

Université de Montréal

A Type-Preserving Compiler from System F

to Typed Assembly Language

par

Louis-Julien Guillemette

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures et postdoctorales

en vue de l’obtention du grade de

Philosophiae Doctor (Ph.D.)

en informatique

Avril 2009

c© Louis-Julien Guillemette, 2009

Université de Montréal

Faculté des études supérieures et postdoctorales

Cette thèse intitulée:

A Type-Preserving Compiler from System F

to Typed Assembly Language

présentée par:

Louis-Julien Guillemette

a été évaluée par un jury composé des personnes suivantes:

Guy Lapalme
(président-rapporteur)

Stefan Monnier
(directeur de recherche)

Marc Feeley
(co-directeur)

Julie Vachon
(membre du jury)

Tim Sheard
(examinateur externe)

Paul Arminjon
(représentant du doyen de la F.A.S.)

Thèse acceptée le:

Résumé

Mots clés: Compilation certifiée, langage assembleur typé, polymorphisme,

vérification formelle, liaisons.

L’utilisation des méthodes formelles est de plus en plus courante dans le

développement logiciel, et les systèmes de types sont la méthode formelle qui a le plus

de succès. L’avancement des méthodes formelles présente de nouveaux défis, ainsi que

de nouvelles opportunités. L’un des défis est d’assurer qu’un compilateur préserve la

sémantique des programmes, de sorte que les propriétés que l’on garantit à propos de son

code source s’appliquent également au code exécutable.

Cette thèse présente un compilateur qui traduit un langage fonctionnel d’ordre supérieur

avec polymorphisme vers un langage assembleur typé, dont la propriété principale est que

la préservation des types est vérifiée de manière automatisée, à l’aide d’annotations de

types sur le code du compilateur. Notre compilateur implante les transformations de

code essentielles pour un langage fonctionnel d’ordre supérieur, nommément une conver-

sion cps, une conversion des fermetures et une génération de code. Nous présentons les

détails des représentation fortement typées des langages intermédiaires, et les contraintes

qu’elles imposent sur l’implantation des transformations de code.

Notre objectif est de garantir la préservation des types avec un minimum d’anno-

tations, et sans compromettre les qualités générales de modularité et de lisibilité du

code du compilateur. Cet objectif est atteint en grande partie dans le traitement des

fonctionnalités de base du langage (les “types simples”), contrairement au traitement du

polymorphisme qui demande encore un travail substantiel pour satisfaire la vérification

de type.

Abstract

Keywords: Certified compilation, typed assembly language, polymorphism, program

verification, bindings.

Formal methods are rapidly improving and gaining ground in software. Type systems

are the most successful and popular formal method used to develop software. As the

technology of type systems progresses, new needs and new opportunities appear. One of

those needs is to ensure the faithfulness of the translation from source code to machine

code, so that the properties you prove about the code you write also apply to the code

you run.

This thesis presents a compiler from a polymorphic higher-order functional language

to typed assembly language, whose main property is that type preservation is verified

statically, through type annotations on the compiler’s code. Our compiler implements

the essential code transformations for a higher-order functional language, namely a cps

conversion and closure conversion as well as a code generation. The thesis presents the

details of the strongly typed intermediate representations and the constraints they set on

the implementation of code transformations.

Our goal is to guarantee type preservation with a minimum of type annotations, and

without compromising readability and modularity of the code. This goal is already a

reality for simple types, and we discuss the problems remaining for polymorphism, which

still requires substantial extra work to satisfy the type checker.

Contents

1 Introduction 1

1.1 Typed intermediate languages . 4

1.2 Challenges . 7

1.3 hTAL . 8

1.4 Contributions . 12

1.5 Related systems . 14

1.6 Structure of the document . 15

2 Overview and background 17

2.1 Generalized algebraic datatypes . 17

2.2 Abstract syntax . 19

2.2.1 Names . 19

2.2.2 Higher-order abstract syntax . 20

2.2.3 De Bruijn indices . 23

2.3 Type families . 25

2.4 Compilation phases . 25

2.4.1 Type checking . 26

2.4.2 CPS conversion . 27

2.4.3 Closure conversion . 28

2.4.4 Hoisting . 31

2.4.5 Code generation . 31

3 Encoding of System F 33

3.1 Types . 35

x CONTENTS

3.2 Higher-order term encoding . 36

3.2.1 Washburn and Weirich’s encoding of HOAS 38

3.3 First-order term encoding . 41

3.4 Substitution . 41

4 CPS conversion 45

4.1 Target language . 46

4.2 Translation . 50

4.3 Implementation . 52

4.3.1 Fegaras and Sheard’s iterator . 52

4.3.2 Danvy and Filinski’s CPS transform 55

4.4 Polymorphism . 56

4.4.1 Lemma application . 59

4.4.2 Type abstraction . 60

4.5 Discussion . 61

5 Conversion to de Bruijn indices 63

5.1 Type-level reverse de Bruijn indices . 65

5.2 Construction of first-order terms . 67

5.3 Reverting to type-level de Bruijn indices 71

6 Closure conversion 75

6.1 Closure conversion and de Bruijn indices 77

6.2 Target language . 81

6.3 Translation . 86

6.4 Polymorphism . 87

6.5 Auxiliary functions . 90

6.5.1 Free variables . 91

6.5.2 Construction of the variables map 92

7 Hoisting 95

7.1 Target language . 96

7.2 Translation . 99

CONTENTS xi

7.3 Implementation . 100

8 Code generation 103

8.1 Typed assembly language . 105

8.2 Translation . 106

8.3 Type preservation . 109

8.4 Implementation . 110

8.4.1 Type translation . 112

8.4.2 Term translation . 114

9 Benchmarks 117

10 Conclusion 125

10.1 Representation of bindings . 126

10.2 Implementation language . 128

10.3 Related work . 130

10.3.1 Representations of bindings . 130

10.3.2 Typed intermediate languages . 132

10.3.3 Certified compilation . 133

10.4 Future work . 135

10.4.1 Bootstrap . 136

10.5 Summary . 137

A Source code 147

À la mémoire de ma mère.

Acknowledgements

First, I have to thank my advisor, Stefan Monnier, for his support and patience during

my research. He was always willing to help me out with every aspect of this work. I also

thank my co-advisor, Marc Feeley, for his guidance and encouragement, especially while

I was finishing the dissertation.

It was a pleasure to work with Tom Schrijvers when he was visiting our group. I thank

him for the insightful discussions we had then.

I am very grateful to Tim Sheard for accepting to take part in the thesis committee.

This research was funded in part by NATEQ, Le Fonds québécois de la recherche sur

la nature et les technologies, and NSERC, the Natural Sciences and Engineering Research

Council of Canada.

Chapter 1

Introduction

Type systems are a successful and popular formal method used for developing software.

In this dissertation, we will show that the technology of type systems can be applied

to improve the reliability of a compiler implementation, with a low impact on common

compiler development practices.

The construction of reliable software systems is commonly achieved by incorporating

rigorous testing as part of the development cycle. In the best case, a clear specification

describes exactly how the software should behave, and a number of test cases can be

derived from the specification. By subjecting a program to a large enough array of tests,

one gains some degree of confidence in its correct behavior.

In all but the most trivial cases, testing cannot be applied exhaustively. Testing is

useful to discover errors, but cannot prove that no bugs remain. Testing can be sufficient

for some programming tasks, but mission-critical systems, where failure can be disastrous,

require a higher degree of confidence. Formal methods, unlike testing, aim to prove that

a program is correct by construction, rather than sampling the program behavior after-

the-fact, and can thus give guarantees on its behavior. Formal methods are still not as

commonly used in software systems as in digital systems, but they are heavily researched,

and are steadily improving and gaining ground.

Given that compilers play a central role in the software development process, it is

essential that the compiler produces an executable program which behaves as expected,

so that the properties inferred from the source programs also apply to the code that

2 CHAPTER 1. INTRODUCTION

is executed. Intuitively, compiler correctness states that a compiler should faithfully

implement the language definition.

Realistic compilers are highly complex programs, typically made of hundreds of thou-

sands of lines of code, and writing reliable compilers is indeed a major task. In translating

programs from a high-level language (such as Java or Eiffel), into a low-level one (such

as the Java Virtual Machine), a compiler typically performs a number of transformations

on the input program, to progressively turn it into a lower-level one, which makes use

of more rudimentary language constructs. A realistic compiler also makes a number of

optimizations. As Aho et al. (2006) put it, “Optimizing compilers are so difficult to get

right that we dare say that no optimizing compiler is completely error-free! Thus, the

most important objective in writing a compiler is that it is correct.”

To ensure some degree of reliability in compilers, the common practice is to run the

compiler against a suite of test programs, and check that the compiled programs produce

the expected output when executed. This scheme is useful for regression testing, and can

also be used to benchmark the performance of the compiled code. In addition, it is useful

to instrument the compiler with internal consistency checks, which verify some conditions

that internal data structures in the compiler, including intermediate representations of

the program being compiled, are expected to satisfy. This helps discover a larger class of

bugs, and also gives more precise feedback to the compiler implementor when something

goes wrong. To support this kind of sanity check, some compilers maintain some type

information about the program as it undergoes the various transformation stages, so that

it can be type-checked at various points during compilation. This does not guarantee that

the source language semantics is preserved, but it means that the generated program still

maintains some form of safety.

To overcome the inherent limitations of informal methods such as these, researchers

have in recent years tackled the construction of compilers with completely formalized

proofs of correctness, or so-called certified compilers. Compiler correctness means that

the semantic of the compiled program must be equivalent to that of the source program,

which presupposes a formal notion of equivalence between the semantic models of the

source and target languages. A well-known example is the certified compiler of Xavier

Leroy (Leroy 2006; Blazy et al. 2006), where the operational semantics of the source

3

and target languages, as well as a proof that the target program simulates the source

program’s semantics, are formalized in the language of a proof assistant.

In general, constructing a certified compiler is a task that requires significantly more

effort than common compiler development. The correctness proof will typically be sig-

nificantly more involved than the actual compiler’s code, and this proof will be harder

to read and maintain than the code of a conventional compiler. In the aforementioned

example of Leroy’s compiler, the proof is reportedly eight times the size of the compiler’s

actual code.

There is thus a large gap between informal methods, which admit the possibility

of errors, and full compiler certification, which requires tremendous effort and departs

drastically from common compiler implementation practices. Our work explores an inter-

mediate approach, where formal methods are used to enforce some important properties

of compilers, while staying in line with common compiler implementation practices.

We focus our efforts on preservation of static semantics. The static semantics (or

type system) of a language imposes a syntactic discipline on programs, which prevents

important classes of errors (such as applying a function with the wrong number or type of

arguments). Strongly typed languages enjoy type soundness, which establishes a formal

connection between the static and dynamic semantics of a program, and intuitively states

that “well-typed programs do not go wrong” at run-time. Preservation of static semantics

thus means that the compiled program will enjoy the same safety characteristics as the

source program.

A sufficiently strong type discipline on the source language will make erroneous, yet

type-correct program manipulations, highly unlikely. Type preservation does not give

the same degree of assurance as a completely certified compiler, for which preservation

of dynamic semantics has been verified as well. For example, mistakingly generating

code which applies an operator whose type is identical to that of the intended one (say,

performing a multiplication instead of an addition) will not be reflected in the types, so the

error will be undetected. In any case, imposing a type discipline on code manipulations

will undoubtedly reduce the possibility of errors by a large factor, and should make any

remaining error easier to identify.

A type system classifies program expressions by the kind of values their evaluation

4 CHAPTER 1. INTRODUCTION

will yield at run time. Early type systems distinguished a small number of types, such as

integer and floating-point numbers. Modern type systems can capture a wide variety of

properties beyond the simple classification of primitive data. For instance, a type system

can be used to track the effect of functions on program state (Gifford and Lucassen

1986; Moggi 1989), to assert the compliance of a program to an information flow security

policy (Heintze and Riecke 1998; Ørbæk and Palsberg 1997), or to check that invariants of

data structures are never violated, see e.g. (Kahrs 2001). General-purpose programming

languages incorporate increasingly powerful features in their type system, which enhance

the potential to use type systems as the basis for formal program verification (Sheard

2004; Hinze 2003).

In our work, we will employ the type system of the language in which we implement

the compiler to enforce preservation of the static semantics of the program we compile.

Instead of writing a formal proof as a separate artifact, the type annotations in the com-

piler’s code will constitute the essential elements of the proof, which will be mechanically

verified when the compiler is compiled. The use of types in compilers is not a new idea,

and we contrast our approach to the customary use of types in the next section.

1.1 Typed intermediate languages

A compiler for a strongly typed language performs type-checking in an early phase, to en-

sure that the input program satisfies the type discipline dictated by the source language.

After this initial type-checking, the compiler is free to discard all type information, and

perform subsequent program manipulations on untyped program representations. In mod-

ern compilers, however, it is a common practice to keep some form of type information

with the program as it undergoes the various transformation phases. This type infor-

mation can be used as a kind of “sanity check” to help catch errors in the compiler: by

type-checking the code at certain points during compilation, one can identify subtle bugs

in the compiler, which would otherwise be much harder to find.

Typed intermediate languages can be used for other purposes than sanity checks;

type information can also be used to drive optimizations, as in the work of Leroy (1992),

Tarditi et al. (1996), and Shao (1997a). Another application is to construct proofs that

1.1. TYPED INTERMEDIATE LANGUAGES 5

the generated code verifies some safety properties (Morrisett et al. 1999; Hamid et al.

2002).

Compilers employing typed intermediate languages typically represent types in the

form of data structures which have to be carefully manipulated to keep them in sync with

the code they annotate as this code progresses through the various stages of compilation.

Despite its obvious advantages, this approach has several drawbacks:

1. It amounts to testing the compiler, thus bugs can lurk, undetected. One would

normally have to run the compiler on a suite of sample programs to gain assurance

that the compiler behaves as expected.

2. A detected type error, reported as an “internal compiler error”, will surely annoy

the user, who generally holds no responsibility for what went wrong.

3. It incurs space and time overhead, for manipulating the type information and for

type-checking the intermediate languages.

4. The manipulation of type as data can obfuscate the compiler’s code to a certain

degree and imposes extra maintenance burden.

The approach taken in this thesis is to use the type system of the language in which

the compiler is implemented to track the type of the compiled program as it progresses

through the various compilation stages. In this way, type preservation can be checked

statically, i.e. when type checking the compiler’s code, rather than every time an object

program is compiled.

This scheme has many significant advantages over conventional typed intermediate

languages, and has the potential to address all their drawbacks listed above. The main

advantages are the following:

1. This approach is formal, and thus exhaustive, in the sense that it completely elim-

inates the possibility of internal compiler errors resulting from program manipula-

tions which violate the type discipline of the source and intermediate languages. It

thus obviates the need for testing the compiler for type preservation on a suite of

test programs.

6 CHAPTER 1. INTRODUCTION

2. It gives earlier detection of errors introduced by an incorrect program transforma-

tion, as they are discovered when the compiler is type-checked, rather than when

compiling object programs which exercise the buggy code.

3. It gives better precision in error reports about faulty code transformations, as it

would normally identify the line of code where that faulty manipulation(s) occur.

In contrast, in a conventional compiler employing typed intermediate languages, the

cause of a type checking failure can be fairly subtle, especially in a large compiler.

4. It can eliminate the time and space overhead of manipulating type information as

data; the compiler itself can then run at full speed without having to manipulate

and check any more types.

5. Last but not least, it can in principle eliminate the need for explicit manipula-

tion of type information as data, and to implement separate type checkers for the

intermediate languages.

Total vs partial correctness Note that the first point above does not imply total

correctness, which requires that the compiler always succeeds to produce a well-typed

program when given a well-typed program as input. This may fail to be true as the

type discipline would not prevent the compiler from entering an infinite loop, for exam-

ple. What is implied is partial correctness: the type discipline imposed on the compiler

guarantees that if a program is produced, then this program is well typed.

A long term goal of this research is to formally verify that types are preserved in

the compiler, with a minimum of type annotations on the compiler’s code. It should not

compromise the basic qualities of modularity and readability of the compiler’s code. That

is, the compiler’s code should be as close as possible to that of a conventional compiler

which manipulates untyped program representations – in short, what we are aiming for

is “type preservation for free”.

The benefits of our approach are not fully realized in the current implementation of

the compiler. The objective of “type preservation for free” is not fully achieved, as we

still need to employ program representations that are not as intuitive as those typically

used in conventional compilers, and the treatment of the advanced features of the source

1.2. CHALLENGES 7

language (in particular, parametric polymorphism) still requires substantial work. We

still need to manipulate some type information as data and perform dynamic checks, but

this is due in large part to current limitations of the language in which we implement the

compiler. We summarize our achievements and the current limitations of our compiler

implementation in more detail in the conclusion (Chapter 10).

1.2 Challenges

Given the benefits of our approach, one may wonder why it has not been applied in the

past. We mention some reasons which make this approach difficult.

Mechanically verifying type preservation using type annotations on the compiler’s

code is certainly more challenging than manipulating type information as data, as done

in conventional compilers employing typed intermediate languages. Instead of simply

type-checking the produced code after-the-fact, we must arrange for every function that

manipulates code to have a type signature that captures its effect on source-level types. It

thus presupposes a more precise understanding of the way code transformations preserve

types.

Type preservation for code transformations has been proven for various code trans-

formations such as cps conversion (Harper and Lillibridge 1993) and closure conver-

sion (Minamide et al. 1996). Our approach is a form of machine verification, and as such,

it imposes difficulties that do not appear in pen-and-paper proofs.

The first difficulty is to enforce the type discipline of the source (and intermediate)

languages, by somehow imposing constraints on the data structures used to represent

abstract syntax trees in the compiler. This requires judicious use of advanced features

of the type system of the language in which the compiler is implemented. Retaining the

general qualities of a traditional compiler implementation rather than developing a proof

as a separate artifact calls for the use of a general-purpose programming language for

implementing the compiler, rather than a proof assistant. Such type-based verification is

still an emerging discipline, and is certainly not as well developed as the more traditional

forms of machine verification, such as theorem proving, where the emphasis is on proofs

rather than types.

8 CHAPTER 1. INTRODUCTION

As in all forms of mechanized proofs involving programs and languages, a central

aspect is the representation of program variables and bindings. Several approaches are

possible, and many are actively researched in the field of mechanizing programming lan-

guage meta-theory, without an emerging consensus as to which one is best suited for

applications like ours. A seemingly simple change in the representation of bindings in

abstract syntax trees can have a drastic impact on the implementation of code transfor-

mations.

In the next section, we further discuss these central difficulties and explain the im-

portant choices we have made about them in our compiler.

1.3 hTAL

Our compiler translates a variant of System F to typed assembly language. In this section,

we briefly discuss this choice of source and target language, and also discuss our choice

of the language Haskell for implementing the compiler.

Terminology To avoid confusion, as we are referring to many languages in this text, we

first clarify the terms we use to designate them. A complier is a program that translates

programs written in some language, called the source language, to programs in some other

language, called the target language. We refer to the language in which the compiler is

written as the implementation language, and sometimes the host language. When we

use a data structure in the host language to represent the abstract syntax trees for the

programs in some language, we call the language in question an object language; in this

sense, the source and target language, as well as any intermediate language used in the

compiler, is viewed as an object language.

Source language

The source language of our compiler is a variant of System F , that is, a functional pro-

gramming language with parametric polymorphism. System F is a powerful system which

makes a remarkable economy of features, consisting of a very small number of syntactic

constructs, and is thus relatively convenient to manipulate in a compiler. System F can

1.3. HTAL 9

be seen as the core language at the heart of modern (strongly typed) functional program-

ming languages such as Haskell and ML. We will introduce the syntax and type discipline

of System F in Chapter 3.

The reason for choosing System F is that it is a common choice of typed intermediate

language in compilers for richly typed functional languages. For example, the Standard

ML of New Jersey (SML/NJ) compiler internally makes use of a variant of System F (Shao

and Appel 1995). The Glasgow Haskell Compiler also uses a variant of System F (Sulz-

mann et al. 2007) as its main internal representation. System F is a good representative

of typed intermediate languages employed in production quality compilers, as most if not

all intermediate languages are some sort of derivatives of System F .

Target language

To show that our techniques are indeed applicable to all phases in a compiler, our compiler

preserves types all the way down to assembly language. Our typed assembly language

models the assembly language of a reduced instruction set computer (risc).

The compilation of System F to typed assembly language is studied in detail by

Morrisett et al. (1999), who show a series of code transformations that preserve types.

Our compiler follows the same general structure as theirs. Their paper discusses the type

discipline of a number of intermediate languages, define precisely each transformation

step, and state a type-preservation theorem for each transformation. They also define

the dynamic semantics of their typed assembly language and prove a type soundness

theorem. Our compiler can be seen as a type-checked implementation of their type-

preserving translation to typed assembly language, as well as a mechanized proof of the

type-preservation theorem stated in their paper.

Implementation language

A secondary objective of our research is to identify the language features of the imple-

mentation language that best serve the implementation of a type-preserving compiler.

We believe that type preservation is the perfect example of the kind of properties that

type systems of the future should allow programmers to conveniently express and verify.

The implementation language must have a type system which is powerful enough to

10 CHAPTER 1. INTRODUCTION

construct a strongly typed representation of syntax trees, that is, a representation that

enforces the object language’s type system. For instance, we should be able to express

in the type signature of a function that it can only return syntax trees representing well-

typed expressions.

In general, this sort of constraint can be imposed using dependent types. Languages

with dependent types allow term-level expressions to appear in type-level expressions. For

example, a dependent type List n could represent lists of n elements. Dependent types are

a very powerful notion, but type-checking for general dependent types is non-decidable

since we cannot in general determine if two term-level expressions are equivalent.

There are a number of proof assistants based on dependent types which could be used

to construct a type-preserving compiler. Coq (Paulin-Mohring 1993) is a mature proof

assistant based on the calculus of inductive constructions (CiC). It has a powerful type

system with inductive types, polymorphism and dependent types. The system provides

an interactive mode for proof development. While Coq “programs” can be given an

immediate operational meaning, executable programs are typically obtained by program

extraction, which strips down parts of the code required for the proof and produces a

simpler ML or Haskell program. Agda (Norell 2007) would be an alternative, with a

newer design, but a less mature implementation and with less proof automation.

There is currently much interest in incorporating features from dependently typed lan-

guages and proof assistants in general-purpose functional languages. Many experimental

languages incorporate some form of dependent types. Languages such as DML (Xi and

Scott 1999), Cayenne (Augustsson 1998), and Omega (Sheard 2004), fall in this category.

While some of these languages would have potentially served us well as implementa-

tion language, we decided to go with a more mainstream system, and benefit from an

industrial-strength implementation and plentiful libraries.

We have chosen Haskell (with GHC’s extensions) as our implementation language, as it

offered what seemed to be the best combination of a robust implementation and modern

type system features, while retaining the qualities of a general-purpose programming

language. Haskell is a “mainstream” general-purpose functional programming language

supported by a production-quality compiler and a plentiful libraries.

The Glasgow Haskell Compiler (GHC) is a state-of-the-art compiler for Haskell. It

1.3. HTAL 11

offers a number of extensions to the Haskell 98 standard, and in particular supports

generalized abstract datatypes, or gadts (cf. Section 2.1). gadts allow a limited form of

dependently typed programming, where the phase distinction between types and terms

is maintained. GHC also supports type families (cf. Section 2.3), which allow the user to

define functions at the level of types. This feature plays an important role in our work,

both for proving type preservation, and for enforcing the type discipline of System F .

An advantage of using Haskell rather than a language with full dependent types is

that it narrows down the “semantic gap” between the host and object languages. Our

implementation relies essentially on gadts and type families, and all these features can

be encoded in a variant of System F with type equality coercions (Sulzmann et al. 2007).

This makes more concrete the possibility of bootstrapping a type-preserving compiler,

that is, having the source language be the same as the implementation language, so that

we could compile our own compiler.

Representation of binders

An important design decision in systems which manipulate programs, such as compilers,

is the way to represent variable bindings, such as local variables and function parameters.

In compilers, the most common approach is to represent variables concretely by their

name. Alternatively, variables can be identified using some sort of numbering scheme,

such as de Bruijn indices, with the advantage that terms which differ only in the name of

their bound variables have identical representation. We discuss these approaches further

in Section 2.2.

The representation of binders is the subject of much active research. In the field of

mechanized meta-theory of programming languages, tools such as proof assistants and

theorem provers employ and promote a large variety of approaches. Some systems rep-

resent object-level bindings abstractly using bindings in the host language, a technique

called higher-order abstract syntax (hoas). Twelf (Pfenning and Schurmann 1999) is an

example of a system which promotes such higher-order encodings. Some systems use

hybrid representations which combine first-order and higher-order representations. We

further discuss research in this area in the related work section (see Section 10.3).

Our compiler manipulates strongly typed program representations, and these repre-

12 CHAPTER 1. INTRODUCTION

sentations must allow the type system of the host language to track the types of the

object-language variables. Higher-order abstract syntax is a natural way to accomplish

this, as it allows us to re-use the facility for tracking the types of variables from the host

language. The initial phase of our compiler employs such a higher-order representation

to good effect. We also use representations based on de Bruijn indices in other phases of

the compiler. We show how the basic strongly typed representation (both first-order and

higher-order) work in Section 2.2.

As our compiler manipulates polymorphic code, we have to deal with the extra com-

plexity of variables at the level of types. Just like ordinary (i.e. term-level) variables,

which abstract values, appear in expressions, type variables abstract types and appear in

type-level expressions. The type system of System F comprises a notion of reduction at

the type level (which is used to assign a type to a polymorphic term instantiated with

a specific type.) This creates delicate interaction between binders at the term and type

level. We address these issues in Chapter 3 where we discuss our encoding of System F .

1.4 Contributions

We have implemented a proof-of-concept compiler for all of System F , where type preser-

vation is enforced statically, using type annotations on the compiler’s code. Our compiler

can be seen as a type-checked implementation of the type-preserving translation to typed

assembly language of Morrisett et al. (1999). This constitutes the first mechanized argu-

ment of type preservation for these transformations over System F . Our source language

supports higher-order functions, parametric polymorphism, term-level recursion (i.e. the

ability to define recursive functions), and product types, and is thus sufficiently powerful

to encode a large variety of features of modern functional languages.

We show in detail the implementation of the essential code transformations for a call-

by-value language to assembly language. We show a cps conversion, closure conversion,

and code generation phase over System F (see Section 2.4 for a general presentation of

each transformation.) Our implementation precisely captures the way types are preserved

as the code undergoes program transformations.

We show strongly typed program representations of abstract syntax trees for a full

1.4. CONTRIBUTIONS 13

language with term-level and type-level bindings. We show both a first-order and higher-

order encoding of System F , as well as a first-order encoding of a number of interme-

diate languages and a typed assembly language. Our higher-order encoding adapts the

parametric representation of hoas using parametric polymorphism of Washburn and

Weirich (2003) to a strongly typed program representation based on gadts and type

families (cf. Section 3.2.1). We show a conversion from this higher-order encoding to the

first-order one, which clarifies the relationship between the two. We also address subtle

issues about the interaction of bindings at the levels of types and terms.

Our experience provides insight into the technical issues of program representations.

We argue that none of the existing representations of bindings is suitable in the sense

that either they cannot be used, or they introduce significant extra complexity.

To our knowledge, this is the first example of an extensive application of GHC’s

type families and type equality coercions. Our work should serve as both a showcase

and a stress test for these new features. It also feeds the current debate as to which

one of type families, associated types, or multiple-parameter type classes with functional

dependencies, should make it to the next Haskell standard (Peyton-Jones et al. 2007).

Our work also motivates the development of further Haskell extensions to complement

and address the current limitations of type families (cf. Section 4.5), which would extend

their power and offer a greater degree of static safety.

Publications Progress in the construction of our compiler has been reported in a num-

ber of articles. The first transformation step, cps conversion, was presented at the first

Programming Languages meets Program Verification (PLPV) meeting (Guillemette and

Monnier 2006). We later presented the closure conversion phase at the Haskell Work-

shop (Guillemette and Monnier 2007). In both cases, the language treated was a simply

typed λ-calculus. We subsequently extended the compiler to support parametric polymor-

phism, and presented our results at ICFP, the International Conference on Functional

Programming (Guillemette and Monnier 2008b); this article gives a concise technical

overview of this thesis. This document is a synthesis of these three articles, and also

presents a final phase of code generation which has not been published elsewhere.

By the time we prepared the article for ICFP, we had updated our implementation to

14 CHAPTER 1. INTRODUCTION

use open type families, which were recently implemented in GHC. As a by-product of this

research, in an article presented at the Trends in Functional Programming (TFP) sym-

posium (Guillemette and Monnier 2008a), we documented our transition to type families,

and took a position in favor of type families. In that article, we also suggested equipping

Haskell with a means to specify invariants on type families, which would extend their

power for static analysis (cf. Section 4.5). Pursuing this goal, I worked in collaboration

with Tom Schrijvers to formalize this idea (Schrijvers et al. 2008). Although it is indeed

related to our subject, the material of these two articles is not part of this thesis.

1.5 Related systems

The approach taken in this thesis lies somewhere between conventional compilers employ-

ing typed intermediate languages and fully certified compilers. Although type preserva-

tion has been formally verified for individual code transformations, our work is the first

to apply this idea to the scale of an entire compiler. However, a number of certified

compilers have been constructed for various languages, and we describe the most closely

related ones below. We review other research in certified compilation in the related work

section (Section 10.3).

CompCert As part of the CompCert project Xavier Leroy et al. developed a certified

compiler from a C-like language to PowerPC assembly code. The proof of correctness is

developed in the Coq proof assistant, and an executable compiler is obtained by means

of program extraction.

Their source language is relatively low-level, and has no higher-order features. How-

ever their source language is fairly large, and supports all the major features of C. The

front-end of the compiler (Blazy et al. 2006) is mainly concerned with resolving operator

overloading. The back-end (Leroy 2006) performs register allocation and instruction se-

lection, as well as a couple of simple optimizations. All the intermediate languages are

given an operational semantics.

The correctness proofs take the form of a simulation argument, relating the operational

semantics of the source and target code. The back-end of the compiler is about 35000 line

of Coq code. The semantic definitions and correctness proofs account for most of this, so

1.6. STRUCTURE OF THE DOCUMENT 15

that it is notably longer (about 8 times longer) than the actual compiler code.

Lambda Tamer Adam Chlipala (2007) developed a certified compiler from higher-

order functional language to typed assembly language. The source language does not

have polymorphism or term-level recursion, so it is much simpler than ours. Like Leroy’s

compiler, it is developed in the Coq proof assistant, using program extraction to obtain

an executable compiler. A distinctive feature of this work is the use of denotational

semantics to characterize the intermediate languages, and logical relations to establish

correctness of the translation steps.

The program representations he uses are very similar to ours, using de Bruijn indices

and de Bruijn contexts encoded as lists of types. They are constructed using the inductive

types of Coq, which are similar to gadts (but more general, since they can be indexed by

terms instead of just types, and more restrictive, since they disallow negative occurrences.)

The compilation phases are roughly those of the original work on compilation to typed

assembly language by Morrisett et al. (1999), so they are not very different from ours.

1.6 Structure of the document

We introduce key techniques employed in the implementation of the compiler, and explain

the compilation phases of our compiler, in Chapter 2. We also explain different ways of

representing syntax trees, using techniques such as higher-order abstract syntax and de

Bruijn indices. In particular, we show how to construct a strongly typed encoding of a

simply typed language using gadts.

In chapter 3, we show how to extend the program encodings from Chapter 2 to encode

a language with parametric polymorphism. We formally define our source language (a

variant of System F) which is the input of the compiler, and show its strongly typed

representation.

The subsequent chapters (4 through 8) present the individual transformation phases

implemented in the compiler. Chapter 4 presents the implementation of cps conversion

over the higher-order representation of our source language from Chapter 3. Chapter 5

shows a conversion from the higher-order program representation to a first-order one,

which is done to facilitate closure conversion. Chapter 6 and 7 present the closure conver-

16 CHAPTER 1. INTRODUCTION

sion phase and the closely related function hoisting phase. Chapter 8 presents the typed

assembly language that is our final target language, and the code generation phase. We

report benchmarks of compilation times in Chapter 9. We make general comments on

our experience, and mention related and future work in Chapter 10.

Appendix A gives the full code listing of the compiler. In large part, the dissertation

and the code can be read in parallel (following the indications at the beginning of each

chapter, and consulting the introduction to Appendix A which relates the source files to

specific sections of the dissertation.)

Chapter 2

Overview and background

This chapter introduces the types and techniques we use to make the compiler type-

preserving, and describes the overall structure of the compiler.

2.1 Generalized algebraic datatypes

Algebraic data types Algebraic data types are a central feature of strongly typed

functional languages such as Haskell or ML, and the main mechanism by which the user

can define new data types. The definition of an algebraic data type introduces a type

constructor, and a set of data constructors, which inject values into the type. Every data

constructor accepts a number of arguments of specified types.

For example, we can define a data type for representing lists in this way1:

data List t where

Cons :: t → List t → List t

Nil :: List t

This definition introduces a type constructor List, which takes a type parameter t,

representing the type of the elements in the list. It also introduces the data constructors

Cons and Nil, with explicit type signatures. All the data constructors must have the

exact same polymorphic return type, in this case, List t.

1The syntax used here is not the standard Haskell, but the one used in GHC for the definition of
gadts.

18 CHAPTER 2. OVERVIEW AND BACKGROUND

Functions which operate over data types are defined by case analysis over data con-

structors. For instance, a function which calculates the length of a list can be written

as follows:

length :: List t → Int

length (Cons h t) = 1 + length t

length Nil = 0

GADTs Generalized algebraic datatypes (gadts) eliminate the restriction that all data

constructors must have identical polymorphic return types: the return types can vary in

the arguments to the type constructor being defined.

This allows us to encode in the type of a value additional information about the value.

For instance, with gadts, we can define a type ListN which will give information on the

length of the list. We define a type ListN t n for lists containing n elements of type t. Of

course, we will need a representation of natural numbers at the type level. For this, we will

use a type to represent the number zero (we call it Z), and a type constructor (we call it

S n) to construct the representation of the successor (n+1) given the type corresponding

to n. For instance, the number three is represented by the type S (S (S Z)). The type

ListN is defined as follows:

data Z — natural numbers encoded as types

data S i

data ListN t n where

ConsN :: t → ListN t n → ListN t (S n)

NilN :: ListN t Z

For example, we can represent a list of three elements by the following term:

ConsN ′a′ (ConsN ′b′ (ConsN ′c′ Nil))

whose type is ListN Char (S (S (S Z))).

Now, when we define functions that manipulate such lists, we can specify properties

of those functions that involve the length of the lists. We can for instance implement a

scalar product of two vectors represented as lists, and express the constraint that the two

vectors must be of identical dimension:

2.2. ABSTRACT SYNTAX 19

dotProduct :: ListN Int n → ListN Int n → Int

dotProduct NilN NilN = 0

dotProduct (ConsN h1 t1) (ConsN h2 t2) = (h1 ∗ h2) + dotProduct t1 t2

The primary use we make of gadts in our compiler is to construct strongly typed

representations of abstract syntax trees, and we discuss the kind of representations we

use in the next section.

2.2 Abstract syntax

Consider a simply typed λ-calculus with primitive operations on integers (which we will

call LS) defined in bnf as follows:

(exps) e ::= λx . e | e1 e2 | let x = e1 in e2 | x

| n | e1 p e2 | if0 e1 e2 e3

(primops) p ::= + | − | ×

There exists different ways of representing such an object language as a data structure

in the host language, depending on the way we encode variables. We describe a few ways

of doing this, which are used in different parts of our compiler. We also show how to

construct strongly typed representations (that is, representations that enforce the type

discipline of the object language) using gadts.

2.2.1 Names

By far the most common way to represent variables in compilers is by their name. For

example, the language LS can be represented using the following algebraic data type:

20 CHAPTER 2. OVERVIEW AND BACKGROUND

type ID = String

data Exp where

Var :: ID → Exp

Lam :: ID → Exp → Exp

App :: Exp → Exp → Exp

Let :: ID → Exp → Exp → Exp

Num :: Int → Exp

Prim :: Op → Exp → Exp → Exp

If0 :: Exp → Exp → Exp → Exp

data Op where

Add :: Op

Sub :: Op

Mul :: Op

Each data constructor encodes a particular production from LS ’s grammar. The

constructor for variables Var explicitly mentions the variable name, as a character string.

Similarly, the constructors that introduce variables (Lam and Let) mention the name of

the newly bound variables.

The representation of variables as character strings is very intuitive, but not very

well suited to constructing a strongly typed program representation, as we cannot easily

associate a type to a variable represented in this way.

2.2.2 Higher-order abstract syntax

Higher-order abstract syntax (hoas) is a program representation in which object-level

variables are represented using variables in the host language (Haskell in our case.) All

structures which imply bindings (not only functions, but all declarations which introduce

variable names) will be represented using functions in the host language. The following

algebraic data type would be used to represent LS :

2.2. ABSTRACT SYNTAX 21

Γ(x) = τ

Γ ` x : τ

Γ, x :τ1 ` e : τ2

Γ ` λx . e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e1 : τ1 Γ, x :τ1 ` e : τ2

Γ ` let x = e1 in e2 : τ1 Γ ` n : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 p e2 : int

Γ ` v : int Γ ` e1 : τ Γ ` e2 : τ

Γ ` if0 v e1 e2 : τ

Figure 2.1: Static semantics of LS .

data Exp where

Lam :: (Exp → Exp) → Exp

App :: Exp → Exp → Exp

Let :: Exp → (Exp → Exp) → Exp

Num :: Int → Exp

Prim :: Op → Exp → Exp → Exp

If0 :: Exp → Exp → Exp → Exp

Note that, in this representation, there is no need for a data constructor for variables.

This representation has the advantage that name-handling is inherited from the host

language. For example, we can define a capture-avoiding substitution through a simple

function application in the host language. Applications which make extensive use of

substitutions can take advantage of this representation. For example, an evaluator which

reduces an expression to its normal form:

eval :: Exp → Exp

eval (Lam f) = Lam f

eval (App e1 e2) = case eval e1 of

Lam f → f (eval e2)

→ error ”trying to apply something that is not a function”

. . .

Strongly typed encoding Consider the usual typing rules for LS shown in Figure 2.1.

The judgment Γ ` e : τ states that expression e has type τ in static context Γ. The static

22 CHAPTER 2. OVERVIEW AND BACKGROUND

context simply lists the types of all the variables in scope, so it has the form:

Γ ::= x0 :τ0, . . . , xn−1 :τn−1

and we use • to denote and empty context (i.e. when n = 0).

Using gadts, we can construct a strongly typed encoding of LS which enforces these

typing rules as follows:

data Exp t where

Lam :: (Exp t1 → Exp t2) → Exp (t1 → t2)

App :: Exp (t1 → t2) → Exp t1 → Exp t2

Let :: Exp t1 → (Exp t1 → Exp t2) → Exp t2

Num :: Int → Exp Int

Prim :: Op → Exp Int → Exp Int → Exp Int

If0 :: Exp Int → Exp t → Exp t → Exp t

The type parameter t reflects the source type (i.e. object-level type) of the expression.

That is, a Haskell term of type Exp t represents a well-typed LS expression e satisfying

a judgment Γ ` e : τ , where t is the Haskell type we have chosen to represent τ . Here,

we have chosen to use the Haskell type Int to stand for the object type int, and t1 → t2

to stand for function types. Indeed, this choice is arbitrary, and we could as well use any

other types with the same effect. For instance, we could define a type constructor Arw,

and use the type Arw t1 t2 instead of t1 → t2 to represent the object-level type τ1 → τ2.

Note that Γ is implicit in this representation: we are implicitly re-using the type

context of the implementation language to track the type of variables in scope. This can

work as long as the typing contexts of the implementation language behave the same as

those of the object language, which is indeed the case as both use static scoping.

The type Exp actually encodes type derivations, not just expression syntax, and in-

deed type derivations and well-typed expressions are in one-to-one correspondence in LS .

Thus it is impossible to construct the representation of an ill-typed term, as there is no

corresponding type derivation.

2.2. ABSTRACT SYNTAX 23

2.2.3 De Bruijn indices

In contrast to hoas, a first-order representation introduces variables explicitly. With de

Bruijn indices, as with hoas, variable names are irrelevant, and variables are instead

represented as numbers, called “indices”.

A de Bruijn index indicates the number of variable introductions that take place

between the point where a variable is bound, and the point where that variable occurs.

For instance, the term λx.λy.x y is written with de Bruijn indices as λλ 1 0.

The following algebraic data type would be used to represent the language LS with

de Bruijn indices:

data Exp where

Var :: Int → Exp

Lam :: Exp → Exp

App :: Exp → Exp → Exp

Let :: Exp → Exp → Exp

. . .

Strongly typed representation With de Bruijn indices, a strongly typed represen-

tation can be constructed as follows:

data Exp ts t where

Var :: Index ts t → Exp ts t

Lam :: Exp (t1, ts) t2 → Exp ts (t1 → t2)

App :: Exp ts (s → t) → Exp ts s → Exp ts t

Let :: Exp ts t1 → Exp (t1, ts) t2 → Exp ts t2

. . .

The type associated with an index is drawn from an explicit type argument (ts), which

represents the type context (Γ). As there are no variable names in de Bruijn, the context

Γ simply takes the form:

Γ = τn−1, . . . , τ1, τ0

where ti gives the type associated with variable i (i.e. whose binder is reached by travers-

ing i binders outward.) The parameter ts encodes Γ as a list (in the form of nested

24 CHAPTER 2. OVERVIEW AND BACKGROUND

pairs):

ts = (t0, (t1, . . . (tn−1, ())))

where ti is the Haskell type that stands for τi. Note that we use Haskell’s unit type, (),

to indicate the end of the list, and to denote the empty environment, •. A variable is

represented as an index, whose type reflects the type of the corresponding variable. The

indices are constructed as Peano numbers:

data Index ts t where

I0 :: Index (t, ts) t

Is :: Index ts t → Index (t0, ts) t

Note that individual indices are polymorphic in ts and t, as a given index needs to assume

different types in different contexts. Specifically, for an index of the form Isi I0 of type

Index ts t, the only relation between ts and t is that the ith type appearing in ts is t,

which is why t0 appears free in the type of Is, and ts appears free in the type of I0.

To illustrate the first-order and higher-order encodings, the following expression:

let a = 2

b = 3

in a + b

would be represented in hoas as:

Let (Num 2) (λa →

Let (Num 3) (λb →

Add a b))

and with de Bruijn indices as:

Let (Num 2) (

Let (Num 3) (

Add (Var (Is I0)) (Var I0)))

Now that we have presented gadts and the basics of our strongly typed program

representations, we will discuss another important feature of GHC, namely type families,

which we use to capture the effect of functions on the object-level types.

2.3. TYPE FAMILIES 25

2.3 Type families

Type families (Schrijvers et al. 2007) are a recent addition to GHC that allows program-

mers to directly define functions over types by case analysis, in a way that resembles

term-level function definitions with pattern matching.

For example, we can define a type function Add that computes (statically) the sum of

two Peano numbers:

type family Add n m

type instance Add Z m = m

type instance Add (S n) m = S (Add n m)

We can then use this type family to express the fact that an append function over

length-annotated lists produces a list of the expected length:

data List elem len where

Cons :: elem → List elem n → List elem (S n)

Nil :: List elem Z

append :: List elem n → List elem m → List elem (Add n m)

append Nil l = l

append (Cons h t) l = Cons h (append t l)

To see how the first clause of append type-checks: by the type signature of append, the

returned value should have type List elem (Add Z m); l actually has type List elem m,

which is the same, since Add Z m reduces to m by the definition of Add. For the

second clause, the type of the returned value should be List elem (Add (S n) m), and

Cons h (append t l) has type List elem (S (Add n m)), which is the same after the second

clause of Add is applied, in reverse.

2.4 Compilation phases

In this section we briefly describe the transformation steps that take place in the compiler.

These compilation steps are fairly typical of a compiler for a call-by-value functional

26 CHAPTER 2. OVERVIEW AND BACKGROUND

language. The overall structure of the compiler is as follows:

λ
typecheck−−−−−−→ λ→

cps

convert

−−−−→ λK

deBruijn

convert

−−−−−−→ λb
K

closure

convert

−−−−→ λC
hoist

−−−→ λH

generate

code

−−−−−→ TAL

The source language (λ→) and each intermediate language (λK, λb
K, etc.) has its own

syntax and type system, so each is encoded as a separate gadt. The language λ→ is

similar to LS but has more features, including parametric polymorphism (cf. Chapter 3).

The final target language is a typed assembly language (TAL), which has the general

characteristics of an assembly language for a risc computer, but which has a static type

system and carries type information. The first phase infers types for all subterms of

the source program, and all the subsequent ones are then careful to preserve them. In

general, the way a transformation affects the types is captured by a function on types.

For example, the effect of the cps conversion on the types of System F is captured by

a function (namely KtypeJ−K, cf. Figure 4.4), which maps function types (τ1 → τ2) to

continuation types (written τ → 0) and leaves the other types unchanged.

We briefly describe each transformation below and illustrate them by showing the

compilation of a simple program.

2.4.1 Type checking

The type checking phase takes a simple abstract data type AST, then it infers and checks

its type t, and returns a gadt of type Exp t which does not just represent the syntax but

also a proof that the expression is properly typed, in the form of a type derivation. In

order for the cps phase to more closely match the natural presentation, we make it work

on a higher-order abstract syntax (hoas) representation of the code, so the type checking

phase also converts the first order abstract syntax (where variables are represented by

their names) to a hoas (where variables are represented by meta variables) at the same

time.

The conversion to hoas is implemented using Template Haskell (Sheard and Jones

2002), a compile-time meta-programming facility bundled with GHC – that is, it allows

us to construct a piece of Haskell code under program control. This piece of code gets

2.4. COMPILATION PHASES 27

type-checked by GHC, and since the program representation we construct is strongly

typed, we get a source-level type checker for free.

Constructing hoas terms by meta-programming gives us an efficient representation,

in contrast to a direct implementation which would lead to residual redexes, i.e. recursive

calls to the conversion (or parsing) function hidden inside closures for functional argu-

ments, like those for λ or let. To illustrate the problem, consider a parser that directly

produces a higher-order representation; such a parser would be of essentially this form:

parse . . . = case . . . of

. . . → Lam (λx → parse . . . x . . .)

. . .

The problem is that the body of the function being parsed may indeed refer to the newly

bound variable (x), so the variable has to be passed as argument in the recursive call

to parse. The resulting syntax tree contains a call to parse under every Lam node, with

dramatic consequences on the compiler’s performance. Using Template Haskell, we avoid

this problem by constructing a “fresh” Haskell expression which contains no reference to

the functions that produce the abstract syntax tree.

2.4.2 CPS conversion

The first transformation rewrites the program in continuation-passing style (cps), in

which all intermediate computational results are given a name, and the control structure

of the program is made explicit. An important difference is that in cps, a function

does not return a value to the caller, but instead communicates its result by calling a

continuation, which is a function that represents the “rest of the computation”, that is,

the context of the computation that will consume the value produced. Additionally a

special form halt is used to indicate the final “answer” produced by the program.

An example is shown in Figure 2.2. After the conversion, the function c2f takes a

continuation k as an additional parameter; the body of the function introduces variables

v0 and v1 to hold intermediate results of the computation, and finally invokes the con-

tinuation k. The call to c2f passes a continuation, which in this case merely applies the

primitive form halt to the value produced by c2f.

28 CHAPTER 2. OVERVIEW AND BACKGROUND

let a = 1.8
b = 32
c = 24
c2f = λx . a× x + b

in c2f c

cps=⇒

let a = 1.8
b = 32
c = 24
c2f = λ〈x, k〉 .

let v0 = a× x
v1 = v0 + b

in k v1

in c2f 〈c, λv . halt v〉

Figure 2.2: Example of cps conversion.

let a = 1.8
b = 32
c = 24
c2f = 〈λ〈〈x, k〉, env〉 . let a = env.0

b = env.1
v0 = a× x
v1 = v0 + b
〈kf , kenv〉 = k

in kf 〈v1, kenv〉,
〈a, b〉〉

〈c2ff , c2fenv〉 = c2f
in c2ff 〈〈c, 〈λ〈v, env〉 . halt v, 〈〉〉〉, c2fenv〉

Figure 2.3: Closure-converted program.

For an input λ→ expression of type τ , represented internally as a value of type Exp t,

the output of the cps conversion should be of type ExpK (K t), where K is a type family

that describes the way types are modified by this phase. In particular, input types of the

form τ1 → τ2 are mapped to 〈τ ′1, τ ′2 → 0〉 → 0, where τ → 0 is the type of a continuation

which consumes a value of type τ . The type of the cps conversion, in simplified form:

cps :: Exp t → ExpK (K t)

expresses and enforces directly that the function preserves types.

2.4.3 Closure conversion

A closure is a data structure that consists of a function, paired with a tuple holding a

copy of the function’s free variables, called the environment. The function is made to

receive the environment as an extra parameter. Functions inside closures are closed, i.e.

they do not have any free variables, as they access their free variables by extracting them

2.4. COMPILATION PHASES 29

let a = 1.8
b = 32
c = 24
c2f = pack [〈int, int〉,

〈λ〈〈x, k〉, env〉 . let a = env.0
b = env.1
v0 = a× x
v1 = v0 + b
(β, 〈kf , kenv〉) = unpack k

in kf 〈v1, kenv〉,
〈a, b〉〉]

as τc2f

(β, 〈c2ff , c2fenv〉) = unpack c2f
in c2ff 〈〈c, pack [〈〉, 〈λ〈v, env〉 . halt v, 〈〉〉] as τhalt〉, c2fenv〉
where τhalt = ∃α.〈〈int, α〉 → 0, α〉

τc2f = ∃β.〈〈〈int, τhalt〉, β〉 → 0, β〉

Figure 2.4: Closure-converted program, with existential types.

from the environment parameter. At the call site, the closure is taken apart into its

function and environment components and the call is made by passing the environment

as an additional argument to the function. Closure conversion makes the manipulation

of closures explicit.

For example, the above example in cps will be transformed by the closure conversion

as shown in Figure 2.3. The function c2f takes as an extra parameter env, which contains

the value of its free variables, namely a and b. In the body of c2f, access to those

variables is done through projections of the variable env. When c2f is called, it is passed

the environment (extracted from the closure) as an extra parameter.

From the point of view of type preservation, closure conversion must take into account

that two functions of identical types would be translated into closures of different types,

if the types of their free variables are different. For example, consider two functions f1

and f2, both of type τ → 0, whose environments are characterized by the types env1 and

env2, so that the types of the corresponding closures would be as follows:

f ′1 : 〈〈τ, env1〉 → 0, env1〉

f ′2 : 〈〈τ, env2〉 → 0, env2〉

The commonly accepted solution is to use existential types to abstract away from the

30 CHAPTER 2. OVERVIEW AND BACKGROUND

type of the environment. In this way, the two closures can be of the following type:

∃β.〈〈τ, β〉 → 0, β〉

Syntactically, the form pack is used to construct a so-called “existential package” of

a specified type, and thereby hides a part of the type of the expression. For example, we

would obtain closures of suitable type in this way:

pack [env1, f
′
1] as ∃β.〈〈τ, β〉 → 0, β〉

pack [env2, f
′
2] as ∃β.〈〈τ, β〉 → 0, β〉

The form unpack opens up a package, bringing in scope a type variable that stands for

the abstracted type (the variable β in this example.)

Our example program modified to represent closures as existential packages is shown in

Figure 2.4. In our example, existential types are not necessary since every call site applies

a unique function, but they are needed in general if the source program uses higher-order

functions. Higher-order functions are functions which receive functions as parameters or

produce functions as return values. Consequently, for a given function application e1 e2,

the function e1 does not necessarily correspond to a unique function in the program. For

example, the following program fragment defines a higher-order function g, which takes

a function of type τ → 0 as parameter and applies it to some value v of type τ :

let g :: (τ → 0) → 0

g = λf . f v

in if0 w (g f1) (g f2)

The function g is then applied to two function f1 and f2, assuming their type is as given

above. The parameter f will successively assume the values of f1 and f2 as a result of

the calls to g. To be able to give a type to the closure-converted form of the function

g, the closure-converted form of f1 and f2 must have identical types, hence the need for

existential types.

2.4. COMPILATION PHASES 31

let `0 = λ〈〈x, k〉, env〉 . let a = env.0
b = env.1
v0 = a× x
v1 = v0 + b
(β, 〈kf , kenv〉) = unpack k

in kf 〈v1, kenv〉
`1 = λ〈v, env〉 . halt v
a = 1.8
b = 32
c = 24
c2f = pack [〈int, int〉, 〈`0, 〈a, b〉〉] as τc2f

(β, 〈c2ff , c2fenv〉) = unpack c2f
in c2ff 〈〈c, pack [〈〉, 〈`1, 〈〉〉] as τhalt〉, c2fenv〉
where τhalt = ∃α.〈〈int, α〉 → 0, α〉

τc2f = ∃β.〈〈〈int, τhalt〉, β〉 → 0, β〉

Figure 2.5: Example program after the function hoisting transformation.

2.4.4 Hoisting

After closure conversion, λ-abstractions are closed and can be moved freely in the program.

A function hoisting phase moves all λ-abstractions to the top level. The result of the

function hoisting transform on the example program is shown in Figure 2.5. This phase re-

arranges the bindings so that all functions appear at the top level, but does not otherwise

affect the types.

2.4.5 Code generation

The final stage of compilation generates code for a hypothetical typed assembly language.

Our target language models the machine language of a typical risc computer. The

instruction set has the usual data movement, arithmetic, and control transfer operations,

as well as an abstract instruction to allocate a tuple on the heap.

The code generated for our sample program is shown in Figure 2.6. The code still

carries type annotations (not shown in the example), so it can be type-checked indepen-

dently of the source program. The type system constrains the contents of registers at

every point in the program. Code blocks are polymorphic, and type applications, as well

packing and unpacking of existentials are explicit (not shown in the example).

32 CHAPTER 2. OVERVIEW AND BACKGROUND

`0 : ld r2 r0[0] r2 : x
ld r3 r0[1] r3 : k
ld r4 r0[0] r4 : env.0
ld r5 r0[1] r5 : env.1
mul r6 r4 r2 r6 : v0

add r6 r6 r5 r6 : v1

ld r7 r3[0] r7 : kf

ld r8 r3[1] r8 : kenv

mktuple r0 〈r6, r8〉
jmp r7

`1 : halt
start : mov r0 1.8 r0 : a

mov r1 32 r1 : b
mov r2 24 r2 : c
mktuple r3 〈r0, r1〉 r3 : 〈a, b〉
mktuple r4 〈`0, r3〉 r4 : c2f(closure for `0)
mktuple r5 〈〉 r5 : 〈〉
mktuple r6 〈`1, r5〉 r6 : closure for `1

mktuple r7 〈r2, r6〉 r7 : 〈c, closure for `1〉
ld r8 r4[1]
mktuple r0 〈r7, r8〉
ld r9 r4[0] r9 : c2ff
jmp r9

Figure 2.6: Assembly language program. The right column describes the contents of the
registers in terms of the variable names used in the example from Figure 2.5.

Chapter 3

Encoding of System F

This chapter describes the strongly typed program representation of the variant of Sys-

tem F that constitutes our source language. Given its relative simplicity, System F is a

remarkably expressive language, which makes it a good choice for the internal representa-

tion in a compiler. Our source language supports term-level recursion and is representative

of the internal languages used by compilers for strongly typed functional languages. For

example, previous versions of GHC used a variant of System F as its main intermedi-

ate language. We have chosen System F as our source language primarily because of is

simplicity, and because many language features can be compiled into System F , so the

results we obtain here are also valid for a large class of languages.

System F is a formal system that extends the simply typed λ-calculus (cf. Section 2.2)

with parametric polymorphism. Parametric polymorphism is a feature that allows the

same program entity to be interpreted under different types. Consider the higher-order

function double, which recieves a function f as an argument and returns a function which

applies f twice to its argument:

double = λf . λx . f (f x)

Suppose we want to apply the function double on functions of different types. In a simply

typed (or “monomorphic”) language, we would need to define different versions of double

for each type, for instance:

34 CHAPTER 3. ENCODING OF SYSTEM F

doubleint :: (int → int) → int → int

doubleint = λ(f : int → int) . λ(x : int) . f (f x)

doublebool :: (bool → bool) → bool → bool

doublebool = λ(f : bool → bool) . λ(x : bool) . f (f x)

With parametric polymorphism, we can define a generic version of double that is not com-

mitted to a particular type for the argument to f . This is done using a type abstraction,

as follows:

double = Λα. λ(f : α → α) . λ(x : α) . f (f x)

The construct Λ binds a variable that stands for a type (in the same way that λ binds a

variable that stands for a value.) Such a polymorphic term is given a universally quantified

type:

double :: ∀α. (α → α) → α → α

Finally, we can instantiate a polymorphic term (e) with a particular type (τ) using a

type application (written e[τ]). For example, we obtain a version of double applicable to

functions on integers as follows:

doubleint :: (int → int) → int → int

doubleint = double[int]

Formally this is captured by the following typing rules for type abstraction and type

application:
∆, α; Γ ` e : τ

∆; Γ ` Λα. e : ∀α. τ

∆; Γ ` e : ∀α. τ1

∆; Γ ` e[τ2] : τ1[τ2/α]

In the typing judgment ∆; Γ ` e : τ , ∆ is a component of the static context that lists the

type variables in scope (and Γ assigns types to term variables in scope, as in Section 2.2).

In particular, this judgment implies that all type variables appearing in τ must be listed

in ∆. The type context ∆ is of the form α0, . . . , αn−1, and we will write • to denote the

empty context (i.e. when n = 0).

The source language of the compiler, λ→, is shown in Figure 3.1. The term language

is similar to the one from Section 2.2, except that it replaces the λ-abstraction with a

more general construct by which recursive functions can be defined (letrec f x = e1 in e2,

3.1. TYPES 35

(type context) ∆ ::= α0, . . . , αn−1

(value context) Γ ::= x0 :τ0; . . . ; xn−1 :τn−1

(types) τ ::= τ1 → τ2 | ∀α. τ | α | 〈τ1, τ2〉 | int

(exps) e ::= letrec f x = e1 in e2 | let x = e1 in e2

| x | e1 e2 | Λα. e | e[τ] | 〈e1, e2〉 | fst e | snd e
| n | e1 p e2 | if0 e1 e2 e3

(primops) p ::= + | − | ×

Figure 3.1: Syntax of λ→.

f being in scope in both e1 and e2). As a matter of notation, we will sometimes write

λx.e as a shorthand for letrec f x = e in f . The source language also includes product

constructions and projections.

The remainder of this chapter describes the encoding of this language. The key issue

is the choice of representation to use for each binding. In a language like System F there

are three distinct classes of binders to consider:

1. at the term level, those that bind values (such as letrec and let);

2. at the term level, those that introduce type variables (Λ);

3. those that bind types at the type level (the ∀ quantifier).

We first discuss the encoding of type-level binders, which is essentially the same through-

out the compiler. We then turn to the encoding of type abstraction at the term level,

which takes a different form whether value abstraction is higher-order (as in the case of

the cps conversion) or first-order (as in the subsequent phases).

The code listing of the encoding of the source language used in the compiler is shown

in Appendix A (in the file Src.hs, page 156; the type families discussed in Section 3.4 are

defined in the file Tp.hs, page 148).

3.1 Types

Of course, encoding System F in a gadt implies that introduction and elimination of

type variables take place at Haskell’s type level. While hoas would be our preferred

choice to represent type-level bindings, GHC does not provide λ-expressions at the level

36 CHAPTER 3. ENCODING OF SYSTEM F

λ→ type Haskell type
τ1 → τ2 t1 → t2
∀α. τ All t
α Var i
〈τ1, τ2〉 (t1, t2)
int Int

Figure 3.2: Encoding of λ→ types.

of types, which constrains our representation of System F types to be first-order: bound

type variables are represented with type-level de Bruijn indices.

The encoding of types we use is summarized in Figure 3.2. A universal type ∀α. τ is

represented as the Haskell type All t, where the type constructor All implicitly binds a

type variable in t. A type variable is then represented using the type constructor Var, with

a parameter that encodes its de Bruijn index as a Peano number. The type constructors

All and Var are defined as follows:

data All t

data Var i

Indeed, as these types are only intended to appear as type parameters to gadts used for

identifying object-level types, their definition do not introduce any data constructor.

To illustrate the encoding of object-level types, the type of the usual swap function

for pairs:

∀α β. 〈α, β〉 → 〈β, α〉

is represented as the Haskell type:

All (All ((Var (S Z),Var Z) → (Var Z,Var (S Z))))

3.2 Higher-order term encoding

Consider again the typing rules for type abstraction and type application:

∆, α; Γ ` e : τ

∆; Γ ` Λα. e : ∀α. τ

∆; Γ ` e : ∀α. τ1

∆; Γ ` e[τ2] : τ1[τ2/α]

3.2. HIGHER-ORDER TERM ENCODING 37

data Exp t where
TpAbs :: (∀t. Exp (Subst s t Z)) → Exp (All s)
TpApp :: Exp (All s) → Exp (Subst s t Z)

Let :: Exp t1 → (Exp t1 → Exp t2) → Exp t2
Letrec :: (Exp (t1 → t2) → Exp t1 → Exp t2) →

(Exp (t1 → t2) → Exp t) → Exp t
App :: Exp (t1 → t2) → Exp t1 → Exp t2

Pair :: Exp t1 → Exp t2 → Exp (t1, t2)
Fst :: Exp (t1, t2) → Exp t1
Snd :: Exp (t1, t2) → Exp t2

Num :: Int → Exp Int
Prim :: Op → Exp Int → Exp Int → Exp Int
If0 :: Exp Int → Exp t → Exp t → Exp t

Figure 3.3: Higher-order encoding of λ→.

If we translate λ→ types in de Bruijn, and thus eliminate all type variable names,

these two typing rules become:

∆ + 1; shiftEnv Γ ` e : τ

∆; Γ ` Λe : ∀τ
∆; Γ ` e : ∀τ1

∆; Γ ` e[τ2] : τ1[τ2/0]

where 0 is the smallest de Bruijn index. Here, ∆ only tracks the number of type variables

in scope. In the hypothesis of the judgment for type abstraction, the type context is

extended to ∆+1 to account for the new type variable. The operator shiftEnv increments

all indices corresponding to free variables in the types listed in a type environment; it is

applied to Γ in order to avoid capture of the free variables by the new ∀ binder. In the

judgment for type application, the form τ [τ ′/i] yields the type τ where the index i has

been eliminated, and τ ′ has been substituted in place of it. Substitution (−[−/−]) and

the shiftEnv operator are formally defined in Section 3.4.

We can extend the higher-order encoding from Section 2.2.2 with type abstraction

and application (as well as introduction and projections of products) as shown in Fig-

ure 3.3. The concrete representation of λ→ that we use is actually different (as will be

clarified in Section 3.2.1 below), but this simplified version helps single out the issues of

polymorphism.

38 CHAPTER 3. ENCODING OF SYSTEM F

Term-level type variables As the term encoding is higher-order, the static context

∆; Γ is implicit. A type abstraction Λτ is represented as a polymorphic term that, when

instantiated at a given type τ2, assumes type τ1[τ2/0]:

TpAbs :: (∀t. Exp (Subst s t Z)) → Exp (All s)

where Subst is a type family that implements substitution (defined in Section 3.4 below.)

This representation of term-level type variables is higher-order in the sense that an object-

level type variable is represented by a Haskell type variable (bound by an implicit type

abstraction.)

To illustrate the encoding used, the swap function:

swap = Λα. Λβ. λ(x : 〈α, β〉) :〈x.1, x.0〉.

is encoded as:

swap :: Exp (All (All ((Var (S Z),Var Z) → (Var Z,Var (S Z)))))

swap = TpAbs (TpAbs (Letrec (λf x → Pair (Snd x) (Fst x))

(λf → f)))

3.2.1 Washburn and Weirich’s encoding of HOAS

The higher-order representation shown above suffers from the fact that the function space

of Haskell is larger than the syntactic classes we want to encode. Consider the following

Haskell term:

Letrec (λf x → case x of

Num n → Num (n + 1)

a → a)

(λf → f)

This term performs case analysis in the host language, so clearly it does not represent an

expression. Such terms, that do not correspond to expressions of the object language, are

called exotic terms.

The concrete encoding of λ→ that we use is shown in Figure 3.4. It is essentially a

type-indexed version of the parametric representation of hoas developed by Washburn

3.2. HIGHER-ORDER TERM ENCODING 39

type Exp α t = Rec ExpF α t

data ExpF α where
TpAbs :: (∀t2. α (Subst t1 t2 Z)) → ExpF (α (All t1))
TpApp :: α (All t1) → ExpF (α (Subst t1 t2 Z))

Let :: α t1 → (α t1 → α t2) → ExpF (α t2)
Letrec :: (α (t1 → t2) → α t1 → α t2) →

(α (t1 → t2) → α t) → ExpF (α t)
App :: α (t1 → t2) → α t1 → ExpF (α t2)

Pair :: α t1 → α t2 → ExpF (α (t1, t2))
Fst :: α (t1, t2) → ExpF (α t1)
Snd :: α (t1, t2) → ExpF (α t2)

Num :: Int → ExpF (α Int)
Prim :: Op → α Int → α Int → ExpF (α Int)
If0 :: α Int → α t → α t → ExpF (α t)

Figure 3.4: Parametric higher-order encoding of λ→ (cf. source file Src.hs, page 156).

and Weirich (2003). To illustrate the difference with the simplified encoding, consider the

constructor for let:

data Exp t where

Let :: Exp t1 → (Exp t1 → Exp t2) → Exp t2

. . .

In the concrete representation, it takes the form:

data ExpF α where

Let :: α t1 → (α t1 → α t2) → ExpF (α t2)

. . .

type Exp α t = Rec ExpF α t

An expression of object type τ is represented as a Haskell term of type:

∀α. Exp α t

where the parametricity in α rules out exotic terms. For example, the body of a let

expression is represented by a function of type α t1 → α t2, and since the type for which

α stands is not known, the function cannot apply case analysis on its argument.

40 CHAPTER 3. ENCODING OF SYSTEM F

data Exp ctx t where
TpAbs :: Exp (S i,ShiftEnv ts) s → Exp (i, ts) (All s)
TpApp :: Exp (i, ts) (All s) → Exp (i, ts) (Subst s t Z)

Var :: Index ts t → Exp (i, ts) t
Let :: Exp (i, ts) t1 → Exp (i, (t1, ts)) t2 → Exp (i, ts) t2
Letrec :: Exp (i, (t1 → t2, (t1, ts))) t2 →

Exp (i, (t1 → t2, ts)) t → Exp (i, ts) t
App :: Exp (i, ts) (s → t) → Exp (i, ts) s → Exp (i, ts) t

Pair :: Exp (i, ts) t1 → Exp (i, ts) t2 → Exp (i, ts) (t1, t2)
Fst :: Exp (i, ts) (t1, t2) → Exp (i, ts) t1
Snd :: Exp (i, ts) (t1, t2) → Exp (i, ts) t2

Num :: Int → Exp (i, ts) Int
Prim :: Op → Exp (i, ts) Int → Exp (i, ts) Int → Exp (i, ts) Int
If0 :: Exp (i, ts) Int → Exp (i, ts) t → Exp (i, ts) t → Exp (i, ts) t

Figure 3.5: First-order encoding of λ→.

The type constructor Rec plays the role of a fixed-point type operator. We will discuss

programming techniques for manipulating this representation of hoas in Section 4.3,

where the definition of an iterator justifies the use of this type-level fixed-point operator.

The type Rec is defined as follows:

data Rec α β t where

Roll :: (α (Rec α β t)) → Rec α β t

Place :: (β t) → Rec α β t

The data constructor Roll plays the role of the usual roll operator of iso-recursive types,

and the Place constructor is an artifact used internally by the iterator. Intuitively, the

type parameter α (of kind ? → ?, where ? is the kind for Haskell types which classify

values) stands for the type of the nodes in the recursive structure (it is instantiated

with ExpF in the above example), the type parameter β (of kind ? → ?) makes the

representation parametric and abstracts the type of the result of a computation applied

to the recursive structure, and t (of kind ?) is the type parameter we use for indexing this

structure with object-level types.

3.3. FIRST-ORDER TERM ENCODING 41

(τ1 → τ2)[τ/i] = τ1[τ/i] → τ2[τ/i]
(∀τ0)[τ/i] = ∀(τ0[τ/i + 1])

j[τ/i] =


j − 1 if j > i;
U i

0(τ) if j = i;
j if j < i.

〈τ1, τ2〉[τ/i] = 〈τ1[τ/i], τ2[τ/i]〉
int[τ/i] = int

U i
k(τ1 → τ2) = U i

k(τ1) → U i
k(τ2)

U i
k(∀τ) = ∀(U i

k+1(τ))

U i
k(j) =

{
j + i if j > k;
j if j ≤ k.

U i
k(〈τ1, τ2〉) = 〈U i

k(τ1), U i
k(τ2)〉

U i
k(int) = int

Figure 3.6: Substitution over λ→ types in de Bruijn.

3.3 First-order term encoding

We extend the first-order encoding from Section 2.2.3 with polymorphism as shown in

Figure 3.5. The static context now takes the form (i, ts), where i encodes the length of ∆

(as a Peano number), and ts encodes Γ as in the simply typed case.1

The introduction of a type variable (by the constructor TpAbs) is reflected in the type

context (S i). The type variable implicitly bound by the All constructor can be referred

to as Var Z in the type s; in order to avoid capture of this new type variable in the types

forming to the value context ts, the type family ShiftEnv must be applied. The effect of

this type family is to increase all indices by one.

3.4 Substitution

The capture-avoiding substitution is formally defined in Figure 3.6. It is a conventional

substitution over de Bruijn terms (as in, e.g. Kamareddine (2001)). When substituting

τ in place of the index i, the free variables of τ must be incremented in order to avoid

capture; this is accomplished by the “update” function U i
k(τ) (sometimes also called

“shift”) whose effect is to adjust all indices no smaller than k (those are the free variables)

by incrementing them by i.

The substitution and update functions can be encoded directly as Haskell type fam-

1We have chosen to aggregate the value and type contexts (ts and i respectively) into a single type
parameter (i, ts) to Exp. Alternatively, we could define Exp with an extra type parameter, and write
Exp i ts t instead of Exp (i, ts) t. We will follow the same convention in subsequent chapters, where the
static context will sometimes have more than two components, as in Chapter 7. One advantage of this
formulation is that it obviates the need to spell out the components of the static context in the type
signature of functions that preserve the static context, e.g. Exp ctx t1 → Exp ctx t2.

42 CHAPTER 3. ENCODING OF SYSTEM F

type instance Subst (t1 → t2) t i = (Subst t1 t i) → (Subst t2 t i)
type instance Subst (All s) t i = All (Subst s t (S i))
type instance Subst (Var j) t i = CMP i j (Var (Pred j))

(U Z i t)
(Var j)

type instance Subst (t1, t2) t i = (Subst t1 t i,Subst t2 t i)
type instance Subst Int t i = Int

type instance U k i (t1 → t2) = (U k i t1) → (U k i t2)
type instance U k i (All t) = All (U (S k) i t)
type instance U k i (Var j) = Var (CMP j k j j (Add j i))
type instance U k i (t1, t2) = (U k i t1, U k i t2)
type instance U k i Int = Int

type instance Pred (S i) = i

type instance CMP Z Z lt eq gt = eq
type instance CMP Z (S t) lt eq gt = lt
type instance CMP (S t) Z lt eq gt = gt
type instance CMP (S s) (S t) lt eq gt = CMP s t lt eq gt

Figure 3.7: Type instance declarations for substitution.

ilies. As their definition involve arithmetic over indices, we also need to define type

functions accordingly. The complete list of type functions, with their meaning, is as

follows:

type family Subst t1 t2 i — τ1[τ2/i]

type family U k i t — U i
k(τ)

type family Pred i — i− 1

type family Add i j — i + j

type family CMP i j t1 t2 t3 —


τ1 if i < j;

τ2 if i = j;

τ3 if i > j.

The instance declarations for these type families are shown in Figure 3.7. We also

define an auxiliary type family to update all the types in a given context:

type family Uenv k i ts

type instance Uenv k i () = ()

type instance Uenv k i (t, ts) = (U k i t,Uenv k i ts)

3.4. SUBSTITUTION 43

Finally, “shift” functions (for individual types and entire contexts) perform a unit incre-

ment on indices corresponding to free variables:

type Shift t = U Z (S Z) t

type ShiftEnv ts = Uenv Z (S Z) ts

Summary

In this chapter we have presented a strongly typed encoding of System F using gadts

and type families. The techniques presented here are used in the encoding in all of our

intermediate languages, as each of them incorporates a notion of polymorphism. We

also apply similar techniques in the encoding of existential types introduced by closure

conversion (Section 6.2).

Our encoding is based on a first-order representation of type-level expressions, where

type variables are identified using de Bruijn indices. A type family (Subst) implements

a notion of substitution, used to eliminate a type variable (as in the typing rule for type

application).

We have presented two variants of the encoding, one in which the representation of

terms is higher-order, and one in which it is first-order. In the next chapter, we will

see a cps transformation performed over the higher-order encoding from Section 3.2.1.

Chapter 5 will show a translation from the higher-order encoding to a first-order one, and

all the remaining code transformations will be performed over first-order representations.

44 CHAPTER 3. ENCODING OF SYSTEM F

Chapter 4

CPS conversion

This chapter presents the implementation of a cps conversion over the variant of System F

described in the previous chapter.

The conversion to continuation-passing style (cps) makes the control structure of the

program explicit, and names all the intermediate results of the computation. For example,

the following simple program:

let f = λx . 4× x + 3

in f 7

would be translated to the following program in cps:

let f = λ〈x, k〉 . let v1 = 4× x

v2 = v1 + 3

in k v2

in f 〈7, λx . halt x〉

The function f is made to take an extra parameter (k), called its continuation. Functions

in cps do not return a value to the caller, but instead apply their continuation, which is a

function that abstracts the context that will consume the value produced by the function.

The final result of the program is returned using the special construct halt.

Syntactically, the formal definition of the cps language makes a distinction between

expressions and values. (We see how this can be made to work with our higher-program

representation in Section 4.1.) This distinction is maintained in the subsequent interme-

diate languages used in the compiler.

46 CHAPTER 4. CPS CONVERSION

(type context) ∆ ::= α0, . . . , αn−1

(value context) Γ ::= x0 :τ0; . . . ; xn−1 :τn−1

(types) τ ::= ∀~α. τ → 0 | α | 〈τ1, τ2〉 | int

(values) v ::= x | n
(exps) e ::= letrec f [~α] x = e1 in e2 | let x = v in e

| let x = 〈v1, v2〉 in e | let x = fst v in e
| let x = snd v in e | let x = v1 p v2 in e | v1[~τ] v2

| if0 v e1 e2 | halt v

Figure 4.1: Syntax of λK.

The cps conversion presented here is performed over the higher-order representation

of System F developed in Section 3.2. A higher-order representation is not a common

choice in compilers, but in the case of cps conversion, it leads to a particularly concise

and elegant formulation, and lends itself well to verification of type preservation.

The amount of type annotations in this implementation is notably low, especially in

the simply-typed fragment. It is essentially limited to annotating the type of the cps con-

version function, as the code itself requires no further annotations. Unfortunately, in its

current state the treatment of polymorphism requires that we annotate the constructors

of type abstraction and type application with type representatives, in order to apply a

lemma that captures the effect of the translation on type substitutions (cf. Section 4.4).

The code listing of the encoding of the cps language and the cps conversion is reported

in Appendix A (in the files LK.hs, page 158, and CPS.hs, page 161).

4.1 Target language

The source language of our cps translation is λ→, defined in the previous chapter. The

target language, λK, is shown in Figure 4.1. Function types (t1 → t2) and universal types

(∀α. τ) are replaced by a single polymorphic continuation type (∀α0, . . . , αn−1. τ → 0),

which binds a number of type variables at once. We write ∀~α. τ → 0 as a shorthand for

∀α0, . . . , αn−1. τ → 0. We omit the ∀ quantifier for monomorphic continuation types (i.e.

when n = 0), and simply write τ → 0. Note that 0 is not a type, only τ → 0 is a type.

We use the symbol 0 to suggest the “void” type, that is, a type which is not inhabited by

any value. This notation emphasizes the fact that a continuation does not return a value

4.1. TARGET LANGUAGE 47

Object type Haskell type

∀~α. τ → 0 Cont k t
α Var i
〈τ1, τ2〉 (t1, t2)
int Int

Figure 4.2: Encoding of the types of λK.

(unlike a function in direct style).

The cps language makes a syntactic distinction between values, which represent the

results of computations, and expressions, which represent the computations proper. Val-

ues are just variables and integer literals. Expressions are formed by a series of let (or

letrec) bindings ending with either an unconditional control transfer (i.e. a function ap-

plication) or the special form halt; they can also contain a conditional branching to either

of two sub-expressions (if0). The letrec construct introduces a function which can be

polymorphic in a number of type variables, and can also be recursive. The let forms bind

a variable to either a value (v), a pair constructed from two values, the projection of the

first or second component of a pair, or the result of an elementary operation on integers.

The static semantics of λK is defined by two typing judgments, for values and expres-

sions:

∆; Γ K̀ v : τ value v has type τ in context ∆; Γ

∆; Γ K̀ e expression e is well-typed in context ∆; Γ

Note that the typing judgment for expressions does not mention a type, as an expres-

sion in cps does not return a value.

Strongly typed representation

The encoding of λK types is shown in Figure 4.2. In particular, a polymorphic continua-

tion type ∀~α. τ → 0 is represented as the type Cont k t, where k encodes the number of

abstracted type variables as a Peano number (i.e. it encodes |~α|.) For example, the type

∀α. 〈α, Int〉 → 0 is encoded as Cont (S Z) (Var Z, Int).

The representation of λK uses parametric higher-order abstract syntax, as in Sec-

48 CHAPTER 4. CPS CONVERSION

type ExpK α = Rec ExpKF αVoid
type ValK α t = Rec ExpKF α (V t)

data V t
dataVoid

data ExpKF α where
−values

Knum :: Int → ExpKF (α (V Int))

−expressions
Kletrec :: (α (V (Cont Z t)) → α (V t) → αVoid) →

(α (V (Cont Z t)) → αVoid) → ExpKF (αVoid)
KletPolyFun :: (∀t2. α (V (Subst t1 t2 Z)) → αVoid) →

(α (V (Cont (S Z) t1)) → αVoid) → ExpKF (αVoid)

Klet :: α (V t) → (α (V t) → αVoid) → ExpKF (αVoid)
KletPair :: α (V t1) → α (V t2) →

(α (V (t1, t2)) → αVoid) → ExpKF (αVoid)
KletFst :: α (V (t1, t2)) → (α (V t1) → αVoid) → ExpKF (αVoid)
KletSnd :: α (V (t1, t2)) → (α (V t2) → αVoid) → ExpKF (αVoid)
KletPrim :: PrimOp → α (V Int) → α (V Int) →

(α (V Int) → αVoid) → ExpKF (αVoid)

Kapp :: α (V (Cont Z t)) → α (V t) → ExpKF (αVoid)
KpolyApp :: α (V (Cont (S Z) t1)) →

α (V (Subst t1 t2 Z)) → ExpKF (αVoid)

Kif0 :: α (V Int) → αVoid → αVoid → ExpKF (αVoid)

Khalt :: α (V Int) → ExpKF (αVoid)

Figure 4.3: Concrete representation of λK values and expressions (cf. source file LK.hs,
page 158).

4.1. TARGET LANGUAGE 49

tion 3.2. A value v satisfying ∆; Γ K̀ v : τ is represented by a term of type:

∀α. ValK α t , ∀α. Rec ExpKF α (V t)

and an expression e satisfying ∆; Γ K̀ e is represented by a term of type

∀α. ExpK α , ∀α. Rec ExpKF αVoid

Note that the type constructor ExpK does not take an object-level type as parameter (as

ValK does), as an expression in cps does not return a value. The definition of these two

types is shown in Figure 4.3, and we clarify a few points about this representation below.

Syntactic classes Ideally, we would like to define ValK and ExpK as two mutually

recursive types. However, the fixed point operator (Rec) can only be applied to a single

type, so instead we use the same type for the two syntactic categories. (Alternatively,

it might be possible to extend the recursion scheme to the case of two or more types,

but we have not attempted that.) The distinction between expressions and values is

actually not lost: we take advantage of the gadts to recover this distinction by encoding

the corresponding syntactic constraints as type constraints: values have source type V t

whereas expressions have source type Void, so types statically enforce that constructors

for values cannot appear where an expression is expected and vice versa.

Polymorphism Whereas on paper it is simpler to have a single letrec operator that

abstracts type and term variables and provides recursion, and a single construct that per-

forms both function and (multiple) type applications, it simplifies subsequent transfor-

mations somewhat to use more specialized constructs. In particular, we use the following

data constructors:

• Kletrec, which introduces a monomorphic function which can be recursive (i.e. it

covers the case letrec f [~α] x = e1 in e2, when ~α = •),

• KletPolyFun, which introduces a polymorphic, non-recursive function which ab-

stracts a single type variable (i.e. it covers the case letrec f [~α] x = e1 in e2, when

~α = τ1 and f does not appear free in e1),

50 CHAPTER 4. CPS CONVERSION

• Kapp, which encodes a monomorphic function application (i.e. it covers the case

v1[~τ] v2, when ~τ = •),

• KpolyApp, which encodes a polymorphic function application that applies a single

type argument (i.e. it covers the case v1[~τ] v2, when ~τ = τ1).

This particular choice was made considering that the cps conversion only ever abstracts a

single type variable at once, and the polymorphic functions it introduces are not recursive

(although they can introduce recursive functions in their body.) This way, we avoid the

complications of multiple type abstraction and applications in the syntax (which would

also complicate the subsequent conversion to de Bruijn indices, cf. Chapter 5).

4.2 Translation

The cps conversion of types, programs (i.e. closed terms) and open terms is shown in

Figure 4.4.

The type translation (KtypeJ−K) maps function types (and universal types) to contin-

uations, and leaves the other types unchanged. The type translation is taken from the

type-preserving cps conversion of Morrisett et al. (1999). The type family that encodes

KtypeJ−K is defined as follows:

type family Ktype t

type instance Ktype (t1 → t2) = Cont Z (Ktype t1,Cont Z (Ktype t2))

type instance Ktype (All t) = Cont (S Z) (Cont Z (Ktype t))

type instance Ktype (Var i) = Var i

type instance Ktype (t1, t2) = (Ktype t1,Ktype t2)

type instance Ktype Int = Int

Type preservation The usual type preservation theorem states that cps conversion

takes well-typed λ→ programs (i.e. closed expressions) to well-typed λK programs:

Theorem 4.1 (cps type preservation) If •; • ` e : τ then •; • K̀ KprogJeK.

Note that the input type τ does not appear in the typing judgment for the target program.

(In the cps-converted program, the form halt will be applied to a value of type KtypeJτK.)

Theorem 4.1 is reflected in the type of the function which implements KprogJ−K:

4.2. TRANSLATION 51

types:

KtypeJτ1 → τ2K = 〈KtypeJτ1K,KtypeJτ2K → 0〉 → 0
KtypeJ∀α. τK = ∀α. ((KtypeJτK) → 0) → 0

KtypeJαK = α
KtypeJ〈τ1, τ2〉K = 〈KtypeJτ1K,KtypeJτ2K〉

KtypeJintK = int

programs:

KprogJeK = KJeK (λx . halt x)

expressions:

KJletrec f x = e1 in e2K κ = letrec f 〈x, k〉 = KJe1K (λv. k v)
in KJe2K κ

KJlet x = e1 in e2K κ = KJe1K (λv . let x = v in KJe2K κ)
KJxK κ = κ x

KJe1 e2K κ = KJe1K (λv1 . KJe2K λv2 . v1 〈v2, κ〉)
KJΛα. eK κ = κ (λ[α] c. KJeK c)
KJe[τ]K κ = KJeK (λv . v[KtypeJτK] (λx . κ x))

KJ〈e1, e2〉K κ = KJe1K (λv1 . KJe2K (λv2 . let x = (v1, v2) in κ x))
KJe.iK κ = KJeK (λv . let x = v.i in κ x)
eKJnK κ = κ n

KJe1 p e2K κ = KJe1K (λv1 . KJe2K (λv2 . let x = v1 p v2 in κ x))
KJif0 e1 e2 e3K κ = KJe1K (λv . let c = λx . κ x

in if0 v (KJe2K (λv1 . c v1))
(KJe3K (λv2 . c v2)))

Figure 4.4: Call-by-value cps conversion over λ→.

52 CHAPTER 4. CPS CONVERSION

cpsProg :: (∀α. Exp α t) → (∀α. ExpK α)

The proof of this theorem relies of on a lemma which states that KJ−K − takes well-

typed expressions to well-typed expressions, provided that the supplied continuation has

the expected type:1

Lemma 4.1 (λ→ − λK type correspondence) If Γ ` e : τ and

∆;KtypeJΓK K̀ λx . κ x : (KtypeJτK → 0) → 0

then

∆;KtypeJΓK K̀ KJeK κ.

This lemma is reflected in the signature of the functions that implement KJ−K −

which, in simplified form, is as follows:

cpsE :: ∀β t. (∀α. Exp α t) → (ValK β (Ktype t) → ExpK β) → ExpK β

The implementation of cpsProg and cpsE constitutes a proof of Theorem 4.1 and

Lemma 4.1 (which is mechanically verified when the compiler’s code is type-checked.)

Note that, since we use hoas and the context ∆; Γ is implicit in our encoding, we get

preservation of the type environment “for free”.

4.3 Implementation

In this section we discuss the techniques employed to manipulate our higher-order program

representation, and show how the mildly optimizing cps transform of Danvy and Filinski’s

are implemented in our setting.

4.3.1 Fegaras and Sheard’s iterator

There are inherent difficulties with programming with higher-order abstract syntax. For

example, suppose we try to implement an evaluator over the simply-typed λ-calculus,

that is, a function taking expressions to values:
1In this lemma the continuation κ lies at the meta level and must be lifted into an object-level function

so it can be the subject of a typing judgment.

4.3. IMPLEMENTATION 53

data Rec α β t where
Roll :: (α (Rec α β t)) → Rec α β t
Place :: (β t) → Rec α β t

iter :: (∀t. ExpF (β t) → β t) → (∀t. (∀α. Exp α t) → β t)
iter f x = cata f x

cata :: (∀t. ExpF (α t) → α t) → (∀t. Exp α t → α t)
cata f (Roll x) = f ((xmapExpF (cata f) Place) x)
cata f (Place x) = x

xmapExpF :: (∀t. α t → β t)
→ (∀t. β t → α t)
→ (∀t. (ExpF (α t) → ExpF (β t)))

xmapExpF f g x =
case x of

TpAbs e → TpAbs (f e)
TpApp e → TpApp (f e)

Let e1 e2 → Let (f e1) (f . e2 . g)
Letrec e1 e2 → Letrec (λ a b → f (e1 (g a) (g b))) (f . e2 . g)
App e1 e2 → App (f e1) (f e2)

Pair e1 e2 → Pair (f e1) (f e2)
Fst e → Fst (f e)
Snd e → Snd (f e)

Num i → Num i
Prim op e1 e2 → Prim op (f e1) (f e1)
If0 e1 e2 e3 → If0 (f e1) (f e2) (f e3)

Figure 4.5: Fegaras and Sheard’s iterator for the encoding of λ→ in Figure 3.4.

54 CHAPTER 4. CPS CONVERSION

eval :: Exp → Val

with expressions and values defined as:

data Exp where

Lambda :: (Exp → Exp) → Exp − λx. e

App :: Exp → Exp → Exp − e1 e2

data Val where

Fun :: (Val → Val) → Val

To convert a λ-expression (Lambda) to a function (Fun), we must construct a function on

values (Val → Val) out of a function on expressions (Exp → Exp). This of course implies

converting a value back into an expression. To define the evaluator, we would thus need

to also define its inverse function:

uneval :: Val → Exp

Fegaras and Sheard (1996) developed a technique by which a function (f) over hoas

can be defined without having to define its inverse, by somehow replacing calls to the

inverse function by placeholders, and eventually having them cancel out with calls to f .

This is achieved by defining an iterator, which in essence maps functions that performs an

operation on a single element of a data structure, into functions over entire data structures.

(The best known example of an iterator is the function fold on lists.) Washburn and

Weirich (2003) showed how to apply this technique with their parametric representation

of hoas, as used here. The type of the iterator over the parametric encoding of λ→ is as

follows:

iter :: ∀β. (∀t. ExpF (β t) → β t) → (∀t. (∀α. Exp α t) → β t)

Intuitively, the type β stands for “the result of the computation” over the source term

(indexed by object-level type). Here, we obtain cpsE by applying iter with β t instantiated

at the type CPS α t, defined as follows:

type CPS α t = (ValK α (Ktype t) → ExpK α) → ExpK α

cpsE :: ∀t β. (∀α. Exp α t) → CPS β t

cpsE = iter cpsAux

4.3. IMPLEMENTATION 55

The function passed to the iterator visits a single node in the syntax tree, and has

type:

cpsAux :: ∀t α. ExpF (CPS α t) → CPS α t

The iterator is a recursive function that applies this function to every node in the

abstract syntax tree. The full description of how Fegaras and Sheard’s iterator works

is outside the scope of this text, but the definition of iter for the encoding of λ→ from

Figure 3.4 is reproduced in Figure 4.5 for reference. The figure also gives the definition

of Rec, as it is formulated specifically to accommodate the iterator.

Note that the the data constructors of the type ExpF actually take extra arguments, as

explained in Section 4.4.1, which affects the definition of xMapExpF; see the file SRC.hs,

page 156, in Appendix A, for the actual definition which handles those extra arguments.

Also note that the version of xMapExpF shown in the figure would actually not be accepted

by the type checker, because of the implicit instantiation of the type parameter t2 in the

constructors TpAbs and TpApp, as the type checker cannot verify that the type parameter

is instantiated with the same type in the input and output terms. This is not a concern

in the actual code, since types are reified at the term level, so that the type parameters

are instantiated properly.

4.3.2 Danvy and Filinski’s CPS transform

Our compiler actually implements the one-pass cps conversion of Danvy and Filin-

ski (1992), where so-called administrative redexes are reduced on-the-fly. An adminis-

trative redex is a redex – i.e. a term of the form (λx . e1) e2 – which has been introduced

as an artifact of the conversion, and does not correspond to a redex in the source program.

Such redexes are undesirable as they make the target program unnecessarily large. Danvy

and Filinski showed how such redexes can be reduced along the conversion, by defining

an auxiliary transformation function, which expects an object-level continuation (i.e. a

continuation in the target language) rather than a continuation in the meta language

(such as the argument κ to KJ−K −). As shown by Washburn and Weirich (2003), this

conversion can be conveniently implemented by adding an extra component to the result

of cpsAux, that expects an object-level continuation (cpsObj) instead of a meta-level one

(cpsMeta):

56 CHAPTER 4. CPS CONVERSION

data CPS α t where

CPS :: ((ValK α (Ktype t) → ExpK α) → ExpK α) (cpsMeta)

→ ((ValK α (Cont Z (Ktype t))) → ExpK α) (cpsObj)

→ CPS α t

By pairing up two functions in the result of cpsAux, we are in effect defining two mutually

recursive functions. The code of the cps translation defines the two recursive functions si-

multaneously. For example, the code that handles the conversion of arithmetic operations

is implemented as follows:

cpsAux (Prim op a b) =

CPS (λk → cpsMeta a (λv1 → cpsMeta b (λv2 →

KletPrim op v1 v2 k)))

(λc → cpsMeta a (λv1 → cpsMeta b (λv2 →

KletPrim op v1 v2 (λk → Kapp c k))))

where cpsMeta and cpsObj are two projection functions used to access the two functions

contained in a structure of type CPS α t, defined as follows:

cpsMeta e = case e of CPS meta → meta

cpsObj e = case e of CPS obj → obj

4.4 Polymorphism

While Theorem 4.1 and Lemma 4.1 cover the theory of type preservation for simple

types, polymorphism introduces issues of its own. The technical difficulty is to convince

the type checker that we obtain a well-typed term when converting type applications (and

abstractions), as it involves reconstructing a term whose type is defined by a substitution.

The proof that the constructed term is indeed well-typed relies on the fact that our notion

of substitution commutes with the type translation:

Lemma 4.2 (KtypeJ−K–subst commute) For any λ→ types τ1, τ2 and index i,

KtypeJτ1[τ2/i]K = (KtypeJτ1K)[KtypeJτ2K/i].

4.4. POLYMORPHISM 57

data TypeRep t where
Rarw :: TypeRep t1 → TypeRep t2 → TypeRep (t1 → t2)
Rall :: TypeRep t → TypeRep (All t)
Rvar :: NatRep n → TypeRep (Var n)
Rpair :: TypeRep t1 → TypeRep t2 → TypeRep (t1, t2)
Rint :: TypeRep Int

data NatRep n where
Nz :: NatRep Z
Ns :: NatRep n → NatRep (S n)

Figure 4.6: Singleton types representing object-level types.

This means that we actually need to make a coercion like:

ValK (Ktype (Subst t1 t2 Z))

→ ValK (Subst (Ktype t1) (Ktype t2) Z)

If the types for which t1 and t2 stand were known at compile-time, the type-checker

could normalize the two types (i.e. apply the definition of the type families) and verify

that are indeed equal. But t1 and t2 are not known – they can be the representation of

any source types of λ→. Currently, there is no way of doing such coercion purely at the

type level. We therefore need to implement the lemma at the term level, as a function

that produces a witness that the coercion is valid for given types t1 and t2:

substCpsCommute :: TypeRep t1 → TypeRep t2

→ Equiv (Ktype (Subst t1 t2 Z))

(Subst (Ktype t1) (Ktype t2) Z)

The first two parameters are singleton types used to reify object-level types at the term

level: a value of type TypeRep t is the run-time representation of the object τ , where the

type t represents τ . For a given type t, the type TypeRep t is inhabited by a single (ter-

minating) term, which is why they are called singleton types. The definition of TypeRep

is shown in Figure 4.6 (which also defines a singleton type NatRep that reifies natural

numbers).

The type Equiv is used to witness the equality of two types at run-time, and is defined

as follows:

data Equiv s t where

Equiv :: s ∼ t ⇒ Equiv s t

58 CHAPTER 4. CPS CONVERSION

It uses another feature introduced in GHC along with type families, namely type equality

coercions (Sulzmann et al. 2007). The context (s ∼ t) means that the types s and

t, although possibly syntactically different, are equivalent after applying a process of

normalization (which in particular eliminates applications of type functions.)

There are various ways in which the function substCpsCommute can be implemented.

It can be written by direct case analysis over the type representatives, and follow the

structure of a direct inductive proof of the lemma. For instance, the case for pairs would

look as follows:

substCpsCommute (Rpair ta1 tb1) t2 =

case substCpsCommute ta1 t2 of

Equiv →

case substCpsCommute tb1 t2 of

Equiv → Equiv

Another way, which is the one currently employed in the compiler, is to construct the

run-time representation of the two types (t1 and t2), and then verify that they are equal:

substCpsCommute t1 t2 =

case typesEqual (substT (kType t1) (kType t2) Nz)

(kType (substT t1 t2 Nz)) of

Just Equiv → Equiv

where substT and kType reify the corresponding type families at the term level, and

typesEqual performs comparison on type representatives:

kType :: TypeRep t → TypeRep (Ktype t)

substT :: TypeRep t1 → TypeRep t2 → NatRep i → TypeRep (Subst t1 t2 i)

typesEqual :: TypeRep t1 → TypeRep t2 → Maybe (Equiv t1 t2)

The function typesEqual is a simple recursive function that compares two type rep-

resentatives and constructs a proof that they are equal, or returns Nothing if the types

differ. Of course, the implementation of our lemmas assume that typesEqual always suc-

ceeds and returns a proof, but if it fails and returns Nothing, it means that the “lemma”

does not hold for the types in question, and the result will be a run-time error.

Note that, although Haskell’s lazy evaluation strategy may suggest otherwise, proof

objects are actually checked at run time. The case analysis (case) forces the evaluation

4.4. POLYMORPHISM 59

of the proof object (of type Equiv t1 t2); the effect of this case analysis is to check that

the result is indeed a proof duely constructed with the Equiv data construcotor.

4.4.1 Lemma application

Of course, in order to be able to apply the lemma in its current form, we need to annotate

the syntax tree with type representatives. In particular, the data constructors for type

abstraction and type application actually need to bear representatives for each object-

level type involved, and the polymorphic argument to the constructor for type abstraction

needs to be parameterized by a type representative (we show how it is used below, in

Section 4.4.2):

TpAbs :: TypeRep t1 →

(∀t2. TypeRep t2 → α (Subst t1 t2 Z)) → ExpF (α (All t1))

TpApp :: TypeRep t1 → TypeRep t2 →

α (All t1) → ExpF (α (Subst t1 t2 Z))

Note that these type constructors are enhancements to the type ExpF from Figure 4.3

(see the actual code in the source file LK.hs, page 158). With these type representatives

stored in the abstract syntax tree, cpsAux can then call the lemma to get the required

type assumption as needed:

cpsAux (TpApp t1 t2 e) =

case substCpsCommute t1 t2 of

Equiv → CPS (λk → cpsMeta a (λx → Kletrec (λ v → k v)

(λk′ → KpolyApp x k′)))

(λc → cpsMeta a (λx → KpolyApp x c))

where we have omitted the type representatives in the target program for brevity.

Annotating the abstract syntax tree with type representatives for the constructors

TpAbs and TpApp is sufficient to type-check the cps-conversion. However, more type

representatives are actually needed to instantiate other lemmas in the subsequent phases.

These type representatives must be propagated from the abstract syntax tree of the

source program through the various program transformations. In particular, the code

transformations over first-order representations need to apply lemmas about the type

60 CHAPTER 4. CPS CONVERSION

context. To be able to re-construct the type context while traversing an expression, we

will need a type representative for every construct that binds a term variable (such as

let). See the source file Src.hs, page 156 in Appendix A.

4.4.2 Type abstraction

A consequence of the higher-order encoding of type abstraction is that the function

KtypeJ−K must be invertible. Consider the data constructors for type abstraction in λ→

and λK:

TpAbs :: TypeRep t1 →

(∀t2. TypeRep t2 → α (Subst t1 t2 Z)) → ExpF (α (All t1))

KletPolyFun :: TypeRep t1 →

(∀t2. TypeRep t2 →

α (V (Subst t1 t2 Z)) → αVoid) →

(α (V (Cont (S Z) t1)) → αVoid) → ExpKF (αVoid)

We need to convert the functional argument of TpAbs (say f) to that of KletPolyFun (say

f ′). The function f ′ receives a representative of a type in cps form, and constructs a

representative of the originating type in direct style so as to be able to apply f , and finally

converts the resulting term back in cps. To achieve this, we must define the inverse of

KtypeJ−K as a type family:

type family UnKtype t

type instance UnKtype (Cont Z (t1,Cont Z t2)) = (UnKtype t1)

→ (UnKtype t2)

type instance UnKtype (Cont (S Z) (Cont Z t)) = All (UnKtype t)

type instance UnKtype (Var i) = Var i

type instance UnKtype (t1, t2) = (UnKtype t1,UnKtype t2)

type instance UnKtype Int = Int

We also need to reify the type family UnKtype at the term level so that we can construct

the type representative:

unKtype :: TypeRep t → TypeRep (UnKtype t)

4.5. DISCUSSION 61

Note that this function on types is actually partial, as not all the types of λK are the

image of λ→ types under KtypeJ−K.

As in the case of type application, the type safety of the conversion of a type ab-

straction requires the application of the commutativity lemma, substCpsCommute. In

addition, it requires the application of a lemma which states that the type families Ktype

and UnKtype are inverses:

lemmaKtypeInverse :: TypeRep t → Equiv (Ktype (UnKtype t)) t

This lemma is required to convince the type checker that the supplied continuation is of

a type compatible with the converted expression, as the type of the converted expression

is obtained by mapping a type in cps into direct style, and back to cps.

4.5 Discussion

Our cps conversion was originally presented at the PLPV symposium (Guillemette and

Monnier 2006), but was restricted to the simply typed case. As type families were not

available at the time, the implementation had to rely on gadts to encode functions on

types. That is, since we could not directly write:

cpsE :: Exp t → (ValK (Ktype t) → ExpK) → ExpK

we had to encode it indirectly, as follows:

cpsE :: Exp t → (∃t′. (CpsG t t′, (ValK t′ → ExpK) → ExpK))

where CpsG t t′ is a gadt that encodes a proof that KtypeJτK = τ ′, where t encodes τ

and t′ encodes τ ′. This scheme has important drawbacks. In particular, the packing and

unpacking of existentials clutters the compiler’s code and imposed severe run-time over-

head. The comparison of the two implementations was the basis of the article presented

at the TFP symposium (Guillemette and Monnier 2008a).

The fact that the proof of Lemma 4.2 is implemented at the term level is unsatisfactory,

as it incurs run-time overhead and forces us to include type representatives in the syntax

trees. Also the type checker cannot guarantee that there are no missing cases or infinite

loops in the proof of the lemmas. Ideally such lemmas should be verified statically,

62 CHAPTER 4. CPS CONVERSION

something that apparently cannot be done with type families and type equality coercions

alone. We have proposed a language extension for the static support of such invariants,

allowing the programmer to specify the invariants and provide proofs that type family

instances satisfy them (Guillemette and Monnier 2008a; Schrijvers et al. 2008).

Summary

We have seen the implementation of the cps conversion, which had an important impact

on the general structure of the program, as every intermediate computational result is

now explicitly bound to some variable (introduced by the let construct), and expressions

(including function bodies) do not produce values, but instead communicate the result of

their computations by applying a continuation.

This transformation is performed over hoas, which gives a concise and elegant im-

plementation. It allows us to use function application in the host language to relate

variables in the source and target program, and thus dispenses us from having to track

variables explicitly, as we will need to do in the closure conversion and hoisting phases

(cf. Chapter 6 and 7).

For the code of the cps conversion to type-check, we had to implement a lemma about

type families for the type translation and substitution. We will need similar lemmas in

the other code transformations as well.

hoas was convenient for cps conversion, but it is not very suitable for closure con-

version, so we will switch to a first-order representation in Chapter 5, before we resume

actual transformation of the object program.

Chapter 5

Conversion to de Bruijn indices

This chapter documents the conversion from hoas to de Bruijn indices used in our com-

piler. We first clarify the reasons which led us to switch from a higher-order representation

to a first-order one, and then present the conversion.

The fact that hoas does not represent variables explicitly has the unfortunate con-

sequence that variables cannot be identified: given two variables a and b, we cannot

(directly) determine whether the two variables are actually the same. This ability is

needed to perform closure conversion, as it should become clear in Section 6.1. To re-

cover this ability, one needs to somehow “inject” identity into variables, for example by

annotating binders with some sort of names or indices. This approach tends to negate the

advantages of hoas in terms of conciseness and elegance, as α-equivalence and substitu-

tion ought to come “for free”. One would argue that such an “augmented” representation

makes hoas degenerate into something actually more complex than de Bruijn indices –

why not simply use de Bruijn indices, then?

Even if closure conversion could be performed over a higher-order encoding and pro-

duce higher-order terms as output, such a representation would again be problematic for

the next transformation, which hoists functions to the top-level. The function hoisting

phase actually relies on the fact that functions are closed. De Bruijn contexts can express

this property directly, but hoas cannot, as value contexts are implicit. It is not clear how

such a transformation can be implemented in a language like Haskell. Chlipala’s closure

conversion over (a variant of) hoas (2008) manages to do this, but relies on an explicit

well-formedness predicate which relates a term to its value context; such a predicate

64 CHAPTER 5. CONVERSION TO DE BRUIJN INDICES

requires dependent types, so it is not an option in Haskell.

In the face of these arguments in favor of a first-order encoding, we settled for de

Bruijn indices for the task of closure conversion and hoisting, although we could probably

have managed with hoas.

The code listing of the conversion to a first-order encoding, and the first-order encoding

itself, is reported in Appendix A (in the files LKb.hs, page 166, and ToB.hs, page 170)

Overview

In essence, the conversion to de Bruijn form introduces indices in place of variable occur-

rences, which are represented by variables of the implementation language in the higher-

order encoding. There are two kinds of term-level variables in λK: those that abstract

values, and those that abstract types.

For variables abstracting values, we construct an index by comparing the value context

at the place where a variable is bound (say, Γ) and the value context at the place of variable

occurrence (say, Γ′); the difference in “length” between these two contexts (that is, the

number of intervening binders) indicates which de Bruijn index to use.

The treatment of term-level type variables is tricky, as the de Bruijn representation

of an object-level type depends on the local type context (∆). For the purpose of the

translation, we will temporarily represent object-level types as reverse de Bruijn indices.

Reverse de Bruijn indices reflect the number of traversed binders between the top-level

and the place where the variable is bound, so they are not sensitive to the local type

context, unlike normal de Bruijn indices. This way we avoid tricky interaction between

the higher-order term representation and the first-order representation of types (although

it would probably be possible to do the conversion in one step.)

In overview, the conversion is performed in two steps:

1. The first step converts the higher-order terms into first-order terms, where the

object-level types are represented using reverse de Bruijn indices, but term variables

are represented as normal de Bruijn indices.

2. The second step produces an equivalent first-order representation where object-level

types are represented back in “normal” de Bruijn indices.

5.1. TYPE-LEVEL REVERSE DE BRUIJN INDICES 65

data ValKr ctx t where
KRvar :: Index ts t → ValKr (i, ts) t
KRnum :: Int → ValKr (i, ts) Int

data ExpKr ctx where
KRletrec :: ExpKr (i, (t, (Cont Z t, ts))) →

ExpKr (i, (Cont Z t, ts)) → ExpKr (i, ts)
KRletPolyFun :: ExpKr (S i, (t,ShiftEnvR i ts)) →

ExpKr (i, (Cont (S Z) t, ts)) → ExpKr (i, ts)

KRlet :: ValKr (i, ts) t → ExpKr (i, (t, ts)) → ExpKr (i, ts)
KRletPair :: ValKr (i, ts) t1 → ValKr (i, ts) t2 →

ExpKr (i, ((t1, t2), ts)) → ExpKr (i, ts)
KRletFst :: ValKr (i, ts) (t1, t2) →

ExpKr (i, (t1, ts)) → ExpKr (i, ts)
KRletSnd :: ValKr (i, ts) (t1, t2) →

ExpKr (i, (t2, ts)) → ExpKr (i, ts)
KRletPrim :: PrimOp →

ValKr (i, ts) Int → ValKr Int →
ExpKr (i, (Int, ts)) → ExpKr (i, ts)

KRapp :: ValKr (i, ts) (Cont Z t) → ValKr (i, ts) t → ExpKr (i, ts)
KRpolyApp :: ValKr (i, ts) (Cont (S Z) t1) →

ValKr (i, ts) (SubstR t1 t2 i) → ExpKr (i, ts)

KRif0 :: ValKr (i, ts) Int →
ExpKr (i, ts) → ExpKr (i, ts) → ExpKr (i, ts)

KRhalt :: ValKr (i, ts) Int → ExpKr (i, ts)

Figure 5.1: Representation of λK with reverse de Bruijn indices for types and de Bruijn
indices for terms (cf. source file LKb.hs, page 166).

In the rest of this chapter, we explain the program representation that uses reverse

de Bruijn indices to encode the types (Section 5.1), then show how terms in this repre-

sentation are constructed (Section 5.2), and finally show how the object-level types are

translated back to normal de Bruijn indices (Section 5.3).

5.1 Type-level reverse de Bruijn indices

Contrary to normal de Bruijn indices, reverse de Bruijn indices reflect the number of

traversed binders between the top-level and the place where the variable is bound. That is,

the type variable bound by a quantifier appearing at the top-level will be represented with

66 CHAPTER 5. CONVERSION TO DE BRUIJN INDICES

the index 0; the next variable bound in the scope of this variable will be represented with

the index 1, and so on. For example, the type of the swap function, ∀α β. 〈α, β〉 → 〈β, α〉,

which is represented in de Bruijn as the Haskell type:

All (All ((Var (S Z),Var Z) → (Var Z,Var (S Z))))

is represented in reverse de Bruijn as the Haskell type:

All (All ((VarR Z,VarR (S Z)) → (VarR (S Z),VarR Z)))

were VarR is the type constructor we use to introduce reverse de Bruijn indices. Just like

All and Var (cf. Section 3.1), VarR is a type constructor with no data constructor:

data VarR i

The strongly typed representation of λK which uses this encoding of object-level types

is shown in Figure 5.1. It is very similar to the first-order order encoding of System F

from Section 3.3. The only difference is in the representation of object-level types, which

requires a different notion of substitution and shifting, consistent with reverse de Bruijn

indices. This is reflected in the types of the constructors for type abstraction and type

application:

KRletPolyFun :: ExpKr (S i, (t,ShiftEnvR i ts)) →

ExpKr (i, (Cont (S Z) t, ts)) → ExpKr (i, ts)

KRpolyApp :: ValKr (i, ts) (Cont (S Z) t1) →

ValKr (i, ts) (SubstR t1 t2 i) → ExpKr (i, ts)

These types refer to a different type families (SubstR and ShiftEnvR) which operate over

the reverse de Bruijn type encoding. As in the encoding from Section 3.3, the type

parameter i reflects the number of type variables in scope.

The type family SubstR is defined as follows:

type family SubstR s t i

type instance SubstR (Cont k s) t i = Cont k (SubstR s (Ur k i t) i)

type instance SubstR (VarR n) t i = CMP n i (VarR n) t (VarR (Pred n))

type instance SubstR (s1, s2) t i = (SubstR s1 t i,SubstR s2 t i)

type instance SubstR Int t i = Int

5.2. CONSTRUCTION OF FIRST-ORDER TERMS 67

The type SubstR s t i stands for the type s where variable corresponding to the reverse

de Bruijn index i has been replaced with the type t (where both s and t are represented

with reverse de Bruijn indices.)

We also define a type family Ur to implement an update function on reverse de Bruijn

types, as follows:

type family Ur k i t

type instance Ur k i (Cont j t) = Cont j (Ur k i t)

type instance Ur k i (VarR n) = VarR (CMP n k n (Add i n) (Add i n))

type instance Ur k i (t1, t2) = (Ur k i t1,Ur k i t2)

type instance Ur k i Int = Int

The type Ur k i t stands for the type t where every index not smaller than k has been

incremented by i. Note that, contrary to update on de Bruijn indices, which affects the

free variables, update on reverse de Bruijn indices affects the bound variables.

We also define an auxiliary type family to update all the types in a given context:

type family UenvR k i ts

type instance UenvR k i () = ()

type instance UenvR k i (t, ts) = (Ur k i t,UenvR k i ts)

as well as “shift” functions (for individual types and entire contexts), which perform a

unit increment on indices corresponding to bound variables:

type ShiftR i t = Ur i (S Z) t

type ShiftEnvR i ts = UenvR i (S Z) ts

5.2 Construction of first-order terms

In this section we discuss the implementation of the conversion of the higher-order pro-

gram representation (as defined in Figure 4.3) to the first-order representation defined in

the previous section. Its type is:

toR :: (∀α. ExpK α) → ExpKr (Z, ())

The conversion is implemented using an iterator, similar to that for λ→, but suited to λK.

The iterator follows the same pattern as that for λ→; its definition is reproduced along

68 CHAPTER 5. CONVERSION TO DE BRUIJN INDICES

with the higher-order representation of λK (see the source file LK.hs, page 158.) Referring

to Figure 4.5, the iterator for λK defines versions of iter and cata (called iterK and cataK)

for λK that are essentially the same as those for λ→, but which refer to a version of

xmapExpF (called xmapExpKF) consistent with the data constructors of ExpKF 1.

The type of the iterator for λK is as follows:

iterK :: (∀t. ExpKF (β t) → β t) → (∀t. (∀α. RecT ExpKF α t) → β t)

The core function of the conversion is the one passed to iterK, which is of the following

type:

toRaux :: ExpKF (ToR α t) → ToR α t

where the type ToR is used to represent the result of the conversion to the first-order

representation, and is defined as follows:

data ToR α t where

ToRv :: (∀i, ts. (NatRep i,EnvRep ts) →

ValKr (i, ts) (Rtype i t)) → ToR α (V t)

ToRe :: (∀i, ts. (NatRep i,EnvRep ts) →

ExpKr (i, ts)) → ToR αVoid

The conversion of a value (of type ValK α t) is represented by a term of type

ToR α (V t) and introduced by the constructor ToRv. Similarly, the conversion of an

expression (of type ExpK α) is represented by a term of type ToR αVoid and introduced

by the constructor ToRe. In the type of these two constructors, the type parameters i and

ts are used to describe the target context in which the expression or value will appear.

Notably, the types listed in ts are already converted to reverse de Bruijn form.

The type family Rtype converts object-level types from de Bruijn indices to reverse de

Bruijn indices, when the type appears with a number of type variables in scope indicated

by a parameter i. The type family is defined as follows:

1Washburn and Weirich (2003) showed how to automatically derive functions like
xmapExpF/xmapExpKF from the definition of ExpF/ExpKF by means of polytypic programming.

5.2. CONSTRUCTION OF FIRST-ORDER TERMS 69

type family Rtype i t

type instance Rtype i (Cont Z t) = Cont Z (Rtype i t)

type instance Rtype i (Cont (S Z) t) = Cont (S Z) (Rtype (S i) t)

type instance Rtype i (Var n) = VarR (Subtract i (S n))

type instance Rtype i (t1, t2) = (Rtype i t1,Rtype i t2)

type instance Rtype i Int = Int

Note that, since we replace a de Bruijn index with a reverse de Bruijn index while

doing the conversion to first-order terms, we must supply a instance of Rtype for Rvar.

The key part of the implementation is the conversion of variables. Consider the

constructor for let in the higher-order encoding (from Figure 4.3):

Klet :: α (V t) → (α (V t) → αVoid) → ExpKF (αVoid)

The term in negative position, of type α (V t), must be instantiated to a value of type

ToR α (V t). The term in question will be a closure which will compare (term-level

representatives of) the value context where the variable is bound (say ts) and that at the

place where the variable occurs (say ts′).

A subtle point to consider is that new type variables may have been introduced be-

tween the binder and the variable occurrence. In this case, the type environment ts′ will

have to be shifted accordingly. The number of type variables introduced is witnessed by

the difference between the type contexts at the binder and variable occurrence (say i and

i′).

The function which constructs such variables has the following type:

toRvar :: TypeRep s → NatRep i → EnvRep ts → ToR α (V s)

Now, the part that “does the work” inspects the two contexts ts and ts’ and forms an

index accordingly:

mkIndex :: EnvRep (t, ts) → EnvRep ts′ → Index ts′ t

The function mkIndex traverses both contexts and constructs an index which reflects

the length of the segment of the context ts′ exceeding the original context (t, ts). For

mkIndex to succeed, ts’ must actually be an extension of the type context (t, ts), in the

70 CHAPTER 5. CONVERSION TO DE BRUIJN INDICES

sense that new binders may have been introduced between the initial context and that in

which the variable appears.

Although it is indeed expected to always be the case, the types we use do not stat-

ically guarantee it, so we have to perform a dynamic test that compares the term-level

representative of the value contexts.

Polymorphism Consider again the constructor for type abstraction in the higher-order

encoding:

KletPolyFun :: (∀t2. α (V (Subst t1 t2 Z)) → αVoid) →

(α (V (Cont (S Z) t1)) → αVoid) → ExpKF (αVoid)

This time, the argument in negative position is instantiated with a term of type:

ToR α (V (Subst t1 (VarR i) Z)

where i reflects the number of type variables in scope where the type abstraction appears.

Since substitution is applied on types in de Bruijn form, the type family Subst must be

extended with a case for VarR:

type instance Subst (VarR n) t i = VarR n

It turns out that the conversion of a type abstraction does not require the application of

a lemma. This can be explained by the fact that the threading of the types is implicit (as

it takes place in the host language). However, the dynamic test operated by toRvar (i.e.

the test which verifies that the type context where the variable appears is an extension

of the type context where the variable is bound, taking into account any intervening type

abstraction) plays a role similar to that of a lemma.

In contrast, the conversion of a type application, where the argument whose object

type is defined by a substitution which appears in positive position, does require the

application of a lemma. The lemma states that the conversion to reverse de Bruijn

indices commutes with substitution:

substRtypeCommute :: NatRep i → TypeRep t1 → TypeRep t2

→ Equiv (Rtype (Subst t1 t2 i))

(SubstR (Rtype S i t1) (Rtype i t2) i)

5.3. REVERTING TO TYPE-LEVEL DE BRUIJN INDICES 71

data ValKb ctx t where
KBvar :: Index ts t → ValKb (i, ts) t
KBnum :: Int → ValKb (i, ts) Int

data ExpKb ctx where
KBletrec :: ExpKb (i, (t, (Cont Z t, ts))) →

ExpKb (i, (Cont Z t, ts)) → ExpKb (i, ts)
KBletPolyFun :: ExpKb (S i, (t,ShiftEnv ts)) →

ExpKb (i, (Cont (S Z) t, ts)) → ExpKb (i, ts)

KBlet :: ValKb (i, ts) t → ExpKb (i, (t, ts)) → ExpKb (i, ts)
KBletPair :: ValKb (i, ts) t1 → ValKb (i, ts) t2 →

ExpKb (i, ((t1, t2), ts)) → ExpKb (i, ts)
KBletFst :: ValKb (i, ts) (t1, t2) →

ExpKb (i, (t1, ts)) → ExpKb (i, ts)
KBletSnd :: ValKb (i, ts) (t1, t2) →

ExpKb (i, (t2, ts)) → ExpKb (i, ts)
KBletPrim :: PrimOp →

ValKb (i, ts) Int → ValKb Int →
ExpKb (i, (Int, ts)) → ExpKb (i, ts)

KBapp :: ValKb (i, ts) (Cont Z t) → ValKb (i, ts) t → ExpKb (i, ts)
KBpolyApp :: ValKb (i, ts) (Cont (S Z) t1) →

ValKb (i, ts) (Subst t1 t2 Z) → ExpKb (i, ts)

KBif0 :: ValKb (i, ts) Int →
ExpKb (i, ts) → ExpKb (i, ts) → ExpKb (i, ts)

KBhalt :: ValKb (i, ts) Int → ExpKb (i, ts)

Figure 5.2: Representation of λK with de Bruijn indices for types and terms (cf. source
file LKb.hs, page 166).

5.3 Reverting to type-level de Bruijn indices

The final stage reverts the representation of object-level types to normal de Bruijn indices.

This transformation mainly affects the types, and the target program representation is

almost identical to the one in Section 5.1, except that it uses the substitution and update

functions for de Bruijn indices. The target representation is shown in Figure 5.2. The

only difference lies in the types of the constructors for type abstraction and application:

72 CHAPTER 5. CONVERSION TO DE BRUIJN INDICES

KBletPolyFun :: ExpKb (S i, (t,ShiftEnv ts)) →

ExpKb (i, (Cont (S Z) t, ts)) → ExpKb (i, ts)

KBpolyApp :: ValKb (i, ts) (Cont (S Z) t1) →

ValKb (i, ts) (Subst t1 t2 Z) → ExpKb (i, ts)

Note that these type families (Subst and ShifEnv) are the ones used in the original higher-

order encoding of λK (cf. Section 4.1).

The functions that performs the translation for values and expressions have the fol-

lowing types:

toBv :: NatRep i → EnvRep ts → ValKr (i, ts) t

→ ValKb (i,Benv i ts) (Btype i t)

toBe :: NatRep i → EnvRep ts → ExpKr (i, ts)

→ ExpKb (i,Benv i ts)

The type parameter ts represents the value context, containing types expressed in

reverse de Bruijn. The type family Btype converts the representation of an object-level

type from reverse de Bruijn to normal de Bruijn indices, with respect to a parameter i

which reflects the number of type variables in scope at the point where the type appears

in the program. The type family Benv does the same for an entire value context, applying

Btype pointwise to every types in the context.

The type family Btype, which is the inverse of the function Rtype from the previous

section, is defined as follows:

type family Btype i t

type instance Btype i (Cont Z t) = Cont Z (Btype i t)

type instance Btype i (Cont (S Z) t) = Cont (S Z) (Btype (S i) t)

type instance Btype i (Var n) = Var n

type instance Btype i (VarR n) = Var (Subtract i (S n))

type instance Btype i (t1, t2) = (Btype i t1,Btype i t2)

type instance Btype i Int = Int

and the type family Benv is defined as follows:

type family Btype i ts

type instance Benv i () = ()

type instance Benv i (t, ts) = (Btype i t,Benv i ts)

5.3. REVERTING TO TYPE-LEVEL DE BRUIJN INDICES 73

Finally, the conversion to first-order terms (toR) and the reversal to type-level de

Bruijn indices (toBe) are composed into one:

toB :: (∀α. ExpK α) → ExpKb (Z, ())

Summary

We have seen a conversion from a higher-order representation (of the cps language, λK)

to a first-order one. This conversion has no real effect on the code, as these are merely

different ways of representing the same program. This conversion turns out to be a

relatively complex one to implement. In retrospect, implementing the front-end over a

first-order encoding would indeed simplify the compiler’s code.

If we wanted to stick to hoas for closure conversion, this could probably be done by

combining closure conversion and hoisting in a single phase, as done by Chlipala (2008).

As functions are constructed directly at the top level, he avoids the problems of a higher-

order program representation where functions are closed but have free variables in scope.

Unfortunately, some important invariants of our implementation escape static verifi-

cation. The static context of type and term variables, which is implicit in the higher-order

encoding, gets constructed as binders are traversed. Index formation involves explicitly

comparing segments of static contexts; if there are intervening binders for type variables,

then the types in the original context must be “shifted” to reflect these new binders. These

manipulations take place at run time and amount to testing rather than verification.

Also, we do not prove that the type-level conversion to reverse de Bruijn indices and

the conversion back to de Bruijn indices indeed cancel out. This invariant cannot be

reflected because each conversion is operated over an entire expression, whose type does

not specify an object-level type since it is in cps. If the object language were in direct

style, the relationship between the object-level types would be explicit.

The original motivation for this conversion was to facilitate closure conversion, as it

requires explicit type contexts (to prove that functions are closed), and some way of iden-

tifying variables, which our higher-order representation lacked. Closure conversion and

the subsequent code transformations will be performed over first-order representations.

74 CHAPTER 5. CONVERSION TO DE BRUIJN INDICES

Chapter 6

Closure conversion

Closure conversion is the core transformation in a compiler for a higher-order functional

language, and its implementation is considerably more involved than that of cps conver-

sion, or the other phases in our compiler.

The effect of closure conversion is to transform all functions in a program so that they

are closed (i.e. do not have free variables), by arranging for the functions to receive a

copy of their free variables as an additional parameter. Once function are closed, they

can be moved around in the program, and the hoisting transformation (cf. Chapter 7) will

take advantage of this fact to simplify the structure of the program, turning its nested

structure into a linear one.

Closure conversion addresses the problem of accessing free variables at run time. Con-

sider the following program:

let f = λx . λy . x + y

f1 = f 1

f2 = f 2

in f1 2 + f2 4

The program introduces a function f which receives a parameter x, and returns a function

which add x to its argument y. Two functions f1 and f2 are created by applying f with

different values, in effect constructing instances of the function λy . x + y, in which x

is bound to different values at run time (1 and 2, respectively). At the time f1 or f2 is

called, the function f has already returned, so the variable x is not in scope, and its value

76 CHAPTER 6. CLOSURE CONVERSION

cannot be accessed as an ordinary formal parameter. To remedy this, we arrange for the

function λy . x + y to take x as an extra parameter:

let f = λx . 〈λ〈y, x〉 . x + y, x〉

f1 = f 1

f2 = f 2

in (fst f1) 〈snd f1, 2〉+ (fst f2) 〈snd f2, 4〉

The function λy . x + y is replaced by a tuple consisting of a closed function,

λ〈y, x〉 . x + y, as well as a copy of the free variable x. To apply the function, it must first

be extracted from the tuple, and the stored variable (x) must be passed to it as an extra

argument. Of course, in general, there may be more than one free variable, and those are

aggregated into a tuple, which we call the environment. Note that we have not shown

the effect of closure conversion on the outer abstraction, (λx . . .), but the corresponding

function would in fact be made to take an extra argument as well (to be instantiated with

an empty tuple since the function has no free variables.)

The difficult part in implementing closure conversion is to produce the code that

creates the closure. It requires the analysis of free variables, used for forming the closure

environment. It must also arrange for the free variables to be accessed through the

extra parameter to the function. In the above example, the free variable (x) is simply

referred to by its name, so the body of the function remains unchanged, but the actual

implementation uses de Bruijn indices, and the code for constructing a closure requires

delicate index manipulations.

Closure conversion of System F is a complex matter to implement. Since closure

conversion affects the way variables are represented at run time, its implementation is

directly concerned with the representation of variables, recursion, and polymorphism.

To make the presentation more digestible, we first review the basic workings of closure

conversion in a simplified case, before proceeding to the technical presentation of the

actual implementation.

Our article presented at the Haskell Workshop (Guillemette and Monnier 2007) showed

in detail an implementation of closure conversion for a simply typed functional language.

Our article presented at ICFP (Guillemette and Monnier 2008b) showed how we extended

the implementation to handle polymorphism (and term-level recursion), but there was

6.1. CLOSURE CONVERSION AND DE BRUIJN INDICES 77

CJxK = x
CJλx . eK = 〈λ〈x, xenv〉 . ebody, eenv〉

where y1, . . . , yn = FV(e)
ebody = let y0 = xenv.1

...
yn−1 = xenv.n

in CJeK
eenv = 〈y0, ..., yn−1〉

CJe1 e2K = let 〈xf , xenv〉 = CJe1K
in xf 〈CJe2K, xenv〉

Figure 6.1: Closure conversion of the simply typed (direct style) λ-calculus.

little room for elaboration given the scope of the paper. This chapter synthesizes the two

presentations, and discusses the implementation in full detail.

The code listing of the encoding of the closure converted language and the closure

conversion is reported in Appendix A (in the files LC.hs, page 177, and CC.hs, page 179).

6.1 Closure conversion and de Bruijn indices

The purpose of this section is to explain how closure conversion is made to work with de

Bruijn indices. To simplify the presentation, we ignore the issues of type preservation,

polymorphism and recursion for the moment; we will show the closure conversion of the

simply typed λ-calculus in direct style and will return to our actual language in the

subsequent sections. The essential translation rules of closure conversion are shown in

Figure 6.1. In closure-converting the body of a λ-abstraction, one must arrange for (free)

variable references to be turned into references to the corresponding variables stored in

the environment. In the definition of CJ−K, this is simply achieved by instantiating a

number of let-bindings with the same names as the original variables, each variable being

bound to the corresponding value in the environment. (For instance, in the example

from Section 2.4.3, the function c2f accesses the free variables a and b through the local

bindings of the same names, suitably instantiated to values from the environment.) Here,

we wish to apply this technique to our concrete representation with de Bruijn indices;

but indeed, given that there are no variable names, we have to work a little harder.

Essentially, since we cannot rely on names, we have to carry around a map that

78 CHAPTER 6. CLOSURE CONVERSION

CbJiKm = lookup m i
CbJλ eKm = 〈λ ebody, eenv〉

where (m′, [j0, . . . , jn−1]) = mkMap (tail (fvs e)) 0
ebody = let i0.0 (original argument)

i1.1 (environment)
in CbJeK(i1 : map (λj . i0.j) m′)

eenv = 〈m j0, . . . ,m jn−1〉
CbJe1 e2Km = let CbJe1Km

i0.0 (xf)
i1.1 (xenv)

in i1 〈CbJe2Km, i0〉

mkMap [] j = ([], [])
mkMap (False : bs) j = ((⊥ : m), js)
mkMap (True : bs) j = ((n : m), js ++[j])

where (m, js) = mkMap bs (j + 1)

fvs e = [b0, b1, . . . | bi = True if ii appears in e;
False otherwise]

shift in = in+1

shift in.k = in+1.k

Figure 6.2: Closure conversion with de Bruijn indices.

6.1. CLOSURE CONVERSION AND DE BRUIJN INDICES 79

let a = 2
b = 4
c = 7
d = 8

in λx . a× x + c

⇓CJ−K

let a = 2
b = 4
c = 7
d = 8

in 〈λarg . let x = arg.0
env = arg.1
a = env.0
c = env.1

in a× x + c,
〈a, c〉〉

let 2
4
7
8

in λ i4 × i0 + i2

⇓CbJ−K−

let 2
4
7
8

in 〈λ let i0.0
i1.1

in i0.0× i1 + i0.1,
〈i3, i1〉〉

Figure 6.3: Example of closure conversion with variable names (left) and de Bruijn indices
(right).

gives the local binding in the converted program for each variable in scope in the source

program. We denote CbJeKm the closure-converted form of source program e given local

bindings map m; the function CbJ−K− is defined in Figure 6.2. It refers to auxiliary

functions mkMap and fvs that are used to construct the map m when forming closures.

Since we are using de Bruijn indices, we omit all variables names, so we write λx . e as

λ e and let x = e1 in e2 as let e1 in e2; we write de Bruijn indices as i0, ii, and so on, and

use the meta-variables i and j to stand for de Bruijn indices.

The local variables map m, for a source term with n variables in scope, is of the form

[e0, . . . , en−1], where ek gives the local binding in the target program for source variable

ik. In general, ek will be either a de Bruijn index (when ik is a local variable of the

function being converted) or a projection of the environment (when ik is a free variable.)

To illustrate, consider the source program shown at the top of Figure 6.3; the final

result of the conversion is shown at the bottom. We now go through the steps involved

in closure-converting this function.

The first step computes the free variables. Rather than producing a set, the fvs

function produces a “bit-map”, indicating whether each index in scope appears in the

80 CHAPTER 6. CLOSURE CONVERSION

term. Taking the free variables of the function body, we have:

fvs (i4 × i0 + i2) = [True, False, T rue, False, T rue]

which reads, from left to right: i0 appears in the term, i1 does not, i2 appears, and so on.

Next is the construction of the environment and the corresponding local variables

map, which is handled by mkMap. We have:

(m′, [j0, . . . , jn−1])

= mkMap (tail (fvs (i4 × i0 + i2))) 0

= mkMap (tail [True, False, T rue, False, T rue]) 0

= mkMap [False, T rue, False, T rue] 0

= ([⊥, 1,⊥, 0], [i3, i1])

The first component, m′, maps variables in scope in the function’s body (except the

function’s original argument, i0) to corresponding projections of the environment. From

this m′, CbJ−K− constructs a map in which to interpret the function’s body:

(i1 : map (λj . i0.j) m′) = [i1,⊥, i0.1,⊥, i0.0]

which reads, form left to right:

1. the source variable i0 is mapped to local variable i1,

2. the source variable i1 is not mapped to any local variable, as indicated by ⊥ (since

the variable is in scope but does not appear in the source term, this is indeed what

we want),

3. the source variable i2 is mapped to i0.1, the first projection of the environment,

and so on. The second component produced by mkMap, namely [j0, . . . , jn−1], simply

enumerates the source variables that appear in the function’s body. Finally, the function’s

body can be converted:

CbJi4 × i0 + i2K[i1,⊥, i0.1,⊥, i0.0] = i0.0× i1 + i0.1

6.2. TARGET LANGUAGE 81

(type context) ∆ ::= α0, . . . , αn−1

(value context) Γ ::= x0 :τ0, . . . , xn−1 :τn−1

(types) τ ::= ∀~α. τ → 0 | ∃α. τ | α | 〈τ0, . . . , τn−1〉 | int

(values) v ::= fix f [~α] x. e | x | pack [τ1, v] as τ2 | v[τ] | n
(exps) e ::= let x = v in e | let [α, x] = unpack v in e

| let x = 〈v0, . . . , vn−1〉 in e | let x = v.i in e
| let x = v1 p v2 in e | v1 v2 | if0 v e1 e2 | halt v

Figure 6.4: Syntax of λC .

Object type Haskell type

∀~α. τ → 0 Cont k t
∃α. τ Exists t
α Var i
〈τ0, . . . , τn−1〉 Tup (t0, (. . . , (tn−1, ()) . . .))
int Int

Figure 6.5: Encoding of the types of λC .

What we have shown here is a mostly conventional formulation of closure conversion,

only slightly contrived to facilitate typing. In the rest of this chapter, we will show

the implementation on our actual source language, and assign types to CbJ−K−, fvs and

mkMap.

6.2 Target language

The actual target language of our closure conversion, λC , is shown in Figure 6.4. It extends

λK with existential types, used to represent closures. Another important difference with

λK is that its static semantics forces functions introduced by fix to be closed (and moves

function introduction to the syntactic class of values.) It also decouples type application

from function application, moving type applications to the syntactic class of values as well.

Finally, it replaces pairs with n-tuples, used for the representation of closure environments.

The static semantics of λC is defined by two typing judgments:

∆; Γ C̀ v : τ value v has type τ in context ∆; Γ

∆; Γ C̀ e expression e is well-typed in context ∆; Γ

82 CHAPTER 6. CLOSURE CONVERSION

data ValC ctx t where
Cfix :: ExpC (k, (t, (Cont k t, ()))) → ValC (i, ts) (Cont k t)
Cvar :: Index ts t → ValC (i, ts) t
Cpack :: ValC (i, ts) (Subst t1 t2 Z) → ValC (i, ts) (Exists t1)
CtpApp :: ValC (i, ts) (Cont (S k) t1) → ValC (i, ts) (Cont k (Subst t1 t2 k))
Cnum :: Int → ValC (i, ts) Int

data ExpC ctx where
Clet :: ValC (i, ts) t → ExpC (i, (t, ts)) → ExpC (i, ts)
Cunpack :: ValC (i, ts) (Exists t) →

ExpC (S i, (t,ShiftEnv ts)) → ExpC (i, ts)

CletTup :: MapT (ValC (i, ts)) ts1 →
ExpC (i, (Tup ts1, ts)) → ExpC (i, ts)

CletProj :: ValC (i, ts) (Tup ts1) → Index ts1 t →
ExpC (i, (t, ts)) → ExpC (i, ts)

CletPrim :: PrimOp →
ValC (i, ts) Int → ValC Int →
ExpC (i, (Int, ts)) → ExpC (i, ts)

Capp :: ValC (i, ts) (Cont Z t) → ValC (i, ts) t → ExpC (i, ts)

Cif0 :: ValC (i, ts) Int →
ExpC (i, ts) → ExpC (i, ts) → ExpC (i, ts)

Chalt :: ValC (i, ts) Int → ExpC (i, ts)

data MapT c ts where
M0 :: MapT c ()
Ms :: c t → MapT c ts → MapT c (t, ts)

Figure 6.6: Strongly typed representation of λC (cf. source file LC.hs, page 177).

6.2. TARGET LANGUAGE 83

Strongly typed representation

The strongly typed representation of λC is constructed in the same way as the first-

order representation of λK with de Bruijn indices at the type level (cf. Section 5.3).

The encoding of object-level types is shown in Figure 6.5. In particular, it introduces a

new type constructor for existential types (Exists) which implicitly binds a type variable.

It also introduces a constructor for the representation of tuple types (Tup); note that

argument to Tup is of the same form as a de Bruijn value context (cf. Section 2.2.3).

The encoding of the abstract syntax of λC is shown in Figure 6.6. A value v satisfying

∆; Γ C̀ v : τ is represented by a term of type:

ValC (i, ts) t

and an expression e satisfying ∆; Γ C̀ e is represented by a term of type:

ExpC (i, ts)

where i encodes the length of ∆, ts encodes Γ, and t encodes τ .

The fix operator of λC binds a number of type variables (in addition to the function’s

argument and the binder for the recursive call.) The typing rule for fix forces the function

to be closed, i.e. exempt of free term or type variables:

~α;x : τ, f : ∀~α. τ → 0 C̀ e

∆; Γ C̀ fix f [~α] x. e : ∀~α. τ → 0

The function is closed in the sense that the function’s body (e) must be well-typed in an

environment where only the type variables abstracted by the function (~α), the function

itself (f), and the function’s argument (x) are in scope. The encoding of λC includes a

single constructor (Cfix) that directly encodes the typing rule for fix. (This is in contrast

to the encoding of λK, where type abstraction and term-level recursion were treated

separately.) Its type reflects the closedness conditions: the body’s term variable context

finishes with “()”, meaning that it cannot have free term variables, and since t appears in

a context where k variables are in scope, t cannot involve type variables other than those

bound by the fix.

84 CHAPTER 6. CLOSURE CONVERSION

n-tuples The constructor CletTup introduces a tuple made of an arbitrary number

of values. The values are aggregated using the auxiliary type MapT (also shown in

Figure 6.6). A tuple of values 〈v0, v1, . . . , vn−1〉 of type 〈τ0, τ1, . . . , τn−1〉 is introduced

with a term of the form:

Ms u0 (Ms u1 (. . . (Ms un−1 M0)))

which is of type:

MapT (ValC (i, ts)) (t0, (. . . , (tn−1, ()) . . .))

where each type tj is the Haskell representation of the type τj , and each term uj is the

Haskell representation of the value vj and has type ValC (i, ts) tj . Note that the first type

parameter of the type constructor MapT must be a type function (in our case, a type

constructor), i.e. a Haskell type of kind ? → ?. We will further discuss the type MapT

and use it for other purposes than representing syntax in Section 6.5.

The constructor CletProj projects a particular component of a tuple value and binds

it to a variable. As the representation of tuple types follows the same form as that of

value contexts (ts), we re-use the Index type used to represent de Bruijn indices (cf. Sec-

tion 2.2.3) to identify the component to be extracted.

Existential types The language introduces existential types, which are used to abstract

the type of the environment when forming closures. The usual typing rules for existential

types are as follows:

∆; Γ C̀ v : τ2[τ1/α]
∆; Γ C̀ pack [τ1, v] as ∃α. τ2 : ∃α. τ2

∆; Γ C̀ v : ∃α. τ α,∆; x : τ,Γ C̀ e

∆; Γ C̀ let [α, x] = unpack v in e

The data constructors for pack and unpack encode these typing rules in much the same

way that we did for universal types. Note that in the type of Cunpack, since a new type

variable is in scope in the body of the expression (e), the types appearing in its context

(Γ) must be adjusted, hence the application of ShiftEnv.

6.3. TRANSLATION 85

types:
CtypeJ∀~α. τ → 0K = ∃β. 〈∀~α. 〈CtypeJτK, β〉 → 0, β〉

CtypeJαK = α
CtypeJ〈τ1, τ2〉K = 〈CtypeJτ1K, CtypeJτ2K〉

CtypeJintK = int

values:
CvalJxKm = lookup m x
CvalJnKm = n

expressions:

CexpJletrec f [~α] x = (e1)τ in e2Km = let xclosure = pack [τenv, 〈vcode[~β], venv〉]
as CtypeJτK

in CexpJe2K(f ⇒ xclosure;m)
where

~β = ftvs e1 − ~α
yτ0
0 , ..., y

τn−1

n−1 = fvs e1 − {f, x}
τenv = 〈CtypeJτ0K, . . . , CtypeJτn−1K〉
vcode = fix f [~β, ~α] x.

let x′ = x.0
env = x.1
f ′ = pack [τenv, 〈f, env〉]

as CtypeJτK
in CexpJe1K(x ⇒ x′, f ⇒ f ′,

y0 ⇒ env.0, ...,
yn−1 ⇒ env.(n− 1))

venv = 〈lookup m y0, ..., lookup m yn−1〉

CexpJv1[τ1, ..., τn] v2Km = let [α, x] = unpack CvalJv1Km
xf = x.0
xenv = x.1

in xf [CtypeJτ0K, ..., CtypeJτn−1K] 〈CvalJv2Km,xenv〉

CexpJlet x = v in eKm = let x′ = CvalJvKm in CexpJeK(x ⇒ x′;m)
CexpJlet x = 〈v1, v2〉 in eKm = let x′ = 〈CvalJv1Km, CvalJv2Km〉

in CexpJeK(x ⇒ x′;m)
CexpJlet x = fst v in eKm = let x′ = (CvalJvKm).0 in CexpJeK(x ⇒ x′;m)
CexpJlet x = snd v in eKm = let x′ = (CvalJvKm).1 in CexpJeK(x ⇒ x′;m)

CexpJlet x = v1 p v2 in eKm = let x′ = CvalJv1Km p CvalJv2Km
in CexpJeK(x ⇒ x′;m)

CexpJif0 v e1 e2Km = if0 (CvalJvKm) (CexpJe1Km) (CexpJe2Km)
CexpJhalt vKm = halt (CvalJvKm)

lookup (y ⇒ z;m) x =
{

z if x = y;
lookup m x otherwise.

Figure 6.7: Closure conversion over λK.

86 CHAPTER 6. CLOSURE CONVERSION

6.3 Translation

The closure conversion of values (CvalJ−Km) and expressions (CexpJ−Km), and the effect

of closure conversion on types (CtypeJ−K), are shown in shown in Figure 6.7.

The type translation for continuations introduces an existential variable β that ab-

stracts the type of the closure environment and pairs up the function (which is made to

receive the environment as an extra argument) with the environment. The type transla-

tion is defined as a type family as follows:

type family Ctype t

type instance Ctype (Cont i t) = CLOSURE i t

type instance Ctype (Var n) = Var n

type instance Ctype (t1, t2) = PAIR (Ctype t1) (Ctype t2)

type instance Ctype Int = Int

where PAIR and CLOSURE are type synonyms used to abbreviate the pair (i.e. tuples

of size 2) and closure types:

type PAIR t1 t2 = Tup (t1, (t2, ()))

type CLOSURE k t = Exists (PAIR (Cont k (PAIR (U (S Z) k t) (Var k)))

(Var Z))

Note that, in the type of a closure, the update function must be applied in order

to prevent free type variables from being captured by the existential quantifier. The

types of the functions implementing the translations on values (CvalJ−Km) and expressions

(CexpJ−Km) are as follows:

ccV :: ValKb (i, ts) t

→ (∀ts′. MapT (ValC (i, ts′)) (Cenv ts) → ValC (i, ts′) (Ctype t))

ccE :: ExpKb (i, ts)

→ (∀ts′. MapT (ValC (i, ts′)) (Cenv ts) → ExpC (i, ts′))

Informally, these types mean that the conversion takes a λK value (or expression) in

context ∆; Γ, to a λC value of the converted type (or an expression) in any context ∆; Γ′,

provided that the supplied map (m) takes every term variable in Γ to a value of the

converted type in ∆; Γ′. Formally this is captured by the following lemmas:

6.4. POLYMORPHISM 87

Lemma 6.1 (cc type correspondence for values) If ∆; Γ K̀ v : τ and the map m satisfies

∀x ∈ dom(Γ). ∆; Γ′ C̀ lookup m x : CtypeJΓ xK

then

∆; Γ′ C̀ CvalJvKm : CtypeJτK.

Lemma 6.2 (cc type correspondence for expressions) If ∆; Γ K̀ e and the map m sat-

isfies

∀x ∈ dom(Γ). ∆; Γ′ C̀ lookup m x : CtypeJΓ xK

then

∆; Γ′ C̀ CvalJeKm.

The details of how the map is represented and how it is constructed when closures are

formed are explained in Section 6.5 below.

The translation shown in Figure 6.7 actually abuses the syntax of λC , in the sense

that the map m takes λK variables to projections of the environment (yi ⇒ env.i), but

projections are not λC values, and must actually be introduced by the let construct (let x =

env.i in . . .). It is intended that the body of a closure-converted function will actually bind

the individual components of the environment to distinct variables using the let construct,

and refer to these variables instead of projecting the environment. In the code, we found

it easier to first map variables to projections of the environment, and then replace these

explicit projections by variables bound by let; the concrete representation of λC contains

a constructor for projections as values, but this constructor is only used internally by the

closure conversion, and does not appear in the final result. In the code (cf. Appendix A,

the file CC.hs, page 179), the function openEnv is used to replace projections as values

to variable references.

6.4 Polymorphism

By the definition of CexpJ−Km, the function stored inside a closure is closed with respect

to type variables: it is made to take an extra set of type variables ~β that are the original

function’s free type variables. When forming the closure, the closed function is passed the

88 CHAPTER 6. CLOSURE CONVERSION

free type variables, so as to get a closure of the expected type. The way this “forwarding”

of type variables preserves types is captured by this simple lemma:

Lemma 6.3 (forwarding) If ~β ⊆ ∆ and

∆; Γ C̀ v : ∀~β, ~α. τ → 0

then

∆; Γ C̀ v[~β] : ∀~α. τ → 0.

In our implementation, all type variables in scope are captured when forming a closure,

rather than just those that actually appear free in the function (that is, we take ~β = ∆.)

It would require additional data structures and type families to perform free type variable

analysis, and afterward selectively abstract and apply those variables (and it is far from

obvious that it could be done in a convincing way.) In contrast, capturing all the type

variables can be done directly. Then, their application (v[~β]) is constructed by a function

that implements the forwarding lemma:

tpAppMulti :: NatRep i → NatRep k → TypeRep t

→ ValC (i, ts) (Cont (Add i k) t)

→ ValC (i, ts) (Cont k t)

The proof of Lemma 6.3 is easy, and relies on the simple fact that, for any type τ and

type variable α, τ [α/α] = τ . But this argument is not so easily demonstrated when types

are expressed using de Bruijn indices. To illustrate the problem, consider the application

of the lemma with these particular types:

∆ = ~β = β1, β2

~α = α1, α2

τ = 〈β1, β2, α1, α2〉

so that the following judgments holds about v and its type instantiations:

β1, β2; Γ C̀ v : ∀β1, β2, α1, α2. 〈β1, β2, α1, α2〉 → 0

β1, β2; Γ C̀ v[β1] : ∀β2, α1, α2. 〈β1, β2, α1, α2〉 → 0

β1, β2; Γ C̀ v[β1, β2] : ∀α1, α2. 〈β1, β2, α1, α2〉 → 0

6.4. POLYMORPHISM 89

If we translate these judgments to de Bruijn indices, they would look as follows:

2; Γ C̀ v : ∀4. 〈t3, t2, t1, t0〉 → 0

2; Γ C̀ v[t1] : ∀3. 〈t4, t2, t1, t0〉 → 0

2; Γ C̀ v[t1, t0] : ∀2. 〈t3, t2, t1, t0〉 → 0

We have eliminated the type variable names (β1, β2, α1, α2), and replaced them with de

Bruijn indices, written t0, t1, etc. Here, ti is the type-level de Bruijn index that stands

for the ith type variable in scope; that is, t0 stands for the type variable bound by the

closest ∀ binder, t1 stands for one bound by the next closest ∀ binder, and so on.

Although the last judgment can be mapped directly onto the lemma, the middle one

cannot, because the type variable which is bound outside of the ∀ quantifier temporarily

assumes a different index (t4). To capture the effect of the type applications of a number

of type variables in scope, we define a type family as follows:

type family MultiApp j c

type instance MultiApp (S j) (Cont (S k) t) =

MultiApp j (Cont k (Subst t (Var j) k))

type instance MultiApp Z t = t

The type MultiApp j c stands for the type c applied with a number of type variables

identified by j (by repeatedly applying the type tj and reducing j to j − 1). The type

family satisfies the invariant that:

MultiApp i (Cont (Add i k) t) = Cont k t

It is then straightforward to implement Lemma 6.3 in terms of this type family. Note

that the implementation of tpAppMulti is the only place in the compiler where a type

family is needed locally, to prove a lemma.

Type application When translating the application of a polymorphic function, it takes

a few manipulations to show that the function is of a type compatible with its supplied

argument. As in the case of cps conversion, we need to apply a lemma stating that

substitution commute with the type translation:

90 CHAPTER 6. CLOSURE CONVERSION

Lemma 6.4 (CtypeJ−K–subst commute) For any λK types τ1, τ2 and index i,

CtypeJτ1[τ2/i]K = (CtypeJτ1K)[CtypeJτ2K/i].

As the type translation explicitly shifts indices, we also need similar lemmas showing

that CtypeJ−K, U i
k(−), and substitution commute pairwise (see source code, page 194).

These lemmas are encoded as term-level functions, as in Section 4.4.

6.5 Auxiliary functions

In this section we give the type of the auxiliary functions fvs and mkMap. We first define

the notion of type-preserving maps, which is used to aggregate values in the representation

of λC , and also to represent the result of the fvs function as well as the local variables

map constructed by mkMap and passed to ccV/ccE.

Type-preserving maps Conceptually, a type-preserving map associates each compo-

nent in a type environment with a value of the corresponding type. For a type environ-

ment ts = (t0, (t1, . . . (tn−1, ()))), a type-preserving map, of type MapT c ts, maps each

component ti of the environment to a value of type c ti. The parameter c abstracts the

type of the values stored in the map. For example, a type-safe evaluator over de Bruijn

expressions might be given the type:

eval :: MapT Value ts → ExpS ts t → Value t

where the evaluation environment (MapT Value ts) maps each component ti of the type

environment ts (which correspond to a variable in scope) to a value of the corresponding

type (of type V alue ti). When using MapT to represent the map m passed to ccV/ccE, c

is instantiated to the type of λC values, so that source variables are mapped to the values

in the target program used to access those variables.

A type-preserving map is represented as a list whose ith component stores the value

associated with the component ti of the environment ts:

data MapT c ts where

M0 :: MapT c ()

Ms :: c t → MapT c ts → MapT c (t, ts)

6.5. AUXILIARY FUNCTIONS 91

The type MapT supports the usual functions over associative lists:

lookupT :: MapT c ts → Index ts t → c t

updateT :: MapT c ts → Index ts t → c t → MapT c ts

6.5.1 Free variables

We defined the functions fvsV and fvsE which, given a λK value or expression, indicates

whether each index in scope appears free in it. Its implementation produces its result in

the type MapT:

fvsV :: ValKb (i, ts) t → MapT BoolT ts

fvsE :: ExpKb (i, ts) → MapT BoolT ts

where BoolT is a wrapper for the type Bool that has an extra type argument t that is

simply ignored:

data BoolT t = BoolT Bool

In practice, it is necessary for fvsV and fvsE to actually examine the type context ts,

and we have in fact:

fvsV :: EnvRep ts → ValKb (i, ts) t → MapT BoolT ts

fvsE :: EnvRep ts → ExpKb (i, ts) → MapT BoolT ts

where EnvRep ts reifies the type context ts as a Haskell value. Note that the parameter of

type EnvRep ts is necessary because our maps are represented as lists; it could be avoided

if we used a functional representation, such as this one:

type MapT ts t = Index ts t → c t

but traversing the entire map would require generating all the indices of ts.

Our implementation make use of a small number of combinators. For example, the

clause for variables is as follows:

fvsV ts (KBvar i) = updateT (falseMap ts) i (BoolT True)

where falseMap constructs a maps that takes every index to False:

falseMap :: EnvRep ts → MapT BoolT ts

92 CHAPTER 6. CLOSURE CONVERSION

For cases which analyze constructs having multiple sub-expressions, we combine the result

using a variant of the usual zipWith function on lists:

zipWithT :: (∀t. c1 t → c2 t → c3 t) → MapT c1 ts → MapT c2 ts → MapT c3 ts

which constructs a list by applying a binary operator point-wise on every element of two

lists.

6.5.2 Construction of the variables map

The function mkMap in essence consumes the list of free variables and produces two

results:

1. a local variables map, mapping each index in scope to a projection of the environ-

ment, and

2. a list of indices to be packed in the environment.

There is of course a direct connection between the two: the local variables map assumes a

target context formed out of the environment being constructed. We can readily express

this in types as follows:

mkMap :: MapT BoolT ts → ∃env. (MapT (Index env) (Cenv ts),

MapT (Cenv ts) env)

While this type captures the essence of what mkMap does, the index-mangling it

performs creates slight complications. For one, the local variables map (m) and the

environment (j0, . . . , jn−1) grow in opposite directions as the recursion proceeds (cf. the

case mkMap (True : bs) j). It takes a little extra machinery to track the way indices

are appended to the environment. In terms of de Bruijn contexts, this means adding a

binding “outside” a term, thus leaving intact an existing context where i0, . . . , in−1 are

in scope while bringing into scope and extra index in. We handle such context extensions

with the a type family that performs concatenation of contexts:

type family Cat ts0 ts

type instance Cat () ts = ts

type instance Cat (s, ts0) ts = (s,Cat ts0 ts)

6.5. AUXILIARY FUNCTIONS 93

The actual construction of the variables map requires more bookkeeping that the

type signature of mkMap exposes, and most of the work is accomplished by an auxiliary

function of the following type:

mkMapAux :: NatRep i → EnvRep ts → EnvRep env0

→ MapT BoolT ts

→ MapT (Index ts0) ts

→ (∃env env′. (Cat env0 env ∼ env′) ⇒

(EnvRep env,

MapT (Index (Cenv env′)) (Cenv ts),

MapT (ValKb (i, ts0)) env))

where ts0 is the de Bruijn context of the source term, ts is that part of the context

which remains to be processed, env0 is the part of the environment that has already been

constructed, env is the segment of the environment which is constructed while processing

the part of the context corresponding to ts, and env′ is the completed environment, i.e.

the concatenation of env0 and env.

In the implementation of mkMapAux, we need to generate a new index in an existing

context:

newIndex :: EnvRep ts → Index (Cat ts (t, ())) t

We also need to interpret an existing index in a context that has been extended:

weakenIndex :: EnvRep ts → Index ts0 t → Index (Cat ts0 ts) t

This corresponds to “weakening” a typing judgment about the variable, as the added

elements in the context represent extra assumptions.

Summary

The closure conversion phase turned functions with free variables into closed ones, by

making the functions receive the value of their free variables through an extra parameter.

Closure conversion manipulates variable bindings extensively, and the mechanism used

to control variable access in closure conversion is the most complex and delicate part of

our compiler. We rely on an explicit variable map to relate variables in the source and

94 CHAPTER 6. CLOSURE CONVERSION

target programs, and a couple of auxiliary functions to identify which variables to put in

the environment (fvsV/fvsE) and to construct a map accordingly (mkMap).

As in the case of cps conversion, we needed to implement a lemma which states that

substitution commutes with the type translation. But for the cps conversion, the program

representation was higher-order, so the type context of an expression was implicit and we

thus did not need to prove anything about it. For the closure conversion, the type context

was explicit in the representation, and that context was actually constructed explicitly

when constructing the function inside a closure. In consequence, we also needed to apply

a number of commutativity lemmas about the type families we applied on type contexts.

After closure conversion, the functions are closed but are still arbitrarily nested in the

program, and the code tranformation presented in the next chapter will give the program

a linear structure by moving all the functions to the top level.

Chapter 7

Hoisting

The hoisting transformation moves all the functions, which are closed as a result of closure

conversion, to the top level. The resulting program is thus “linearized”, i.e. it assumes a

flat structures where functions are never nested, but instead refer to each other through

top-level variables.

The hoisting transformation is a simple “code motion” phase: functions are simply

moved around and replaced by variable references. Type preservation for this phase

ought to be particularly obvious: a function appearing somewhere in the program is

simply replaced by a variable which has the same type as the original function. Note

that the hoisting transformation is the only one in our compiler which does not affect the

object-level types (and does not introduce a type family.)

It in not uncommon in compilers to combine closure conversion and hoisting in a single

phase. We preferred to implement them separately, to better single out the issues of the

already intricate closure conversion, although there is no indication that a single phase

would not work well in our setting.

The code listing of the encoding of the linearized language and the function hoisting

transformation is reported in Appendix A (in the files LH.hs, page 198, and Hoist.hs,

page 200).

96 CHAPTER 7. HOISTING

(types) τ ::= ∀α0, . . . , αn−1. τ → 0 | ∃α. τ | α | 〈τ0, . . . , τn−1〉
| int

(type context) ∆ ::= α0, . . . , αn−1

(value context) Γ ::= x0 : τ0, . . . , xn−1 : τn−1

(programs) p ::= letrec x0 = c0, . . . , xn−1 = cn−1 in e
(code blocks) c ::= code[α0, . . . , αn−1](x : τ). e
(values) v ::= x | v[τ] | pack [v, τ1] as τ2 | n
(exps) e ::= let x = v in e | let [α, x] = unpack v in e

| let x = 〈v0, . . . , vn−1〉 in e | let x = v.i in e
| let x = v1 p v2 in e | v1 v2 | if0 v e1 e2 | halt v

(primops) p ::= + | − | ×

Figure 7.1: Syntax of λH.

7.1 Target language

The target language (λH, shown in Figure 7.1) extends λC with a syntactic category of

programs, containing the letrec construct, and eliminates the fix construct. The letrec

construct (letrec x0 = c0, . . . , xn−1 = cn−1 in emain) introduces a number of variables

bound to code blocks. A code block (code[α0, . . . , αn−1](x : τ). e) is a top-level function

that abstracts a number of type variables (α0, . . . , αn−1) and one term variable (x) in its

body (e). The scope of the variables introduced by letrec (namely x0, . . . , xn−1) spans the

body of all the code blocks plus the program body (emain).

The static semantics is defined by three typing judgments:

H̀ p program p is well-typed

∆; Γ H̀ v : τ value v has type τ in context ∆; Γ

∆; Γ H̀ e expression e is well-typed in context ∆; Γ

The context Γ gives the type of term variables, bound by either the global letrec construct

or the let expressions. The context ∆ lists the type variables in scope.

Strongly typed representation

The encoding of λH types is the same as for λC (cf. Section 6.2). The term representation

is shown in Figure 7.2.

One notable difference with the representation of λC is that expressions and values

have distinct contexts for globally bound variables and locally bound ones. A value v

7.1. TARGET LANGUAGE 97

data ProgramH where
Hletrec :: MapT (CodeBlockH fs) fs → ExpH (fs, Z, ()) → ProgramH

data CodeBlockH fs t where
Hblock :: TypeRep (Cont k t) → ExpH (fs, k, (t, ())) → CodeBlockH fs (Cont k t)

data ValH ctx t where
Hvar :: Index ts t → ValH (fs, i, ts) t
Hlam :: Index fs t → ValH (fs, i, ts) t

HtpApp :: ValH (fs, i, ts) (Cont (S k) t1) → ValH (fs, i, ts) (Cont k (Subst t1 t2 k))
Hpack :: ValH (fs, i, ts) (Subst t1 t2 Z) → ValH (fs, i, ts) (Exists t1)
Hnum :: Int → ValH (fs, i, ts) Int

data ExpH ctx where
Hlet :: ValH (fs, i, ts) t → ExpH (i, (t, ts)) → ExpH (fs, i, ts)
Hunpack :: ValH (fs, i, ts) (Exists t) →

ExpH (fs, S i, (t,ShiftEnv ts)) → ExpH (fs, i, ts)

HletTup :: MapT (ValH (fs, i, ts)) t →
ExpH (fs, i, (Tup t, ts)) → ExpH (fs, i, ts)

HletProj :: ValH (fs, i, ts) (Tup t1) → Index t1 t2 →
ExpH (fs, i, (t2, ts)) → ExpH (fs, i, ts)

HletPrim :: PrimOp →
ValH (fs, i, ts) Int → ValH Int →
ExpH (fs, i, (Int, ts)) → ExpH (fs, i, ts)

Happ :: ValH (fs, i, ts) (Cont Z t) → ValH (fs, i, ts) t → ExpH (fs, i, ts)

Hif0 :: ValH (fs, i, ts) Int →
ExpH (fs, i, ts) → ExpH (fs, i, ts) → ExpH (fs, i, ts)

Hhalt :: ValH (fs, i, ts) Int → ExpH (fs, i, ts)

Figure 7.2: Strongly typed representation of λH (cf. source file LH.hs, page 198).

98 CHAPTER 7. HOISTING

satisfying ∆; Γ H̀ v : τ is represented by a term of type:

ValH (fs, i, ts) t

and an expression e satisfying ∆; Γ H̀ e is represented by a term of type

ExpH (fs, i, ts)

where i encodes the length of ∆, fs encodes the part of Γ corresponding to global variables

(i.e. those bound by letrec), ts encodes the part of Γ corresponding to local variables (i.e.

those bound by the other let forms), and t encodes τ .1

Logically, the scope of the types variables which i accounts for is ts, as the types

appearing in fs are closed. This is the reason why ShiftEnv must be applied to ts but not

to fs in the type of Hunpack.

In the representation of values, two distinct constructors (Hvar and Hlam) introduce

local and global variables (respectively), and the type associated with the variable in

question is drawn from either the context ts or fs accordingly.

A program satisfying H̀ p is represented by a term of type ProgramH. This type

has a single constructor (Hletrec) which aggregates a number of bindings using the type

MapT (cf. Section 6.5), along with the program’s main expression. An individual code

block (of type CodeBlockH fs (Cont k t)) contains a type representative describing the

object-level type of the continuation as well as the expression itself. Specifically, the type

parameter fs reflects the type of every term bound by the top-level letrec; the parameter

fs characterizes the type of the collection of code blocks, and also appears in the type of

every individual code block so that code blocks can refer to each other.

Note that the type CodeBlockH is introduced so that we can collect the mutually

recursive functions definitions with a direct application of MapT. Alternatively, we could

define a specialized type that collects the functions and the required type representative

(i.e. one that combines the effect of CodeBlockH and MapT), but the chosen solution

appears simpler and more elegant.

1Note that we aggregate the components of the static context into a single type parameter instead of
adding extra type parameters to ValH/ExpH following the convention from Chapter 3; see footnote on
page 41.

7.2. TRANSLATION 99

values:

collectV m i x = (lookup m x, [])

collectV m i (fix f [~α] x. e) = (xi, [xi = code[~α](x′). e′, bi+1, . . . , bj])
where (e′, [bi+1, . . . , bj]) = collectE (m{f ⇒ xi, x ⇒ x′}) i e

expressions:

collectE m i (let x = v in e) = (let x′ = v′ in e′, [bi, . . . , bj , bj+1, . . . , bk])
where (v′, [bi, . . . , bj]) = collectV m i v

(e′, [bj+1, . . . , bk]) = collectE (m{x ⇒ x′}) (j + 1) e
. . .

programs:

hoist e = letrec b0, . . . , bn−1 in e′

where (e′, [e0, . . . , en−1]) = collectE • 0 e

Figure 7.3: Hoisting transformation (transforms λC into λH).

7.2 Translation

The hoisting transformation is shown in Figure 7.3. The transformation proceeds by

collecting every function into a bundle (whose type reflects the type of every function in

it) and then assembles the program.

The auxiliary functions collectV and collectE, as the names imply, collect the functions

contained in λC values and expressions. They are defined by equations of the form:

collectV m i v = (v′, [bi, . . . , bj])

The function receives a source value v (or expression), and returns a value v′ (or expres-

sion) where all fix values have been replaced by variables, along with a set of bindings to

be placed in the top-level letrec. The set of bindings ([bi, . . . , bj]) is of the form:

xi = code[~αi](x). ei,
...

xj = code[~αj](x). ej

The parameter i is used to control the assignment of fresh variables to code blocks: i is

100 CHAPTER 7. HOISTING

the smallest number such that xi has not already been assigned. In the implementation,

these bindings are identified using indices: xi will be represented by the ith index bound

in the global context (fs).

The parameter m is a map from source variables to variables in the target program.

In particular, it maps variables used to make recursive calls in the body of a fix value to

variable bound by letrec, and maps all other variables to local variables. Note that the

parameter m would not be needed if the language did not have term-level recursion: the

hoisting transformation does not affect variables except those that are used for recursive

calls (and we did not have it in our original presentation of closure conversion (Guillemette

and Monnier 2007)).

7.3 Implementation

The types of the functions that implement collectV and collectE are as follows:

collectV :: MapT (ValH (fs0, i, ts)) ts → EnvRep fs0

→ ValC (i, ts) t

→ ∃fs. (ValH (Cat fs0 fs, i, ts) t,

MapT (CodeBlockH (Cat fs0 fs)) fs)

collectE :: MapT (ValH (fs0, i, ts)) ts → EnvRep fs0

→ ExpC (i, ts)

→ ∃fs. (ExpH (Cat fs0 fs, i, ts),

MapT (CodeBlockH (Cat fs0 fs)) fs)

The type parameter fs0 characterizes the functions already collected and turned into

code blocks; the existentially quantified type parameter fs characterizes those that are

produced by traversing the current value or expression. Thus the second parameter to

the function (of type EnvRep fs0) serves the purpose of the parameter i in the “formal”

definition of collectV /collectE.

The implementation of the two functions is straightforward, but it involves much low-

level manipulation of de Bruijn indices. We often need to combine sets of code blocks,

and this involves weakening the expressions contained in one of the code blocks to account

7.3. IMPLEMENTATION 101

for the bindings contained in the other. This employs a “weakening” function on values

and expressions:

weakenVal :: EnvRep fs → ValH (fs0, i, ts) t → ValH (Cat fs0 fs, i, ts) t

weakenExp :: EnvRep fs → ExpH (fs0, i, ts) → ExpH (Cat fs0 fs, i, ts)

These functions traverse the source term and eventually perform weakening on all de

Bruijn indices which stand for global variables (that is, those introduced by Hlam) ap-

pearing in them.

Value abstraction When traversing a binder which abstracts a value (e.g. Hlet), the

local context (ts) is extended, so the elements of the map must be shifted to account for

the new binder. That is, we must take the map of type:

MapT (ValH (fs0, i, ts)) ts

to a map of type:

MapT (ValH (fs0, i, (t, ts))) (t, ts)

This involves “shifting” the individual values in the map:

shiftVal :: ValH (fs, i, ts) t → ValH (fs, i, (t′, ts)) t

which means incrementing the indices introduced by Hvar. Note that, as the map takes

variables to variables, the function shiftVal only needs to handle the cases of Hlam and

Hvar, and can safely omit the cases for other constructors of ValH.

Type abstraction When traversing a binder for a type variable (in the case of Hunpack),

we must take a map of type:

MapT (ValH (fs, i, ts0)) ts

to a map of type:

MapT (ValH (fs, S i,ShiftEnv ts0)) (t,ShiftEnv ts)

This involves re-interpreting the values in the map at a different type, where an extra

variable is in scope:

102 CHAPTER 7. HOISTING

tpShiftValH :: ValH (fs, i, ts) t → ValH (fs, i,ShiftEnv ts) (Shift s)

This function in turn must re-interpret indices introduced by Hvar:

tpShiftIndex :: Index ts t → Index (ShiftEnv ts) (Shift t)

The functions tpShiftValH and tpShiftIndex do not actually modify values or indices, but

merely assign different types to them.

Summary

The hoisting phase simply flattens the structure of the closure-converted code, and is by

far the most conceptually simple of the code transformations in our compiler. But due

to its existentially quantified return type, its implementation is less compact than that

of the cps or closure conversion (excluding its auxiliary functions). This transformation

does not affect the types, so it does not need to introduce a type family or any associated

lemmas.

The function hoisting phase is actually the last tranform that is specific to functional

languages. After the function hoisting phase, the code has lost much of its functional

flavour, and all of it higher-order features, as a program then takes the form of a collection

of (mutually recursive) closed functions in cps, ripe for generating assembly code.

Chapter 8

Code generation

This chapter presents the final stage of compilation which generates code in a typed

assembly language. The typed assembly language models the machine language of a

reduced instruction set computer (risc).

Indeed, any compiler for a real machine must perform some form of code generation.

Unlike cps or closure conversion, the code generation phase is not specific to the compi-

lation of functional languages. We have implemented this phase to demonstrate that the

techniques we have developed can indeed be applied to all the code transformations in a

compiler. The implementation did not reveal notable technical difficulties; for the most

part, it is an application of the implementation techniques from the previous chapters

(mainly Chapter 6 and 7).

In a typical compiler, the target language is untyped; all the type information about

the program is discarded at some point before assembly language is produced. In contrast,

the code generated by our compiler follows a type discipline and carries type information,

and can thus be seen as a form proof-carrying code. Proof-carrying code (PCC) (Necula

and Lee 1996) is a general technique for safely executing code of untrusted source, by

locally checking a proof of safety which is distributed along with the code. The code

produced by our compiler contains enough type information so that it can be easily type-

checked. The verifications guarantees that the program will not “go wrong” at run time,

by doing an illegal instruction or supplying inappropriate values as operands.

The code generation phase in a typical compiler performs instruction selection and

register allocation, and can also perform optimizations on the generated assembly code.

104 CHAPTER 8. CODE GENERATION

In our implementation, we make the simplifying assumption that an infinite supply of

registers is available. Thus, our register allocation does not have to deal with the case

where too few registers are available to store the variables which are active at the same

time (which is normally done by “spilling” some of the variables, i.e. storing their values

on the heap temporarily.) The code generation phase presented here is thus admittedly

fairly simple compared to that found in a typical optimizing compiler for a real machine.

The main conceptual difference between an assembly language and the functional

calculi used to this point is that program meaning is sensitive to the actual registers and

code labels that appear in the program. In a functional program, changing the name of a

bound variable will not affect the meaning of the program. For example, the terms λ x. x

and λ y. y are equivalent – one can be substituted for the other in any context without

altering the program’s meaning. Whereas every variable in a functional program has a

well-defined scope and type, registers behave like global variables which assume different

types in different regions of the program.

The type system of our target assembly language tracks the type of the registers at

every point of the program. It also associates types to the code labels: when control

is transferred (by a “jump” instruction), the type system guarantees that the registers

contain values of the types expected by the target code block. The program representation

is different from those in the previous chapters, in that it does not use local scopes; instead

the same register names are re-used (see the type family Update defined in Section 8.1.)

The code generation presented here is largely based on the one from Morrisett et

al. (1999). A notable difference is that they use an abstract machine instruction for

tuple allocation (and a separate instruction for initialization), whereas we use a coarser

abstraction which performs tuple creation in one step. Their compilation scheme actually

includes an explicit allocation phase, in between function hoisting and code generation,

which turns tuple creations into a sequence of operations that allocates a tuple in memory

and initializes its components. We decided to use an atomic tuple creation construct in

our typed assembly language so that we would not need to implement this allocation

phase (as the insight gained by doing so would likely not justify the extra complexity.)

Also, a minor difference with their presentation is that we use explicit parameters to

control the assignment of fresh identifiers (for code labels and registers) in order to better

8.1. TYPED ASSEMBLY LANGUAGE 105

(types) τ ::= ∀α0, . . . , αm−1. (r0 :τ0, . . . , rn−1 :τn−1) → 0 | ∃α. τ
| α | 〈τ0, . . . , τn−1〉 | int

(code seg. types) Ψ ::= `0 :τ0; . . . ; `n−1 :τn−1

(type context) ∆ ::= α0, . . . , αn−1

(register file type) Γ ::= r0 :τ0; . . . ; rn−1 :τn−1

(programs) p ::= `0 → c0; . . . ; `n−1 → cn−1; start → I
(code blocks) c ::= code[α0, . . . , αm−1](r0 :τ0, . . . , rn−1 :τn−1). I
(values) v ::= r | ` | n | v[τ] | pack [v, τ1] as τ2

(instructions) ι ::= add rd rs v | sub rd rs v | mul rd rs v | bnz r v
| mov rd rs v | unpack [α, rd] v
| mktuple rd 〈v0, . . . , vn−1〉 | ld rd rs[i]

(instr. seq.) I ::= ι; I | jmp v | halt

Figure 8.1: Syntax of TAL.

reflect our implementation.

The code listing of the encoding of the typed assembly language and the code gener-

ation is reported in Appendix A (in the files TAL.hs, page 208, and CG.hs, page 210).

8.1 Typed assembly language

The syntax of TAL is shown in Figure 8.1. A TAL program consists of a set of code blocks

identified by labels, along with an instruction sequence identified with the designated label

start, which corresponds to the entry point of the program. Each code block assumes a

number of type variables to be instantiated and the contents of the first n registers to

have specific types. A code block then consists of sequence of instructions terminated by

either an unconditional jump or the halt instruction, which terminates the program.

Instruction operands are registers and values. A value specifies a register, code label or

integer literal. A value can also be a type application or the construction of an existential

package.

The instruction set contains the usual instructions for arithmetic, a conditional jump, a

move instruction, as well as an unpack pseudo-instruction (which opens up an existential

package and loads its content in a register). There is also an abstract instruction to

construct a tuple on the heap. The values of the tuple components are specified as

individual operands. A “load” instruction loads a specified component of a tuple on the

heap into a register. This instruction set is sufficient to execute our programs since our

106 CHAPTER 8. CODE GENERATION

source language is pure (i.e. has no side-effects) and assuming an unlimited amount of

heap memory. A realistic implementation would need a garbage collector, which would

require additional instructions for update and deallocation of tuples on the heap.

The static semantics of TAL is defined by three typing judgments:

T̀ p program p is well-typed

Ψ;∆; Γ T̀ v : τ value v has type τ in context Ψ;∆; Γ

Ψ;∆; Γ T̀ I instruction sequence I is well-typed in context Ψ;∆; Γ

The judgments on values and instruction sequences refer to a context Ψ that lists

the types of the code labels in the program. The context ∆ lists the type variables in

scope, and Γ lists the types of the first n registers at the point in the program where the

instruction sequence appears.

8.2 Translation

Code generation is formally specified in Figure 8.2 and 8.3. The type translation (TtypeJ−K)

leaves the types mostly unchanged, except that it maps a polymorphic function to a poly-

morphic code block which receives its argument through the register r0.

The parameter γ of the value translation (T γ
valJ−K) is used for variable access. Specifi-

cally, γ maps λH global variables (bound by letrec) to code labels (`i), and local variables

to registers.

The core part of the code generation is the expression translation, shown in Figure 8.3.

It is defined by equations of the form:

T γ,∆,Γ,i
exp JeK = 〈C, I〉

From an expression e, it produces an instruction sequence I, along with a set of labeled

code blocks C. This set of code blocks is actually needed for the case of if0, for which

the code generation must create an extra code block. The parameter γ is passed to the

value translation as needed, and gets extended as new variable bindings are encountered

(when generating code for the let constructs.) The parameter ∆ lists the type variables

in scope. The parameter Γ lists the types of the first n registers in the context where I

is to appear. Both ∆ and and Γ are used when a new code block is created (in the case

8.2. TRANSLATION 107

programs:

TprogJletrec x0 = c0, . . . , xn−1 = cn−1 in eK = `0 → code[~α0](r0 : TtypeJτ0K). I0
...
`n−1 → code[~αn−1](rn−1 : TtypeJτn−1K). In−1

C0; . . . ;Cn−1;Ce;
start → Ie

where 〈Ci, Ii〉 = T γ0, ~αi,{r0:TtypeJτiK},`j[i]
exp JeiK

〈Ce, Ie〉 = T γ0,·,·,`j[n]
exp JeK

code[~αi](x : τi). ei = ci

γ0 = x0 → `0, . . . , xn−1 → `n−1

j[i] = n + |C0|+ · · ·+ |Ci−1|

types:

TtypeJ∀α0, . . . , αn−1. τ → 0K = ∀α0, . . . , αn−1. (r0 : TtypeJτK) → 0
TtypeJ∃α. τK = ∃α. TtypeJτK

TtypeJαK = α
TtypeJ〈τ0, . . . , τn−1〉K = 〈TtypeJτ0K, . . . , TtypeJτn−1K〉

TtypeJintK = int

values:

T γ
valJxK = γ(x)
T γ

valJnK = n
T γ

valJv[τ]K = T γ
valJvK[TtypeJτK]

T γ
valJpack [v, τ1] as τ2K = pack [T γ

valJvK, TtypeJτ1K] as TtypeJτ2K

Figure 8.2: Translation of programs, types, and values to TAL(cf. source file TAL.hs,
page 208).

108 CHAPTER 8. CODE GENERATION

T γ,∆,Γ,i
exp Jlet x : τ = v in eK = 〈C,mov r T γ

valJvK ; I〉
where 〈C, I〉 = T γ{x→r},∆,Γ{r:TtypeJτK},i

exp JeK
r /∈ dom Γ

T γ,∆,Γ,i
exp Jlet [α, x] = unpack v∃α. τ in eK = 〈C, (unpack [α, r] T γ

valJvK; I)
where 〈C, I〉 = T γ{x→r},∆{α},Γ{r:TtypeJτK},`

exp JeK
α /∈ ∆, r /∈ dom Γ

T γ,∆,Γ,i
exp Jlet x = 〈v0, . . . , vn−1〉τ in eK = 〈C, (mktuple r 〈T γ

valJv0K, . . . , T γ
valJvn−1K〉;

I)〉
where 〈C, I〉 = T γ{x→r},∆,Γ{r:TtypeJτK},i

exp JeK
r /∈ dom Γ

T γ,∆,Γ,i
exp Jlet x : τ = v.i in K = 〈C, (mov r T γ

valJvK ;
ld r r[i];
I)〉

where 〈C, I〉 = T γ{x→r},∆,Γ{r:TtypeJτK},i
exp JeK

r /∈ dom Γ
T γ,∆,Γ,i

exp Jlet x = v1pv2 in eK = 〈C, (mov r T γ
valJv1K ;

arithp r r T γ
valJv2K;

I)〉
where 〈C, I〉 = T γ{x→r},∆,Γ{r:int},i

exp JeK
arith+ = add
arith− = sub
arith× = mul
r /∈ dom Γ

T γ,∆,Γ,i
exp Jv1 v2K = 〈C, (mov r T γ

valJv1K ;
mov r0 T γ

valJv2K ;
jmp r)〉

where r 6= r0, r /∈ dom Γ
T γ,∆,Γ,i

exp Jif0 v e1 e2K = 〈C1C2{` → c}, (mov r T γ
valJvK ;

bnz r `′[∆]; I ′)〉
where 〈C1, I1〉 = T γ,∆,Γ,i

exp Je1K
〈C2, I2〉 = T γ,∆,Γ,`+|C1|

exp Je2K
c = code[∆](Γ). I2

`′ = ` + |C1|+ |C2|
r /∈ dom Γ

T γ,∆,Γ,i
exp Jhalt vK = 〈∅,mov r0 T γ

valJvK ;
halt〉

Figure 8.3: Translation of expressions to TAL.

8.3. TYPE PRESERVATION 109

of if0). Finally, the parameter ` is used to control “freshness” of code labels: it identifies

the smallest unassigned code label. Incidentally, Γ is also used for the same purpose, i.e.

controlling the freshness of registers.

Finally, the program translation TprogJ−K assembles code blocks for the individual

entries in the global letrec, as well as the additional code blocks generated. The generated

code blocks corresponding to n code blocks in the λH program are labeled `0, `1, . . . , `n−1.

The assignment of labels to extra code blocks is controlled by the variable j[i]. Specifically,

the assignment of labels to extra code blocks for the ith binding of the letrec begin with

label `j[i]; the value of j[i] depends on the number of code blocks generated for the previous

bindings.

8.3 Type preservation

The high-level theorem of type preservation for code generation states that TprogJ−K takes

well-typed λH programs to well-typed TAL programs:

Theorem 8.1 For any λH program p, if H̀ p, then T̀ TprogJpK.

The proof of the above theorem relies on the two auxiliary lemmas establishing that

the value and expression translations preserve types. In the case of values, the lemma

states that T γ
valJ−K takes well-typed values to well-types values, provided that the variable

map (γ) takes variables to registers or code labels of the corresponding types:

Lemma 8.1 For any λH value v, if

1. ∆; Γ H̀ v : τ , and

2. ∀x ∈ dom Γ. if Γ(x) = τ ′, then either

– Γ′(γ(x)) = TtypeJτ ′K or

– Ψ(γ(x)) = TtypeJτ ′K

then Ψ;∆; Γ′ T̀ T γ
valJvK : TtypeJτK.

In the case of expressions, the lemma similarly states that a well-typed expression is

produced, and that all the extra code blocks are well-typed and associated to contiguous

labels.

110 CHAPTER 8. CODE GENERATION

data ProgramT where
Tletrec :: MapT (CodeBlockT cs) cs → Instr cs (Code Z ()) → ProgramT

data CodeBlockT cst where
Tblock :: TypeRep (Code k rs) →

Instr cs (Code k rs) → CodeBlockH cs (Code k rs)

data ValT g t where
Treg :: Index rs t → ValT (cs, i, rs) t
Tlabel :: Index cs t → ValT (cs, i, rs) t
TtpApp :: ValT (cs, i, rs) (Code (S k) t1) → ValT (cs, i, rs)

(Code k (SubstEnv t1 t2 k))
Tpack :: ValT (cs, i, rs) (Subst t1 t2 Z) → ValT (cs, i, rs) (Exists t1)
Tnum :: Int → ValT (cs, i, rs) Int

Figure 8.4: Encoding of TAL programs, code blocks and values.

Lemma 8.2 If a λH expression e satisfies

1. ∆; Γ H̀ e,

2. ∀x ∈ dom Γ. if Γ(x) = τ ′, then either

– Γ′(γ(x)) = TtypeJτ ′K or

– Ψ(γ(x)) = TtypeJτ ′K,

and 〈C, I〉 = T γ,∆,Γ,i
exp JeK, then

1. Ψ;∆; Γ T̀ I,

2. dom C = `i, . . . , `i+|C|

3. ∀(`j → code[∆′](Γ′). I ′) ∈ C. Ψ;∆′; Γ′ T̀ I ′.

8.4 Implementation

This section shows the details of the concrete representation of TAL as well as the types

of the main functions that implement code generation. The encoding of TAL is somewhat

more elaborate than those of the intermediate languages. The extra complexity stems

from the fact that registers have different types in different parts of the program.

8.4. IMPLEMENTATION 111

The types of TAL are encoded in essentially the same way as those of λH, except for

the case of polymorphic code blocks. Specifically, the type of a code block,

∀α0, . . . , αm−1. (r0 :τ0, . . . , rn−1 :τn−1) → 0

is represented using the Haskell type:

Code n (t0, (t1, . . . (tn−1, ()) . . .))

A value v satisfying Ψ; ∆; Γ T̀ v : τ is represented as a term of type:

ValT (cs, i, rs) t

and an instruction sequence satisfying Ψ;∆; Γ T̀ I is represented as a term of type:

InstrT cs (Code i rs)

where cs encodes Ψ, i encodes ∆, rs encodes Γ and t encodes τ .

In concrete terms, the type parameter cs reflects the type of all the code blocks in

the program. It has the form (t0, (t1, . . . (tn−1, ()) . . .)), where ti gives the type of the

code block associated to label `i. The parameter rs gives the types of the registers in the

context where a value or expressions appears; it is of the same form as cs, with ti giving

the type associated to register ri.

A program satisfying T̀ p is represented as a term of type ProgramT. The encoding of

TAL programs and values is shown in Figure 8.4. The representation of programs follows

the same scheme as in the case of λH (cf. Section 7.1). A program consists of a set of

code blocks, plus an instruction sequence corresponding to the program entry point. An

individual code block (of type CodeBlockT) consists of a type representative of describing

the type of the code block, and an instruction sequence. The code blocks are aggregated

using the MapT type.

Instructions We do not use distinct types for instructions (ι) and instruction sequences

(I). Instead, we use a single type for encoding instructions sequences, analogous to the

112 CHAPTER 8. CODE GENERATION

representation of expressions in cps. The encoding of instruction sequences is shown

in Figure 8.5. Note that every constructor except JMP and HALT has an instruction

sequence as its last argument, which represents the remaining instructions in the sequence,

and thus plays the role of a continuation.

Registers used as source operands are represented using typed indices (Index rs t, the

same structure used for de Bruijn indices). Registers used as targets are represented as

natural numbers with singleton types (NatRep d); typed indices are not used because the

type of the corresponding register before the instruction is irrelevant. Updates to the

register file are captured by a type family defined as follows:

type family Update rs i t

type instance Update (s, ts) Z t = (t, ts)

type instance Update () Z t = (t, ())

type instance Update (s, ts) (S n) t = (s,Update ts n t)

The type environment Update rs d t stands for the type environment rs where there dth

element has been set to t.

In the constructors for conditional and unconditional code transfers (BNZ and JMP),

the argument of type Sub rs rs′ is a witness that the target of the jump is of a type that

is compatible with the current context. More precisely, it means that the first n registers

listed in rs agree in types with rs′, or in other words that rs′ is a prefix of rs. The type

Sub is a gadt defined as follows:

data Sub rs rs′ where

S0 :: Sub rs ()

Sx :: Sub rs rs′ → Sub (s, rs) (s, rs′)

8.4.1 Type translation

As usual the type translation (TtypeJ−K)) and its generalization to type environments are

implemented as type families:

8.4. IMPLEMENTATION 113

data Instr cs t where
ARITH :: PrimOp − p

→ NatRep d − rd

→ Index rs Int − rs

→ ValT (cs, i, rs) Int − v
→ Instr cs (Code i (Update rs d Int))
→ Instr cs (Code i rs)

BNZ :: Sub rs t
→ Index rs Int − r
→ ValT (cs, i, rs) (Code Z t) − v
→ Instr cs (Code i rs)
→ Instr cs (Code i rs)

MV :: NatRep d − rd

→ ValT (cs, i, rs) t
→ Instr cs (Code i (Update rs d t))
→ Instr cs (Code i rs)

UNPACK :: NatRep d − rd

→ ValT (cs, i, rs) (Exists s) − v
→ Instr cs (Code (S i) (Update (ShiftEnv rs) d s))
→ Instr cs (Code i rs)

MKTUP :: NatRep d − rd

→ MapT (ValT (cs, i, rs)) t − 〈v0, . . . , vn−1〉
→ Instr cs (Code i (Update rs d (Tup t)))
→ Instr cs (Code i rs)

LD :: NatRep d − rd

→ Index rs (Tup tup) − rs

→ Index tup t
→ Instr cs (Code i (Update rs d t))
→ Instr cs (Code i rs)

JMP :: Sub rs t
→ ValT (cs, i, rs) (Code Z t) − v
→ Instr cs (Code i rs)

HALT :: Instr cs (Code i (Int, rs))

Figure 8.5: Encoding of TAL instruction sequences (cf. source file TAL.hs, page 208).

114 CHAPTER 8. CODE GENERATION

type family Ttype t

type instance Ttype (Cont k t) = Code k (Ttype t, ())

type instance Ttype (Exists t) = Exists (Ttype t)

type instance Ttype (Var v) = Var v

type instance Ttype (Tup t) = Tup (Tenv t)

type instance Ttype Int = Int

type family Tenv ts

type instance Tenv () = ()

type instance Tenv (s, ts) = (Ttype s,Tenv ts)

8.4.2 Term translation

Theorem 8.1, along with Lemma 8.1 and Lemma 8.2, are reflected in the types of the

functions that implement the translation of λH programs, values and expressions.

Programs The top-level function that performs code generation expresses Theorem 8.1:

cgProg :: ProgramH → ProgramT

The function cgProg implements TprogJ−K, so internally it assembles the code blocks

for the individual bindings of the λH program. This is accomplished by a local recursive

function that traverses the list of code blocks; this function’s type is as follows:

cgBindings :: ∀fs, cs. MapT (CodeBlockH fs0) fs

→ ∃cs. (EnvRep cs,

MapT (CodeBlockT (Cat (Tenv fs0) cs)) (Tenv fs),

MapT (CodeBlockT (Cat (Tenv fs0) cs)) cs)

The function receives the set of code blocks in the λH program, and returns the list

of code blocks corresponding to these original bindings, along with the list of extra code

blocks.

In this type signature, fs0 represents the type of all the global bindings in the original

programs and fs represents the fragment (suffix) of fs0 which is yet to be processed, and

cs represents the type of extra code blocks generated so far.

8.4. IMPLEMENTATION 115

Values Similarly, the type of the function that implements the value translation (T γ
valJ−K)

reflects Lemma 8.1:

cgVal :: MapT (Index rs) (Tenv ts)

→ MapT (Index cs) (Tenv fs)

→ ValH (fs, i, ts) t

→ ValT (cs, i, rs) (Ttype t)

The first two parameters together encode the variable map (γ): the first one maps

local variables in the source programs to registers in the target program, and the second

one maps global variables to code labels.

As expected, the translation of existential packages (pack [e, τ1] as τ2) and type appli-

cations (e[τ]) require the invocation of a commutativity lemma:

Lemma 8.3 For any source types τ1, τ2 and index i,

TtypeJτ1[τ2/i]K = TtypeJτ1K[TtypeJτ2K/i].

The lemma is implemented in the same way as the lemmas from Section 4.4, as a

term-level function. Its type is:

substTtypeCommute ::

TypeRep t1 → TypeRep t2 → NatRep i

→ Equiv (Ttype (Subst t1 t2 i)) (Subst (Ttype t1) (Ttype t2) i)

Expressions Finally, the type of the function that implements the translation of λH

expressions (T γ,∆,Γ,i
exp J−K) reflects Lemma 8.2:

cgExp :: NatRep i → EnvRep ts → EnvRep cs0 → EnvRep rs

→ MapT (Index cs0) (Tenv fs)

→ MapT (Index rs) (Tenv ts)

→ ExpH (fs, i, ts)

→ ∃cs. (EnvRep cs,

MapT (CodeBlockT (Cat cs0 cs)) cs,

Instr (Cat cs0 cs) (Code i rs))

116 CHAPTER 8. CODE GENERATION

The function receives the variable maps (same as for cgVal), along with the source

expression, and returns the converted expression and the set of extra code blocks gener-

ated.

The type parameter cs0 gives the type of the code blocks generated so far, and the

type variable rs gives the type of the first n registers in the context where the translated

expression will appear. The existentially quantified type variable cs characterizes the set

of extra code blocks generated while traversing this expression.

A term-level representative of the type i is needed for the construction of the extra

code blocks. The representatives of rs and cs0 are used to generate fresh labels and

register identifiers. The representative of ts is needed in the translation of unpack, to

instantiate a lemma stating that the “shifting” of the context commutes with the type

translation:

shiftTenvCommute :: EnvRep ts → Equiv (Tenv (ShiftEnv ts))

(ShiftEnv (Tenv ts))

Summary

This chapter presented a simple code generation phase which is the last step in the

compilation pipeline. This phase mapped the “linearized” language from the previous

chapter into a more rudimentary language, which does not use local variables, and where

operations are arranged into linear sequences of instructions (unlike the λH expressions

which are nested to some degree because of the if0 construct.)

The implementation of code generation mostly applies the techniques already devel-

oped in the implementation of the previous two phases. A notable exception is the use

of the Update type family to assign different types to a given register in different regions

of the program. Compared to the closure conversion or hoisting phase, the implemen-

tation of code generation may be the more “natural”. In particular, the fact that the

notion of binding in λH and TAL is fundamentally different makes the variable map (γ)

more legitimate, as it is necessary even if one does not want to prove type preservation.

This is in contrast to closure conversion or hoisting, where the variable map comes as a

consequence of our particular choice of program representation.

Chapter 9

Benchmarks

In this chapter we report and briefly analyze compilation times achieved by our compiler.

As stated in the introduction, one of the potential benefits of our general approach to

compilation is an improvement in compilation time, as a result of eliminating all dynamic

checks that take place in a conventional compiler. Indeed, this benefit is not fully real-

ized in the current implementation. In particular, some type information must still be

manipulated as data, and the lemmas about the various type families defined in the im-

plementation must still be “executed” at run-time. Beside type issues, a notable source

of inefficiency is the unary representation of de Bruijn indices.

We have not attempted to optimize the compiler. Figures are provided to give an idea

of the behavior of the initial version. We identify the most expensive phases and opera-

tions in our compiler, and estimate the overhead imposed by the run-time manipulation

of type information.

The chapter focuses on compilation times, but does not report or analyze performance

of the compiled programs. Our contribution is the type-safe implementation of a number

of code transformations, but the code transformations themselves are fairly typical of

a compiler for a call-by-value functional language. We have not implemented any code

optimizations that would motivate us to look into the performance of the compiled code.

Sample programs

We will use two simple programs as benchmarks. One is a small program that makes use

of parametric polymorphism. The other is a simple program that consists of a number of

118 CHAPTER 9. BENCHMARKS

mutually recursive functions, which can be made arbitrarily large by varying the number

of functions in the program. We have chosen this set of sample programs so that all the

features of the source language are exercised, and compilation will take long enough to

yield meaningful profile information about the compiler. They also allow us to see you

compilations times are affected by program size.

Sum types The first benchmark program exercises parametric polymorphism, which is

used to construct an encoding of sum types. A sum type (τ1 + τ2) is represented as the

type:

∀α. (τ1 → α) → (τ2 → α) → α

and the constructors are represented as functions:

inLeft :: ∀t1, t2. t1 → (∀α. (t1 → α) → (t2 → α) → α)

inLeft = λx. λf. λg. f x

inRight :: ∀t1, t2. t2 → (∀α. (t1 → α) → (t2 → α) → α)

inRight = λx. λf. λg. g x

Analysis of a value in a sum type is simply achieved by a function application. The sample

program simply constructs a value and analyses it:

let s = inLeft[int, 〈int, int〉] 4

in s (λx. x) (λx. fst x + snd x)

TAK The second benchmark program is used to measure compilation times for artifi-

cially large programs. It is based on the TAK function which was devised by Takeuchi;

see (Knuth 1997). The TAK function is defined as follows:

TAK = λx y z. if y < z

then TAK (TAK (x− 1) y z)

(TAK (y − 1) z x)

(TAK (z − 1) x y)

else z

Our benchmark program defines n mutually recursive instances of the TAK function,

called TAK0, . . .TAKn−1, and each recursive call to TAK will invoke one of the n instances

119

chosen at random; for a given value of n, we call the sample program TAKn. For example,

TAK2 looks as follows:

letrec TAK0 = λx y z. if y < z

then TAK1 (TAK1 (x− 1) y z)

(TAK0 (y − 1) z x)

(TAK1 (z − 1) x y)

else z

TAK1 = λx y z. if y < z

then TAK0 (TAK1 (x− 1) y z)

(TAK0 (y − 1) z x)

(TAK0 (z − 1) x y)

else z

in TAK0 8 7 2

Note that there is no mutual recursion in our source language. To define these mutually

recursive functions, we use a function which receives an extra integer argument i, and

applies the corresponding instance TAKi, as follows:

letrec TAK i = if i = 0

then λx y z. if y < z − TAK0

then TAK 1 (TAK 1 (x− 1) y z)

(TAK 0 (y − 1) z x)

(TAK 1 (z − 1) x y)

else z

else λx y z. if y < z − TAK1

then TAK 0 (TAK 1 (x− 1) y z)

(TAK 0 (y − 1) z x)

(TAK 0 (z − 1) x y)

else z

in TAK 0 8 7 2

120 CHAPTER 9. BENCHMARKS

Safe Unsafe
Sum types 0.38 0.25
TAK1 0.30 0.25
TAK2 0.36 0.26
TAK4 0.55 0.30
TAK8 1.12 0.36
TAK16 3.11 0.54
TAK32 10.54 1.02
TAK64 40.40 2.55
TAK128 174.52 8.94

Figure 9.1: Compilation times (in seconds).

Compilation times

The compilation times1 for the benchmark programs are reported in Figure 9.1 These

times do not include any time spent in the compiler front-end, as the source programs are

directly encoded using the constructors of the type Exp of Chapter 3. However, to give

more realistic timing, the module in which the source programs are “hard-coded” is not

pre-compiled, but rather interpreted by GHC’s interactive environment; this is meant to

approximate the time that a front-end using Template Haskell would consume.

Compilation times are reported for two versions of the program, marked as “safe” and

“unsafe” in the table. The “safe” version is the one which executes all the lemmas at

run-time. The “unsafe” version skips the execution of some of the lemmas, identified as

the most time-consuming ones (using GHC’s profiling facility.) It turns out that skipping

these lemmas saves 34% on very small programs, and the “optimized” version of TAK128

runs almost 20 times faster than the safe one.

The lemmas in question are the following four:

1. shiftCenvCommute, stating that ShiftEnv and the type translation for closure con-

version (Cenv) commute;

2. shiftTenvCommute, stating that ShiftEnv and the type translation for code gener-

ation (Tenv) commute;

3. catCenvCommute, stating that Cenv and concatenation (of type contexts) commute

1The programs are compiled with GHC version 6.8.3. The test system is a 2.4GHz Core 2 Duo
(MacBook Pro running Mac OS X 10.5.6).

121

Phase Execution time (%)
cps conversion 0
conversion to de Bruijn 7.1
closure conversion 14.3
function hoisting 7.1
code generation 42.9
pretty printing 28.8

Figure 9.2: Breakdown of compilation time for TAK64, unsafe version.

4. catAssoc, stating that concatenation (of type contexts) is associative (which is re-

quired by hoisting and code generation)

The way that a lemma execution is skipped is by returning a generic proof object

(using an unsafe coercion) instead of constructing a proper one. For example, the unsafe

version of catAssoc is defined as follows:

catAssocUnsafe :: EnvRep ts0 → EnvRep ts1 → EnvRep ts2

→ Equiv (Cat ts0 (Cat ts1 ts2))

(Cat (Cat ts0 ts1) ts2)

catAssocUnsafe = unsafeCoerce Equiv

Here, unsafeCoerce is a library function which can coerce among arbitrary types:

unsafeCoerce :: ∀α, β. α → β

It is “safe” to apply unsafeCoerce only when the run-time representation of α and β are

the same; improper uses will result in memory corruption and unpredictable behavior.

Compilation phases

The relative cost of the individual compilation phases for the unsafe version of TAK64 is

reported in Figure 9.2.

cps conversion takes up so little time that it does not account for a measurable fraction

of the overall compilation time. Note that the input program is rather small in comparison

to the input of the other phases, as continuations and closures multiply the size of the

program a few times. Conversion to de Bruijn indices performs many comparisons on

contexts, which make it somewhat expensive.

122 CHAPTER 9. BENCHMARKS

Code generation is the most expensive phase, accounting for 42.9% of the compiler’s

execution time. It turns out that 50% of the time of code generation is spent on weakening

(i.e. interpreting instructions, values in indices in extended contexts.) Weakening is

conceptually a no-op (i.e. an identity function), but its implementation must traverse

all instructions, values and indices until the base case of indices (the constructor I0) is

reached. If we replace all weakening operations involved in code generation by an unsafe

coercion, we measure an overall speedup of 17% for TAK64 (from 2.55s to 2.12s), and

30% for TAK128 (from 8.94s to 6.32s.)

For what it is, the pretty-printer uses up a rather large fraction of the time. It is

implemented using pretty-printing combinators, so using a lower-level formatting facility

would yield an easy performance improvement.

Summary

We have not tried to optimize the compiler, so it still contains obvious sources of ineffi-

ciency, and the benchmarks presented here give a general idea of the performance penalties

they incur. The main sources of inefficiency are the manipulation of types as data, in-

cluding the execution of the lemmas about type families, and the unary representation of

indices.

The execution of the lemmas turns out to be very costly, and their cost increases

in proportion with larger object programs, to the point that it accounts for the vast

majority of the compilation time for large enough programs. The Haskell extension we

proposed (Guillemette and Monnier 2008a; Schrijvers et al. 2008) for the static verification

of invariants on type families would eliminate this overhead.

There is a super-linear component in compilation times (cf. Figure 9.1), which was

to be expected as a consequence of the unary representation of indices and the linear

representation of static environments. The transformations on first-order representations

manipulate indices and contexts extensively. In particular, a frequently used operation is

the concatenation of contexts, which takes linear time. A representation of static contexts

based on a data structure that supports concatenation in constant time would bring a

substantial performance improvement; difference lists are such a data structure, see e.g.

123

(Shapiro and Sterling 1994). Also, index weakening takes linear time, due to our unary

representation of indices. Note that index weakening is an operation at the term-level, so

language support for static verification of invariants on type families would not help here.

As for the representation of static contexts, a representation of indices which supports

weakening in constant time would bring a substantial performance improvement.

124 CHAPTER 9. BENCHMARKS

Chapter 10

Conclusion

In this final chapter we make general observations on our experience developing this

compiler.

We have formally established important properties of our compiler following an ap-

proach to formal verification based on types as a formal method. Type preservation in a

compiler is by nature a prime subject for such type-based verification. When undertaking

the construction of a compiler for System F , we had a precise idea a priori of the type

discipline that each code transformation was intended to follow, as laid out in the work

on compilation to typed assembly language of Morrisett et al. (1999). Yet, as one would

expect, the implementation effort raised many subtle issues.

Identifying the right program representations was perhaps the most delicate part of

our work, and we comment on the choices we have made. As in any form of type-

based verification, we had to make judicious use of the features of the implementation

language, and cope with its constraints and limitations. We comment on these more

generic issues, and our use of gadts and type families, as well as other features that we

used or considered using in past versions of our compiler. We also make a broader review

of binder representations used elsewhere, and contrast our type-preserving compiler with

other systems.

126 CHAPTER 10. CONCLUSION

10.1 Representation of bindings

The representation of binders is an issue that deserves close attention in any application

that manipulates programs or similar structures, such as compilers and theorem provers.

When working on System F we considered many options for representing variables, both

at the level of types and terms.

Type-level type variables. For type-level type variables (i.e. those introduced by

∀, ∃, etc.), a de Bruijn encoding of types combined with type families for type-level

operations (such as substitution) provides a fairly reasonable representation. De Bruijn

indices do require delicate manipulations, but these are mostly concealed in the definition

of the type families (Subst and U), and leave the definition of the term representation

relatively simple and direct. A de Bruijn encoding of types is also a common choice in

compilers using a typed intermediate language.

Given the fact that we do not need to analyze the types bound at the type level, hoas

would be an attractive representation. This would allow us to encode a universal type

(∀α.τ) directly as an anonymous type-level function (All (λa. t)). Then, the type given

to a type application (e[τ]) could simply be expressed as a type application in the host

language (t1 t2), instead of using an explicit type family for substitution (Subst t1 t2 Z).

Unfortunately, GHC does not support type-level λ-expressions, so this is not an option.

Note that type families (or, in general, type synonyms) are not λ-expressions, but named

functions that can only be defined at the top level of the program. We could imagine a

scheme where a type synonym is introduced for each universal type in the object program

by meta-programming, but this approach is rather unattractive, as it compromises the

clean distinction of binding times (compile vs. run time) in the compiler, and limits static

safety.

Term variables. For term variables (i.e. those introduced by λ, let, etc.), we started

using hoas, which is rather uncommon and is poorly supported in most languages, but

served us well for the cps transform. It is arguably more elegant than de Bruijn indices,

and requires fewer type annotations since the typing environment is treated implicitly.

For closure conversion, on the other hand, hoas cannot be used because of its inability

10.1. REPRESENTATION OF BINDINGS 127

to identify variables (i.e. determine whether or not two given variables are actually the

same) or express that a term is closed (since contexts are implicit). As discussed in

Chapter 5, a hybrid representation could be used to instantiate variables with some

concrete data and thus recover the ability to identify variables. Also, by combining the

closure conversion and the hoisting phases, we could probably manage without explicit

contexts, as in Chlipala’s compiler (2008).

The more common representation of term variables in compilers is as names, usually

represented as small integers or as pointers, so that would be our favorite choice, but

lifting small integers or pointers to the type level to reason about them at the type level

is rarely supported, and GHC is no exception. Even using less efficient representations of

names, which lend themselves to singleton types (e.g. Peano numbers), still suffers from

the extra complexity of having to reason about freshness.

So we ended up using de Bruijn indices. As demonstrated, they do work, but they

require delicate index updates at various places and accompanying lemmas, for example

when moving code into or out of a scope, or when inserting or removing variable bindings,

which phases like closure conversion and hoisting do all the time. The complexity we

have in our current code is bearable, but we had to fine-tune it to get there: e.g., some

apparently minor changes to the type of the constructors for type abstraction (such as

Cfix, page 82) can lead to significant complications in the compiler’s code. Another

problem with de Bruijn indices is that most people find them mind-boggling to debug,

although this is more true in untyped settings, where errors are caught too late.

When put in context, the choice of hoas for cps conversion is hard to justify from an

engineering standpoint, as it forces us to convert to and from first-order representations.

The overall implementation of our compiler would be simplified by using de Bruijn indices

throughout all compilation phases, as it would allow us to eliminate both the conversion to

hoas in the front-end of the compiler, and the conversion to de Bruijn indices in between

cps and closure conversion.

Term-level type variables. If the term encoding is in hoas, then the best option for

term-level type variables (i.e. those bound by Λ, unpack, etc.) is to use hoas as well, so

that is what we have done.

128 CHAPTER 10. CONCLUSION

If the term encoding is first-order, then hoas may still be a very good choice, (if the

host language’s monomorphism restriction does not get in the way), but in our case, for

the same reason we could not use hoas for term variables, we could not use hoas for

term-level type variables during closure conversion: we need to express the fact that the

functions we output are also closed with respect to types.

Compilers tend to avoid de Bruijn indices in favor of names for term-level type vari-

ables, again in order to avoid the issues linked with shifting indices when moving code

into or out of a scope. But we again decided to use de Bruijn indices for the same reason

as for term variables: names are difficult to represent efficiently as types in GHC, and

reasoning about freshness would introduce a lot of complexity and force us to restructure

the code significantly.

In other words, essentially the same arguments that led us to choose de Bruijn indices

for the term variables, led us to use de Bruijn for term-level type variables. And again,

although we believe this choice to be the best there is right now, it is not satisfactory.

10.2 Implementation language

In this section, we comment on our use of gadts and type families, as well as other

features that we used or considered using in past versions of our compiler.

Some of the issues discussed here are relevant to type-based program verification in

general, and are not specific to type-preserving compilation, in the sense that any form

of advanced type-based program verification which makes use of the same features would

likely meet the same limitations. Note in particular that our proposal to extend Haskell

with support for enforcing invariant of type families (discussed below) would benefit a

potentially large class of applications, as many applications that implements complex

type-level notions using type families would need such a mechanism.

Type families Before type families were made available in GHC, we used gadts to

encode witnesses of type preservation (Guillemette and Monnier 2006, 2007). Essentially,

every time a term was produced, it was accompanied by a witness that the term was of

the expected type. The drawbacks of this scheme are run-time overhead, a substantial

10.2. IMPLEMENTATION LANGUAGE 129

amount of code bloat (for manipulating the existential packages), and the fact that our

“proofs” were encoded in an unsound logic. Type families essentially solved these prob-

lems. We further compare the schemes that use only gadts or gadts plus type families

in (Guillemette and Monnier 2008a).

The representation of System F also benefited from type families. In the past we

actually worked on a representation which relied on gadts to encode witnesses of type

applications (essentially encoding the type families from Section 3.4 as gadts). Type

families obviously make this representation much more direct.

Lemmas over type families As seen in Section 4.4, we need to prove properties of

the type families we define for the transformations over System F to type-check. In

our current implementation, such lemmas are implemented as term-level functions that

produce a proof witness that the lemma holds at particular types. This is unsatisfactory

in a number of ways: it incurs run-time overhead, it forces us to carry type-representatives

as part of the syntax trees, and it encodes the lemma in an unsound logic (due to non-

termination at the term level).

To address this limitation, we are investigating an extension to Haskell to directly

support lemmas over type families: to have the type-checker verify that all instances sat-

isfy the lemmas declared by the programmer (Guillemette and Monnier 2008a; Schrijvers

et al. 2008). This way we could get the type equality coercion we need without having to

encode it explicitly in the syntax tree.

Type Classes Having started this work from an existing untyped compiler using al-

gebraic data types for its term representation, it was only natural to use gadts. This

said, there is no indication that the same could not be done with multi-parameter type

classes, but gadts are probably a more natural representation for abstract syntax trees

in a functional language.

Early on, we tried to use type classes to encode type-level functions as well as various

proof objects. This was meant to help us by letting the type checker infer more of the type

annotations and hence leave us with a cleaner code more focused on the actual algorithm

than on the type preservation proof. Unfortunately we bumped into serious difficulties

due to the fact that the then current version of GHC was not yet able to properly handle

130 CHAPTER 10. CONCLUSION

tight interactions been gadts and type classes. More specifically the internal language

of GHC had limitations that prevented some “exotic” uses of functional dependencies.

Those limitations can appear without gadts, but in our use of gadts, we bumped into

them all the time. In the mean time, type families appeared and provided an alternative

way to let the type system and type inference do more of the work.

The shift to FC (Sulzmann et al. 2007) as the internal language in GHC potentially

improves the interaction between gadts and type classes. Yet, as we discussed elsewhere

(Guillemette and Monnier 2008a), using type classes to prove type preservation necessi-

tates extra annotations (in the form of class constraints) on the syntax tree, which must

be propagated from phase to phase and would compromise modularity.

10.3 Related work

In this section we discuss representations of bindings used elsewhere, and compare our

work to other projects in type-preserving and certified compilation.

10.3.1 Representations of bindings

The representation of term-level variables for a compiler like ours is still a problem in

search of a satisfactory solution.

In our experience, hoas was satisfactory for cps conversion but not directly applicable

for closure conversion or hoisting. An alternative developed by Pientka (2008) might

offer a solution, as it extends hoas with explicit contexts which could be used to express

closedness and is able to identify variables and would therefore allow us to implement

closure conversion and other transformations; see also (Pientka and Dunfield 2008). As

it is dependently typed, it should lend itself naturally to verification of type preservation.

Chlipala (2008) proposed a variant of hoas called parametric higher-order abstract

syntax (phoas) meant to combine the advantages of first-order and higher-order repre-

sentations. It is a generalized weak hoas (Despeyroux et al. 1995), which is a form of

higher-order abstract syntax with an explicit introduction form (i.e. data constructor) for

variables. Weak hoas is typically used in systems like Coq where negative occurrences

10.3. RELATED WORK 131

are forbidden, so that hoas cannot be used directly. phoas generalizes hoas in the sense

that the type of a syntax tree is parameterized by the types associated with variables,

in a way similar to the parametric representation of hoas used in the present thesis,

due to Washburn and Weirich (2003). The equivalent of a first-order representation can

be obtained by instantiating the type parameter to an integer type, so as to represent

variables as numbers. If the type parameter is left abstract, the representation behaves

like hoas.

It is not clear that our implementation would benefit from using phoas. It might

be an elegant way to use first-order and higher-order representations in different parts

of the compiler, and would eliminate the need for the conversion to de Bruijn indices.

However, as the encoding is higher-order, contexts are implicit, and in cases like closure

conversion where explicitly reasoning about the context is required, a separate judgment

that relates the expression and the context is needed. This can be done naturally in

a language with full dependent types, but it is impractical in a language like Haskell.

For example, Chlipala’s closure conversion over phoas makes use of a well-formedness

judgment, Wf fvs e, to ensure that an expression (e) only refers to the variables in a given

set (fvs). To apply this technique in Haskell, Wf would need to be a gadt, and e would

be a type parameter, so we would have to reify expressions at the level of types.

Name-based representations

Nominal logic (Pitts 2001) is a theory of bindings based on the notion of permuta-

tion (or swapping) of names which gives a systematic treatment of α-equivalence, fresh

name generation and substitution. This approach has been incorporated in some logic

and functional programming languages, namely αProlog (Cheney and Urban 2004) and

FreshML (Shinwell et al. 2003), and also implemented in Haskell in the form of a li-

brary (Cheney 2005). Urban (2008) has also implemented it in Isabelle and used it

to mechanize standard proofs such as Barendregt’s substitution lemma for the simply

typed λ-calculus, and developed a solution to one of the problems of the POPLmark

challenge (Aydemir et al. 2005).

Locally nameless representations of binders use de Bruijn indices for bound variables

and names for free variables. The intent is to combine the advantages of the two tech-

132 CHAPTER 10. CONCLUSION

niques: de Bruijn indices enable trivial α-equivalence testing, and names eliminate the

need of shifting indices in operations like substitution. McBride and McKinna (2004)

discuss an implementation of these techniques in Haskell, as used in the implementation

of Epigram.

It would be worth investigating to what extent these techniques could help alleviate

the difficulties we face with our current program representations as, to our knowledge,

neither nominal approaches nor locally nameless representations have been extensively

used in the context of type-preserving (or certified) compilation so far, although they are

popular in metatheory, e.g. (Aydemir et al. 2008).

10.3.2 Typed intermediate languages

There has been a lot of work on typed intermediate languages, originally motivated by

the optimizations opportunities offered by the extra type information. The TIL com-

piler (Tarditi et al. 1996) makes use of type information to compile polymorphic code to

efficient executable code, and relies on dynamic type dispatch to eliminates the overhead

of boxing and unboxing all data representations. The FLINT compiler (Shao and Appel

1995; Shao 1997b) applies similar techniques but supports a larger set of language fea-

tures including the ML module system, and performs a more precise analysis to reduce

the overhead of run-time type analysis.

Type-directed compilers such as TIL and FLINT at some point discard the type

information and generate untyped code. Morrisett et al. (1999) showed how the type

information can be preserved all the way down to typed assembly language in a compiler

for System F .

Proof-Carrying Code (PCC) (Necula 1997) is a general framework for safely executing

code of untrusted source, by locally checking a proof of safety which is supplied with the

program. PCC is more general than type assembly language as the safety proofs are

encoded in a first-order logic, although this logic usually contains specific extensions tied

to a particular type system. The PCC framework does not prescribe a particular way

of generating the proofs, and compiling to typed assembly language can be seen as a

systematic way of generating PCC. Foundational PCC (Appel 2003; Hamid et al. 2002)

takes an approach where the proofs are encoded in a more fundamental logic, with the

10.3. RELATED WORK 133

advantage that the verifier for this logic can be smaller and is less likely to contain bugs

(and is easier to prove correct.) In counterpart, the proofs will typically be larger, as they

will need to construct language-specific abstractions on top of the bare logic, and need to

include artifacts such as a proof of type soundness.

Shao et al. (2002) show a low-level typed intermediate language for use in the later

stages of a compiler. It incorporates a powerful proof language at the type-level, based

on the calculus of inductive constructions (Paulin-Mohring 1993), which can be used to

state and prove some properties of program expressions. They show how the proofs can

be preserved as the code undergoes cps and closure conversion.

10.3.3 Certified compilation

The construction of certified compilers, that is, compilers with formal proofs of correct-

ness, has been extensively researched over the past decades (Dave 2003).

Moore’s work (1989) is an early example of a compiler with a complete proof of

correctness. Its source language is a “high-level” assembly language, with features such

as local variables and recursive subroutines. This source language is thus fairly low level

compared to ours. The proof is formalized in the logic of the Boyer-Moore theorem prover.

A modern example is Leroy’s compiler (Leroy 2006; Blazy et al. 2006) for a C-like lan-

guage, written in the Coq proof assistant, which has a completely formalized correctness

proof. It includes a number of optimization phases. Again, the source language is fairly

low-level compared to ours, as it is first-order and does not have nested variable scopes.

The correctness proof is also fairly large, consisting of about 17000 lines of Coq code.

Certified compilers from (variants of) Java to bytecode, as well as bytecode verifiers

have been developed in Isabelle/HOL by a number of authors (Strecker 2002; Klein and

Nipkow 2004; Klein and Strecker 2004). The source language is higher-order in the sense

that it incorporates a notion of dynamic dispatch, but dynamic dispatch is also present

in the target language, so the translation is conceptually simpler than when compiling

down to assembly language, as done here.

More closely related to our work, Chlipala’s certified compiler (2007) translates a

higher-order functional language to typed assembly language. He uses first-order program

representations similar to ours, and his compiler contains code transformations similar to

134 CHAPTER 10. CONCLUSION

ours, including a cps and closure conversion. His compiler is restricted to the simply-typed

case, and does not treat recursion. His proof technique, which is based on denotational

semantics, makes his proof rather different from ours. The main development is roughly

4500 lines of code, but relies on a Coq library for the formalization of programming

languages which is 3520 lines of code, and 2717 lines of support code written in OCaml.

In his later work (Chlipala 2008), he used phoas to develop a certified cps conversion

over System F , which notably uses higher-order encoding of types (using phoas as well.)

Tian (2006) showed a certified cps translation over the simply typed λ-calculus, which

uses hoas and is implemented in Twelf. The translation is performed in one pass and

reduces administrative redexes on-the-fly, like the one we presented in Chapter 4.

Hannan and Pfenning (1992) show a conversion from higher-order abstract syntax to

de Bruijn indices, with a proof of correctness expressed in LF. Their conversion algorithm

is similar to the one we showed in Chapter 5, although it is restricted to the simply typed

λ-calculus.

Our compiler is the only one which handles the translation of System F all the way

down to typed assembly language. By focusing on preservation of static semantics rather

than full compiler correctness, we were able to handle a larger set of language features.

Our work is the only one which verifies a closure conversion for a polymorphic language,

which is the more challenging and crucial part of the compiler.

The proof of static semantic preservation is tightly integrated within the compiler’s

code, in the form of type annotations. In contrast, certified compilers either come with

a correctness proof separate from the compiler’s code, or the compiler’s code is extracted

from the proof, as in the case of the compilers of Leroy and Chlipala. Our compiler is

implemented in 3486 lines of Haskell code, so it is fairly compact compared to the certified

compilers mentioned above.

The implementation language we use is relatively simple, as our implementation es-

sentially relies on gadts and type families. In particular the proof language of Coq

is substantially more conceptually complex than ours, since it supports full dependent

types. By using Haskell rather than a language with full dependent types, we narrow

down the “semantic gap” between the source and implementation language. gadts and

type families can actually be encoded in a variant of System F with type equality coer-

10.4. FUTURE WORK 135

cions (Sulzmann et al. 2007). We are thus getting closer to being able to bootstrap our

compiler, i.e. to have the same source and implementation language, so as to be able to

compile our own compiler.

Typed program transformations

Individual code transformations have been statically verified for type preservation. To

our knowledge, our project is the first to formally verify type preservation for an entire

compiler.

Chiyan Chen et al. (2003) also show a cps transformation where the type preservation

property is encoded in the host language’s type system. It is implemented in DML (Xi and

Scott 1999), using gadts and a type-level functions. Their term representation is first-

order using de Bruijn indices, and their implementation is somewhat more verbose than

ours, as it requires an explicit variable map, while we manage without one since we used

hoas. Linger and Sheard (2004) show a cps transform over a gadt-based representation

with de Bruijn indices.

A detailed proof of type preservation for an earlier formulation of closure conversion

over System F was formulated by Minamide et al. (1996). Pottier and Gauthier (2004)

have shown defunctionalization over a superset of System F to be type-preserving.

Pašalić (2004) constructed a statically verified type-safe interpreter with staging for a

language with binding structures that include pattern matching. The representation he

uses is based on de Bruijn indices and relies on type equality proofs in Haskell.

10.4 Future work

Further work on extending Haskell with support for statically verified invariants of type

families would greatly benefit the implementation of our compiler, as it would allow us to

eliminate most (if not all) of the remaining run-time checks. This would allow us to elimi-

nate redundant parts of the code, as the run-time checks are currently implemented using

term-level functions which duplicate the definition of the type families (cf. Section 4.4).

Perhaps the most attractive line of research at this point is the extension of the

136 CHAPTER 10. CONCLUSION

source language with more features. Features similar to those currently supported, such

as existential types, recursive types, and sum types, should come as a fairly natural

extension of our current implementation. Supporting these particular features would

allow us to encode algebraic datatypes, and support a language such as Core ML. A more

ambitious goal is to accept an input language comparable to GHC’s internal System F -like

language, so as to be able to bootstrap, as we discuss in the next section.

10.4.1 Bootstrap

We have verified important properties of our compiler using the type system of Haskell.

The validity of this formal development depends on the type soundness of Haskell, and the

correct implementation of the type checker in GHC, which verifies our proof. The correct

execution of our compiler also depends on the correctness of the translation implemented

in GHC. To gain better assurance about our results, we would thus need to mechanize the

metatheory of Haskell (i.e. mechanically prove type soundness), and certify the compiler

implementation, including the type checker and code transformations. For this latter

aspect, we would certainly be interested in applying the techniques developed in this

thesis. Ideally, we would like the source language to be the same as the implementation

language, so that we could compile our own compiler.

The features of the implementation language that we use (essentially, gadts and

type families) can be encoded in a variant of System F called System FC (Sulzmann

et al. 2007), which is currently the core internal representation used in GHC. System FC

extends System F with type equality coercions, which are witnesses of type equality.

Coercions are type-level entities, which are abstracted and applied much like the types

of System F . A term-level construct (coerce) is used to coerce a value using available

evidence; this operation is a no-op at run time, coercions being purely static entities.

A System FC program introduces a number of type constructors, and corresponding

data constructors (guarded by type equality constraints, used for supporting gadts). A

program also introduces axioms at the top level, from which coercions can be derived

(these axioms are used for supporting type families.)

Supporting System FC in a compiler like ours implies the development of a type-

preserving translation to some typed assembly language with a built-in notion of type

10.5. SUMMARY 137

equality. This could likely be worked out as an extension of the type-preserving translation

of System F of Morrisett et al. (1999). As coercions in System FC behave like types

in System F , we can expect their interaction with cps and closure conversion to be

fairly limited. As System FC maintains a clear distinction between types and terms, we

are not facing the challenges of compiling a language with dependent types in a type-

preserving way; see e.g. (Barthe and Uustalu 2002). Nevertheless, extending our compiler

for supporting the extra features of System FC – type and data constructors, axioms,

etc. – would require a substantial amount of work, but as these features are mostly

orthogonal to the code transformations (which mostly affect the representation of term-

level functions), this can likely be done while preserving the general structure of the

compiler.

10.5 Summary

In this dissertation, we have shown that it is possible to impose a strong type discipline

on a compiler implementation for a language as expressive as System F .

Our approach is an attractive compromise between full compiler certification, where

the correctness proof can easily overwhelm the compiler’s actual code, and traditional

compilers employing typed intermediate languages, which manipulate types intensively

but do not exploit the type system of the implementation language.

Current limitations in the implementation language prevented us from having a purely

static solution, as our implementation still needs to manipulate types at run-time and

perform dynamic checks. This complication could probably have been avoided had we

chosen a more powerful implementation language, such as Coq or Agda. In any case,

applications like ours motivate the design of language extensions, and we can reasonably

expect there will be such extension in the future that will solve our current issues.

The main obstacle to having a code as compact and readable as that of a conventional

compiler may be the lack of a suitable representation of binders. We had recourse to de

Bruijn indices for most of the transformations, while a conventional compiler would typi-

cally use names. In a language like Haskell, it seems promising to research programming

138 CHAPTER 10. CONCLUSION

techniques which will make manipulation of first-order representations more abstract, so

as to reduce the explicit mangling of indices and contexts to a minimum, while preserving

the control and precision of first-order representations.

We have developed an extensive case study in the application of type systems to prove

important properties of a compiler. As type systems and their implementation in com-

pilers progresses, applications like our type-preserving compiler will be better supported,

and further motivated by the greater expressive power of the languages of the future.

Bibliography

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison Wesley, August 2006.

Andrew W. Appel. Foundational proof-carrying code. Foundations of Intrusion Tolerant Systems,

0:25, 2003.

Lennart Augustsson. Cayenne—a language with dependent types. In ICFP ’98: Proceedings of

the third ACM SIGPLAN international conference on Functional programming, pages 239–250,

New York, NY, USA, 1998.

B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytiniotis, G. Wash-

burn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The POPLmark

challenge. In Proceedings of the Eighteenth International Conference on Theorem Proving in

Higher Order Logics (TPHOLs 2005), 2005.

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich.

Engineering formal metatheory. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 3–15, New York, NY, USA,

2008.

Gilles Barthe and Tarmo Uustalu. Cps translating inductive and coinductive types. SIGPLAN

Not., 37(3):131–142, 2002. ISSN 0362-1340.

Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a c compiler front-end.

In International Symposium on Formal Methods, volume 4085 of Lecture Notes in Computer

Science, pages 460–475, aug 2006.

Chiyan Chen and Hongwei Xi. Implementing typeful program transformations. In PEPM ’03:

Proceedings of the 2003 ACM SIGPLAN workshop on Partial evaluation and semantics-based

program manipulation, pages 20–28, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-

667-6.

140 BIBLIOGRAPHY

James Cheney. Scrap your nameplate: (functional pearl). In ICFP ’05: Proceedings of the tenth

ACM SIGPLAN international conference on Functional programming, pages 180–191, New

York, NY, USA, 2005. ACM Press. ISBN 1-59593-064-7.

James Cheney and Christian Urban. Alpha-prolog: A logic programming language with names,

binding and alpha-equivalence. In Proceefdings of the 20th International Conference on Logic

Programming (ICLP), 2004.

Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly language.

In Symposium on Programming Languages Design and Implementation, pages 54–65. ACM

Press, June 2007.

Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In ICFP ’08:

Proceeding of the 13th ACM SIGPLAN international conference on Functional programming,

pages 143–156, New York, NY, USA, 2008.

Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation.

Mathematical Structures in Computer Science, 2(4):361–391, 1992.

Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT Software Engineering Notes,

28(6):2–2, 2003.

N. G. de Bruijn. Lambda calculus notation with nameless dummies. Indagationes mathematicae,

34:381–392, 1972.

Joelle Despeyroux, Amy Felty, and Andre Hirschowitz. Higher-order abstract syntax in coq. In

Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, editors, TLCA, volume 902 of Lecture

Notes in Computer Science. Springer, 1995. ISBN 3-540-59048-X.

Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over datatypes with embedded

functions (or, programs from outer space). In Conf. Record 23rd ACM SIGPLAN/SIGACT

Symp. on Principles of Programming Languages, POPL’96, St. Petersburg Beach, FL, USA,

21–24 Jan. 1996, pages 284–294. ACM Press, New York, 1996.

David K. Gifford and John M. Lucassen. Integrating functional and imperative programming. In

LFP ’86: Proceedings of the 1986 ACM conference on LISP and functional programming, pages

28–38, New York, NY, USA, 1986. ACM.

Louis-Julien Guillemette and Stefan Monnier. Type-safe code transformations in Haskell. In Pro-

gramming Languages meets Program Verification, volume 174(7) of Electronic Notes in Theo-

retical Computer Science, pages 23–39, August 2006.

BIBLIOGRAPHY 141

Louis-Julien Guillemette and Stefan Monnier. A type-preserving closure conversion in Haskell. In

Haskell Workshop. ACM Press, September 2007.

Louis-Julien Guillemette and Stefan Monnier. One vote for type families in Haskell! In The 9th

symposium on Trends in Functional Programming, 2008a.

Louis-Julien Guillemette and Stefan Monnier. A type-preserving compiler in Haskell. In ICFP ’08:

Proceeding of the 13th ACM SIGPLAN international conference on Functional programming,

pages 75–86, New York, NY, USA, 2008b. ACM.

Nadeem Abdul Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni. A

syntactic approach to foundational proof-carrying code. In Annual Symposium on Logic in

Computer Science, pages 89–100, Copenhagen, Denmark, July 2002.

John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov, editor, Proceed-

ings of the Seventh Annual IEEE Symposium on Logic in Computer Science, pages 407–418.

IEEE Computer Society Press, 1992.

Robert Harper and Mark Lillibridge. Explicit polymorphism and cps conversion. In In Twentieth

ACM Symposium on Principles of Programming Languages, pages 206–219. ACM Press, 1993.

Nevin Heintze and Jon G. Riecke. The slam calculus: programming with secrecy and integrity.

In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 365–377, New York, NY, USA, 1998. ACM.

Ralf Hinze. Fun with phantom types. In The Fun of Programming, Cornerstones in Computing,

pages 245–262. Palgrave Macmillan, 2003.

Stefan Kahrs. Red-black trees with types. Journal of Functional Programming, 11(4):425–432,

2001.

Fairouz Kamareddine. Reviewing the classical and the de bruijn notation for λ-calculus and pure

type systems. Journal of Logic and Computation, 11, 2001.

Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual

machine and compiler. Technical Report 0400001T.1, National ICT Australia, Sydney, March

2004.

Gerwin Klein and Martin Strecker. Verified Bytecode Verification and type-certifying Compilation.

Journal of Logic and Algebraic Programming, 58(1–2):27–60, 2004.

142 BIBLIOGRAPHY

Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical Algorithms (3rd

Edition). Addison-Wesley Professional, November 1997. ISBN 0201896842.

Xavier Leroy. Formal certification of a compiler back-end or: programming a compiler with a

proof assistant. In Symposium on Principles of Programming Languages, pages 42–54, New

York, NY, USA, January 2006. ACM Press.

Xavier Leroy. Unboxed objects and polymorphic typing. In Symposium on Principles of Program-

ming Languages, pages 177–188, January 1992.

Nathan Linger and Tim Sheard. Programming with static invariants in Omega. Unpublished,

2004.

Conor McBride and James McKinna. Functional pearl: I am not a number–I am a free variable.

In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages 1–9, New

York, NY, USA, 2004. ACM.

Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed closure conversion. In POPL’96:

Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 271–283, New York, NY, USA, 1996.

E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual

Symposium on Logic in computer science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE

Press.

J Strother Moore. A mechanically verified language implementation. Journal of Automated Rea-

soning, 5:461–492, 1989.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly

language. ACM Transactions on Programming Languages and Systems, 21(3):527–568, 1999.

George C. Necula. Proof-carrying code. In Conference Record of POPL ’97: The 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 106–119,

Paris, France, January 1997.

George C. Necula and Peter Lee. Proof-carrying code. Technical Report CMU-CS-96-165, Carnegie

Mellon University, 1996.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis,

Department of Computer Science and Engineering, Chalmers University of Technology, SE-412

96 Göteborg, Sweden, September 2007.

BIBLIOGRAPHY 143

Peter Ørbæk and Jens Palsberg. Trust in the λ-calculus. Journal of Functional Programming, 7

(6):557–591, 1997.

Emir Pasalic. The Role of Type Equality in Meta-Programming. PhD thesis, Oregon Health and

Sciences University, The OGI School of Science and Engineering, 2004.

Christine Paulin-Mohring. Inductive definitions in the system coq - rules and properties. In TLCA

’93: Proceedings of the International Conference on Typed Lambda Calculi and Applications,

pages 328–345, London, UK, 1993. Springer-Verlag.

Simon Peyton-Jones et al. The Haskell Prime Report. Working Draft, 2007.

F. Pfenning and C. Elliot. Higher-order abstract syntax. In PLDI ’88: Proceedings of the ACM

SIGPLAN 1988 conference on Programming Language design and Implementation, pages 199–

208, New York, NY, USA, 1988. ACM Press.

Frank Pfenning and Carsten Schurmann. System description: Twelf — a meta-logical frame-

work for deductive systems. In Proceedings of the 16th International Conference on Automated

Deduction (CADE-16, pages 202–206. Springer-Verlag LNAI, 1999.

Brigitte Pientka. A type-theoretic foundation for programming with higher-order abstract syntax

and first-class substitutions. In Symposium on Principles of Programming Languages, pages

371–382, 2008.

Brigitte Pientka and Joshua Dunfield. Programming with proofs and explicit contexts. In Sym-

posium on Principles and Practice of Declarative Programming, 2008.

Andrew M. Pitts. Nominal logic: A first order theory of names and binding. Lecture Notes in

Computer Science, 2215:219+, 2001.

François Pottier and Nadji Gauthier. Polymorphic typed defunctionalization. SIGPLAN Not., 39

(1):89–98, 2004. ISSN 0362-1340.

Tom Schrijvers, Martin Sulzmann, Simon Peyton Jones, and Manuel M. T. Chakravarty. Towards

open type functions for Haskell. Presented at IFL 2007, 2007.

Tom Schrijvers, Louis-Julien Guillemette, and Stefan Monnier. Type invariants for Haskell. In

PLPV ’09: Proceedings of the 3rd workshop on Programming languages meets program verifi-

cation, pages 39–48, New York, NY, USA, 2008. ACM.

Zhong Shao. Flexible representation analysis. In International Conference on Functional Pro-

gramming, pages 85–98. ACM Press, June 1997a.

144 BIBLIOGRAPHY

Zhong Shao. An overview of the FLINT/ML compiler. In International Workshop on Types in

Compilation, June 1997b.

Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. In Symposium on

Programming Languages Design and Implementation, pages 116–129, La Jolla, CA, June 1995.

ACM Press.

Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspyrou. A type system for certified

binaries. In Symposium on Principles of Programming Languages, pages 217–232, January 2002.

Leon Shapiro and Ehud Y. Sterling. The Art of PROLOG: Advanced Programming Techniques.

The MIT Press, 1994.

Tim Sheard. Languages of the future. In OOPSLA ’04: Companion to the 19th annual ACM

SIGPLAN conference on Object-oriented programming systems, languages, and applications,

pages 116–119, New York, NY, USA, 2004. ACM Press.

Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In Haskell ’02:

Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, pages 1–16, New York, NY,

USA, 2002. ACM Press. ISBN 1-58113-605-6.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with binders made simple.

In Eighth ACM SIGPLAN International Conference on Functional Programming (ICFP 2003),

Uppsala, Sweden, pages 263–274. ACM Press, August 2003.

Martin Strecker. Formal verification of a Java compiler in Isabelle. In CADE-18: Proceedings of

the 18th International Conference on Automated Deduction, pages 63–77, London, UK, 2002.

Springer-Verlag. ISBN 3-540-43931-5.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. System

F with type equality coercions. In Types in Language Design and Implementation, January

2007.

David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper, and Peter Lee.

TIL: A type-directed optimizing compiler for ML. In Symposium on Programming Languages

Design and Implementation, pages 181–192, Philadelphia, PA, May 1996. ACM Press.

Ye Henry Tian. Mechanically verifying correctness of cps compilation. In CATS ’06: Proceed-

ings of the 12th Computing: The Australasian Theroy Symposium, pages 41–51, Darlinghurst,

Australia, Australia, 2006. Australian Computer Society, Inc.

BIBLIOGRAPHY 145

Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning, 40(4):

327–356, 2008.

Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding higher-order abstract

syntax with parametric polymorphism. In Proceedings of the Eighth ACM SIGPLAN Interna-

tional Conference on Functional Programming, pages 249–262, Uppsala, Sweden, August 2003.

ACM SIGPLAN.

Hongwei Xi and Dana Scott. Dependent types in practical programming. In In Proceedings of

ACM SIGPLAN Symposium on Principles of Programming Languages, pages 214–227. ACM

Press, 1999.

146 BIBLIOGRAPHY

Appendix A

Source code

This appendix gives the full code listing of the compiler, consisting of 3486 lines of Haskell

code. The source files are listed below, with references to relevant sections in the text.

Source file Page Description Reference

Tp.hs 148 Global type definitions

Src.hs 156 Source language (λ→) Section 3.2

LK.hs 158 Higher-order encoding of the cps

language (λK)

Section 4.1

CPS.hs 161 cps conversion Section 4.2, 4.3, 4.4

LKb.hs 166 First-order encoding of the cps

language (λb
K)

Section 5.1, 5.3

ToB.hs 170 Conversion to de Bruijn indices Section 5.2, 5.3

LC.hs 177 Closure-converted language (λC) Section 6.2

CC.hs 179 Closure conversion Section 6.3, 6.4, 6.5

LH.hs 198 Linearized language (λH) Section 7.1

Hoist.hs 200 Function hoisting phase Section 7.2

TAL.hs 208 Typed assembly language (TAL) Section 8.1

CG.hs 210 Code generation Section 8.2

Main.hs 221 Compiler driver

148 APPENDIX A. SOURCE CODE

Tp.hs

1 {-# OPTIONS -fglasgow-exts -XUndecidableInstances #-} {-
2
3 Global type definitions
4
5 -}
6
7 module Tp (
8 RecT(..), Name, EnvRep, TypeRep(..), rPair,
9 typesEqual, envEqual, nat_eq,

10 Equiv(..), PrimOp(..), Cont, Code,
11 Closed, Exists,
12 S, Z,
13 V, Void, Tup, NatRep(..),
14 Shift, ShiftEnv, shift_tr, shift_env,
15
16 Index(..), MapT(..), lookupT, updateT, mapT, i0, i1, i2, i3, i4,
17
18 All, Var, VarI,
19 Subst, SubstEnv, U, Pred, CMP, Add, Uenv,
20
21 cmpT, cmpV, addT, uT, uEnv, predT, substT, substEnv,
22
23 tr_index_shift, nat_to_int,
24
25 Cat, catT, newIndex, cat_nil, weaken_index, mapAppend,
26 lemma_cat_assoc
27) where
28
29
30 ---
31 -- Syntax and object-level types
32
33 -- fixed point operator
34 data RecT a b t = Roll (a (RecT a b t))
35 | Place (b t)
36
37 -- arithmetic operators
38 data PrimOp where
39 Add :: PrimOp
40 Sub :: PrimOp
41 Mult :: PrimOp
42
43 -- used to distinguish values from expressions (in CPS)
44 data V a
45 data Void
46
47 -- type constructors used to encode object-level types
48 data All s
49 data Cont i t
50 data Exists t
51 data Var i -- a de Bruijn index

149

52 data VarI i -- a reverse de Bruijn index
53 data Tup t
54 data Closed t
55 data Code k t
56
57 -- natural numbers
58 data Z
59 data S i
60
61 -- identifiers
62 type Name = String
63
64 ---
65 -- Singleton types
66
67 data TypeRep t where
68 Rint :: TypeRep Int
69 Rarw :: TypeRep t1 -> TypeRep t2 -> TypeRep (t1 -> t2)
70 Rcont :: NatRep i -> TypeRep t -> TypeRep (Cont i t)
71 Rtup :: EnvRep t -> TypeRep (Tup t)
72 Rall :: TypeRep u -> TypeRep (All u)
73 Rvar :: NatRep i -> TypeRep (Var i)
74 RvarI :: NatRep i -> TypeRep (VarI i)
75 Rexists :: TypeRep u -> TypeRep (Exists u)
76 Rpair :: TypeRep a -> TypeRep b -> TypeRep (a, b)
77 Rclosed :: TypeRep t -> TypeRep (Closed t)
78 Rcode :: NatRep k -> EnvRep t -> TypeRep (Code k t)
79
80 data NatRep n where
81 Nz :: NatRep Z
82 Ns :: NatRep s -> NatRep (S s)
83
84 type EnvRep ts = MapT TypeRep ts
85
86 rPair r1 r2 = Rtup (Ms r1 (Ms r2 M0))
87
88 ---
89 -- Proof objects
90
91 data Equiv s t where
92 Equiv :: (s ~ t) => Equiv s t
93
94
95 ---
96 -- Type families
97
98 type family Subst t a i
99 type instance Subst (All t) a i = All (Subst t a (S i))

100 type instance Subst (Var n) a i = CMP n i (Var n)
101 (U Z i a)
102 (Var (Pred n))
103 type instance Subst (VarI n) a i = VarI n

150 APPENDIX A. SOURCE CODE

104 type instance Subst (s -> t) a i = (Subst s a i) -> (Subst t a i)
105 type instance Subst (Cont k t) a i = Cont k (Subst t a (Add i k))
106
107 type instance Subst (Exists t) a i = Exists (Subst t a (S i))
108 type instance Subst (Tup t) a i = Tup (SubstEnv t a i)
109
110 type instance Subst (s, t) a i = (Subst s a i, Subst t a i)
111
112 type instance Subst Int a i = Int
113 type instance Subst (Closed t) a i = Closed t
114 type instance Subst (Code k t) a i = Code k (SubstEnv t a (Add i k))
115
116 type family U k i a
117 type instance U k i (All a) = All (U (S k) i a)
118 type instance U k i (Cont k’ t) = Cont k’ (U (Add k k’) i t)
119 type instance U k i (Exists t) = Exists (U (S k) i t)
120 type instance U k i (Var n) = Var (CMP n k
121 n
122 (Add i n)
123 (Add i n))
124 type instance U k i (VarI n) = VarI n
125 type instance U k i (s -> t) = (U k i s) -> (U k i t)
126 type instance U k i (s, t) = (U k i s, U k i t)
127 type instance U k i Int = Int
128 type instance U k i (Tup t) = Tup (Uenv k i t)
129 type instance U k i (Closed t) = Closed t
130 type instance U k i (Code k’ t) = Code k’ (Uenv (Add k k’) i t)
131
132 type family Shift t
133 type instance Shift t = U Z (S Z) t
134
135 type ShiftEnv ts = Uenv Z (S Z) ts
136
137 type family Uenv k i ts
138 type instance Uenv k i () = ()
139 type instance Uenv k i (s, ts) = (U k i s, Uenv k i ts)
140
141
142 type family CMP a b lt eq gt
143 -- base cases
144 type instance CMP Z Z lt eq gt = eq
145 type instance CMP Z (S t) lt eq gt = lt
146 type instance CMP (S t) Z lt eq gt = gt
147 -- congruence
148 type instance CMP (S s) (S t) lt eq gt = CMP s t lt eq gt
149
150 type family Add i j
151 type instance Add Z i = i
152 type instance Add (S i) i’ = S (Add i i’)
153
154 type family Pred n
155 type instance Pred (S i) = i

151

156
157 type family SubstEnv t a i
158 type instance SubstEnv (s, ts) a i = (Subst s a i, SubstEnv ts a i)
159 type instance SubstEnv () a i = ()
160
161
162
163 ---
164 -- Utility functions
165
166 -- comparison of type representatives
167 typesEqual :: TypeRep t1 -> TypeRep t2 -> Maybe (Equiv t1 t2)
168 typesEqual Rint Rint = Just Equiv
169 typesEqual (Rarw (t1_r::TypeRep t1) (t2_r::TypeRep t2))
170 (Rarw (t1’_r::TypeRep t1’) (t2’_r::TypeRep t2’)) =
171 case (typesEqual t1_r t1’_r, typesEqual t2_r t2’_r) of
172 (Just Equiv, Just Equiv) -> Just Equiv
173 _ -> Nothing
174 typesEqual (Rpair (t1_r::TypeRep t1) (t2_r::TypeRep t2))
175 (Rpair (t1’_r::TypeRep t1’) (t2’_r::TypeRep t2’)) =
176 case (typesEqual t1_r t1’_r, typesEqual t2_r t2’_r) of
177 (Just Equiv, Just Equiv) -> Just Equiv
178 _ -> Nothing
179 typesEqual (Rcont i a) (Rcont j b) =
180 case (typesEqual a b, nat_eq i j) of
181 (Just Equiv, Just Equiv) -> Just Equiv
182 _ -> Nothing
183 typesEqual (Rcode i a) (Rcode j b) =
184 case (envEqual a b, nat_eq i j) of
185 (Just Equiv, Just Equiv) -> Just Equiv
186 _ -> Nothing
187 typesEqual (Rvar v1) (Rvar v2) =
188 case nat_eq v1 v2 of
189 Just Equiv -> Just Equiv
190 _ -> Nothing
191 typesEqual (RvarI v1) (RvarI v2) =
192 case nat_eq v1 v2 of
193 Just Equiv -> Just Equiv
194 _ -> Nothing
195 typesEqual (Rall s) (Rall t) =
196 case typesEqual s t of
197 Just Equiv -> Just Equiv
198 _ -> Nothing
199 typesEqual (Rexists s) (Rexists t) =
200 case typesEqual s t of
201 Just Equiv -> Just Equiv
202 _ -> Nothing
203 typesEqual (Rtup s) (Rtup t) =
204 case envEqual s t of
205 Just Equiv -> Just Equiv
206 _ -> Nothing
207 typesEqual a b = Nothing

152 APPENDIX A. SOURCE CODE

208
209 envEqual :: EnvRep ts -> EnvRep ts’ -> Maybe (Equiv ts ts’)
210 envEqual M0 M0 = Just Equiv
211 envEqual (Ms s tb) (Ms s’ tb’) =
212 case typesEqual s s’ of
213 Nothing -> Nothing
214 Just Equiv ->
215 case envEqual tb tb’ of
216 Just Equiv -> Just Equiv
217 Nothing -> Nothing
218
219 nat_eq :: NatRep i -> NatRep j -> Maybe (Equiv i j)
220 nat_eq (Ns i) (Ns j) =
221 case nat_eq i j of
222 Just Equiv -> Just Equiv
223 Nothing -> Nothing
224 nat_eq Nz Nz = Just Equiv
225 nat_eq (Ns _) Nz = Nothing
226 nat_eq Nz (Ns _) = Nothing
227
228 shift_tr :: TypeRep s -> TypeRep (Shift s)
229 shift_tr t_r = uT Nz (Ns Nz) t_r
230
231 shift_env :: EnvRep ts -> EnvRep (ShiftEnv ts)
232 shift_env M0 = M0
233 shift_env (Ms t_r ts_r) = Ms (shift_tr t_r) (shift_env ts_r)
234
235 nat_to_int :: NatRep i -> Int
236 nat_to_int Nz = 0
237 nat_to_int (Ns i) = 1 + nat_to_int i
238
239
240 --
241 -- Indices and maps
242
243 -- typed indices
244 data Index ts t where
245 I0 :: Index (t, ts) t
246 Ix :: Index ts t -> Index (t0, ts) t
247
248 i0 = I0
249 i1 = Ix i0
250 i2 = Ix i1
251 i3 = Ix i2
252 i4 = Ix i3
253
254 data MapT ts c where
255 M0 :: MapT c ()
256 Ms :: c s -> MapT c ts -> MapT c (s, ts)
257
258 lookupT :: MapT c ts -> Index ts t -> c t
259 lookupT (Ms e _) I0 = e

153

260 lookupT (Ms _ m) (Ix i) = lookupT m i
261
262 updateT :: MapT c ts -> Index ts s -> c s -> MapT c ts
263 updateT (Ms _ t) I0 c’ = Ms c’ t
264 updateT (Ms c t) (Ix i) c’ = Ms c (updateT t i c’)
265
266 mapT :: (forall t . c t -> d t) -> MapT c ts -> MapT d ts
267 mapT f M0 = M0
268 mapT f (Ms e tb) = Ms (f e) (mapT f tb)
269
270
271 --
272 -- Type families reified as term-level functions
273
274 substT :: TypeRep s -> TypeRep t -> NatRep i -> TypeRep (Subst s t i)
275 substT (Rall t) a i = Rall (substT t a (Ns i))
276 substT (Rexists t) a i = Rexists (substT t a (Ns i))
277 substT (Rvar n) a i = cmpT n i (Rvar n) (uT Nz i a) (Rvar (predT n))
278 substT (RvarI n) a i = RvarI n
279 substT (Rarw s t) a i = Rarw (substT s a i) (substT t a i)
280 substT Rint a i = Rint
281 substT (Rpair s t) a i = Rpair (substT s a i) (substT t a i)
282 substT (Rcont k t) a i = Rcont k (substT t a (addT i k))
283 substT (Rclosed t) a i = Rclosed t
284 substT (Rtup t) a i = Rtup (substEnv t a i)
285 substT (Rcode k t) a i = Rcode k (substEnv t a (addT i k))
286
287 uT :: NatRep k -> NatRep i -> TypeRep a -> TypeRep (U k i a)
288 uT k i (Rall s) = Rall (uT (Ns k) i s)
289 uT k i (Rexists s) = Rexists (uT (Ns k) i s)
290 uT k i (Rvar n) = Rvar (cmpV n k n (addT i n) (addT i n))
291 uT k i (RvarI n) = RvarI n
292 uT k i (Rarw s t) = Rarw (uT k i s) (uT k i t)
293 uT k i (Rpair s t) = Rpair (uT k i s) (uT k i t)
294 uT k i Rint = Rint
295 uT k i (Rcont i_r t_r) = Rcont i_r (uT (addT k i_r) i t_r)
296 uT k i (Rtup t) = Rtup (uEnv k i t)
297 uT k i (Rcode i_r t) = Rcode i_r (uEnv (addT k i_r) i t)
298 uT k i (Rclosed t) = Rclosed t
299
300 uEnv :: NatRep k -> NatRep i -> EnvRep a -> EnvRep (Uenv k i a)
301 uEnv k i M0 = M0
302 uEnv k i (Ms t tup) = Ms (uT k i t) (uEnv k i tup)
303
304 cmpT :: NatRep a -> NatRep b -> TypeRep lt -> TypeRep eq -> TypeRep gt
305 -> TypeRep (CMP a b lt eq gt)
306 cmpT Nz Nz _ eq _ = eq
307 cmpT Nz (Ns _) lt _ _ = lt
308 cmpT (Ns _) Nz _ _ gt = gt
309 cmpT (Ns i) (Ns i’) lt eq gt = cmpT i i’ lt eq gt
310
311 cmpV :: NatRep a -> NatRep b -> NatRep lt -> NatRep eq -> NatRep gt

154 APPENDIX A. SOURCE CODE

312 -> NatRep (CMP a b lt eq gt)
313 cmpV Nz Nz _ eq _ = eq
314 cmpV Nz (Ns _) lt _ _ = lt
315 cmpV (Ns _) Nz _ _ gt = gt
316 cmpV (Ns i) (Ns i’) lt eq gt = cmpV i i’ lt eq gt
317
318 addT :: NatRep a -> NatRep b -> NatRep (Add a b)
319 addT Nz i = i
320 addT (Ns i) i’ = Ns (addT i i’)
321
322 predT :: NatRep i -> NatRep (Pred i)
323 predT (Ns i) = i
324
325 substEnv :: EnvRep s -> TypeRep t -> NatRep i -> EnvRep (SubstEnv s t i)
326 substEnv M0 _ _ = M0
327 substEnv (Ms t tup) a i = Ms (substT t a i) (substEnv tup a i)
328
329 tr_index_shift :: Index ts t -> Index (ShiftEnv ts) (Shift t)
330 tr_index_shift I0 = I0
331 tr_index_shift (Ix i) = Ix (tr_index_shift i)
332
333
334 ---
335 -- Concatenation of type environments
336
337 type family Cat ts0 ts
338 type instance Cat () ts’ = ts’
339 type instance Cat (s, ts) ts’ = (s, Cat ts ts’)
340
341 catT :: EnvRep ts0 -> EnvRep ts -> EnvRep (Cat ts0 ts)
342 catT M0 ts_r = ts_r
343 catT (Ms s_r ts0_r) ts_r = Ms s_r (catT ts0_r ts_r)
344
345 weaken_index :: EnvRep ts -> Index ts0 t -> Index (Cat ts0 ts) t
346 weaken_index _ I0 = I0
347 weaken_index ts_r (Ix i) = Ix (weaken_index ts_r i)
348
349 cat_nil :: EnvRep ts -> Equiv (Cat ts ()) ts
350 cat_nil M0 = Equiv
351 cat_nil (Ms _ ts_r) = case cat_nil ts_r of Equiv -> Equiv
352
353 newIndex :: EnvRep ts -> Index (Cat ts (s, ())) s
354 newIndex M0 = I0
355 newIndex (Ms _ ts_r) = Ix (newIndex ts_r)
356
357 mapAppend :: MapT c ts -> c t -> MapT c (Cat ts (t, ()))
358 mapAppend M0 v = Ms v M0
359 mapAppend (Ms v0 m) v = Ms v0 (mapAppend m v)
360
361 lemma_cat_assoc :: EnvRep hs0 -> EnvRep hs1 -> EnvRep hs2
362 -> Equiv (Cat hs0 (Cat hs1 hs2))
363 (Cat (Cat hs0 hs1) hs2)

155

364 lemma_cat_assoc hs0_r hs1_r hs2_r =
365 case envEqual (catT hs0_r (catT hs1_r hs2_r))
366 (catT (catT hs0_r hs1_r) hs2_r) of
367 Just Equiv -> Equiv
368

156 APPENDIX A. SOURCE CODE

Src.hs

1 {-# OPTIONS -fglasgow-exts #-} {-
2
3 Source language
4
5 -}
6
7 module Src (
8 ExpF(..), Exp, iter0,
9 let_, letrec_, fun, app, tp_abs, tp_app,

10 num, if0, add, sub, mult, times, minus
11) where
12
13 import Tp
14
15 --
16 -- Source language
17
18 {- NOTE: The TypeRep arguments to the constructors other than Tp_abs
19 and Tp_app are not required for the CPS conversion, but only for
20 the subsequent code transformations.
21 -}
22
23 data ExpF a where
24 Tp_abs :: TypeRep s ->
25 (forall t. TypeRep t -> a (Subst s t Z)) -> ExpF (a (All s))
26 Tp_app :: TypeRep s -> TypeRep t -> a (All s) -> ExpF (a (Subst s t Z))
27
28 Let :: Name -> TypeRep t1 ->
29 a t1 -> (a t1 -> a t2) -> ExpF (a t2)
30
31 Letrec :: Name -> Name -> TypeRep s -> TypeRep t ->
32 (a (s -> t) -> a s -> a t) ->
33 (a (s -> t) -> a u) -> ExpF (a u)
34
35 App :: TypeRep t1 -> TypeRep t2 ->
36 a (t1 -> t2) -> a t1 -> ExpF (a t2)
37
38 Pair :: TypeRep t1 -> TypeRep t2 -> a t1 -> a t2 -> ExpF (a (t1, t2))
39 Fst :: TypeRep t1 -> a (t1, t2) -> ExpF (a t1)
40 Snd :: TypeRep t2 -> a (t1, t2) -> ExpF (a t2)
41
42 Num :: Int -> ExpF (a Int)
43 Prim :: PrimOp -> a Int -> a Int -> ExpF (a Int)
44 If0 :: a Int -> a t -> a t -> ExpF (a t)
45
46 type Exp a t = RecT ExpF a t
47
48
49 --
50 -- HOAS boilerplate code
51

157

52 xmapExpF :: (forall t. a t -> b t)
53 -> (forall t. b t -> a t)
54 -> (forall t. (ExpF (a t) -> ExpF (b t)))
55 xmapExpF (f::forall t. a t -> b t) g x =
56 case x of
57 Tp_abs s_r x -> Tp_abs s_r (\t_r -> f (x t_r))
58 Tp_app s_r t_r x -> Tp_app s_r t_r (f x)
59
60 Let n s_r v x -> Let n s_r (f v) (f . x . g)
61 Letrec s_r t_r f_n x_n x e -> Letrec s_r t_r f_n x_n
62 (\ a b -> f (x (g a) (g b)))
63 (f . e . g)
64 App s_r t_r x y -> App s_r t_r (f x) (f y)
65
66 Pair s_r t_r a b -> Pair s_r t_r (f a) (f b)
67 Fst s_r a -> Fst s_r (f a)
68 Snd s_r a -> Snd s_r (f a)
69
70 Num i -> Num i
71 Prim op x y -> Prim op (f x) (f y)
72 If0 x y z -> If0 (f x) (f y) (f z)
73
74
75 cata :: (forall t. (ExpF (a t) -> a t))
76 -> (forall t. Exp a t -> a t)
77 cata f (Roll x) =
78 f ((xmapExpF (cata f) Place) x)
79 cata f (Place x) = x
80
81 iter0 :: (forall t. ExpF (b t) -> b t)
82 -> (forall t. ((forall a. Exp a t) -> b t))
83 iter0 proto x = cata proto x
84
85 -- constructors
86 let_ n s_r v x = Roll (Let n s_r v x)
87 letrec_ f_n x_n s_r t_r f e = Roll (Letrec f_n x_n s_r t_r f e)
88 fun f_n x_n s_r t_r f = Roll (Letrec f_n x_n s_r t_r (_ x -> f x) (\f -> f))
89 app s_r t_r x y = Roll (App s_r t_r x y)
90 num a = Roll (Num a)
91 prim op a b = Roll (Prim op a b)
92 if0 x y z = Roll (If0 x y z)
93 tp_abs :: TypeRep s
94 -> (forall t . TypeRep t -> Exp a (Subst s t Z))
95 -> Exp a (All s)
96 tp_abs s_r e = Roll (Tp_abs s_r e)
97 tp_app :: TypeRep s -> TypeRep t -> Exp a (All s) -> Exp a (Subst s t Z)
98 tp_app s_r t_r e = Roll (Tp_app s_r t_r e)
99 add a b = prim Add a b

100 sub a b = prim Sub a b
101 mult a b = prim Mult a b
102 minus = prim Sub
103 times = prim Mult

158 APPENDIX A. SOURCE CODE

LK.hs

1 {-# OPTIONS -XGADTs -XRankNTypes -XScopedTypeVariables -XPatternSignatures #-}
2 {-
3
4 CPS language
5
6 -}
7
8 module LK (
9 ExpKF(..), ExpK, ValK,

10 numK, letK, letrecK, appK, if0K, haltK, cataK, iter0K,
11 let_pairK, let_fstK, let_sndK, let_primK,
12 let_poly_funK, poly_appK
13) where
14
15 import Tp
16
17
18 --
19 -- CPS language
20
21 data ExpKF a where
22 -- values
23 KVnum :: Int -> ExpKF (a (V Int))
24
25 -- expressions
26 Kletrec :: Name -> Name -> TypeRep s
27 -> (a (V (Cont Z s)) -> a (V s) -> a Void)
28 -> (a (V (Cont Z s)) -> a Void)
29 -> ExpKF (a Void)
30 Klet_poly_fun :: TypeRep s
31 -> (forall t. TypeRep t -> a (V (Subst s t Z)) -> a Void)
32 -> (a (V (Cont (S Z) s)) -> a Void)
33 -> ExpKF (a Void)
34
35 Klet :: Name -> TypeRep t
36 -> a (V t) -> (a (V t) -> a Void) -> ExpKF (a Void)
37 Klet_pair :: Name -> TypeRep t1 -> TypeRep t2 ->
38 a (V t1) -> a (V t2) -> (a (V (t1, t2)) -> a Void)
39 -> ExpKF (a Void)
40 Klet_fst :: Name -> TypeRep t1 ->
41 a (V (t1, t2)) -> (a (V t1) -> a Void)
42 -> ExpKF (a Void)
43 Klet_snd :: Name -> TypeRep t2 ->
44 a (V (t1, t2)) -> (a (V t2) -> a Void)
45 -> ExpKF (a Void)
46 Klet_prim :: Name -> PrimOp -> a (V Int) -> a (V Int) -> (a (V Int) -> a Void)
47 -> ExpKF (a Void)
48
49 Kapp :: TypeRep s -> a (V (Cont Z s)) -> a (V s) -> ExpKF (a Void)
50 Kpoly_app :: TypeRep s -> TypeRep t
51 -> a (V (Cont (S Z) s))

159

52 -> a (V (Subst s t Z))
53 -> ExpKF (a Void)
54 Kif0 :: a (V Int) -> a Void -> a Void -> ExpKF (a Void)
55
56 Khalt :: a (V t) -> ExpKF (a Void)
57
58
59 type ValK a t = RecT ExpKF a (V t)
60 type ExpK a = RecT ExpKF a Void
61
62
63 --
64 -- HOAS boilerplate
65
66 xmapExpKF ::
67 (forall t. a t -> b t)
68 -> (forall t. b t -> a t)
69 -> (forall t. (ExpKF (a t) -> ExpKF (b t)))
70 xmapExpKF (f::forall t. a t -> b t) g x =
71 case x of
72 Klet n s_r v x -> Klet n s_r (f v) (f . x . g)
73 Kletrec f_n x_n s_r x e -> Kletrec f_n x_n s_r
74 (\ a b -> f (x (g a) (g b)))
75 (f . e . g)
76 Kpoly_app s_r t_r v w -> Kpoly_app s_r t_r (f v) (f w)
77 Klet_poly_fun s_r v e -> Klet_poly_fun s_r (\a b -> f (v a (g b)))
78 (f . e . g)
79 Kapp s_r v w -> Kapp s_r (f v) (f w)
80
81 Klet_pair n s_r t_r v1 v2 x -> Klet_pair n s_r t_r (f v1) (f v2) (f . x . g)
82 Klet_fst n s_r v x -> Klet_fst n s_r (f v) (f . x . g)
83 Klet_snd n s_r v x -> Klet_snd n s_r (f v) (f . x . g)
84
85 KVnum i -> KVnum i
86 Klet_prim n op v w x -> Klet_prim n op (f v) (f w) (f . x . g)
87 Kif0 v x y -> Kif0 (f v) (f x) (f y)
88
89 Khalt v -> Khalt (f v)
90
91
92 cataK :: (forall t. (ExpKF (a t) -> a t))
93 -> (forall t. RecT ExpKF a t -> a t)
94 cataK f (Roll x) =
95 f ((xmapExpKF (cataK f) Place) x)
96 cataK f (Place x) = x
97
98 iter0K :: (forall t. ExpKF (b t) -> b t)
99 -> (forall t. ((forall a. RecT ExpKF a t) -> b t))

100 iter0K proto x = cataK proto x
101
102
103 numK a = Roll (KVnum a)

160 APPENDIX A. SOURCE CODE

104 appK s_r v1 v2 = Roll (Kapp s_r v1 v2)
105 letK n s_r v e = Roll (Klet n s_r v e)
106 let_fstK n s_r v e = Roll (Klet_fst n s_r v e)
107 let_sndK n s_r v e = Roll (Klet_snd n s_r v e)
108 let_pairK n s_r t_r v1 v2 e = Roll (Klet_pair n s_r t_r v1 v2 e)
109 letrecK f_n x_n s_r f body = Roll (Kletrec f_n x_n s_r f body)
110
111 let_primK n op v1 v2 e = Roll (Klet_prim n op v1 v2 e)
112 if0K v e1 e2 = Roll (Kif0 v e1 e2)
113 haltK v = Roll (Khalt v)
114
115 poly_appK s_r t_r f x = Roll (Kpoly_app s_r t_r f x)
116
117 let_poly_funK ::
118 TypeRep s
119 -> (forall t. TypeRep t -> ValK a (Subst s t Z) -> ExpK a)
120 -> (ValK a (Cont (S Z) s) -> ExpK a)
121 -> ExpK a
122 let_poly_funK s_r e x = Roll (Klet_poly_fun s_r e x)
123

161

CPS.hs

1 {-# OPTIONS -fglasgow-exts -XUndecidableInstances #-} {-
2
3 CPS conversion
4
5 -}
6
7 module CPS (
8 cps
9) where

10
11 import Tp
12 import Src
13 import LK
14
15
16 --
17 -- CPS conversion [TYPES]
18
19 -- Ktype is the type translation for CPS conversion
20 type family Ktype t
21 type instance Ktype (s -> t) = Cont Z (Ktype s, Cont Z (Ktype t))
22 type instance Ktype (All u) = Cont (S Z) (Cont Z (Ktype u))
23 type instance Ktype (Var i) = Var i
24 type instance Ktype (VarI i) = VarI i
25 type instance Ktype Int = Int
26 type instance Ktype (a, b) = (Ktype a, Ktype b)
27
28 -- UnKtype is the inverse of Ktype
29 type family UnKtype t
30 type instance UnKtype (Cont Z (s, Cont Z t)) = (UnKtype s) -> (UnKtype t)
31 type instance UnKtype (Cont (S Z) (Cont Z u)) = All (UnKtype u)
32 type instance UnKtype (Var i) = Var i
33 type instance UnKtype (VarI i) = VarI i
34 type instance UnKtype Int = Int
35 type instance UnKtype (s, t) = (UnKtype s, UnKtype t)
36
37 -- Kenv applies Ktype to every type in a type environment
38 type family Kenv ts
39 type instance Kenv () = ()
40 type instance Kenv (s, ts) = (Ktype s, Kenv ts)
41
42
43 ---------- type families reified as term-level functions
44
45 kType :: TypeRep t -> TypeRep (Ktype t)
46 kType (Rarw s t) = Rcont Nz (Rpair (kType s) (Rcont Nz (kType t)))
47 kType (Rall s_r) = Rcont (Ns Nz) (Rcont Nz (kType s_r))
48 kType (Rvar i_r) = Rvar i_r
49 kType (RvarI i_r) = RvarI i_r
50 kType Rint = Rint
51 kType (Rpair a b) = Rpair (kType a) (kType b)

162 APPENDIX A. SOURCE CODE

52
53 unKtype :: TypeRep t -> TypeRep (UnKtype t)
54 unKtype (Rcont Nz (Rpair s_r (Rcont Nz (t_r)))) = Rarw (unKtype s_r)
55 (unKtype t_r)
56 unKtype (Rcont (Ns Nz) (Rcont Nz s_r)) = Rall (unKtype s_r)
57 unKtype (Rvar i_r) = Rvar i_r
58 unKtype (RvarI i_r) = RvarI i_r
59 unKtype Rint = Rint
60 unKtype (Rpair a b) = Rpair (unKtype a) (unKtype b)
61
62 kEnv :: EnvRep ts -> EnvRep (Kenv ts)
63 kEnv M0 = M0
64 kEnv (Ms s_r ts_r) = Ms (kType s_r) (kEnv ts_r)
65
66
67 --
68 -- CPS conversion [TERMS]
69
70 data CPS a t where
71 -- CPS form of terms
72 CPS :: ((ValK a (Ktype t) -> ExpK a) -> ExpK a) -- cps-meta
73 -> ((ValK a (Cont Z (Ktype t))) -> ExpK a) -- cps-obj
74 -> CPS a t
75
76 meta :: CPS a t -> (ValK a (Ktype t) -> ExpK a) -> ExpK a
77 meta e = case e of CPS e_meta _ -> e_meta
78
79 obj :: CPS a t -> (ValK a (Cont Z (Ktype t))) -> ExpK a
80 obj e = case e of CPS _ e_obj -> e_obj
81
82 value :: TypeRep (Ktype t) -> ValK a (Ktype t) -> CPS a t
83 value t_r v = CPS (\k -> k v) -- cps-meta
84 (\c -> appK t_r c v) -- cps-obj
85
86 cpsAux :: forall a t. ExpF (CPS a t) -> CPS a t
87
88 -- values
89 cpsAux (Num n) = value Rint (numK n)
90
91 -- expressions
92 cpsAux (Letrec f_n x_n s_r t_r f body) =
93 CPS (\k -> letrecK f_n "arg"
94 (Rpair (kType s_r) (Rcont Nz (kType t_r)))
95 (\f’ -> \xk ->
96 let_fstK x_n (kType s_r) xk (\x ->
97 let_sndK "k" (Rcont Nz (kType t_r)) xk (\c ->
98 meta (f (value (kType (Rarw s_r t_r)) f’)
99 (value (kType s_r) x))

100 (\n -> appK (kType t_r) c n))))
101 (\a -> meta (body (value (kType (Rarw s_r t_r)) a)) k))
102 (\c -> letrecK f_n "arg"
103 (Rpair (kType s_r) (Rcont Nz (kType t_r)))

163

104 (\f’ -> \xk ->
105 let_fstK x_n (kType s_r) xk (\x ->
106 let_sndK "k" (Rcont Nz (kType t_r)) xk (\c ->
107 meta (f (value (kType (Rarw s_r t_r)) f’)
108 (value (kType s_r) x))
109 (\n -> appK (kType t_r) c n))))
110 (\a -> obj (body (value (kType (Rarw s_r t_r)) a)) c))
111
112 cpsAux (Let n (s_r::TypeRep s) v x) =
113 CPS (\k ->
114 (meta v (\v1 ->
115 letK n (kType s_r) v1
116 (\r ->
117 meta (x (value (kType s_r) r)) k))))
118 (\c ->
119 (meta v (\v1 ->
120 letK n (kType s_r) v1
121 (\r ->
122 obj (x (value (kType s_r) r)) c))))
123
124 cpsAux (App s_r t_r e1 e2) =
125 let appexp c = meta e1 (\y1 ->
126 meta e2 (\y2 ->
127 let_pairK "p" (kType s_r) (Rcont Nz (kType t_r))
128 y2 c $ (\p ->
129 appK (Rpair (kType s_r) (Rcont Nz (kType t_r)))
130 y1 p)))
131 in CPS (\k -> letrecK "k" "a" (kType t_r)
132 (_ a -> k a)
133 (\c -> appexp c))
134 (\c -> appexp c)
135
136 cpsAux (Prim op a b) =
137 CPS (\k -> (meta a (\v1 -> meta b (\v2 ->
138 let_primK "r" op v1 v2 k))))
139 (\c -> (meta a (\v1 -> meta b (\v2 ->
140 let_primK "r" op v1 v2 (\k -> appK Rint c k)))))
141
142 cpsAux (Pair s_r t_r a b) =
143 CPS (\k -> (meta a (\v1 -> meta b (\v2 ->
144 let_pairK "p" (kType s_r) (kType t_r) v1 v2 k))))
145 (\c -> (meta a (\v1 -> meta b (\v2 ->
146 let_pairK "p" (kType s_r) (kType t_r) v1 v2
147 (\k -> appK (kType (Rpair s_r t_r)) c k)))))
148
149 cpsAux (Fst s_r a) =
150 CPS (\k -> (meta a (\v1 ->
151 let_fstK "r" (kType s_r) v1 k)))
152 (\c -> (meta a (\v1 ->
153 let_fstK "r" (kType s_r) v1 (\k -> appK (kType s_r) c k))))
154
155 cpsAux (Snd s_r a) =

164 APPENDIX A. SOURCE CODE

156 CPS (\k -> (meta a (\v1 ->
157 let_sndK "r" (kType s_r) v1 k)))
158 (\c -> (meta a (\v1 ->
159 let_sndK "r" (kType s_r) v1 (\k -> appK (kType s_r) c k))))
160
161 cpsAux (If0 a e1 e2) =
162 CPS (\k -> meta a (\v1 -> if0K v1 (meta e1 k) (meta e2 k)))
163 (\c -> meta a (\v1 -> if0K v1 (obj e1 c) (obj e2 c)))
164
165 cpsAux (Tp_abs (u_r::TypeRep u) e) =
166 CPS (\k ->
167 let_poly_funK
168 (Rcont Nz (kType u_r))
169 (\(t_r::TypeRep t’) ->
170 \c -> obj (e (unKtype t_r))
171 (case lemma_ktype_inverse t_r of
172 Equiv ->
173 case lemma_ktype_subst u_r (unKtype t_r) of
174 Equiv -> c))
175 k)
176 (\c ->
177 let_poly_funK
178 (Rcont Nz (kType u_r))
179 (\(t_r::TypeRep t’) ->
180 \c -> obj (e (unKtype t_r))
181 (case lemma_ktype_inverse t_r of
182 Equiv ->
183 case lemma_ktype_subst u_r (unKtype t_r) of
184 Equiv -> c))
185 (\v -> appK (kType (Rall u_r)) c v))
186
187
188 cpsAux (Tp_app (s_r::TypeRep s) (t_r :: TypeRep t’) e1) =
189 case lemma_ktype_subst s_r t_r of
190 Equiv ->
191 CPS (\k ->
192 meta e1 (\x ->
193 letrecK "" "" (substT (kType s_r) (kType t_r) Nz)
194 (_ x -> k x) (\k’ ->
195 poly_appK (Rcont Nz (kType s_r)) (kType t_r)
196 x k’)))
197 (\c ->
198 meta e1 (\(x::ValK a (Ktype (All s))) ->
199 poly_appK (Rcont Nz (kType s_r)) (kType t_r)
200 x c))
201
202
203 cps :: (forall a. Exp a t) -> (forall a. ExpK a)
204 cps x =
205 let cpsE :: forall t b . (forall a . Exp a t) -> CPS b t
206 cpsE = iter0 cpsAux
207 in meta ((iter0 cpsAux) x) haltK

165

208
209
210 --
211 -- Lemmas
212
213 lemma_ktype_subst :: TypeRep s -> TypeRep t
214 -> Equiv (Ktype (Subst s t Z))
215 (Subst (Ktype s) (Ktype t) Z)
216 lemma_ktype_subst s_r t_r =
217 case typesEqual (kType (substT s_r t_r Nz))
218 (substT (kType s_r) (kType t_r) Nz)
219 of Just Equiv -> Equiv
220
221 lemma_ktype_inverse :: TypeRep cps_t -> Equiv (Ktype (UnKtype cps_t)) cps_t
222 lemma_ktype_inverse cps_t_r =
223 case typesEqual (kType (unKtype cps_t_r)) cps_t_r of
224 Just Equiv -> Equiv
225

166 APPENDIX A. SOURCE CODE

LKb.hs

1 {-# OPTIONS -XGADTs -XTypeFamilies -XUndecidableInstances #-} {-
2
3 First-order representation of the CPS language
4
5 -}
6
7 module LKb (
8 ValKb(..), ExpKb(..), SubstR, ShiftR, ShiftEnvR, Ur, UenvI,
9 shiftR, shiftEnvR, substR, uEnvI

10) where
11
12 import Tp
13
14 {- NOTE:
15
16 The implementation uses a single representation (the types ValKb/ExpKb) to
17 represent both
18 (1) the first-order encoding with *reverse* de Bruijn types
19 (the types ValKr/ExpKr from Section 5.1)
20 (2) the first-order encoding with *normal* de Bruijn types
21 (the types ValKb/ExpKb from Section 5.3)
22
23 - for *reverse* de Bruijn indices, we use the constructors:
24 KBlet_poly_funR
25 KBpoly_appR
26 - for *normal* de Bruijn indices, we use the constructors:
27 KBlet_poly_fun
28 KBpoly_app
29 - all other constructors are used for both representations
30
31 -}
32
33 data ValKb tsfs t where
34 Kvar :: Index ts t -> ValKb (i,ts) t
35 Knum :: Int -> ValKb g Int
36
37 data ExpKb ts where
38 KBletrec :: Name -> Name -> TypeRep t
39 -> ExpKb (i, (t, (Cont Z t, ts)))
40 -> ExpKb (i, (Cont Z t, ts))
41 -> ExpKb (i, ts)
42 KBlet_poly_fun :: Name -> Name -> TypeRep t
43 -> ExpKb (S i, (t, ShiftEnv ts))
44 -> ExpKb (i, (Cont (S Z) t, ts))
45 -> ExpKb (i, ts)
46
47 KBlet :: Name -> TypeRep s -> ValKb (i, ts) s
48 -> ExpKb (i, (s, ts)) -> ExpKb (i, ts)
49 KBlet_pair :: Name -> TypeRep s -> TypeRep t
50 -> ValKb (i, ts) s -> ValKb (i, ts) t
51 -> ExpKb (i, ((s, t), ts))

167

52 -> ExpKb (i, ts)
53 KBlet_fst :: Name -> TypeRep t1 -> ValKb (i, ts) (t1, t2)
54 -> ExpKb (i, (t1, ts)) -> ExpKb (i, ts)
55 KBlet_snd :: Name -> TypeRep t2 -> ValKb (i, ts) (t1, t2)
56 -> ExpKb (i, (t2, ts)) -> ExpKb (i, ts)
57 KBlet_prim :: Name -> PrimOp
58 -> ValKb (i, ts) Int -> ValKb (i, ts) Int
59 -> ExpKb (i, (Int, ts)) -> ExpKb (i, ts)
60
61 KBapp :: TypeRep s -> ValKb ts (Cont Z s) -> ValKb ts s -> ExpKb ts
62 KBpoly_app :: TypeRep s -> TypeRep t
63 -> ValKb g (Cont (S Z) s)
64 -> ValKb g (Subst s t Z)
65 -> ExpKb g
66
67 KBif0 :: ValKb (i, ts) Int -> ExpKb (i, ts) -> ExpKb (i, ts)
68 -> ExpKb (i, ts)
69 KBhalt :: ValKb g t -> ExpKb g
70
71 -- used only temporarily during conversion to de Bruijn indices
72 KBlet_poly_funR :: Name -> Name -> TypeRep t
73 -> ExpKb (S i, (t, ShiftEnvR i ts))
74 -> ExpKb (i, (Cont (S Z) t, ts))
75 -> ExpKb (i, ts)
76
77 KBpoly_appR :: TypeRep s -> TypeRep t
78 -> ValKb (i, ts) (Cont (S Z) s)
79 -> ValKb (i, ts) (SubstR s t i)
80 -> ExpKb (i, ts)
81
82 --
83 -- Type families for substitution over reverse de Bruijn indices
84
85 type family SubstR s t i
86 type instance SubstR (Cont Z s) t i = Cont Z (SubstR s t i)
87 type instance SubstR (Cont (S Z) s) t i = Cont (S Z) (SubstR s t i)
88 type instance SubstR (VarI n) t i = CMP n i (VarI n)
89 t
90 (VarI (Pred n))
91 type instance SubstR (s1, s2) t i = (SubstR s1 t i, SubstR s2 t i)
92 type instance SubstR Int t i = Int
93
94
95 type family Ur i k t
96 type instance Ur i k (All t) = All (Ur i k t)
97 type instance Ur i k (Cont j t) = Cont j (Ur i k t)
98 type instance Ur i k (VarI n) = VarI (CMP n k n
99 (Add i n)

100 (Add i n))
101 type instance Ur i k (s1, s2) = (Ur i k s1, Ur i k s2)
102 type instance Ur i k Int = Int
103

168 APPENDIX A. SOURCE CODE

104 type family UenvI i k ts
105 type instance UenvI i k () = ()
106 type instance UenvI i k (s, ts) = (Ur i k s, UenvI i k ts)
107
108
109 -- add one to all indices >= i in t
110 type ShiftR i t = Ur (S Z) i t
111
112 type family ShiftEnvR i t
113 type instance ShiftEnvR i () = ()
114 type instance ShiftEnvR i (s, ts) = (ShiftR i s, ShiftEnvR i ts)
115
116 ------------ type families reified as term-level functions
117
118 uR :: NatRep i -> NatRep k -> TypeRep t -> TypeRep (Ur i k t)
119 uR i_r k_r (Rcont j_r t_r) = Rcont j_r (uR i_r k_r t_r)
120 uR i_r k_r (RvarI n_r) = RvarI (cmpV n_r k_r n_r
121 (addT i_r n_r)
122 (addT i_r n_r))
123 uR i_r k_r (Rpair s_r t_r) = Rpair (uR i_r k_r s_r)
124 (uR i_r k_r t_r)
125 uR i_r k_r Rint = Rint
126
127
128 shiftR :: NatRep i -> TypeRep t -> TypeRep (ShiftR i t)
129 shiftR i_r t_r = uR (Ns Nz) i_r t_r
130
131 shiftEnvR :: NatRep i -> EnvRep t -> EnvRep (ShiftEnvR i t)
132 shiftEnvR i_r M0 = M0
133 shiftEnvR i_r (Ms t_r ts_r) = Ms (shiftR i_r t_r) (shiftEnvR i_r ts_r)
134
135
136 substR :: TypeRep s -> TypeRep t -> NatRep i -> TypeRep (SubstR s t i)
137 substR (Rcont Nz s_r) t_r i_r = Rcont Nz (substR s_r t_r i_r)
138 substR (Rcont (Ns Nz) s_r) t_r i_r = Rcont (Ns Nz) (substR s_r t_r i_r)
139 substR (RvarI n_r) t_r i_r = cmpT n_r i_r
140 (RvarI n_r) t_r (RvarI (predT n_r))
141 substR (Rpair s1_r s2_r) t_r i_r = Rpair (substR s1_r t_r i_r)
142 (substR s2_r t_r i_r)
143 substR Rint t_r i_r = Rint
144
145
146 uiT :: NatRep i -> NatRep k -> TypeRep t -> TypeRep (Ur i k t)
147 uiT i_r k_r (Rcont j_r t_r) = Rcont j_r (uiT i_r k_r t_r)
148 uiT i_r k_r (Rall t_r) = Rall (uiT i_r k_r t_r)
149 uiT i_r k_r (RvarI n_r) = RvarI (cmpV n_r k_r n_r
150 (addT i_r n_r)
151 (addT i_r n_r))
152 uiT i_r k_r (Rpair s_r t_r) = Rpair (uiT i_r k_r s_r)
153 (uiT i_r k_r t_r)
154 uiT i_r k_r Rint = Rint
155

169

156
157 uEnvI :: NatRep i -> NatRep k -> EnvRep t -> EnvRep (UenvI i k t)
158 uEnvI _ _ M0 = M0
159 uEnvI i_r k_r (Ms t_r ts_r) = Ms (uiT i_r k_r t_r) (uEnvI i_r k_r ts_r)
160

170 APPENDIX A. SOURCE CODE

ToB.hs

1 {-# OPTIONS -fglasgow-exts -XUndecidableInstances #-}{-
2
3 Conversion to de Bruijn indices
4
5 -}
6
7 module ToB (
8 toB
9) where

10
11 import Tp
12 import LK
13 import LKb
14
15
16 --
17 -- Conversion of types to *reverse* de Bruijn
18
19 type family Rtype i t
20 type instance Rtype i (Cont Z t) = Cont Z (Rtype i t)
21 type instance Rtype i (Cont (S Z) t) = Cont (S Z) (Rtype (S i) t)
22 type instance Rtype i (Var n) = VarI (Subtract i (S n))
23 type instance Rtype i (VarI n) = VarI n
24 type instance Rtype i (s, t) = (Rtype i s, Rtype i t)
25 type instance Rtype i Int = Int
26
27 type family Renv i ts
28 type instance Renv i () = ()
29 type instance Renv i (s, ts) = (Rtype i s, Renv i ts)
30
31 type family Subtract a b
32 type instance Subtract n Z = n
33 type instance Subtract (S a) (S n) = Subtract a n
34
35
36 --
37 -- Conversion of types to *normal* de Bruijn
38
39 type family Btype i t
40 type instance Btype i (Cont Z t)= Cont Z (Btype i t)
41 type instance Btype i (Cont (S Z) t) = Cont (S Z) (Btype (S i) t)
42 type instance Btype i Int = Int
43 type instance Btype i (Var n) = Var n
44 type instance Btype i (s, t) = (Btype i s, Btype i t)
45 type instance Btype i (VarI n) = Var (Subtract i (S n))
46
47 type family Benv i ts
48 type instance Benv i () = ()
49 type instance Benv i (s, ts) = (Btype i s, Benv i ts)
50
51

171

52 ---------- type families reified as term-level functions
53
54 bType :: NatRep i -> TypeRep t -> TypeRep (Btype i t)
55 bType i_r (Rcont Nz t_r) = Rcont Nz (bType i_r t_r)
56 bType i_r (Rcont (Ns Nz) t_r) = Rcont (Ns Nz) (bType (Ns i_r) t_r)
57 bType i_r Rint = Rint
58 bType i_r (Rvar n_r) = Rvar n_r
59 bType i_r (Rpair a b) = Rpair (bType i_r a) (bType i_r b)
60 bType i_r (RvarI n) = Rvar (subtractN i_r (Ns n))
61
62 bEnv :: NatRep i -> EnvRep ts -> EnvRep (Benv i ts)
63 bEnv i_r M0 = M0
64 bEnv i_r (Ms t_r ts_r) = Ms (bType i_r t_r) (bEnv i_r ts_r)
65
66 rType :: NatRep i -> TypeRep t -> TypeRep (Rtype i t)
67 rType i_r (Rcont Nz t_r) = Rcont Nz (rType i_r t_r)
68 rType i_r (Rcont (Ns Nz) t_r) = Rcont (Ns Nz) (rType (Ns i_r) t_r)
69 rType i_r (Rpair a b) = Rpair (rType i_r a) (rType i_r b)
70 rType i_r (Rvar n_r) = RvarI (subtractN i_r (Ns n_r))
71 rType i_r (RvarI n) = RvarI n
72 rType _ Rint = Rint
73
74 rEnv :: NatRep i -> EnvRep ts -> EnvRep (Renv i ts)
75 rEnv i_r M0 = M0
76 rEnv i_r (Ms t_r ts_r) = Ms (rType i_r t_r) (rEnv i_r ts_r)
77
78 subtractN :: NatRep a -> NatRep b -> NatRep (Subtract a b)
79 subtractN i_r Nz = i_r
80 subtractN (Ns i_r) (Ns j_r) = subtractN i_r j_r
81
82
83 --
84 -- Main conversion function
85
86 toB :: (forall a. ExpK a) -> ExpKb (Z, ())
87 toB x = toBe Nz M0 (toR x)
88
89
90 --
91 -- Conversion to deBruijn terms
92
93 data ToR a t where
94 ToRv :: (forall i ts.
95 (NatRep i, EnvRep ts)
96 -> ValKb (i, ts) (Rtype i t))
97 -> ToR a (V t)
98 ToRe :: (forall i ts.
99 (NatRep i, EnvRep ts)

100 -> ExpKb (i, ts))
101 -> ToR a Void
102
103 unBv :: ToR a (V t) -> (forall i ts . (NatRep i, EnvRep ts)

172 APPENDIX A. SOURCE CODE

104 -> ValKb (i, ts) (Rtype i t))
105 unBv (ToRv x) = x
106
107 unBe :: ToR a Void -> (forall i ts . (NatRep i, EnvRep ts)
108 -> ExpKb (i, ts))
109 unBe (ToRe x) = x
110
111
112 toRaux :: ExpKF (ToR a t) -> ToR a t
113
114 toRaux (KVnum n) = ToRv (_ -> Knum n)
115
116 toRaux (Klet_poly_fun (s_r::TypeRep s) f e) =
117 ToRe $ \(i_r::NatRep i, ts_r::EnvRep ts) ->
118 let f’ = f (RvarI i_r)
119 (toRvar (substT s_r (RvarI i_r) Nz) (i_r, ts_r))
120 f’’ :: ExpKb (S i, (Rtype (S i) s, ShiftEnvR i ts))
121 f’’ = unBe f’ (Ns i_r, Ms (rType (Ns i_r) s_r) (shiftEnvR i_r ts_r))
122
123 e’ = e (toRvar (Rcont (Ns Nz) s_r) (i_r, ts_r))
124 e’’ = unBe e’ (i_r, (Ms (Rcont (Ns Nz) (rType (Ns i_r) s_r)) ts_r))
125 in KBlet_poly_funR "f" "x"
126 (rType (Ns i_r) s_r)
127 f’’
128 e’’
129
130 toRaux (Kpoly_app
131 (s_r::TypeRep s) (t_r::TypeRep t)
132 f
133 x) =
134 ToRe $ \((i_r::NatRep i), (ts_r::EnvRep ts)) ->
135 let f’ :: ValKb (i, ts) (Cont (S Z) (Rtype (S i) s))
136 f’ = unBv f (i_r, ts_r)
137 x’ :: ValKb (i, ts) (Rtype i (Subst s t Z))
138 x’ = unBv x (i_r, ts_r)
139 x’’ :: ValKb (i, ts)
140 (SubstR (Rtype (S i) s) (Rtype i t) i)
141 x’’ = case lemma_rtype_subst i_r s_r t_r of Equiv -> x’
142 in KBpoly_appR (rType (Ns i_r) s_r)
143 (rType i_r t_r)
144 f’
145 x’’
146
147 toRaux (Klet n s_r v x) = ToRe $ \(i_r, ts_r) ->
148 let v’ = unBv v (i_r, ts_r)
149 e’ = unBe (x (toRvar s_r (i_r, ts_r))) (i_r, (Ms (rType i_r s_r) ts_r))
150 in KBlet n (rType i_r s_r) v’ e’
151
152 toRaux (Kletrec f_n x_n
153 (s_r::TypeRep s)
154 e1
155 e2) =

173

156 ToRe $ \(i_r, ts_r) ->
157 let (v1, v2) = toRvar2 s_r (Rcont Nz s_r) (i_r, ts_r)
158 e1’ = unBe (e1 v2 v1)
159 (i_r, Ms (rType i_r s_r) $
160 Ms (rType i_r (Rcont Nz s_r)) ts_r)
161 e2’ = unBe (e2 (toRvar (Rcont Nz s_r) (i_r, ts_r)))
162 (i_r, Ms (rType i_r (Rcont Nz s_r)) ts_r)
163 in KBletrec f_n x_n (rType i_r s_r) e1’ e2’
164
165 toRaux (Kapp s_r a b) = ToRe $ \g_r@(i_r,_) ->
166 KBapp (rType i_r s_r) (unBv a g_r) (unBv b g_r)
167
168 toRaux (Klet_prim n p (ToRv v1) (ToRv v2) e) = ToRe $ \g_r@(i_r, ts_r) ->
169 let e’ = unBe (e (toRvar Rint (i_r, ts_r)))
170 in KBlet_prim n p (v1 g_r) (v2 g_r) (e’ (i_r, (Ms Rint ts_r)))
171
172 toRaux (Kif0 a b c) = ToRe $ \g_r ->
173 KBif0 (unBv a g_r) (unBe b g_r) (unBe c g_r)
174
175 toRaux (Klet_pair n s_r t_r (ToRv v1) (ToRv v2) e) =
176 ToRe $ \g_r@(i_r, ts_r) ->
177 let e’ = unBe (e (toRvar (Rpair s_r t_r) (i_r, ts_r)))
178 in KBlet_pair n (rType i_r s_r) (rType i_r t_r)
179 (v1 g_r) (v2 g_r)
180 (e’ (i_r, (Ms (rType i_r (Rpair s_r t_r)) ts_r)))
181
182 toRaux (Klet_fst n s_r (ToRv v) e) = ToRe $ \g_r@(i_r, ts_r) ->
183 let e’ = unBe (e (toRvar s_r g_r))
184 in KBlet_fst n (rType i_r s_r) (v g_r) (e’ (i_r, (Ms (rType i_r s_r) ts_r)))
185
186 toRaux (Klet_snd n s_r (ToRv v) e) = ToRe $ \g_r@(i_r, ts_r) ->
187 let e’ = unBe (e (toRvar s_r g_r))
188 in KBlet_snd n (rType i_r s_r) (v g_r) (e’ (i_r, (Ms (rType i_r s_r) ts_r)))
189
190 toRaux (Khalt (ToRv v)) = ToRe $ \g_r -> KBhalt (v g_r)
191
192
193 toR :: (forall a. ExpK a) -> ExpKb (Z, ())
194 toR x = unBe ((iter0K toRaux) x) (Nz, M0)
195
196
197 --
198 -- Conversion to normal de Bruijn types
199
200 toBv :: NatRep i -> EnvRep ts ->
201 ValKb (i, ts) t -> ValKb (i, Benv i ts) (Btype i t)
202 toBv i_r ts_r (Kvar i) = Kvar (toBi i_r i)
203 toBv i_r ts_r (Knum n) = Knum n
204
205 toBe :: NatRep i -> EnvRep ts ->
206 ExpKb (i, ts) -> ExpKb (i, Benv i ts)
207 toBe i_r ts_r (KBlet n s_r v e) =

174 APPENDIX A. SOURCE CODE

208 KBlet n (bType i_r s_r) (toBv i_r ts_r v) (toBe i_r (Ms s_r ts_r) e)
209 toBe i_r ts_r (KBletrec n1 n2 s_r e1 e2) =
210 KBletrec n1 n2
211 (bType i_r s_r)
212 (toBe i_r (Ms s_r (Ms (Rcont Nz s_r) ts_r)) e1)
213 (toBe i_r (Ms (Rcont Nz s_r) ts_r) e2)
214 toBe i_r ts_r (KBapp s_r v1 v2) =
215 KBapp (bType i_r s_r) (toBv i_r ts_r v1) (toBv i_r ts_r v2)
216
217 toBe i_r ts_r (KBlet_poly_funR n1 n2 t_r e1 e2) =
218 KBlet_poly_fun n1 n2 (bType (Ns i_r) t_r)
219 (case lemma_benv_shift i_r ts_r of
220 Equiv -> (toBe (Ns i_r) (Ms t_r (shiftEnvR i_r ts_r)) e1))
221 (toBe i_r (Ms (Rcont (Ns Nz) t_r) ts_r) e2)
222
223 toBe i_r ts_r (KBpoly_appR s_r t_r v1 v2) =
224 KBpoly_app (bType (Ns i_r) s_r) (bType i_r t_r)
225 (toBv i_r ts_r v1)
226 (case lemma_btype_subst i_r s_r t_r of
227 Equiv -> toBv i_r ts_r v2)
228
229 toBe i_r ts_r (KBlet_pair n t1_r t2_r v1 v2 e) =
230 KBlet_pair n (bType i_r t1_r) (bType i_r t2_r)
231 (toBv i_r ts_r v1)
232 (toBv i_r ts_r v2)
233 (toBe i_r (Ms (Rpair t1_r t2_r) ts_r) e)
234
235 toBe i_r ts_r (KBlet_fst n t_r v e) =
236 KBlet_fst n (bType i_r t_r)
237 (toBv i_r ts_r v)
238 (toBe i_r (Ms t_r ts_r) e)
239
240 toBe i_r ts_r (KBlet_snd n t_r v e) =
241 KBlet_snd n (bType i_r t_r)
242 (toBv i_r ts_r v)
243 (toBe i_r (Ms t_r ts_r) e)
244
245 toBe i_r ts_r (KBlet_prim n op v1 v2 e) =
246 KBlet_prim n op
247 (toBv i_r ts_r v1)
248 (toBv i_r ts_r v2)
249 (toBe i_r (Ms Rint ts_r) e)
250
251 toBe i_r ts_r (KBif0 v e1 e2) =
252 KBif0 (toBv i_r ts_r v)
253 (toBe i_r ts_r e1)
254 (toBe i_r ts_r e2)
255
256 toBe i_r ts_r (KBhalt v) =
257 KBhalt (toBv i_r ts_r v)
258
259

175

260 toBi :: NatRep i -> Index ts t -> Index (Benv i ts) (Btype i t)
261 toBi _ I0 = I0
262 toBi i_r (Ix i) = Ix (toBi i_r i)
263
264
265
266 --
267 -- Support functions for the conversion to de Bruijn indices
268
269 toRvar :: TypeRep s -> (NatRep i, EnvRep ts) -> ToR a (V s)
270 toRvar s_r ((i_r::NatRep i), tb) =
271 ToRv (\(i’_r::NatRep i’, tb’) ->
272 let d_i = subtractN i’_r i_r
273 in Kvar (make_index (Ms (rType i’_r s_r)
274 (uEnvI d_i i_r tb))
275 tb’))
276
277 toRvar2 :: TypeRep s -> TypeRep t -> (NatRep i, EnvRep ts)
278 -> (ToR a (V s), ToR a (V t))
279 toRvar2 s_r t_r (i_r, tb) =
280 (ToRv (\(i_r, tb’) -> Kvar (make_index (Ms (rType i_r s_r)
281 (Ms (rType i_r t_r) tb)) tb’)),
282 ToRv (\(i_r, tb’) -> Kvar (make_index2 (Ms (rType i_r s_r)
283 (Ms (rType i_r t_r) tb)) tb’)))
284
285 data Sub ts ts’ where
286 Sub_refl :: Sub ts ts
287 Sub_inc :: Sub ts ts’ -> Sub ts (s, ts’)
288
289 ctx_length :: EnvRep ts -> Int
290 ctx_length M0 = 0
291 ctx_length (Ms _ r) = 1 + ctx_length r
292
293 make_sub :: EnvRep ts -> EnvRep ts’ -> Sub ts ts’
294 make_sub tb tb’ =
295 let d = ctx_length tb’ - ctx_length tb
296 reduce :: forall ts ts’ . Int -> EnvRep ts -> EnvRep ts’ -> Sub ts ts’
297 reduce d r tb’@(Ms _ r’)
298 | d == 0 = case envEqual r tb’ of
299 Just Equiv -> Sub_refl
300 | d > 0 = Sub_inc (reduce (d-1) r r’)
301 in reduce d tb tb’
302
303 get_index :: Sub (s, ts) ts’ -> Index ts’ s
304 get_index Sub_refl = i0
305 get_index (Sub_inc s) = Ix (get_index s)
306
307 get_index2 :: Sub (s, (t, ts)) ts’ -> Index ts’ t
308 get_index2 Sub_refl = (Ix i0)
309 get_index2 (Sub_inc s) = Ix (get_index2 s)
310
311 make_index :: EnvRep (s, ts) -> EnvRep ts’ -> Index ts’ s

176 APPENDIX A. SOURCE CODE

312 make_index tb tb’ = get_index (make_sub tb tb’)
313
314 make_index2 :: EnvRep (s, (t, ts)) -> EnvRep ts’ -> Index ts’ t
315 make_index2 tb tb’ = get_index2 (make_sub tb tb’)
316
317
318 --
319 -- Lemmas
320
321 lemma_rtype_subst :: NatRep i -> TypeRep s -> TypeRep t
322 -> Equiv (Rtype i (Subst s t Z))
323 (SubstR (Rtype (S i) s) (Rtype i t) i)
324 lemma_rtype_subst i_r s_r t_r =
325 case typesEqual (rType i_r (substT s_r t_r Nz))
326 (substR (rType (Ns i_r) s_r) (rType i_r t_r) i_r)
327 of Just Equiv -> Equiv
328
329 lemma_benv_shift :: NatRep i -> EnvRep ts ->
330 Equiv (ShiftEnv (Benv i ts))
331 (Benv (S i) (ShiftEnvR i ts))
332 lemma_benv_shift i_r ts_r =
333 case envEqual (shift_env (bEnv i_r ts_r))
334 (bEnv (Ns i_r) (shiftEnvR i_r ts_r))
335 of Just Equiv -> Equiv
336
337 lemma_btype_subst :: NatRep i -> TypeRep s -> TypeRep t
338 -> Equiv (Btype i (SubstR s t i))
339 (Subst (Btype (S i) s) (Btype i t) Z)
340 lemma_btype_subst i_r s_r t_r =
341 case typesEqual (bType i_r (substR s_r t_r i_r))
342 (substT (bType (Ns i_r) s_r) (bType i_r t_r) Nz)
343 of Just Equiv -> Equiv
344

177

LC.hs

1 {-# OPTIONS -XGADTs #-} {-
2
3 Closure-converted language
4
5 -}
6
7 module LC (
8 ValC(..), ExpC(..)
9) where

10
11 import Tp
12
13 --
14 -- Closure-Converted Language
15
16 data ValC g t where
17 Cvar :: Index ts t -> ValC (i, ts) t
18
19 Cfix :: NatRep k
20 -> TypeRep t
21 -> ExpC (k, (t, (Cont k t, ())))
22 -> ValC (i, ts) (Cont k t)
23
24 Ctp_app :: NatRep k -> TypeRep s -> TypeRep t ->
25 ValC (i, ts) (Cont (S k) s) -> ValC (i,ts) (Cont k (Subst s t k))
26
27 Cpack :: TypeRep s -> TypeRep t
28 -> ValC (i, ts) (Subst s t Z) -> ValC (i, ts) (Exists s)
29
30 Cnum :: Int -> ValC ts Int
31
32 -- used only temporarily during closure conversion
33 Cproj :: ValC ts (Tup s) -> Index s t -> ValC ts t
34
35
36 data ExpC ts where
37 Clet :: Name -> TypeRep s ->
38 ValC (i, ts) s -> ExpC (i, (s, ts)) -> ExpC (i, ts)
39 Cunpack :: TypeRep s
40 -> ValC (i, ts) (Exists s)
41 -> ExpC (S i, (s, ShiftEnv ts))
42 -> ExpC (i, ts)
43
44 Clet_tup :: Name -> EnvRep t
45 -> MapT (ValC (i, ts)) t
46 -> ExpC (i, (Tup t, ts))
47 -> ExpC (i, ts)
48 Clet_proj :: Name -> TypeRep t -> ValC (i, ts) (Tup s)
49 -> Index s t
50 -> ExpC (i, (t, ts))
51 -> ExpC (i, ts)

178 APPENDIX A. SOURCE CODE

52 Clet_prim :: Name -> PrimOp
53 -> ValC (i, ts) Int -> ValC (i, ts) Int -> ExpC (i, (Int, ts))
54 -> ExpC (i, ts)
55
56 Capp :: ValC ts (Cont Z s) -> ValC ts s -> ExpC ts
57
58 Cif0 :: ValC ts Int -> ExpC ts -> ExpC ts -> ExpC ts
59
60 Chalt :: ValC ts t -> ExpC ts
61

179

CC.hs

1 {-# OPTIONS -fglasgow-exts -fallow-undecidable-instances #-} {-
2
3 Closure conversion
4
5 -}
6
7 module CC (
8 cc
9) where

10
11 import Tp
12 import LKb
13 import LC
14
15
16 --
17 -- Closure conversion [TYPES]
18
19 type family Ctype t
20 type instance Ctype Int = Int
21 type instance Ctype (Cont i t) = CLOSURE i (Ctype t)
22 type instance Ctype (t1, t2) = Tup (Ctype t1, (Ctype t2, ()))
23 type instance Ctype (Var n) = Var n
24
25 type family Cenv ts
26 type instance Cenv () = ()
27 type instance Cenv (s, ts) = (Ctype s, Cenv ts)
28
29 type PAIR s t = Tup (s, (t, ()))
30
31 type CLOSURE k t = Exists (PRE_CLO k t)
32 type PRE_CLO k t = PAIR (Cont k (PAIR (U k (S Z) t) (Var k)))
33 (Var Z)
34
35 -- type synonyms reified as functions
36
37 cType :: TypeRep t -> TypeRep (Ctype t)
38 cType Rint = Rint
39 cType (Rcont i s) = Rexists (rPair (Rcont i (rPair (uT i (Ns Nz) (cType s))
40 (Rvar i)))
41 (Rvar Nz))
42 cType (Rpair t1 t2) = rPair (cType t1) (cType t2)
43 cType (Rvar i) = Rvar i
44
45 cEnv :: EnvRep ts -> EnvRep (Cenv ts)
46 cEnv M0 = M0
47 cEnv (Ms s_r ts_r) = Ms (cType s_r) (cEnv ts_r)
48
49 preCloT :: NatRep k -> TypeRep t -> TypeRep (PRE_CLO k t)
50 preCloT k_r t_r =
51 Rtup (Ms (Rcont k_r (Rtup (Ms (uT k_r (Ns Nz) t_r)

180 APPENDIX A. SOURCE CODE

52 (Ms (Rvar k_r)
53 M0))))
54 (Ms (Rvar Nz)
55 M0))
56
57 closureT :: NatRep k -> TypeRep t -> TypeRep (CLOSURE k t)
58 closureT k_r t_r = Rexists (preCloT k_r t_r)
59
60
61 --
62 -- Closure conversion [TERMS]
63
64 cc :: ExpKb (Z, ()) -> ExpC (Z, ())
65 cc e = cc_e Nz M0 e M0
66
67
68 type CCe i ts =
69 (forall cs’ . MapT (ValC (i, cs’)) (Cenv ts) -> ExpC (i, cs’))
70 type CCv i ts t =
71 (forall cs’ . MapT (ValC (i, cs’)) (Cenv ts) -> ValC (i, cs’) (Ctype t))
72
73 --------------- values
74
75 cc_v :: NatRep i -> EnvRep ts -> ValKb (i, ts) t -> CCv i ts t
76 cc_v _ _ (Kvar i) = (\m -> lookupT m (tr i))
77 cc_v _ _ (Knum n) = (\m -> Cnum n)
78
79
80 --------------- expressions
81
82 cc_e :: NatRep i -> EnvRep ts -> ExpKb (i, ts) -> CCe i ts
83
84 cc_e i_r ts_r (KBlet n s_r v e) =
85 \m -> Clet n (cType s_r)
86 (cc_v i_r ts_r v m)
87 (cc_e i_r (Ms s_r ts_r) e (Ms (Cvar i0) (mapT shift_v m)))
88
89
90 cc_e (i_r::NatRep i)
91 (ts_r::EnvRep ts)
92 exp@(KBletrec _ _ s_r
93 (f::ExpKb (i, (t, (Cont Z t, ts))))
94 x) =
95 case mkMap i_r ts_r (fvs_e ts_r exp) of
96 EnvMap (env_r::EnvRep env) m0 env ->
97 let p_r = Ms (Rcont Nz (Rtup (Ms (cType s_r) (Ms
98 (Rtup (cEnv env_r)) M0)))) (Ms
99 (Rtup (cEnv env_r)) M0)

100
101 co :: forall g.
102 ValC g (PAIR (Cont Z (PAIR (Ctype t)
103 (Tup (Cenv env))))

181

104 (Tup (Cenv env))) ->
105 ValC g (PAIR (Cont Z (PAIR (Subst (U Z (S Z) (Ctype t))
106 (Tup (Cenv env)) Z)
107 (Tup (Cenv env))))
108 (Tup (Cenv env)))
109 co v = case lemma_closure Nz (cType s_r) (Rtup (cEnv env_r)) of
110 Equiv -> v
111
112 raw_code :: forall cs’. ValC (i, cs’)
113 (Cont i (PAIR (Ctype t)
114 (Tup (Cenv env))))
115 raw_code =
116 case (lemma_add_z i_r, lemma_uenv_z Nz (cEnv env_r)) of
117 (Equiv, Equiv) ->
118 Cfix i_r
119 (rPair (cType s_r) (Rtup (cEnv env_r)))
120 (Clet_proj "arg" (cType s_r) (Cvar i0) i0 $
121 Clet_proj "env" (Rtup (cEnv env_r)) (Cvar i1) i1 $
122 Clet_tup "p" p_r
123 (Ms (tp_app_multi i_r i_r Nz
124 (rPair (cType s_r)
125 (Rtup (cEnv env_r)))
126 (Cvar i3))
127 (Ms (Cvar i0) M0)) $
128 Clet "clo" (closureT Nz (cType s_r))
129 (Cpack (preCloT Nz (cType s_r))
130 (Rtup (cEnv env_r))
131 (co (Cvar i0))) $
132 openEnv (cEnv env_r) i2 $
133 let m’ = Ms (Cvar i3) $
134 Ms (Cvar i0) $
135 mapT (\i -> Cproj (Cvar i2) i) m0
136 in cc_e i_r
137 (Ms s_r (Ms (Rcont Nz s_r) ts_r))
138 f m’)
139 in (\m ->
140 case equiv2 (lemma_uenv_z Nz (cEnv env_r)) (lemma_add_z i_r) of
141 Equiv2 ->
142 Clet_tup "env" (cEnv env_r)
143 (cc_tup i_r ts_r m env) $
144 Clet_tup "p" p_r
145 (Ms (tp_app_multi i_r i_r Nz
146 (rPair (cType s_r)
147 (Rtup (cEnv env_r)))
148 raw_code)
149 (Ms (Cvar i0) M0)) $
150 Clet "clo" (closureT Nz (cType s_r))
151 (Cpack (preCloT Nz (cType s_r))
152 (Rtup (cEnv env_r))
153 (co (Cvar i0))) $
154 (cc_e i_r (Ms (Rcont Nz s_r) ts_r)
155 x

182 APPENDIX A. SOURCE CODE

156 (Ms (Cvar i0)
157 (mapT (shift_v . shift_v . shift_v) m))))
158
159
160
161 cc_e i_r ts_r (KBapp s_r
162 (v1::ValKb (i, ts) (Cont Z s))
163 (v2::ValKb (i, ts) s)) =
164 \(m::MapT (ValC (i, cs’)) (Cenv ts)) ->
165 case (lemma_subst_u s_r, lemma_cenv_u ts_r) of
166 (Equiv, Equiv) ->
167 Cunpack (preCloT Nz (cType s_r)) (cc_v i_r ts_r v1 m) $
168 Clet_proj "_f" (Rcont Nz (rPair (shift_tr (cType s_r))
169 (Rvar Nz)))
170 (Cvar i0) i0 $
171 Clet_proj "_env" (Rvar Nz) (Cvar i1) i1 $
172 Clet_tup "p" (Ms (shift_tr (cType s_r))
173 (Ms (Rvar Nz) M0))
174 (Ms (cc_v (Ns i_r)
175 (shift_env ts_r)
176 (tp_shift_valK v2)
177 (mapT (shift_v . shift_v . shift_v)
178 (shift_map m))) $
179 Ms (Cvar i0) $ M0) $
180 Capp (Cvar i2) (Cvar i0)
181
182 cc_e (i_r::NatRep i)
183 (ts_r::EnvRep ts)
184 exp@(KBlet_poly_fun _ _ s_r
185 (f::ExpKb (S i, (t, Uenv Z (S Z) ts)))
186 (e::ExpKb (i, (Cont (S Z) t, ts)))) =
187 let ts’_r = uEnv Nz (Ns Nz) ts_r
188 vs ::MapT BoolT (Uenv Z (S Z) ts)
189 vs = tailT (fvs_e (Ms s_r ts’_r) f)
190 in
191 case mkMap i_r ts_r (coerce_bool_map ts_r vs) of
192 EnvMap (env_r::EnvRep env)
193 (m0::MapT (Index (Cenv env)) (Cenv ts))
194 (env:: MapT (ValKb (i, ts)) env) ->
195 let
196 raw_code :: forall cs’. ValC (i, cs’)
197 (Cont (Add i (S Z))
198 (PAIR (Ctype t)
199 (Tup (Uenv Z (S Z)
200 (Cenv env)))))
201 raw_code =
202 case lemma_succ i_r of
203 Equiv ->
204 case lemma_cenv_u ts_r of
205 Equiv ->
206 Cfix (Ns i_r)
207 (rPair (cType s_r)

183

208 (Rtup (uEnv Nz (Ns Nz) (cEnv env_r))))
209 (Clet_proj "arg" (cType s_r) (Cvar i0) i0 $
210 Clet_proj "env" (Rtup (uEnv Nz (Ns Nz) (cEnv env_r)))
211 (Cvar i1) i1 $
212 openEnv (uEnv Nz (Ns Nz) (cEnv env_r)) i0 $
213 let m’ = Ms (Cvar i1) $
214 mapT (\i -> Cproj (Cvar i0) i)
215 (shift_index_map m0) in
216
217 cc_e (Ns i_r)
218 (Ms s_r (uEnv Nz (Ns Nz) ts_r))
219 f
220 m’)
221
222
223 in (\(m::MapT (ValC (i, cs’)) (Cenv ts)) ->
224 case lemma_add_z i_r of
225 Equiv ->
226 case lemma_subst (cType s_r) (Rtup (cEnv env_r)) of
227 Equiv ->
228 Clet_tup "env"
229 (cEnv env_r)
230 (cc_tup i_r ts_r m env) $
231 mkClosure (Ns Nz) (cType s_r) (Rtup (cEnv env_r))
232 (tp_app_multi i_r i_r (Ns Nz)
233 (rPair (cType s_r)
234 (Rtup (uEnv Nz (Ns Nz)
235 (cEnv (env_r)))))
236 raw_code)
237 (Cvar i0) $
238 cc_e i_r (Ms (Rcont (Ns Nz) s_r) ts_r)
239 e
240 (Ms (Cvar i0) $
241 mapT (shift_v . shift_v . shift_v) m))
242
243
244 cc_e i_r ts_r (KBpoly_app (s_r:: TypeRep s)
245 (t_r:: TypeRep t)
246 (v :: ValKb (i, ts) (Cont (S Z) s))
247 (w :: ValKb (i, ts) (Subst s t Z))) =
248 \(m::MapT (ValC (i, cs’)) (Cenv ts)) ->
249 case lemma_tp_app s_r t_r of
250 Equiv ->
251 case lemma_cenv_u ts_r of
252 Equiv ->
253 Cunpack (preCloT (Ns Nz) (cType s_r)) (cc_v i_r ts_r v m) $
254 Clet_proj "_f" (Rcont (Ns Nz) (Rtup (Ms (uT (Ns Nz) (Ns Nz) (cType s_r))
255 (Ms (Rvar (Ns Nz)) M0))))
256 (Cvar i0) i0 $
257 Clet_proj "_env" (Rvar Nz) (Cvar i1) i1 $
258 Clet_tup "_p" (Ms (cType (uT Nz (Ns Nz) (substT s_r t_r Nz))) $
259 Ms (Rvar Nz) $ M0)

184 APPENDIX A. SOURCE CODE

260 (Ms (cc_v (Ns i_r)
261 (shift_env ts_r)
262 (tp_shift_valK w)
263 (mapT (shift_v . shift_v . shift_v)
264 (shift_map m))) $
265 Ms (Cvar i0) M0) $
266 Capp (Ctp_app Nz (rPair (uT (Ns Nz) (Ns Nz) (cType s_r))
267 (Rvar (Ns Nz)))
268 (cType t_r) (Cvar i2))
269 (Cvar i0)
270
271 cc_e i_r ts_r (KBlet_pair n t1_r t2_r v1 v2 e) =
272 \m -> Clet_tup n (Ms (cType t1_r) (Ms (cType t2_r) M0))
273 (Ms (cc_v i_r ts_r v1 m) $
274 Ms (cc_v i_r ts_r v2 m) M0)
275 (cc_e i_r (Ms (Rpair t1_r t2_r) ts_r) e
276 (Ms (Cvar i0) (mapT shift_v m)))
277
278 cc_e i_r ts_r (KBlet_fst n t_r v e) =
279 \m -> Clet_proj n (cType t_r) (cc_v i_r ts_r v m) I0
280 (cc_e i_r (Ms t_r ts_r) e (Ms (Cvar i0) (mapT shift_v m)))
281
282 cc_e i_r ts_r (KBlet_snd n t_r v e) =
283 \m -> Clet_proj n (cType t_r) (cc_v i_r ts_r v m) (Ix I0)
284 (cc_e i_r (Ms t_r ts_r) e (Ms (Cvar i0) (mapT shift_v m)))
285
286 cc_e i_r ts_r (KBlet_prim n p v1 v2 e) =
287 \m -> Clet_prim n p (cc_v i_r ts_r v1 m) (cc_v i_r ts_r v2 m)
288 (cc_e i_r (Ms Rint ts_r) e (Ms (Cvar i0) (mapT shift_v m)))
289
290 cc_e i_r ts_r (KBif0 v e1 e2) =
291 \m -> Cif0 (cc_v i_r ts_r v m) (cc_e i_r ts_r e1 m) (cc_e i_r ts_r e2 m)
292
293 cc_e i_r ts_r (KBhalt v) = \m -> Chalt (cc_v i_r ts_r v m)
294
295
296 --------------- tuples
297
298 cc_tup :: NatRep i -> EnvRep ts
299 -> MapT (ValC (i, cs’)) (Cenv ts)
300 -> MapT (ValKb (i, ts)) env
301 -> MapT (ValC (i, cs’)) (Cenv env)
302 cc_tup _ _ _ M0 = M0
303 cc_tup i_r ts_r m (Ms s ts) = Ms (cc_v i_r ts_r s m) (cc_tup i_r ts_r m ts)
304
305
306 --
307 -- Free variables
308
309 data BoolT t = BoolT Bool
310
311

185

312 fvs_v :: EnvRep ts -> ValKb (i, ts) t -> MapT BoolT ts
313 fvs_v ts_r (Kvar i) = updateT (falseMap ts_r) i (BoolT True)
314 fvs_v ts_r (Knum _) = falseMap ts_r
315
316 fvs_e :: EnvRep ts -> ExpKb (i, ts) -> MapT BoolT ts
317 fvs_e tb (KBlet _ s_r e1 e2) = zipWithT orT (fvs_v tb e1)
318 (tailT (fvs_e (Ms s_r tb) e2))
319 fvs_e tb (KBletrec _ _ s_r f e) =
320 zipWithT orT (tailT (tailT (fvs_e (Ms s_r (Ms undefined tb)) f)))
321 (tailT (fvs_e (Ms undefined tb) e))
322 fvs_e tb (KBapp _ e1 e2) = zipWithT orT (fvs_v tb e1) (fvs_v tb e2)
323 fvs_e tb (KBlet_poly_fun _ _ s_r e1 e2) =
324 zipWithT orT
325 (coerce_bool_map tb
326 (tailT (fvs_e (Ms undefined (shift_env tb)) e1)))
327 (tailT (fvs_e (Ms undefined tb) e2))
328 fvs_e tb (KBpoly_app s_r t_r v1 v2) =
329 zipWithT orT (fvs_v tb v1) (fvs_v tb v2)
330 fvs_e tb (KBif0 e1 e2 e3) =
331 zipWithT orT (zipWithT orT (fvs_v tb e1) (fvs_e tb e2))
332 (fvs_e tb e3)
333
334 fvs_e tb (KBlet_prim _ _ e1 e2 e3) =
335 zipWithT orT (zipWithT orT (fvs_v tb e1) (fvs_v tb e2))
336 (tailT (fvs_e (Ms Rint tb) e3))
337 fvs_e tb (KBlet_pair _ s_r t_r v1 v2 e) =
338 zipWithT orT (zipWithT orT (fvs_v tb v1) (fvs_v tb v2))
339 (tailT (fvs_e (Ms (Rpair s_r t_r) tb) e))
340 fvs_e tb (KBlet_fst _ s_r e1 e2) = zipWithT orT (fvs_v tb e1)
341 (tailT (fvs_e (Ms s_r tb) e2))
342 fvs_e tb (KBlet_snd _ s_r e1 e2) = zipWithT orT (fvs_v tb e1)
343 (tailT (fvs_e (Ms s_r tb) e2))
344 fvs_e tb (KBhalt e) = fvs_v tb e
345
346
347 fvs_tup :: EnvRep ts -> MapT (ValKb (i, ts)) t -> MapT BoolT ts
348 fvs_tup tb M0 = falseMap tb
349 fvs_tup tb (Ms v tup) =
350 let v_m = fvs_v tb v
351 tup_m = fvs_tup tb tup
352 in zipWithT orT v_m tup_m
353
354 tailT :: MapT c (s, ts) -> MapT c ts
355 tailT (Ms _ t) = t
356
357 zipWithT :: (forall t . c1 t -> c2 t -> c3 t)
358 -> MapT c1 ts -> MapT c2 ts -> MapT c3 ts
359 zipWithT _ M0 _ = M0
360 zipWithT f (Ms c t) (Ms c’ t’) = Ms (f c c’) (zipWithT f t t’)
361
362 orT :: BoolT s -> BoolT s -> BoolT s
363 orT (BoolT a) (BoolT b) = BoolT (a || b)

186 APPENDIX A. SOURCE CODE

364
365 falseMap :: EnvRep ts -> MapT BoolT ts
366 falseMap M0 = M0
367 falseMap (Ms _ t) = Ms (BoolT False) (falseMap t)
368
369 -- safe if ts and ts’ are the same length
370 coerce_bool_map :: EnvRep ts’ -> MapT BoolT ts -> MapT BoolT ts’
371 coerce_bool_map M0 M0 = M0
372 coerce_bool_map (Ms _ ts’_r) (Ms (BoolT b) bs) =
373 Ms (BoolT b) (coerce_bool_map ts’_r bs)
374
375
376 --
377 -- Index map construction
378
379 data EnvMap_aux env0 i cs0 cs where
380 EnvMap_aux :: (Cat env0 env ~ env’) =>
381 EnvRep env
382 -> EnvRep env’
383 -> MapT (Index (Cenv env’)) (Cenv ts)
384 -> MapT (ValKb (i, ts0)) env
385 -> EnvMap_aux env0 i ts0 ts
386
387 mkMap_aux ::
388 NatRep i
389 -> EnvRep ts
390 -> MapT BoolT ts -- free variables
391 -> MapT (Index ts0) ts -- indices
392 -> EnvRep env0
393 -> EnvMap_aux env0 i ts0 ts
394 mkMap_aux _ _ M0 M0 e0_r =
395 case cat_nil e0_r of Equiv -> EnvMap_aux M0 e0_r M0 M0
396
397 mkMap_aux i_r (Ms _ ts_r) (Ms (BoolT False) bs) (Ms _ is) env0_r =
398 case mkMap_aux i_r ts_r bs is env0_r of
399 EnvMap_aux env_r env’_r m t ->
400 EnvMap_aux env_r env’_r (Ms undefined m) t
401
402
403 mkMap_aux i_r (Ms t_r ts_r)
404 (Ms (BoolT True) bs)
405 (Ms (i::Index ts t) is)
406 (env0_r::EnvRep env0) =
407 let i_ :: Index (Cat env0 (t,())) t
408 i_ = newIndex env0_r
409 env1_r = catT env0_r (Ms t_r M0)
410 in case mkMap_aux i_r ts_r bs is env1_r of
411 EnvMap_aux (env_r::EnvRep env) (env’_r::EnvRep env’) m t ->
412 case lemma_cat_assoc env0_r (Ms t_r M0) env_r of
413 Equiv ->
414 case lemma_cat_cenv env0_r (Ms t_r env_r) of
415 Equiv ->

187

416 EnvMap_aux (Ms t_r env_r)
417 env’_r
418 (Ms (tr (weaken_index env_r i_)) m)
419 (Ms (Kvar i) t)
420
421 data EnvMap i ts where
422 EnvMap :: EnvRep env
423 -> MapT (Index (Cenv env)) (Cenv ts)
424 -> MapT (ValKb (i, ts)) env
425 -> EnvMap i ts
426
427 mkMap :: NatRep i -> EnvRep ts -> MapT BoolT ts -> EnvMap i ts
428 mkMap i_r ts_r fs =
429 case mkMap_aux i_r ts_r fs (mkIndices fs) M0 of
430 EnvMap_aux env_r env’_r m t ->
431 case cat_nil env’_r of
432 Equiv -> EnvMap env’_r
433 m t
434
435 mkIndices :: MapT c ts -> MapT (Index ts) ts
436 mkIndices M0 = M0
437 mkIndices (Ms _ tb) = Ms I0 (shift_is (mkIndices tb))
438
439
440 --
441 -- Closures formation
442
443 mkClosure ::
444 NatRep k -> TypeRep t -> TypeRep env
445 -> ValC (i, ts) (Cont k (PAIR t (U Z k env)))
446 -> ValC (i, ts) env
447 -> (forall t’. ExpC (i, (CLOSURE k t, (t’, ts))))
448 -> ExpC (i, ts)
449 mkClosure (k_r::NatRep k) (t_r::TypeRep t) (env_r::TypeRep env)
450 f (env::ValC (i, ts) env) body =
451 let f’ :: ValC (i, ts) (Cont k (PAIR (Subst (U k (S Z) t) env k)
452 (U Z k env)))
453 f’ = case local_lemma1 of Equiv -> f
454 in case lemma_u_z Nz env_r of
455 Equiv ->
456 case local_lemma2 of
457 Equiv ->
458 Clet_tup "p" (Ms (Rcont k_r
459 (rPair (substT (uT k_r (Ns Nz) t_r)
460 env_r k_r)
461 (uT Nz k_r env_r))) $
462 Ms env_r $ M0)
463 (Ms f’ (Ms env M0)) $
464 Clet "clo" (closureT k_r t_r)
465 (Cpack (preCloT k_r t_r)
466 env_r
467 (Cvar i0)) $

188 APPENDIX A. SOURCE CODE

468 body
469
470 where local_lemma1 :: Equiv (Subst (U k (S Z) t) env k) t
471 local_lemma1 =
472 case typesEqual (substT (uT k_r (Ns Nz) t_r) env_r k_r) t_r of
473 Just Equiv -> Equiv
474
475 local_lemma2 ::
476 Equiv (CMP k k (Var k) (U Z k env) (Var (Pred k)))
477 (U Z k env)
478 local_lemma2 =
479 lemma_cmp_eq k_r (undefined :: TypeRep (Var k))
480 (undefined :: TypeRep (U Z k env))
481 (undefined :: TypeRep (Var (Pred k)))
482
483
484 --
485 -- Multiple type applications
486
487 type family MultApp j c
488 type instance MultApp (S j) (Cont (S k) t) =
489 MultApp j (Cont k (Subst t (Var j) k))
490 type instance MultApp Z t = t
491
492 multAppT :: NatRep j -> TypeRep c -> TypeRep (MultApp j c)
493 multAppT (Ns j_r) (Rcont (Ns k_r) t_r) =
494 multAppT j_r (Rcont k_r (substT t_r (Rvar j_r) k_r))
495 multAppT Nz t = t
496
497
498 multApp :: NatRep j -> NatRep k -> TypeRep t
499 -> ValC (i, ts) (Cont k t)
500 -> ValC (i, ts) (MultApp j (Cont k t))
501 multApp (Ns j_r) (Ns k_r) t_r v = multApp j_r k_r (substT t_r (Rvar j_r) k_r)
502 (Ctp_app k_r t_r (Rvar j_r) v)
503 multApp Nz k_r _ e = e
504
505 lemma_mult_app ::
506 NatRep i -> NatRep k -> TypeRep t ->
507 Equiv (MultApp i (Cont (Add i k) t))
508 (Cont k t)
509 lemma_mult_app i_r k_r t_r =
510 case typesEqual (multAppT i_r (Rcont (addT i_r k_r) t_r))
511 (Rcont k_r t_r) of
512 Just Equiv -> Equiv
513
514 -- note j and i are the same!
515 tp_app_multi :: NatRep j
516 -> NatRep i
517 -> NatRep k
518 -> TypeRep t
519 -> ValC (j, ts) (Cont (Add i k) t)

189

520 -> ValC (j, ts) (Cont k t)
521 tp_app_multi j_r i_r k_r t_r v =
522 case lemma_mult_app i_r k_r t_r of
523 Equiv -> multApp i_r (addT i_r k_r) t_r v
524
525
526 --
527 -- Shifting and update
528
529 tr :: Index ts t -> Index (Cenv ts) (Ctype t)
530 tr I0 = I0
531 tr (Ix i) = Ix (tr i)
532
533 shift_is :: MapT (Index ts0) ts -> MapT (Index (s, ts0)) ts
534 shift_is M0 = M0
535 shift_is (Ms i m) = Ms (Ix i) (shift_is m)
536
537 shift_v :: ValC (i, ts) t -> ValC (i, (s, ts)) t
538 shift_v v = u_v M0 undefined undefined v
539
540 shift_e :: TypeRep s -> ExpC (i, ts) -> ExpC (i, (s, ts))
541 shift_e s_r e = u_e M0 s_r undefined e
542
543 shift_index_map::
544 MapT (Index env)
545 ts
546 -> MapT (Index (Uenv Z (S Z) env))
547 (Uenv Z (S Z) ts)
548 shift_index_map M0 = M0
549 shift_index_map (Ms i is) = Ms (shift_index i) (shift_index_map is)
550 where shift_index :: Index env t -> Index (Uenv Z (S Z) env) (U Z (S Z) t)
551 shift_index I0 = I0
552 shift_index (Ix i) = Ix (shift_index i)
553
554 u_v :: EnvRep ts
555 -> TypeRep s -- never analyzed
556 -> EnvRep ts’ -- never analyzed
557 -> ValC (i, Cat ts ts’) t
558 -> ValC (i, Cat ts (s, ts’)) t
559 u_v ts_r s_r ts’_r v =
560 let u_e_ = u_e ts_r s_r ts’_r
561 u_v_ = u_v ts_r s_r ts’_r
562 in case v of
563 Cvar i -> Cvar (u_i ts_r s_r ts’_r i)
564 Cfix k t_r e -> Cfix k t_r e
565 Ctp_app k_r s_r t_r v -> Ctp_app k_r s_r t_r (u_v_ v)
566 Cpack s_r t_r v -> Cpack s_r t_r (u_v_ v)
567 Cnum n -> Cnum n
568 Cproj v i -> Cproj (u_v_ v) i
569
570 u_e :: EnvRep ts
571 -> TypeRep s -- never analyzed

190 APPENDIX A. SOURCE CODE

572 -> EnvRep ts’ -- never analyzed
573 -> ExpC (i, Cat ts ts’) -> ExpC (i, Cat ts (s, ts’))
574 u_e ts_r s_r ts’_r e =
575 let u_e_ = u_e ts_r s_r ts’_r
576 u_v_ = u_v ts_r s_r ts’_r
577 in case e of
578 Clet n t_r v e -> Clet n t_r
579 (u_v_ v) (u_e (Ms t_r ts_r) s_r ts’_r e)
580 Cunpack t_r v e ->
581 case (lemma_cat_u0 ts_r ts’_r,
582 lemma_cat_u1 ts_r s_r ts’_r) of
583 (Equiv, Equiv) ->
584 Cunpack t_r (u_v_ v)
585 (u_e (Ms t_r (uEnv Nz (Ns Nz) ts_r))
586 (uT Nz (Ns Nz) s_r)
587 (uEnv Nz (Ns Nz) ts’_r) e)
588 Capp v1 v2 -> Capp (u_v_ v1) (u_v_ v2)
589 Clet_tup n t_r tup e -> Clet_tup n t_r
590 (u_t ts_r s_r ts’_r tup)
591 (u_e (Ms (Rtup t_r) ts_r) s_r ts’_r e)
592 Clet_proj n t_r v i e -> Clet_proj n t_r (u_v_ v) i
593 (u_e (Ms t_r ts_r) s_r ts’_r e)
594 Clet_prim n p v1 v2 e -> Clet_prim n p (u_v_ v1) (u_v_ v2)
595 (u_e (Ms Rint ts_r) s_r ts’_r e)
596 Cif0 v e1 e2 -> Cif0 (u_v_ v) (u_e_ e1) (u_e_ e2)
597 Chalt v -> Chalt (u_v_ v)
598
599 u_t:: EnvRep ts
600 -> TypeRep s -- never analyzed
601 -> EnvRep ts’ -- never analyzed
602 -> MapT (ValC (i, Cat ts ts’)) t
603 -> MapT (ValC (i, Cat ts (s, ts’))) t
604 u_t _ _ _ M0 = M0
605 u_t ts_r s_r ts’_r (Ms v ts) =
606 Ms (u_v ts_r s_r ts’_r v)
607 (u_t ts_r s_r ts’_r ts)
608
609 u_i :: EnvRep ts
610 -> TypeRep s -- never analyzed
611 -> EnvRep ts’ -- never analyzed
612 -> Index (Cat ts ts’) t
613 -> Index (Cat ts (s, ts’)) t
614 u_i M0 s0_r ts’_r i = Ix i -- i > |ts|
615 u_i (Ms s_r ts_r) s0_r ts’_r i =
616 case eq1 ts_r s_r ts’_r i of
617 Ix j -> case eq2 ts_r s_r ts’_r of
618 Equiv -> Ix (u_i ts_r s0_r ts’_r j)
619 I0 -> I0
620 where eq1 :: EnvRep ts -> TypeRep s -> EnvRep ts’
621 -> Index (Cat (s, ts) ts’) t
622 -> Index (s, Cat ts ts’) t
623 eq1 ts_r s_r ts’_r i = i

191

624 eq2 :: EnvRep ts -> TypeRep s -> EnvRep ts’
625 -> Equiv (Cat (s, ts) ts’)
626 (s, Cat ts ts’)
627 eq2 ts_r s_r ts’_r = Equiv
628
629
630 tp_shift_valK :: ValKb (i, ts) s -> ValKb (S i, ShiftEnv ts) (Shift s)
631 tp_shift_valK (Kvar i) = Kvar (tr_index_shift i)
632 tp_shift_valK (Knum n) = Knum n
633
634 tp_shift_expK :: ExpKb (i, ts) -> ExpKb (S i, ShiftEnv ts)
635 tp_shift_expK (KBlet n s_r v e) = KBlet n (shift_tr s_r)
636 (tp_shift_valK v)
637 (tp_shift_expK e)
638 tp_shift_expK (KBapp t_r v1 v2) = KBapp (shift_tr t_r) (tp_shift_valK v1)
639 (tp_shift_valK v2)
640 tp_shift_expK (KBlet_prim n p v1 v2 e) =
641 KBlet_prim n p (tp_shift_valK v1) (tp_shift_valK v2)
642 (tp_shift_expK e)
643 tp_shift_expK (KBif0 v e1 e2) =
644 KBif0 (tp_shift_valK v) (tp_shift_expK e1) (tp_shift_expK e2)
645 tp_shift_expK (KBhalt v) = KBhalt (tp_shift_valK v)
646
647 tr_index_U :: NatRep k
648 -> NatRep i
649 -> Index ts t
650 -> Index (Uenv k (S i) ts) (U k (S i) t)
651 tr_index_U _ i_r I0 = I0
652 tr_index_U k_r i_r (Ix i) = Ix (tr_index_U k_r i_r i)
653
654
655 tp_shift_valC :: ValC (i, ts) s -> ValC (S i, ShiftEnv ts) (Shift s)
656 tp_shift_valC (Cvar i) = Cvar (tr_index_shift i)
657 tp_shift_valC (Cproj v i) = Cproj (tp_shift_valC v)
658 (tr_index_shift i)
659
660 shift_map :: MapT (ValC (i, ts0)) ts
661 -> MapT (ValC (S i, ShiftEnv ts0)) (ShiftEnv ts)
662 shift_map M0 = M0
663 shift_map (Ms a m) = Ms (tp_shift_valC a)
664 (shift_map m)
665
666
667 --
668 -- Elimination of projections as values
669
670 openEnv ::
671 EnvRep env0
672 -> Index ts (Tup env0)
673 -> ExpC (i, ts)
674 -> ExpC (i, ts)
675 openEnv env_r i (e::ExpC (i, ts)) =

192 APPENDIX A. SOURCE CODE

676 project_env (Cvar i) env_r (mkIndices env_r)
677 (elim_proj_e M0
678 env_r
679 undefined
680 i
681 (shift_e_multi env_r e))
682
683 project_env :: ValC (i, ts0) (Tup env0)
684 -> EnvRep env
685 -> MapT (Index env0) env
686 -> ExpC (i, Cat env ts0)
687 -> ExpC (i, ts0)
688 project_env _ M0 M0 e = e
689 project_env env_var (Ms t_r ts_r) (Ms i m’) e =
690 project_env
691 env_var
692 ts_r
693 m’
694 (Clet_proj ("x" ++ show (toInt i)) t_r
695 (shift_v_multi ts_r env_var)
696 i
697 e)
698 where toInt :: forall ts t . Index ts t -> Int
699 toInt I0 = 0
700 toInt (Ix i) = 1 + toInt i
701
702 elim_proj_v ::
703 EnvRep ts
704 -> EnvRep env -- for type checking, never analyzed
705 -> EnvRep ts0
706 -> Index ts0 (Tup env)
707 -> ValC (i, Cat ts (Cat env ts0)) t
708 -> ValC (i, Cat ts (Cat env ts0)) t
709 elim_proj_v ts_r env_r ts0_r i v =
710 let e_e = elim_proj_e ts_r env_r ts0_r i
711 e_v = elim_proj_v ts_r env_r ts0_r i
712 in case v of
713 Cproj (Cvar j) k ->
714 case cmp_indices (shift_i_multi ts_r (shift_i_multi env_r i)) j of
715 Nothing -> Cproj (Cvar j) k
716 Just Equiv -> Cvar (shift_i_multi ts_r (weaken_index_multi ts0_r k))
717 Cvar v -> Cvar v
718 Cfix n_r t_r e -> Cfix n_r t_r e
719 Ctp_app k_r s_r t_r v -> Ctp_app k_r s_r t_r (e_v v)
720 Cpack s_r t_r v -> Cpack s_r t_r (e_v v)
721 Cnum n -> Cnum n
722
723 elim_proj_e ::
724 EnvRep ts
725 -> EnvRep env -- for type checking, never analyzed
726 -> EnvRep ts0
727 -> Index ts0 (Tup env)

193

728 -> ExpC (i, Cat ts (Cat env ts0))
729 -> ExpC (i, Cat ts (Cat env ts0))
730 elim_proj_e (ts_r::EnvRep ts) (env_r::EnvRep env) (ts0_r::EnvRep ts0) i e =
731 let e_e = elim_proj_e ts_r env_r ts0_r i
732 e_v = elim_proj_v ts_r env_r ts0_r i
733 in case e of
734 Clet n t_r v e -> Clet n t_r (e_v v)
735 (elim_proj_e (Ms t_r ts_r)
736 env_r ts0_r i e)
737 Cunpack t_r v e ->
738 case lemma_cat_u2 ts_r env_r ts0_r of
739 Equiv ->
740 Cunpack t_r (e_v v)
741 (elim_proj_e (Ms t_r
742 (uEnv Nz (Ns Nz) ts_r))
743 (uEnv Nz (Ns Nz) env_r)
744 (uEnv Nz (Ns Nz) ts0_r)
745 (tr_index_U Nz Nz i)
746 e)
747 Capp v1 v2 -> Capp (e_v v1) (e_v v2)
748 Clet_tup n t_r tup e -> Clet_tup n t_r
749 (elim_proj_t ts_r env_r ts0_r i tup)
750 (elim_proj_e (Ms (Rtup t_r) ts_r)
751 env_r ts0_r i e)
752 Clet_proj n t_r v j e -> Clet_proj n t_r (e_v v) j
753 (elim_proj_e (Ms t_r ts_r)
754 env_r ts0_r i e)
755 Clet_prim n p v1 v2 e -> Clet_prim n p (e_v v1) (e_v v2)
756 (elim_proj_e (Ms Rint ts_r)
757 env_r ts0_r i e)
758 Cif0 v e1 e2 -> Cif0 (e_v v) (e_e e1) (e_e e2)
759 Chalt v -> Chalt (e_v v)
760
761 elim_proj_t ::
762 EnvRep ts
763 -> EnvRep env -- for type checking, never analyzed
764 -> EnvRep ts0
765 -> Index ts0 (Tup env)
766 -> MapT (ValC (i, Cat ts (Cat env ts0))) t
767 -> MapT (ValC (i, Cat ts (Cat env ts0))) t
768 elim_proj_t _ _ _ _ M0 = M0
769 elim_proj_t ts_r env_r ts0_r i (Ms v tup) =
770 Ms (elim_proj_v ts_r env_r ts0_r i v)
771 (elim_proj_t ts_r env_r ts0_r i tup)
772
773 cmp_indices :: Index ts s -> Index ts t -> Maybe (Equiv s t)
774 cmp_indices I0 I0 = Just Equiv
775 cmp_indices (Ix i) (Ix j) = cmp_indices i j
776 cmp_indices I0 (Ix j) = Nothing
777 cmp_indices (Ix i) I0 = Nothing
778
779 weaken_index_multi ::

194 APPENDIX A. SOURCE CODE

780 EnvRep ts -- for type checking, never analyzed
781 -> Index env t
782 -> Index (Cat env ts) t
783 weaken_index_multi _ I0 = I0
784 weaken_index_multi env_r (Ix i) = Ix (weaken_index_multi env_r i)
785
786 shift_v_m :: MapT z ts -> ValC (i, ts0) t -> ValC (i, Cat ts ts0) t
787 shift_v_m M0 v = v
788 shift_v_m (Ms _ m) v = shift_v (shift_v_m m v)
789
790 shift_i :: Index ts t -> Index (s, ts) t
791 shift_i i = Ix i
792
793 shift_i_m :: MapT z ts -> Index ts0 t -> Index (Cat ts ts0) t
794 shift_i_m M0 i = i
795 shift_i_m (Ms _ m) i = Ix (shift_i_m m i)
796
797 shift_e_multi :: EnvRep env -> ExpC (i, ts) -> ExpC (i, Cat env ts)
798 shift_e_multi M0 e = e
799 shift_e_multi (Ms s_r env_rep) e =
800 shift_e s_r (shift_e_multi env_rep e)
801
802 shift_v_multi :: EnvRep env -> ValC (i, ts) t -> ValC (i, Cat env ts) t
803 shift_v_multi M0 v = v
804 shift_v_multi (Ms _ env_rep) v = shift_v (shift_v_multi env_rep v)
805
806 shift_i_multi :: EnvRep env -> Index ts t -> Index (Cat env ts) t
807 shift_i_multi M0 i = i
808 shift_i_multi (Ms _ env_rep) i = Ix (shift_i_multi env_rep i)
809
810
811 --
812 -- Compound proof objects
813
814 -- Equiv2 combines two proofs of type equality. This is useful to get
815 -- GHC to swallow two type assumptions simultaneously, as sometimes
816 -- required to satisfy the type checker.
817
818 data Equiv2 a b c d where
819 Equiv2 :: (a ~ b, c ~ d) => Equiv2 a b c d
820
821 equiv2 :: Equiv a b -> Equiv c d -> Equiv2 a b c d
822 equiv2 Equiv Equiv = Equiv2
823
824
825 --
826 -- Lemmas
827
828 lemma_add_z :: NatRep i -> Equiv i (Add i Z)
829 lemma_add_z Nz = Equiv
830 lemma_add_z (Ns i) = case lemma_add_z i of Equiv -> Equiv
831

195

832 lemma_succ :: NatRep i -> Equiv (S i) (Add i (S Z))
833 lemma_succ Nz = Equiv
834 lemma_succ (Ns i) = case lemma_succ i of Equiv -> Equiv
835
836 lemma_cenv_u ::
837 EnvRep ts ->
838 Equiv (Cenv (Uenv Z (S Z) ts))
839 (Uenv Z (S Z) (Cenv ts))
840 lemma_cenv_u ts_r =
841 case envEqual (cEnv (uEnv Nz (Ns Nz) ts_r))
842 (uEnv Nz (Ns Nz) (cEnv ts_r)) of
843 Just Equiv -> Equiv
844
845 lemma_ctype_subst ::
846 TypeRep s -> TypeRep t
847 -> Equiv (Subst (Ctype s) (Ctype t) Z)
848 (Ctype (Subst s t Z))
849 lemma_ctype_subst s_r t_r =
850 case typesEqual (substT (cType s_r) (cType t_r) Nz)
851 (cType (substT s_r t_r Nz))
852 of Just Equiv -> Equiv
853
854 lemma_subst_u :: TypeRep s -> Equiv (Ctype (U Z (S Z) s)) (U Z (S Z) (Ctype s))
855 lemma_subst_u s_r =
856 case typesEqual (cType (uT Nz (Ns Nz) s_r))
857 (uT Nz (Ns Nz) (cType s_r))
858 of Just Equiv -> Equiv
859
860 lemma_ctype_u ::
861 NatRep i -> NatRep j -> TypeRep t ->
862 Equiv (Ctype (U i j t))
863 (U i j (Ctype t))
864 lemma_ctype_u i_r j_r t_r =
865 case typesEqual (cType (uT i_r j_r t_r))
866 (uT i_r j_r (cType t_r))
867 of Just Equiv -> Equiv
868
869 lemma_cat_cenv ::
870 EnvRep env0 -> EnvRep env ->
871 Equiv (Cat (Cenv env0) (Cenv env))
872 (Cenv (Cat env0 env))
873 lemma_cat_cenv env0_r env_r =
874 case envEqual (catT (cEnv env0_r) (cEnv env_r))
875 (cEnv (catT env0_r env_r))
876 of Just Equiv -> Equiv
877
878 lemma_cat_u0 ::
879 EnvRep ts
880 -> EnvRep ts’
881 -> Equiv (Cat (Uenv Z (S Z) ts) (Uenv Z (S Z) ts’))
882 (Uenv Z (S Z) (Cat ts ts’))
883 lemma_cat_u0 M0 _ = Equiv

196 APPENDIX A. SOURCE CODE

884 lemma_cat_u0 (Ms _ ts_r) ts’_r =
885 case lemma_cat_u0 ts_r ts’_r of Equiv -> Equiv
886
887 lemma_cat_u1 ::
888 EnvRep ts
889 -> TypeRep s
890 -> EnvRep ts’
891 -> Equiv (Cat (Uenv Z (S Z) ts) (U Z (S Z) s, Uenv Z (S Z) ts’))
892 (Uenv Z (S Z) (Cat ts (s, ts’)))
893 lemma_cat_u1 M0 s_r _ = Equiv
894 lemma_cat_u1 (Ms _ ts_r) s_r ts’_r =
895 case lemma_cat_u1 ts_r s_r ts’_r of Equiv -> Equiv
896
897 lemma_cat_u2 ::
898 EnvRep ts -> EnvRep env -> EnvRep ts0
899 -> Equiv (Cat (Uenv Z (S Z) ts) (Cat (Uenv Z (S Z) env) (Uenv Z (S Z) ts0)))
900 (Uenv Z (S Z) (Cat ts (Cat env ts0)))
901 lemma_cat_u2 ts_r env_r ts0_r =
902 case lemma_cat_u0 env_r ts0_r of
903 Equiv ->
904 case lemma_cat_u0 ts_r (catT env_r ts0_r) of
905 Equiv -> Equiv
906
907 lemma_tp_app ::
908 forall s t. TypeRep s -> TypeRep t ->
909 Equiv (Subst (U (S Z) (S Z) (Ctype s)) (Ctype t) Z)
910 (Ctype (U Z (S Z) (Subst s t Z)))
911 lemma_tp_app s_r t_r =
912 case typesEqual (substT (uT (Ns Nz) (Ns Nz) (cType s_r)) (cType t_r) Nz)
913 (cType (uT Nz (Ns Nz) (substT s_r t_r Nz)))
914 of Just Equiv -> Equiv
915
916 lemma_closure ::
917 NatRep k -> TypeRep t -> TypeRep env ->
918 Equiv (Subst (PAIR (U k (S Z) t) (Var k)) env k)
919 (PAIR t (U Z k env))
920 lemma_closure k_r t_r env_r =
921 case typesEqual (substT (rPair (uT k_r (Ns Nz) t_r) (Rvar k_r)) env_r k_r)
922 (rPair t_r (uT Nz k_r env_r))
923 of Just Equiv -> Equiv
924
925 lemma_cmp_eq::
926 NatRep k
927 -> TypeRep a -> TypeRep b -> TypeRep c -- ignored
928 -> Equiv (CMP k k a b c) b
929 lemma_cmp_eq Nz _ _ _ = Equiv
930 lemma_cmp_eq (Ns k_r) a b c=
931 case lemma_cmp_eq k_r a b c of
932 Equiv -> Equiv
933
934 lemma_subst :: TypeRep t -> TypeRep t’
935 -> Equiv t

197

936 (Subst (U (S Z) (S Z) t) t’ (S Z))
937 lemma_subst t_r t’_r =
938 case typesEqual t_r
939 (substT (uT (Ns Nz) (Ns Nz) t_r) t’_r (Ns Nz))
940 of Just Equiv -> Equiv
941
942 lemma_u_z :: NatRep k -> TypeRep t -> Equiv t (U k Z t)
943 lemma_u_z k_r t_r =
944 case typesEqual t_r (uT k_r Nz t_r)
945 of Just Equiv -> Equiv
946
947 lemma_uenv_z :: NatRep k -> EnvRep ts -> Equiv ts (Uenv k Z ts)
948 lemma_uenv_z k_r ts_r =
949 case envEqual ts_r (uEnv k_r Nz ts_r)
950 of Just Equiv -> Equiv
951

198 APPENDIX A. SOURCE CODE

LH.hs

1 {-# OPTIONS -XGADTs #-} {-
2
3 Linearized language
4
5 -}
6
7 module LH (
8 ProgramH(..), CodeBlockH(..), ValH(..), ExpH(..)
9) where

10
11 import Tp
12
13
14 data ProgramH where
15 Hletrec :: MapT (CodeBlockH fs) fs -> ExpH (Z, (), fs) -> ProgramH
16
17 data CodeBlockH g t where
18 Hblock :: TypeRep (Cont k t)
19 -> ExpH (k, (t, ()), fs)
20 -> CodeBlockH fs (Cont k t)
21
22 data ValH g t where
23 Hvar :: Index ts t -> ValH (i, ts, fs) t
24 Hlam :: Index fs t -> ValH (i, ts, fs) (Closed t)
25
26 Hdisclose :: ValH g (Closed t) -> ValH g t
27
28 Htp_app :: NatRep k -> TypeRep s -> TypeRep t ->
29 ValH (i, ts, fs) (Cont (S k) s)
30 -> ValH (i,ts,fs) (Cont k (Subst s t k))
31 Hpack :: TypeRep s -> TypeRep t ->
32 ValH (i, ts, fs) (Subst s t Z) -> ValH (i, ts, fs) (Exists s)
33 Hnum :: Int -> ValH g Int
34
35
36 data ExpH g where
37 Hlet :: Name -> TypeRep s ->
38 ValH (i,ts,fs) s -> ExpH (i,(s, ts),fs) -> ExpH (i,ts,fs)
39 Hunpack :: TypeRep s
40 -> ValH (i, ts, fs) (Exists s)
41 -> ExpH (S i, (s, ShiftEnv ts), fs)
42 -> ExpH (i, ts, fs)
43
44 Hlet_tup :: Name -> EnvRep t
45 -> MapT (ValH (i, ts, fs)) t
46 -> ExpH (i, (Tup t, ts), fs)
47 -> ExpH (i, ts, fs)
48 Hlet_proj :: Name -> TypeRep t -> ValH (i, ts, fs) (Tup s)
49 -> Index s t
50 -> ExpH (i, (t, ts), fs)
51 -> ExpH (i, ts, fs)

199

52 Hlet_prim :: Name -> PrimOp
53 -> ValH (i,ts,fs) Int -> ValH (i,ts,fs) Int -> ExpH (i,(Int, ts),fs)
54 -> ExpH (i, ts, fs)
55
56 Happ :: ValH g (Cont Z s) -> ValH g s -> ExpH g
57
58 Hif0 :: ValH g Int -> ExpH g -> ExpH g -> ExpH g
59
60 Hhalt :: ValH g t -> ExpH g
61

200 APPENDIX A. SOURCE CODE

Hoist.hs

1 {-# OPTIONS -fglasgow-exts #-}
2
3 module Hoist (
4 hoist
5) where
6
7 import Tp
8
9 import LC

10 import LH
11
12
13 --
14 -- Hoisting
15
16 -------------------- values
17
18 data CollectV hs0 i ts t where
19 CollectV :: EnvRep hs
20 -> ValH (i, ts, Cat hs0 hs) t
21 -> MapT (CodeBlockH (Cat hs0 hs)) hs
22 -> CollectV hs0 i ts t
23
24 collectV :: EnvRep hs0
25 -> MapT (ValH (i, ts, hs0)) ts
26 -> ValC (i, ts) t
27 -> CollectV hs0 i ts t
28
29 collectV hs0_r m (Cvar i) =
30 case cat_nil hs0_r of Equiv -> CollectV M0 (lookupT m i) M0
31
32
33 collectV (hs0_r::EnvRep hs0) m
34 (Cfix i_r t_r (f::ExpC (i, (t, (Cont i t, ()))))) =
35 let i = newIndex hs0_r
36 hs1_r = catT hs0_r (Ms (Rcont i_r t_r) M0)
37 in case collectE hs1_r
38 (Ms (Hvar i0) (Ms (Hvar i1) M0))
39 f of
40 CollectE (hs2_r::EnvRep hs2)
41 (f’ ::ExpH (i, (t, (Cont i t, ())),
42 Cat (Cat hs0 (Cont i t, ())) hs2))
43 tail ->
44 case lemma_cat_assoc hs0_r (Ms (Rcont i_r t_r) M0) hs2_r of
45 Equiv ->
46 CollectV (Ms (Rcont i_r t_r) hs2_r)
47 (Hdisclose (Hlam (weaken_index hs2_r i)))
48 (Ms (Hblock (Rcont i_r t_r)
49 (Hlet "f" (Rcont i_r t_r)
50 (Hdisclose
51 (Hlam (weaken_index hs2_r i))) $

201

52 Hlet "x" t_r (Hvar i1) $
53 (weaken_exp_ts (Ms t_r (Ms (Rcont i_r t_r)
54 M0))
55 (Ms t_r M0) f’)))
56 tail)
57
58 collectV hs0_r m (Cnum i) = CollectV M0 (Hnum i) M0
59
60 collectV hs0_r m (Cpack s_r t_r v) =
61 case collectV hs0_r m v of
62 CollectV hs1_r v’ tup1 ->
63 CollectV hs1_r (Hpack s_r t_r v’) tup1
64
65 collectV hs0_r m (Ctp_app k_r s_r t_r e) =
66 case collectV hs0_r m e of
67 CollectV hs1_r e’ tup1 ->
68 CollectV hs1_r (Htp_app k_r s_r t_r e’) tup1
69
70
71 -------------------- tuples
72
73 data CollectT hs0 i ts t where
74 CollectT :: EnvRep hs
75 -> MapT (ValH (i, ts, Cat hs0 hs)) t
76 -> MapT (CodeBlockH (Cat hs0 hs)) hs
77 -> CollectT hs0 i ts t
78
79 collectT :: EnvRep hs0
80 -> MapT (ValH (i, ts, hs0)) ts
81 -> MapT (ValC (i, ts)) t
82 -> CollectT hs0 i ts t
83 collectT hs0_r m M0 = CollectT M0 M0 M0
84 collectT hs0_r m (Ms e1 es) =
85 case collectV hs0_r m e1 of
86 CollectV hs1_r e1’ tup1 ->
87 case collectT (catT hs0_r hs1_r)
88 (mapT (weaken_val_hs hs1_r) m) es of
89 CollectT hs2_r es’ tup2 ->
90 case lemma_cat_assoc hs0_r hs1_r hs2_r of
91 Equiv ->
92 CollectT (catT hs1_r hs2_r)
93 (Ms (weaken_val_hs hs2_r e1’) es’)
94 (cmb_tup hs0_r hs1_r hs2_r tup1 tup2)
95
96
97 -------------------- expressions
98
99 data CollectE hs0 i ts where

100 CollectE :: EnvRep hs
101 -> ExpH (i, ts, Cat hs0 hs)
102 -> MapT (CodeBlockH (Cat hs0 hs)) hs
103 -> CollectE hs0 i ts

202 APPENDIX A. SOURCE CODE

104
105 collectE :: EnvRep hs0
106 -> MapT (ValH (i, ts, hs0)) ts
107 -> ExpC (i, ts)
108 -> CollectE hs0 i ts
109
110 collectE (hs0_r::EnvRep hs0)
111 m (Clet n s_r v (e::ExpC (i, (s, ts)))) =
112 case collectV hs0_r m v of
113 CollectV (hs1_r::EnvRep hs1) v’ tup1 ->
114 case collectE (catT hs0_r hs1_r)
115 (Ms (Hvar i0)
116 (mapT (shift_val_ts . (weaken_val_hs hs1_r)) m)) e of
117 CollectE (hs2_r::EnvRep hs2)
118 (e’::ExpH (i, (s, ts), Cat (Cat hs0 hs1) hs2)) tup2 ->
119 case lemma_cat_assoc hs0_r hs1_r hs2_r of
120 Equiv ->
121 CollectE (catT hs1_r hs2_r)
122 (Hlet n s_r (weaken_val_hs hs2_r v’) e’)
123 (cmb_tup hs0_r hs1_r hs2_r tup1 tup2)
124
125 collectE (hs0_r::EnvRep hs0)
126 (m::MapT (ValH (i, ts, hs0)) ts)
127 (Cunpack t_r v
128 (e::ExpC (S i, (s, ShiftEnv ts)))) =
129 case collectV hs0_r m v of
130 CollectV (hs1_r::EnvRep hs1) v’ tup1 ->
131 case collectE (catT hs0_r hs1_r)
132 (Ms (Hvar i0)
133 (mapT (shift_val_ts . weaken_val_hs hs1_r)
134 (shift_map m)))
135
136 e of
137 CollectE (hs2_r::EnvRep hs2)
138 (e’::ExpH (S i, (s, ShiftEnv ts), Cat (Cat hs0 hs1) hs2))
139 tup2 ->
140 case lemma_cat_assoc hs0_r hs1_r hs2_r of
141 Equiv ->
142 CollectE (catT hs1_r hs2_r)
143 (Hunpack t_r (weaken_val_hs hs2_r v’) e’)
144 (cmb_tup hs0_r hs1_r hs2_r tup1 tup2)
145
146 collectE hs0_r m (Capp e1 e2) =
147 case collectV hs0_r m e1 of
148 CollectV hs1_r e1’ tup1 ->
149 case collectV (catT hs0_r hs1_r)
150 (mapT (weaken_val_hs hs1_r) m) e2 of
151 CollectV hs2_r e2’ tup2 ->
152 case lemma_cat_assoc hs0_r hs1_r hs2_r of
153 Equiv ->
154 CollectE (catT hs1_r hs2_r)
155 (Happ (weaken_val_hs hs2_r e1’) e2’)

203

156 (cmb_tup hs0_r hs1_r hs2_r tup1 tup2)
157
158 collectE (hs0_r::EnvRep hs0) m (Clet_prim n op v1 v2 (e::ExpC (i, (Int, ts)))) =
159 case collectV hs0_r m v1 of
160 CollectV (hs1_r::EnvRep hs1) v1’ tup1 ->
161 case collectV (catT hs0_r hs1_r)
162 (mapT (weaken_val_hs hs1_r) m) v2 of
163 CollectV (hs2_r::EnvRep hs2) v2’ tup2 ->
164 case collectE (catT (catT hs0_r hs1_r) hs2_r)
165 (Ms (Hvar i0)
166 (mapT (shift_val_ts . (weaken_val_hs hs2_r .
167 weaken_val_hs hs1_r)) m)) e of
168 CollectE (hs3_r::EnvRep hs3)
169 (e’::ExpH (i, (Int, ts), Cat (Cat (Cat hs0 hs1) hs2) hs3))
170 tup3 ->
171 case (lemma_cat_assoc (catT hs0_r hs1_r) hs2_r hs3_r,
172 lemma_cat_assoc hs0_r hs1_r (catT hs2_r hs3_r)) of
173 (Equiv, Equiv) ->
174 CollectE (catT hs1_r (catT hs2_r hs3_r))
175 (Hlet_prim n op
176 (weaken_val_hs hs3_r $
177 weaken_val_hs hs2_r v1’)
178 (weaken_val_hs hs3_r v2’) e’)
179 (cmb_tup hs0_r hs1_r (catT hs2_r hs3_r) tup1 $
180 cmb_tup (catT hs0_r hs1_r) hs2_r hs3_r
181 tup2 tup3)
182
183
184 collectE (hs0_r::EnvRep hs0) m (Cif0 v e1 e2) =
185 case collectV hs0_r m v of
186 CollectV (hs1_r::EnvRep hs1) v’ tup1 ->
187 case collectE (catT hs0_r hs1_r)
188 (mapT (weaken_val_hs hs1_r) m) e1 of
189 CollectE (hs2_r::EnvRep hs2) e1’ tup2 ->
190 case collectE (catT (catT hs0_r hs1_r) hs2_r)
191 (mapT (weaken_val_hs hs2_r . weaken_val_hs hs1_r) m)
192 e2 of
193 CollectE (hs3_r::EnvRep hs3) e2’ tup3 ->
194 case (lemma_cat_assoc (catT hs0_r hs1_r) hs2_r hs3_r,
195 lemma_cat_assoc hs0_r hs1_r (catT hs2_r hs3_r)) of
196 (Equiv, Equiv) ->
197 CollectE (catT hs1_r (catT hs2_r hs3_r))
198 (Hif0 (weaken_val_hs hs3_r $
199 weaken_val_hs hs2_r v’)
200 (weaken_exp_hs hs3_r e1’) e2’)
201 (cmb_tup hs0_r hs1_r (catT hs2_r hs3_r)
202 tup1 $
203 cmb_tup (catT hs0_r hs1_r) hs2_r hs3_r
204 tup2 tup3)
205
206
207

204 APPENDIX A. SOURCE CODE

208 collectE (hs0_r::EnvRep hs0) m (Clet_tup n t_r tup (e::ExpC (i, (Tup t, ts)))) =
209 case collectT hs0_r m tup of
210 CollectT (hs1_r::EnvRep hs1) tup’ tup1 ->
211 case collectE (catT hs0_r hs1_r)
212 (Ms (Hvar i0)
213 (mapT (shift_val_ts . (weaken_val_hs hs1_r)) m)) e of
214 CollectE (hs2_r::EnvRep hs2)
215 (e’::ExpH (i, (Tup t, ts), Cat (Cat hs0 hs1) hs2)) tup2 ->
216 case lemma_cat_assoc hs0_r hs1_r hs2_r of
217 Equiv ->
218 CollectE (catT hs1_r hs2_r)
219 (Hlet_tup n t_r
220 (weaken_tup_hs hs2_r tup’)
221 e’)
222 (cmb_tup hs0_r hs1_r hs2_r tup1 tup2)
223
224 collectE (hs0_r::EnvRep hs0) m (Clet_proj n s_r v i (e::ExpC (i, (t, ts)))) =
225 case collectV hs0_r m v of
226 CollectV (hs1_r::EnvRep hs1) v’ tup1 ->
227 case collectE (catT hs0_r hs1_r)
228 (Ms (Hvar i0)
229 (mapT (shift_val_ts . (weaken_val_hs hs1_r)) m)) e of
230 CollectE (hs2_r::EnvRep hs2)
231 (e’::ExpH (i, (t, ts), Cat (Cat hs0 hs1) hs2)) tup2 ->
232 case lemma_cat_assoc hs0_r hs1_r hs2_r of
233 Equiv ->
234 CollectE (catT hs1_r hs2_r)
235 (Hlet_proj n s_r (weaken_val_hs hs2_r v’) i e’)
236 (cmb_tup hs0_r hs1_r hs2_r tup1 tup2)
237
238 collectE hs0_r m (Chalt v) =
239 case collectV hs0_r m v of
240 CollectV hs1_r v’ tup1 ->
241 CollectE hs1_r (Hhalt v’) tup1
242
243
244 hoist :: ExpC (Z, ()) -> ProgramH
245 hoist e =
246 case collectE M0 M0 e of
247 CollectE hs_r e’ tup ->
248 case cat_nil hs_r of
249 Equiv -> Hletrec tup e’
250
251
252 --
253 -- Index manipulations, shifting, weakening, etc.
254
255 shift_val_ts :: ValH (i, ts, hs) t -> ValH (i, (s, ts), hs) t
256 shift_val_ts (Hvar i) = Hvar (Ix i)
257 shift_val_ts (Hlam i) = Hlam i
258 shift_val_ts (Hnum n) = Hnum n
259

205

260 shift_tup_ts :: MapT (ValH (i, ts, hs)) t -> MapT (ValH (i, (s, ts), hs)) t
261 shift_tup_ts M0 = M0
262 shift_tup_ts (Ms v t) = Ms (shift_val_ts v) (shift_tup_ts t)
263
264
265 -------------------- weakening on hs
266
267 weaken_tup_hs :: EnvRep hs -> MapT (ValH (i, ts, hs0)) t
268 -> MapT (ValH (i, ts, Cat hs0 hs)) t
269 weaken_tup_hs _ M0 = M0
270 weaken_tup_hs hs_r (Ms v t) =
271 Ms (weaken_val_hs hs_r v) (weaken_tup_hs hs_r t)
272
273 weaken_val_hs :: EnvRep hs -> ValH (i, ts, hs0) t -> ValH (i, ts, Cat hs0 hs) t
274 weaken_val_hs hs_r (Hvar i) = Hvar i
275 weaken_val_hs hs_r (Hlam i) = Hlam (weaken_index hs_r i)
276 weaken_val_hs hs_r (Hnum n) = Hnum n
277 weaken_val_hs hs_r (Htp_app k_r s_r t_r v) =
278 Htp_app k_r s_r t_r (weaken_val_hs hs_r v)
279 weaken_val_hs hs_r (Hpack s_r t_r v) = Hpack s_r t_r (weaken_val_hs hs_r v)
280 weaken_val_hs hs_r (Hdisclose v) = Hdisclose (weaken_val_hs hs_r v)
281
282 weaken_exp_hs :: EnvRep hs -> ExpH (i, ts, hs0) -> ExpH (i, ts, Cat hs0 hs)
283 weaken_exp_hs hs_r (Hlet n s_r v e) =
284 Hlet n s_r (weaken_val_hs hs_r v) (weaken_exp_hs hs_r e)
285 weaken_exp_hs hs_r (Hunpack t_r v e) = Hunpack t_r (weaken_val_hs hs_r v)
286 (weaken_exp_hs hs_r e)
287 weaken_exp_hs hs_r (Happ v1 v2) =
288 Happ (weaken_val_hs hs_r v1) (weaken_val_hs hs_r v2)
289 weaken_exp_hs hs_r (Hlet_prim n p v1 v2 e) =
290 Hlet_prim n p (weaken_val_hs hs_r v1) (weaken_val_hs hs_r v2)
291 (weaken_exp_hs hs_r e)
292 weaken_exp_hs hs_r (Hif0 v e1 e2) =
293 Hif0 (weaken_val_hs hs_r v) (weaken_exp_hs hs_r e1) (weaken_exp_hs hs_r e2)
294 weaken_exp_hs hs_r (Hlet_tup n t_r v e) =
295 Hlet_tup n t_r (weaken_tup_hs hs_r v) (weaken_exp_hs hs_r e)
296 weaken_exp_hs hs_r (Hlet_proj n t_r v i e) =
297 Hlet_proj n t_r (weaken_val_hs hs_r v) i (weaken_exp_hs hs_r e)
298 weaken_exp_hs hs_r (Hhalt v) =
299 Hhalt (weaken_val_hs hs_r v)
300
301 -------------------- weakening on ts
302
303 weaken_tup_ts :: EnvRep ts0 -> EnvRep ts
304 -> MapT (ValH (i, ts0, hs)) t
305 -> MapT (ValH (i, Cat ts0 ts, hs)) t
306 weaken_tup_ts _ _ M0 = M0
307 weaken_tup_ts ts0_r ts_r (Ms v t) =
308 Ms (weaken_val_ts ts0_r ts_r v) (weaken_tup_ts ts0_r ts_r t)
309
310
311 weaken_val_ts :: EnvRep ts0

206 APPENDIX A. SOURCE CODE

312 -> EnvRep ts
313 -> ValH (i, ts0, hs) t
314 -> ValH (i, Cat ts0 ts, hs) t
315 weaken_val_ts ts0_r ts_r (Hvar i) = Hvar (weaken_index ts_r i)
316 weaken_val_ts ts0_r ts_r (Hlam i) = Hlam i
317 weaken_val_ts ts0_r ts_r (Hnum n) = Hnum n
318 weaken_val_ts ts0_r ts_r (Hpack s t v) = Hpack s t (weaken_val_ts ts0_r ts_r v)
319 weaken_val_ts ts0_r ts_r (Htp_app k_r s_r t_r v) =
320 Htp_app k_r s_r t_r (weaken_val_ts ts0_r ts_r v)
321 weaken_val_ts ts0_r ts_r (Hdisclose v) = Hdisclose (weaken_val_ts ts0_r ts_r v)
322
323 weaken_exp_ts :: EnvRep ts0
324 -> EnvRep ts
325 -> ExpH (i, ts0, hs)
326 -> ExpH (i, Cat ts0 ts, hs)
327 weaken_exp_ts ts0_r ts_r (Hlet n s_r v e) =
328 Hlet n s_r (weaken_val_ts ts0_r ts_r v)
329 (weaken_exp_ts (Ms undefined ts0_r) ts_r e)
330 weaken_exp_ts ts0_r ts_r (Hunpack t_r v e) =
331 Hunpack t_r (weaken_val_ts ts0_r ts_r v)
332 (case lemma_cat_shift ts0_r ts_r of
333 Equiv -> (weaken_exp_ts (Ms undefined (shift_env ts0_r))
334 (shift_env ts_r) e))
335
336 weaken_exp_ts ts0_r ts_r (Happ v1 v2) =
337 Happ (weaken_val_ts ts0_r ts_r v1) (weaken_val_ts ts0_r ts_r v2)
338 weaken_exp_ts ts0_r ts_r (Hlet_prim n p v1 v2 e) =
339 Hlet_prim n p (weaken_val_ts ts0_r ts_r v1)
340 (weaken_val_ts ts0_r ts_r v2)
341 (weaken_exp_ts (Ms Rint ts0_r) ts_r e)
342 weaken_exp_ts ts0_r ts_r (Hif0 v e1 e2) =
343 Hif0 (weaken_val_ts ts0_r ts_r v)
344 (weaken_exp_ts ts0_r ts_r e1)
345 (weaken_exp_ts ts0_r ts_r e2)
346 weaken_exp_ts ts0_r ts_r (Hlet_tup n t_r v e) =
347 Hlet_tup n t_r (weaken_tup_ts ts0_r ts_r v)
348 (weaken_exp_ts (Ms undefined ts0_r) ts_r e)
349 weaken_exp_ts ts0_r ts_r (Hlet_proj n t_r v i e) =
350 Hlet_proj n t_r (weaken_val_ts ts0_r ts_r v) i
351 (weaken_exp_ts (Ms undefined ts0_r) ts_r e)
352 weaken_exp_ts ts0_r ts_r (Hhalt v) =
353 Hhalt (weaken_val_ts ts0_r ts_r v)
354
355 weaken_tuple :: EnvRep hs1 -> MapT (CodeBlockH hs0) hs ->
356 MapT (CodeBlockH (Cat hs0 hs1)) hs
357 weaken_tuple hs1_r M0 = M0
358 weaken_tuple hs1_r (Ms (Hblock t_r e) t) =
359 Ms (Hblock t_r (weaken_exp_hs hs1_r e))
360 (weaken_tuple hs1_r t)
361
362
363 tp_shift_valH :: ValH (i, ts, fs) s -> ValH (S i, ShiftEnv ts, fs) (Shift s)

207

364 tp_shift_valH (Hvar i) = Hvar (tr_index_shift i)
365 tp_shift_valH (Hlam i) = Hlam i
366
367 tp_shift_tupleH :: MapT (ValH (i, ts, fs)) t
368 -> MapT (ValH (S i, ShiftEnv ts, fs)) (ShiftEnv t)
369 tp_shift_tupleH M0 = M0
370 tp_shift_tupleH (Ms v vs) = Ms (tp_shift_valH v) (tp_shift_tupleH vs)
371
372
373 shift_map :: MapT (ValH (i, ts0, fs)) ts
374 -> MapT (ValH (S i, ShiftEnv ts0, fs)) (ShiftEnv ts)
375 shift_map M0 = M0
376 shift_map (Ms a m) = Ms (tp_shift_valH a)
377 (shift_map m)
378
379 cat_tup :: MapT (CodeBlockH hs) hs1 -> MapT (CodeBlockH hs) hs2
380 -> MapT (CodeBlockH hs) (Cat hs1 hs2)
381 cat_tup M0 t2 = t2
382 cat_tup (Ms (Hblock t_r e1) t1) t2 = Ms (Hblock t_r e1) (cat_tup t1 t2)
383
384 cmb_tup ::
385 EnvRep hs0 -> EnvRep hs1 -> EnvRep hs2
386 -> MapT (CodeBlockH (Cat hs0 hs1)) hs1
387 -> MapT (CodeBlockH (Cat (Cat hs0 hs1) hs2)) hs2
388 -> MapT (CodeBlockH (Cat (Cat hs0 hs1) hs2)) (Cat hs1 hs2)
389 cmb_tup hs0_r hs1_r hs2_r tup1 tup2 =
390 cat_tup (weaken_tuple hs2_r tup1) tup2
391
392
393 --
394 -- Lemmas
395
396 lemma_cat_shift :: EnvRep ts0
397 -> EnvRep ts
398 -> Equiv (ShiftEnv (Cat ts0 ts))
399 (Cat (ShiftEnv ts0) (ShiftEnv ts))
400 lemma_cat_shift (M0::EnvRep ts0) (r::EnvRep ts) =
401 case (cat_nil r, cat_nil (shift_env r)) of
402 (Equiv, Equiv) -> Equiv
403 lemma_cat_shift (Ms t_r ts0_r) (ts_r::EnvRep ts) =
404 case lemma_cat_shift ts0_r ts_r of
405 Equiv -> Equiv
406

208 APPENDIX A. SOURCE CODE

TAL.hs

1 {-# OPTIONS -fglasgow-exts #-} {-
2
3 Typed assembly language (TAL) syntax
4
5 -}
6
7 module TAL (
8 ValT(..), CodeBlockT(..), Instr(..), ProgramT(..),
9 Update, Sub(..), updateA

10) where
11
12 import Tp
13
14
15 data ProgramT where
16 Tprog :: EnvRep cs
17 -> MapT (CodeBlockT cs) cs
18 -> Instr cs (Code Z ())
19 -> ProgramT
20
21 data CodeBlockT g t where
22 Tblock :: TypeRep (Code k rs)
23 -> Instr cs (Code k rs)
24 -> CodeBlockT cs (Code k rs)
25
26 data ValT csrs t where
27 Treg :: Index rs t -> ValT (cs, i, rs) t
28 Tlabel :: Index cs t -> ValT (cs, i, rs) t
29 Ttp_app :: NatRep k -> EnvRep s -> TypeRep t ->
30 ValT g (Code (S k) s) -> ValT g (Code k (SubstEnv s t k))
31 Tpack :: TypeRep s -> TypeRep t ->
32 ValT g (Subst s t Z) -> ValT g (Exists s)
33 Tnum :: Int -> ValT g Int
34
35
36 -- well-typed instructions sequences
37 -- cs = type of the labels / code blocks
38 -- i = # of type variables in scope
39 -- rs = type of the registers
40 data Instr cs t where
41 ARITH :: PrimOp
42 -> NatRep d {- rd -}
43 -> Index rs Int {- rs -}
44 -> ValT (cs, i, rs) Int {- v -}
45 -> Instr cs (Code i (Update rs d Int))
46 -> Instr cs (Code i rs)
47
48 BNZ :: Sub rs t
49 -> Index rs Int {- r -}
50 -> ValT (cs, i, rs) (Code Z t) {- v -}
51 -> Instr cs (Code i rs)

209

52 -> Instr cs (Code i rs)
53
54 MV :: NatRep d {- rd -}
55 -> ValT (cs, i, rs) t
56 -> Instr cs (Code i (Update rs d t))
57 -> Instr cs (Code i rs)
58
59 UNPACK :: NatRep d {- rd -}
60 -> ValT (cs, i, rs) (Exists s) {- v -}
61 -> Instr cs (Code (S i) (Update (ShiftEnv rs) d s))
62 -> Instr cs (Code i rs)
63
64 MKTUP :: NatRep d {- rd -}
65 -> MapT (ValT (cs, i, rs)) t
66 -> Instr cs (Code i (Update rs d (Tup t)))
67 -> Instr cs (Code i rs)
68
69 LD :: NatRep d {- rd -}
70 -> Index rs (Tup tup) {- rs -}
71 -> Index tup t
72 -> Instr cs (Code i (Update rs d t))
73 -> Instr cs (Code i rs)
74
75 JMP :: Sub rs t
76 -> ValT (cs, i, rs) (Code Z t) {- v -}
77 -> Instr cs (Code i rs)
78
79 HALT :: Instr cs (Code i (t, rs))
80
81
82 type family Update rs i t
83 type instance Update (s, ts) Z t = (t, ts)
84 type instance Update () Z t = (t, ())
85 type instance Update (s, ts) (S n) t = (s, Update ts n t)
86
87 updateA :: EnvRep ts -> NatRep i -> TypeRep t -> EnvRep (Update ts i t)
88 updateA (Ms _ ts_r) Nz t_r = Ms t_r ts_r
89 updateA M0 Nz t_r = Ms t_r M0
90 updateA (Ms s_r ts_r) (Ns n_r) t_r = Ms s_r (updateA ts_r n_r t_r)
91
92 data Sub rs’ rs where
93 S0 :: Sub rs’ ()
94 Sx :: Sub rs’ rs -> Sub (s, rs’) (s, rs)
95

210 APPENDIX A. SOURCE CODE

CG.hs

1 {-# OPTIONS -fglasgow-exts -fallow-undecidable-instances #-} {-
2
3 Code generation
4
5 -}
6
7 module CG (
8 cg
9) where

10
11 import Tp
12
13 import LH
14 import TAL
15
16 --
17 -- Translation [TYPES]
18
19 type family Ttype t
20 type instance Ttype (Cont k t) = Code k (Ttype t, ())
21 type instance Ttype (Exists t) = Exists (Ttype t)
22 type instance Ttype (Var v) = Var v
23 type instance Ttype (Tup t) = Tup (Tenv t)
24 type instance Ttype Int = Int
25 type instance Ttype (Closed t) = Ttype t
26
27 type family Tenv ts
28 type instance Tenv () = ()
29 type instance Tenv (s, ts) = (Ttype s, Tenv ts)
30
31
32 -- type families reified as term-level functions
33
34 tType :: TypeRep t -> TypeRep (Ttype t)
35 tType (Rcont k t_r) = Rcode k (Ms (tType t_r) M0)
36 tType (Rexists t_r) = Rexists (tType t_r)
37 tType (Rvar v) = Rvar v
38 tType (Rtup tup) = Rtup (tEnv tup)
39 tType Rint = Rint
40 tType (Rclosed t) = tType t
41
42 tEnv :: EnvRep t -> EnvRep (Tenv t)
43 tEnv M0 = M0
44 tEnv (Ms t_r ts_r) = Ms (tType t_r) (tEnv ts_r)
45
46
47 --
48 -- Translation [TERMS]
49
50 --------------- values
51

211

52 cg_val :: MapT (Index rs) (Tenv ts)
53 -> MapT (Index cs) (Tenv fs)
54 -> ValH (i, ts, fs) t
55 -> ValT (cs, i, rs) (Ttype t)
56 cg_val m_r m_l (Hnum n) = Tnum n
57 cg_val m_r _ (Hvar i) = Treg (lookupT m_r (tr_a i))
58 cg_val _ m_l (Hlam i) = Tlabel (lookupT m_l (tr_a i))
59 cg_val m_r m_l (Hpack s_r t_r v) =
60 case lemma_ttype_subst Nz s_r t_r of
61 Equiv -> Tpack (tType s_r) (tType t_r) (cg_val m_r m_l v)
62 cg_val m_r m_l (Htp_app k_r s_r t_r v) =
63 case lemma_ttype_subst k_r s_r t_r of
64 Equiv -> Ttp_app k_r (Ms (tType s_r) M0) (tType t_r) (cg_val m_r m_l v)
65 cg_val m_r m_l (Hdisclose v) = cg_val m_r m_l v
66
67
68 --------------- expressions
69
70 data CG cs0 i rs where
71 CG :: EnvRep cs
72 -> MapT (CodeBlockT (Cat cs0 cs)) cs
73 -> Instr (Cat cs0 cs) (Code i rs)
74 -> CG cs0 i rs
75
76 cg_exp :: NatRep i
77 -> EnvRep ts
78 -> EnvRep cs0
79 -> EnvRep rs
80 -> MapT (Index cs0) (Tenv fs)
81 -> MapT (Index rs) (Tenv ts)
82 -> ExpH (i, ts, fs)
83 -> CG cs0 i rs
84
85 cg_exp i_r ts_r cs0_r rs_r c_m r_m
86 (Hlet _ s_r (v::ValH (i,ts,fs) s) e) =
87 case fresh rs_r (tType s_r) of
88 Fresh r_n rs’_r reg_ix ->
89 case cg_exp i_r (Ms s_r ts_r) cs0_r rs’_r c_m
90 (Ms reg_ix (mapT (update_index r_n (tType s_r)) r_m))
91 e of
92 CG cs_r cs instr ->
93 CG cs_r
94 cs
95 (MV r_n (cg_val r_m (mapT (weaken_index cs_r) c_m) v) $
96 instr)
97
98 cg_exp i_r ts_r cs0_r rs_r c_m r_m
99 (Hlet_prim _ op (v1::ValH (i,ts,fs) Int)

100 (v2::ValH (i,ts,fs) Int) e) =
101 case fresh rs_r Rint of
102 Fresh r_n rs’_r reg_ix ->
103 case cg_exp i_r (Ms Rint ts_r) cs0_r rs’_r c_m

212 APPENDIX A. SOURCE CODE

104 (Ms reg_ix (mapT (update_index r_n Rint) r_m))
105 e of
106 CG cs_r cs instr ->
107 case update_twice rs_r r_n Rint Rint of
108 Equiv ->
109 CG cs_r
110 cs
111 (MV r_n (cg_val r_m (mapT (weaken_index cs_r) c_m) v1) $
112 ARITH op r_n reg_ix
113 (cg_val r_m (mapT (weaken_index cs_r) c_m) v2) $
114 instr)
115
116 cg_exp _ _ cs0_r (Ms _ rs_r) c_m r_m
117 (Happ (v1::ValH (i,ts,fs) (Cont Z t))
118 (v2::ValH (i,ts,fs) t)) =
119 let s_r :: TypeRep (Code Z (Ttype t, ())) = undefined
120 v1’ :: ValH (i,ts,fs) (Cont Z t) = v1
121 in case fresh rs_r s_r of
122 Fresh r_n s’_r
123 reg_ix ->
124 case cat_nil cs0_r of
125 Equiv ->
126 CG M0 M0
127 (MV (Ns r_n) (cg_val r_m c_m v1) $
128 MV Nz (cg_val (mapT (update_index (Ns r_n) s_r) r_m)
129 c_m v2) $
130 JMP (Sx S0)
131 (Treg (Ix reg_ix)))
132
133 cg_exp _ _ cs0_r M0 c_m r_m
134 (Happ (v1::ValH (i,ts,fs) (Cont Z t))
135 (v2::ValH (i,ts,fs) t)) =
136 let t_r :: TypeRep (Ttype t) = undefined
137 in case cat_nil cs0_r of
138 Equiv ->
139 CG M0 M0
140 (-- since rs = (), v1 can’t be in a register, it must be a label
141 MV Nz (cg_val r_m c_m v2) $
142 JMP (Sx S0)
143 (cg_val (mapT (update_index Nz t_r) r_m) c_m v1))
144
145 cg_exp i_r ts_r cs0_r (rs_r::EnvRep rs) c_m r_m
146 (Hif0 v e1 e2) =
147 let c_r = Ms (Rcode i_r rs_r) M0 in
148 case fresh rs_r Rint of
149 Fresh (r_n::NatRep n) s’_r reg_ix ->
150 let rs’_r = updateA rs_r r_n Rint
151 in case cg_exp i_r ts_r cs0_r rs_r c_m r_m e2 of
152 CG cs_r cs instr2 ->
153 case cg_exp i_r ts_r (catT cs0_r cs_r)
154 rs’_r
155 (mapT (weaken_index cs_r) c_m)

213

156 (mapT (update_index r_n Rint) r_m) e1 of
157 CG cs’_r cs’ instr1 ->
158 case (lemma_cat_assoc4b cs0_r cs_r cs’_r c_r,
159 lemma_cat_assoc cs0_r cs_r cs’_r) of
160 (Equiv, Equiv) ->
161 CG (catT (catT cs_r cs’_r) c_r)
162 (weaken_seg c_r $
163 cat_map3 (weaken_seg cs’_r cs)
164 cs’
165 (weaken_seg cs’_r
166 (Ms (Tblock (Rcode i_r rs_r) instr2) M0)))
167 (MV r_n
168 (cg_val r_m
169 (mapT (weaken_index
170 (catT (catT cs_r cs’_r) c_r))
171 c_m)
172 v) $
173 BNZ (mkSub rs_r r_n)
174 reg_ix
175 (tp_app_multi i_r i_r rs_r
176 (Tlabel (mkNewIndex cs0_r cs_r cs’_r rs_r)))
177 (weaken_instr c_r instr1))
178
179 cg_exp i_r ts_r cs0_r rs_r c_m r_m
180 (Hlet_tup _ (tup_r::EnvRep t) tup e) =
181 let t_r :: TypeRep (Ttype (Tup t))
182 t_r = tType (Rtup tup_r)
183 in case fresh rs_r t_r of
184 Fresh (r_n::NatRep n) rs’_r reg_ix ->
185 case cg_exp i_r (Ms (Rtup tup_r) ts_r) cs0_r rs’_r c_m
186 (Ms reg_ix (mapT (update_index r_n t_r) r_m))
187 e of
188 CG cs_r
189 cs
190 instr ->
191 CG cs_r
192 cs
193 (MKTUP r_n
194 (mapA (cg_val r_m (mapT (weaken_index cs_r) c_m))
195 tup)
196 instr)
197
198 cg_exp i_r ts_r cs0_r (rs_r::EnvRep rs) c_m r_m
199 (Hlet_proj _ t_r
200 (v::ValH (i, ts, fs) (Tup s))
201 (i::Index s t) e) =
202 let s_r :: TypeRep (Tup (Tenv s)) = undefined
203 in case fresh rs_r s_r of
204 Fresh (r_n::NatRep n)
205 rs’_r
206 reg_ix ->
207 case update_twice rs_r r_n (undefined :: TypeRep (Tup (Tenv s)))

214 APPENDIX A. SOURCE CODE

208 (undefined :: TypeRep (Ttype t)) of
209 Equiv ->
210 case cg_exp i_r (Ms t_r ts_r) cs0_r
211 (updateR rs_r r_n (tType t_r))
212 c_m
213 (Ms (update_same_index r_n (tType t_r) reg_ix)
214 (mapT (update_index r_n (tType t_r)) r_m))
215 e of
216 CG cs_r cs
217 instr ->
218 CG cs_r
219 cs
220 (MV r_n (cg_val r_m (mapT (weaken_index cs_r) c_m) v) $
221 LD r_n reg_ix (tr_a i)
222 instr)
223
224
225 cg_exp i_r ts_r cs0_r rs_r c_m r_m
226 (Hunpack t_r (v::ValH (i,ts,fs) (Exists s)) e) =
227 let s_r :: TypeRep (Ttype s)
228 s_r = error "w"
229 in
230 case fresh (uEnv Nz (Ns Nz) rs_r) s_r of
231 Fresh r_n rs’_r reg_ix ->
232 case lemma_tenv_u ts_r of
233 Equiv ->
234 case cg_exp (Ns i_r) (Ms t_r (uEnv Nz (Ns Nz) ts_r)) cs0_r
235 rs’_r
236 c_m
237 (Ms reg_ix (mapT (update_index r_n s_r)
238 (shift_map r_m)))
239 e of
240 CG cs_r cs instr ->
241 CG cs_r
242 cs
243 (UNPACK r_n (cg_val r_m (mapT (weaken_index cs_r) c_m) v) $
244 instr)
245
246 cg_exp _ _ cs0_r rs_r c_m r_m
247 (Hhalt v) =
248 CG M0 M0
249 (case (rs_r, cat_nil cs0_r) of
250 (M0, Equiv) -> MV Nz (cg_val r_m c_m v) $
251 HALT
252 (Ms _ _, Equiv) -> MV Nz (cg_val r_m c_m v) $
253 HALT)
254
255
256 --------------- programs
257
258 data CG_tup cs0 fs where
259 CG_tup ::

215

260 EnvRep cs
261 -> MapT (CodeBlockT (Cat cs0 cs)) (Tenv fs)
262 -> MapT (CodeBlockT (Cat cs0 cs)) cs
263 -> CG_tup cs0 fs
264
265 cg :: ProgramH -> ProgramT
266 cg (Hletrec es (e::ExpH (Z, (), fs0))) =
267 let fs0_r :: EnvRep fs0 = mkEnvRep es
268 ixsA :: MapT (Index (Tenv fs0)) (Tenv fs0)
269 ixsA = mk_indices (tEnv fs0_r)
270
271 cg_tup :: forall fs cs.
272 MapT (CodeBlockH fs0) fs
273 -> MapT (Index fs0) fs -- indices
274 -> EnvRep cs
275 -> CG_tup (Cat (Tenv fs0) cs) fs
276 cg_tup M0 M0 cs_r =
277 case cat_nil cs_r of
278 Equiv -> CG_tup M0 M0 M0
279 cg_tup (Ms (Hblock (cont_r@(Rcont i_r s_r))
280 (e::ExpH (k, (t, ()), fs0)))
281 (es::MapT (CodeBlockH fs0) fs1))
282 (Ms i (is::MapT (Index fs0) fs1))
283 (cs_r::EnvRep cs) =
284 let cs0_r :: EnvRep (Tenv fs0)
285 cs0_r = tEnv (fs0_r) in
286 case cg_exp i_r (Ms s_r M0)
287 (catT (tEnv fs0_r) cs_r)
288 (Ms (tType s_r) M0)
289 (mapT (weaken_index cs_r) ixsA)
290 (Ms I0 M0)
291 e of
292 CG (cs’_r::EnvRep cs’)
293 (instrs ::MapT (CodeBlockT (Cat (Cat (Tenv fs0) cs) cs’)) cs’)
294 (instr::Instr (Cat (Cat (Tenv fs0) cs) cs’)
295 (Code k (Ttype t, ()))) ->
296 case cg_tup es is (catT cs_r cs’_r) of
297 CG_tup (cs’’_r::EnvRep cs’’)
298 (root_instrs::
299 MapT (CodeBlockT (Cat (Cat (Tenv fs0) (Cat cs cs’)) cs’’))
300 (Tenv fs1))
301 (extra_instrs::
302 MapT (CodeBlockT (Cat (Cat (Tenv fs0) (Cat cs cs’)) cs’’))
303 cs’’) ->
304 case (lemma_cat_assoc4 cs0_r cs_r cs’_r cs’’_r,
305 lemma_cat_assoc4a cs0_r cs_r cs’_r cs’’_r) of
306 (Equiv, Equiv) ->
307 CG_tup (catT cs’_r cs’’_r)
308 (Ms (Tblock (tType cont_r)
309 (weaken_instr cs’’_r instr))
310 root_instrs)
311 (cat_map (weaken_seg cs’’_r instrs)

216 APPENDIX A. SOURCE CODE

312 extra_instrs)
313 in case cg_tup es (mk_indices fs0_r)
314 M0 of
315 CG_tup (cs_r::EnvRep cs)
316 (root_instrs::
317 MapT (CodeBlockT (Cat (Cat (Tenv fs0) ()) cs))
318 (Tenv fs0))
319 (extra_instrs::
320 MapT (CodeBlockT (Cat (Cat (Tenv fs0) ()) cs)) cs) ->
321 case cg_exp Nz M0 (catT (tEnv fs0_r) cs_r) M0
322 (mapT (weaken_index cs_r) ixsA)
323 M0 e of
324 CG (cs’_r::EnvRep cs’)
325 (instrs :: MapT (CodeBlockT (Cat (Cat (Tenv fs0) cs) cs’)) cs’)
326 (instr :: Instr (Cat (Cat (Tenv fs0) cs) cs’) (Code Z ())) ->
327 case cat_nil (tEnv fs0_r) of
328 Equiv ->
329 Tprog ((catT (catT (tEnv fs0_r) cs_r) cs’_r))
330 (cat_map3 (weaken_seg cs’_r root_instrs)
331 (weaken_seg cs’_r extra_instrs)
332 instrs)
333 instr
334
335
336 --
337 -- Index manipulations
338
339 data FreshReg ts t where
340 Fresh :: NatRep n
341 -> EnvRep (Update ts n t)
342 -> Index (Update ts n t) t
343 -> FreshReg ts t
344
345 fresh :: EnvRep ts -> TypeRep t -> FreshReg ts t
346 fresh M0 t_r = Fresh Nz (Ms t_r M0) I0
347 fresh (Ms s_r ts_r) t_r =
348 case fresh ts_r t_r of
349 Fresh n_r ts’_r i ->
350 Fresh (Ns n_r) (Ms s_r ts’_r) (Ix i)
351
352
353 mk_indices :: EnvRep fs -> MapT (Index fs) fs
354 mk_indices M0 = M0
355 mk_indices (Ms _ m) = Ms I0 (mapT Ix (mk_indices m))
356
357 mkSub :: EnvRep rs -> NatRep n -> Sub (Update rs n Int) rs
358 mkSub M0 _ = S0
359 mkSub (Ms _ m) (Ns n) = Sx (mkSub m n)
360
361
362 shift_map :: MapT (Index rs) ats
363 -> MapT (Index (ShiftEnv rs)) (ShiftEnv ats)

217

364 shift_map M0 = M0
365 shift_map (Ms i m) = Ms (tr_index_shift i) (shift_map m)
366
367 mapA :: (forall t . c t -> d (Ttype t)) -> MapT c ts -> MapT d (Tenv ts)
368 mapA f M0 = M0
369 mapA f (Ms e tb) = Ms (f e) (mapA f tb)
370
371 tr_a :: t’ ~ Ttype t => Index ts t -> Index (Tenv ts) t’
372 tr_a I0 = I0
373 tr_a (Ix i) = Ix (tr_a i)
374
375 updateR :: EnvRep rs -> NatRep n -> TypeRep t
376 -> EnvRep (Update rs n t)
377 updateR (Ms s_r rs_r) Nz t_r = Ms t_r rs_r
378 updateR M0 Nz t_r = Ms t_r M0
379 updateR (Ms s_r rs_r) (Ns n) t_r = Ms s_r (updateR rs_r n t_r)
380
381 update_twice ::
382 EnvRep rs -> NatRep n -> TypeRep s -> TypeRep t
383 -> Equiv (Update rs n t)
384 (Update (Update rs n s) n t)
385 update_twice M0 Nz _ _ = Equiv
386 update_twice (Ms _ rs_r) Nz s_r t_r = Equiv
387 update_twice (Ms _ rs_r) (Ns n) s_r t_r =
388 case update_twice rs_r n s_r t_r of Equiv -> Equiv
389
390 -- safe if the index is NOT the same as n!
391 update_index :: NatRep n -> TypeRep s -> Index ts t -> Index (Update ts n s) t
392 update_index Nz s_r (Ix i) = Ix i
393 update_index (Ns n) s_r (Ix i) = Ix (update_index n s_r i)
394 update_index (Ns n) s_r I0 = I0
395
396 -- safe if the index IS the same as n!
397 update_same_index :: NatRep n
398 -> TypeRep s
399 -> Index ts t
400 -> Index (Update ts n s) s
401 update_same_index Nz s_r I0 = I0
402 update_same_index (Ns n) s_r (Ix i) = Ix (update_same_index n s_r i)
403
404
405 cat_map :: MapT c ts1 -> MapT c ts2 -> MapT c (Cat ts1 ts2)
406 cat_map M0 t2 = t2
407 cat_map (Ms e1 t1) t2 = Ms e1 (cat_map t1 t2)
408
409 cat_map3 ::
410 MapT c ts0
411 -> MapT c ts
412 -> MapT c ts’
413 -> MapT c (Cat (Cat ts0 ts) ts’)
414 cat_map3 m0 m m’ = cat_map (cat_map m0 m) m’
415

218 APPENDIX A. SOURCE CODE

416
417 weaken_val :: EnvRep cs’ -> ValT (cs, i, rs) t -> ValT (Cat cs cs’, i, rs) t
418 weaken_val cs’ (Tlabel l) = Tlabel (weaken_index cs’ l)
419 weaken_val _ (Treg r) = Treg r
420 weaken_val _ (Tnum n) = Tnum n
421 weaken_val cs’ (Tpack s_r t_r v) = Tpack s_r t_r (weaken_val cs’ v)
422 weaken_val cs’ (Ttp_app i_r s_r t_r v) = Ttp_app i_r s_r t_r (weaken_val cs’ v)
423
424 weaken_block :: EnvRep cs’ -> CodeBlockT cs rs -> CodeBlockT (Cat cs cs’) rs
425 weaken_block cs’ (Tblock t_r k) = Tblock t_r (weaken_instr cs’ k)
426
427
428 weaken_instr :: EnvRep cs’ -> Instr cs rs -> Instr (Cat cs cs’) rs
429 weaken_instr cs’ v =
430 let v_ = weaken_val cs’
431 i_ = weaken_instr cs’
432 in case v of
433 ARITH p rd rs v k -> ARITH p rd rs (v_ v) (i_ k)
434 BNZ sub r v k -> BNZ sub r (v_ v) (i_ k)
435 LD rd rs i k -> LD rd rs i (i_ k)
436 MKTUP rd tup k -> MKTUP rd (mapT v_ tup) (i_ k)
437 MV rd v k -> MV rd (v_ v) (i_ k)
438 UNPACK rd v k -> UNPACK rd (v_ v) (i_ k)
439 JMP sub v -> JMP sub (v_ v)
440 HALT -> HALT
441
442 weaken_seg :: EnvRep cs’
443 -> MapT (CodeBlockT cs) ts
444 -> MapT (CodeBlockT (Cat cs cs’)) ts
445 weaken_seg cs’_r m = mapT (weaken_block cs’_r) m
446
447 mkEnvRep :: forall fs0 fs . MapT (CodeBlockH fs0) fs -> EnvRep fs
448 mkEnvRep M0 = M0
449 mkEnvRep (Ms (Hblock s_r _) m) = Ms s_r (mkEnvRep m)
450
451 mkNewIndex ::
452 EnvRep cs0 -> EnvRep cs -> EnvRep cs’ -> EnvRep rs
453 -> Index (Cat (Cat cs0 (Cat cs cs’))
454 (Code i rs, ()))
455 (Code i rs)
456 mkNewIndex cs0_r cs_r cs’_r rs_r =
457 newIndex (catT cs0_r (catT cs_r cs’_r))
458
459
460 --
461 -- Multiple type applications
462
463 type family MultApp j c
464 type instance MultApp (S j) (Code (S k) t) =
465 MultApp j (Code k (SubstEnv t (Var j) k))
466 type instance MultApp Z t = t
467

219

468 multAppT :: NatRep j -> TypeRep c -> TypeRep (MultApp j c)
469 multAppT (Ns j_r) (Rcode (Ns k_r) t_r) =
470 multAppT j_r (Rcode k_r (substEnv t_r (Rvar j_r) k_r))
471 multAppT Nz t = t
472
473 lemma_mult_app ::
474 NatRep k -> EnvRep t ->
475 Equiv (MultApp k (Code k t))
476 (Code Z t)
477 lemma_mult_app k_r t_r =
478 case typesEqual (multAppT k_r (Rcode k_r t_r))
479 (Rcode Nz t_r) of
480 Just Equiv -> Equiv
481
482 multApp :: NatRep j -> NatRep k -> EnvRep t
483 -> ValT (cs, i, ts) (Code k t)
484 -> ValT (cs, i, ts) (MultApp j (Code k t))
485 multApp (Ns j_r) (Ns k_r) t_r v =
486 multApp j_r k_r (substEnv t_r (Rvar j_r) k_r)
487 (Ttp_app k_r t_r (Rvar j_r) v)
488 multApp Nz k_r _ e = e
489
490 tp_app_multi :: NatRep j
491 -> NatRep k
492 -> EnvRep t
493 -> ValT (cs, j, ts) (Code k t)
494 -> ValT (cs, j, ts) (Code Z t)
495 tp_app_multi j_r k_r t_r v =
496 case lemma_mult_app k_r t_r of
497 Equiv ->
498 multApp k_r k_r t_r v
499
500
501 --
502 -- Lemmas
503
504 lemma_ttype_subst ::
505 NatRep k -> TypeRep s -> TypeRep t ->
506 Equiv (Subst (Ttype s) (Ttype t) k)
507 (Ttype (Subst s t k))
508 lemma_ttype_subst k_r s_r t_r =
509 case typesEqual (substT (tType s_r) (tType t_r) k_r)
510 (tType (substT s_r t_r k_r)) of
511 Just Equiv -> Equiv
512
513 lemma_tenv_u ::
514 EnvRep ts -> Equiv (Tenv (Uenv Z (S Z) ts))
515 (Uenv Z (S Z) (Tenv ts))
516 lemma_tenv_u ts_r =
517 case envEqual (tEnv (uEnv Nz (Ns Nz) ts_r))
518 (uEnv Nz (Ns Nz) (tEnv ts_r))
519 of Just Equiv -> Equiv

220 APPENDIX A. SOURCE CODE

520
521 lemma_cat_assoc4 ::
522 EnvRep a -> EnvRep b -> EnvRep c -> EnvRep d
523 -> Equiv (Cat (Cat a b) (Cat c d))
524 (Cat (Cat a (Cat b c)) d)
525 lemma_cat_assoc4 a b c d =
526 case lemma_cat_assoc a b c of
527 Equiv ->
528 case lemma_cat_assoc (catT a b) c d of
529 Equiv -> Equiv
530
531 lemma_cat_assoc4a ::
532 EnvRep a -> EnvRep b -> EnvRep c -> EnvRep d
533 -> Equiv (Cat (Cat a b) (Cat c d))
534 (Cat (Cat (Cat a b) c) d)
535 lemma_cat_assoc4a a b c d =
536 case lemma_cat_assoc a b c of
537 Equiv ->
538 case lemma_cat_assoc (catT a b) c d of
539 Equiv -> Equiv
540
541 lemma_cat_assoc4b ::
542 EnvRep a -> EnvRep b -> EnvRep c -> EnvRep d
543 -> Equiv (Cat a (Cat (Cat b c) d))
544 (Cat (Cat (Cat a b) c) d)
545 lemma_cat_assoc4b a b c d =
546 case lemma_cat_assoc a b c of
547 Equiv ->
548 case lemma_cat_assoc a (catT b c) d of
549 Equiv -> Equiv
550

221

Main.hs

1 {-# OPTIONS -fglasgow-exts #-} {-
2
3 Compiler driver
4
5 -}
6
7 module Main (
8 compile
9) where

10
11 import Tp
12 import Src
13 import TAL
14
15 import CPS
16 import ToB
17 import CC
18 import Hoist
19 import CG
20
21 compile :: (forall a. Exp a t) -> ProgramT
22 compile = cg . hoist . cc . toB . cps
23

