
Cahier 2000-15

BOSSERT, Walter 
BRAMS, Steven J. 
KILGOUR, D. Marc

Cooperative vs. Non-cooperative Truels: Little 
Agreement, but Does that Matter?



Département de sciences économiques 

Université de Montréal 

Faculté des arts et des sciences 

C.P. 6128, succursale Centre-Ville 

Montréal (Québec) H3C 3J7 

Canada

http://www.sceco.umontreal.ca  

SCECO-information@UMontreal.CA

Téléphone : (514) 343-6539 

Télécopieur : (514) 343-7221 

Ce cahier a également été publié par le Centre interuniversitaire de recherche en 

économie quantitative (CIREQ) sous le numéro 16-2000.

This working paper was also published by the Center for Interuniversity Research in 

Quantitative Economics (CIREQ), under number 16-2000. 

ISSN 0709-9231 



CAHIER 2000-15

COOPERATIVE VS. NON-COOPERATIVE TRUELS :
LITTLE AGREEMENT, BUT DOES THAT MATTER?

Walter BOSSERT
1
, Steven J. BRAMS

2
 and D. Marc KILGOUR

3

1
Centre de recherche et développement en économique (C.R.D.E.) and Département
de sciences économiques, Université de Montréal

2
Department of Politics, New York University

3
Department of Mathematics, Wilfrid Laurier University

October 2000

__________________

Walter Bossert and D. Marc Kilgour gratefully acknowledge the support of the Social Sciences
and Humanities Research Council of Canada, and Steven J. Brams, the support of the
C.V. Starr Center for Applied Economics at New York University.



RÉSUMÉ

Nous analysons des « truels » qui sont des jeux spécifiques avec trois joueurs. Il est

démontré que, dans ces jeux, les résultats de la théorie des jeux non-coopératifs sont très

différents des résultats qui sont obtenus en utilisant une théorie coopérative.

Mots-clés : truels, jeux non-coopératifs, noyaux

ABSTRACT

It is well-known that non-cooperative and cooperative game theory may yield different

solutions to games. These differences are particularly dramatic in the case of truels, or three-

person duels, in which the players may fire sequentially or simultaneously, and the games may

be one-round or n-round. Thus, it is never a Nash equilibrium for all players to hold their fire in

any of these games, whereas in simultaneous one-round and n-round truels such cooperation,

wherein everybody survives, is in both the α-core and β-core. On the other hand, both cores

may be empty, indicating a lack of stability, when the unique Nash equilibrium is one survivor.

Conditions under which each approach seems most applicable are discussed. Although it

might be desirable to subsume the two approaches within a unified framework, such

unification seems unlikely since the two approaches are grounded in fundamentally different

notions of stability.

Keywords : truels, noncooperative games, cores



1 Introduction

There has long been a tension in game theory between cooperative and non-cooperative

analysis. Although five-sixths of von Neumann and Morgenstern (1953) is devoted to

cooperative game theory, it is non-cooperative game theory, pioneered by Nash (1951)

and epitomized by the Nash equilibrium, that has held sway for at least a generation,

largely due to the influence of economists and the strategic models they have developed

in microeconomics, industrial organization, and other fields.

In recent years, cooperative models have made somewhat of a comeback, in part

because Nash equilibria have not proved satisfactory as a solution concept in some fields.

To be sure, numerous refinements have been made in this concept, the most important

being subgame perfection that we, in fact, will use here, but there has not been a consensus

on which refinements are most useful, and in what strategic situations. Other notions of

equilibrium, less myopic than Nash and grounded in theories that propose very different

conceptions of a game and its rules of play (e.g., Greenberg, 1990; Brams, 1994), have

proved useful but have not met with widespread acceptance.

One advantage of cooperative theory is that it does not require a detailed specification

of the moves of players, the sequence in which they are made, who knows what about

whom and when, and so on. This descriptive detail is frequently missing in situations

that we might want to model. But even when it is available, conclusions that can be

derived about optimal play are often highly game-specific and non-robust: small changes

in the strategy set, sequencing, or information conditions can lead to entirely different

outcomes.

This is not to say, however, that non-cooperative theorists have failed to provide quite

general answers to certain strategic questions. Indeed, in this paper we will describe a

class of three-person games and draw general conclusions about non-cooperative behavior

in them—for example, that players will never refrain, entirely, from shooting at their

opponents. On the other hand, from the cooperative perspective this conclusion is not

supported, because there are games in this class in which it is rational for all the players

to exercise self-restraint.

One purpose of this paper is to highlight differences between the solutions that the

cooperative and non-cooperative approaches yield in three-person games. The cooperative

approach, which we operationalize in terms of the α-core and the β-core, makes self-

restraint a rational choice by showing that players can, on occasion, guarantee themselves

more—or cannot be prevented from getting more—by agreeing not to shoot, provided this

1



agreement is enforceable. But it is precisely this presumption of enforceability that the

non-cooperative approach questions, rendering shooting rational in all the games.

In fact, even when the cooperative and non-cooperative approaches both prescribe

shooting, the outcomes may be different. Moreover, within the cooperative approach,

similar solution concepts can yield different outcomes.

For the “grand unification” theorists of game theory, this divergence may be unsettling

if not dismaying. But we take a more sanguine view, invoking an analogy from physics.

Just as the particle and wave interpretations of light have not proved entirely reconcilable,

there is no good reason to expect a complete reconciliation of the cooperative and non-

cooperative approaches in game theory.

The two interpretations of light have, nevertheless, proved useful in explaining dif-

ferent observable physical phenomena. Likewise, the cooperative and non-cooperative

approaches in game theory offer insight into possibly different outcomes to expect in

games when they are viewed from the two different perspectives.

Just as most physicists have lived quite well with the different interpretations of light,

we should not despair at this lack of intellectual unity in game theory. Perhaps someday

there will be an overarching theory that subsumes the cooperative and non-cooperative

approaches within a single compelling framework. One possibility is Greenberg’s (1990)

theory of social situations. However, we believe a good pragmatic stance to adopt is that

of asking which approach works best in what situations. We will offer some thoughts on

this subject in the concluding section.

We next describe the games we will analyze, after which we will compare the solutions

each approach prescribes. These games are among the simplest 3-person (and therefore

n-person) games one can imagine in the sense that (1) the players have only three quali-

tatively different choices and (2) they are the same choices for each player. On the other

hand, simple as these games are, they give rise to a rich menu of outcomes from both

the cooperative and non-cooperative perspectives, rendering comparisons between the two

perspectives challenging.

The games we analyze, called truels, extend duels, or two-person shooting matches, to

three players. The shooting goes in rounds, whereby in any round each surviving player

can shoot at another survivor or fire into the air (i.e., not fire in that round). The game

ends when either (i) a pre-specified number of rounds has been played or (ii) there is at

most one survivor.

Several versions of truels have been discussed in the literature: see Kilgour and Brams

(1997) for a survey. In this paper, we analyze sequential truels, in which players fire one
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at a time in a prespecified order that is fixed throughout the game, and simultaneous

truels, in which all surviving players fire simultaneously in each round (but possibly into

the air). Other variations found in the literature include truels with random firing order,

truels that end probabilistically, and truels in which firing into the air is prohibited.

Among the truels discussed by Kilgour and Brams (1997) are those in which players

are perfect shots—that is, a player’s target is killed with certainty. In such truels, players’

preferences depend only on the outcome of the truel, or who survives.

Outcomes are evaluated lexicographically, in the order given below, according to three

goals:

1. A player most prefers to survive.

2. The fewer the opponents who survive, the better the outcome for a player.

3. If exactly one opponent survives, a player prefers one opponent to the other.

The third goal is implemented by identifying, for each player, which of its opponents is its

antagonist. Its other opponent, which it would rather see survive, is its non-antagonist.

After defining terms and fixing notation in section 2, we derive in section 3 the

subgame-perfect and other Nash equilibria for sequential and simultaneous truels with

n rounds, where 1 ≤ n < ∞. In section 4, we turn to the cooperative analysis, giving
the α- and β-cores of the truels. Finally, we compare the results of the cooperative and

non-cooperative analyses in section 5, drawing conclusions about the appropriateness of

each kind of analysis in different situations.

2 Truels: Definitions and Notation

The set of players of a truel is N = {1, 2, 3}, and 2N is the set of all non-empty subsets
of N . For S ∈ 2N , IRS denotes an |S|-dimensional Euclidean space with the coordinates
of points indexed by the members of S.

We use Γq(n), and Γm(n) to denote n-round sequential and simultaneous truels, re-

spectively. Sequential truels are assumed to have the fixed firing order < 1, 2, 3, 1, 2, . . . >.

Let t ∈ {q,m}. The set of strategies for player i ∈ N in game Γt(n) is Σti(n). For example,
the set of strategies of player 1 in a one-round simultaneous truel is Σm1 (1) = {shoot at
player 2, shoot at player 3, shoot into the air}. (These strategies for player 1 will be
denoted 1 → 2, 1→ 3, and 1 ↑, respectively.) The set of all strategy profiles in game Γt
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is Σt = Σt1 × Σt2 × Σt3. For S ∈ 2N , let ΣtS = ×i∈SΣti. Dependence on n will suppressed
when no confusion can arise.

An outcome of a truel is a set of survivors, that is, a subset of N . We denote outcomes

by [∅], [1], [1, 2], etc., to distinguish them from subsets of players, or coalitions, which we
denote using braces instead of brackets. Thus, the set of all conceivable outcomes is

X = {[∅], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]}.

The outcome function for the game Γt(n) is given by f tn: Σ
t(n)→ X. Clearly, f q1 (Σq(1)) =

X \ {[∅], [1]}, f qn(Σq(n)) = X \ {[∅]} if n > 1, and fmn (Σm(n)) = X for all n.
To complete the specifications of these truels, we must define players’ preferences. For

each player i ∈ N , let a(i) ∈ N \ {i} denote i’s antagonist, the opponent i dislikes more
than its non-antagonist opponent, na(i) ∈ N . Note that N = {i, a(i), na(i)}.
As indicated in section 1, i prefers any outcome wherein it survives to any outcome

wherein it does not (goal 1). Comparing two outcomes wherein i survives at both or does

not survive at both, i prefers the one wherein fewer of its opponents survive (goal 2). If

exactly one opponent survives at both outcomes (and i survives, or does not survive, at

both), i prefers the outcome wherein its non-antagonist, na(i), survives to the outcome

where its antagonist, a(i), survives (goal 3). Therefore, player i’s antisymmetric preference

ordering �i on X is given by

[i] �i [i, na(i)] �i [i, a(i)]�i [1, 2, 3] �i [∅] �i [na(i)] �i [a(i)] �i [na(i), a(i)].

Although we work in a purely ordinal framework, it will be convenient later to represent

individual preferences using utility. For all i ∈ N , define, without loss of generality,
Ui:X → IR by letting

Ui([i]) = 8, Ui([i, na(i)]) = 7, Ui([i, a(i)]) = 6, Ui([1, 2, 3]) = 5,

Ui([∅]) = 4, Ui([na(i)]) = 3, Ui([a(i)]) = 2, Ui([na(i), a(i)]) = 1.

3 Non-Cooperative Analysis: Equilibria

In most of the literature (see, for example, Brams and Kilgour, 1998, 2000, Kilgour,

1972, 1975, 1978), truels are analyzed as non-cooperative games. The non-cooperative

solution concepts we use for truels are the following: For sequential truels, we identify

subgame-perfect equilibria, because these are games of perfect information. For the n = 1

round simultaneous truel, we identify the Nash equilibria as the non-cooperative solutions,
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because these are strategic- (or normal-) form games. For simultaneous truels with n > 1

rounds, we identify the Nash equilibria that are subgame-perfect in the sense that the

behavior called for in any subsequent round is an equilibrium in the induced subgame.

One-Round Sequential Truel Kilgour and Brams (1997) show that there is a unique

subgame-perfect equilibrium in the one-round sequential truel, with outcome

Eq1 =

⎧⎨
⎩
[na(1)] if a(2) = a(3) = 1

[1, 2] otherwise

The strategies at equilibrium can be described as follows:

1. If a(3) = 2 and all three players survive until 3’s turn (because 1 and 2 do not fire

at another player), 3 will eliminate 2 producing outcome [1, 3]. But 2 prefers [1, 2]

to this outcome and can achieve it by firing earlier at 3, in which case 1 can do no

better than fire into the air.

2. If a(3) = 1 and a(2) = 3, 2 prefers to implement outcome [1, 2] by eliminating 3,

rather than [2, 3] by firing into the air. Again, 1 will fire into the air.

3. If a(2) = a(3) = 1, 3 will implement [2, 3] if both 1 and 2 fire into the air; 2

prefers this outcome to either [1, 2] or [3], which it can achieve by firing at 3 or 1,

respectively. Thus 1, faced with the choice of [a(1)], [na(1)], or [2, 3], prefers [na(1)],

so it eliminates a(1), and then na(1) eliminates 1.

Thus, in the one-round sequential truel, there is either one survivor or two.

n-Round Sequential Truel, n > 1 Kilgour and Brams (1997) show that the unique

subgame-perfect equilibrium of the sequential truel with n > 1 rounds yields

Eqn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[3] if a(1) = 2, a(2) = 3, a(3) = 1, and n even

[1] if a(1) = 2, a(2) = 3, a(3) = 1, and n odd

[2] if a(1) = 3, a(3) = 2, a(2) = 1

[i] if for some i ∈ N , na(j) = i for all j ∈ N \ {i}
A player is a common non-antagonist if and only if it is the non-antagonist of each of its

two opponents. There can be at most one common non-antagonist. The sole survivor of

the n-round sequential truel, when n > 1, is the common non-antagonist, if there is one.

Otherwise, the identity of the unique surviving player depends on the particular cyclic

pattern of antagonisms, and sometimes on the parity of n.
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For descriptions of the equilibrium strategies, see Kilgour and Brams (1997) or Kilgour

(1975). Whatever the length of the truel, all firing occurs in the first or second round,

and there is exactly one survivor.

One-Round Simultaneous Truel The one-round simultaneous truel is a strategic-

form game whose game matrix is shown below. Note that the three 3 × 3 matrices
correspond to player 3’s strategies of shoot at 1, shoot at 2, and shoot into the air,

respectively. Within each matrix, the rows correspond to player 1’s strategies, and the

columns to player 2’s strategies.

3→ 1 3→ 2 3 ↑
2→ 3 2→ 1 2 ↑ 2→ 3 2→ 1 2 ↑ 2→ 3 2→ 1 2 ↑

1→ 2 [∅]∗ [3] [3] 1→ 2 [1] [3] [1, 3] 1→ 2 [1] [3]∗3 [1, 3]

1→ 3 [2] [2] [2]∗2 1→ 3 [1] [∅]∗ [1] 1→ 3 [1, 2] [2] [1, 2]

1 ↑ [2] [2, 3] [2, 3] 1 ↑ [1]∗1 [3] [1, 3] 1 ↑ [1, 2] [2, 3] [1, 2, 3]

A Nash equilibrium is a strategy profile, associated with a cell, such that no player can ob-

tain a preferred outcome by unilaterally changing its strategy. The Nash equilibria of the

one-round simultaneous truel are indicated by asterisks in the game matrix, interpreted

as follows:

* Always an equilibrium.

*1 An equilibrium if and only if 1 is common non-antagonist.

*2 An equilibrium if and only if 2 is common non-antagonist.

*3 An equilibrium if and only if 3 is common non-antagonist.

Notice that, if there is no common non-antagonist, then there are no survivors in

equilibrium, and the strategies are one of the cyclic firing patterns, 1 → 2 → 3 → 1
or 1 → 3 → 2 → 1. These cyclic firing patterns continue to be equilibria if there is
a common non-antagonist, but another equilibrium emerges as well: the common non-

antagonist fires into the air, and the other two players eliminate each other. Thus, in the

one-round simultaneous truel, there is either one survivor or none.
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n-Round Simultaneous Truel, n > 1 To analyze the n-round simultaneous truel,

recall our assumption that, should all three players survive the first round, their strate-

gies in the resulting subgame must be subgame-perfect equilibria in the (n − 1)-round
simultaneous truel. To represent strategies and outcomes in any round up to the last, the

game matrix for the one-round simultaneous truel must be modified in two ways.

First, when there are exactly two survivors of the kth round prior to the end, those

survivors play a (k − 1)-round simultaneous duel. It is easy to verify that the strategy
of firing at the opponent in every round is dominant for a player in such a duel so that,

provided k ≥ 2, the outcome of the (k − 1)-round simultaneous duel is [∅]. (In fact,
such a duel is a Prisoners’ Dilemma.) Thus, each of the six outcomes with two survivors

in the matrix of the one-round simultaneous truel must be replaced by the outcome [∅].
Second, if all players fire into the air in the kth round prior to the end, the outcome is an

equilibrium outcome of the (k− 1)-round simultaneous truel, which we denote for now as
“x.”

3→ 1 3→ 2 3 ↑
2→ 3 2→ 1 2 ↑ 2→ 3 2→ 1 2 ↑ 2→ 3 2→ 1 2 ↑

1→ 2 [∅]∗ [3] [3] 1→ 2 [1] [3] [∅] 1→ 2 [1] [3] ∅]
1→ 3 [2] [2] [2] 1→ 3 [1] [∅]∗ [1] 1→ 3 [∅] [2] [∅]
1 ↑ [2] [∅] [∅] 1 ↑ [1] [3] [∅] 1 ↑ [∅] [∅] x

Observe that the two cyclic firing patterns resulting in [∅] continue to be equilibria in
the first round of any n-round simultaneous truel. It is easy to verify that none of the

other outcomes, with the possible exception of x, can possibly be equilibria.

Assume that n = 2, and recall that the equilibria of the one-round simultaneous truel

have as outcome either x = [∅] or x = [i], where i ∈ N is the common non-antagonist. It
is easy to see that x = [i] cannot correspond to an equilibrium, because any player other

than i prefers [∅]; moreover, this player can achieve [∅] by firing at either opponent in the
first round. The only possibility for an equilibrium that involves all players firing into the

air in the first round is x = [∅], but the players can achieve [∅] in equilibrium by firing in
the first round.

The situation with n > 2 is similar. We conclude that, if n > 1, the n-round simul-

taneous truel has no survivors. This is the unique equilibrium outcome. While the most

plausible equilibria are those involving a cyclic firing pattern in the first round, this may
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not occur in the absence of communication and coordination, a point we will return to in

the concluding section.

In summary, whatever the nature of the truel—sequential or simultaneous, one-round

or n-round—at least one player shoots another in some round. Consequently, it is never

the case that all players survive in equilibrium.

4 Cooperative Analysis: Cores

The core is probably the best-known cooperative game solution concept. It is usually

defined in terms of von Neumann–Morgenstern utility functions, which we will use on

occasion in the subsequent analysis. However, only ordinal information about the players’

preferences for the possible outcomes is essential in what follows.

In games without transferable utility, several procedures for finding characteristic func-

tions, each leading to a different notion of the core, have been suggested; see Aumann

(1961, 1967) and Aumann and Peleg (1960). Following this literature, we find the α- and

β-characteristic functions and then use them to find α-cores and β-cores for sequential and

simultaneous truels. It turns out that the α-core and the β-core coincide for sequential

truels, but they may be different for simultaneous truels.

The characteristic function v: 2N → ∪S∈2N2IRS of a game assigns a nonempty set
of payoff vectors to each coalition S such that v(S) ∈ 2IRS for all S ∈ 2N . Loosely
speaking, the α-characteristic function, vα(·), is the set of payoff vectors that a coalition
can guarantee its members, whereas the β-characteristic function, vβ(·), is the set of payoff
vectors that the complement of the coalition cannot prevent the members of the coalition

from receiving.

Let t ∈ {q,m}. For u ∈ IRN , it is clear that u ∈ vtα(N) = vtβ(N) if and only if there
exists σt ∈ Σt such that Ui(f t(σt)) ≥ ui for all i ∈ N .
Similarly, for a coalition S ∈ 2N and a payoff vector u ∈ IRS, u ∈ vtα(S) if and only if

there exists σtS ∈ ΣtS such that Ui(f t(σtS, σtN\S)) ≥ ui for all i ∈ S and for all σtN\S ∈ ΣtN\S.
Analogously, u ∈ vtβ(S) if and only if, for each σtN\S ∈ ΣtN\S, there exists σtS ∈ ΣtS such
that Ui(f t(σtS, σ

t
N\S)) ≥ ui for all i ∈ S.

An outcome x ∈ f t(Σt) is in the α-core of the game Γt if and only if there exists no
(S, u), with S ∈ 2N and u ∈ vtα(S), such that ui > Ui(x) for all i ∈ S. Analogously,
x ∈ f t(Σt) is in the β-core of Γt if and only if there exists no (S, u) with S ∈ 2N and
u ∈ vtβ(S) such that ui > Ui(x) for all i ∈ S. We say that a coalition S ∈ 2N α-blocks
(respectively, β-blocks) an outcome x ∈ f t(Σt) if and only if there exists u ∈ vtα(S)
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(respectively, u ∈ vtβ(S)) such that ui > Ui(x) for all i ∈ S.
For t ∈ {q,m} and an n-round truel, the α-core and the β-core of Γt(n) are denoted

by C tα(n) and C
t
β(n), respectively. Again, the dependence on the number of rounds is

suppressed when no ambiguities can arise. Note that our results would be unaffected by

the “stronger” core definitions that replace “ui > Ui(x) for all i ∈ S” by “ui ≥ Ui(x) for
all i ∈ S with at least one strict inequality.” For t ∈ {q,m}, it is clear that vtα(S) ⊆ vtβ(S)
for all S ∈ 2N . Consequently,

Cqβ ⊆ Cqα and Cmβ ⊆ Cmα . (1)

One-Round Sequential Truel Theorem 1 shows that the one-round sequential truel,

Γq(1), has a unique core outcome, which is identical for the two core definitions.

Theorem 1 Cqα(1) = C
q
β(1) = {[1, na(1)]}.

Proof: By (1), it is sufficient to show that

(i) [1, na(1)] belongs to Cqβ(1);

(ii) no other outcome in f q1 (Σ
q(1)) is in Cqα(1).

(i) First, note that no coalition containing player 1 will block [1, na(1)], because this is

player 1’s most preferred outcome in f q1 (Σ
q(1)). To show that the coalition {2} cannot

β-block [1, na(1)], consider the strategy pair (σq1, σ
q
3) = (1 → 2, 3 ↑) ∈ Σq{1,3}(1) in which

player 1 shoots player 2 and player 3 shoots in the air. The outcome is [1, 3], the worst

possible outcome for player 2, independent of player 2’s strategy choice. Hence, if the

complement of {2} chooses (1→ 2, 3 ↑), there is no strategy for player 2 that produces an
outcome it prefers to [1, na(1)]. Thus {2} cannot block [1, na(1)] according to the β-core
definition. That {3} cannot block this outcome is shown analogously.
Finally, consider the coalition {2, 3}. Let σq1 = (1→ na(1)) ∈ Σq1(1) be the strategy in

which player 1 shoots na(1). Independent of the strategy choice of the coalition {2, 3}, the
resulting outcome is less preferred than [1, na(1)] for player na(1); thus, coalition {2, 3}
cannot block either. We have shown that [1, na(1)] is in Cqβ(1) and, therefore, in C

q
α(1).

(ii) The outcome [2] is not in the α-core because it is blocked by coalition {1, 3}. To
see this, let (σq1, σ

q
3) = (1 → 2, 3 ↑) ∈ Σq{1,3}(1). For any strategy choice of player 2, the

resulting outcome is [1, 3], which is preferred to [2] by both coalition members. That [3]

cannot be in the α-core is shown analogously.

To show that the outcome [1, a(1)] is blocked by the coalition {1, na(1)}, consider
a strategy pair (σq1, σ

q
na(1)) = (1 → a(1), na(1) ↑) ∈ Σq{1,na(1)}(1), where player 1 shoots
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player a(1) and player na(1) shoots into the air. The resulting outcome is [1, na(1)] for all

strategy choices of player a(1). Because this outcome is preferred to [1, a(1)] by players 1

and na(1), [1, a(1)] cannot be in the α-core.

Also, the outcome [2, 3] is blocked by the coalition {1}, as can be seen by choosing
σq1 = (1 → 2) ∈ Σq1(1), i.e., player 1 shoots player 2. Because player 1 can guarantee
itself an outcome preferred to [2, 3] (its least preferred outcome) independent of {2, 3}’s
strategy choice, outcome [2, 3] is not in the α-core.

Finally, the outcome [1, 2, 3], in which all players survive, can be blocked by the coali-

tion {1, 2}. Choose (σq1, σq2) = (1→ 3, 2 ↑) ∈ Σq{1,2}(1) such that player 1 shoots player 3
and player 2 shoots in the air. The outcome is [1, 2], independent of player 3’s strategy

choice. Because [1, 2] is preferred to [1, 2, 3] by both players 1 and 2, the members of the

coalition {1, 2} can guarantee themselves a more-preferred outcome, so [1, 2, 3] is not in
the α-core.

n-Round Sequential Truel, n > 1 Strategies are more complex in the n-round than

in the one-round sequential truel because players can, for example, make their actions

contingent on the history of play. As well, outcome [1] can arise when there are two or

more rounds and it is another possible core element. Nonetheless, much of the analysis of

outcomes other than [1, na(1)] and [1] in Theorem 1 applies here as well, in part because

the consequences of many different strategy choices can be summarized analogously in

one-round and n-round sequential truels. For example, outcomes not in the core of Γq(n)

when n = 1 are also not in the core when n > 1.

The primary issues to be addressed in determining cores in the n-round sequential

truel are (i) whether [1, na(1)] survives in the α-core or the β-core of Γq(n), and (ii)

whether [1] enters the α-core or β-core of Γq(n). It turns out that the answer to (i) is

“no,” and the answer to (ii) depends on the assignment of antagonists to players 2 and 3.

If player 1 is the antagonist of both its opponents, the α-core and the β-core are empty,

but if player 1 is the non-antagonist of at least one other player, the α-core and the β-core

coincide, and contain only the element [1], as shown in the following theorem.

Theorem 2 (a) Cqα(n) = C
q
β(n) = ∅ if and only if n ≥ 2 and a(2) = a(3) = 1;

(b) Cqα(n) = C
q
β(n) = {[1]} if and only if n ≥ 2 and either na(2) = 1 or na(3) = 1.

Proof: We first prove that no outcome other than [1] can be in the α-core of Γq(n). By

(1), this implies that no such outcome can be in the β-core either.
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The outcome [2] is not in the α-core because it is blocked by coalition {1, 3}. Let
(σq1, σ

q
3) ∈ Σq{1,3}(n) be such that player 1 shoots player 2 (1 → 2) in round 1 and no

further shots are fired in any round. For any strategy choice of player 2, the resulting

outcome is [1, 3], which is preferred to [2] by both coalition members. That [3] cannot be

in the core is shown analogously.

The outcome [1, a(1)] is blocked by the coalition {1, na(1)}. Consider a strategy pair
(σq1, σ

q
na(1)) ∈ Σq{1,na(1)}(n) such that player 1 shoots player a(1) in the first round and

no further shots are fired. The resulting outcome is [1, na(1)] for all strategy choices of

player a(1). Because this outcome is preferred to [1, a(1)] by players 1 and na(1), [1, a(1)]

cannot be in the α-core.

The outcome [1, na(1)] is blocked by the coalition {1, a(1)}. Consider a strategy pair
(σq1, σ

q
a(1)) ∈ Σq{1,a(1)}(n) such that player 1 shoots player na(1) in round 1, player a(1)

shoots in the air in round 1, and player 1 shoots player a(1) in round 2. The resulting

outcome is [1] for all strategy choices of player na(1). Because this outcome is preferred

to [1, na(1)] by players 1 and a(1), [1, na(1)] cannot be in the α-core.

The outcome [2, 3] is blocked by the coalition {1}. By choosing σq1 ∈ Σq1(n) such
that player 1 shoots player 2 in round 1 and shoots in the air subsequently, player 1

can guarantee itself a higher utility than in outcome [2, 3] (its worst possible outcome),

independent of the strategy choice of {2, 3}. Therefore, [2, 3] is not in the α-core.
Finally, the outcome [1, 2, 3] can be blocked by the coalition {1, 2}. If (σq1, σq2) ∈

Σq{1,2}(n) is chosen such that player 1 shoots player 3 in round 1 and no further shots

are fired, the outcome will be [1, 2], independent of player 3’s strategy choice. Because

[1, 2] is preferred to [1, 2, 3] by both players 1 and 2, the coalition members can guarantee

themselves higher payoffs. Thus, [1, 2, 3] is not in the α-core.

To complete the proof of part (a), suppose a(2) = a(3) = 1. Note that U2([1]) =

U3([1]) = 2. Choose (σ
q
2, σ

q
3) ∈ Σq{2,3}(n) such that player 2 shoots player 1 in round 1

if player 2 is alive at its turn, and player 3 shoots player 1 in round 1 if players 1 and

3 are both still alive at player 3’s turn. After round 1, these players always shoot in

the air. Given these strategies, the worst possible outcome for player 2 is [3], and the

worst possible outcome for player 3 is [2]. But U2([3]) = U3([2]) = 3, so the members

of the coalition {2, 3} have guaranteed themselves the payoff vector (3, 3), which strictly
dominates the payoffs (2, 2) achieved at [1]. Therefore, [1] is not in the α-core and thus

not in the β-core.

To prove part (b), suppose there exists j ∈ {2, 3} such that na(j) = 1, and consider
the outcome [1]. Clearly, no coalition containing player 1 can block this outcome. To
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see that coalition {2} cannot block the outcome [1], let (σq1, σq3) ∈ Σq{1,3}(n) be such that
player 1 shoots player 2 in round 1, and no further shots are fired. Independent of player

2’s strategy choice, the outcome is [1, 3], which is worse than [1] for player 2. Therefore,

{2} cannot achieve a higher payoff, given the strategy choice of its complement {1, 3}.
That {3} cannot block [1] is shown analogously.
Finally, consider coalition {2, 3}. Let σq1 ∈ Σq1(n) be such that player 1 shoots player

j in round 1 and does not shoot in any other round. Given player 1’s strategy and the

fact that na(j) = 1, the best possible outcome for player j is [1]. It follows that coalition

{2, 3} cannot block [1], completing the proof.

Simultaneous Truel Unlike sequential truels, the α-core and the β-core of simultane-

ous truels may not coincide. However, the two cores do not depend on the length of the

truel. As shown in the next theorem, the β-core of any simultaneous truel consists of the

grand coalition only. Moreover, the α-core always contains the grand coalition and, in

addition, the common non-antagonist (if there is one).

Theorem 3 (a) Cmα = {[1, 2, 3]} if and only if, for each i ∈ N , there exists j ∈ N \ {i}
such that a(j) = i;

(b) For all i ∈ N , Cmα = {[1, 2, 3], [i]} if and only if na(j) = i for all j ∈ N \ {i};
(c) Cmβ = {[1, 2, 3]}.

Proof: First, we show that outcomes containing zero or two players cannot be in the

α-core. By (1), these outcomes are not in the β-core, either.

The outcome [∅], in which nobody survives, is blocked by the grand coalition, N .
If σm ∈ Σm is such that no shots are fired, the resulting outcome is [1, 2, 3], which is
preferred to [∅] by all players.
Now consider an outcome [i, j] with i �= j. Let {k} = N \{i, j}. The coalition {k} can

choose a strategy σmk ∈ Σmk such that k shoots player i in round 1 and does not fire again
under any circumstances. For any strategy choice of {i, j}, this guarantees an outcome
that is preferred to [i, j] by k; thus [i, j] cannot be in the α-core.

Next we prove that [1, 2, 3] is in the β-core and, hence, in the α-core. Clearly, N

cannot block [1, 2, 3], because any improvement for one player would make at least one

opponent worse off. To see that a singleton {i} cannot block [1, 2, 3], let i’s opponents
be j and k, and consider a strategy pair (σmj , σ

m
k ) ∈ Σm{j,k} in which j shoots i in round 1

and does not fire in any subsequent round, and k never fires. For any strategy choice of
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player i, i will not survive and, consequently, the resulting outcome is worse than [1, 2, 3].

Hence, {i} cannot block [1, 2, 3].
Finally, consider a coalition {i, j} with i �= j. Let {k} = N \ {i, j}, and consider a

strategy σmk ∈ Σmk such that k shoots i in round 1 and never fires again. Again, i cannot
survive, so the resulting outcome is worse than [1, 2, 3] for player i for any strategy choice

of {i, j}. Therefore, {i, j} cannot block [1, 2, 3], and [1, 2, 3] must be in the β-core; by (1),
it is in the α-core also.

To complete the proof of (a), let i ∈ N , and suppose there exists j ∈ N \{i} such that
a(j) = i. We show that {i} cannot be in the α-core. Consider the coalition {j}, and let
σmj ∈ Σmj be such that j shoots i in round 1 and fires no further shots. Independent of the
strategy choices of the remaining two players, the worst possible outcome for j is [na(j)]

(i.e., only its non-antagonist survives), which j prefers to [i] because a(j) = i. Therefore,

j can guarantee itself a utility of at least 3, which exceeds Uj([i]) = 2. Hence, [i] is not in

the α-core and therefore not in the β-core.

Now suppose that i ∈ N is a common non-antagonist, i.e., if j and k denote i’s
opponents (j �= k), then na(j) = na(k) = i. Of course, there is at most one common
non-antagonist.

To complete the proof of (b), we show that [i] is in the α-core. First, it is clear that no

coalition containing i can block [i], i’s most-preferred outcome. The greatest payoff that j

can guarantee for itself is Uj([i]) = 3 by firing at k in the first round. No higher payoff can

be guaranteed because i and k could, for example, choose a strategy pair (σmi , σ
m
k ) ∈ Σm{i,k}

such that i and k shoot at j in the first round and fire no further shots. Therefore, {j}
cannot block [i] according to the α-core definition.

Now, to obtain a contradiction, suppose there exists (σmj , σ
m
k ) ∈ Σm{j,k} such that both

Uj(f
m(σmj , σ

m
k , σ

m
i )) > 3 = Uj([i]) (2)

Uk(f
m(σmj , σ

m
k , σ

m
i )) > 3 = Uk([i]) (3)

are true for all σmi ∈ Σmi . We distinguish three cases, according to the properties of
(σmj , σ

m
k ):

(i) j’s first shot is aimed at i, or k’s first shot is aimed at i;

(ii) j’s first shot is aimed at k, or k’s first shot is aimed at j;

(iii) neither j nor k fires any shots.

(i) Suppose that j’s first shot is aimed at i. Let σmi be such that i shoots j in round 1

and never shoots again. Then k survives and j does not, making Uj([k]) = 2 the greatest

13



possible payoff for j, contradicting (2). The argument is similar if k’s first shot is aimed

at i, leading to a contradiction of (3).

(ii) Rename j and k if necessary so that j’s first shot is aimed at k. This case would be

covered by (i) if k’s first short were aimed at i. Therefore, k’s first shot is at j, or k does

not shoot. There are two subcases:

(ii.1) If k fires its first shot at j, and it fires in the same round as j or an earlier round,

let σmi ∈ Σmi be such that i fires its first and only shot at k in the same round in which k
fires its first shot at j. The resulting outcome is [i], contradicting (2) and (3).

(ii.2) If k fires its first shot at j but in a later round than j’s first shot, or k does not fire

at all, let σmi ∈ Σmi be such that i shoots j in round 1 and k in round 2. Again, outcome
[i] results, contradicting (2) and (3).

(iii) Let σmi ∈ Σmi be such that i shoots j in round 1. The resulting outcome is [i, k],
contradicting (2).

This completes the proof of (b).

To complete the proof of (c), we show that the common non-antagonist, [i], is not in

the β-core of Γm. For any σmi ∈ Σmi , we provide a strategy pair (σmj , σmk ) ∈ Σm{j,k} such
that Uj(fm(σmj , σ

m
k , σ

m
i )) > 3 = Uj([i]) and Uk(f

m(σmj , σ
m
k , σ

m
i )) > 3 = Uk([i]), which

demonstrates that {j, k} blocks [i] from the β-core.
Let σmi ∈ Σmi . We distinguish two cases:

(i) i shoots j or k in round 1;

(ii) i does not fire in round 1.

(i) If i shoots j in round 1, let (σmj , σ
m
k ) ∈ Σm{j,k} be such that j shoots k in round 1 and k

shoots i in round 1. The resulting outcome is [∅], which is preferred to [i] by both j and
k. The argument is analogous if i shoots k in round 1.

(ii) Let (σmj , σ
m
k ) ∈ Σm{j,k} be such that j shoots i in round 1 and no further shots are fired.

The resulting outcome is [j, k], which is preferred to [i] by both j and k.

5 Cooperative and Non-Cooperative Truels

Taking equilibria as representative outcomes of non-cooperative analysis, and core out-

comes as representative of cooperative analysis, we compare these two views of truels.

Table 1 summarizes the numbers of survivors under each form of analysis for each version

of the truel.
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Table 1: Numbers of Survivors in Truels
Truel Non-Cooperative Cooperative

Type Rounds Equilibrium α-Core β-Core

Sequential 1 1 or 2 2 2

Sequential n > 1 1 — or 1 — or 1

Simultaneous 1 0 or 1 1 or 3 3

Simultaneous n > 1 0 1 or 3 3

Observe that there are one or two numbers in all cells, except when the cores may be

empty, denoted “—,” which can occur in two instances of the sequential truel with n > 1.

Cooperative game theory generally produces more survivors than non-cooperative

game theory. In fact, this is not the case only in the n > 1 sequential truel, which

has the same number of survivors whether the analysis is cooperative or non-cooperative,

provided the core is non-empty. If the core is empty, the cooperative analysis suggests a

lack of stability rather than just fewer survivors.

Table 2 is a more detailed summary of the results reported above. It shows all out-

comes that are supported by equilibria, and all core outcomes, in both the sequential and

simultaneous truels. In Table 2, CNA means “Common Non-Antagonist,” Ant = (i, j, k)

means a(1) = i, a(2) = j, and a(3) = k, and Ant = (·, 1, 1) means either a(1) = 2,
a(2) = 1, and a(3) = 1 or a(1) = 3, a(2) = 1, and a(3) = 1. Note that player 1 is CNA if

and only if Ant = (·, 3, 2), player 2 is CNA if and only if Ant = (3, ·, 1), player 3 is CNA if
and only if Ant = (2, 1, ·), and “no CNA” means either Ant = (2, 3, 1) or Ant = (3, 1, 2).

Place Table 2 here

Table 2 shows that it is generally beneficial to be a common non-antagonist. There

is only one instance when the existence of a common antagonist (player 1 in the n > 1

round sequential truel) makes for an empty core, so we might say that nobody benefits

in this case.

Note the special features of truels with only one round. In the sequential truel, player

1 is first to fire and can affect who survives (while not always surviving itself); player

3 is last to fire and is often eliminated simply because it is the one remaining threat to

one of its opponents. In the one-round simultaneous truel, on the other hand, a common

non-antagonist is guaranteed survival, though not always alone, in both the cooperative

and the non-cooperative analyses.
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6 Conclusions

Non-cooperative analysis may be thought of as more demanding, because it insists that

players enforce an outcome on their own—specifically, that an outcome is stable because

no player has an incentive unilaterally to depart from it. Although this notion of stabil-

ity would appear to make non-cooperative analysis more hard-nosed and realistic, it is,

paradoxically, less realistic if an equilibrium outcome that the analysis prescribes cannot

be implemented unless the players can communicate and coordinate their choices (which

is usually not assumed in non-cooperative game theory).

To be sure, in the case of sequential truels, this is less of a problem, because the order of

choice is fixed. Given this order and the players’ knowledge of each other’s antagonisms,

we showed that if player 1 is the common non-antagonist, its survival in equilibrium

is guaranteed. Other players may also be equilibrium survivors in a sequential truel,

depending on the pattern of antagonisms and the parity of the number of rounds.

For simultaneous truels, on the other hand, the situation is far more ambiguous. Ex-

cept for one-round truels, in which a common non-antagonist can survive in equilibrium,

there will be no survivors in equilibrium in either the one-round or the n-round truels.

But the equilibrium prediction of no survivors in n-round simultaneous truels will not

be realized unless the players follow a cyclic pattern of shooting. If they do not, and, say,

players 1 and 2 both shoot player 3, and player 3 shoots player 2, then player 1 will be the

sole survivor. While this is not an equilibrium outcome because player 2 could have done

better shooting player 1, it cannot always be achieved in the absence of communication

and coordination, whether the simultaneous truel is one round or n rounds.

To try to circumvent this problem, assume that there is communication, and the

players agree to a cyclic pattern of shooting in the first round, leading to no survivors in a

simultaneous truel. Is this scenario more realistic than the players, realizing that they all

can do better by not shooting in the first round, agreeing to fire in the air? Indeed, three

survivors, which is a predicted outcome of both the α-core and β-core, seems eminently

reasonable, except for one thing: each player has an incentive to defect in round 1, or

beginning in round 1 if the truel has n rounds.

At the same time, there is also a disincentive to defect in the n-round truel:

1. If only one player defects, the two surviving players will shoot each other in a duel

in the next round, so the defector will do no better than if it had stuck to the

agreed-upon cyclic shooting pattern in round 1.

2. If two players defect and shoot each other, they will actually be worse off because
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there will be one survivor; if they do not shoot each other but both shoot the third

player, there will again be a duel in the next round and no survivors. Only if both

defectors shoot different players will one survive, but then the defector who does

not survive is worse off than if all players had initially abstained from shooting each

other.

3. If all three players defect but do not shoot different opponents, there will again be

one survivor, which may or may not be oneself (and therefore better or worse than

no survivors).

Thus, the core predictions of three survivors in n-round simultaneous truels is not so

implausible—even from a non-cooperative perspective—depending on how many survivors

there are, and who they are, if one or more players defects in the first round.

Curiously, the core analysis is, in a sense, more demanding than the equilibrium anal-

ysis for n-round sequential truels. For these truels, each approach predicts one survivor,

though not necessarily the same player, except in one case: when both players 2 and 3

consider player 1 their common antagonist. In this case, the usual advantage that player

1 enjoys from going first is nullified by the other players’ mutual antagonism toward it,

rendering no coalition stable in the cooperative analysis (i.e., the core is empty).

We conclude that both Nash equilibria and the α-cores and β-cores of truels make

reasonable predictions when they do not overlap: there are plausible circumstances under

which each prediction might be fulfilled. Generally speaking, the non-cooperative analysis

predicts fewer, and never more, survivors than the core analysis. However, its predictions

will not be readily achieved if there is no communication or coordination by the players,

especially in the case of simultaneous truels, rendering these predictions dubious.

When communication and coordination are possible, the cores become more com-

pelling as solutions, even in the absence of an enforceable agreement, as we illustrated

above. The prediction of a non-empty core is also sensible in an n-round sequential truel

in which the normally favored player 1 is the antagonist of both its opponents.

The lack of agreement of the two different kinds of solution concepts does not, we

think, signal a crisis in game theory. Cooperative and non-cooperative approaches have

both played an important role in the development of the theory. The question is how they

might best be combined to produce a coherent and rounded analysis of different strategic

situations, and their probable outcomes, that highlights when each kind of outcome is

likely to arise.
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