/lpr and gld/gld mice), the animals are defective in 

Fas and FasL, respectively, which are critical elements in T cell apoptosis. 

In contrast, SLE patients rarely have Fas or FasL mutations (3,4). This 

prompted us to examine other genes in the apoptosis pathway, with regard 

to their roles in SLE pathogenesis. 

Human decoy receptor 3 (DcR3) belongs to the tumor necrosis factor 

receptor (TNFR) family (5), but lacks transmembrane and cytoplasmic 

domains in its sequence. It is thus a secreted protein (6). DcR3 can bind to 

the TNF family members FasL (5), LIGHT (6,7), and TNF-like molecule 

1A (TL1A) (8) and block their interaction with their respective receptors, 

i.e., Fas, herpesvirus entry mediator (HVEM) protein, and the death 

domain-containing receptor DR3 (6-8). DcR3 does not bind to other 

known TNF family members (9), but findings of one study have suggested 

the existence of additional DcR3-binding ligand(s) (10). The mouse does 

not have an orthologous counterpart of the human DcR3 gene according to 
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a genome-wide computer search, but studies by our group and by Bossen 

et al have established that human DcR3 can bind to mouse FasL and 

LIGHT (6,9,11). This allows human DcR3 to function in mouse models, 

both in vitro and in vivo. 

DcR3 has a clear role in apoptosis. FasL is a well-known molecule 

involved in apoptosis. LIGHT is a ligand for HVEM protein and 

lymphotoxin receptor (LT R), in addition to being a ligand for DcR3 (12). 

LIGHT can induce apoptosis in cells expressing both HVEM protein and 

LT R (13) or LT R alone (14). TL1A, a newly recognized member of the 

TNF family, can evoke apoptosis via its receptor, DR3 (8). Consequently, 

the interaction of DcR3 with FasL, LIGHT, and TL1A blocks apoptosis 

mediated by Fas, HVEM protein, LT R, and DR3 (8). 

Normal T cells express low levels of DcR3 (15), and healthy individuals 

have near-background serum DcR3 levels (16). DcR3 expression is 

augmented in activated T cells (15); this probably represents a fine-tuning 

mechanism to balance the need for clonal expansion and subsequent 

massive activation-induced cell death (AICD) of T cells. Malfunction of 

this balance due to failed AICD might lead to pathologic consequences, 

such as autoimmune diseases, including SLE. Of interest, overexpression 
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of DcR3 messenger RNA in peripheral blood mononuclear cells (PBMCs) 

of SLE patients compared with healthy individuals has been reported (17). 

In this study, to explore the possible role of DcR3 in SLE pathogenesis, we 

generated transgenic mice with actin promoter-driven expression of human 

DcR3. These DcR3-transgenic mice manifested an SLE-like syndrome 

after 5-6 months of age. 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 74

 

MATERIALS AND METHODS 

 

Generation of transgenic mice with actin promoter-driven DcR3 

expression. 

Human full-length DcR3 complementary DNA (cDNA) was cloned into 

Bam HI and Xba I sites in pAC vector between the human -actin 

promoter and -actin poly(A) signals. The resulting construct was named 

pAC-DcR3. The 5.7-kb Cla I/Cla I fragment containing the -actin 

promoter, DcR3 cDNA, and -actin poly(A) signal was excised and 

injected into fertilized eggs from C3H × C57BL/6 mice or C57BL/6 mice. 

The transgenic mice were genotyped by polymerase chain reaction (PCR), 

for which the 5  primer (5 -GAGCGCTTCCTCCCTGTGCAC) was 

derived from the DcR3 sequence and the 3  primer (5

-GAATGCAATTGTTGTTGGTAACTTG) from the actin sequence 

downstream of DcR3. Amplification conditions were as follows: 1 cycle of 

94°C for 5 minutes, 30 cycles of 94°C for 30 seconds, 58°C for 30 seconds, 

and 72°C for 30 seconds, and 1 cycle of 72°C for 5 minutes. The PCR 

results were confirmed by enzyme-linked immunosorbent assay (ELISA) 

for serum DcR3. 
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DcR3 ELISA. 

The DcR3 ELISA has been described elsewhere (16). A monoclonal 

antibody specific for DcR3 was used for coating, and a biotinylated 

affinity-purified rabbit antibody against DcR3 was used as the detecting 

antibody. The sensitivity of the assay was 6 pg/ml. 

Flow cytometry. 

Two- or 3-color flow cytometry was performed to determine the 

expression of Thy1.2, CD4, CD8, CD3, T cell receptor (TCR ), CD62L, 

CD44, CD19, CD5, CD25, and annexin V, as described previously (18). 

Western blotting to detect serum autoantibodies against various 

organs. 

The organs were homogenized in phosphate buffered saline (PBS) and 

centrifuged for 15 minutes at 3,000g. The cleared lysates were passed 

through a 0.22- m microfilter and resolved by sodium dodecyl sulfate-8% 

polyacrylamide gel electrophoreses (60 g/lane) overnight at 20V. The 

proteins were transferred to polyvinylidene difluoride membranes, which 

were then blocked with Tris buffered saline (TBS) blocking buffer (100 

mM Tris·ECl, 0.9% NaCl [pH 7.5]) containing 5% milk powder. The 

membranes were reacted with transgenic or wild-type mouse serum (1:500 

dilution in blocking buffer) overnight at 4°C and washed 3 times at room 
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temperature with TBS containing 0.05% Tween 20. Autoantibody was 

detected with sheep anti-mouse IgG (1:2,000 dilution; Amersham 

Biosciences, Baie d'Urfé, Quebec, Canada) followed by enhanced 

chemiluminescence. 

Immunofluorescence for detection of antinuclear antibodies. 

HeLa cells were fixed at 4°C for 60 minutes using a Cytofix/Cytoperm kit 

(BD Biosciences, San Diego, CA) and then incubated overnight at 4°C 

with wild-type or transgenic mouse serum (1:500 dilution in the wash 

buffer from the kit). After washing, the cells were reacted with fluorescein 

isothiocyanate-conjugated goat anti-mouse IgG antibody (1:1,000 dilution; 

Bethyl Laboratories, Montgomery, TX) overnight at 4°C. The cells were 

examined under a fluorescence microscope. 

ELISA for anti-double-stranded DNA (anti-dsDNA) antibodies. 

Ninety-six-well high-affinity ELISA microplates (Costar, Cambridge, MA) 

were coated with 250 g/ml salmon sperm DNA (Invitrogen, Burlington, 

Ontario, Canada) in coating buffer (0.05M sodium bicarbonate solution 

[pH 9.5]) overnight at 4°C. After washing with PBS containing 0.05% 

Tween 20, the plates were incubated with blocking buffer (PBS containing 

1% bovine serum albumin) for 1 hour at room temperature. Wild-type and 

transgenic mouse sera were diluted in blocking buffer at 1:50 and 
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incubated overnight in the wells at 4°C. After washing, the plates were 

reacted with horseradish peroxidase-conjugated sheep anti-mouse IgG 

antibody (1:2,000 dilution; Amersham Biosciences) for 1 hour at room 

temperature. Signals were revealed by addition of tetramethylbenzidine 

substrate (BD Biosciences), followed by 20-minute incubation at room 

temperature. The reaction was stopped using 50 l 4N HCl, and the plates 

were read at a wavelength of 450 nm. 

Detection of leukocytes, protein, and hemoglobin in urine. 

Chemstrip (Roche, Laval, Quebec, Canada) was used for semiquantitative 

analysis of leukocytes, protein, and hemoglobin in urine. 

T cell culture and apoptosis. 

Spleen cells were isolated as described previously (18). In some 

experiments, the cells were cultured with crosslinked FasL-FLAG for 24 

hours in the presence or absence of various concentrations of soluble DcR3 

(0.133 mg/ml FasL-FLAG was preincubated for 24 hours at 4°C at a 1:1 

ratio with 0.133 mg/ml mouse monoclonal antibody against FLAG; the 

final concentration of crosslinked FasL-FLAG for culture was 0.6 g/ml). 

In other experiments, T cells were first activated for 48 hours with soluble 

anti-CD3 (2 g/ml). The cells were washed and recultured for 48 hours in 

the presence of 50 units/ml interleukin-2 (IL-2); they were then washed 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 78

again, transferred to new wells coated with anti-CD3 (10 g/ml during 

coating), and coated for an additional 48 hours in the presence or absence 

of DcR3 at various concentrations. CD4 and CD8 cell apoptosis was 

analyzed by annexin V staining on CD4- or CD8-gated cells on 2-color 

flow cytometry (18). 
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RESULTS 

 

DcR3-transgenic mice. 

DcR3-transgenic mice were generated on both the C3H × C57BL/6 and the 

C57BL/6 backgrounds, using the human -actin promoter. The transgenic 

construct pAC-DcR3 is shown in Figure 1A. Seven founders were 

identified by PCR of tail DNA. PCR results in line 754 (C3H × C57BL/6 

background) and line 17139 (C57BL/6 background) are illustrated in 

Figure 1B. The results were confirmed by detection of DcR3 in serum. 

DcR3 was found in levels ranging from 20 ng/ml to 80 ng/ml in serum 

from transgenic mice, but was absent in wild-type littermates (Figure 1C). 

Most of the results presented herein were from line 754 (backcrossed to 

C57BL/6 for 5-8 generations), but line17139 (pure C57BL/6 background) 

exhibited a similar phenotype, such as lymphadenopathy, pathologic 

findings in the kidney, liver and skin, and shortened lifespan in females) 

(data not shown). Spleen T cells from transgenic mice were able to secrete 

high concentrations of DcR3 ( 10 ng/ml) into culture supernatants within 

48 hours (Figure 1D).  
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DcR3-transgenic mice were fertile, with no gross anomalies observed 

before 4-6 months of age. In transgenic mice younger than 5-6 months of 

age, thymus, spleen, and lymph node weight and cellularity were in the 

normal range, as were cell subpopulations in these organs (data not shown). 

Their T cell proliferation response to solid-phase anti-CD3 alone or to 

anti-CD3 plus anti-CD28 was variable and did not show consistent changes 

in comparison with T cells from wild-type mice, but they exhibited 

increased secretion of IL-4 (but not interferon- ) (data not shown). 

Transgenic and wild-type mice had similar levels of IgA, IgM, IgG2A, and 

IgG3, but transgenic mice produced higher amounts of IgG1 and IgG2b 

than did wild-type mice. Transgenic mice also generated significantly 

higher concentrations of IgE, a typical Th2-dependent isotype, between 2 

months and 6 months of age (data not shown). The IgG1 and IgE 

overproduction indicated that immune responses in transgenic mice were 

skewed toward a Th2-type response. Delayed-type hypersensitivity in 

transgenic mice was compromised compared with that in wild-type mice 

(data not shown); augmented Th2-type responses might have been 

responsible, at least in part, for this. 
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Lymphadenopathy and lifespan of DcR3-transgenic mice. 

After age 4-6 months, DcR3-transgenic mice developed lymphadenopathy 

(defined as cervical lymph node weight >20 mg), with a higher penetrance 

in females (64.5%) than in males (20%) (Figures 2A and B). In 90% of 

cases, the lymphadenopathy was accompanied by splenomegaly (defined 

as spleen weight >1.5-fold the mean normal spleen weight) (Figure 2C); in 

contrast, the spleens of transgenic mice without lymphadenopathy did not 

differ in size from those of their wild-type littermates (results not shown). 

A large percentage of cells in the enlarged lymph nodes (51.6%) were 

Thy1.2+ T cells, among which 62.9% were CD4-,CD8- double negative 

(Figure 2D). In 3 randomly selected transgenic mice, the absolute number 

of this double-negative population in the cervical lymph nodes was 252 ± 

85 × 106 cells (mean ± SD), while the CD4+ population was 68 ± 23 × 106 

cells and the CD8+ population was 50 ± 17 × 106 cells in these nodes. 

Unusually, a large percentage of T cells (Thy1.2+, CD3+, TCR +, CD8-, 

and predominantly CD4-) from the lymph nodes (57.6%) expressed a B 

cell marker (B220) (Figure 2E) and were CD44+ and CD62Lhigh. Such 

lymphadenopathy and the unusual phenotype of cells (B220+ 

double-negative T cells) in the enlarged lymph nodes were similar to 

findings in lpr/lpr mice, which have a defective Fas-mediated apoptosis 
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pathway (19), although the phenotype occurred at an older age in our 

DcR3-transgenic mice (>5-6 months versus 2 months).  

The lifespan of DcR3-transgenic mice was shortened, especially in females 

and those with lymphadenopathy, compared with that of wild-type mice 

(Figure 2F). Among female DcR3-transgenic mice, the 14-month survival 

rate was 63.2%, and among male transgenic mice, it was 81.8%. Among 

transgenic mice that died before 14 months of age (n = 11), the majority 

(>80%) had lymphadenopathy. This lifespan was, however, longer than 

that of C57BL/6-lpr/lpr mice (mean ± SD lifespan 10.1 ± 0.5 months in 

females [20]). 

Development of an SLE-like syndrome after 6 months of age in 

DcR3-transgenic mice. 

Various immunologic parameters were evaluated in mice >6 months old. 

In immunoblotting studies in which extracts from self tissues were used as 

antigens and self sera were used as antibodies, we evaluated the presence 

of serum autoantibodies against self tissue. Transgenic mice clearly 

expressed autoantibodies against self tissue (Figure 3A). It should be noted 

that in general, not all antibodies are effective in immunoblotting. 

Therefore, the bands shown in Figure 3A probably represent a part of 

tissue antigens targeted by autoantibodies. Nevertheless, comparing the 
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results from transgenic and wild-type mice, it is clear that abundant 

autoantibodies were present in the former but not the latter. 

Transgenic mice also produced antinuclear antibodies (Figure 3B) and 

anti-dsDNA antibodies (Figure 3C), the latter being a hallmark of SLE. 

With positivity defined as 2 SD above the mean in serum from wild-type 

mice, 77% of female transgenic mice and 55% of male transgenic mice 

were found to be anti-dsDNA antibody positive, demonstrating a higher 

penetrance in females, similar to findings in human SLE. 

B-1 cells are a prominent B cell population during early ontogeny ([21]). 

In adults, B-1 cells are abundant in celomic cavities and can be classified 

into B-1a and B-1b subpopulations, which are similar in their surface 

markers, including CD11b expression, but the former is CD5+ while the 

latter is CD5- ([22]). In human SLE, the B-1a subpopulation in PBMCs is 

augmented ([23]). We demonstrated that the B-1a subpopulation was 

significantly increased in transgenic mouse PB B cells (CD19+) compared 

with wild-type mouse PB B cells (32.8% versus 11.5%) (Figure 3D). 

Consistent with this finding, the peritoneal B-1a, but not B-1b, 

subpopulation was expanded among B cells of transgenic mice (Figure 3E). 

There was no abnormal expansion of the total B cell population in the 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 84

PBMCs, spleen, or peritoneal cavity of transgenic mice compared with 

wild-type mice (data not shown). 

Human SLE is associated with glomerulonephritis. Thus, renal pathology 

and function were studied in DcR3-transgenic mice. Beyond age 6 months, 

the kidneys of transgenic mice had prominently enlarged glomeruli with 

increased glomerular epithelial cellularity and mesangial hypertrophy, 

along with interstitial fibrosis, as seen with hematoxylin and eosin (H&E) 

staining (Figure 4A). Leakage of red blood cells into interstitia was 

apparent. There was also obvious IgG and C3 deposition in the glomeruli 

and in interstitial spaces (Figure 4A). Semiquantitative assays of urine 

revealed leukocyturia, proteinuria, and hematuria in transgenic, but not 

wild-type, mice. This phenotype was significantly more common in 

transgenic females (Figure 4B). In the liver of DcR3-transgenic mice >6 

months of age, periarterial lymphocyte infiltration was observed (Figure 

4C), similar to the liver pathology found in SLE patients ([24]).  

Beyond age 12 months, DcR3-transgenic females frequently (40%) 

developed skin lesions, as seen in Figure 4D. Lesions in the epidermis 

exhibited superficial crusting and erosion. In the damaged areas, 

polymorphonuclear cell infiltration and hyperkeratosis of the epidermis 

with follicular plugging were apparent. The junction between the epidermis 
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and the dermis was unclear, due to the loss of epidermis pegs and the 

presence of cell infiltration. In the dermis, under the eroded lesion, 

granulomatous tissue consisting of collagen fibers, fibroblasts, and 

infiltrating lymphocytes was present. Mild edema and vasodilatation of the 

capillaries and small vessels with red blood cells were observed in the 

dermis, with clumps of infiltrating lymphocytes surrounding the vessels 

and appendages. Band-like infiltrating lymphocytes were found in some 

subcutaneous layers. The overall pathologic features were similar to those 

manifested in MRL/lpr mice ([25]), and were reminiscent of findings in 

human chronic cutaneous lupus. 

In human SLE, leukocytopenia, thrombocytopenia, and anemia are 

common ([26]). This was also the case in DcR3-transgenic mice >6 

months of age. As shown in Figure 4E, leukocytopenia occurred in 6 of 10, 

thrombocytopenia in 3 of 9, and anemia in 4 of 10 female transgenic mice, 

using the mean values minus 2 SD in wild-type mice as thresholds. Two of 

9 male transgenic mice exhibited anemia, but none of the transgenic males 

had leukocytopenia or thrombocytopenia. The frequency of these 3 

disorders in male transgenic mice did not differ significantly from that in 

wild-type mice, but the frequency of all 3 disorders was significantly 

greater in transgenic females than in wild-type mice. This again 
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demonstrates that transgenic females had more severe hematologic damage, 

similar to findings in human SLE. In transgenic mice, bone marrow did not 

have obvious abnormalities in cellularity as determined with H&E staining, 

or reduction in lineage-negative precursor cells as assessed by flow 

cytometry (results not shown). Furthermore, sera from transgenic mice did 

not contain antibodies reactive with lineage-negative precursor cells, as 

determined by immunofluorescence microscopy (results not shown). This 

suggests that the bone marrow deficiency was not the major cause of the 

observed hematologic damage in transgenic mice. 

DcR3 promotion of survival of activated T cells. 

We next investigated the mechanism by which DcR3 triggers the SLE-like 

syndrome in mice. In a normal immune response, T cell activation is 

followed by AICD, which is responsible for the shrinking of expanded T 

cell colonies. Abnormal T cell AICD is believed to be one of the factors in 

SLE pathogenesis. To assess the role of DcR3 in T cell survival after 

activation, we applied a typical model of in vitro AICD. Spleen CD4 and 

CD8 cells from wild-type and transgenic mice were first activated for 48 

hours with soluble anti-CD3, and then expanded with IL-2 for an 

additional 48 hours. When these cells were further stimulated with 

solid-phase anti-CD3, they underwent significant apoptosis, as seen in 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 87

Figure 5A. DcR3 is capable of blocking apoptosis pathways mediated by at 

least 4 TNFR family members, i.e., Fas, HVEM protein, LT R, and DR3 

([6-8]). We demonstrated that DcR3 continuously secreted by spleen cells 

from transgenic mice drastically inhibited CD4 cell AICD; similar 

protection of CD8 cells by DcR3 was also evident (Figure 5A). In these 

experiments, CD4 and CD8 cells from wild-type and transgenic mice were 

similarly activated, based on their CD25 expression (data not shown).  

Experiments were then performed to investigate whether the Fas pathway 

could be blocked by DcR3 during T cell apoptosis. In the absence of 

recombinant FasL, resting transgenic or wild-type mouse CD4 cells 

exhibited 19.6-24.1% background apoptosis after 16-hour culture either 

without DcR3, with 10 g/ml recombinant DcR3, or with DcR3 secreted 

de novo from transgenic mouse T cells (Figure 5B). In the presence of 

FasL, which was crosslinked to enhance its efficacy ([27]), wild-type 

mouse CD4 cells underwent massive apoptosis (52.2%) after 16-hour 

culture; this is compatible with the fact that Fas is constitutively expressed 

in resting T cells and crosslinking of Fas results in apoptosis in various cell 

types ([28]). Exogenous recombinant DcR3 at 10 g/ml almost completely 

prevented such apoptosis in wild-type mouse CD4 cells (16.3% apoptosis). 

Although DcR3 secreted de novo by CD4 cells was sufficient to 
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completely protect activated CD4 cells against death in the absence of 

exogenous FasL, as shown in Figure 5A, it became less effective (43.7% 

apoptosis), but was still consistently protective, in the presence of excess 

exogenous FasL (600 ng/ml) (Figure 5B), likely due to the relatively high 

concentration of the latter. The dose-dependent protective effect of 

exogenous recombinant DcR3 on CD4 cells is depicted in Figure 5D. A 

similar dose-dependent protective effect of exogenous or de novo-secreted 

DcR3 could also be observed in CD8 cells (Figures 5C and D). 

The above-described results demonstrate that inhibition of the 

Fas-mediated apoptosis pathway is at least one of the protective 

mechanisms used by DcR3 in promoting T cell survival. Bim, a 

proapoptotic BH3-only protein, has been implicated in clonal contraction 

due to its role in cytokine deprivation-associated cell death ([29]), and a 

recent study revealed that Fas signaling leads to Bim induction, linking the 

Fas pathway to the Bim pathway ([30]). Thus, blocking of Fas signaling by 

DcR3 not only directly affects the Fas pathway but can also indirectly 

interfere with the Bim pathway, both of which are important in clonal 

contraction. 

In a normal immune response, T cell clonal contraction follows clonal 

expansion; such contraction depends on AICD. Some T cells that 
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underwent AICD might have had a low affinity for specific antigen in the 

immune response but might cross-react with self antigen; this might 

otherwise have evoked autoimmune responses, had AICD not been taking 

place. In the peripheral blood of transgenic mice >6 months of age, a 

significantly higher percentage of CD4 cells exhibited the CD62Llow 

(73.2%) and CD44high (70.8%) phenotype, compared with CD4 cells from 

wild-type mice (33.4% and 22.7%, respectively) (Figure 6A). These cells 

represented previously but not recently activated CD4 cells, since their 

CD25 expression was low. As shown in Figures 6B and C, the percentages 

of CD44high,CD25-,CD4+ and CD44high,CD62Llow,CD4+ cells in the 

peripheral blood of DcR3-transgenic mice were significantly elevated 

compared with the percentages in wild-type mice. Among transgenic mice, 

these percentages did not differ by sex or by presence or absence of 

lymphadenopathy (data not shown). These findings, plus our 

demonstration that DcR3 protected against AICD, suggest that DcR3 might 

promote the survival of activated CD4 cells in vivo, and these surviving 

cells might be at the core of SLE pathogenesis. Nevertheless, we cannot 

exclude the possibility that such a phenomenon reflects increased 

activation, rather than decreased apoptosis, of CD4 cells in this 

autoimmune model.  
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DISCUSSION 

 

DcR3 is a death decoy protein that blocks multiple apoptosis pathways, 

including Fas/FasL. We have demonstrated that DcR3, in the form of 

either recombinant protein or protein secreted by transgenic leukocytes, 

could effectively prevent AICD of CD4 and CD8 cells. Inhibition of T cell 

death could disrupt clonal shrinkage after clonal expansion during an 

immune response, resulting in the survival of abnormal self cross-reactive 

T cells and, potentially, autoimmune disease. Indeed, failed T cell 

apoptosis is implicated in SLE pathogenesis, as shown in lpr/lpr and 

gld/gld mice, which in many respects manifest pathologic changes similar 

to those in human SLE. However, human SLE patients rarely have 

mutations of Fas or FasL, and thus these are not susceptibility genes in 

humans. Nevertheless, it is possible that some proteins (e.g., DcR3) 

indirectly interfering with the Fas/FasL pathway in humans might be lupus 

pathogenic. In support of this possibility, we have reported previously that 

activated T cells produce DcR3 (15). Of greater relevance, it has been 

demonstrated that PBMCs from SLE patients present higher levels of 

DcR3 transcripts than those from healthy individuals (17). We have 

observed augmented serum levels of DcR3 in a subpopulation of SLE 

patients during flares (Han B, et al: unpublished observations). Further, we 
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have demonstrated in this study that DcR3 overexpression resulted in a 

lupus-like syndrome in mice. 

In theory, the interference of DcR3 in the Fas apoptosis pathway might 

also be involved in the autoimmune lymphoproliferative syndrome (ALPS). 

Although Fas, FasL, caspase 8, or caspase 10 mutations have been found in 

66% of ALPS patients, the remaining 34% have no identifiable mutation 

(31). It would be interesting to investigate whether DcR3 overexpression 

occurs in this subpopulation. 

It should be noted that although DcR3 can potentially block at least 3 

apoptosis pathways, i.e., Fas/FasL, LIGHT/HVEM-LT R, and TL1A/DR3, 

SLE pathogenesis is most likely related to its interference with the 

Fas/FasL pathway. No SLE phenotype has been observed in LIGHT- or 

DR3-null mutant mice (32,33). 

We have previously shown that 60-70% of patients with various types of 

tumor have elevated serum levels of DcR3, as do patients with liver 

cirrhosis (16). However, these patients normally do not develop SLE as a 

complication. It is possible that local biologically active DcR3 in lymphoid 

organs has pathogenic potential for the development of SLE. Indeed, our in 

vitro experiments demonstrated that DcR3 secreted by spleen cells from 
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transgenic mice was sufficient to protect activated T cells against death 

(Figure 6). Furthermore, we conducted whole-body irradiation on 

wild-type mice, followed by bone marrow transplantation. Six months after 

transplantation, 5 of 8 recipients of DcR3-transgenic mouse bone marrow 

developed anti-dsDNA antibodies, a hallmark of SLE; moreover, these 

mice had renal and liver histopathologic features similar to those in 

DcR3-transgenic mice. Conversely, none of the 5 recipients of wild-type 

mouse bone marrow developed anti-dsDNA antibodies (data not shown). 

Taken together, these results indicate that abnormal overexpression of 

DcR3 by leukocytes is sufficient to cause an SLE-like syndrome, probably 

due to high local levels of biologically active DcR3 in lymphoid organs. 

It could be argued that the serum DcR3 levels of 20-80 ng/ml in our 

DcR3-transgenic mice, 2 orders of magnitude higher than levels seen in 

SLE patients, are not physiologically or pathologically relevant. In a report 

by Hsu et al describing transgenic mice with phosphoglycerate kinase 

(PGK) promoter-driven DcR3 expression, with serum DcR3 levels of 4.7 

ng/ml (34), an associated SLE-like phenotype was not mentioned. It is not 

clear whether transgenic mice with PGK promoter-driven DcR3 expression 

have been studied carefully beyond the age of 6 months. If these mice do 

not develop an SLE-like syndrome at an older age, it is possible that either 
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1) very high DcR3 levels are required for SLE pathogenesis and DcR3 is 

thus unlikely pathogenic in most patients, or 2) human DcR3 might not 

interact with mouse ligands with similar affinity as it would with human 

ligands. It is worth mentioning that although the binding affinity of human 

DcR3 to its human ligands has been demonstrated by us previously (6) and 

human DcR3 is known to interact with mouse FasL, LIGHT, and TL1A (9), 

the affinity of human DcR3 with mouse ligands has not been documented. 

Linkage analysis in lupus-prone mice has revealed 30 lupus 

susceptibility loci (1). However, such studies in mice cannot identify DcR3 

as an SLE susceptibility gene, because DcR3 is a human gene with no 

orthologous counterpart in mice. In a study of European and African 

Americans (35), an SLE locus was located at 20q13 (logarithm of odds 

2.49) near marker D20S481, which is situated 7.6 Mb from the DcR3 

gene. However, a more recent fine mapping study (36) placed an SLE risk 

locus at 20Q13.1, which is a considerable distance from the DcR3 gene (

20 Mb). Thus, further fine mapping genetic analyses in humans are 

warranted to establish whether DcR3 or its expression regulators are bona 

fide susceptibility genes that have a pathogenic role in SLE. 
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FIGURES AND LEGENDS 

Figure 1. Generation and characterization of decoy receptor 3 (DcR3)-transgenic mice. 

 

 

A, pAC-DcR3 construct for generation of transgenic mice. The 5.7-kb Cla I/Cla I 

fragment was used for microinjection. Amp R = ampicillin resistant. B, Polymerase 

chain reaction genotyping of tail DNA from DcR3 founder and wild-type (WT) mice. 

The 128-bp bands specific to the DcR3 transgene are indicated; pAC-DcR3 was used as 

a positive control. C, Serum DcR3 levels in 2-month-old DcR3-transgenic (Tg) and WT 

mice, determined by enzyme-linked immunosorbent assay (ELISA). D, DcR3 secreted 

in culture supernatants of spleen T cells from Tg or WT mice, determined by ELISA. 

Values are the mean and 2 SD from 2 independent experiments. 
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Figure 2. Lymphadenopathy and survival rates in DcR3-Tg mice. 

 

 

A, Lymphadenopathy in a 7-month-old female Tg mouse. B, Incidence of 

lymphadenopathy in 6-8-month-old male and female Tg mice. C, Enlargement of the 

spleen of a 9-month-old female Tg mouse with lymphadenopathy, compared with that 

of a WT mouse. D, CD4-,CD8- double-negative cells in enlarged lymph nodes of Tg 

mice. Cells from enlarged lymph nodes were analyzed by 3-color flow cytometry, and 

Thy1.2-positive T cells were gated and further analyzed by CD4 and CD8 staining. The 

experiments were performed 3 times; data from a representative experiment are shown. 

E, Further phenotype analysis of cells from enlarged lymph nodes of Tg mice. Cells 

were stained with B220 and Th1.2, and B220+,Th1.2+ cells were gated and further 

analyzed for expression of CD3, T cell receptor (TCR ), CD4, CD8, CD44, and 

CD62L. Shaded areas show data on cells gated on B220+,Thy1.2+; white areas show 
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data on isotype controls. The experiments were performed 3 times; data from a 

representative experiment are shown. F, Survival rates in WT, female Tg, and male Tg 

mice. See Figure 1 for other definitions. 
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Figure 3. Autoantibodies and B-1 cells in DcR3-Tg and WT mice. 

 

A, Presence of autoantibodies against various organs. Proteins from heart (H), liver (Li), 

lung (Lu), kidney (Ki), brain (Br), muscle (M), or submaxillary glands (Sbm) were 

blotted onto membranes after sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis and reacted with sera (1:500 dilution) from a Tg mouse (7-month-old 

female with lymphadenopathy) and a WT littermate (female). The experiments were 

performed 3 times, with similar results. B, Presence of antinuclear antibody. Sera 

(1:500 dilution) from a Tg mouse (7-month-old female with lymphadenopathy) and a 

WT littermate were reacted with permeabilized HeLa cells, followed by fluorescein 

isothiocyanate-conjugated goat anti-mouse IgG. The experiments were performed 3 

times, with similar results (original magnification × 400). C, Presence of 

anti-double-stranded DNA antibody (anti-dsDNA Ab). Levels of anti-dsDNA antibody 

in sera from >6-month-old female Tg mice, male Tg mice, and WT littermates were 

determined by ELISA. The mean plus 2 SD in WT mice was used as the threshold for 
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positivity. The frequency of positivity was significantly greater in female Tg mice and 

male Tg mice versus WT mice (P = 0.000353 and P = 0.00377, respectively, by 

chi-square test). OD = optical density. D, CD5+ B-1 cell population in peripheral blood 

mononuclear cells (PBMCs). CD19+ B cells from the peripheral blood of >6-month-old 

Tg and WT mice were gated and analyzed by 2-color flow cytometry for CD5 

expression. A large CD5+ B-1 cell population was found in Tg mice. The experiments 

were performed >3 times, with similar results. E, B-1a cell percentage in peritoneal B 

cells. Peritoneal cells from Tg and WT mice were gated on CD19 and analyzed by flow 

cytometry for CD5 and CD11b expression. Percentages of B-1b (CD5-,CD11b+) and 

B-1a (CD5+,CD11b+) populations among CD19+ cells are indicated; the percentage of 

B-1a cells was increased in Tg mice. The experiments were performed twice, with 

similar results.  
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Figure 4. Tissue histopathology and urine and hematologic findings in aged DcR-Tg 

and WT mice. 
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A, Renal histopathology. Kidney sections from 9-month-old female Tg and WT mice 

were stained with hematoxylin and eosin (HE), fluorescein isothiocyanate 

(FITC)-conjugated sheep anti-mouse IgG, or FITC-conjugated rat anti-mouse C3. B, 

Leukocyte, protein, and hemoglobin levels in urine. Urine from Tg and WT mice was 

collected for a 24-hour period, and leukocytes, protein, and hemoglobin were measured 

semiquantitatively with Chemstrip. Severity was graded -, +, ++, or +++ (- = negative; 

+++ = severe). Findings in female Tg mice were significantly different from those in 

WT mice for all 3 parameters (P < 0.05 by one-way analysis of variance with 

Kruskal-Wallis test), whereas findings in Tg males and WT mice were not significantly 

different. C, Liver histopathology. Liver sections from a 13-month-old female Tg 

mouse with lymphadenopathy and a female WT littermate were stained with 

hematoxylin and eosin. D, Skin histopathology. Skin lesions from a 14-month-old 

female Tg mouse (pure C57BL/6 background) with lymphadenopathy are shown in the 

upper panel. Hematoxylin and eosin staining of a skin section from this area is depicted 

in the lower panel. Lymphocyte-infiltrated derma and adjacent normal derma are 

indicated. E, Leukopenia, anemia, and thrombocytopenia. Levels of white blood cells, 

hemoglobin, and platelets in the peripheral blood of >6-month-old female Tg mice, 

male Tg mice, and WT littermates were determined. The mean minus 2 SD in WT mice 

was used as the threshold for abnormality. Findings in female Tg mice were 

significantly different from those in WT mice for all 3 parameters (P < 0.05 by 

chi-square test), whereas findings in Tg males and WT mice were not significantly 

different. (Original magnification × 200 in A; × 100 in C and D.) See Figure 1 for other 

definitions. 
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Figure 5. DcR3-induced protection of T cells against apoptosis. 

 

A, Protection against apoptosis in activated CD4 and CD8 cells. WT and Tg mouse 

spleen cells were first activated for 48 hours with soluble anti-CD3, then washed and 

recultured for 48 hours in the presence of interleukin-2, washed again, and transferred 

to wells coated with anti-CD3 for an additional 48-hour culture in the absence or 

presence of DcR3 at various concentrations. Apoptosis of CD4 and CD8 cells was 
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analyzed by annexin V staining on CD4- or CD8-gated cells in 3-color flow cytometry, 

after propidium iodide-positive cells were gated out. The experiments were performed 

at least twice, and data from a representative experiment are shown. B and C, DcR3 

blocking of FasL-induced apoptosis in resting T cells. WT and Tg mouse spleen cells 

were cultured for 16 hours in the absence or presence of crosslinked FasL, and 

apoptosis of CD4 and CD8 cells was analyzed by annexin V staining in 2-color flow 

cytometry. WT = WT mouse CD4 or CD8 cells without protection; DcR3-Fc = WT 

mouse CD4 or CD8 cells protected by 10 g/ml exogenous recombinant DcR3-Fc; Tg 

= DcR3-Tg mouse CD4 or CD8 cells protected by endogenous DcR3. The experiments 

were performed at least twice, with similar results. D, Dose-response of DcR3 

protection. WT mouse spleen cells were incubated with crosslinked FasL in the 

presence of DcR3 at various concentrations. Values are the mean ± SD. The 

experiments were performed twice, with similar results. See Figure 1 for other 

definitions. 
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Figure 6. Expanded CD44high,CD62Llow,CD25- CD4 population in peripheral blood 

mononuclear cells (PBMCs) of DcR3-Tg mice. 

 

CD4 cells in the peripheral blood of 6-month-old female Tg mice or WT littermates 

were gated, and expression of CD62L, CD44, and CD25 was analyzed. The 

experiments were performed >9 times, with similar results. A, Histograms from a 

representative set of experiments. B and C, Mean and SD percentages of 

CD44high,CD25- cells (B) and CD44high,CD62Llow cells (C) among total CD4 cells in 

the peripheral blood of female Tg, male Tg, and WT mice. = P < 0.01 versus WT 

mice, by Student's 2-tailed t-test. See Figure 1 for other definitions. 
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Héctor Valderrama-Carvajal, Jiangping Wu and Hongyu Luo 

 

Int Immunol. 20(8):1067-75, 2008. 

 

Summary: In this paper, we showed high serum DcR3 levels in SLE 

patients. We also demonstrated that hemopoietic cell secreted DcR3 was 

sufficient to induce lupus-like syndromes in mouse. Our results suggest 

that DcR3 is a risk factor for SLE, and this finding can lead to a new 

parameter for clinical diagnosis of SLE. 
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ABSTRACT 

In this study, we investigated the diagnostic value of serum death decoy 

receptor 3 (DcR3) for systemic lupus erythematosus (SLE). The possible 

pathogenic role of DcR3 in SLE was also assessed. Serum DcR3 levels of 

90 SLE patients, 11 patients with rheumatic conditions and 123 healthy 

controls were determined by ELISA. In all, 43% of the SLE patients, 9% of 

patients with rheumatic conditions and 2.4% of the normal healthy 

individuals presented elevated serum DcR3 levels. A higher percentage of 

DcR3-positive SLE patients, compared with DcR3-negative SLE patients, 

showed abnormally high serum IgE levels, a surrogate marker of Th2-type 

immune responses. To determine the cause and effect relationship of DcR3 

expression and a Th2-prone status, we studied young DcR3 transgenic (Tg) 

mice, whose transgene was driven by an actin promoter. These mice had 

IL-4 overproduction and augmented serum IgE levels, signs of dominant 

Th2 immune responses. To determine possible SLE pathogenic roles of 

DcR3, the T-cell-depleted bone marrow of DcR3 Tg mice was transplanted 

into lethally irradiated syngeneic C57BL/6 female mice. The recipients 

developed an SLE-like syndrome. They presented anti-dsDNA and 

anti-nuclear antibodies, along with renal and liver pathology compatible 
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with that of SLE. In total, 90% of Tg bone marrow-transplanted mice, 

compared with 20% of wild-type bone marrow-transplanted mice, perished 

within 12 months after the transplantation. Our results showed that serum 

DcR3 could serve as an additional parameter for SLE diagnosis and that 

DcR3 secreted from cells of hematopoietic origin was SLE pathogenic in 

mice.  

Keywords: DcR3, systemic lupus erythematosus 
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INTRODUCTION 

Systemic lupus erythematosus (SLE) is an autoimmune disease inflicting 

damage to multiple organs. The disease prevalence is 0.05% in the 

general population, with 80–90% of patients being women (1, 2). The exact 

etiology of SLE has not been elucidated, but it is obvious that genetics, 

gender, and environment are involved in its pathogenesis. Regarding 

genetics, SLE is under polygenic control (3). Multiple genomic loci 

containing SLE risk genes have been identified in humans and mice (4, 5). 

Certain class II MHC genes are known to contribute to SLE risk (6). 

Among others, molecules in the apoptosis pathways are implicated in SLE 

pathogenesis (7). In mice, mutations in the prototype pro-apoptotic 

molecules Fas or Fas ligand (FasL) lead to the occurrence of an SLE-like 

syndrome (8, 9), but human SLE patients rarely have mutations in Fas or 

FasL (10, 11). However, it is possible that molecules in the Fas/FasL 

pathway are SLE risk factors, but they have yet to be identified as such.  

Decoy receptor 3 (DcR3) is a member of the tumor necrosis factor (TNF) 

receptor family. As it lacks transmembrane and intracellular sequences in 

its peptide, it is a secreted protein (12). It can bind to three TNF family 

members, i.e. FasL, LIGHT and TL1A, and interferes with the interaction 

of these ligands with their respective receptors, i.e. FasL with Fas, LIGHT 
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with HVEM and LTβR and TL1A with DR3 (12–15). Because these 

receptors are all capable of inducing cell death (15–17), one of DcR3's 

biological functions is to act as a death decoy, preventing cell death under 

certain circumstances (15). In total, 50–60% of various tumors secrete 

DcR3 (18), which is probably a strategy evolved by tumors to gain a 

survival advantage over immune surveillance. Activated T cells also 

produce DcR3 (19). The biological significance of such DcR3 production 

could be (i) to modulate activation-induced cell death after clonal 

expansion and, hence, influence memory T-cell development (20) and (ii) 

to regulate T-cell migration after their activation as we have found that 

soluble DcR3 can inhibit T-cell chemotaxis (21).  

T cells in SLE patients are abnormally activated. As activated T cells 

produce DcR3 (19), we examined serum DcR3 in these patients as a 

possible diagnostic marker. We further investigated a possible role of 

DcR3 in SLE pathogenesis.  
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METHODS 

Patients and healthy controls 

Sera from SLE patients, patients with other autoimmune diseases and 

healthy controls were collected at the Department of Immunology, Instituto 

Nacional de Cardiología ‘Ignacio Chávez’, Mexico City. Informed consent 

was obtained from serum donors, and this study was approved by the local 

Ethic Committee. All SLE patients (86 females and 4 males; age between 

16 and 63, 37.3 ± 12.9) met the American College of Rheumatology 

classification criteria (22). The systemic lupus erythematosus disease 

activity index (SLEDAI) of each patient was obtained at the time of serum 

collection. All the patients were under one to four different medications, 

which were duly recorded and illustrated in relevant figures. Eleven 

patients (nine females and two males) between 20 and 59 years of age 

(38.8 ± 13.5) with rheumatic conditions [three with rheumatoid arthritis, 

one with idiopathic juvenile arthritis, one with anti-phospholipid syndrome, 

two with Sjögren syndrome, one with thrombophilia, two with 

undifferentiated connective tissue disease, one with overlap syndrome 

(systemic sclerosis plus polymyositis)] were included for comparison. 

Control sera were from healthy donors (92 females and 31 males; age 

between 18 and 64, 35.6 ± 10.5) approximately matched for age and gender 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN                    116

of SLE patients. All the patients and healthy controls were Mexican 

Mestizo.  

DcR3 ELISA 

DcR3 ELISA has been described elsewhere (18). An mAb specific to 

DcR3 was used for coating, and a biotinylated affinity-purified rabbit 

antibody against DcR3 served as detecting antibody. The sensitivity of the 

assay was 6 pg ml–1. Human samples were tested in duplicate, and mouse 

samples, in triplicate. The mean + 1.64 SD (95% confidence interval, 

one-sided test) of the control serum DcR3 levels was used as the threshold 

(25 pg ml–1), levels equal or above which were considered DcR3 positive.  

Clinical serological tests 

Serum anti-nuclear antibodies (ANAs) were detected by indirect 

immunofluorescence on HEp-2 cells slides (NOVA Lite, INOVA 

Diagnostics, San Diego, CA, USA). Anti-dsDNA antibodies were detected 

by indirect immunofluorescence on Crithidia luciliae substrate (NOVA Lite, 

INOVA Diagnostics). Anti-SSA, anti-SSB, anti-RNP and anti-SM 

antibodies were all detected by ELISA (QUANTA Lite, INOVA 

Diagnostics). All the assays were performed according to manufacturer's 

instructions.  
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Human serum IgE assay 

Human serum IgE was quantified using an ELISA kit from Bethyl 

Laboratories (Montgomery, TX, USA), according to the manufacturer's 

instructions. The sensitivity of the assay was 16 ng ml–1.  

Cell culture 

Mouse spleen cells were cultured in 96-well plates at a density of 4 x 105 

cells per 200 µl per well and stimulated with phorbol myristate acetate 

(PMA, 10 nM) and ionomycin (2 µg ml–1) for 4 h in the presence of 

brefeldin A (10 µg ml–1) for the detection of intracellular IL-4 and IFN- .  

Flow cytometry 

Two-color flow cytometry was performed to determine the expression of 

CD4 and intracellular IL-4 and IFN-  in mouse spleen T cells, as 

described before (23).  

Measurement of Ig isotype levels in mouse sera 

Mouse serum Ig isotype levels were quantified with Ig-isotyping ELISA 

and OptEIA kits from BD Biosciences (Mississauga, Ontario, Canada), 

according to the manufacturer's instructions.  

Whole-body irradiation and bone marrow transplantation 

C57BL/6 female mice were whole-body irradiated at 900 Rad. After 16 h, 
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they received intravenously (i.v.) 10 million T-cell-depleted bone marrow 

cells from DcR3 or wild-type (WT) mice. T-cell depletion from bone 

marrow cells was carried out with EasySep Mouse CD90 (Thy1.2) Positive 

Selection Kit according to the manufacturer's instructions (StemCell 

Technologies Inc., Vancouver, BC).  

Immunofluorescence for the detection of ANA 

HeLa cells were fixed with a BD Cytofix/Cytoperm kit (BD Biosciences, 

San Diego, CA, USA) at 4°C for 60 min and then incubated overnight at 

4°C with sera from mice having received WT bone marrow transplantation 

(BMTx) or transgenic (Tg) BMTx (1:500 dilution in wash buffer from the 

kit). After washing, the cells were reacted overnight at 4°C with 

FITC-conjugated goat anti-mouse IgG antibody (1:1000 dilution; Bethyl 

Laboratories). The cells were examined under fluorescence microscopy. 

The method was similar to that as described by Vinuesa et al. (24).  

ELISA for anti-dsDNA 

Costar 96-well high-affinity ELISA microplates were coated with 250 µg 

ml–1 salmon sperm DNA (Invitrogen, Burlington, Ontario, Canada) in 

coating buffer (0.05 M sodium bicarbonate solution, pH 9.5) overnight at 

4°C. After washing with PBS containing 0.05% Tween 20, the plates were 

incubated with blocking buffer (PBS containing 1% BSA) at room 
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temperature for 1 h. WT and Tg mouse sera were diluted in blocking buffer 

at 1:50 and incubated overnight in the wells at 4°C. After washing, the 

plates were reacted with HRP-conjugated sheep anti-mouse IgG antibody 

(1:2000 dilution; Amersham Biosciences, Piscataway, NJ, USA) for 1 h at 

room temperature. Signals were revealed by adding tetramethylbenzidine 

substrate (BD Biosciences), followed by 20-min incubation at room 

temperature. The reaction was stopped by 50 µl 4 N HCl, and the plates 

were read at a wavelength of 450 nm.  
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RESULTS 

Elevated serum DcR3 levels in SLE patients 

Sera from 90 SLE patients (86 females and 4 males) and 123 

approximately age- and gender-matched healthy individuals (92 females 

and 31 males) were tested for DcR3. As shown in Fig. 1(A), SLE patients 

presented elevated serum DcR3, with 39 of them (i.e. 43.3% of total 

patients; 75% of males and 41.9% of females) being serum DcR3 positive, 

compared with only 3 out of the 123 healthy controls (2.4%). The 

difference was highly statistically significant (P < 0.01, Student's t-test). In 

these patients, who were all under medication, DcR3 levels had no obvious 

correlation with SLEDAI, according to linear regression analysis (r = 0.119, 

P = 0.26) (Fig. 1B). No significant correlation was found between age 

(ranging from 16 to 64 years) and serum DcR3 levels (r = –0.1, P = 0.92; 

Fig. 1C). Further analysis showed that serum DcR3 positiveness was not 

correlated to positiveness of ANA, anti-dsDNA antibody, anti-RNP 

antibody, anti-Sm antibody, anti-Ro/SSA antibody or anti-La/SSB antibody 

(P > 0.05, 2 test; Fig. 1D). 

For comparison, DcR3 levels in 11 patients with rheumatic conditions were 

determined. Only 1 out of 12 (9%) of these patients were positive in serum 

DcR3. The DcR3-positive patient in this group was diagnosed with overlap 

syndrome (systemic sclerosis plus polymyositis). Although a large sample 
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size of each disease will be needed to assess the DcR3-positive incidence, 

our data at least suggest that DcR3-positive incidence in rheumatic 

conditions is not as high as that in SLE.  

All SLE patients were under medication, such as cyclophosphomide 

(CFM), prednisone (PDN), hydroxychloroquine (HCQ), azathioprine (AZA) 

and/or statins, at the time of serum collection. Only 13 patients were on a 

single medication (11 on HCQ and 2 on PDN); all the others were treated 

with two to four drugs. We attempted to determine whether any particular 

drug would influence serum DcR3 and whether, in the absence of the said 

drug, there was a correlation between SLEDAI and DcR3 levels. Patients 

without a particular medication but on one to three other medications were 

compared with those taking the said medication along with zero to three 

other drugs. As shown in Fig. 2(A), regimens containing CFM, PDN and 

AZA did not seem to affect serum DcR3 levels. On the other hand, patients 

on regimens without HCQ appeared to have higher DcR3 levels. This was 

probably due to that patients taking HCQ were those with a lower SLE 

activity. Indeed, SLEDAI of patients with a regimen containing HCQ 

tended to be lower than that without HCQ (Fig. 2B), although the 

difference did not reach a statistically significant level. We also noticed that 

patients on a regimen containing statins presented higher DcR3 levels (Fig. 
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2A; P < 0.004), and they also had higher SLEDAI (Fig. 2B), albeit without 

reaching statistically significance. Possible explanations for such an 

observation are given in the Discussion. Another observation was that 

patients treated with a regimen containing PDN or AZA had significantly 

higher SLEDAI (P = 0.03 in both cases). This is not unexpected as these 

two drugs are normally administered to patients with elevated SLEDAI.  

Elevated serum IgE levels in SLE patients 

SLE is an autoimmune disease with an underlying Th2 immune response, 

and physiological conditions such as pregnancy that boosts the Th2 

response tend to aggravate SLE (25). We wondered whether there was any 

correlation between serum DcR3 levels and the degree of Th2 dominance. 

To test this possibility, serum IgE was employed as a surrogate marker of 

Th2 response. The 90 SLE patients were divided into DcR3-positive and 

DcR3-negative groups, with 25 pg ml–1 serum DcR3 as the threshold. The 

results (Fig. 3) showed that DcR3-positive patients had an elevated serum 

IgE concentrations (with a median IgE concentration of 120 ng ml–1) 

compared with DcR3-negative patients (with a median IgE concentration 

of 60 ng ml–1). A higher percentage of DcR3-positive patients presented 

serum IgE levels above the normal range using 240 ng ml–1 (100 IU ml–1) 

as the upper limit of the range (26), compared with DcR3-negative patients 
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(P < 0.05; 2 test). These results suggest the existence of a correlation 

between DcR3 levels and the Th2 phenotype. 

Th2-prone immune responses in young DcR3 Tg mice 

To establish the cause and effect relationship between DcR3 expression and 

Th2-prone immune responses, we generated actin promoter-driven human 

DcR3 Tg mice (20). The mouse does not have an orthologue of human 

DcR3, but human DcR3 could effectively interact with mouse FasL, 

LIGHT and TL1A (12, 27). Tg mice younger than 5–6 months of age, 

thymus, spleen and lymph node weight and cellularity were in the normal 

range, as were cell sub-populations in these organs (data not shown). Their 

T-cell proliferation in response to solid-phase anti-CD3 alone or in 

combination with anti-CD28 was variable and did not have consistent 

changes in comparison to WT T cells [data not shown; methods detailed in 

Luo et al. (23)]. However, when Tg CD4 cells experienced a short-term 

ionomycin and PMA stimulation, a higher percentage of them became 

intracellular IL-4- but not IFN- -positive, compared with WT CD4 cells 

(Fig. 4A). Because such a stimulation regimen triggered previously 

activated rather than resting T cells to secrete these lymphokines, this result 

suggests that Tg mice at this age already experienced a Th2-dominated 

immune response history. 
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The serum antibody isotypes of these Tg mice were determined by ELISA. 

As illustrated in Fig. 4(B), Tg and WT mice had similar levels of IgA, IgM, 

IgG2A and IgG3, but Tg mice produced higher amounts of IgG1 and 

IgG2b than WT mice. Tg mice also generated increasingly significantly 

higher concentrations of IgE, a typical Th2-dependent isotype, from 2 to 6 

months of age (Fig. 4C). The overproduction of IgG1 and IgE indicated 

that the immune responses in Tg mice were skewed to the Th2-type 

response and was consistent with increased intracellular IL-4-positive CD4 

cells found in the spleens of young Tg mice. These results suggest that 

DcR3 over-expression is a cause of Th2-prone immune responses.  

Recipients of DcR3 Tg bone marrow developed an SLE-like syndrome 

Tg mice with actin promoter-driven DcR3 expression developed an 

SLE-like syndrome after 5 months of age (20). They produced 

auto-antibodies against dsDNA and Smith antigen. The kidneys of these Tg 

mice showed pathological changes indicative of glomerular nephritis and 

IgG and C3 deposition; kidney dysfunction, such as proteuria, leukocyturia, 

and hemuresis, were obvious. Aged Tg mice also developed skin lesions 

and lymphocyte infiltration in the liver and suffered from leukopenia, 

anemia and thrombocytopenia. SLE-like syndrome penetrance in DcR3 Tg 

mice was gender dependent, with 60% in females versus 20% in males. 
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These findings have been reported by us recently (20). The results suggest 

that DcR3 might be SLE pathogenic. In actin promoter-driven DcR3 Tg 

mice, DcR3 was produced almost universally by various tissues. Because 

activated T cells secrete DcR3 (19), we wondered whether DcR3 from such 

a source was sufficient to cause SLE. To explore this possibility, we 

irradiated C57BL/6 female mice at a lethal dosage (900 Rad) and 

transplanted i.v. T-cell-depleted bone marrow cells from DcR3 Tg mice. 

For controls, C57BL/6 female mice underwent whole-body irradiation 

(WBI), followed by BMTx from WT mice. Sera of Tg BMTx but not WT 

BMTx recipients contained human DcR3 as shown in Fig. 5A. Four 

months after transplantation, five of the eight Tg BMTx recipients 

developed anti-dsDNA antibody, a hallmark of SLE, according to ELISA, 

while none of the five controls receiving WT BMTx had such antibody 

(Fig. 5B). However, there was no correlation between the levels of DcR3 

and anti-dsDNA antibody (Fig. 5C). Those Tg BMTx recipients also 

produced ANA (Fig. 5D), another typical laboratory finding in SLE.  

Human SLE is associated with glomerulonephritis. Renal pathology was 

thus assessed in mice 6 months after Tg BMTx, according to 

hematoxylin–eosin staining (Fig. 5E, top panel). The kidneys showed mild 

interstitial congestion and edema, with moderate interstitial cell infiltration, 
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particularly around the blood vessels. Some glomeruli were extended in 

size, and capillary loops were markedly thickened and obliterated. 

Epithelial cells of Bowmen's capsule proliferated focally. These 

pathological findings were compatible with glomerulonephritis.  

In the liver of mice 6 months after Tg BMTx, periarterial lymphocyte 

infiltration (Fig. 5E, lower panel) was similar to the liver pathology seen in 

SLE patients (28).  

The survival rate of WBI–BMTx mice is shown in Fig. 6. Twelve months 

after WBI–BMTx, 80% WT bone marrow recipients were still alive, but 

only 10% DcR3 Tg bone marrow recipients survived after this period. This 

finding was similar to that in DcR3 Tg female mice without WBI–BMTx 

(20).  

These findings establish that DcR3 over-expression by cells of 

hematopoietic origin suffices to induce the SLE-like syndrome. 
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DISCUSSION 

In this study, we demonstrated that SLE patients had elevated serum DcR3 

levels, compared with healthy individuals. We further proved that DcR3 

over-expressed by cells of hematopoietic origin was sufficient to induce the 

SLE-like syndrome in mice.  

SLE has complex clinical manifestations, and additional laboratory 

parameters are certainly needed for more accurate diagnosis. As 43.3% of 

the SLE patients but only 2.4% healthy controls in our cohort were DcR3 

positive, serum DcR3 could be employed as a new parameter in addition to 

the current ones for SLE differential diagnosis. It should be mentioned that 

9% patients with rheumatic conditions (this study), 60% of tumor patients 

and some liver cirrhosis patients are serum DcR3 positive (18), and these 

conditions should be taken into consideration if DcR3 is employed for SLE 

differential diagnosis.  

All the patients in our cohort were treated with one to four medications. 

The fact that elevated serum DcR3 was detected in these patients suggests 

that serum DcR3 positiveness can be used for SLE diagnosis, even if they 

are treated with symptom-relieving medications before a final diagnosis of 

SLE is made.  
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No correlation between SLEDAI and quantitative DcR3 levels was found 

in our SLE cohort, but it is quite possible that the medications might 

suppress DcR3 production and abolish possible correlations. A prospective 

study on the relationship between DcR3 levels and SLEDAI in patients 

without medication is underway to address this question. Still, by analyzing 

the current data, we attempted to extract some information on the 

relationship between DcR3 levels and SLEDAI. We note in Fig. 2(A) that 

the 15 patients on a drug regimen containing no HCQ presented higher 

DcR3 levels. A careful look at these patients revealed that 12 of the 15 

were on a regimen containing CFM and/or AZA, an indication of more 

severe disease activity, while 11 of the 75 patients on a regimen containing 

HCQ were under single-drug therapy, an indication of milder disease 

activity only involving skin lesions. Indeed, patients receiving a regimen 

containing no HCQ showed a higher SLEDAI than that with HCQ, 

although the difference was not statistically significant (Fig. 2B). This 

raises the possibility that the reduced DcR3 levels in patients treated with 

HCQ are not a consequence of drug administration but are due to lower 

disease severity in this sub-population to start with.  

Statins are used to lower blood cholesterol to control cardiovascular 

complications in SLE (29). Patients treated with a regimen containing 
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statins had statistically significantly higher DcR3 levels (Fig. 2A); their 

SLEDAI was also higher than those on a regimen without statins, although 

the difference was not statistically significant (Fig. 2B). In our SLE cohort, 

statins were not particularly used for a selected group of patients with a 

severer or less severe form of disease. Statins, particularly 

second-generation statins, such as simvastatin and atorvastatin, have 

unexpected immunoregulatory functions, in addition to its 

cholesterol-lowering effect (30). An increasing number of cases with 

statin-induced lupus-like syndrome have been reported (31, 32). Taking 

such literature and our findings as a whole, an intriguing possibility is that 

statins increase DcR3 levels and aggravate SLE disease activity. Additional 

perspective studies including non-SLE patients taking statins will be 

necessary to verify this possibility.  

While this article DcR3 was under review, Lee et al. (33) reported that 

serum DcR3 levels in oriental SLE patients were elevated, compared with 

healthy controls. The finding corroborated our report using a different 

ethnic population. In Lee's article, serum DcR3 levels were found to be 

positively correlated to SLEDAI. However, medication was not described 

in their patient cohort, and it will be necessary to confirm whether such 
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correlation only occurs in the absence of anti-inflammatory drugs or 

immunosuppressants.  

Aberrant apoptosis has been cited as a possible cause of SLE. Several 

genes involved in apoptosis are considered SLE risk factors. Mice with 

mutations in Fas and FasL, which are in the prototype apoptosis pathway, 

manifest an SLE-like syndrome. Human SLE patients rarely have Fas or 

FasL mutations, but DcR3 could be a culprit blocking the Fas apoptosis 

pathway and induce SLE. Because of DcR3 elevation in SLE patients, its 

known roles in blocking apoptosis and the putative relationship between 

disease severity and DcR3 levels in HCQ- and statin-treated patients, we 

studied DcR3 Tg mice to assess DcR3's role in the pathogenesis of SLE. In 

our Tg mice, DcR3 expression was driven by an actin promoter. To avoid 

complications due to universal DcR3 expression from cells other than those 

of hematopoietic origin, we transplanted T-cell-depleted Tg bone marrow 

into irradiated syngeneic recipients. These mice developed an SLE-like 

syndrome in 4 months after BMTx. They had anti-dsDNA and ANA and 

presented renal and liver pathology compatible with SLE. Thus, we proved 

that DcR3 secreted from cells of hematopoietic origin was SLE pathogenic 

in an animal model.  
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Why do a large percentage of tumor patients ( 60%) have DcR3 levels 

comparable to those of SLE patients (18) in the range of 30–200 pg ml–1, 

but they rarely develop SLE? It seems that serum DcR3, at least at 

concentrations present in tumor patients, is not SLE pathogenic. In mice 

receiving WBI followed by Tg BMTx, the serum DcR3 levels were much 

higher at a range of 2–80 ng ml–1. The biologically active local DcR3 

concentrations in lymphoid organs in both patients and Tg BMTx are 

probably much higher than their serum levels, and the presence of such 

high local DcR3 concentrations is a more likely culprit.  

As not all SLE patients are DcR3 positive, DcR3 is obviously only 

pathogenic or facilitates SLE development in a sub-population of SLE 

patients. The final proof of DcR3 in SLE pathogenesis will need to come 

from human genetic studies examining single-nucleotide polymorphisms in 

the DcR3 gene or genes regulating its expression in DcR3-positive SLE 

patients versus DcR3-negative healthy controls.  

It is interesting that, in lpr/lpr and gld/gld mice (with Fas and FasL 

mutations, respectively) and in our actin promoter-driven DcR3 Tg mice, a 

large percentage (>65% of females and 20% of males) develops 

lymphadenopathy along with their SLE-like syndrome (20). On the other 

hand, none of the WBI–BMTx female mice manifested lymphadenopathy, 
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in spite of their SLE-like syndrome. Similar to that in our WBI–BMTx 

mice, SLE patients rarely develop lymphadenopathy. It appears that our 

WBI–BMTx model more closely resembles human SLE, compared with 

lpr/lpr, gld/gld and DcR3 Tg mice. All the latter three SLE mouse models, 

in contrast to the WBI–BMTx mice, have one thing in common, i.e. 

compromised Fas-mediated apoptosis in non-hematopoietic cells. This 

raises an intriguing possibility that the development of lymphadenopathy 

needs interaction between T cells and Fas pathway-defective cells of 

non-hematopoietic origin.  

Our study has demonstrated that serum DcR3 can be considered as an 

additional SLE diagnostic parameter. Further genetic study in humans is 

needed to confirm its role in SLE pathogenesis as mice have no genes 

orthologous to human DcR3.  
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FIGURES AND LENGENDS 

Figure 1. Serum DcR3 levels and their relationship with SLEDAI in SLE patients. 

 

Serum DcR3 was assayed by ELISA in duplicate. DcR3 levels of 90 SLE patients (86 

females and 4 males), 11 patients with rheumatic conditions (two males and nine 

females) and 123 healthy controls (92 females and 31 males) were measured. The 

threshold of DcR3 positiveness (25 pg ml–1) was the mean + 1.64 SD of control serum 

levels. (A) SLE patients had elevated serum DcR3 levels. The serum DcR3 levels of 

SLE patients, patients with rheumatic conditions and healthy controls were 32 ± 32, 

22.7 ± 35.9 and 5 ± 12 pg ml–1, respectively (means ± SD). The difference between 

SLE patients and healthy controls and patients with rheumatic conditions and healthy 

controls were highly significant (P < 0.01 for both comparisons; Student's t-test), 

although the difference between SLE and rheumatic patients were not (P > 0.05, 
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Student's t-test). (B) SLE patient serum DcR3 levels plotted against SLEDAI. Serum 

DcR3 levels of 90 SLE patients are plotted against their SLEDAI (ranging from 0 to 

24). No correlation is found between these two parameters (r = 0.119, P = 0.26; 

Pearson correlation test). (C) SLE patient serum DcR3 levels plotted against their age. 

Serum DcR3 levels of 90 SLE patients are plotted against their age (16–64 years). No 

correlation is found between these two parameters (r = –0.100, P = 0.92; Pearson 

correlation test). (D) No correlation between positiveness of DcR3 and auto-antibodies 

in SLE patients. Serum DcR3 of SLE patients was determined as positive or negative 

using 25 pg ml–1 as a threshold (36 patients were DcR3 positive and 52 patients were 

DcR3 negative) and analyzed against positiveness of their serum ANA, anti-dsDNA, 

anti-RNP antibody, anti-Sm antibody, anti-Ro/SSA antibody and anti-La/SSB antibody, 

using 2 test. P-values were >0.05 in all the comparisons. The serum DcR3 

positiveness was marked as ‘+’ or ‘–’ under each comparison. Solid black and slashes 

indicate serum positiveness and negativeness of a certain auto-antibody, respectively. 
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Figure 2. Relationship among medication, serum DcR3 levels and SLEDAI of SLE 
patients. 
 

 
 
All 90 SLE patients were under medication, and 77 of them were under two to four 

drug treatments. Serum DcR3 levels of patients without a particular drug but with one 

to four other medications were compared with those taking that particular drug along 

with zero to three other medications. Patient number in each group and P-value 

(Student's t-test) are shown. (A) Serum DcR3 levels of SLE patients treated with a 

regimen containing or not containing a certain drug. SLE patients treated with a drug 

regimen containing HCQ or statins had higher serum DcR3 levels (P = 0.007 and P = 

0.004, respectively; Student's t-test). (B) SLEDAI of SLE patients treated with a 

regimen containing or not containing a certain drug. SLE patients treated with a drug 

regimen containing PDN or statins had higher SLEDAI (P = 0.03 in both cases; 

Student's t-test). 
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Figure 3. Elevated serum IgE levels in SLE patients. 

 
 

The serum IgE of 90 SLE patients were determined by ELISA, for which sera were 

tested in duplicate. The median IgE level in DcR3-negative patients was 60 ng ml–1 

(short horizontal bar) and that in DcR3-positive patients was 120 ng ml–1 (short 

horizontal bar). Using 240 ng ml–1 serum IgE concentration {the upper limit of normal 

serum IgE levels of healthy individuals [Bueno et al. (26)]} as a threshold, a 

significantly higher percentage of DcR3-positive SLE patients presented elevated 

serum IgE levels (41.0%), compared with that of DcR3-negative SLE patients (19.6%; 

P < 0.05, 2 test).  
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Figure 4. Th2-prone immune responses in young DcR3 Tg mice. 

 

The experiments were conducted in 2- to 4-month-old DcR3 Tg and WT littermates. (A) 

Increased intracellular IL-4 but not IFN-  in Tg CD4 cells. Spleen cells were either not 

stimulated (resting) or stimulated with PMA (10 nM) and ionomycin (2 µg ml–1) for 4 h. 

Intracellular IL-4 and IFN-  were analyzed by two-color flow cytometry (CD4/IL-4 or 

CD4/IFN- ). The experiments were repeated two times and data from a representative 

experiment are shown. (B) Serum IgM, IgA and IgG levels in 4-month-old Tg and WT 

littermates. Sera from DcR3 Tg and WT littermates (n = 5 pairs) were assayed by 

ELISA. Asterisks over IgG1 and IgG2b indicate statistically significant differences (P 

< 0.05, two-tailed Student's t-test). (C) Increased serum IgE levels in Tg mice. Serum 

IgE levels of DcR3 Tg and WT littermates at ages of 2, 4 and 6 months were assayed 

with ELISA. Median levels are indicated by horizontal bars. Each dot or triangle 

represents an individual mouse. Tg mice at all age groups present higher IgE levels than 

their littermates (P < 0.05, two-tailed Student's t-test).  
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Figure 5. Development of an SLE-like syndrome in WBI–BMTx mice. 

 

 

 

WBI female C57BL/6 mice received T-cell-depleted BMTx from DcR3 Tg or WT mice. 

Four months after BMTx, their serum DcR3, anti-dsDNA antibody and ANA were 

assessed. Tg BMTx, recipients of Tg BMTx; WT BMTx, recipients of WT BMTx. (A) 

Serum DcR3 levels of WBI–BMTx mice. Serum DcR3 levels of Tg BMTx or WT 

BMTx recipients 6 months after BMTx are shown. The latter had no detectable DcR3. 

(B) Anti-dsDNA antibody in Tg BMTx recipient sera according to ELISA. Sera from 

Tg BMTx or WT BMTx recipients were measured for anti-dsDNA 6 months after 

WBI–BMTx. The positive threshold was determined according to the mean + 2 SD of 

serum DcR3 levels of WT BMTx recipients. The DcR3 level difference between Tg 

BMTx and WT BMTx recipients is highly significant (P < 0.01, Student's t-test). (C) 

No correlation between serum DcR3 and anti-dsDNA levels in Tg BMTx recipients. 

For Tg BMTx recipients, their serum DcR3 levels were plotted against anti-dsDNA 

levels. No obvious correlation was observed. (D) ANA in Tg BMTx recipient sera 
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according to immunofluorescence. Sera from Tg and WT BMTx recipients 6 months 

after WBI–BMTx were reacted against permeabilized HeLa cells, and the cells were 

examined by immunofluorescence microscopy. (E) Kidney and liver pathology of Tg 

BMTx recipients. Hematoxylin–eosin staining of kidney and liver sections from 

6-month-old Tg BMTx recipients. Original magnification: x100. 
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Figure 6. Reduced survival rate in Tg BMTx recipients. 

 

 

WBI female C57BL/6 mice received Tg or WT BMTx. The survival rate of these 

recipients within 12 months after BMTx is plotted. The difference between these two 

groups is highly significant (P < 0.01; Student's t-test). 
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Article 3. 

DcR3 protects islet β-cells from apoptosis through modulating 

Adcyap1and Bank1 expression 

Bing Han and Jiangping Wu 

 

Under revision after submission to J. Immunol. 

 

Summary: In this paper, we investigated the mechanism of DcR3 in 

protecting islets. We found that: 1) the TL1A/DR3 pathway and the 

LIGHT/HVEM-LTβR pathway mediated islet apoptosis; 2) DcR3 transgenic 

islets were resistant to apoptosis; 3) two novel downstream mediators of 

DcR3’s effect, Adcyap1 and Bank1, were discovered. 

 

 

 

Bing Han performed all assays and experiments, and processed and analyzed 

data; Jiangping Wu directed the experiment design and data analysis.
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ABSTRACT 

 

The islet primary non-function (PNF) is a serious problem in islet 

transplantation. In this study, we investigated whether DcR3-secreting 

transgenic (Tg) islets could reduce PNF. We generated transgenic mice 

expressing human DcR3. The transgenically expressed DcR3 protected islets 

from IFN-γ plus IL-1β, or TNF-α plus IL-1β-induced dysfunction and 

apoptosis in vitro. The Tg islets presented significantly reduced PNF after 

transplantation. Mechanistically, in addition to the known FasL apoptotic 

pathway, components of two other apoptosis pathways, i.e., HVEM/LTβR 

for the LIGHT pathway, and DR3 for the TL1A pathway, were found to be 

expressed in islets. Recombinant LIGHT and TL1A induced islet apoptosis 

in the absence of the FasL/Fas pathway, and DcR3 could block such 

induction. These results for the first time demonstrated that, LIGHT and 

TL1A were capable of inducing islet apoptosis in addition to FasL, while 

DcR3 protected the islets by blocking all the three apoptosis pathways. By 

DNA microarray analysis, we discovered that Adcyap was upregulated more 

than 700 folds and Bank1 was downregulated 50 folds in the 

cytokine-assaulted Tg islets, compared to WT islets. Forced overexpression 

of Adcyap1 by plasmid transfection or knockdown of Bank1 expression by 
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siRNA in insulinoma NIT-1 cells protected them from cytokine-triggered 

apoptosis, indicating that indeed DcR3 protects β-cells via the action of 

these two downstream molecules. This study has revealed novel mechanisms 

by which DcR3 protects islet survival, and identified new therapeutic targets 

of diabetes. 
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INTRODUCTION 

 

Islet transplantation is an effective treatment for diabetes. Islet primary 

non-function (PNF) is a condition defined as the loss of islet function after 

transplantation for reasons other than graft rejection. It is one of the major 

obstacles limiting islet transplantation efficacy. PNF frequency can be very 

high in islet transplant models (1). In humans, pancreas transplantation 

produces better results than islet transplantation in reversing diabetic status 

(2), suggesting the occurrence of serious PNF in islet transplantation. With 

the best islet transplantation protocol, the Edmonton Protocol (3),  8 x 105 

islets on average (from two or more donors) are needed to achieve insulin 

independence (3, 4), and it is known that 3 x 105 islets in the pancreas are 

sufficient for insulin independence (5). This suggests that PNF is still a 

serious problem. 

 

Isolated islets experience dramatic stress from enzyme digestion, mechanical 

shear, and deprivation of obligatory trophic support (6,7,8). When these 

islets are transplanted into diabetic patients, they immediately face 

unfavorable conditions, such as inflammatory cytokines either released by 

local inflammatory responses or due to underlying diabetic conditions. 

These in vitro and in vivo factors result in islet dysfunction and apoptosis, 
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and consequently PNF. PNF is thus likely one of the major culprits in low 

islet transplantation efficiency. If PNF can be overcome, the efficacy of islet 

transplantation can be significantly increased. This would be equivalent to 

augmenting the donor supply. 

 

Human DcR3 belongs to the TNFR family (9), but lacks transmembrane and 

cytoplasmic domains in its sequence. It is thus a secreted protein (10). DcR3 

can bind to TNF family members FasL (9), LIGHT (10,11) and TL1A (12), 

and block their interaction with their respective receptors, i.e., Fas, HVEM 

and DR3 (10,11,12). The mouse does not have an orthologous counterpart of 

human DcR3 gene according to a genome-wide computer search.  We and 

others have established that human DcR3 can bind to mouse FasL, LIGHT 

and TL1A (9,10,12,13,14), allowing human DcR3 to function in mouse 

models both in vitro and in vivo. 

 

The role of DcR3 in apoptosis is obvious. FasL is a well-known molecule 

involved in apoptosis. LIGHT is a ligand for HVEM and LTβR, in addition 

to being a ligand for DcR3 (13). LIGHT can induce apoptosis in cells 

expressing both HVEM and LTβR15, or LTβR alone (14,15). TL1A, a 

member of the TNF family, can evoke apoptosis via its receptor DR3 (12). 

Consequently, the interaction of DcR3 with FasL, LIGHT, and TL1A blocks 
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apoptosis mediated by Fas, HVEM, LTβR and DR3. 

 

In this study, we generated transgenic (Tg) mice with actin promoter-driven 

human DcR3 expression. The minute amount of DcR3 secreted by these Tg 

islets rendered protection against PNF in vivo. We also discovered that 

LIGHT and TL1A mediated cytokine-triggered islet apoptosis. Through 

DNA microarray, we identified Adcyap1 and Bank1 as two critical 

downstream molecules mediating DcR3’s protective effect on islets. The 

essential roles of Adcyap1 and Bank1 in the case was confirmed by the fact 

that modulating their expression could indeed reduce β-cell apoptosis.  
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MATERIALS AND METHODS 
 

DcR3 ELISA 

DcR3 ELISA has been described elsewhere (16). A mAb and a biotinylated 

affinity-purified rabbit Ab specific to DcR3 were used for coating and 

detection, respectively. The sensitivity of the assay was 6 pg/ml.  

 

Islet isolation 

The islet isolation procedure has been detailed in our earlier publication 

(17). 

 

Flow cytometry 

Flow cytometry was performed to quantify the apoptosis of islet cells. The 

islets were first dispersed by trypsin digestion, and then stained with 

FITC-annexin V, followed by flow cytometry (18). 

 

Reverse transcription/Real-time PCR (RT/qPCR) 

Tg and wild type islets were isolated and cultured in the absence or presence 

of IFN-γ (0.5 μg/ml)  plus IL-1β (0.5 ng/ml), or TNF-α (100 ng/ml) plus 

IL-1β (0.5 ng/ml). The islets were then harvested, and their total RNA was 

extracted with Trizol (Invitrogen, Carlsbad CA). RNA was 
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reverse-transcribed into cDNA by M-MLV Reverse Transcriptase Kit. 

QIAGEN Quanti-Test SYBR Green PCR Kits were employed for all 

real-time PCR amplification of cDNA templates. The PCR amplification 

program was: 95oC, 15 min, 1 cycle; 95oC, 10 sec, 56oC, 15 sec, 72oC, 20 

sec, 45 cycles. The primers for LIGHT, TL1A, HVEM, LTβR and DR3 

mRNA quantification are listed in Table I-A. The primers for DNA 

microarray data verification on IFN-γ/IL-1β−  and TNF-α/IL-1β-treated 

islets are listed in Table I-B and Table I-C, respectively. In addition to 

melting curve analysis, the PCR products were also resolved by agarose gel 

electrophoresis to ascertain that the expected band-size was obtained.  

 

Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling 

(TUNEL) assay 

Apoptosis of islet cells treated with recombinant mouse LIGHT (R&D 

Systems, Minneapolis, MN) and TL1A (R&D Systems) were analyzed by a 

fluorescent TUNEL assay, using the In Situ Cell Death Detection Kit (Roche 

Diagnostics GmbH, Mannheim, Germany) followed by flow cytometry, 

according to manufacturer’s instructions.  

 

Insulin release assay 

The assay was conducted as reported elsewhere (17). 
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DNA microarray analysis 

Three independent batches of islet isolation were carried out. For each batch, 

islets were obtained from 4 Tg and 4 WT mice, and pooled respectively. The 

pooled islets (Tg or WT) were then divided into 4 groups: 2 were cultured in 

the presence of IFN-γ (0.5 μg/ml) plus IL-1β (0.5 ng/ml) with 1 harvested at 

24 h and 1 harvested at 48 h; 2 were cultured in the presence of TNF-α (100 

ng/ml) plus IL-1β (0.5 ng/ml) with 1 harvested at 24 h and 1 harvested at 48 

h. Τotal RNA was extracted from Tg and WT islets with QIAGEN RNeasy 

Micro Kits. After reverse transcription, cDNA served as a template for 

PCR-based cRNA amplification. cRNA was then reverse-transcribed to 

produce second-generation cDNA, which was employed to generate 

biotin-labelled cRNA probes. The probes were hybridized on the GeneChip 

Mouse Genome 430 2.0 Array (Affymetrix, Santa Clara, CA), which 

contains 39,000 transcripts. DNA microarray analysis was performed at the 

McGill University Genome Quebec Innovation Centre. Each treatment 

employed 3 chips using RNA from 3 different batches of islet isolation. For 

each treatment, genes with a mean signal strength difference above 2-fold 

between Tg and WT islets were selected for reversePCR confirmation. 

Details of the experimental protocols and data analysis procedure can be 

found in http://genomequebec.mcgill.ca/centre.php and 
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http://www.affymetrix.com/corporate/outreach/lesson_plan/downloads/manu

facturing_teachernotes.pdf.  

 

Islet transplantation 

Diabetes in mice were chemically induced by injecting C57BL/6 male mice 

(6-10 weeks old) with streptozocin (STZ, 90 mg/kg) 3 times q.2.d. Three 

weeks after STZ injection, blood glucose was monitored every day with an 

Ascensia Contour glucose meter until it was above 20 mM for 2 consecutive 

days. Two hundred islets from Tg or WT mice were injected i.p. in diabetic 

recipients. Blood glucose was measured once every day for the first 7 days 

after transplantation and then once every 3 days.  

 

Plasmid construction and transfection 

Full-length (2113 bp) mouse Adcyap1 cDNA (clone 6829765; Open 

Biosystems, Huntsville, AL) was cloned into a mammalian cell expression 

vector pCEP4 (Invitrogen, Carlsbad, CA) at Kpn1 and Not1 sites 

downstream of the CMV promoter. The resulting plasmid is named 

pCEP4-Adcyap1. The plasmid was transfected into NIT-1 insulinoma cells 

using X-tremeGENE Transfection Reagent (Roche Diagnostics, 

Mannheim,Germany) according to manufacturer’s instruction (2 μg/ml 

plasmid for 0.2 x 105 NIT-1 cells/0.2 ml/well in 48-well plates). The mRNA 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 156

overexprssion of Adcyap1 in the transfected cells was confirmed by 

RT/qPCR after 48 h. The cells were treated with or without IFN-γ (3 μg/ml) 

plus IL-1β (3 ng/ml) 24 h after the transfection. Cell apoptosis was assessed 

by annexin V staining after additional 48 h with flow cytometry.  

 

Bank1 siRNA transfection  

Two pairs of mouse Bank1 siRNA were synthesized (Integrated DNA 

Technologies, Coralville, IA). The sequences of the first pair were 

rArGrArArArCrArArCrArCrCrUrUrArCr and 

rUrUrGrArGrCrUrArUrGrUrArArGrGrUr, and the second pair, 

rGrGrArCrUrUrArCrUrArArArUrGrUrCr and 

rUrGrArGrArGrArArArGrArCrArUrUrUr. Scrambled Negative Control 

Duplex siRNA was used as controls. The sequences of the controls were 

rCrUrUrCrCrUrCrUrCrUrUrUrCrUrCrUrCrCrCrUrUrGrUGA, and 

rUrCrArCrArArGrGrGrArGrArGrArArArGrArGrArGrGrArArGrGrA. The 

paired siRNA was first heated to 94oC for 2 min and then cooled to the room 

temperature for annealing. The 2 pairs of annealed Bank1 siRNA were 

mixed at a 1:1 ratio and transfected into NIT-1 cells by X-tremeGENE 

transfection reagent (Roche Diagnostics GmbH, Mannheim,Germany) at the 

final concentration of 0.1μM siRNA for 0.2 x 105 NIT-1 cells/0.2 ml/well in 

48-well plates. Bank1 mRNA knockdown was confirmed by RT/qPCR 48 h 
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after the transfection. The primers used for this purpose were 

TTATAAACAGACCACCGGCTCCCA and 

TCACCATCAGATTGTCTTCGGGCT. The cells were treated with or 

without IFN-γ (3 μg/ml) plus IL-1β (3 ng/ml) 24 h after the transfection. 

Cell apoptosis was assessed by annexin V staining after additional 48 h with 

flow cytometry. 
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RESULTS 

 

DcR3 Tg islets secrete DcR3 

To continuously supply biologically active DcR3 to islets, DcR3 Tg mice 

were generated in both the C3H x C57BL/6 and C57BL/6 backgrounds, 

using the human β-actin promoter, as described in our previous publication 

(19). Two Tg mouse lines were generated. Line 754, originally in the C3H x 

C57BL/6 background, was backcrossed to the C57BL/6 background for 8 

generations. Line 17139 was generated in the C57BL/6 background. Both 

lines have a similar phenotype. They are fertile and present no gross 

anomalies before 5 months of age (19). After 5 months, these mice develop a 

systemic lupus erythematosus-like syndrome (19). For this study, only 2- to 

5 month-old mice were used. We demonstrated that DcR3 Tg islet cells from 

both lines were able to secrete DcR3 into culture supernatants at 8-15 

ng/ml/200 islets within 24 h, as expected (Fig. 1). The remaining results in 

this study were from line 754 islets, but line 17139 islets behaved similarly. 

 

DcR3 Tg islets are resistant to apoptosis and preserve better function in 

vitro 

DcR3 could block multiple apoptosis pathways, as reviewed in the 
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Introduction. We have demonstrated previously that recombinant DcR3 

could reduce FasL plus IFN-γ-induced islet cell apoptosis. Here, we showed 

that after 4 days of culture, Tg islet cells showed decreased apoptosis in 

plain medium (control), in medium containing IFN-γ/IL-1β, and in medium 

containing TNF-α/IL-1β, compared to WT islet cells (Fig. 2A). Such an 

effect was attributed to DcR3 produced by Tg islets themselves, since no 

exogenous DcR3 was added. 

To pin-point the different degrees of islet apoptosis to β−cells, we evaluated 

the function of Tg islets by insulin-release assay (Fig. 2B). The Tg and WT 

islets were cultured in the absence or presence of the above-described 

cytokines for 48 h before the insulin-release assay. IFN-γ/IL-1β- and 

TNF-α/IL-1β-treated WT islets had significantly reduced insulin-release 

capability, while Tg islets retained their insulin-secretion function. This 

suggests that the apoptosis in islet cells, as seen in Fig. 2A, was attributed to 

β-cells.  

 

DcR3 inhibits islet apoptosis by interfering with the TL1A/DR3 and 

LIGHT/HVEM-LTβR pathways 

DcR3 binds to FasL and thus blocks the FasL/Fas-mediated apoptosis 

pathway (20). We have proved previously that this pathway is critical in islet 

apoptosis, and the presence of recombinant DcR3 reduces islet apoptosis 
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triggered by FasL (17). As DcR3 could interfere with 2 additional death 

pathways (i.e., TL1A acting through DR3, and LIGHT acting through 

LTβR/HVEM), we investigated whether these two additional pathways 

functioned in islets and whether blocking them was a mechanism for DcR3’s 

protective effect on islets, 

 

We first analyzed the expression of ligands and receptors involved in these 2 

pathways. As shown in Figs. 3A and 3B (first rows), TL1A mRNA was 

detectable in islets cultured in medium (empty columns), and its expression 

was upregulated in the presence of IFN-γ/IL-1β, or TNF-α/IL-1β (black 

bars). LIGHT expression was not detectable in islets without stimulation; 

after 6-h IFN-γ/IL-1β or TNF-α/IL-1β stimulation, there was a transient and 

drastic induction of this gene expression (Figs. 3A and 3B; upper left panels, 

black bars). mRNA of the receptors, i.e., DR3, LTβR and HVEM, was all 

detectable in cultured islets, and they were moderately upregulated after the 

culture (Figs. 3A and 3B; second and third rows; empty bars; 6h versus 24h); 

the cytokines did not further induce their expression (Figs. 3A and 3B; 

second row; empty versus black bars), with the exception of HVEM, which 

was induced by IFN-γ/IL-1β, and by TNF-α/IL-1β  (Figs. 3A and 3B; third 

row; empty versus black bars). As a matter of fact, IFN-γ/IL-1β actually 

moderately suppressed the spontaneous DR3 upregulation, and 
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TNF-α/IL-1β modelrately hindered the spontaneous DR3 and LTβR 

upregulation after culture (Figs. 3A and 3B, second row; empty columns 

versus black columns). In summary, the components of LIGHT and TL1A 

death pathways were all present in islets, and this provided a basis for them 

to be functional there. 

  

We next investigated whether these pathways were actively involved in islet 

death, and whether DcR3 could protect islets by interfering with these 

pathways. Islets from lpr/lpr mice, whose Fas is not functional due to a 

spontaneous mutation in the gene were used, so that the involvement of 

Fas/FasL could be excluded. Freshly isolated islets had little apoptosis (Fig. 

4A). After 96 h culture in medium, 15.9% of the islet cells became apoptotic 

(Figs. 4B and D, first panel). Recombinant DcR3 could not suppress such 

spontaneous apoptosis (Fig. C. first panel). These islets were assaulted with 

recombinant mouse LIGHT (Figs. B and C) or TL1A (Fig. D). In the case of 

LIGHT, IFN-γ/IL-1β (Fig. 4B, ) and TNF-α/IL-1β (Fig. 4C) were added to 

the culture. It is to be mentioned that in this experiment, these cytokines 

were used at suboptimal concentrations, about 1/10th of that used for 

apoptosis induction (Fig. 2). As a result, after 96 h culture, islets cultured in 

the presence of cytokines (Figs. 4B and 4C, second panels) were not much 

different from that cultured in medium (Figs. 4B and D, first panels). In the 
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case of TL1A (Fig. 4D), no cytokines were added to the culture. The 

decision whether to add cytokines into the culture was made empirically, 

because our preliminary results showed that LIGHT but not TL1A needed a 

low level of cytokine priming to trigger islet apoptosis. Thus, exogenous 

LIGHT was added to the cytokine-treated islets, and exogenous TL1A was 

added to islets without cytokine treatment.  

 

The purpose of the addition of exogenous LIGHT and TL1A, in spite of the 

existence of endogenous LIGHT and TL1A in islets, to trigger apoptosis was 

2-fold, 1) If these molecules induced islet apoptosis, we will be able to 

identify these molecules as inducers of islet apoptosis, or as synergistic 

factors for apoptosis induction for islets; 2) we can use DcR3 to neutralize 

their apoptosis-inducing effect, to ascertain the specificity. 

 

Indeed, both LIGHT (Figs. 4B and 4C, third panels compared to second 

panels) and TL1A (Fig. 4D, second panel compared to first panel) 

augmented islet apoptosis after 96 h. The exogenous recombinant DcR3 

blocked such an effect (Figs. 4B-D, last panels), proving the specificity of 

the action of these 2 recombinant proteins. Therefore, for the first time, we 

demonstrated that the LIGHT/HVEM-LTβR pathway as well as the 

TL1A/DR3 pathway were involved in islet apoptosis, while DcR3 protected 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 163

islets by antagonizing their pro-apoptotic effect. 

 

Reduced PNF in transplanted Tg islets 

To test whether the presence of long-term local DcR3 could reduce PNF, we 

transplanted a suboptimal number (200 islets per recipient) of Tg and WT 

islets into syngeneic diabetic recipients. With such a number, only 10-38% 

of WT islet recipients could transiently achieve euglycemic status (blood 

glucose <12 mM) at a given time point in the first 16 days after 

transplantation, and all of them reversed to diabetic thereafter (Fig. 5A). On 

the other hand, 100% of Tg islets recipients became transiently euglycemic 

in the first 16 days, and 50% of them achieved long-term euglycemia (after 

23 days until the end of the experiment at day 32 post-transplantation). The 

Tg islet recipient groups also presented significantly lower mean blood 

glucose levels throughout the test period, i.e., from day 1 until day 32 

post-transplantation (Fig. 5B). This result indicated that local DcR3 presence, 

even at a very low level, rendered islet transplantation much more efficient, 

because of PNF reduction. 

 

Downstream genes involved in the DcR3 protective effect on islet apoptosis 

We conducted DNA microarray analysis to discover downstream molecules 

involved in the DcR3’s protective effect on islet apoptosis. Islets were 
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cultured in the presence of IFN-γ/IL-1β for 24h, and their mRNA was 

analyzed by DNA microarray. A total of 34 genes presented over 2-fold 

expression difference between Tg and WT islets according to the microarray. 

The difference in 5 out of these 34 genes could be confirmed by real-time 

PCR, and the list is shown in Table 2. Notably, among these 5 genes, the 

adenylate cyclase activating polypeptide 1 (Adcyap1) expression level in Tg 

islets was 779-fold higher than in WT islets, and Bank1 expression was 50 

times lower in Tg than in WT islets, after 24-h culture in the presence of the 

cytokines.  

 

For TNF-α/IL-1β-treated Tg and WT islets, expression levels of 52 genes 

differed more than 2 fold according to DNA microarray analysis, and 7 

genes presented consistent differences after real-time PCR verification. 

Among these 7 genes, in Tg islets, Ms4a4c showed 4-fold increase, and 

Ttyh1, a 7-fold decrease, with WT islets as references. 

 

DcR3 acts through Adcyap1 and Bank1 for islet protection 

We found that DcR3 Tg islets presented 779-fold higher Adcyap1 expression 

and 50-fold lower Bank1 expression compared to WT islets upon 

IFN-γ/IL-1β assualt (Table 2). We next investigated whether the modulation 

of these two genes was causative to islet survival, or just parallel events not 
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relevant to the protective effect of DcR3. Unstimulated Tg islet had about 

10-fold higher Adcyap1 expression than WT islets; upon IFN-γ/IL-1β assault, 

Tg islets maintained their high Adcyap1 levels, but WT islet drastically 

downregulated the expression (about 100 fold) (Fig. 6A). To understand 

whether the high Adcyap1 levels was protective to islets, we generated a 

mammalian cell expression construct of Acdyap1 named pCEP4-Adcyap1 

(Fig. 6B), and transfected it into NIT-1 insulinoma cells. Adcyap1 mRNA 

overexpression driven by the CMV promoter in NIT-1 cells 48 h after 

transfection was confirmed by RT-qPCR (Fig. 6C). When the empty 

vector-transfected NIT-1 cells were assaulted by IFN-γ/IL-1β, 42.5% of 

them underwent apoptosis, as expected. However, Adcyap1 overexpression 

protected NIT-1 cells from such cytokine-induced apoptosis; only 24.7% 

cells became apoptotic (Fig. 6D). A summary of data from 3 independent 

experiments is shown in Fig. 6E. This result indicates that the upregulation 

of Adcyap1 is beneficial to β-cell survival. It further implies that DcR3 

protects β-cells against IFN-γ/IL-1β through enhancing Adcyap1 expression.  

 

In WT islets, IFN-γ/IL-1β stimulation caused 10-fold augmentation of 

Bank1; the presence of DcR3 suppressed such augmentation and Bank1 

levels remained unchanged (Fig. 7A). We wondered whether this Bank1 

suppression was another DcR3’s protective mechanism for islets. To verify 
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this hypothesis, we transfected Bank1 siRNA into NIT-1 cells and Bank1 

mRNA knockdown was confirmed by RT/qPCR (Fig. 7B). We demonstrated 

that Bank1 siRNA but not control siRNA transfection resulted in reduced 

NIT-1 cell apoptosis from 36.2% to 26% upon IFN-γ/IL-1β stimulation (Fig. 

7C). A summary of data from 3 independent experiments is illustrated in Fig. 

7D. This demonstrates that repressed Bank1 expression protects β cells from 

IFN-γ/IL-1β insults, and this is another mechanism through which DcR3 

exerts its beneficial effect on β-cell survival. 
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DISCUSSION 

The novel findings of this study are as follows. 1) For the first time, the 

TL1A/DR3 pathway and the LIGHT/HVEM-LTβR pathway were found 

operative in islets and mediating islet apoptosis. 2) We demonstrated that 

DcR3 secreted by the islets in minute amounts, about 3 orders of magnitude 

less than that we administered i.p. in our previous study (17), was sufficient 

to protect islets from apoptosis. 3) Two novel downstream mediators of 

DcR3’s effect, Adcyap1 and Bank1, were discovered by DNA microarray 

and confirmed by functional studies for their protective and detrimental roles, 

respectively, in β-cells apoptosis. 

 

In our previous study, we identified the FasL/Fas pathway as a culprit in 

causing islet PNF (17), and reported that DcR3 protected islets by blocking 

that pathway. As DcR3 acts on several additional pathways, we proved in 

this study that the TL1A and LIGHT pathways were also responsible for islet 

apoptosis. This new mechanistic finding is useful for designing methods to 

reduce PNF, because now we know that all these three pathways will need to 

be blocked to achieve maximal protective effects. Our findings are also 

important in understanding the pathogenesis of diabetes, because 

IFN-γ/IL-1β and TNF-α/IL-1β are present in the milieu of type I diabetes 
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(21,22), and TNF-α/IL-1β, in type II diabetes (23,24). We have shown that 

these cytokines were able to induce LIGHT and its receptor HVEM in islets, 

to make the LIGHT apoptosis pathway operational. Although in the islets the 

receptors of LIGHT (i.e., HVEM and LTβR) expressed constitutively, albeit 

at low levels (Figs. 3A and 3B), we found that exogenous recombinant 

LIGHT alone could not induce islet apoptosis (data not shown), unless the 

islets were primed with low-dose cytokines (i.e., IFN-γ/IL-1β or 

TFN-α/IL-1β). This suggests a 2-hit modus operandi: the LIGHT-triggered 

signalling needs to interact with the cytokine-triggered signalling to achieve 

islet apoptosis. On the other hand, TL1A signalling alone seemed sufficient 

to cause islets apoptosis, in the absence of cytokine priming. Therefore, one 

hit seemed to be enough for TL1A. 

 

In our previous study (17), we administered recombinant DcR3 to mice to 

reduce PNF. The effective peak dosage was about 15 μg/ml body volume. In 

the current study, with continuous secretion of biologically active DcR3 

from islets, we estimated that DcR3 at a level of several ng per ml body 

volume (about 1000-fold lower than the exogenous recombinant DcR3 

employed before; ref. 17) was sufficient to protect the islets, as 100 Tg islets 

secreted about 8 ng DcR3 in 24 h and we transplanted 200 islets into one 

recipients. The effective DcR3 concentration at such a low level makes 
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clinical application feasible: isolated islets could be infected with 

DcR3-expressing virus vectors in islet transplantation to render themselves 

resistant to PNF. Such a measure will reduce the islet number required to 

attain recipient insulin independence. This is equivalent to an increase in the 

available donor pool, currently a limiting factor in islet transplantation. 

 

To gain mechanistic insights, we employed DNA microarrays to discover 

downstream molecules affected by the protective effect of DcR3, which 

acted on the Fas HVEM/LTβR and DR3 pathways in islets. Tg and WT islets 

were assaulted by IFN-γ/IL-1β to mimic the post-transplantation 

environment they would experience in type I diabetes recipients, and by 

TFN-α/IL-1β, in type II diabetes recipients. Five genes in the former and 7 

genes in the latter environment manifested expression differences between 

Tg and WT islets. It is surprising that these two treatments did not yield 

overlapping gene expression patterns as there was no common gene in 

Tables 2 and 3, although DcR3 acted in both cases by blocking the Fas, 

HVEM/LTβR and DR3 pathways. This reminds us of the interesting theory 

of the “butterfly effect”, which claims that a minor difference in the 

beginning of an event could lead to drastically different consequences in a 

complex world full of multiple interacting components. In our case, the 

beginning of the event, i.e., islets were treated by two different sets of 
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cytokines, was indeed different, and signalling molecules inside islet cells 

are indeed complex and highly interactive. For the time being, we do not 

clearly understand how such an initial difference travelled through the Fas, 

HVEM/LTβR and DR3 pathways and interfered by DcR3 ended up in totally 

different gene expression patterns. Nevertheless, the genes discovered could 

serve a practical purpose as putative target molecules to promote islet 

survival. 

 

Among the 12 genes identified by DNA microarray, we selected two that 

were drastically modulated for further investigation. We found that in 

normal islets, upon inflammatory cytokine stimulation, there was a 2-order 

magnitude decrease of Adcyap1 expression. On the other hand, DcR3 Tg 

islets had about a 10-fold higher basal Adcyap1 level compared to WT islets, 

and this level did not decrease upon the cytokine stimulation. So the end 

result was that there was more than 700-fold differences in Adcyap1 

expression between Tg and WT islets. The active Adcyap1 is a short secreted 

peptide (27 or 38 amino acid residues, derived from the same precursor 

peptide) belonging to the vasoactive intestinal polypeptide superfamily, and 

is also a neurotransmitter (25). It is secreted by neurons and many other 

tissues including β-cells (26). It has profound effects in various tissue and 

organs. It is involved in circadian rhythm (27,28), cerebellum development 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL        BING HAN 171

(29,30), energy homeostasis and regulation of body weight (31,32), embryo 

implantation (33), inhibition of inflammation (34), promotion of regulatory 

T cell generation (35), maintenance of pulmonary vascular tone (36), to 

name a few of its functions. The following Adcyap1 functions are probably 

directly related to the findings in this study. 1) Adycap1 is anti-apoptotic for 

neurons experienced ischemia (37). 2) It is present in the nerve fibers 

innervating the islets (38), and is produced by β-cells (26). 3) Adcyap1 can 

stimulate insulin release (38) by β-cells. 4) Transgenic Adcyap1 

overexpression in islet β-cells protects β-cells from STZ-induced apoptosis 

and renders the Tg mice resistant to STZ-induced diabetes. (39). These 

anti-apoptotic and islet protective effects are in consistent with our finding 

that: 1) Adcyap1 overexpression protects β-cells from inflammatory 

cytokine-induced apoptosis, 2) Tg islets maintained high levels of Adcyap1 

expression while WT islets drastically reduced Adcyap1 expression upon 

cytokine assault, and 3) high Adcyap1 expression in Tg islets was associated 

with reduced apoptosis.  It seems that DcR3 not only directly protected 

islets by interfering with Fas, Hvem and DR3 death pathways, but also 

hijacked an additional β-cell trophic molecule Adcyap1 to achieve its 

beneficial effect on islets.  

 

Bank1 is the other molecule that showed major difference in expression 
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between Tg and WT islets. WT islets upregulated Bank1 expression 50 times 

upon cytokine stimulation, while its expression remained almost unchanged 

in Tg islets. Bank1 is an adaptor protein and a substrate of Lyn tyrosine 

kinase ( 40 ). It forms tri-molecule complex with Lyn and IP3R; its 

overexpression leads to enhanced calcium mobilization from intracellular 

stores in B cells upon B cell receptor activation. In islet β-cells, it is known 

that calcium fluxes are required for IL-1β-and glucose-induced apoptosis 

(41). Thus, a plausible additional mechanism for DcR3 to protect β-cells is 

to inhibit cytokine-induced Bank1 upregulation, the truncation of which in 

turn represses the pro-apoptotic calcium fluxes in the cells. 

 

How the interference of Fas, Hvem and DR3 signaling by DcR3 leads to the 

prevention of Adcyap1 downregulation and Bank1 upregulation in β-cells 

remains to be investigated. Obviously, the DcR3 presence also affects the 

expression of multiple genes, some of which might also be true mediators of 

DcR3’s protective effect. Further functional relevance verification of these 

identified genes is necessary. The two verified mediator, Adcyap1 and 

Bank1, and other verified genes can serve as therapeutic targets to promote 

islet survival in the future. 
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TABLES 
 
Table 1-A. Real-time PCR primers used to quantify mRNA levels of LIGHT, TL1A, 
HVEM, LTβR and DR3. 

 

Table 1-B. Real-time PCR primers to quantify mRNA levels of microarray-identified 
genes from IFN-γ plus IL-1β-treated Tg versus WT islets. 

 

Table 1-C. Real-time PCR primers to quantifying mRNA levels of microarray-identified 
genes from TNF-α plus IL-1β-treated Tg versus WT islets. 

 

 

 

Gene Symbol Forward Primer Reverse Primer Product Size

LIGHT AGACTGCATCAACGTCTTGG TTGGCTCCTGTAAGATGTGC 128 

TL1A GATCTGAGCCTTCACCACAG AATTGTCAGGTGTGCTCTCG 68 

HVEM CAGGGCAGAGGGTAGAGAAG CCAAGTGAGAAGGTCCCTGT 82 

LTβR TCTCTGCAGAAAGCTGGGTA AGACATGGGTAGGAGTGGCT 124 

DR3 TCTAGGAGTCGCGTTCCTTT AGAGATGGGCAGTCTGTGGT 131 

Gene Symbol Forward Primer Reverse Primer Product Size

Adcyap1 GCCCGCTGTCCTACTTAGTC AGGTGAACAGGAGACACTGCT 117 

Bank1 CAGACCTGCTGCATATTGCT CTTGCTTGCTATTTCTGCCA 99 

Cryab GATTGACACCGGACTCTCAG AGAGAAGTGCTTCACGTCCA 76 

Cyp7b1 TTTCCTGCAGTCAACAGGTC TCTCGGATGATGCTGGAGTA 141 

Gap43 CCAAGCTGAGGAGGAGAAAG TCAGGCATGTTCTTGGTCAG 106 

Gene Symbol Forward Primer Reverse Primer Product Size

Gngt2 AGATTTCTCAGCTGATGAGGCGCT TCACTTCCTTCTTCAGCTGCTCCA 178 

Ms4a4c AATGGGTGTAGTCAGTGTGGCTGT ACCTCGCTGGAGTTACAACAGGAA 171 

Plat TACAATGCAAGGAGGCCAAATGCC AGACATAGCACCAGGGCTTCAAGT 97 

Scand1 ACCAAGGAGCAGATCGTGGAGAT ATTCAGGGTAGGGTGTCAGTCCAA 156 

Slc28a2 GAAGGTTGCCTGGTTCCTGCAAAT TGCTATGGTAGCAAAGCCTCCAGT 178 

Tmem45b TGCTCTCTGCATCGTAGCCATCAA TGCTTGATGTCACTCCTCATCCGA 163 

Ttyh1 ACCCTTTCAACCCTCAGGAATCCA AGCAGGTTGCCATCCTAAGTGAGA 198 
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Table 2.  Genes identified by DNA microarray and verified by real-time PCR from 
IFN-γ plus IL-1β-treated Tg versus WT islets 

 

Thirty-four gene transcripts were found modulated above 2-fold in Tg islets compared 

with WT islets after IFN-γ plus IL-1β treatment, according to DNA microarray. These 

34 transcripts were verified using real-time PCR, and 5 of them were proven to be 

modulated above 2 fold at either 24 h or 48 h after the cytokine treatment in 2 

independent experiments. The mean signal ratios of Tg versus WT islets from a 

representative experiment at 24 h and 48 h are shown. 

Gene Symbol Category 
Tg/WT signal ratio  

 at 24 h 

Tg/WT signal ratio 

at 48 h 

Adcyap1 Islet survival and function 779.15 470.70 

Bank1 Cell survival 0.02 0.30 

Cryab Apoptosis, insulin secretion 2.22 2.83 

Cyp7b1 Immune modulator 0.46 0.29 

Gap43 Proliferation 1.74 3.14 
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Table 3.  Genes identified by DNA microarray and verified by real-time PCR from 
TNF-α plus IL-1β-treated Tg versus WT islets 

 

Fifty-two gene transcripts were found modulated above 2-fold in Tg islets compared 

with WT islets after IFN-γ plus IL-1β treatment, according to DNA microarray. These 

52 transcripts were verified using real-time PCR, and 7 of them were proven to be 

modulated above 2 fold at either 24 h or 48 h after the cytokine treatment in 2 

independent experiments. The mean signal ratios of Tg versus WT islets from a 

representative experiments at 24 h and 48 h are shown. 

 

 

Gene Symbol Category 
 Tg/WT signal ratio 

at 24 h 

Tg/WT signal ratio 

at 48 h 

Gngt2 Signal transducer activity 0.83 2.25 

Ms4a4c Signal transduction 4.37 4.83 

Plat Inflammation, apoptosis 0.48 1.45 

Scand1 Regulation of transcription 2.68 1.85 

Slc28a2 Sodium-dependent nucleoside transporter 0.35 0.82 

Tmem45b Unknown 0.45 1.27 

Ttyh1 Cell-cell, cell-substrate  adhesion 0.14 0.72 
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FIGURES AND LENGENDS 

 

Figure 1. DcR3 secretion by Tg islets  

 
Islets from Tg lines 754 and 17139 and from WT mice were cultured for 24 h (100 

islets/0.5 ml/well in 24-well plates). The supernatants were harvested and analyzed by 

ELISA for DcR3 concentration. Samples were in triplicate. The experiments were 

repeated at least twice, and similar results were obtained. Data from a representative 

experiment are shown. 
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Figure 2. Tg islets present reduced apoptosis and maintain their function under 

cytokines assault  

 
A. Tg and WT islets were cultured in the absence or presence of IFN-γ (0.5 μg/ml) 

plus IL-1β (0.5 ng/ml), or TNF-α (100 ng/ml) plus IL-1β  (0.5 ng/ml) for 4 days. They 

were harvested and then dispersed by trypsin-digestion. Their apoptosis were analyzed 

by annexin V staining, followed by flow cytometery. The percentage of annexin 

V-positive islet cells is indicated.  

 

B.  Tg and WT islets were cultured as described in A. After 48 h, 10 islets were 

hand-picked from each treatment, and transferred to 12-well plates. The islets were 

sequentially incubated with 2.8 mM and 16.7 mM glucose. Insulin concentrations in the 

supernatants after each treatment were analyzed by ELISA. Samples were in triplicate. 

The insulin secretion ratio was calculated as follows: 

Insulin secretion ratio = insulin concentration after 16.7 mM glucose treatment/insulin 

concentration after 2.8 mM glucose treatment. 

The experiments were repeated 3 times, and data from a representative experiment are 

shown. 
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Figure 3. Expression of TL1A and LIGHT pathway components in islets according to 

real-time PCR 

 
 

WT islets were cultured in the absence (medium) or presence of IFN-γ (0.5 μg/ml) plus 

IL-1β (0.5 ng/ml) or TNF-α (100 ng/ml) plus IL-1β  (0.5 ng/ml). They were harvested 

at 6 h, 24 h, and 48 h after culture. Their TL1A, LIGHT, DR3, LTβR and HVEM 

mRNA levels were assessed by real-time PCR after reverse transcription. 

A. Islets treated with IFN-γ  plus IL-1β 

B. Islets treated with TNF-α  plus IL-1β 

 

The experiments were repeated twice, and data from a representative experiment are 

shown. 
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Figure 4. Recombinant mouse LIGHT and TL1A induced lpr/lpr islet cell apoptosis 

 

Islets from lpr/lpr mice were cultured in the absence or presence of IFN-γ (0.05 μg/ml) 

plus IL-1β (0.05 ng/ml), or TNF-α (10 ng/ml) plus IL-1β (0.05 ng/ml), as shown. In 

some experiments, recombinant mouse LIGHT (5 μg/ml) and TL1A (100 ng/ml), and 

recombinant human DcR3 (5 μg/ml) were added, as indicated. The histogram in the 

first column is from freshly isolated islets; all other histograms were from islets 

cultured for 96 h. The islets were dispersed and stained by fluorescent TUNEL, and 

were analyzed by flow cytometry. 

 

The experiments were repeated 2-4 times, and data from a representative experiment 

are shown. 
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Figure 5. Reduced islet PNF in transplantation using DcR3 Tg islets  

 

Suboptimal number of Tg or WT islets were transplanted i.p. into syngeneic C57BL/6 

mice with STZ-induced diabetes (200 islets/mouse). Recipient blood glucose was 

monitored everyday for the first 7 days, and once every other day from days 8 to 30 

after transplantation. 

A. Percentage of mice with normoglycemia (below 12 mM) after transplantation  

B. Blood glucose concentration after transplantation 

 

The data were analyzed with Student’s t test. * and ** indicate p<0.05 and p<0.01, 

respectively. 
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Figure 6. Adcyap1 overexpression protected β-cells from cytokine-induced apoptosis 

 

A. Adcyap1 mRNA expression in Tg and WT islets upon cytokine-stimulation 

Tg and WT islets were stimulated with IFN-γ (0.5 μg/ml) plus IL-1β (0.5 ng/ml) for 24 

and 48 h, and their Adcyap1 mRNA levels were assessed by RT/qPCR. The ratios 

(mean + SD) of Acdyap1 versus β-actin signals were expressed in a log scale. 

 

B. Adcyap1 expression construct 

Full-length (2113 bp) mouse Adcyap1 cDNA was cloned into a mammalian cell 

expression vector pCEP4 at Kpn1 and Not1 sites downstream of the CMV promoter. 

The resulting plasmid is named pCEP4-Adcyap1, and was used for NIT-1 cell 

transfection.  

 

C. Adcyap1 overexpression  in pCEP4-Adcyap1-transfected NIT-1 cells 

Plasmid pCEP4-Adcyap1 was transfected into NIT-1 insulinoma cells. Adcyap1 mRNA 
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in the transfected cells was measured by RT/qPCR after 48 h. The ratios (mean + SD) 

of Bank1 versus β-actin signals are shown. 

 

D and E. Adcyap1 overexpression in NIT-1 cells reduced cytokine-induced apoptosis 

NIT-1cells were transfected with pCEP4-Adcyap1 or the empty vector pCEP4. The 

cells were treated with or without IFN-γ (3 μg/ml) plus IL-1β (3 ng/ml) 24 h after the 

transfection. Cell apoptosis was assessed by annexin V staining after additional 48 h 

with flow cytometry. A representative set of histograms are shown in panel D, and a 

summary of data from 3 independent experiments are illustrated in panel E. The 

difference between pCEP4- and pCEP4Adcyap1-transfected cells is highly significant 

(p<0.05, Student’s t test). 
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Figure 7. Inhibition of Bank1expression decreased cytokine-induced apoptosis in 

NIT-1 cells 

 

A. Bank1 mRNA expression in Tg and WT islets upon cytokine-stimulation 

Tg and WT islets were stimulated with IFN-γ (0.5 μg/ml) plus IL-1β (0.5 ng/ml) for 24 

and 48 h, and their Bank1 mRNA levels were assessed by RT/qPCR. The ratios (mean 

+ SD) of Bank1 versus β-actin signals are shown. 

 

B. Bank1 mRNA knockdown  in Bank1 siRNA-transfected NIT-1 cells 

Bank1 siRNA or control siRNA was transfected into NIT-1 insulinoma cells. Bank1 

mRNA in the transfected cells was measured by RT/qPCR after 48 h. The ratios (mean 

+ SD) of Bank1 versus β-actin signals are shown. 
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C and D. Bank1 knockdown in NIT-1 cells reduced cytokine-induced apoptosis 

NIT-1cells were transfected with Bank1 or control siRNA. The cells were treated with 

or without IFN-γ (3 μg/ml) plus IL-1β (3 ng/ml) 24 h after the transfection. Cell 

apoptosis was assessed by annexin V staining after additional 48 h with flow cytometry. 

A representative set of histograms are shown in panel C, and a summary of data from 3 

independent experiments are illustrated in panel D. The difference between Bank1- and 

control siRNA-transfected cells is highly significant (p<0.05, Student’s t test). 
 



 
 
 
 

III.Discussion 
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In our studies, we investigated the relationship between DcR3 and the 

pathogenesis of the SLE. Elevated serum DcR3 levels were frequently 

found in human SLE, and DcR3 overexpression induced a lupus-like 

syndrome in mouse. We also exploited the mechanisms of DcR3 in islet 

protection and found that LIGHT and TL1A were involved in islet 

apoptosis. Furthermore, we discovered that Adcyap1 and Bank1 were 

downstream molecules mediating DcR3’s effect. Several issues related to 

our findings are discussed below.  

 

1. DcR3 and the pathogenesis of SLE 

The defect of Fas or FasL causes lupus like syndromes in mouse models. 

However, in humans, simple mutations in Fas or FasL do not lead to 

typical SLE, and SLE patients do not have genetic abnormality of Fas/FasL. 

Moreover, apoptosis of peripheral lymphocytes in SLE patients is 

increased both in vivo and in vitro. These conflicting findings about the 

relationship between Fas-mediated apoptosis signaling pathway and SLE 

pathogenesis are puzzling. 

Here we found that DcR3, a blocker for multiple apoptosis pathways, was 

present at high levels in human SLE patients, and DcR3 overexpression 

induced a lupus-like syndrome in a mouse model. We further demonstrated 

that hematopoietic cell-restricted overexpression of DcR3 was sufficient 
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for the pathogenesis of an SLE-like disease in mice.  

Our finding reveals several possible mechanisms of SLE pathogenesis 

involving the Fas apoptosis pathway. They are discussed as follows.  

1-1 . The DcR3 overexpression in self-reactive lymphocyte interferes with 

their anergy.  

In our investigation, we found that elevated DcR3 serum levels occur in 

healthy population more frequently (>2%) than the prevalence of SLE 

(~0.05-0.1%). We do not know whether the higher expression of DcR3 in 

this “healthy population” is due to undetected underlying tumors or other 

disease conditions, but it is not due to acute inflammation (1). Also, serum 

levels of DcR3 in many malignant tumor patients (1) were similar to those 

in SLE patients. Although autoantibodies (including anti-dsDNA 

antibodies) were found in such tumor patients (2), they do not have 

increased SLE incidence. These suggest that high level serum DcR3 alone 

is not sufficient for SLE pathogenesis. However, DcR3 produced by 

lymphoid cells seems to be more relevant to SLE pathogenesis. DcR3 is 

overexpressed in a variety of lymphoma cells (3) and in PBMC of SLE 

patients (4), SLE patients have increased incidence of lymphomas (5,6). It 

is possible that only high levels of DcR3 in the micro-environment around 

lymphocytes, especially auto-reactive lymphocytes, is responsible for 

breaking self-tolerance. 
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According to this hypothesis, DcR3 can be up-regulated in various cells 

and tissues due to genetic susceptibilities and environmental factors. Under 

most conditions, such up-regulation only causes increased risk of certain 

cancers. However, when this occurs in or near auto-reactive immune cells, 

SLE is initiated.  

To take the Epstein-Barr virus (EBV) infection as an example, it has been 

related to increased incidence of both SLE and lymphoma (7,8). EBV also 

elevates DcR3 expression through a Rta-dependent pathway. It implies 

causality among EBV infection, DcR3 expression, SLE, and lymphoma. 

The EBV infection of B lymphocytes may be the initial event in the 

pathological process: it induces DcR3 overexpression in B lymphocytes. 

Elevated DcR3 will increase the risk of malignant change of EBV-infected 

B lymphocytes. When this infection occurs in auto-reactive B lymphocytes 

or near auto-reactive T cells, increased DcR3 will not only elevate the risk 

of lymphomas, but also boost these auto-reactive lymphocytes to break 

self-tolerance and trigger SLE pathogenesis.   
 

The high local DcR3 concentration in or near auto-reactive lymphocytes 

interferes with self–tolerance by blocking the Fas/FasL apoptosis pathway 

of these cells, but the elements of the Fas pathway are not compromised 

during this process. Thus, the Fas signaling pathway works normally 
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everywhere else except in the micro-environment.  

This hypothesis can explain why the apoptosis of peripheral lymphocyte 

increase in SLE patients. While a small proportion of auto-reactive 

lymphocytes are protected by an in situ high concentration of DcR3, most 

of DcR3 negative lymphocytes are still susceptible to apoptosis. Anti-

lymphocyte autoantibodies and disordered cytokines in SLE patients will 

lead to increased apoptosis of those normal lymphocytes, which are not 

essential for SLE generation. 

 

1-2 . DcR3 impairs the clearance of apoptotic cells and increases 

autoantigen presentation. 

It has been reported that clearance of apoptotic debris by phagocytes is 

impaired in SLE patients (9). Impaired removal of apoptotic cells and 

debris may lead to the exposure of autoantigens to the immune system. In 

SLE patients, apoptotic debris accumulates in germinal centers (GC) (10), 

bone marrow (11), and attached to the surfaces of follicular dendritic cells 

(FDC) (12). These exposed cell components may break self -tolerance (13). 

DcR3 can significantly suppress the expression of CD14, CD16 

(FcgammaRIII), and HLA-DR on the macrophage (14). DcR3 also inhibits 

chemotaxis and phagocytic activity of macrophages (14, 15 ). Thus, 

clearance of apoptotic cells/debris by macrophages in the presence of 
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DcR3 may be compromised. This may be one of the pathogenic 

mechanisms of DcR3-induced SLE. 

 

1-3 . DcR3 increases the memory T cell pool and enhances the secondary 

immune response to autoantigens 

T cells can be divided into naive T cells and memory T cells based on 

previous exposure to antigens. When naive T cells are exposed to antigens 

in lymphoid tissues, some of them will differentiate into effector cells and 

then undergo activation-induced cell death (AICD). Others will 

differentiate into memory T cells, and circulate throughout the body. 

Memory T cells can be further categorized into central memory T cells 

(TCM) and effector memory T cells (TEM), according to the expression of 

cell surface markers. TCM circulate in peripheral blood and migrate into 

T-cell areas of secondary lymphoid organs (16). They display a capacity 

for self-renewal (17) and IL-2 production. TEM exist mainly in local tissue 

or peripheral blood; they can react immediately after exposure to antigens 

again, and produce effector cytokines like IFN-γ and IL-4. In SLE patients, 

the ratio of naïve T cells/ memory T cells is decreased (18,19) and the 

number of activated TEM is increased as well (20).  

In our DcR3 Tg mouse model, we demonstrated that the DcR3 could block 

AICD of activated naïve T cells via inhibiting the Fas-FasL and probably 
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other apoptosis pathways, and probably by doing so, drives more activated 

cells into memory T cells, especially TEM. The increased TEM would 

more easily react to autoantigens in local tissue and cause severe 

inflammation. 

 

1-4 . DcR3 disturbs B-cell homeostasis and tolerance. 

SLE is an autoimmune disease dependent on both T- and B-cells. B cell 

hyperactivity has been identified as a central feature in SLE patients (21). 

Among B-cell populations, there is one subset called B1a cells, which 

expresses the T cell surface marker CD5. These cells are present in the 

peripheral blood and coelomic cavity, and produce low affinity IgM 

polyreactive antibodies, some of which can recognize autoantigens. 

Besides secretion of low affinity autoantibodies, B1a cells also produce 

high levels of IL-10, and enhance their own capacity for antigen 

presentation (22,23). B1a cells constitutively express FasL (24) and 

express Fas upon activation (25). 

Expanded B1a subset is observed in both human SLE and murine lupus 

models (22,26). This phenomenon was also found in our DcR3 Tg mouse 

model. Such expansion may be related to the defect of Fas-induced 

apoptosis of B cells, because this expansion is also present in human ALPS, 

an autoimmune syndrome caused by Fas gene mutation (27). In the mouse 
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lupus model, autoantibody producing B1a cells have low Fas expression 

and resistance to anti-Fas Ab induced apoptosis (28). This implies that the 

Fas/FasL-induced apoptosis is important to the homeostasis and self-

tolerance of B cells. DcR3 may inhibit B1a apoptosis and favor 

autoantibody production through blocking Fas pathway.  

 

1-5 . DcR3 favors Th2 development 

In contrast to the MRL/lpr mouse model, which inclines to Th1 responses 

(29), human SLE shows more Th2 responses (30). Th2 cytokines lead to B 

cell hyperactivity and autoantibody production in SLE (31). Our DcR3 Tg 

lupus mouse model also exhibited a Th2-prone immune response, 

including increased IL-4 secreting CD4+ T cells and enhanced Th2 type 

immunoglobulins. Such a bias is observed in human lupus as well: IgE 

production is elevated in DcR3 positive SLE patients.  

Such an effect of DcR3 might be achieved through dendritic cells (DCs). 

Hsu et. al. showed that DcR3 up-regulates CD86/B7.2 expression and 

suppresses CD54/ICAM-1 expression in human DCs (32). DcR3-treated 

DCs enhance IL-4 production of naïve CD4+ T cells.   

 

We have listed above several possible mechanisms by which DcR3 could 

trigger SLE pathogenesis. We noted that only about 50% of SLE patients 
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are serum DcR3 positive at a given time point. For this subgroup, DcR3 

could be used as a therapeutic target. Neutralizing or inactivating DcR3 

might increase elimination of auto-reactive lymphocytes and reestablish 

immune tolerance to self-antigens, and stop SLE progression. 

It remains to be investigated whether DcR3 negative patients are negative 

during the full course of SLE. If so, it will indicate that DcR3 is only 

responsible for SLE pathogenesis in a subgroup of SLE patients. This 

assumption is compatible with the fact that SLE is a polygenic disease.    

 

2. The mechanisms by which DcR3 protects pancreatic islets 

Our group previously used recombinant DcR3 to protect islet grafts from 

PNF for the first time. Recombinant DcR3 effectively blocked Fas/FasL-

mediated islets apoptosis, which was induced by multiple cytokines (33). 

Thus, we employed DcR3 transgenic mouse islets in the study of PNF 

prevention, and its underlying mechanisms. Several points are worth 

discussing.   

2-1. DcR3 Tg islet graft resisted PNF and presented long term 

normoglycemia in syngeneic diabetes mouse receiving a suboptimal dose 

of islets.  

DcR3 Tg islets showed high expression of endogenous DcR3. In the 
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syngeneic islet transplantation model, all diabetic recipient mice which 

received only a suboptimal amount of DcR3 Tg islets reached 

normoglycemia in 5 days after transplantation. Half of them achieved long 

term normoglycemia. Compared to the recipients of wild type islets, in 

which none had normoglycemia after 2 weeks post-transplant, the 

recipients of DcR3 Tg islets performed favourably. Of note, the DcR3 Tg 

islets only produce minute amounts of DcR3. Our result implies that 

enhanced local DcR3 concentration near the islets is sufficient to protect 

them. 

 

2-2. DcR3 acts through the TL1A and LIGHT pathways. 

In our earlier study, we already showed that DcR3 could protect islets 

through blocking the Fas/FasL signal. Here we identified that this 

protection also the result of interference of the LIGHT and TL1A apoptosis 

pathway linked to DcR3. We also reported expression of LIGHT, TL1A 

and their receptors in pancreas islets. Although LIGHT and TL1A are not 

strong apoptosis inducers of islet β-cell like FasL (~15% vs. 30% inducible 

apoptosis), they may work synergistically with FasL to reduce β-cell 

survival under inflammatory conditions. 
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2-3. Using DNA microarray to identify downstream molecules of DcR3 

action.  

We compared the mRNA expression patterns of DcR3 Tg and WT islets at 

different time points after cytokine treatment. Twelve genes showed 

significant difference in their expression, especially Adcyap1 (adenylate 

cyclase activating polypeptide 1) and Bank1 (B-cell scaffold protein with 

ankyrin repeats 1). Adcyap1 is also called PACAP (pituitary adenylate 

cyclase-activating polypeptide). Its expression was maintained at high 

levels in DcR3 Tg islets, while in WT islets, its expression was reduced 

drastically (2 orders of magnitude) upon cytokine stimulation. According 

to our result, Bank1 was significantly upregulated in WT but not in Tg 

islets after cytokine stimulation. We overexpressed Adcyap1 or silenced 

Bank1 expression in NIT-1 insulinoma cells. These manipulations 

ameliorated the survival of NIT-1 cells upon cytokine assaults.  

Base on the present studies, Adcyap1, a short secreted peptide, stimulates 

insulin secretion from islets (34), increases islet mass, and protect islets 

from STZ-triggered apoptosis (35). Moreover, the human Adcyap1 gene is 

located in a T2DM susceptibility locus (35). Thus, this gene is closely 

related to islet function and survival. Its mechanism of action is still 

unclear. It might affect the regulation of intracellular calcium levels in β-

cells (36).  Bank1 is an adaptor protein, and is also a regulator of 
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intracellular calcium levels (37). DcR3 may prevent β-cell calcium flux via 

Adcyap1 and Bank1 upon cytokine stimulation. The two newly found 

intermediators may become potential novel breakthrough for promoting 

islet survival. 

 

The success of islet transplantation, the most promising potential cure for 

diabetes, is limited by the low efficacy caused by PNF. Currently, more 

than one donor is needed for a successful transplant. According to our 

studies, DcR3 is a potential protector for the islets. Adding soluble DcR3 

during islet isolation and transplantation, or genetically modifying graft 

islets to overexpress DcR3, might increase islet resistance to apoptosis 

caused by inflammation during or after transplantation. This would prolong 

islet survival, and reduce required effective doses of islet. This could be 

another therapeutic advance in islet transplantation. 

 

 

 

 

 

 



FACULTÉ  DES  ÉTUDES  SUPÉRIEURES  UNIVERSITÉ  DE  MONTRÉAL       BING HAN 202

Conclusion and Future Perspectives 

The major findings from my Ph.D. program are as follows.  

a. We discovered the DcR3 is a causative factor of SLE in a mouse model, 

and is overexpressed in human SLE; 

b. Serum DcR3 levels can be used a diagnostic parameter in clinical 

practice; 

c. DcR3 can reduce islet primary nonfunction after transplantation and 

such effect is mediated by Adcyap1 and Bank1 pathway in islets.  

These findings can be translated into clinical application in SLE and islet 

transplantation patients. 

Some interesting questions remain to be addressed in guture investigations. 

a. Can antagonists of DcR3 be employed to treat SLE? 

b. Can small molecule agonists or antagonists to Adcyap1 and Bank1 be 

developed to treat diabetes and to improve islet transplantation 

efficiency? 
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