
i

Université de Montréal 

Photophysical Investigations of 

Thiophene Azomethine Derivatives 

Par

Alex N. Bourque 

Départment de Chimie 
Faculté des arts et sciences 

Mémoire présenté à la Faculté des études supérieures 
en vue de l’obtention du grade de Magister Scientiæ (M. Sc.) 

en chimie 

August 2009 
©Alex Bourque 2009 



ii

Université de Montréal 
Faculté des études supérieures et postdoctorales 

Ce mémoire intitulé : 

Photophysical Investigations of 

Thiophene Azomethine Derivatives 

présenté par : 

Alex N. Bourque 

A été évalué par un jury composé des personnes suivantes : 

Prof. Garry Hanan, président-rapporteur 

Prof. Will Skene, directeur de recherche 

Prof. Antonella Badia, membre du jury 



iii

Abstract
A series of sterically hindered thiophene-aniline azomethine dyads were prepared. 

The decay pathways that deactivate the singlet excited state were studied using UV-vis 

fluorescence and phosphorescence, laser flash photolysis and quantum calculations. 

Stern-Volmer relationships, derived from singlet and triplet state quenching experiments, 

showed that azomethines efficiently deactivate the singlet and triplet excited states of 

fluorophores with bimolecular kinetics. AM1 Semi-empirical quantum calculations 

examining the effect of bulky substituents on the bond rotational barriers demonstrate 

that bulky tert-butyl groups attached to the aniline moiety have less influence on the N-

aryl bond rotation barrier than alkyl substitutions do on the thiophene-CH bond rotation 

barrier. Rehm-Weller calculations based on electrochemical potentials demonstrate that 

azomethines self-quench their excited states via fast and efficient intramolecular 

photoinduced electron transfer leading to complete fluorescence suppression. 

Metal complexes containing an azomethine ligand were also prepared. The ligand 

contains a hydroxyquinoline moiety linked with a thiophene ring. Photophysical 

investigations of the resulting metal complexes demonstrated significant bathochromic 

shifts in the absorbance and fluorescence spectra. Metal-ion sensing devices for water 

solutions were prepared by spin casting the ligand onto glass slides. The metal-ion sensor 

detected copper in water solutions through a bathochromic shift in the absorbance 

maximum. 

Key words: photophysical properties, azomethine, thiophene, Stern-Volmer quenching, 
Rehm-Weller equation, steric hindrance, bond rotation, metal complexes, metal sensor. 
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Résumé

Une série de dimères composés de thiophène-aniline encombrée stériquement a 

été synthétisée. Les différents processus de désactivation de l’état singulet excité ont été 

étudiés par UV-visible, fluorescence, phosphorescence, photolyse par impulsion laser et 

calculs théoriques. Les graphiques de Stern-Volmer obtenus à partir des expériences de 

désactivation des états singulet et triplet ont démontré l’efficacité de l’azométhine à 

désactiver les fluorophores. Les calculs semi-empiriques AM1 examinant l’effet des 

substituants encombrés ont démontrés que les groupements tert-butyls sur l’aniline ont 

moins d’influence sur la barrière de rotation N-aryl que les substitutions alkyles en ont 

sur la rotation de thiophène-C. Les calculs Rehm-Weller basés sur les potentiels 

d’oxydation et de réduction ont montré que l’autodésactivation de l’état excité des 

azométhines se fait par transfert d’électron photoinduit menant à une éradication 

complète de la fluorescence. 

Des complexes métalliques contenant des ligands azométhines ont aussi été 

préparés. Le ligand est composé d’une unité hydroxyquinoline lié à un cycle thiophène. 

Les données photophysiques de ces complexes indiquent un déplacement 

bathochromique aussi bien en absorbance qu’en fluorescence. Des dispositifs de 

détection d’ion métallique ont été préparés et un exemple à partir d’une solution de cuivre 

a montré un déplacement bathochromique. 

Mots-clés: propriétés photophysiques, azométhine, thiophène, Stern-Volmer, équation 

Rehm-Weller, encombrement stérique, rotation, complexes métalliques, capteurs 

métalliques. 
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General Introduction

 The work carried out in this research project was aimed at the investigation of the 

photophysics of conjugated thiophene azomethines by studying structure-property

relationships. Thiophene azomethines are a class of conjugated thiophenes which draw 

structural similarities with their carbon containing analogues. The main similarity is that 

the azomethine linkage (C=N) is isoelectronic with the alkene (C=C) linkage.1 As a result 

of this fact, thiophene azomethines demonstrate photophysical and electrochemical 

properties that are very similar to their carbon-containing counterparts.

 Conjugated materials, and more importantly conjugated thiophenes, have found 

applications throughout the industrial sector in electronic devices including organic field 

effect transistors (OFETs), organic light emitting diodes (OLEDs) and other photovoltaic 

devices.2,3,4 This is a result of their low oxidation potentials and their resistance to 

reductive decomposition. In addition to this, polymerized thiophenes have excellent 

charge carrying properties and can be used as p-type materials for charge transport layers. 

 The properties of such high-performance materials must be tuneable for a specific 

application. This can be done with conjugated thiophenes by carrying out suitable 

substitutions. Substitutions include the addition of electronic groups directly onto the 

thiophene rings, homopolymerization of varying degrees as well as copolymerization 

with other heterocycles. These variations can significantly change the resulting physical 

properties of the conjugated materials.  

  The largest issue that confronts the use of conjugated thiophenes in electronic 

applications is their synthesis and subsequent purifications. The most common method of 

producing homo- and heteropolymerized oligo- and polythiophenes is through 
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electrochemical polymerizations. Conjugated thiophenes can also be prepared chemically 

with common coupling methods that include the Suzuki, Negishi, and Kumada coupling 

protocols, as well as coupling by chemical oxidation.5,6,7,8 However, these coupling 

methods are prone to producing side-products that can negatively affect the performance 

of the materials in a device. 

Azomethines are therefore an interesting class of compounds to study since their 

preparation produces only water as a side-product, and purification of the desired product 

is very straightforward. This, combined with their similarities to widely used 

polythiophene and arylvinylene compounds, makes thiophene azomethines a suitable 

choice for new materials. In addition to this, azomethines can be more robust to chemical 

and electrochemical degradation than their carbon analogues depending on the 

substitutions used in their preparation.

The major difference between vinylene and azomethine analogues can be found in 

their photophysical properties. Conjugated arylvinylenes are often fluorescent9,10,11 while 

conjugated azomethines demonstrate no fluorescence. Fluorescence in thiophene 

azomethines has been shown to be nonexistent regardless of the number of thiophene 

units or azomethine bonds present in the molecule. This is in contrast to 

oligothiophenes12,13,14 which demonstrate an increase in fluorescence with increasing 

number of thiophene rings.  

The absence of fluorescence as a result of the azomethine bond will be discussed 

in this work. Multiple methods of examining the change in photophysics as a function of 

azomethine structure were employed in an effort to increase the amount of fluorescence 

observed in thiophene azomethines. The methods employed were designed to deactivate 
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one of the excited state decay routes in an effort to isolate the most important excited 

state deactivation pathways. Thiophene azomethine model compounds were investigated 

by various experimental and synthetic strategies. These include the formation of metal 

complexes composed of thiophene azomethine ligands and their photophysical 

characterization, and the synthesis of a series of sterically hindered thiophene 

azomethines followed by photophysical characterization through a set of excited state 

quenching experiments designed to study the mechanisms of excited state deactivation.  

Photophysics

 When an organic molecule absorbs a photon, an electron is promoted from its 

ground state to an excited state. The core electrons and lower energy valence electrons 

are not usually excited by this route. In fact, it is usually the electrons contained in the 

higher energy frontier molecular orbitals that have energies that correspond to the energy 

of visible and ultraviolet light. In this way, valence electrons situated in the HOMO are 

most frequently excited by an incident light source.15 The promotion of higher energy 

electrons into previously unpopulated electron shells produces an electronic state which 

is much more reactive than the ground state. The reactive promoted electrons cannot 

remain indefinitely in their excited state and undergo decay processes that return them to 

the ground state. 

 The method of excited state deactivation employed by the system depends 

strongly on the molecules present. Figure I-1 demonstrates the variety of photochemical 

pathways that are available for excited state decay. The three broad categories are 1) 

excited state decay pathways, 2) unimolecular photochemical reactions and 3) 

bimolecular photochemical reactions. The decay pathways are subdivided into 
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nonradiative and radiative decay processes. Of interest in this work are the variety of 

excited state decay pathways and the uni- and bimolecular electron transfer reactions.  

Figure I-1. Excited state decay routes available to a molecule in solution.15

The excited state decay pathways listed in Figure I-1 above, in addition to 

photoinduced electron transfers, are needed to fully characterize the equation

PETionisomerizatISCICfluo
x

x1    E-1 

which demonstrates that the quantum yields, , of all of the deactivation processes 

available to the singlet excited state must sum to unity. The ISC term can be broken down 

further to include both radiative and non-radiative decay from the triplet state, as seen in 

E-6 (vide infra).

From left to right in equation E-1 are the quantum yields of fluorescence, internal 

conversion, intersystem crossing, photoisomerization, and photoinduced electron transfer. 

There are various experimental techniques available to scientists for quantifying these 

quantum yields. The experimental techniques available and the theory behind them will 

be discussed in the following sections.
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Decay Pathways

1. Radiative Decay 

A simplified Jablonski diagram, shown below in Figure I-2, is used to describe 

the excited state decay pathways schematically. An electron in the S0 ground state is 

excited by absorption of a photon to the first or second singlet excited state, S1 and S2, 

respectively, at which point the electron will begin to decay back to the ground state. One 

of the fastest and most commonly observed excited state decay pathways is the radiative 

decay process, fluorescence.

Fluorescence is the process by which an excited state molecule decays back to its 

ground state by emitting a photon of lower energy than the photon used to excite it. The 

fluorescence maximum is red-shifted from the absorbance maximum by an amount called 

the Stokes shift. The Stokes shift relates the amount of energy that is lost by non-radiative 

decay of the singlet excited state before fluorescence can occur. The point of intersection 

of the normalized absorbance and fluorescence spectra for a molecule leads to a 

wavelength value, AF, which can be converted to an energy value by 

hcE      E-2

where h is Planck’s constant, c is the speed of light and  is the aforementioned AF.16

The value of E is an approximation of the energy gap between the singlet excited state 

and the ground state of the molecule. It is a direct method for obtaining the relative 

energies of the HOMO and LUMO levels since the HOMO is normally the ground state 

and the LUMO is usually the lowest excited.
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Figure I-2. A simplified Jablonski diagram. 

The magnitude of the observed fluorescence can be determined experimentally by 

measuring the fluorescence quantum yield, fl. The fluorescence quantum yield is 

defined as the number of photons emitted by a sample divided by the number of photons 

absorbed by the sample 

absorbedphotonsofnb
emittedphotonsofnb

fl .   E-3 

The fluorescence quantum yield can be determined in two ways. The traditional 

method applies reference molecules of known fluorescence quantum yield called 

actinometers. The reference molecule is excited at a specific wavelength, and its 

fluorescence spectrum is recorded. A sample molecule is excited at the same wavelength 

and its spectrum is recorded as well. The crucial factor is that the absorbances of both 

molecules must be identical at the wavelength of excitation, within +/- 5 %. This ensures 

that each molecule absorbs the same number of photons, and hence produces the same 
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number of excited states. The ratio of the integrals of the fluorescence spectra gives the 

relative amount of fluorescence observed for the sample compared to the standard 

2

2

,,
refrefx

xxref
refflxfl nAAbs

nAAbs
   E-4 

where the values  represent the fluorescence quantum yields, Abs indicates the 

absorbance value at the wavelength of excitation, A indicates the area under the 

fluorescence curve (i.e. the integral), and  indicates the refractive index of the solvents 

used, if multiple solvents are needed. The terms ref and x refer to the actinometer and 

sample, respectively. 

 Historically, this method has been the most common way of measuring the 

fluorescence quantum yield. It does, however, suffer from a few drawbacks. To measure 

a quantum yield, one needs a reference molecule that absorbs near the sample molecule, 

emits in the same region as the sample and also has a very similar quantum yield. 

Changing solvents can also have solvatochromic effects and can significantly change the 

observed quantum yield, even if refractive index is taken into consideration. 

In recent years, integrating spheres have attracted much attention for measuring 

fluorescence quantum yields. The integrating sphere is an addition to a fluorescence 

detection system that measures accurately the intensity of light entering the sphere. The 

sphere contains an entrance and an exit hole allowing for the movement of light. The 

interior of the sphere is coated with a highly reflective material (BaSO4) which reflects all 

of the light that enters the sphere towards the fluorescence detector.  

 The technique is applied experimentally by taking a fluorescence measurement of 

a solvent blank in which the solvent is excited at the wavelength of excitation of the 

molecule. The fluorescence spectrum is recorded over a region +/- 10 nm from the 
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excitation wavelength. The term used by the equipment during measurement is “scatter”. 

The scatter term used here is meant to relate the size of the excitation window. If the 

excitation slit is set to 10 nm, then there will be “scatter” of the excitation peak +/- 5 nm 

from the excitation maximum. The cuvette containing only solvent is replaced by a 

cuvette containing the sample. The first measurement is repeated. This measurement 

relates the amount of light that is absorbed by the sample molecule (since the solvent 

alone does not absorb). Then a standard fluorescence spectrum of the sample is recorded. 

The integrals of the three spectra are calculated and 

ScatterSampleScatterBlank

EmissionSample
xfl

__

_
,   E-5 

is used to relate the amount of light absorbed by the sample (blank scatter – sample 

scatter) to the amount of light emitted by the sample (sample emission). This is a more 

direct, efficient and absolute method of determining the quantum yield of fluorescence. 

However, this method is not as sensitive as the actinometer method and can only be used 

when the fluorescence quantum yield exceeds 0.05. Very weak fluorescence is often too 

weak to be accurately detected exiting the integrating sphere. 

2. Non-Radiative Decay 

 The excited state is also capable of decaying non-radiatively from the singlet 

manifold to the ground state through a variety of vibrational, bending and stretching 

processes that are collectively known as internal conversion processes, IC. When 

internal conversion plays a predominant role in the decay of the excited state, little to no 

fluorescence is observed. Molecules with a high degree of rigidity and planarity are often 

highly fluorescent as the bending and stretching vibrational modes are effectively 
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dampened by rigidity in the structure. Molecules such as fluorene and anthracene show 

high degrees of structural rigidity, as well as high quantum yields. One of the main goals 

of this work is to restrict the available stretching, bending and twisting modes in 

thiophene azomethines with the focus of increasing the fluorescence quantum yields.  

3. Triplet Manifold 

 From the singlet excited state, the promoted electron can also decay non-

radiatively through a process called intersystem crossing (ISC) in which the electron 

changes spin causing a shift in the multiplicity of the excited state from one (singlet state) 

to three (triplet state). This process is shown schematically in Figure I-3 with the aid of a 

Jablonski diagram. Once in the triplet state, the molecule can relax back to the ground 

state by radiative and non-radiative decay processes, as was the case in the singlet state. 

The radiative decay process is called phosphorescence and is observed on time scales 

much longer than that for fluorescence. Triplet states can also decay to the singlet ground 

state through internal conversions via intersystem crossing. 

Figure I-3. A Jablonski diagram demonstrating intersystem crossing to the triplet state.
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The triplet state quantum yield is a measurable quantity. It relates the amount of 

singlet excited states that are converted to triplet excited states after a molecule is 

photoexcited. The triplet state quantum yield is often denoted by the term ISC as 

intersystem crossing is the process by which the triplet state is formed from the singlet 

excited state. Phosphorescence measurements and laser flash photolysis measurements 

are often used in conjunction to quantitatively describe ISC. Triplet excited states can 

also decay back to the singlet ground state through non-radiative internal conversion 

processes, e.g. bond vibration and collisions with solvent molecules, so it is important to 

use phosphorescence and laser flash photolysis measurements together to accurately 

define triplet state formation. 

Phosphorescence measurements can be used to characterize the formation of a 

triplet manifold. The long-lived triplet state is formed by a quantum mechanically 

forbidden spin-flipping mechanism which produces an electronic transition that is in 

violation of the conservation of molecular spin moment rules. As a result of this, the 

triplet state cannot return to a singlet excited state with ease and will decay directly back 

to the lower energy singlet ground state. Radiative decay, called phosphorescence, has a 

much longer lifetime than fluorescence owing to the fact that the system must change 

spin states upon returning to the ground state. Phosphorescence is often used in nature by 

insects and aquatic life as a form of protection and also for offering light in very dark 

places, like the deep ocean. The fact that the lifetimes of phosphorescence can extend into 

the second range give phosphorescent materials many potential applications, in ‘glow 

sticks’ and airplane floor lighting, for example. 
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The triplet manifold can also be studied by a technique called laser flash 

photolysis. In this technique, a molecule is excited with high intensity light produced by a 

laser. In this work, samples were excited at either 266 nm or 355 nm using an Nd-YAG 

laser. If a triplet state exists for the molecule studied, the laser excitation will pump the 

sample into its singlet excited state, at which point it undergoes ISC to its triplet state. 

The triplet state, which is longer lived than the singlet state, is referred to at this point as a 

transient species because it exists only briefly while being excited by the laser.  

 The transient species produced by laser excitation can then be excited a second 

time by UV-vis light, promoting the triplet level electron to a second, higher energy 

triplet excited state. This is demonstrated schematically in Figure I-4. Once the molecule 

is in the triplet state T1, it is able to absorb light corresponding to the energy gap between 

the two triplet states, T1  T2. In practice, the LFP instrument measures the amount of 

light absorbed by the triplet state as it is in the process of decaying. As the state begins to 

decay, the absorbance values recorded by the LFP instrument will begin to decay with an 

exponential decay profile. The lifetime of the triplet state can thus be calculated by fitting 

the triplet decay to an exponential decay function.
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Figure I-4. A Jablonski diagram demonstrating the promotion of a triplet state electron 
by UV-vis excitation during an LFP experiment.

Phosphorescence studies are useful in examining the energetics of the 

photoinduced triplet state. The phosphorescence maximum, phos, can be used to relate 

the energy of the triplet excited state from which a promoted electron decayed back to its 

ground state. The molecule of interest is excited at its absorbance maximum which 

corresponds to its LUMO energy, or in other words, the singlet excited state. The 

wavelength at which the phosphorescence maximum is observed is at a slightly lower 

energy than the triplet excited state, T1. The crossover of the normalized absorbance and 

phosphorescence spectra is effectively the energy gap separating the singlet ground state 

and the excited triplet state. This process is also used to relate the energy difference 

between the singlet ground state and singlet excited state (HOMO-LUMO gap) when 

studying fluorescence data instead of phosphorescence data.

The phosphorescence quantum yield can be determined using the same 

actinometer method employed for fluorescence measurements. However, ISC cannot be 

accurately determined by this method as it is known that triplet states can decay by means 
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other than phosphorescence alone. The triplet excited state, much like the singlet excited 

state, can also undergo internal conversion process like bond vibration and rotation that 

decrease the amount of phosphorescence observed. In other words, the phosphorescence 

quantum yield does not take into account internal conversion from the triplet state and 

therefore

ISC = Phos + IC    E-6

To accurately quantify triplet state formation, ISC, it is important to complement 

phosphorescence measurements with laser flash photolysis quantum yield measurements. 

The quantum yield of triplet formation, ISC, can be measured accurately by laser 

flash photolysis. Triplet state quantum yield measurements are possible by relating the 

amount of triplets formed by a sample molecule to those of a standard material known to 

have a triplet quantum yield of unity. A frequently used standard material is xanthone.17

 Significant difficulties present themselves when attempting to carry out triplet 

quantum yield measurements. If the molecule of interest has a measurable ground state 

absorbance in the region where the triplet state absorbs, an effect called “ground state 

photobleaching” is observed. To observe the formation of a transient species, the 

absorbance of the non-excited molecule (ground state) is compared with that of the 

excited species at a specific wavelength. The difference between the two absorbance 

measurements is the value recorded by the measurement system and can indicate the 

presence of a triplet excited state. If the ground state absorbs more strongly than the 

excited state at a given wavelength, the detection system will record that the absorbance 

has decreased upon laser excitation and will record a negative signal. It is therefore 
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important to ensure that any measurements examining triplet state formation are made at 

a wavelength in which the ground state does not absorb. 

 The process of defining the triplet quantum yield can also be troublesome. The 

molar absorptivity, , and the quantum yield, ISC, of the triplet state of a reference must 

be known. The quantum yield of the unknown sample can be determined from  

refTrefTxTxT     E-7 

where Tx and Tref are the molar absorptivity coefficients of the triplet state for the 

unknown and reference, respectively; and where Tx and Tref are the triplet quantum 

yields. The molar absorptivity of the unknown sample is determined first by applying this 

equation

ref

x
refTxT Abs

Abs .     E-8 

Here the Abs  values are the change in absorbance recorded by the laser flash 

photolysis system before and after excitation. To employ this equation experimentally, a 

standard of known quantum yield and molar absorptivity is studied. The reference 

material used is frequently xanthone since it has a ISC of unity.17 Xanthone and the 

molecule of interest have their ground state absorbance at the wavelength of excitation 

(266 or 355 nm for the instrument used) tuned to be nearly identical. Both compounds are 

excited and then quenched using a known amount of quencher, for example, naphthalene. 

The process of measuring the quantum yield is best described through an 

equation-based approach as shown in Figure I-5. The xanthone standard, Xn is excited 

via LFP to its singlet state (Xn1) which then undergoes ISC to its triplet state (Xn3). The 

triplet state is quenched with a known concentration of quencher (naphthalene, Np). The 
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quencher is excited to its triplet state (Np3) via energy transfer from the excited xanthone. 

The triplet of naphthalene is then analyzed using the LFP UV-vis absorbance system in 

the same way triplet states are normally observed, yielding the value bsref which is 

needed in E-8.

Figure I-5. A schematic of the equation-based approach for defining the quantum yield 
of ISC for an unknown sample. 

The unknown sample molecule is treated in the same way. The ground state (Unk) 

is pumped to the singlet excited state (Unk1) via laser excitation, the triplet state (Unk3)

forms via ISC and is subsequently quenched with the same concentration of quencher 

(Np) that was used to quench the xanthone standard. Once again, the signal produced by 

the triplet state quencher Absx (Np3) is recorded by the LFP system. The absref and 

Absx values are recorded for the naphthalene triplets in both cases, so the molar 

absorptivity terms, , fall out of E-8. Combining and simplifying E-7 and E-8 yields the 

equation E-9 which is used to experimentally determine the quantum yield of ISC for 

sample molecules when  for the standard is already known.  

ref

x
refTxT Abs

Abs
    E-9
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 In conjunction with phosphorescence measurements, laser flash photolysis 

measurements can be used to characterize both the lowest energy triplet state as well as 

some of its higher energy states. Lifetimes of decay for both processes can be determined 

which give additional information about the energies of the excited state species.

4. Photoisomerization 

 Photoisomerization is the process by which an excited state molecule undergoes a 

chemical transition to another isomeric form as a way of returning itself to its ground 

state. Common forms of photoisomerization include cis-trans isomerization and ring 

opening and closing transformations. Although photoisomerization can play a role in 

excited state decay, the thiophene azomethines prepared and studied herein do not 

undergo PI and therefore PI will not be treated in more detail. 

5. Photoinduced Electron Transfer 

Photoinduced electron transfer occurs when a molecule is excited by light, 

promoting a ground state electron into an excited state orbital. The promotion of this 

electron leaves a positively charged vacancy in the ground state, which is commonly 

referred to as a hole. Holes can act as electron acceptors as the positively charged 

vacancy makes the ground state electronic levels electrophilic. Furthermore, the 

promoted electron is now at a higher energy than before and can be attracted by an 

electron acceptor. In this way, excited states can act as both electron donors and electron 

acceptors. Photoinduced electron transfer can therefore be defined as the movement of 

the electrons through a molecular system initiated by the photo-produced excited state. 
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There are two types of PET mechanisms commonly observed in photochemistry. 

The distinction between the two is based on the location of the donor and acceptor 

molecules. In a one molecule, or intramolecular process, the donor and acceptor are 

attached covalently and the electron that is transferred moves between two regions of the 

same molecule. In a two molecule, or intermolecular process, the donor and acceptor 

exist separately on two different molecules.  

SNS

CN

h

Figure I-6. An example of intramolecular photoinduced electron transfer. 

An example of an intramolecular electron transfer process is seen with the 

molecules of interest in this report; thiophene azomethines. Shown in Figure I-6, the 

thiophene azomethine can be excited through the absorption of a photon by the thiophene 

moiety at which point the electron-accepting azomethine linkage can quench the excited 

state. This rapid deactivation by the azomethine linkage is a main reason why thiophene 

azomethines consistently show little fluorescence.18 An example of an intermolecular 

electron transfer is taken from the world of biology. The processes which help to move 

energy around during photosynthesis are nearly all bimolecular electron transfer 

processes. Light absorbed in the stroma initiates a water photolysis reaction that produces 

molecular oxygen, protons and electrons. The electrons are carried throughout the 

photosynthetic cell through a series of bimolecular electron transfer mechanisms which 

collectively make up an “electron transport chain”.19,20 
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Electron transfer processes can be studied experimentally by employing such 

techniques as excited state quenching experiments. The two sets of quenching 

experiments studied herein are fluorescence and triplet state (via LFP) quenching. In 

these methods, a donor molecule is excited by visible or UV irradiation which promotes 

an electron to an excited state. The excited state of the donor molecule is then 

“quenched” by the introduction of an acceptor molecule which removes the electron from 

the high energy orbital of the donor. For this reason, molecules which act as electron 

acceptors are often called “quenchers”.  

The excited state quenching mechanism can be studied by measuring the 

quenching rate constants and by examining the energetics of the quenching process. The 

two studies are closely related, but rely on different experimental techniques and different 

mathematical treatments. The study of quenching rates constants, either from 

fluorescence quenching or triplet state (LFP) quenching, is carried out using the Stern-

Volmer relationship. The study of the energetics of the quenching process focuses on the 

oxidation and reduction potentials of the donor and acceptor molecules, respectively. The 

Rehm-Weller equation is then used to relate the electrochemical potentials with the free 

energy of quenching. 

The reaction equations presented in Figure I-7 demonstrate the processes that 

occur when an excited donor molecule is being quenched by an acceptor. The excited 

state donor molecule encounters a quencher molecule that acts as a strong electron 

acceptor. Through a bimolecular electron transfer process, the excited state of the donor 

is transferred to the quencher. 
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Figure I-7. Quenching of an excited state donor, D*, by an acceptor [Q].

The Stern-Volmer relationship for dynamic fluorescence quenching can be used 

to describe the rate at which the quencher molecule is able to deactivate the excited state 

of the donor, D. The rate constant of bimolecular quenching can be determined 

experimentally from the Stern-Volmer relationship 

0/  = 1 + kq• 0•[Q]     E-10

where  is the fluorescence intensity without quencher and  is the fluorescence 

intensity after quencher has been added, kq is the bimolecular quenching rate constant, 0

is the fluorescence lifetime of the fluorophore and [Q] is the concentration of quencher 

added.21 A straight line plot of this relationship will yield the dynamic quenching rate 

constant as the slope of the line. In cases when the rate of quenching is very fast, the 

quenching process is limited by the rate at which the quencher molecule can collide with 

the excited state donor molecule. This limiting factor is the rate of diffusion of the 

quencher, so kq is often defined as the diffusion-limited rate constant of quenching (2 x 

1010 m-1s-1 in acetonitrile, vide infra).

 The quenching rate constant for the quenching of triplet states can also be studied 

experimentally. Instead of making fluorescence measurements and observing how the 

intensity of fluorescence decreases, it is also possible to follow the decrease in the 

lifetime of the photo-produced triplet state. The measurement system used in this case is 

the laser flash photolysis system. As before, a donor molecule is excited by light (here a 
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laser) and a quencher molecule in solution deactivates the excited state by electron 

transfer. The difference in this case is that instead of looking at the decrease in signal 

intensity, the decrease in the triplet state lifetime is examined. The inverse of the triplet 

state decay lifetime is the rate constant of triplet state decay, k , which is in fact is 

experimental value used in the Stern-Volmer relationship. To determine the rate constant 

of triplet state quenching, the following equation is applied experimentally: 

k  = k0 + kq [Q]    E-11

where k  is the rate constant of triplet state decay, k0 is the triplet state decay rate constant 

in the absence of quencher, kq is the rate constant of quenching and [Q] is the 

concentration of quencher added. Once again, the dynamic rate constant is limited by 

diffusion.18

 The preceding discussion about the rates at which quenching occurs is only useful 

when the excited state molecule can be deactivated through a bimolecular process. It is 

important that quenching be exergonic, that is, energetically favourable. To this end, the 

Rehm-Weller equation can be used to determine theoretically whether a quencher can 

dynamically quench an excited donor. The Rehm-Weller equation can be described 

thusly,

G°ET = Epa (fluorophore) - Epc (quencher) - E0,0 - RO. E-12

where G°ET is the Gibbs’ free energy of electron transfer, Epa is the oxidation potential 

of the fluorophore (donor), is the reduction potential of the quencher, E0,0 is the energy 

gap between the ground and excited state of the fluorophore and RO is the solvent 

reorganization energy.22,23
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 The oxidation and reduction potentials are easily measureable by cyclic 

voltammetry methods and the energy gap between the excited and ground states can be 

derived from the intersection of the normalized absorbance and fluorescence spectra. The 

solvent reorganization energy is usually quite small when the measurements are recorded 

in polar solvents such as acetonitrile (ACN) and is therefore often neglected. 

 The Stern-Volmer (E-10) and Rehm-Weller (E-12) equations are applicable to 

intermolecular processes. The case that makes thiophene azomethines very interesting is 

that not only is the donor fluorophore located within the molecule, but so is the 

quenching acceptor moiety. The azomethine linkage (C=N) is extremely efficient at 

quenching excited states, so much so that neither fluorescence nor a triplet state (via LFP 

at room temperature) are observable. In general, azomethines are excellent quenchers and 

can be used in a variety of ways to quench fluorescence within an inherently fluorescent 

molecule. It is for this reason that in-depth studies of the kinetics and energetics of 

bimolecular quenching processes using azomethines have been carried out and reported 

herein.

 This work has been divided into three chapters each focussing on a different area 

of azomethine chemistry. Chapter 1 contains the manuscript of a submitted article 

detailing the study of the electrochemical and photophysical properties of a series of 

sterically hindered azomethine dyads. These dyads were studied via singlet and triplet 

excited-state quenching experiments yielding quenching rate constants after determining 

the Stern-Volmer and Rehm-Weller relations.  

Chapter 2 discusses the study of azomethine-metal ion complexes via UV-visible 

spectroscopy and cyclic voltammetry. The work presented in Chapter 2 was aimed at 
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further understanding the role of the azomethine linkage in deactivation processes as well 

as furthering the study of the photophysical and electrochemical properties of 

azomethines. Chapter 3 explores different reaction conditions used to form dyads which 

are more sterically hindered than those discussed in Chapter 1. The reactions presented in 

Chapter 3 did not produce the desired products; however, they did provide insight into 

the difficulties that arise during the synthesis of sterically hindered compounds. 

In summary, the work carried out in this research project was aimed at the 

investigation of the photophysics of conjugated thiophene azomethines by studying 

structure-property relationships. The decay pathways that deactivate the singlet excited 

state were studied using UV-vis fluorescence and phosphorescence, laser flash photolysis 

and quantum calculations. Stern-Volmer relationships, derived from singlet and triplet 

state quenching experiments, showed that azomethines efficiently deactivate the singlet 

and triplet excited states of fluorophores with bimolecular kinetics. Rehm-Weller 

calculations based on electrochemical potentials demonstrate that azomethines self-

quench their excited states via fast and efficient intramolecular photoinduced electron 

transfer leading to complete fluorescence suppression. 
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Abstract

Alkylated derivatives of 2, 4, 6-aniline and 3-thiophene carbaldehydes were used 

for preparing aldol and ketal imines (1-9). The effect of substitution on the photophysical 

properties of alkylated azomethines was examined in order to understand the origins of 

complete fluorescence suppression exhibited by all azomethines. Introducing steric 

elements for increasing the barrier of rotation around the N–aryl and CH–thiophene 

bonds did not result in increased fluorescence. This confirmed that azomethine 

fluorescence quenching is not by non-radiative energy dissipation by bond rotation. 

Stern-Volmer fluorescence measurements of both fluorene and bithiophene lead 

to diffusion controlled quenching rates (kq  1010 M-1 s-1) when quenched by both an 

aliphatic aldolimine (13) and a conjugated azomethine (3 and 15). Photoinduced electron 

transfer (PET) from the fluorophore to the imine is the major mode of deactivation of the 

singlet excited state. This deactivation mode was corroborated by the Rehm-Weller 

equation using the measured cyclic voltammetry and spectroscopic data. Exergonic 

values for PET were calculated for bithiophene quenching with 13 ( G° = -120 kJ/mol). 

The PET deactivation mode can be suppressed by protonating the azomethine resulting in 

increased fluorescence.  

Although PET deactivates the singlet excited state, intersystem crossing to the 

triplet manifold also occurs, confirmed by steady-state phosphorescence measurements.  

The absence of detectable triplet by laser flash photolysis confirms that the triplet formed 

is rapidly quenched by energy transfer.  This was kinetically corraborated by quenching 

both fluorene and bithiophene triplets with 13 leading to bimolecular quenching rate 

constants of 3 x 109 M-1 s-1 and 2 x 107 M-1 s-1, respectively, in acetonitrile.  These data 
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confirm that the heteroatomic azomethine bond efficiently quenches both the singlet 

excited and triplet states by intramolecular photoinduced electron transfer. 
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1.1 Introduction 

Conjugated thiophenes have been the focus of much research owing to their 

interesting properties that are well suited for organic electronic applications including 

field effect transducers (OFET), light emitting diodes (OLED), photovoltaics (OVD), and 

nonlinear optical devices (NLO).2,3,4 This is in part due to their low oxidation potential 

relative to their homoaryl analogues. Subsequently, they can be chemically doped 

resulting in stable p-type materials with high conductivities and charge mobilities.24,25

Furthermore, property tuning to match a specific electronic application is possible by 

incorporating electronic groups along the conjugated framework in addition to 

copolymerizing with other heterocyclic monomers. Copolymerization and 

homopolymerization are typically done electrochemically. Alternatively, chemical 

polymerization is possible via Suzuki, Negishi, and Kumada coupling protocols.5,6,7,8

As requirements for materials performance increase, new materials with tunable 

properties requiring alternate methods for their preparation are needed. For example, 

nickel-catalyzed Kumada coupling was recently used for controlling polymer molecular 

weight and regioregularity, while Wittig coupling and thermal elimination methods, to 

name but a few, afford polyvinylenes with optoelectronic properties suitable for 

electronic applications.26,27,28 Even though functional materials can be successfully 

obtained using these protocols, the by-products produced affect the optoelectronic 

properties of produced materials. Materials prepared via these coupling methods must 

therefore be extensively purified for removing residual catalysts, unreacted monomers 

and other by-products. 
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Azomethines are interesting alternatives to conventional coupling methods. This 

is in part a result of their isoelectronic character to their vinylene analogues.1

Furthermore, water is the only by-product produced requiring little to no purification, 

unlike their carbon analogues. Similar to their carbon analogues, azomethines are 

thermally, chemically, and anodically robust when the appropriate aryl monomers are 

selected for their preparation.29,30,31,32,33,34 Although azomethines have synthetic 

advantages over their carbon analogues and exhibit similar thermal and chemical 

properties to their vinylene homologues, their photophysical properties are different. For 

example, arylvinylenes9,10,11 and oligothiophenes12,13,14 are highly fluorescent while their 

azomethine analogues exhibit no fluorescence. In fact, the fluorescence of thiophene 

azomethine derivatives is consistently nonexistent regardless of the number of thiophenes 

or the number of azomethine bonds.  This is in stark contrast to oligothiophenes whose 

fluorescence increases with the number of thiophenes.35,36,37

Even though it is known that azomethines do not fluoresce irrespective of their 

degree of conjugation or whether inherently fluorescent precursors are used in their 

preparation, very little effort has been devoted to understanding the reasons for this 

suppressed fluorescence.38,39 Previous investigations attempted to assign the cause of 

azomethine suppressed fluorescence by examining a series of thiophene azomethines 

such as 14 and 15 and their temperature dependent fluorescence.30,32,33,34 Qualitative 

evidence led to the belief that efficient nonradiative excited state deactivation was a result 

of rotation of the aryl groups fixed to the azomethine.  Unfortunately, this deactivation 

mode could not unequivocally be confirmed with the azomethines investigated.  
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Assigning the deactivation modes responsible for efficient azomethine 

fluorescence suppression is possible only with structure-property studies. Specifically, 

the contribution of singlet excited state deactivation by rotation around the N-aryl and 

CH-thiophene bonds can be isolated from other deactivation modes such as internal 

conversion (IC) and intersystem crossing (ISC) by examining the photophysics of 

azomethines having inherent rotation constraints around these bonds. This is of 

importance because new highly fluorescent azomethines can then be designed and 

prepared using this information.  

Such fluorescent azomethines having similar spectroscopic and electronic 

properties to their carbon analogues would make azomethines viable alternatives to 

current materials given their ease of synthesis, absence of by-products and appealing 

green-chemistry. A series of thiophene azomethine dyads consisting of varying steric 

elements was therefore prepared for investigating the origin of azomethine fluorescence 

deactivation. The photophysical study of these novel dyads and the structural effects of 

these properties are herein presented in order to fully understand the azomethine 

fluorescence quenching mechanism. This is pivotal for designing future generations of 

fluorescent azomethines.  
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1.2 Experimental Section 

1.2.1 General Procedures 

All reagents were commercially available and were used as received unless 

otherwise stated. Anhydrous and deaerated solvents were obtained with a Glass Contour 

solvent purification system. 1H NMR and 13C NMR spectra were recorded on a Bruker 

400 MHz spectrometer with the appropriate deuterated solvents.

1.2.2 Spectroscopic Measurements 
The absorption measurements were done on a Cary-500 spectrometer while the 

fluorescence studies were performed on an Edinburgh Instruments FLS-920 fluorimeter 

after deaerating the samples thoroughly with nitrogen for 20 minutes.   

Fluorescence quantum yields were measured at 10–5 M by exciting the 

compounds of study (1 to 9) at 303 nm in spectroscopic grade acetonitrile at room 

temperature and the resulting fluorescence was compared to bithiophene ( fl = 0.013 in 

ethanol).37

Fluorescence quantum yields at 77 K were determined by preparing glass 

matrices of the compounds of study (1 to 9) in spectroscopic grade methylcyclohexane 

and in a 4:1 mixture of ethanol and methanol and by exciting the corresponding 

compound at its absorption maximum. The resulting emission at 77 K was compared to 

that obtained at room temperature under identical experimental conditions. 

The phosphorescence measurements done at 77 K were carried out on a Cary 

Eclipse fluorimeter. Solutions of the compound of interest were prepared in spectroscopic 
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grade methylcyclohexane and excited at multiple local absorption maxima for each 

compound.  

Laser flash photolysis measurements were carried out using an Nd-YAG laser 

system. Solutions of the compounds of interest were prepared in deaerated and anhydrous 

spectroscopic grade acetonitrile. The concentrations of the compounds of interest were 

made to yield absorbances in the range of 0.3-0.4 at the laser excitation wavelength of 

266 nm. 

1.2.3 Electrochemical Measurements 
Cyclic voltammetric measurements were performed on a Bio Analytical Systems 

EC Epsilon potentiostat. Compounds were dissolved in anhydrous and deaerated 

acetonitrile containing a concentration of 0.1 M NBu4PF6 electrolyte. A platinum 

electrode and a saturated Ag/AgCl electrode were employed as auxiliary and reference 

electrodes, respectively. 

1.2.4 Bond Rotation Barrier Calculations 
Bond rotation barriers were calculated semi-empirically using AM1 calculation 

methods available in Spartan 06.  The bond angles, distances, torsions, and other 

parameters were experimentally derived from the X-ray data from the corresponding 

structures.

1.2.5 Synthesis 
Phenyl-thiophen-2-ylmethylene-amine (1). In a round-bottomed flask (50 mL) 

was added 2-thiophenecarboxaldehyde (1.29 g, 1.05 mL) in ethanol (10 mL) to which 

was added aniline (1.07 g, 1.05 mL) and a catalytic amount of trifluoroacetic acid (TFA). 

The mixture was refluxed for four hours, and stirred at room temperature for an 
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additional 15 hours. Complete removal of solvent affords a viscous orange oil which was 

purified by distillation at reduced pressure (0.8 Torr) yielding the product as an orange oil 

(75%). M.p.: < 20 ºC. 1H NMR (400 MHz, [D] acetone-d6);  = 8.73 (s, 1H), 7.70 (d, 1H, 

3J = 5.0 Hz), 7.4 (dd, 1H, 3J = 3.6 Hz, 4J = 1.0 Hz), 7.40 (dt, 2H, 3J = 7.0 Hz, 4J = 1.8 

Hz), 7.25-7.18 (m, 4H).  

(2-tert-butyl-phenyl)-thiophen-2-ylmethylene-amine (2). In an oven-dried, 

three-necked round-bottomed flask (100 mL) was added 2-tert-butylaniline (1.48 g, 1.55 

mL) dissolved in anhydrous toluene (30 mL). To this was added 1,4-diazobicyclo-

[2.2.2]octane (DABCO, 2.8 g), titanium(IV) chloride, 1.0 M solution in toluene (14 mL), 

followed by 2-thiophenecarboxaldehyde (1.2 g, 1.0 mL). The mixture was heated at 

reflux for one hour and the solvent removed. Purification by flash chromatography (SiO2,

1:99 EtOAc:Hexanes as eluent, 1% Et3N) yielded the titled product as a yellow solid 

(50%). M.p.: 74 - 77 ºC. 1H NMR (400 MHz, [D] acetone-d6):  = 8.58 (s, 1H), 7.73 (d, 

1H, 3J = 5.0 Hz), 7.65 (d, 1H, 3J = 2.8 Hz), 7.39 (dd, 1H, 3J = 7.8 Hz, 4J = 1.3 Hz), 7.23 

(m, 2H), 7.15 (dt, 1H, 3J = 7.6 Hz, 4J = 1.4 Hz), 1.44 (s, 9H). 13C NMR (400 MHz [D] 

acetone-d6):  = 153.1, 152.5, 145.6, 144.7, 133.9, 132.3, 129.9, 128.9, 127.7, 127.6, 

120.9, 37.1, 31.8. MS: m/z 244.11557 [M + H]+ (calculated 244.11545). 

Thiophen-2-ylmethylene-(2,4,6-tri-tert-butyl-phenyl)-amine (3). In a round-

bottomed flask (50 mL) was added 2,4,6-tri-tert-butylaniline (100 mg) dissolved in 

ethanol (15 mL). To this was added a catalytic amount of para-toluenesulfonic acid and 

2-thiophenecarboxaldehyde (122 mg, 0.1 mL). The mixture was refluxed for 22 hours 

and the solvent removed. Purification by flash chromatography (SiO2, 2:98 

EtOAc:Hexanes, 1% Et3N) yielded the product as a pale yellow solid (82%). M.p.: 137 - 
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139 ºC. 1H NMR (400 MHz, [D] acetone-d6):  = 8.27 (ds, 1H, 4J = 0.7 Hz), 7.78 (dt, 1H, 

3J = 5.0 Hz, 4J = 1.0 Hz), 7.62 (dd, 1H, 3J = 3.6 Hz, 4J = 1.0 Hz), 7.36 (s, 1H), 7.25 (t, 

1H, 3J = 5.0 Hz, 4J = 1.4 Hz), 1.33 (s, 9H), 1.32 (s, 18H). 13C NMR (400 MHz [D] 

acetone-d6):  = 157.9, 151.8, 145.9, 144.5, 140.3, 133.7, 132.9, 129.9, 123.3, 37.4, 36.2, 

33.0. MS: m/z 356.24164 [M + H]+ (calculated 356.24065). 

Phenyl-(1-thiophen-2-yl-ethylidene)-amine (4). In an oven-dried, three-necked 

round-bottomed flask (25 mL) was added aniline (406 mg, 0.40 mL) dissolved in 

anhydrous toluene (30 mL). To this was added 1,4-diazobicyclo[2.2.2]octane (DABCO, 

1.8 g), titanium(IV) chloride, 1.0 M solution in toluene (4.75 mL), followed by 2-

acetylthiophene (0.50 g, 0.43 mL). The mixture was heated at reflux for three hours and 

the solvent removed. Purification by flash chromatography (SiO2) yielded the titled 

product as a yellow solid (66%). M.p.: 64 º - 66 ºC. 1H NMR (400 MHz, [D] acetone-d6):

 = 7.56 (m, 2H), 7.36 (t, 2H, 3J = 7.6 Hz), 7.13-7.08 (m, 2H), 6.85 (dd, 2H, 3J = 8.4 Hz, 

4J = 1.0 Hz), 2.22 (s, 3H). 13C NMR (400 MHz [D] acetone-d6):  = 160.5, 151.3, 147.1, 

130.5, 129.4, 129.3, 128.0, 123.7, 120.2, 16.9. MS: m/z 202.06926 [M + H]+ (calculated 

202.06849).

(2-tert-Butyl-phenyl)-(1-thiophen-2-yl-ethylidene)-amine (5). In a round-

bottomed flask (50 mL) was added 2-tert-butylaniline (1.38 g, 1.44 mL) dissolved in 

ethanol (25 mL). To this was added a catalytic amount of para-toluenesulfonic acid and 

2-acetylthiophene (1.2 g, 1.0 mL). The mixture was refluxed for 22 hours and the solvent 

removed. Purification by flash chromatography (SiO2) yielded the product (34%). M.p.: 

80 º - 82 ºC. 1H NMR (400 MHz, [D] acetone-d6):  = 7.63 (dd, 1H, 3J = 5.0 Hz, 4J = 1.0 

Hz), 7.60 (dd, 1H, 3J = 3.7 Hz, 4J = 1.0 Hz), 7.390 (dd, 1H, 3J = 7.9 Hz, 4J = 1.2 Hz), 
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7.18-7.14 (m, 2H), 7.04 (dt, 1H, 3J = 7.2 Hz, 4J = 1.2 Hz), 6.57 (dd, 1H, 3J = 7.6 Hz, 4J = 

1.3 Hz), 2.25 (s, 3H), 1.34 (s, 9H). 13C NMR (400MHz [D] acetone-d6):  = 160.3, 150.8, 

148.9, 141.8, 132.1, 130.3, 129.5, 128.1, 127.9, 125.4, 122.3, 36.6, 30.9, 18.8. MS: m/z

258.13110 [M + H]+ (calculated 258.1316). 

Phenyl-(1-thiophen-2-yl-propylidene)-amine (6). In a round-bottomed flask    

(5 mL) was added aniline (175 mg, 0.17 mL), 1-(2-thienyl)-1-propanone (261 mg, 0.23 

mL) and a catalytic amount of trifluoroacetic acid (TFA). The mixture was stirred under 

vacuum (0.8 Torr) at room temperature for 20 minutes. Purification by flash 

chromatography (SiO2, 4:96 EtOAc:Hexanes, 1% Et3N) yielded the titled product as an 

orange oil that turned to brown after one week storage at room temperature (18%). M.p.: 

< 20 ºC. 1H NMR (400 MHz, [D] acetone-d6):  = 7.65-7.62 (m, 2H), 7.35 (t, 2H, 3J = 7.5 

Hz), 7.15 (dd, 1H, 3J = 4.5 Hz, 4J = 1.3 Hz), 7.07 (dt, 1H, 3J = 7.5 Hz, 4J = 1.0 Hz), 6.80 

(dd, 2H, 3J = 8.4 Hz, 4J =1.0 Hz), 2.65 (q, 2H, 3J = 7.6 Hz), 1.15 (t, 3H, 3J = 7.6 Hz). 13C

NMR (400 MHz [D] acetone-d6):  = 167.1, 152.7, 147.2, 132.0, 130.8, 130.7, 129.5, 

124.9, 121.1, 25.5, 14.8. MS: m/z 216.08508 [M + H]+ (calculated 216.08415).

(2-tert-Butyl-phenyl)-(1-thiophen-2-yl-propylidene)-amine (7).  In a round-

bottomed flask (50 mL) was added 1-(2-thienyl)-1-propanone (270 mg, 0.24 mL), 2-tert-

butylaniline (288 mg, 0.30 mL) and a catalytic amount of trifluoroacetic acid. To this was 

added ethanol (20 mL) and the mixture was refluxed for 25 hours. The solvent was 

removed and the mixture purified by flash chromatography (SiO2, 15:85 EtOAc:Hexanes, 

1% Et3N) affording the product as a yellow solid (29%). M.p.: 70 º - 72 ºC. 1H NMR 

(400 MHz, [D] acetone-d6):  = 7.64 (dt, 2H, 3J = 4.0 Hz, 4J = 1.0 Hz), 7.39 (dd, 1H, 3J = 

7.9 Hz, 4J = 1.2 Hz), 7.19-7.15 (m, 2H), 7.04, (dt, 1H, 3J = 7.6 Hz, 4J = 1.4 Hz), 6.60 (dd, 
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1H, 3J = 7.7 Hz, 4J = 1.4 Hz), 2.66 (q, 2H, 3J = 7.6 Hz), 1.33 (s, 9H), 1.24 (t, 3H, 3J = 7.6 

Hz). 13C NMR (400 MHz [D] acetone-d6):  =164.9, 150.5, 147.8, 141.7, 132.0, 130.2, 

129.6, 128.1, 128.0, 125.4, 122.0, 36.8, 31.0, 14.5. MS: m/z 272.14643 [M + H]+

(calculated 272.14675). 

(3-Methyl-thiophen-2-ylmethylene)-phenyl-amine (8). In a round-bottomed 

flask (10 mL) was added 3-methyl-2-thiophenecarboxaldehyde (240 mg, 0.20 mL), 

aniline (175 mg, 0.17 mL) and a catalytic amount of trifluoroacetic acid (TFA). To this 

mixture was added anhydrous ethanol (5 mL). The mixture was heated at reflux 20 hours 

and the solvent removed. Purification by flash chromatography (SiO2, 2:98 EtOAc:Hex, 

1% Et3N) afforded the product as a yellow solid (7%). M.p.: 77 º - 79 ºC. 1H NMR 

(400MHz, [D] acetone-d6):  = 8.76 (s, 1H), 7.59 (d, 1H, 3J = 5.0 Hz), 7.39 (m, 2H, 3J = 

7.8 Hz, 4J = 2.0 Hz), 7.26-7.19 (m, 3H), 7.05 (d, 1H, 3J = 5.0 Hz), 2.51 (s, 3H). 13C NMR 

(400 MHz [D] acetone-d6):  = 153.8, 144.5, 138.5, 133.0, 131.5, 130.9, 127.5, 122.9, 

15.0. MS: m/z 202.06921 [M + H]+ (calculated 202.06849).

(2-tert-Butyl-phenyl)-(3-methyl-thiophen-2-ylmethylene)-amine (9). In a 

round-bottomed flask (10 mL ) was added 3-methyl-2-thiophenecarboxaldehyde (167 

mg, 0.14 mL) and 2-tert-butylaniline (201 mg, 0.21 mL). The mixture was heated at 65 

°C and stirred for four hours. Water produced by the reaction was removed in vacuo and 

the residue was purified by flash chromatography (SiO2, 5:95 EtOAc:Hex, 1% Et3N)

affording the product as a viscous yellow oil (74%). M.p.: < 20 ºC. 1H NMR (400 MHz, 

[D] acetone-d6):  = 8.61 (s, 1H), 7.56 (d, 1H, 3J = 5.0 Hz), 7.38 (dd, 1H, 3J = 7.8 Hz, 4J

= 1.4 Hz), 7.22 (td, 1H, 3J = 7.5 Hz, 4J = 1.5 Hz), 7.14 (td, 1H, 3J = 7.5 Hz, 4J = 1.5 Hz), 

7.01-6.97 (m, 2H), 2.51 (s, 3H), 1.46 (s, 9H). 13C NMR (400 MHz [D] acetone-d6):  = 
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152.9, 151.7, 144.7, 143.7, 139.1, 133.1, 131.6, 128.9, 127.7, 127.4, 121.1, 37.1, 31.9, 

15.0. MS: m/z 258.13160 [M + H]+ (calculated 258.13109).

Thieno[2,3-c]pyridine (10). The title compound was synthesized according to 

known methods40 using the Hendrickson modification of the Pomeranz-Fritsch reaction.  

1.3 Results & Discussion 

1.3.1 Synthesis 
The azomethine compounds reported in Figure 1-1 were chosen as they provide 

the means for assigning the nonradiative deactivation mode of the singlet excited state of 

the heteroatomic conjugated bond. The tert-butyl groups of the first 3 entries (1-3)

introduce a steric element enabling a study of the rotation around the N–phenyl bond. 

Similarly, the 3-methyl substituent on thiophene for 8-9 provides information about 

hindered rotation around the CH–thiophene bond.  Constrained rotation around these two 

bonds can further be investigated with the ketyl imine derivatives 4-7.

Figure 1-1. Azomethines prepared and investigated in addition to analogues.
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The preparation of the azomethine dyads reported in Figure 1-1 was initially 

attempted by Lewis Acid activation of the aldehyde with TiCl4 under anhydrous 

conditions. However, McMurray coupled products and other by-products were formed in 

majority with 3, rather than the desired products. The desired compounds were 

subsequently prepared via simple dehydration by refluxing the corresponding reagents in 

anhydrous alcoholic solvents with a catalytic amount of organic acid.

Alternatively, the azomethines could be prepared in bulk by heating the 

appropriate reagents to 50 °C along with a catalytic amount of an organic acid such as 

trifluoroacetic acid. This method accelerated the reaction process to 30 minutes compared 

to 36 hours of refluxing with the alcohol solvents. In all the cases, the compounds could 

be isolated in high yields and were all stable to additional purification by column 

chromatography on silica without additional precautions. This, concomitant with no 

apparent decomposition over time, confirms that azomethines are robust. Given that the 

majority of the compounds could be prepared by straightforward condensation methods 

with little by-products, the preparation of azomethines is a green-route to functional 

materials. 

1.3.2 Crystallographic Study 
Single crystal X-ray diffraction studies were carried out to determine the solid 

state structures. The data generated from these studies were also required for correct 

optimized geometry input for the semi-empirical calculations. The details of the crystal 

structure determination of 3 are presented in Table 1-1.  

X-ray quality crystals were obtained for 2, 3 and 5. As can be seen in Figure 1-2, 

the planes described by the two aromatic groups are twisted from coplanarity. This is in 
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contrast to 14 and 15 which are coplanar and highly conjugated.29,30 The dyads 1-9 have a 

lower degree of conjugation than their all-thiophene analogues as result of the reduced 

coplanarity. This is supported by the hypsochromic shifts in both the absorption and 

fluorescence of the dyads relative to 14 and 15.

Upon the introduction of bulkier species, the dihedral angle between the two 

aromatic rings increases. The dihedral angles for compounds 2, 3 and 5 are 44°, 86° and 

68°, respectively. The aromatic rings of 3 are nearly perpendicular to one another caused 

by the bulky tert-butyl groups surrounding the azomethine bond. In comparing 2 and 5,

which differ only by the addition of a methyl group on the azomethine carbon, it is 

evident that substitution on the azomethine is very important for increasing the amount of 

steric hindrance experienced by the azomethine linkage as the dihedral angle increases by 

over 20°. As a result of the large dihedral angle between the aromatic planes and the large 

size of the tert-butyl groups, little to no -stacking is observed in the solid state. This is in 

contrast to 14 and 15 which form highly organized networks.  
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Table 1-1. Details of crystal structure determination for 3.

Formula C23 H33 N S 
Mw (g/mol); F(000) 355.57 g/mol, 1552 

Crystal color and form Yellow needle 
Crystal size (mm) 0.16 x 0.07 x 0.02 

T (K); dcalcd. (g/cm3) 138 (2) ; 1.096 
Crystal System Monoclinic 
Space Group C 2/c 

Unit cell: a (Å) 38.898(3) 
b (Å) 6.1786(5)
c (Å) 19.3956(18)

 (°) 90.000
 (°) 112.449(4)
 (°) 90.000

V (Å3); Z 4308.2(6) ; 8 
range (°) ; completeness 70.40 ; 0.975 
Reflections: collected / 

independant; Rint
17194 / 4026 ; 0.0953 

(mm-1) Abs. Corr. 1.343
R1(F); wR(F2) [I > 2 (I)] 0.0743 ; 0.1743 
R1(F); wR(F2) (all data) 0.1471 ; 0.2173 

GoF (F2) 0.985 
Max. residual e– density 0.372 
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Figure 1-2. Crystallographic structure of 3 as shown along the a axis (top) and b axis 
(bottom).

1.3.3 Bond Rotation Barriers 
The rotation barriers of the aryl groups adjacent to the azomethine bond were 

calculated semi-empirically using AM1. The experimental parameters derived from the 

X-ray structures of the corresponding azomethines were used for both the starting 

geometries and parameters for calculating the heats of formation ( Hf). Even though the 

absolute Hf for each rotamer cannot be precisely calculated semi-empirically, an 

accurate bond rotation barrier can nonetheless be calculated from the relative energies. A 

representative rotational barrier energy diagram for 3 derived from these calculations is 
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shown in Figure 1-3. This a preferred method for determining the rotation barrier over 

standard NMR methods via coalescence temperatures since the compounds studied do 

not have required coupled protons allowing for such measurements. 
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Figure 1-3. A representative rotational barrier energy diagram for 3 semi-empirically 
calculated for =N–aryl ( ) and =CH–thiophene ( ) bond rotation.

The calculated rotational barriers calculated from the Hf of the different 

rotamers are tabulated in Table 2. The effects of substitution on the azomethine and the 2-

positions of the thiophene and phenyl on the CH–thiophene and N–aryl bond rotations, 

respectively, are evident from the calculated data. The bond rotation energy for CH–

thiophene is roughly 12 kJ/mol regardless of the substitutions made on the azomethine 

and thiophene rings, or the aryl groups attached to the azomethine bond. This is 

supported by the similar barriers calculated for 14, and the other azomethines reported in 

Figure 1-1.
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Table 1-2. Rotational barriers for various azomethine dyads semi-empirically calculated 
using AM1 starting from the X-ray crystal structure data. 

Compound N–Phenyl 
(kJ/mol) 

CH–Thiophene
(kJ/mol) 

1 14 5 
2 33 13 
3 32.5 13 
4 11 10 
5 87 5 
6 12 9 
7 811 8 
8 15 5 
9 33 13 
14 15 15 

Conversely, the N–aryl bond rotation is highly dependent upon the substituents. 

The bond rotation barrier increases by a factor of three compared to that for the CH–

thiophene barrier as a result of the ortho-tert-butyl group.  Given the similar values 

calculated for 2, 3 and 9, it can be concluded that substitution of the thiophene does not 

affect the barrier of rotation.  This is in contrast to azomethine alkylation and 

incorporating the tert-butyl group on the phenyl which collectively contribute to increase 

the N–aryl bond rotation barrier.

This is evidenced by the higher rotational barriers calculated for both 5 and 7.

Although the bond distances are longer in the excited state, the calculated bond rotational 

barriers for the ground state are not expected to be significantly different than for the 

corresponding excited state.41,42 Even if the extended bond distances in the excited state 

lower the bond rotation barrier, the rotational barriers of 5 and 7 should remain 

significantly higher than the other dyads. The rotation barrier data nonetheless 

demonstrate that these two azomethines should exhibit increased fluorescence relative to 
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their homologues if rapid excited state deactivation by bond rotation occurs for the 

azomethines. 

The hindered rotation is further evidenced by the X-ray crystal data showing the 

lowest energy rotamer where the mean plane angle of the phenyl group relative to the 

azomethine bond is 65 o and 53 o for 5 and 7, respectively (vide supra). This is in contrast 

to 14 that has relatively low rational barriers and whose X-ray structures show the 

thiophenes are co-planar to the azomethine bond.29,30 The calculated barriers combined 

with the XRD data confirm that the compounds exhibit different rotation barriers.  Singlet 

excited state deactivation via bond rotation can therefore be confirmed with the selected 

azomethines. 

1.3.4 Spectroscopic Studies 
Given the significant bond rotation barriers calculated for 5 and 7, these should 

exhibit increased fluorescence relative to the other azomethines if efficient singlet excited 

state deactivation occurs by either N–aryl or CH–thiophene bond rotation. However, only 

extremely weak fluorescence was observed for all the azomethines despite both their 

substitution and changes in solvent polarity. These results are shown in Table 1-3. 

Very little difference in fluorescence was also observed at 77 K for 1-9, as seen in 

inset of Figure 1-4.  Since all modes of deactivation by rotation are suppressed at this low 

temperature, deactivation by the internal conversion means of bond rotation would result 

in increased fluorescence. 
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Table 1-3. Spectroscopic data for compounds 1-9, 10, 11 and 14. Values listed were 
recorded in acetonitrile solutions. Phosphorescence measurements were recorded in 
methylcyclohexane. 

Compound abs
(nm) 

Sh. (nm) fl
(nm)

E
(nm) 

Phos (nm) fl (10-3)
(298)K

Eg
spec

(eV)
Eg

echem

(eV)
1 298 269, 326 396 345 437, 701 2.3 3.6 3.1 
2 298 268, 339 310 305 510, 706 0.8 4.1 3.2 
3 283 264 311 294 516, 704 0.9 4.2 3.4 
4 284 263 313 300 516, 700 2.5 4.1 3.2 
5 288 263 316 298 510, 708 0.4 4.2 3.8 
6 257 283 336 307 - 1.7 4 3.4 
7 263 231, 284 402 N/A 512, 708 1.6 4.1 3.5 
8 287 335 398 364 524, 716 5.4 3.4 3.5 
9 298 341 425 362 - - 3.4 3.7 
10 298 - 415 307 - 3.6 4 - 
11 227 298 298 294 430 19 4.2 - 
14 400 - 480 425 691 2.9 2.9 2.6 
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Figure 1-4. Normalized absorbance ( ), fluorescence ( ), and phosphorescence ( )
spectra of 3 in methylcyclohexane. Inset: Fluorescence spectrum of 3 at room 

temperature magnified ten times ( ) and at 77 K ( )measured in a 4:1 ethanol:methanol 
matrix.
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Further evidence of deactivation by means other than bond rotation is obtained 

from 10, which also does not fluoresce. This compound should exhibit enhanced 

fluorescence compared to 1-9 because rotation around either the N–aryl or CH–thiophene 

bond is not possible. The absence of fluorescence of 10 implies that azomethine 

fluorescence quenching occurs via another deactivation mode. 

The similarly weak fluorescence yields of 10 and 11 imply that thiophene is 

inherently a weak fluorophore. This is in contrast to oligothiophenes whose fluorescence 

yield increases with increased degree of conjugation.36,37 Similary, thiophene vinylenes 

fluoresce significantly more than their azomethine derivatives. The weak fluorescence 

notwithstanding, the fluorescence yield of 11 is five times greater than 10,43,44 confirming 

that the heteroatomic bond contributes to fluorescence deactivation. The lack of increased 

azomethine fluorescence at 77 K concomitant with the nonexistent fluorescence quantum 

yields unequivocally confirms that internal conversion is not a major deactivation mode 

of azomethine singlet excited state deactivation. 

1.3.5 Singlet Manifold 
Useful information concerning the excited state deactivation processes is derived 

normally from fluorescence lifetime measurements. Unimolecular decays on the order of 

a few ns were observed for the studied azomethines. However, accurate fast lifetime 

measurements could not be obtained owing to the weak azomethine fluorescence 

concomitant with the instrument time resolution. Fluorene and bithiophene were 

subsequently used to probe the azomethine deactivation by steady-state fluorescene.  

Even though thiophene is the ideal model system for investigating the 

fluorescence deactivation by the azomethine bond for the compounds studied, 
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bithiophene was selected owing to its stronger fluorescence.37 Similarly, the deactivation 

of fluorene was examined because of its inherent fluorescence ( fl=0.78).29 The aliphatic 

azomethine (13) was used for probing the fluorescence quenching of the two 

fluorophores. This quencher was chosen because fluorescence deactivation uniquely from 

the heteroatomic bond can be followed. The different singlet excited state energies of 

fluorene (404 kJ/mol)45 and bithiophene (358.2 kJ/mol)36 further allow examining the 

energetics and quenching kinetics with 13.

The fluorescence quenching kinetics and efficiencies can be derived using the 

Stern-Volmer method by examining the change in fluorescence as a function of quencher 

concentration [13] according to: 0/  = 1 + kq• -1•[13], where 0 is the fluorescence in 

the absence of quencher,  the fluorescence with quencher, kq the second order 

fluorescence quenching rate constant, and  is the fluorophore fluorescence lifetime in the 

absence of quencher. A typical Stern-Volmer fluorescence quenching with 13 is shown in 

Figure 1-5. The quenching rate constants (kq) calculated from the fluorophore lifetime for 

both fluorene and bithiophene in acetonitrile were 1 x 1010 and 7 x 1010 M-1 s-1,

respectively.  The kq for bithiophene is slightly greater than the diffusion limit in 

acetonitrile (kdiff = 2 × 1010 M-1 s-1) owing to inaccurate fluorescence lifetimes of 

bithiophene.36,37 This aside, fluorescence deactivation by 13 is diffusion controlled in 

acetronitrile. Similarly, the fluorene fluorescence lifetime was quenched with 13 at near 

diffusion controlled limits of kq = 2.5 x 1010 M-1 s-1.42 The time resolved fluorescence 

confirms that fluorophore quenching by azomethines is a dynamic process. 
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Figure 1-5. Fluorescence quenching of bithiophene in acetonitrile as a function of [13]:
(0 mM ( ) through 3.3 mM ( ), 6.6 mM ( ), 12.8 mM ( ) and 18.6 mM ( )). Inset: 
Stern-Volmer relationship of describing bithiophene fluorescence changing with [13].

The fast fluorescence deactivation implies that the azomethine deactivation occurs 

by photoinduced electron transfer from the fluorophore’s excited singlet state to the 

azomethine acceptor. The fast rate constant also suggests that PET is efficient. The 

amount of quencher required for quenching 95 % of the produced singlets can be 

calculated according to: 20 x ko / kq, where ko is the inherent lifetime of the fluorophore 

in the absence of quencher and kq is the quenching rate constant derived from the Stern-

Volmer quenching experiments. From the measured kq and fluorene fluorescence 

lifetime, it can be calculated that only 160 mM of 13 is required for quenching 95 % of 

the singlet excited states of fluorene by intermolecular or intramolecular PET. 

For intramolecular deactivations, the fluorophore and quencher are covalently 

linked and diffusion is not required for deactivation. The concentration of excited state 
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species produced under such conditions is ca. M while the fluorophore ground state 

concentration is ca. 3 M.46 The azomethine bond of 1-9 is in a 20 fold excess to what is 

required to quench 95 % of the singlet excited states when these azomethines are excited. 

This leads to rapid and efficient fluorescence quenching by intramolecular PET by the 

azomethine bond. The excess inherent azomethine concentration in the ground state 

concomitant with rapid kq confirms that the suppressed azomethine fluorescence is a 

result of efficient intramolecular PET.47,48 Radical ion formation would unequivocally 

confirm PET. However, such products cannot be formed for the dyads since the back 

electron transfer reaction is also favoured and that the radical ions cannot diffuse apart 

once they are formed. 

Additional evidence for PET quenching is derived from the complementarity of 

the electron donor and acceptor energy levels. The fluorophore donor and the azomethine 

acceptor’s suitability of undergoing PET can empirically be calculated according to the 

Rehm-Weller equation49

G°eT = Epa (fluorophore) - Epc (quencher) - E0,0 - .

The relationship takes into account the fluorophore’s capacity to donate an electron (Epa), 

the azomethine’s capacity to accept the electron to be transferred (Epc), and the solvent 

reorganization energy ( ).  The Epa and Epc correspond to the oxidation and reduction 

potential of the fluorophore and azomethine, respectively.  These values required for the 

Rehm-Weller equation can be measured by cyclic voltammetry (Figure 1-6, inset) from 

the oxidation and reduction potential for the electron donor and acceptor, respectively.  
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Table 1- 4. Oxidation and reduction potentials for 1-9, 13, and the model compound 
bithiophene from cyclic voltammetry measurements in anhydrous and deaerated 
acetonitrile and calculated energetic of electron transfer.

Compound 
Epa (V)

vs. Ag/AgCl
Epc (V) vs. 
Ag/AgCl

G°
(kJ/mol) 

Bithiophenea

1 1.2 -1.9 -44 
2 1.2 -2 -35 
3 1.4 - - 
4 1.5 -1.7 -69 
5 1.5 -2.3 -6 
6 1.5 - - 
7 1.4 - - 
8 1.6 -1.9 -44 
9 1.6 -2.1 -25 
13 - -1.1 -121 

aElectronic transfer energetics calculated from the Rehm-Weller  
equation for quenching of bithiophene by the various azomethines. 
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Figure 1-6. Cyclic voltammogram of 3 measured in acetonitrile. Inset: Cyclic 
voltammogram of bithiophene, anodic ( ) scans and 13 cathodic ( ) scans as measured 

in acetonitrile at sweeprate of 100 mV/sec.
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Figure 1-7. Normazlied absorbance ( ) and fluorescence ( ) spectra of bithiophene 
measured in anhydrous and deaerated acetonitrile

The corresponding redox potentials measured for bithiophene and 13 are reported 

in Table 1-4. The energy gap ( E0,0) between the ground and excited singlet states of the 

fluorophore must also be taken into account since PET involves electron transfer from its 

excited state. This is calculated from the intercept of the normalized plot of the 

absorption and fluorescence spectra of the fluorophore, illustrated in Figure 1-7.  

The calculated energetics of PET for the bithiophene-imine quencher (13) donor-

acceptor couple is favourable (-121 kJ/mol). The energetics of intramolecular PET are 

equally exergonic (-25 to -69 kJ/mol) for the azomethines 1-9 as derived from the 

corresponding the oxidation and reduction potentials recorded in Table 1-4. The 

quenching studies of 13 confirm that azomethines efficiently quench the singlet excited 

state via PET.  In addition, the electrochemical and spectroscopic data of 1-9 confirm that 

intramolecular PET is energetically possible. The calculated exergonic values from the 
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Rehm-Weller equation, the measured diffusion controlled kq for intermolecular PET, and 

the 20 fold excess of ground state azomethine prove that intramolecular PET is an 

efficient mode of singlet excited state deactivation for azomethines.   

Azomethine protonation not only effects the azomethine Epc, but it further 

changes the HOMO and LUMO energy levels such that the E0,0 varies. By perturbing 

both the E0,0 and Epc of the fluorophore-azomethine pair, PET can be disfavoured, and 

hence, turned-off. Increased fluorescence should therefore be observed with azomethine 

protonation resulting from PET being switched off. Protonation of 1 and 4 with 

trifluoroacetic acid in anhydrous acetonitrile resulted in fluorescence increases of only 

60% and 37%, respectively, while increases on the order of 400% were expected.  

Despite a marginal increase, the fluorescence is not significantly restored to that of 

inherently fluorescent fluorophores. The observed increased is consistent with the 

fluorescence difference between 10 and 11, which differ only with the heteroatom. The 

increased fluorescence observed with azomethine protonation confirms that PET is 

responsible for quenching the azomethine fluorescence.  However, since the fluorescence 

of 1 and 4 are not increased by 400%, another nonradiative mechanism for excited state 

deactivation competes with PET.  

1.3.6 Triplet manifold 
According to the following energy conservation equation the sum of all the 

excited state deactivation processes ( fl + IC + PET + PI + ISC) must equal unity, 

where PI is photoisomerization.  fl and IC are negligible since azomethines do not 

fluoresce and they are not deactivated by internal conversion (IC) confirmed by the 

temperature dependant fluorescence measurements according to IC fl (77 K) - fl
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(298 K). Moreover, the slight fluorescence increase upon azomethine protonation 

confirms that PET < 0.1. The energy conservation equation can further be simplified to: 

PET + ISC 1 considering that no photoisomers (PI) were observed and that 

azomethines are not known to undergo PI.50 Azomethine singlet excited state deactivation 

thus occurs by both PET and intersystem crossing (ISC) to form the triplet state.  

Laser flash photolysis of the azomethines was used for confirming triplet 

manifold formation by ISC.  The triplet transient produced should be spectroscopically 

detected and quantified with this technique. However, no triplet was detected for 1-9.

Phosphorescence measurements were subsequently done in glass matrices at 77 K.  At 

this low temperature, collision deactivation processes that would otherwise thermally 

deactivate the triplet are eliminated. Weak phosphorescence can subsequently be seen if 

the triplet state is formed. Even though phosphorescence was observed for all the 

azomethines studied, only qualitative information regarding the triplet state can be 

obtained in part because phos < ISC. Azomethine phosphorescence confirms that the 

triplet is produced at 77 K, but that it is efficiently deactivated at room temperature. 

Bithiophene was examined by LFP in order to understand the absence of 

azomethine transient signal. Bithiophene was chosen because it produces a visible triplet 

detectable by LFP and it serves as a model thiophene compound whose lifetime can be 

monitored.37,51 The bithiophene triplet was quenched by the imine 13 as seen in the inset 

of Figure 1-8. The decrease in signal intensity with added 13 implies static quenching 

while the shortened lifetime suggests dynamic quenching.  
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Figure 1-8. Change in the first order rate constant of triplet decay of bithiophene as a 
function of [13] in anhydrous and deaerated acetonitrile. Inset: Triplet decay of 

bithiophene as a function of [13] (0 mM ( ) through 0.8 mM ( ), 2.2 mM ( ), 4.0 mM 
( ) and 7.7 mM ( )) in deaerated and anhydrous acetonitrile excited at 266 nm and 

monitored at 380 nm.

The change in the triplet decay rate constant as a function of added imine 

quencher 13 leads to the Stern-Volmer plot seen in Figure 1-8. The second order 

quenching rate constant (kq) is derived from the slope similar to the fluorescence studies 

(vide supra). The calculated kq is 2 x 107 M-1 s-1. The slower than diffusion controlled 

quenching process is most likely a result of the triplet energy of 13 being higher than that 

of bithiophene.36,42 This notwithstanding, only 20 mM of 13 is required to quench 95 % 

of the bithiophene triplets produced by intermolecular energy transfer. This is derived 

from the measured kq and ko. Although only 20 mM of 13 is required for efficient triplet 

quenching, the effective azomethine concentration for intramolecular self-quenching with 
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1-9 is 150 times in excess. Therefore, any triplet of 1-9 that is produced is quenched by 

intramolecular energy transfer to the azomethine within ca. 5 ns.  This lifetime is much 

shorter than the shortest time measurable by the LFP instrument.  The high effective 

azomethine concentration available for intramolecular triplet quenching results in fast 

triplet deactivation of 1-9 by energy transfer to the azomethine and no apparent signal by 

LFP.

1.4 Conclusions 
It was demonstrated that azomethines can efficiently deactivate both the singlet 

and triplet excited states. Therefore, when using these heteroatomic bonds for preparing 

functional materials, their fluorescence will be completely suppressed resulting from 

efficient intramolecular self-quenching regardless of the fluorophore. Fluorescence can 

be restored by protonating the azomethine. Protonation perturbs the donor-acceptor 

energy levels, exergonically disfavouring PET such that quenching of the singlet excited 

state by this method is suppressed.  Even though the fluorescence can potentially be 

restored by protonating the azomethine, competitive deactivation of the singlet excited 

state by ISC must also be considered. This is particularly important since increasing the 

degree of conjugation modifies the singlet-triplet energy gap and favours ISC.

This is the case with polyazomethines, which are highly conjugated. Formation of 

the triplet state was observed for the azomethine dyads investigated. This manifold is 

deactivated via rapid intramolecular energy transfer to the azomethine, occurring much 

faster than the time resolution of the LFP instrument. Therefore, the azomethine group 

efficiently deactivates both the singlet and triplet excited states resulting in the 
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suppressed azomethine fluorescence regardless if intrinsically fluorescence fluorophores 

are incorporated into the azomethine. 

By perturbing the singlet excited state, azomethine protonation also affects the 

conjugation degree, which in turn, modifies the singlet-triplet energy gap. By choosing 

inherently fluorescent fluorophores, azomethines can be made highly fluorescent. 

Azomethine fluorescence can be restored by azomethine protonation resulting in the 

combined effect of turning off intramolecular PET and reducing ISC by increasing the 

singlet-triplet energy gap. Subsequently, azomethine fluorescence can switched either on 

or off by acid protonation. The photophysical properties of azomethines can thus be tuned 

to match those of their carbon analogues. Taking into account their simple synthesis and 

green protocols requiring little purification concomitant with their robustness and 

electrochemical properties, azomethines are viable alternatives for functional materials.  

This is especially true since their fluorescence can be tuned to equal their carbon 

analogues.
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Chapter 2: Synthesis and Characterization of Thiophene
Azomethine Metal Complexes



57

2.1 Introduction 
 The work presented in this section is based on the formation of metal complexes 

using various thiophene azomethine ligands. The ligands can be broken down into two 

categories depending on the heterocycles coupled by the azomethine linkages. The first 

set of ligands are composed of two or three thiophene rings each separated by an 

azomethine linkage. The second ligand set contains a hydroxyquinoline moiety linked to 

a thiophene ring through an azomethine bond. 

 The choice of azomethine ligand is two-fold. The first reason is that azomethine 

synthesis is relatively simple; a one-pot reaction that can be easily purified in high 

yield.52 Secondly, the study of azomethine photophysics is a central theme of this 

research group.30,33,53 As previously discussed, azomethine fluorescence is nonexistent in 

nearly all cases. To further investigate this curious effect, the azomethine linkage can be 

used to coordinate with metals thereby restricting the bond rotations and vibrations 

associated with the azomethine linkage. In Chapter 1, it was shown that increased steric 

bulk around the azomethine linkage caused an increase in the bond rotation barriers about 

the thiophene-CH and the N-aniline bonds in the dyads 1-9.

The processes of bond rotation and vibration are important in defining the 

quantum yield of internal conversion, IC, for an excited state undergoing decay. 

Decreasing the contribution of IC could result in an increase in fluorescence, fl, as the 

other values in equation E-1 should not change significantly with metal complexation. 

Therefore, metal complexation could be used to increase the amount of fluorescence 

observed for azomethine containing ligands by constraining the internal conversion 

processes of bond rotation and vibration. 



58

 The hydroxyquinoline functionality was chosen as a model compound for many 

reasons. A discussion presenting the benefits and applications of hydroxyquinoline type 

ligands will be presented in section 2.1.2. At this point, it is important to point out that 

various quinoline-type molecules and complexes find use in industrial technological 

applications (e.g. organic light emitting devices),54,55,56,57 in biological roles (e.g. 

photosynthetic system II)58,59 and biological applications (e.g. antifungal medications)60

as well as in other applications such as metal ion sensors.61,62 

 The ligands synthesized in this work are multidentate. This is important as 

multidentate ligands play a central role in the field of supramolecular chemistry. A 

secondary goal of this work was to develop supramolecular structures derived from the 

polymer-like structure that can form in the presence of multidentate ligands. Structures of 

interest in supramolecular chemistry include coordination polymers, molecular grids and 

boxes, as well as multistrand helicies. Supramolecular chemistry will be briefly discussed 

later in this report.63,64,65

 The complexes formed in this work were characterized mainly through UV-vis 

absorbance and fluorescence spectroscopy. NMR spectroscopy and mass spectrometry 

were used to study the ligands in the free state, but the metal complexes proved difficult 

to study by these methods due to low solubility and interference with the magnetic field. 

Cyclic voltammetry studies of the ligands were also carried out, but once again, solubility 

issues made analyses of the complexes unreliable.  
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2.1.1 Azomethine Ligands and Polythiophenes 
Molecules containing azomethine (C=N) linkages have recently been studied as 

suitable replacements for currently used conjugated organic materials due to the fact that 

the azomethine linkage is isoelectronic with the ethene (C=C) linkage.30,33,53 The 

delocalization of the -type electrons allows for aromatic conjugation through the 

azomethine bond. In this respect, azomethine containing molecules can show a high 

degree of aromatic conjugation which makes them attractive molecules for applications 

in organic electronic devices (i.e. organic light-emitting diodes [OLEDs], field effect 

transistors [OFETs], etc.). 

Azomethines can be synthesized rapidly in high yields using simple reaction 

conditions. Azomethines are frequently synthesized in facile, one-pot reactions that do 

not require the use of metal catalysts.30,33,53,64 For this reason, azomethines are very 

attractive as functional materials due to the ease with which they can be produced. The 

reactions used to produce them can be scaled up without a significant loss in yield. Due 

to a high chemical stability and resistance to reduction, the purification of these 

molecules is made quite simple. They are, however, susceptible to acid-catalyzed 

hydrolysis and therefore must be protected from acids.33,66

The addition of a thiophene moiety to the aromatic core of an azomethine 

molecule is useful in that it affords a lower oxidation potential than its benzene 

analogues.33 Polythiophene type polymers are widely used in electronic devices with 

materials like polyethylenedioxythiopene (PEDOT) being a main component of the 

conducting layer of many laboratory synthesized electronic devices.67 Polythiophene has 

been shown to be a material that conducts electricity very efficiently. For this reason, 
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amongst others, thiophene containing materials are chosen as starting points for the 

design of new conducting materials. 

 The addition of thiophene to the materials studied in this work not only moderates 

the electrochemical properties of those materials, but it can also be used to serve as a 

chelation site in metal complexation reactions. One of the lone pairs on the sulfur atom in 

thiophene is used in producing the aromaticity in thiophene rings while the other is 

available as a chelating lone pair. The azomethine nitrogen also demonstrates this 

property with its lone pair available for chelation. Azomethine materials are useful for the 

development of metal complexes for this reason.68,69,70

2.1.2 Hydroxyquinoline Ligands 
 Quinoline and hydroxyquinoline-based ligands used in metal complexation 

reactions have been studied extensively in the past owing to their strong chelating 

capabilities and the fact that quinolines are an important molecule in many biological 

systems.58,59 In addition to their biological relevance, quinoline complexes serve an 

important role in techonology. Tris(8-hydroxyquinoline)aluminum (AlQ3), a complex 

that uses hydroxyquinoline as a bidentate ligand, is the most widely used blue-emitting 

layer in organic light emitting devices (OLEDs).56,57

 The extensive use of quinoline-based molecules comes from multiple physical 

characteristics. Quinoline is a bi-cyclic molecule containing two fused rings, one of 

benzene and one of pyridine. Hydroxyquinoline often takes the form of 8-

hydroxyquinoline, where its hydroxyl group is found in the same position on the benzene 

ring as is the nitrogen in the pyridine ring. This is important as it gives the ligand a 



61

strong, bidentate chelating site.55 Figure 2-1 depicts the bidendate chelation site of 8-

hydroxyquinoline (8-HQ). 

N
O-

M+

Figure 2-1. Structure and bidentate chelation site of 8-hydroxyquinoline (8-HQ).

 The HOMO-LUMO levels on hydroxyquinoline are displaced over the bi-ring 

system. The result of this is that the HOMO-LUMO levels can be easily tuned to vary the 

resultant photophysical and electrochemical properties of the ligand, and consequently, 

the properties of any metal complexes formed from these ligands.55,71,72 

Substitutions on the hydroxyquinoline ring are often made at the 5-position, para- 

to the hydroxyl group. Substitutions at the 5-positions including chromophores, electron-

withdrawing and donating groups, or chains containing long alkyl spacers can 

significantly effect the photophysics of the system. The addition of different functional 

groups on the 2-, 4-, and 5-positions of hydroxyquinoline units has demonstrated a 

significant variation in the photophysics of substituted quinolines.55,60,72,73

 Quinoline-based derivatives can also be used to determine the presence of metal 

ions in solution. Due to their variable photophysical properties, strong, naked-eye visible 

colour changes can be effected by complexation with a specific metal ion. The obvious 

device design in this case is a small, portable metal-ion sensor that can be used in the 

field to detect the presence of metal ions in drinking water when access to an analytical 

chemistry lab is either impractical or impossible.61,62,74
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 In addition, substituting the 5-position with a molecular fragment containing more 

chelation sites can give the entire ligand the ability to be tridentate, tetradentate or even 

more chelating. Substitutions can include the insertion of N=N bonds, C=N bonds and the 

addition of other chelating units like pyridine and quinoline units.75

 Molecules with a high degree of denticity, that is four or more chelation sites, are 

widely used in the field of supramolecular chemistry to form higher order molecular 

structures like mulitstrand-helices, molecular frameworks like grids and boxes, as well as 

other higher order aggregates based on the smaller supramolecular structure.76,77 An 

example of a supramolecular polymer based on a tetradentate hydroxyquinoline-pryidine 

ligand is shown in Figure 2-2.

N

-O N S

M2+

N

O-NN

N

-O N N

M2+ M2+

n

M2+

Figure 2-2. An example of the possible chelation modes of ligand L4 (left). An example 
of a coordination polymer, a supramolecular structure formed by metal coordination with 
a multi-dentate ligand (right).

2.2 Experimental Section 

2.2.1 General Procedures 
All reagents were commercially available and were used as received unless 

otherwise stated. Anhydrous and deaerated solvents were obtained with a Glass Contour 

solvent purification system. 1H NMR and 13C NMR spectra were recorded on a Bruker 

400 MHz spectrometer with the appropriate deuterated solvents 
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2.2.2 Spectroscopic Measurements 
The absorption measurements were done on a Cary-500 spectrophotometer while 

the fluorescence studies were performed on an Edinburgh Instruments FLS-920 

fluorimeter after deaerating the samples thoroughly with nitrogen for 20 minutes.  

Fluorescence quantum yields were measured at 10–5 M by exciting the compounds 

of study at 303 nm in spectroscopic grade ethanol at room temperature and the resulting 

fluorescence was compared to bithiophene ( fl = 0.013 in ethanol).30

2.2.3 Electrochemical Measurements 
Cyclic voltammetric measurements were performed on a Bio Analytical Systems 

EC Epsilon potentiostat. Compounds were dissolved in anhydrous and deaerated 

dichloromethane containing a concentration of 0.1 M NBu4PF6. A platinum electrode and 

a saturated Ag/AgCl electrode were employed as auxiliary and reference electrodes, 

respectively. 

2.2.4 Ligand Synthesis 
Ligands synthesized in this work were prepared by the general route used in the 

formation of azomethine linkages. The synthetic approach towards azomethines is shown 

in Figure 2-3. Also presented in Figure 2-3 are the structures of precursor molecules 2-1,

2-2 as well as the structures of the prepared ligands, L1-5. The condensation reaction of an 

aldehyde and an amine in an alcoholic solution, catalyzed by acid, yields the azomethine 

ligands. The purification of the ligands is carried out by separation on a silica gel column 

using the volatile organic base triethylamine to protect the acid-sensitive azomethine 

linkage from hydrolysis.
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Figure 2-3. The general synthetic route for the preparation of ligands (shown at bottom)  
and the structures of all prepared ligands, L1-5.

2,5-Diamino-thiophene-3,4-dicarboxylic acid diethyl ester (2-1). The

optimized procedure is based on similar reports.30,33,53,78 In a round-bottomed flask (50 

mL), Sulfur (1.04 g) and triethylamine (0.75 g , 1.03 mL) were stirred together in DMF 

(5 mL). After 30 minutes of stirring at room temperature, the solution turned a dark-red 

colour. Ethyl cyanoacetate (7.3 g, 6.9 mL) diluted in DMF (5 mL) was subsequently 

added dropwise over 30 min. The opaque solution was allowed to stir under ambient 

conditions for three days, after which the solvent was removed under vacuum, yielding a 

brown solid. The solid was loaded onto a silica gel column and eluted with using a 

solvent gradient starting with 100% hexanes and gradually increasing the polarity up to 

35% ethyl acetate (EtOAc) yielding the title compound (0.96 g, 12%) as a gold powder. 

M.p.: 155 - 156 °C. 1H NMR (400 MHz, [D] acetone-d6);  = 6.15 (s, 4H), 4.17 (q, 4H, 3J

= 7.1 Hz), 1.25 (t, 6H, 3J = 7.1 Hz). 13C NMR (100 MHz, [D] acetone-d6):  = 166.7, 

151.3, 103.7, 61.0, 15.7. MS: m/z = 281.05649 [M+H]+ (calculated 281.05665). 
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8-Hydroxy-quinoline-5-carbaldehyde (2-2). The aldehyde 2-2 was synthesized 

according to the literature procedure reported by Clemo and Howe.79 In a two-necked 

round-bottomed flask (250 mL) was mixed 50 mL of a 15 % wt solution of NaOH in 

distilled water (8.3 g dissolved in 47.03 g of water), ethanol (25 mL), and 8-

hydroxyquinoline (9.88 g). After dissolution of the 8-hydroxyquinoline, dichloromethane 

(11.4 g, 8 mL) was added dropwise with stirring over 45 minutes. The reaction mixture 

was refluxed overnight at which point the mixture was cooled to room temperature and 

acidified with dilute hydrochloric acid. The brown precipitate formed was filtered and 

dried under vacuum in the presence of P2O5 in a dessicator. The precipitate was then 

extracted for 48 hours using a Sohxlet extraction apparatus with petroleum ether as the 

solvent. The extracted crude product was then recrystallized from ethanol, then from a 

mixture of ethyl acetate and hexanes yielding 45.5 mg (0.5%) of the product as yellow 

spars. 1H NMR (400MHz, [D] methanol-d3);  =  10.10 (s, 1H), 9.66 (d, 1H, 3J = 8.6 Hz), 

8.90 (d, 1H, 3J = 2.9 Hz), 8.09 (d, 1H, 3J = 8.0 Hz), 7.70 (dd, 1H, 3J = 8.6 Hz, 3J = 4.3 

Hz), 7.24 (d, 1H, 3J = 8.0 Hz), 4.87 (s, OH). 13C NMR (100 MHz, [D] methanol-d3):  = 

193.7, 161.1, 150.0, 141.9, 135.1, 128.5, 125.5, 124.3, 111.3, 101.0.

2-[(Thiophen-2-ylmethylene)-amino]-thiophene-3-carbonitrile (L1). In a 

round-bottomed flask (50 mL) was added 2-thiophenecarboxaldehyde (1.47 g, 1.20 mL) 

dissolved in  ethanol (30 mL), 2-amino-3-cyanothiophene (1.63 g) and a catalytic amount 

of trifluoroacetic acid (TFA). The mixture was refluxed overnight for 22 hours. Complete 

removal of the solvent afforded a viscous yellow oil which was purified by flash column 

chromatography (SiO2, 10:90 EtOAc:Hexanes, 1% Et3N) yielding the product as a yellow 

solid (57%). M.p.: 20 ºC. 1H NMR (400MHz, [D] acetone-d6);  = 8.91 (s, 1H), 7.91 (d, 
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1H, 3 J = 5.0 Hz), 7.83 (dd, 1H, 3J = 3.6 Hz, 4J = 1.0 Hz), 7.42 (dt, H, 3J = 7.0 Hz, 4J =

1.8 Hz), 7.30-7.25 (m, 2H).  

2-Amino-5-[(thiophen-2-ylmethylene)-amino]-thiophene-3,4-dicarboxylic 

acid diethyl ester (L2). The optimized procedure is based on similar reports.30,33 To an 

ethanolic solution of 2-1 (254 mg) was added 2-thiophenecarboxaldehyde (137 mg). The 

mixture was refluxed for 20 hours after the addition of a catalytic amount of 

trifluoroacetic acid (TFA). The solvent was removed, and the product was isolated (245 

mg, 70%) as a yellow solid after purification by flash chromatography (SiO2, 40:60 

EtOAc:Hexanes, 1% Et3N). M.p.: 114 - 116 °C. 1H NMR (400MHz, [D] acetone-d6):  = 

8.26 (s, 1H), 7.64 (d, 1H, 3J = 5.0 Hz), 7.52 (d, 1H, 3J = 3.2 Hz), 7.46 (broad, -NH2), 7.14 

(dd, 1H, 3J = 5.2, 3J = 4.0 Hz), 4.33 (q, 2H, 3J = 7.1 Hz), 4.20 (q, 2H, 3J = 7.1 Hz), 1.38 

(t, 3H, 3J = 7.1 Hz), 1.26 (t, 3H, 3J = 7.1 Hz). 13C NMR (100 MHz, [D] acetone-d6):  = 

165.0, 164.3, 161.1, 161.0, 146.1, 143.2, 132.9, 132.0, 130.5, 128.4, 101.9, 61.0, 60.0, 

14.3, 14.1. MS: m/z = 353.06251 [M+H]+ (calculated 353.06242). 

2,5-Bis-[(thiophen-2-ylmethylene)-amino]-thiophene-3,4-dicarboxylic acid 

diethyl ester (L3). The optimized procedure is based on similar reports.30,33 To an 

solution of 2-1 (209 mg)  dissolved in anhydrous isopropanol (15 mL) was added 2-

thiophenecarboxaldehyde (200 mg). The mixture was refluxed for 20 hours following the 

addition of a catalytic amount of trifluoroacetic acid. The solvent was removed, and the 

product was isolated as a dark red solid (240 mg, 67%) after purification by flash 

chromatography (SiO2) starting with 100% hexanes and gradually increasing the polarity 

to 30% ethyl acetate and 70% hexanes. M.p.: 125 - 126 °C. 1H NMR (400MHz, [D] 

acetone-d6):  = 8.75 (s, 2H), 7.85 (d, 2H, 3J = 5.2), 7.76 (d, 2H, 3J = 3.7), 7.26 (dd, 2H, 
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3J = 5.2, 3.7), 4.31 (q, 4H, 3J = 7.2), 1.36 (t, 6H, 3J = 7.2). 13C NMR (100 MHz, [D] 

acetone-d6):  = 163.0, 153.60, 149.2, 142.4, 135.1, 133.2, 128.9, 127.5, 61.2, 14.2. MS: 

m/z = 447.04921 [M+H]+ (calculated 447.05015). 

Synthesis of Ligands L4 and L5

 Prior to use in the preparation of ligands L4 and L5, the starting material 5-amino-

8-hydroxyquinoline (5A8HQ) was both purified and deprotonated. The procedures for 

these work-ups are presented herein. 

Purification of 5-amino-8-hydroxyquinoline dihydrochloride salt

 The product obtained from Aldrich-Sigma was dissolved in MeOH and filtered to 

remove insolubilities. The solution was then treated with diethyl ether causing 

precipitation of the quinoline salt. The quinoline salt was recovered by filtration and 

stored prior to use in synthetic reactions. 

5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol (L4). In a round-bottomed 

flask (25 mL), 5-amino-8-hydroxyquinoline dihydrochloride salt (200 mg) was dissolved 

in dry methanol (5 mL). To this reddish-brown solution was added triethylamine (excess) 

such that the solution colour changed to yellow-orange. The solvent and excess 

triethylamine was removed under vacuum. The de-protonated 5-amino-8-

hydroxyquinoline was then re-dissolved in anhydrous ethanol (15 mL). To this was added 

excess 2-thiophenecarboxaldehyde (1.22 g, 1.0 mL) and a catalytic amount of 

trifluoroacetic acid. The mixture was heated to reflux overnight, 24 hours, and the solvent 

removed. The product was purified by flash chromatography (SiO2, 40:60 



68

EtOAc:Hexanes as eluent, 1% Et3N). The product was obtained as a yellow-brown solid 

(181 mg, 40.5 %). M.p.: 157 - 159 ºC. 1H NMR (400MHz, [D] acetone-d6):  = 8.92 (s, 

1H), 8.88 (dd, 1H, 3J = 3.8 Hz, 4J = 1.6 Hz), 8.81 (dd, 1H, 3J = 8.5 Hz. 4J = 1.6 Hz), 8.75 

- 8.60 (broad, 1H, OH peak), 7.74 (dt, 1H, 3J = 5.0 Hz, 4J = 2.0 Hz), 7.68 (dd, 1H, 3J = 

3.7 Hz, 4J = 0.9 Hz), 7.62 (m, 1H, 3J = 4.4 Hz), 7.40 (d, 1H, 3J = 8.2 Hz), 7.23 (m, 1H, 3J

= 4.3 Hz, 4J = 1.4 Hz), 7.15 (d, 1H, 3J = 8.1 Hz). 13C NMR (100MHz [D] acetone-d6):  = 

153.7, 153.4, 150.5, 145.5, 140.7, 140.1, 134.6, 134.4, 132.2, 129.9, 127.0, 123.7, 115.8, 

111.8. MS: m/z = 255.11557 [M + H]+ (calculated 255.11545). 

6-(2-[2,2']Bithiophenyl-5-yl-vinyl)-quinolin-8-ol (L5). In a round-bottomed 

flask (25 mL), 5-amino-8-hydroxyquinoline dihydrochloride salt (102 mg) was dissolved 

in dry methanol (5 mL). To this reddish-brown solution was added triethylamine (excess) 

such that the solution colour changed to yellowish orange. The solvent and excess 

triethylamine was removed under vacuum. The deprotonated 5-amino-8-

hydroxyquinoline was then re-dissolved in anhydrous ethanol (15 mL). To this was added 

2’,5-bisthiophen-2-one (73 mg) and a catalytic amount of trifluoroacetic acid. The 

mixture was heated to reflux overnight, 24 hours, and the solvent removed. The product 

was purified by flash chromatography (SiO2, 10:90 EtOAc:Hexanes as eluent, 1% Et3N).

The product was collected as a red powder (5 mg, 4%). M.p.: 193 - 195 ºC. 1H NMR 

(400MHz, [D] acetone-d6):  = 8.91 (s, 1H), 8.90 - 8.85 (m, 2H), 7.66-7.62 (m, 2H), 7.55 

(dd, 1H, 3J = 5.1 Hz, 4J = 1.0 Hz), 7.49 (dd, 1H, 3J = 3.7 Hz, 4J = 1.0 Hz), 7.45 (d, 1H, 3J

= 8.0 Hz), 7.39 (d, 1H, 3J = 3.9 Hz), 7.16 (m, 2H, 3J =4.0 Hz, 4J = 1.4 Hz). 13C NMR 

(100MHz [D] acetone-d6):  = 153.5, 153.1, 150.5, 144.2, 143.2, 140.5, 140.2, 138.6, 
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135.4, 134.6, 130.3, 128.1, 127.2, 127.0, 126.2, 123.7. 115.8, 111.8. MS: m/z = 337. 

04640 [M + H]+ (calculated 337.04638). 

2.2.5 Metal Complex Synthesis 
 The metal complexes that were formed using the ligand L4 were prepared by a 

general procedure that makes use of the insolubility of the desired products in solvents 

like ethanol, methanol and water. Reactions using the ligands L1-3 were all unsuccessful 

as either no complexes were formed or the ligands decomposed. Ligand L5 was not used 

for forming metal complexes due to insufficient yields in its preparation.  

Synthesis of complexes based on the ligands L1-3

 Solutions of the ligands L1-3 were prepared in either ethanol or methanol while 

solutions containing the silver (I) compounds AgNO3 and AgOH were prepared in 

methanol, ethanol or water. Molar ratios for these reactions were set to 2:1 ligand:metal. 

No colour change was observed upon mixing of ligand and metal ion solutions and no 

precipitate was readily formed. To induce the metal-ligand reaction, these mixtures were 

heated to reflux over periods of 6-18 hours. After reflux, the solution colour had often 

changed to black, still with a lack of precipitate. TLC and NMR measurements on the 

resulting solutions confirmed that starting ligands had decomposed.  

General procedure for metal complexation reactions with ligand L4

 A solution of ligand L4 (~ 30 mg) in anhydrous ethanol (5-10 mL) was prepared. 

Solutions containing metal ions, including Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+, Pb2+, Zn2+

and Ag+, from various hydroxide, acetate, perchlorate and nitrate salts, were prepared by 

dissolving the appropriate metal salt in either water, ethanol, acetonitrile or some 

combination of the three to ensure complete dissolution of the salt. The ligand solution 
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was then added dropwise over 1-2 minutes until a visible precipitate was formed. The 

solutions were stirred at room temperature for two hours at which point the solutions 

were placed in a centrifuge for 20 minutes allowing the solid precipitate to sink to the 

bottom of the reaction vessel. The remaining liquid was decanted, and then the solid was 

dispersed in an organic solvent (ex. acetone, ethanol, etc.) to remove uncomplexed 

ligand. The product was then filtered and collected as a solid. 

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Copper(II) 

 To a solution of Cu(OH)2 dissolved in ethanol (5.0 mg, 5 mL) was added a 

solution of L4 in ethanol (21.6 mg, 5.0 mL). The solid collected was dark orange/brown 

in colour, weighing 4.7 mg giving an approximate yield of 20 %.  

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Cobalt(II) 

 To a solution of Co(OH)2 dissolved in acetonitrile (2.6 mg, 2 mL) was added a 

solution of L4 in acetonitrile (14.3 mg, 2 mL). The solid collected was dark orange/brown 

in colour, weighing 1.8 mg giving an approximate yield of 10 %.  

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Zinc(II) 

 To a solution of Zn(OH)2 dissolved in ethanol (3.4 mg, 3 mL) was added a 

solution of L4 in ethanol (17.4 mg, 3 mL). The solid collected was bright yellow in 

colour, weighing 1.9 mg giving an approximate yield of 15 %.  

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Iron(II) 

 To a solution of Fe(ClO4)2 dissolved in ethanol (13.6 mg, 5 mL) was added a 

solution of L4 in ethanol (29.7 mg, 5 mL). The solid collected was black in colour, 

weighing 9.7 mg giving an approximate yield of 32 %. 
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Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Manganese(II) 

 To a solution of Mn(OAc)2 dissolved in 50:50 water:ethanol (13.5 mg, 5 mL) was 

added a solution of L4 in ethanol (35.1 mg, 10 mL). The solid collected was yellow-

orange in colour, weighing 15.6 mg giving an approximate yield of 35 %. 

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Nickel (II) 

To a solution of Ni(NO3)2 dissolved in 50:50 water:ethanol (22.6 mg, 5 mL) was 

added a solution of L4 in ethanol (37.6 mg, 10 mL). The reaction mixture turned black 

overnight, no product was formed and the reaction was deemed unsuccessful. 

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Lead (II) 

To a solution of Pb(OAc)2 dissolved in water (38.2 mg, 2 mL) was added a 

solution of L4 in ethanol (50.7 mg, 11 mL). The solid collected was yellow-orange in 

colour, weighing 28.4 mg giving an approximate yield of 40 %. 

Bis(5-[(Thiophen-2-ylmethylene)-amino]-quinolin-8-ol) Cadmium (II)

To a solution of Cd(OAc)2 dissolved in water (14.3 mg, 3 mL) was added a 

solution of L4 in ethanol (30.4 mg, 6 mL). The solid collected was yellow in colour, 

weighing 3.5 mg giving an approximate yield of 10 %. 
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2.3 Results and Discussions 

2.3.1 Metal Complex Synthesis 
 The development of ligand molecules for this work is centered on the facile 

synthesis of azomethine ligands. In total, two novel ligands were synthesized for this 

work and three previously reported ligands were used for metal complexation. Of the five 

ligands prepared, only one ligand, L4, was successfully used to form metal complexes. 1H

NMR and 13C NMR spectra of the five ligands synthesized are presented in appendix B. 

Metal complexes of the form ML2 were synthesized via a very straightforward 

approach. The reactions that were intended to form the complexes M(L1-3)2 were 

unsuccessful. This can be confirmed by the lack of precipitate formation in the reaction 

mixture, ligand decomposition from NMR and TLC experiments and the colour change 

from red-yellow solutions to very dark colours (often black).

In all but two attempts, the metal used for the M(L1-3)2 reactions was silver. This 

became an important factor in determining that the reactions were unsuccessful. As the 

ligand was decomposed, the silver in the metal salt was reduced to its elemental form. 

This was confirmed by the deposition of a thin film of elemental silver on the interior of 

the reaction flask. The coating was only removed by the action of strong acid giving 

another indication that the residue was metallic silver. 

The complexes M(L4)2 were successfully synthesized by mixing two equivalents 

of a solution of the ligand dissolved in ethanol and with one equivalent of the 

corresponding metal ion solution dissolved in either ethanol, water or a mixture of the 

two. Upon mixing the two solutions, a strongly coloured insolublility was formed and 

filtered. The resultant complexes were insoluble in common organic solvents like 
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acetone, ethanol and dichloromethane but demonstrated low solubility in solvents like 

DMF and DMSO.

2.3.2 Structural Characterization 
Structural characterization of the resultant metal complexes was difficult due to 

their low solubility. 1H NMR measurements were carried out on a number of the 

complexes dissolved in DMSO, but these results were largely inconclusive. The NMR 

spectrum of Pb(L4)2, shown in Figure 2-4, indicates the presence of an azomethine 

functionality as a result of the peaks centered at 8.8 ppm which correspond to the region 

in which azomethine protons are most commonly observed.  

The structure of the dissolved product cannot be confirmed with certainty from 

the NMR result shown in Figure 2-4. This spectrum was among the best recorded for 

metal complexes of the type M(L4)2 yet its results are effectively inconclusive. The 

integrals calculated for the peaks in Figure 2-4 indicate that the number of aromatic 

protons present may be the same as that of the free ligand. In both the free ligand and the 

metal complex, nine aromatic protons should be observed. Indeed this is the case 

observed in Figure 2-5, which shows the 1H NMR spectrum of the free ligand, L4, The 

three protons in the 8.7 - 9.0 ppm range correspond to the azomethine proton as well as 

the protons ortho- to the nitrogen of the pyridine ring and ortho- to the 8-hydroxyl group. 
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Figure 2-4. 1H NMR spectrum of the metal complex of Pb(L4)2 in deuterated 
dimethylsulfoxide.

Figure 2-5. 1H NMR spectrum of the ligand L4 in deuterated dimethylsulfoxide.
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In the metal complex spectrum of Figure 2-4, it appears that the three protons 

observed between 8.7 – 9.0 ppm have become more closely spaced. This is in agreement 

with the expected structure of the complexes. The 8-hydroxyl and pyridine-nitrogen 

moieties are more likely to interact with a metal centre than the azomethine-thiophene 

unit on the other end of the molecule. As complexation occurs, electron density from the 

nitrogen and oxygen atoms is used to bond with the metal centre which causes further 

deshielding of the downfield protons previously observed at 8.9 and 8.7 ppm. This pushes 

the two protons closer to the azomethine proton observed in both spectra at 8.9 ppm. 

The rest of the aromatic protons are no longer distinct peaks as observed with the 

free ligand. Due to this it is difficult to use the integral values to accurately determine the 

relative number of protons present in the metal complex. The peaks located near 8.9 ppm 

in Figure 2-4 were used as the reference peaks for determining the relative number of 

protons observed in the other peaks. Based on the structure of the spectrum in Figure 2-4 

as well as the spectrum of the free ligand shown in Figure 2-5 it appears that three 

aromatic protons are present around 8.9 ppm. For this reason, those peaks were set to an 

integration of 3.0. The integral calculated for the bunch of peaks at 7.4 - 7.7 ppm is 

slightly more than 5.3. The other peak at 7.12 ppm integrates for 1.3 protons. This yields 

the correct sum of 9 protons when the values of 5.3 and 1.3 are rounded down. 

Unfortunately, the 1H NMR spectrum lacks the required clarity and precision 

needed to confirm the structure of the product with a high degree of confidence. 13C

NMR experiments were attempted but the very low solubility of the complexes made it 

impossible to detect any products even with a long analysis time (16 hours, overnight). 
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Furthermore, as solvent evaporated and the temperature decreased within the NMR 

instrument, much of the dissolved product precipitated from solution.  

The combination of these confounding factors made it difficult to confidently 

confirm the structure of the formed products. In spite of this, the fact that the protons 

observed in Figure 2-4 for the lead complex are found in a region that is similar to the 

free ligand, yet displaced by reasonable amounts based on the change in the chemical 

environment leads to the presumption that in fact a metal complex was formed. The 

protons in the region of the most effective chelation site are displaced through a 

downfield shift, consistent with the removal of electron density, and the peak integrations 

are very close to what would be expected for the ligand L4. Despite the positive 

correlations between the proton spectrum measured and the spectrum of the free ligand,  

it is impossible to confirm the structure of the metal complexes from the data available. 

In light if the difficulties encountered in the course of NMR analysis, further 

structural characterization was attempted by means of single crystal X-ray diffraction and 

by electrospray ionization mass spectrometry (ESI-MS). Neither of these two techniques 

was useful in the elucidation of the exact structure of the metal complexes. However, the 

ESI-MS results provided further indirect evidence indicating the formation of metal 

complexes. 

The preparation of X-ray quality crystals was attempted by dissolving the 

complexes in DMF and DMSO. After one month on the bench, the solutions had lost 

only minimal solvent and no precipitation was observed. Precipitation induced by the 

introduction of a secondary solvent, e.g. acetone and ethanol, was rapid and produced 

only powders. These materials were not useful in the production of single crystals.
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Figure 2-6. ESI mass spectrum of the lead complex of L4 recorded from DMSO solution. 

Mass spectrometry analysis was also attempted with DMSO solutions of the metal 

complexes. This presented the issue of volatilizing not only the solvent (DMF and DMSO 

are not recommended for ESI-MS), but also in volatilizing the complex. Results from 

these analyses confirmed the presence of free ligand which is likely produced from the 

decomposition of a metal complex under the abrasive conditions of the ionization source.

Shown in Figure 2-6 is an ESI-MS spectrum of the lead complex. The sample was 

prepared in DMSO which is not a particularly good solvent for ESI. The free ligand L4 is 

clearly observed in the spectrum as the major contributor in the sample. The likely reason 

for this is decomposition of the complex either upon volatilization or ionization. In any 

case, the presence of free ligand is very useful in inferring the formation of a metal 

complex. If the dried powder contained free ligand, washing of the complex with a 

solvent like dichloromethane or chloroform would cause the dissolution of the ligand. 

However, after numerous washes with common organic solvents, no ligand was observed 

in subsequent washes indicating that ligand produced within the mass spectrometer is in 

fact coming from a decomposing complex. The result of Figure 2-6 is repeated in the 
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mass spectrum of the copper complex shown in Figure 2-7. Again, free ligand is observed 

while the expected product is not. 

Figure 2-7. ESI mass spectrum of the copper complex of L4 recorded from DMSO 
solution. 

To summarize, it is not possible to positively confirm the formation of metal 

complexes from the data presented here. However, based on the NMR results which seem 

to indicate a change in chemistry in the region of the pyridine nitrogen and the hydroxyl 

group, it seems reasonable that a metal complex containing the ligand L4 has been 

formed. The mass spectrometry results indicate that the ligand is present in the isolated 

powders, but that the complex formed may not be stable to strong ionization sources. 

Furthermore, the strong colours of the isolated powders concomitant with the insolubility 

of the powders in common solvents like DCM, chloroform and acetone give credence to 

the supposition that in fact new metal complexes have been formed. While it is 

impossible to describe the stoichiometry of the complexes, it is possible to infer that 

metal complexes have been formed based on the indirect evidence provided in this 

section.
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2.3.3 Spectroscopic Properties 
 The most effective method to observe a change in chemistry in the ligands is the 

use of UV-vis absorption and fluorescence spectroscopy. The formation of a new metal 

complex should significantly effect the location and intensity of the absorption and 

emission maxima upon metal complexation. The observation of a change in fluorescence 

quantum yield was also foreseen; however experimental difficulties precluded its exact 

determination. 

As previously mentioned, the low solubility of the metal complexes in common 

organic solvents like ethanol, acetonitrile and water forced the use of DMF as the solvent 

for UV-vis spectroscopic analysis. Due to this, it was impossible to observe changes in 

the UV-vis spectrum below 300 nm, where the absorbance maximum of the free ligand, 

L4, was observed in solvents like ethanol and acetonitrile. 
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Figure 2-8. Solvatochromism of ligand L4. Measurements were made in dichloromethane 
( ), ethanol ( ), acetonitrile ( ) and dimethylformamide ( ).

Figure 2-8 demonstrates the solvatochromism of the free ligand, L4. The 

absorbance spectra in ethanol and acetonitrile are nearly identical while moving to 
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solvents like dichloromethane and DMF induce a bathochromic shift in the absorbance 

maxima. The maximum in the DMF spectrum appears to be in the same location as the 

small absorption peak in the dichloromethane spectrum. This indicates that the global 

maximum of the DMF spectrum is in fact below 300 nm as was observed for the global 

maximum in the DCM spectrum. Wavelengths shorter than 300 nm are fully absorbed by 

DMF so the absorbance maximum of the ligand is most likely hidden by the solvent. For 

this reason, changes in the absorbance band at 386 nm are used for determining if 

complexation has occurred. 

Upon complexation, significant changes in the absorbance spectra are observed. 

Figure 2-9 shows the changes in absorbance between free ligand and metal complexes, 

with measurements made in DMF. In general, a bathochromic shift of the absorption 

maximum is observed when the ligand is mixed with Cu2+, Pb2+ and Mn2+. The 

bathochromic shifts of the absorption maximum for the complexes compared to that of 

the free ligand are 78 nm, 65 nm and 65 nm for the copper, lead and manganese 

complexes, respectively. 

The Fe2+ complex shown in Figure 2-9 demonstrates a significant change in the 

structure of the absorbance spectrum indicating that the complex may not contain the 

ligand L4. This is corroborated by the fact that the solid powder itself is black, indicating 

that the ligand actually decomposed. This is further supported by the fact that all other 

powders obtained were coloured; yellow, orange or brown. The bathochromic shift of the 

absorption maximum when compared to the free ligand is also much smaller, only 28 nm. 
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Figure 2-9. A comparison of the absorption spectra of the free ligand L4 ( ) and its 
corresponding copper ( ), iron ( ), manganese ( ) and lead ( ) complexes. 

Fluorescence spectroscopy was also used to observe the change in physical 

properties occurring with ligand complexation. As with the absorbance measurements, 

the photoluminescence studies were carried out in DMF. Fluorescence measurements of 

the free ligand, L4, and its metal complexes are shown in Figure 2-10. Excitation of the 

ligand is made at the absorbance maximum, 386 nm. All of the complexes studied using 

excitations at 386 nm demonstrated a spectral structure that is nearly identical to the 

fluorescence spectrum of the free ligand with a slight bathochromic shift of the maximum 

in all cases, except for the iron complex. The bathochromic shifts for the copper, 

manganese and lead complexes were 25 nm, 32 nm and 15 nm, respectively. The 

displacement of the luminescence maxima is therefore significantly smaller than the 

displacement of the absorbance maxima. 
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Figure 2-10. A comparison of the fluorescence spectra of the free ligand L4 ( ) and its 
corresponding copper ( ), iron ( ), manganese ( ) and lead ( ) complexes.

The quantum yields of fluorescence of the ligands L4 and L5 were also measured. 

The quantum yields were measured in ethanol using bithiophene as a reference. The 

values were determined to be 3.4 * 10-3 and 2.0 * 10-3, for ligands L4 and L5,

respectively. Ligands L1-3 were previously analyzed and their quantum yields were also 

determined to be on the order of 10-3.30

Unfortunately, the quantum yields of the metal complexes could not accurately 

determined due to issues with solubility. In spite of this, the photoluminescence 

measurements shown in Figure 2-10 can be used to qualitatively describe the 

fluorescence quantum yields of the complexes. The free ligand L4 and its corresponding 

complexes were excited at 386 nm where the absorption maximum of the free ligand is 

observed in DMF solutions. The absorbances of the complexes were between 0.25 and 

0.35 at 386 nm. The spectra presented in Figure 2-10 are the experimentally observed 
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fluorescence spectra without corrections. It is apparent from Figure 2-10 that the amount 

of luminescence observed for the complexes does not vary significantly from that of the 

free ligand, and in most cases is less intense. While the exact values cannot be reported, 

the metal complexes demonstrate quantum yields on the order of 10-3, which is in the 

same range as ligands L4 and L5 as well as the previously reported ligands L1-3.30

The intersection of the normalized absorbance and photoluminescence spectra 

give a good indication of the energy gap separating the ground state and the singlet 

excited state value for each complex. An example of this type of plot is given in Figure 2-

11, which shows the spectral overlap for the ligand and the lead complex. The values 

determined for the four metals complexes are given below in Table 2-1. The intersection 

values, denoted by A-F in Table 2-1, give the lower estimate of the energy gap.  
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Figure 2-11. The crossover of the normalized absorbance and fluorescence scans of the 
free ligand L4 (  and ) and its corresponding lead complex ( and ).
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Table 2-1. A summary of the photophysical data for ligand L4 and its corresponding 
metal complexes. Data listed here were recorded in dimethylformamide solutions. 

Compound max (nm) Shoulder (nm) fluo (nm) A-F (nm) E (eV) 

Ligand, L4 383 472 475, 590 416 2.97 

Cu(L4)2 461 405 532 491 2.52 

Fe(L4)2 413 500 496 (broad) 460 2.69 

Mn(L4)2 448 350 514, 570 (sh) 487 2.54 

Pb(L4)2 448 360 596 494 2.50 

2.3.4 Metal Ion Sensing Devices 
 An objective of this work was to show that the ligands prepared could serve as 

metal ion sensors for water solutions. To this end, crude metal ion sensing devices were 

designed. A thin layer of the ligand L4 was spin cast from DCM solution, at a 

concentration of 2 mg per 5 mL, onto a glass slide, then immersed in a water solution 

containing 0.1 M Cu(OTf)2. The immersed slide was then placed in an ultrasonic bath for 

30 minutes to increase the speed of complexation.  

Complex formation on the surface of the glass slide was followed by UV-vis 

absorbance spectroscopy. Figure 2-12 demonstrates the results of these measurements. 

After immersion in the metal ion solution, a new peak corresponding to the copper 

complex evolves around 475 nm, well above the 402 nm maximum observed for the free 

ligand on the glass slide. While very crude in design, these results give a preliminary 

indication that this ligand could be used in metal-sensing devices. 
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Figure 2-12. Changes in absorbance spectra of ligand L4 immobilized on a glass slide 
before ( ) and after ( ) treatment with a copper (II) solution. The other curve ( )
demonstrates the absorption of the copper complex in DMF solution. 

2.4 Conclusions and Future Work 

 The hydroxyquinoline type ligand synthesized in this work, L4, serves as a 

suitable starting place for the study of the photophysical properties metal complexes 

containing both thiophene moieties and azomethine linkages. In spite of the difficulties 

associated with accurately determining the structures of the formed complexes, indirect 

evidence for their formation was used to determine that indeed complexes have been 

formed. Significant bathochromic shifts were observed in the absorbance spectra, with 

smaller shifts occurring in the fluorescence spectra. Ligands L1-3 did not produce the 

desired metal complexes and this remains a point of focus for this laboratory in future 

work.
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 From quantitative luminescence quantum yield data for the ligands L4 and L5, in 

conjunction with previously reported data on the ligands L1-3, it is clear that the 

azomethine bond strongly deactivates singlet excited state through non-radiative 

methods. This is based on the observation that the five ligands studied in this work have 

fluorescence quantum yields on the order of 10-3. The qualitative fl values observed for 

the metal complexes of L4, also on the order of 10-3, give a strong indication that the 

excited states of these molecules do not make use of internal conversion processes as a 

main method of excited state deactivation.  

Enhanced structural rigidity caused by metal complexation should decrease the 

effect of internal conversion excited decay processes as the internal conversion pathways 

of bond rotation and vibrational are significantly dampened. In this way, restricted 

deactivation through internal conversion pathways should cause a subsequent increase in 

radiative deactivation in the form of fluorescence. Since the observed change in 

fluorescence upon metal complexation of L4 is small, the excited state must not be 

deactivated by internal conversion processes to any large extent and another form of 

excited state deactivation must be the major contributor. This is in good agreement with 

results reported in this work (vide supra, Chapter 1) as well as previous reports on the 

excited state decay mechanisms observed in azomethines which demonstrate that 

azomethines are non-fluorescent and are mainly deactivated through photoinduced 

electron transfer processes (intramolecular) as well as by intersystem crossing to the 

triplet state.  

 As a secondary goal of this work, a metal ion sensing device was prepared using 

the ligand L4 and was shown to have an affinity for copper ions in solution. The sample 
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of L4 spin cast onto glass demonstrated a change in absorbance when exposed to a water 

solution containing Cu2+ ions. The ligand showed resistance to water even after being 

immersed for 30 minutes which is of great concern for all azomethine containing 

molecules. While the device was crude in design, it succeeding in demonstrating the 

desired result: a water-stable slide that can test for the presence of metal ions in water 

solutions.  

 The work presented here is of importance in the elucidation of the excited state 

decay mechanics of azomethines. The small change in fluorescence upon complexation 

indicates that not only is fluorescence a negligible decay route but also that internal 

conversion processes have only a small role in excited state decay. This is of great value 

as the other non-radiative methods of excited state decay can be studied in greater detail. 

Further work in this area will center on the use of ligands L1-3 in the formation of 

novel metal complexes. The study of their decomposition when exposed to certain metal 

ions, namely Ag+, can provide useful information about the electrochemistry of these 

ligands. Also, the continued studied of ligands such as L4 and L5 will provide useful 

information about the excited state decay processes in thiophene azomethines. The 

application of analytical techniques will be very important in defining the solid state 

structures of formed metal complexes as it was apparent in this work that conventional 

NMR and MS techniques are not sufficient to positively confirm complex structure.  
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Chapter 3: Unsuccessful Syntheses
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3.1 Background 
In working towards new types of sterically hindered thiophene azomethines, such 

as those presented in chapter 1, various synthetic strategies were employed. Many of 

these reactions were not fruitful. These reactions as well as the objectives behind them 

will be discussed in this chapter.  

In the first chapter of this work, a set of sterically hindered thiophene azomethine 

dyads was presented. These dyads were prepared through conventional azomethine 

preparation methods including acid-catalysed condensation in alcoholic solution, reaction 

with TiCl4 as well as a few attempts on larger scales by applying an azeotropic 

distillation with a Dean-Stark trap. In general, the preparations of these products 

proceeded readily when steric hindrance in the region of the thiophene carbonyl was 

small. This was not the case when condensing the reagent 2,4,6-tri-tert-butylaniline with 

the methyl and ethyl ketones of 2-thiophenecarboxaldehyde.  

The synthesis of dyads based on the aforementioned 2,4,6-tri-tert-butylaniline

proved challenging as it took upwards of ten different reaction conditions to prepare the 

dyad 1-3 using 2-thiophenecarboxaldehyde. The dyads composed of 2,4,6-tri-tert-

butylaniline condensed with the methyl and ethyl ketones of 2-thiophenecarboxaldehyde 

were also sought after, however, the desired products were not detected in any of the 

reactions attempted.  

Once it was determined that the synthesis of these sterically hindered products 

would not be possible using the methods described above, it was decided that the bulky 

groups should be placed on the thiophene ring instead of the aniline ring. This could help 

to reduce the steric hindrance around the reaction centre. The nitrogen atom in 2,4,6-tri-
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tert-butylaniline is surrounded by the large tert-butyl groups which makes it difficult for 

the amine to carry out nucleophilic attack at the carbonyl carbon.  To this end, its was 

decided that new synthetic approaches would be examined with the goal of attaching tert-

butyl groups directly to the thiophene ring, as well as to the carbonyl carbon used in 

azomethine formation.  

Attachment of bulky groups directly to the thiophene ring would present the 

opportunity to observe how the bond rotation barriers vary with location of the bulky 

substituents. The addition of tert-butyl to the carbonyl carbon also presents an interesting 

opportunity. Since it was difficult to add a very bulky amine to the unsubstituted carbonyl 

it should also be difficult to add a small amine to a strongly sterically hindered carbonyl 

group. Reaction of the sterically hindered ketone with small amines such as n-propyl 

amine should give a clear indication as to the amount of steric hindrance around the 

reaction centre.     

As mentioned above, the dyads previously discussed in this work contain the 

bulky tert-butyl groups only on the aniline moiety. To complete the series of sterically 

hindered dimers, bulky groups must be added to the thiophene ring. To this end, tert-

butylated thiophene aldehydes and ketones were sought after. Multiple synthetic 

strategies were employed to arrive at these products. While some preparations were 

successful, namely the synthesis of a thiophene-diketone with tert-butyl groups attached 

to the carbonyl carbons, many of the synthetic strategies employed were ineffective for 

affording the desired products.
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3.2 Synthetic Approaches 
The first synthetic route discussed in this section uses bromopinacolone as a 

starting material. While bromopinacolone is available for purchase, it is rather expensive. 

For this reason, it was decided that bromopinacolone should be synthesized in-house. 

Various synthetic procedures for this bromination reaction are reported in the literature 

with varying degrees of success.80,81,82 Two brominating agents were prepared for the 

synthesis of bromopinacolone. Although the brominating agents were synthesized in high 

yield, the subsequent preparations of bromopinacolone did not yield the desired product. 

As a result, bromopinacolone used in later syntheses, was purchased from a commercial 

supplier.

N
Br N+ N+

O

CH3 N+
O

XS

Br-
Br2

Br3
-

Neat

Reflux

Neat

20 °C

+

B2 3-1 - ( 0 % )

+

+

Neat

20 °CBr3
-

B1 - ( 79 % ) B2 - ( 76 % )

Br

Figure 3-1. Synthesis of brominating agents B1 and B2 and synthesis of 
bromopinacolone 3-1.

The first brominating agent used was an ionic liquid composed of the cationic N-

pentylpyridinium ion and the monoanionic tribromide ion (Br3
-).82 It is prepared first 

from the reaction of pyridine with 1-bromopentane,83 followed by further bromination of 

the resulting ionic liquid with liquid bromine.82 The brominating agent, N-

pentylpyridinium tribromide (B2), was then reacted with pinacolone. This reaction was 
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unsuccessful as no bromopinacolone was detected in the reaction mixture. This synthetic 

procedure is shown in Figure 3-1.

To continue towards bromopinacolone (3-1), a second brominating agent was 

prepared. The second brominating agent, tetrabuylammonium tribromide B3, was 

synthesized from tetrabutylammonium bromide and hydrobromic acid.81 The synthetic 

route is demonstrated in Figure 3-2. Once again, the brominating agent was synthesized 

in high yield; however the subsequent bromination of pinacolone was unsuccessful.

O

CH3

3  N+(Bu4)Br-+ 1  NaBO3 + XS HBr
48 % in H2O

H2O

15 min., 20 °C

DCM

3 hours, 20 °C
N+(Bu4)Br3

-
O

Br

3  N+(Bu4)Br3
-

+

B3 - ( 93 % )

B3 3-1 - ( 0 % )
Figure 3-2. Synthesis of brominating agent B3 and synthesis of bromopinacolone 3-1.

The bromination reactions did not yield the desired bromopinacolone as suggested 

from the literature.81,82 This can be attributed to two factors. The first is that 

bromopinacolone is volatile and may have evaporated while attempting to purify the 

reaction mixture. The second reason is that bromopinacolone is unstable under ambient 

conditions and may have decomposed prior to or during the work-up. These problems 

were not realized until after a few attempts of synthesizing bromopinacolone. Due to the 

synthetic difficulties encountered while preparing bromopinacolone, commercially 

available bromopinacolone was used in subsequent reactions.  
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The preparation of tert-butylated thiophenes was attempted using commercial 

bromopinacolone as a starting point. Reaction of bromopinacolone 3-1 with sodium 

sulfide produces the important diketosulfide intermediate 3-2 which can be isolated. 

From this diketosulfide intermediate, various approaches were investigated for forming 

an alkylated thiophene with a large degree of steric hindrance.

The first approach examined was the addition of tert-butyl functionalities in the 3- 

and 4-positions of a thiophene ring.84 Formylation of the resultant 3,4-di-tert-

butylthiophene 3-3 would then produce the desired tert-butylated thiophene aldehyde. 

The first step involves the addition of bromopinacolone, 3-1, to a solution of disodium 

sulfide (as Na2S-9H2O) which produced the diketosulfide 3-2 in high yield. This 

molecule was then reacted with elemental zinc and TiCl4 for thiophene ring formation 

with the ultimate product being 3,4-di-tert-butylthiophene 3-3. Unfortunately, the desired 

substituted thiophene was not detected in the reaction mixture after work up. The 

synthetic route is demonstrated in Figure 3-3. 

O
Br2 Na2S - 9H2O+

H2O / Acetone

0 °C, 15 min.
20 °C, 18 hours

S
OO

3-2 - ( 84 % )

S
OO

+    10  Zn0   +   3 TiCl4

3-2

THF

-10 °C, 4 hours
S

3-3 - ( 0 % )

Figure 3-3. Synthesis of diketosulfide 3-2 and subsequent ring-closing reaction to form 
3,4-di-tert-butylthiophene 3-3.
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It must be noted at this point that a side-product of this reaction was tremendously 

pungent. This reaction, if repeated in the future, must be done with extreme caution as the 

unidentified side product left a very foul odour in the synthetic laboratory for nearly a 

week. This side product, along with the fact that the reaction did not yield the desired 

product, influenced the use of a different synthetic methodology. 

In continuing towards 3,4-di-tert-butylthiophene, a Grignard reaction between 

3,4-dibromothiophene and tert-butylchloride was envisioned. 3,4-Dibromothiophene is 

readily available commercially, so the reaction was attempted by producing the Grignard 

reagent tert-butylmagnesium chloride from magnesium chloride, elemental potassium 

and tert-butylchloride.85 This procedure is shown schematically in Figure 3-4. As 

mentioned before, the product obtained would subsequently be formylated yielding 3,4-

di-tert-butyl-2-thiophenecarboxaldehyde and potentially the 2,5-dialdehyde. The 

formation of the Grignard reagent was visually confirmed through the dissolution of 

magnesium chloride and the production of a thick grey solution which was added to a 

solution of 3,4-dibromothiophene. Unfortunately, the desired product 3-3 was not 

observed in the reaction therefore a new synthetic route was considered. 

MgCl2   +   2 K0   + Cl MgCl2

THF, N2

Reflux, 3 hours

MgCl +2
S

BrBr

S

THF, N2

Ni(dppp)2Cl (cat)
Reflux, 18 hours

3-3 - ( 0 % )

Step1:

Step2:

Figure 3-4. Synthesis of 3,4-di-tert-butylthiophene 3-3 using the Grignard reagent tert-
butyl magnesium chloride. 
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The Grignard method of producing the 3,4-di-tert-butylthiophene 3-3 proved 

unsuccessful after two attempts, so a second procedure using the readily available 

diketosulfide 3-2, was attempted. In this synthetic approach, glyoxal trimer dihydrate is 

reacted with the previously synthesized tert-butylated diketosulfide 3-2.86 The product of 

this reaction is a thiophene-diketone, with the ketones in the 2- and 5-positions being 

substituted with tert-butyl groups. The synthetic procedure starting from the diketosulfide 

3-2 is shown in Figure 3-5. This reaction was designed to form the thiophene ring, while 

at the same time maintaining the tert-butylated ketone functionality. This reaction 

proceeded readily in fair yield (42 %).   

O O

HH
+S

O O

3-2

NaOMe/MeOH

Reflux, 1 hour
S

O O

3-4 - ( 42 % )

Figure 3-5. Synthesis of 2,5-thiophene-(di-tert-butyl)-ketone 3-4.

The newly formed thiophene diketone 3-4 was then reacted with various amines 

to complete the objective of forming sterically hindered azomethine dimers and trimers. 

To this end, the thiophene diketone was reacted with aniline, propylamine and other 

amines under standard dehydration/condensation reaction conditions. No azomethine 

containing products were formed after reaction with the amines mentioned under various 

dehydration conditions. The increased steric bulk around the carbonyl group likely made 

it very difficult for the amine to attack the carbonyl carbon making these reactions 

unfavourable. Even though these reactions were not capable of producing the desired 

products, they helped to confirm the hypothesis made in the introduction that the 
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increased steric bulk around the reaction centre would make any condensation reaction 

very difficult. Due to the lack of condensation reactions with the product 3-4, new 

approaches towards sterically hindered thiophenes were examined. 

Due to the overwhelming steric hindrance around the thiophene ketone in 3-4, it 

was decided that a long alkyl chain could be added to the ketone moiety instead of the 

bulky tert-butyl groups. This approach would still offer some steric hindrance at the 

reaction site while at the same time allowing enough space for an amine to approach for a 

condensation reaction. It was shown in Chapter 1 that the addition of alkyl groups to the 

azomethine carbon significantly affected the barriers to bond rotation about the 

thiophene-CH bond. By adding longer alkyl chains, such as C6, to the carbonyl carbon, a 

marked increase in the bond rotation barrier should be observed. To this end, 2,5-

thiophenedicarboxylic acid was converted to its methyl ester by refluxing in methanol 

and was then subjected to a Grignard reaction in both oxidative (in the presence of 

CuCN) and non-oxidative conditions for replacing the methoxy group by a C6 chain. 
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Figure 3-6. Synthesis of thiophene-2,5-dicarboxylic acid methyl ester , 3-5, 1-[5-(1-
Hydroxy-heptyl)-thiophen-2-yl]-heptan-1-ol, 3-5a, by non-oxidative Grignard reaction 
and subsequent oxidation to 2,5-thiophene-di(hexylketone) 3-6.

The Grignard reactions carried out under non-oxidative conditions followed a 

similar pathway to that previously described for the synthesis of 3,4-di-tert-

butylthiophene 3-3.85 The Grignard reagent was formed from 1-bromohexane and 

elemental magnesium derived from the reduction of magnesium chloride by elemental 

potassium. After the Grignard reaction, the reaction mixture was subjected to mild 

oxidative conditions by the addition of trichloroisocyanuric acid in the presence of a 

catalytic amount of TEMPO.87 The oxidation was designed to convert the tertiary alcohol 

3-5a from the Grignard reaction into the corresponding ketone, as shown in Figure 3-6. 
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1H NMR and mass spectrometry measurements could not confirm the presence of the 

desired product after five reaction attempts, so a different methodolgy was examined.  

The last reaction discussed in this section was a Grignard reaction carried out 

under oxidative reaction conditions. Instead of forming the tertiary alcohol from the 

methyl ester, catalytic CuCN was used to preserve the ketone 3-6 after the Grignard has 

added to the carbonyl carbon.88 This reaction was also unsuccessful as the desired 

product was not detected in the reaction mixture. This reaction should also be approached 

with caution as CuCN is highly poisonous.  The oxidative approach using CuCN is 

shown schematically in Figure 3-7.  
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Br MgBr
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S
O

C6H13

O

C6H13
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Figure 3-7. Synthesis of 2,5-thiophene-di(hexylketone) 3-6 from thiophene-2,5-
dicarboxylic acid methyl ester 3-5 by oxidative Grignard reaction in the prescence of 
CuCN.
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3.3 Experimental Section 

3.3.1 General Procedures 
All reagents were commercially available and were used as received unless otherwise 

stated. Anhydrous and deaerated solvents were obtained with a Glass Contour solvent 

purification system. 1H NMR and 13C NMR spectra were recorded on a Bruker 400 MHz 

spectrometer with the appropriate deuterated solvents 

3.3.2 Synthetic Protocols 

N-pentylpyridinium bromide (B1). In round-bottomed flask (50 mL) was added 

pyridine (0.12 mol, 10 mL) along with a few 4  molecular sieves to scavenge water. To 

this was added 1-bromopentane (0.024 mol, 3 mL) and the reaction mixture was heated at 

reflux for four hours with constant stirring. Excess pyridine was removed under reduced 

pressure overnight. The mixture was extracted using a diethyl ether/water mixture with 

the product moving into the water layer. The water was removed under reduced pressure 

and then the resultant liquid was further dried under reduced pressure in the presence of 

P2O5. The product was obtained as a clear orange liquid (4.40 g, 79 %). 1H NMR 

(400MHz, [D] chloroform-d1):  = 9.53 (d, 2H, 3J = 5.8 Hz), 8.47 (t, 1H, 3J = 7.7 Hz), 

8.08 (t, 2H, 3J = 7.0 Hz), 4.89 (t, 2H, 3J = 7.5 Hz), 1.95 (t, 2H, 3J = 7.9 Hz), 1.28-1.21 (m, 

4H), 0.74 (t, 3H, 3J = 6.8 Hz). 

N-pentylpyridinium tribromide (B2). In a round-bottomed flask (50 mL) was 

added B1 (0.019, 4.4 g). The reaction flask was cooled to 10 °C for the course of the 

reaction. To this was added liquid bromine (0.019 mol, 1.0 mL) in a drop-wise fashion, 

over the course of 15 minutes, ensuring that the temperature did not significantly 

increase. The initial orange solution quickly turned to deep red upon the addition of the 
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red-brown bromine. The mixture was stirred overnight at room temperature under 

reduced pressure. The product was obtained pure from the reaction mixture, without 

further treatment, as a red liquid (5.6 g, 76%). 1H NMR (400MHz, [D] acetone-d6):  = 

9.64 (d, 2H, 3J = 5.9 Hz), 8.78 (t, 1H, 3J = 7.7 Hz), 8.32 (t, 2H, 3J = 6.9 Hz), 5.04 (t, 2H, 

3J = 7.5 Hz), 2.11 (p, 2H, 3J = 7.0 Hz, 7.9 Hz), 1.42-1.32 (m, 4H), 0.86 (t, 3H, 3J = 7.0 

Hz).

Bromopinacolone (3-1). A two-necked round-bottomed flask (50 mL) was 

charged with pinacolone (8.2 mmol, 1.0 mL) to which was added B2 (8.4 mmol, 3.25 g) 

in three fractions. The clear solution of pinacolone turned red/orange upon addition of the 

red/orange brominating agent B2. The reaction mixture was stirred under ambient 

conditions for three hours and then extracted with a diethyl ether/water mixture. The 

diethyl ether layer was then evaporated under reduced pressure. 1H NMR experiments did 

not show the prescence of the desired product, only starting pinacolone.

Tetrabutylammonium tribromide (B3). To a round-bottomed flask (250 mL) 

was added tetrabutylammonium bromide (0.031 mol, 9.99 g) dissolved in distilled water 

(50 mL). To this was added sodium borate (0.018 mol, 1.50 g) and then, with constant 

stirring, 48 % hydrobromic acid solution in water (0.065 mol, 7.0 mL). Upon complete 

addition of hydrobromic acid, a deep orange precipitate was formed. This precipitate was 

filtered and washed with diethyl ether yielding the product as an orange crystalline solid 

(13.22 g, 93%). The product was used directly in the next step of synthesis without 

further characterization. 
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Bromopinacolone (3-1). To a round-bottomed flask (50 mL) containing 

pinacolone (5.0 mmol, 0.5 g) was added a solution of B3 (5.4 mmol, 2.61 g) dissolved in 

dichloromethane (20 mL). The reaction was stirred for three hours and the solvent was 

then removed. The reaction mixture was extracted with dichloromethane/water. The 

dichloromethane fractions were combined and the solvent removed under reduced 

pressure. 1H NMR experiments did not show the prescence of the desired product, nor the 

starting materials. 

1-(3,3-Dimethyl-2-oxo-butylsulfanyl)-3,3-dimethyl-butan-2-one (3-2). In a 

round-bottomed flask (100 mL) was added bromopinacolone (11.3 mmol, 2.03 g) which 

was then dissolved in acetone (20 mL). The flask was then cooled to 0 °C in an ice-water 

bath. To this was added, by dropwise addition under a nitrogen atmosphere, a solution of 

sodium sulfide nonahydrate (5.67 mmol, 1.36 g) dissolved in distilled water (10 mL). The 

mixture was stirred at 0 °C for 15 minutes, and then the mixture was warmed to room 

temperature and stirred for an additional 18 hours. The product precipitated as a white 

powder and was removed by filtration. Drying over MgSO4 yielded the product as a 

white powder (1.1 g, 84%). 1H NMR (400MHz, [D] acetone-d6):  = 3.65 (s, 4H), 1.16 (s, 

18H).

3,4-di-tert-butylthiophene (3-3). In a two-neck round-bottomed flask (50 mL) 

was added diketosulfide 3-2 (1.36 g, 5.9 mmol) dissolved in THF (15 mL). To this was 

added zinc powder (50 mmol, 3.25 g). The reaction vessel was kept under a nitrogen 

atmosphere and cooled to -10 °C using a NaCl/H2O ice bath. To this solution, TiCl4 1 M 

in THF (18 mmol, 18 mL), was added dropwise over 20 minutes. After stirring for four 

hours on the ice bath, 100 g of ice was added to quench the reaction. The mixture was 
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extracted with dichloromethane, the resulting fractions were combined and the solvent 

removed under reduced pressure. None of the desired product was observed by 1H NMR. 

This reaction produced a terribly pungent product which was not identified. Extreme 

caution should be taken to ensure that the pungent compound is properly contained 

within a fumehood.

3,4-di-tert-butylthiophene (3-3). To first prepare reactive elemental magnesium, 

dried magnesium chloride (12.2 mmol, 1.17 g) was added to a two-necked round-

bottomed flask (100 mL). To this was added anhydrous THF (15 mL) followed by 

elemental potassium (24 mmol, 0.94 g). The reaction mixture was then stirred for two 

hours at reflux under an inert atmosphere. The solution turned dark grey and once all of 

the MgCl2 was reacted (by visual inspection), tert-butyl chloride (13 mmol, 1.2 g) was 

added via a syringe. The mixture was stirred at reflux for 5 minutes at which point the 

Grignard reagent was transferred via cannula line to a three-necked round-bottomed flask 

(250 mL). The second flask, held under a constant flux of nitrogen gas, contained 3,4-

dibromothiophene (3.05 mmol, 1.00 g) and the catalyst Ni(dppp)2Cl (0.15 mmol, 74.4 

mg) dissovled in THF (40 mL). Prior to addition of the Grignard, the second flask was 

subjected to three freeze-thaw cycles using liquid nitrogen, while held under vacuum, to 

ensure the complete removal of oxygen. Upon addition of the Grignard reagent to the 

second flask, the mixture was heated to reflux and stirred for an additional 18 hours. 1H

NMR of the resultant reaction mixture did not show the presence of tert-butylated 

thiophene, only that of the starting material dibromothiophene and a small amount of tert-

butylchloride.
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2,5-thiophene-(di-tert-butyl)-ketone (3-4). A 0.44 M solution of sodium 

methoxide was produced by slowly adding 100 mg of sodium metal to dry methanol (10 

mL). Glyoxal trimer dihydrate (4.8 mmol of monomer, 336 mg) was added to methanol 

(30 mL) and heated at reflux for an hour to ensure complete dissolution of the trimer. 

After the trimer was dissolved, the mixture was cooled to room temperature and the 

diketosulfide 3-2 (4.0 mmol, 921 mg) was added. To this was added the sodium 

methoxide solution by dropwise addition over 10 minutes. The mixture was stirred at 

room temperature for 10 minutes, then at reflux for one hour. The title product 

precipitated from the reaction mixture upon addition of 50 mL of H2O. The product was 

filtered and dried over MgSO4, yielding the title product as a white powder (388 mg, 

42%). 1H NMR (400MHz, [D] acetone-d6):  = 7.91 (s, 2H), 1.38 (s, 18H). 

Thiophene-2,5-dicarboxylic acid dimethyl ester (3-5). To a stirred solution of 

2,5-thiophenedicarboxylic acid (7.9 mmol, 1.36 g) dissovled in methanol (200 mL), was 

added three drops of H2SO4. The mixture was stirred at reflux for 72 hours. The reaction 

mixture was dried and the crude white solid was purified by silica gel column 

chromatography eluted with 100% dichloromethane. The product fractions were collected 

and the solvent removed yielding the methyl ester product as a white powder (1.29 g, 

84%). 1H NMR (400MHz, [D] methanol-d3):  = 7.77 (s, 2H), 3.91 (s, 6H). 

1-(5-Heptanoyl-thiophen-2-yl)-heptan-1-one (3-6). In a round-bottomed flask 

(100 mL), dried magnesium chloride (18.9 mmol, 1.8 g) and metallic potassium (38.3 

mmol, 1.5 g) were mixed in anhydrous THF (50 mL). The reaction mixture was stirred 

under nitrogen atmosphere, at reflux, for three hours until the THF had turned a cloudy 

grey colour. The mixture was cooled to room temperature at which point 1-bromohexane 
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(19.9 mmol, 3.06 g) was added. The mixture was stirred for an additional five minutes 

before being transferred via cannula line into a second flask containing a solution of the 

methyl ester (5.0 mmol, 1.0 g,) dissolved in anhydrous THF (20 mL). The mixture was 

heated to reflux overnight, 15 hours, under a constant flux of nitrogen. The crude reaction 

mixture was poured into a 1 M HCl solution and extracted three times with 

dichloromethane. The organic fractions were collected and the solvent removed. The 

crude product mixture was re-dissolved in dichloromethane (25 mL) to which was added 

trichloroisocyanuric acid (10.5 mmol, 2.45 g). The mixture was cooled to 0 °C and stirred 

for 15 minutes at which point TEMPO (0.105 mmol, 19.7 mg) was added. The reaction 

mixture was warmed to room temperature and stirred for an additional 6 hours. The 

mixture was washed with a saturated Na2CO3 solution, followed by a 1 M NaCl solution. 

Mass spectra of the washed ogranic fractions were recorded with no masses 

corresponding to that of the desired product. 1H NMR also indicated that the desired 

product was not formed.   

1-(5-Heptanoyl-thiophen-2-yl)-heptan-1-one (3-6). In a round-bottomed flask 

(100 mL), dried elemental magnesium (5.0 mmol, 122 mg) and 1-bromohexane (5.5 

mmol, 908 mg) were mixed in anhydrous THF (50 mL). The reaction mixture was stirred 

at reflux under nitrogen atmosphere for three hours until the THF turned a cloudy grey 

colour. The mixture was cooled to room temperature and transferred via cannula line into 

a second flask containing a suspension of copper (I) cyanide (0.73 mmol, 65.2 mg) and 

the methyl ester 3-5 (5.0 mmol, 1.0 g) dissolved in anhydrous THF (25 mL). The mixture 

was heated to reflux for 15 hours, under a constant flux of nitrogen. The crude reaction 

mixture was poured into an ice water solution and extracted three times with diethyl ether 
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and washed with a sodium hypophosphate solution. 1H NMR of the crude product 

indicated the presence of the starting methyl ester, but did not show the prescence of the 

desired ketone. 

3.4 Conclusions and Future Work 
While many of the reactions in this section were unsuccessful, this research has helped 

to lay the ground work for the approaches that need to be followed when attempting to 

form sterically hindered azomethines. Given that some smaller, yet still hindered, 

azomethines were prepared, it leaves open options for future work in this area including 

the use of the thiophene diketone 3-4 towards making new azomethines, the addition of 

bulky groups to the 3-,4-positions of the thiophene as well as other substitutions 

including the insertion of other heterocycles.

This work was also able to determine some issues concerning the preparation of 

sterically hindered azomethines which will undoubtedly be useful for researchers who 

choose to continue down similar paths. In the end, a small portion of the desired 

syntheses were unsuccessful, but with the ease with which azomethines can be prepared, 

a large catalogue of sterically hindered thiophene azomethines dyads has been prepared 

and a much larger catalogue is not far from reach. 
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General Conclusions: 
 Conjugated thiophenes have attracted much attention in recent years due to the 

fact that they have demonstrated attractive physical properties that can make them 

suitable replacements for current materials. Their variable physical properties make them 

interesting materials for real-world applications including a variety of organic electronic 

devices including OLEDs, OFETs and NLOs. A major issue confronting their use is their 

synthesis, which often requires expensive catalysts and extensive purification procedures. 

 Thiophene azomethines, which incorporate the azomethine linkage (C=N) in 

place of conventional carbon-carbon linkages, are of significant interest because their 

preparation proceeds through a one-pot reaction that requires minimal purification. In 

addition, thiophene azomethines can be substituted in many ways leading to highly varied 

photophysical and electrochemical properties. 

 In stark contrast with their isoelectronic alkene (C=C) counterparts, conjugated 

azomethines demonstrate no fluorescence. Arylvinylenes which contain large degrees of 

conjugation through extended pi-bonding backbones regularly demonstrate high 

fluorescence quantum yields (e.g. anthracene and fluorene). These types of highly 

fluorescent molecules often contain inflexible backbones that disallow excited state 

deactivation via the internal conversion (IC) processes of bond rotation and vibration. 

These restrictions to bond rotations are often a main cause of fluorescence enhancement 

in organic molecules.    

The initial objective of Chapter 1 was to deactivate the excited state decay 

pathway of internal conversion by increasing the amount of steric bulk in the vicinity of 

the central azomethine linkage in a series of thiophene-aniline dyads. By increasing the 



107

barrier to bond rotation, it was foreseen that the fluorescence quantum yield would 

increase due to a decrease in the quantum yield of internal conversion. However, it was 

shown through fluorescence quantum yield measurements that in fact all of the studied 

azomethine dyads were effectively non-fluorescent. Quantum calculations of bond 

rotation barriers demonstrated that substitutions made on the thiophene and azomethine 

carbons caused more significant changes in the barriers to bond rotation than 

substitutions on the aniline ring.

After it was determined that internal conversion processes were not significantly 

involved in excited state decay, experiments were devised to study the other methods of 

excited state decay. To further investigate the excited state decay mechanisms of 

thiophene azomethines, bimolecular quenching experiments were carried out. These 

experiments, along with phosphorescence data, demonstrated that the excited state in 

azomethines is very quickly deactivated via intersystem crossing to the triplet state, and 

to a much larger extent, photoinduced electron transfer (PET) processes.

Through the study of Stern-Volmer relationships, it was shown that azomethines 

can be used to quench the both the singlet and triplet excited states of the fluorophores 

bithiophene and fluorene. Azomethines are able to quench their own excited states, as is 

the case in the thiophene azomethines presented herein, via unimolecular photoinduced 

electron transfer. Rehm-Weller calculations based on electrochemical oxidation and 

reduction potentials were used to demonstrate that PET is energetically favourable for all 

of the dyads studied.

In Chapter 2, metal complexes based on a thiophene-hydroxyquinoline ligand 

were prepared. The ligand, L4, contains a central azomethine linkage. As with the dyads 
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presented in Chapter 1, all of the ligands prepared in Chapter 2 and their subsequent 

metal complexes, demonstrated no fluorescence. As the ligand formed complexes with 

the metal centres an increase in fluorescence was envisioned due to an increase in the 

rigidity of the backbone. However, fluorescence was non-existent in both the free ligand 

state and in the complexes which gives further evidence that internal conversion 

processes do not play a central role in excited state decay. In addition to this, a metal ion 

sensor was prepared via simple spin-coating techniques. The device was capable of 

detecting the presence of copper (II) ions in solution and the azomethine ligand was 

shown to be resistant to water when submerged for 30 minutes.  

Chapter 3 discussed some of the synthetic protocols used in this work that did not 

provide the desired products. This work outlined some of the difficulties that arise during 

the synthesis of sterically hindered molecules. The work presented in Chapter 3 stands as 

an excellent starting point for the continued synthesis of highly hindered thiophene 

azomethines. 

The work presented herein provides a detailed look at the photophysical 

properties, and to a larger extent the excited state decay mechamisms, of thiophene 

azomethines. Bimolecular quenching experiments demonstrated that azomethines can be 

used to efficiently and rapidly quench excited states. As a result of this, fluorescence and 

phosphorescence can also be rapidly deactivated. These physical properties, along with 

the incomparable ease of synthesis and purification, make thiophene azomethines an 

interesting set of materials with potential applications wherever excited states need 

deactivating. 
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Figure A-0-1. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-1. 
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Figure A-0-2. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-2.
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Figure A-0-3. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-3.
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Figure A-0-4. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-4.
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Figure A-0-5. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-5.
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Figure A-0-6. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-6.
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Figure A-0-7. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-7.
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Figure A-0-8. Absorption ( ), fluorescence ( ) and phosphorescence ( ) spectra of 1-8.
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Figure A-0-9. Absorption ( ) and fluorescence ( ) spectra of 1-9.
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Figure A-0-10. Absorption ( ) and fluorescence ( ) spectra of 1-10.
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Figure A-0-11. Cyclic voltammogram of 1-1 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-12. Cyclic voltammogram of 1-2 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-13. Cyclic voltammogram of 1-3 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-14. Cyclic voltammogram of 1-4 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-15. Cyclic voltammogram of 1-5 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-16. Cyclic voltammogram of 1-6 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes 
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Figure A-0-17. Cyclic voltammogram of 1-7 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-18. Cyclic voltammogram of 1-8 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-19. Cyclic voltammogram of 1-9 in deaereated acetonitrile solution of 0.1 M of TBA-PF6 using 
Ag/AgCl as reference and Pt as working electrodes. 
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Figure A-0-20. 1H Spectrum of 1-1 in deuterated acetone. 
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Figure A-0-21. 1H Spectrum of 1-2 in deuterated acetone. 
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Figure A-0-22. 13C Spectrum of 1-2 in deuterated acetone. 
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Figure A-0-23. 1H Spectrum of 1-3 in deuterated acetone. 
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Figure A-0-24. 13C Spectrum of 1-3 in deuterated acetone. 
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Figure A-0-25. 1H Spectrum of 1-4 in deuterated acetone. 
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Figure A-0-26. 13C Spectrum of 1-4 in deuterated acetone. 
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Figure A-0-27. 1H Spectrum of 1-5 in deuterated acetone. 
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Figure A-0-28. 13C Spectrum of 1-5 in deuterated acetone. 
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Figure A-0-29. 1H Spectrum of 1-6 in deuterated acetone. 
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Figure A-0-30. 13C Spectrum of 1-6 in deuterated acetone. 
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Figure A-0-31. 1H Spectrum of 1-7 in deuterated acetone. 
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Figure A-0-32. 13C Spectrum of 1-7 in deuterated acetone. 
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Figure A-0-33. 1H Spectrum of 1-8 in deuterated acetone. 

Figure A-0-35. 13C Spectrum of 1-8 in deuterated acetone. 
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Figure A-0-36. 1H Spectrum of 1-9 in deuterated acetone. 
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Figure A-0-37. 13C Spectrum of 1-9 in deuterated acetone. 
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Figure A-0-38. 1H Spectrum of 1-10  in deuterated chloroform. 

Figure A-0-39. 13C Spectrum of 1-10 in deuterated chloroform
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Figure B-1. 1H NMR of 2-1 in deuterated acetone. 

Figure B-2.  13C NMR of 2-1 in deuterated acetone.



XXV

Figure B-3.  1H NMR of 2-2 in deuterated methanol. 

Figure B-4.  13C NMR of 2-2 in deuterated methanol. 
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Figure B-5. 1H NMR of ligand L1 in deuterated acetone. 

Figure B-6. 1H NMR of ligand L2 in deuterated acetone. 
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Figure B-7.  1H NMR of ligand L3 in deuterated acetone. 

Figure B-8. 1H NMR of ligand L4 in deuterated acetone.
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Figure B-9.  13C NMR of L4 in deuterated acetone. 

Figure B-10. 1H NMR of ligand L5 in deuterated acetone.
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Figure B-11. 13C NMR of L5 in deuterated acetone. 
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Figure B-12. Cyclic voltammograms of the ligand L4 (bottom) and 8-hydroxyquinoline (top) 
demonstrating the change in oxidation and reduction potential upon the addition of the thiophene 

azomethine moiety. Measurements were recorded in acetonitrile solution containing 0.1 M N(Bu)4PF6 as 
supporting electrolyte at a scan rate of 100 mV/s.
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Figure B-13. Normalized absorbance ( ) and emission spectra ( ) of L5 as measured in deaerated 
acetonitrile.
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Figure B-14. Cyclic voltammogram of L5 in deaereated acetonitrile solution of 0.1 M of TBA-PF6
using Ag/AgCl as reference and Pt as working electrodes.
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Figure C-1. 1H NMR spectrum of B1 in deuterated chloroform. 

Figure C-2. 1H NMR spectrum of B2 in deuterated acetone. 
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Figure C-3. 1H NMR spectrum of the purified reaction mixture of the synthesis of 3-1 via 
bromination of pinacolone by B2.

The pure product observed is the starting material pinacolone. Spectrum recorded in deuterated 
chloroform. 

Figure C-4. 1H NMR spectrum of the purified reaction mixture of the bromination of pinacolone 
with brominating agent B3.

The spectrum does not indicate the presence of the desired product, 3-1, nor the starting material 
pinacolone. Recorded in deuterated acetone. 
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Figure C-5. 1H NMR spectrum of 3-2 in deuterated acetone. 

Figure C-6. 1H NMR spectrum of the reaction mixture for the synthesis of 3-3 starting from the 
diketosulfide, 3-2, using zinc powder and titanium (IV) chloride. The spectrum, recorded in 

deuterated methanol, does not show the presence of the desired product. The aromatic peak is a 
quartet which does not correspond with the desired product.
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Figure C-7. 1H NMR spectrum of the reaction mixture for the synthesis of 3-3 by the Grignard 
method utilizing tert-butylchloride as the Grignard reagent. The spectrum, recorded in deuterated 

acetone, shows the presence of the starting materials. 

Figure C-8. 1H NMR spectrum of 3-4 in deuterated acetone.
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Figure C-9. 1H NMR spectrum of 3-5 in deuterated methanol. 

Figure C-10. 1H NMR spectrum of the reaction mixture in the synthesis of 3-6 using the non-
oxidative Grignard reaction, as recorded in deuterated chloroform. The only aromatic peak in the 

spectrum corresponds with the starting material, 3-5.
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Figure C-11. 1H NMR spectrum of the reaction mixture in the synthesis of 3-6 using the oxidative 
Grignard reaction, as recorded in deuterated methanol. The only aromatic peak in the spectrum 

corresponds with the starting material, 3-5.


