
Université de Montréal

Detecting Pre-Error States and Process Deviations Resulting from Cognitive
Overload in Aircraft Pilots

par
Massimo Pietracupa

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en computer science

December, 2023

© Massimo Pietracupa, 2023.

Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé:

Detecting Pre-Error States and Process Deviations Resulting from Cognitive
Overload in Aircraft Pilots

présenté par:

Massimo Pietracupa

a été évalué par un jury composé des personnes suivantes:

Maxime Mignotte, président-rapporteur
Claude Frasson, directeur de recherche
Utsav Sadana, membre du jury

Mémoire accepté le: .

RÉSUMÉ

Les pilotes d’avion sont constamment confrontés à des situations où ils doivent traiter

des quantités importantes de données en très peu de temps, ce qui peut conduire à des

erreurs. Nous avons créé un système de détection des écarts capable d’auditer le cock-

pit en temps réel pour détecter les actions qui ont été incorrectement ajoutées, omises

ou qui n’ont pas été effectuées dans le bon ordre. Ce modèle évalue les écarts en se

basant sur les données hiérarchiques des tâches trouvées dans le modèle de référence

ontologique pour les procédures de pilotage, qui contient des procédures de référence

basées sur la connaissance et rassemblées par des experts dans le domaine. Les actions

des pilotes sont comparées aux séquences de référence de l’ontologie à l’aide de l’al-

gorithme Needleman-Wunsch pour l’alignement global, ainsi que d’un réseau LSTM

siamois. Une API pouvant être étendue à plusieurs simulateurs aérospatiaux, ainsi qu’un

Runner, ont été créés pour permettre au Deviation Framework de se connecter au simu-

lateur XPlane afin de surveiller le système en temps réel. Des données créées synthéti-

quement et contenant des mutations de séquences ont été analysées à des fins de test.

Les résultats montrent que ce cadre est capable de détecter les erreurs ajoutées, omises

et hors séquence. En outre, les capacités des réseaux siamois sont exploitées pour com-

prendre la relation de certaines anomalies de la chaîne de séquence afin qu’elles puissent

être correctement ignorées (comme certaines tâches qui peuvent être exécutées dans le

désordre par rapport à la séquence de référence). Les environnements de simulation en-

registrant les données à une fréquence de 10 Hz, une valeur de 0.1 seconde constitue

notre référence en temps réel. Ces évaluations de déviation peuvent être exécutées plus

rapidement que notre contrainte de 0,1 seconde et ont été réalisées en 0,0179 seconde

pour une séquence de décollage contenant 23 actions, ce qui est nettement plus perfor-

mant que les modèles suivants de l’état de l’art. Les résultats de l’évaluation suggèrent

que l’approche proposée pourrait être appliquée dans le domaine de l’aviation pour aider

à détecter les erreurs avant qu’elles ne causent des dommages.

En outre, nous avons formé un modèle d’apprentissage automatique pour reconnaître

les signaux de pré-erreur dans le cortex cingulaire antérieur (CCA) à l’aide des données

iv

de test Flanker de l’ensemble de données COG-BCI, qui peuvent ensuite être utilisées

pour détecter les états de pré-erreur chez les pilotes d’avion. Divers modèles d’apprentis-

sage automatique ont été appliqués à l’ensemble de données, notamment des machines

à vecteurs de support (SVM), des forêts aléatoires, un double modèle de réseau neuro-

nal convolutif (CNN) et un modèle Transformer. Au-delà des conclusions typiques de

l’étude, notre objectif s’étend à l’évaluation de l’applicabilité du modèle dans un do-

maine secondaire, à savoir l’évaluation du pouvoir discriminant des classificateurs pen-

dant les procédures de décollage pour les pilotes d’avion. Les résultats de l’analyse de

l’ensemble de données FLANKER ont révélé la supériorité du modèle transformateur,

avec des réductions notables des faux négatifs et un score final macro moyen F1 de 0,610,

et un score final macro moyen F1 de 0,578 sur les données pilotes. Comme nous pré-

voyons une augmentation des performances du classificateur avec davantage de données

d’entraînement et des bandes d’interrogation étendues, cette étude jette les bases d’une

recherche plus poussée sur la prédiction des états erronés et les modèles d’optimisation

de l’apprentissage automatique pour les ICB et les applications du monde réel.

mots clés: Réalité virtuelle, simulation, contrôle des tâches, gestion des erreurs,

réseau neuronal, EEG, apprentissage automatique, transformateurs, cortex cingu-

laire, prédiction de l’état d’erreur

ABSTRACT

Aircraft pilots are constantly undergoing situations where they must process signif-

icant amounts of data in very small periods of time, which may lead to mistakes. We

have created a deviation detection system that is capable of auditing the cockpit in real

time to detect actions that have been incorrectly added, omitted, or done out of sequence.

This model assesses deviations based on hierarchical task data found in the Ontological

Reference Model for Piloting Procedures, which contains knowledge-based reference

procedures assembled by experts in the domain. Pilot actions are compared to ontology

reference sequences using the Needleman-Wunsch algorithm for global alignment, as

well as a Siamese LSTM network. An API that can be expanded to several Aerospace

Simulators, as well as a Runner, was created to enable the Deviation Framework to con-

nect to the XPlane simulator for real-time system monitoring. Synthetically created data

containing sequence mutations were analyzed for testing. The results show that this

framework is capable of detecting added, omitted, and out of sequence errors. Further-

more, the capabilities of Siamese networks are leveraged to understand the relation of

certain sequence chain anomalies so that they can correctly be ignored (such as certain

tasks that can be performed out of order from the reference sequence). With simula-

tion environments recording data at a frequency of 10Hz, a value of 0.1 seconds is our

real-time benchmark. These deviation assessments are capable of being run faster than

our 0.1 second requirement and have been clocked at 0.0179 seconds for one Takeoff

sequence containing 23 actions - significantly outperforming the next state of the art

models. The evaluation results suggest that the proposed approach could be applied in

aviation settings to help catch errors before harm is done.

Moreover, we have trained a machine learning model to recognize pre-error signals in

the anterior cingulate cortex (ACC) using Flanker test data from the COG-BCI dataset,

which can be subsequently employed to detect pre-error states in aviation pilots. Various

machine learning models were applied to the dataset, including Support Vector Machines

(SVM), Random Forests, double Convolutional Neural Network (CNN) model, and a

Transformer model. Moving beyond typical study conclusions, our objective extends to

vi

assessing model applicability in a secondary domain —evaluating the classifiers’ dis-

criminative power during takeoff procedures for aviation pilots. Results from the anal-

ysis of the FLANKER dataset revealed the superiority of the transformer model, with

notable reductions in false negatives and a final macro averaged F1 score of 0.610, and

a final macro averaged F1 of 0.578 on the Pilot data. As we anticipate increases in clas-

sifier performance with more training data and extended polling bands, this study lays

the groundwork for further research in erroneous state prediction and machine learning

optimization models for BCI and real-world applications.

Keywords: Virtual Reality, Simulation, Task control, Error Management, Neu-

ral Network, EEG, Machine Learning, Transformers, Cingulate Cortex, Error-

State Prediction

CONTENTS

RÉSUMÉ . iii

ABSTRACT . v

CONTENTS . vii

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

DEDICATION . xiv

ACKNOWLEDGMENTS . xv

CHAPTER 1: INTRODUCTION . 1

1.1 Context . 1

1.2 Problem . 2

1.3 Contribution . 3

1.4 Document Structure . 3

CHAPTER 2: BACKGROUND AND STATE OF THE ART 5

2.1 Process Mining - Deviation Detection 5

2.1.1 Aircraft Flight Data Monitoring (FDM) 5

2.2 Machine Learning . 7

2.2.1 Machine Learning Landscape 8

2.2.2 Dynamic Programming . 12

2.2.3 Automatic Deviation Detection - State of the Art 13

2.3 Error-State Prediction . 14

2.3.1 Brain-Computer Interfaces (BCI) 15

viii

2.4 Pre-Error State Detection - State of the Art 16

CHAPTER 3: METHODOLOGY . 18

3.1 Data Acquisition . 18

3.1.1 Setup . 18

3.1.2 EEG Logging . 19

3.2 Ontological Reference Model for Piloting Procedures 21

3.3 Simulator API . 22

3.4 API - C++ Server . 24

3.4.1 LibXPlane-Udp-Client Cross-Platform Compatibility 24

3.4.2 IPC (Inter-Process Communication) Protocol ZeroMQ 24

3.4.3 Architecture of C++ Server . 25

3.4.4 Subscription Storage . 26

3.4.5 Listener Thread . 26

3.4.6 Dedicated Thread . 28

3.5 API - Python Client . 29

3.5.1 Python Client Connect and Disconnect 29

3.5.2 Python Client Functions . 29

3.6 API Installation . 30

3.6.1 C++ Server Installation . 30

3.6.2 Python Client Installation . 30

3.7 Runner . 31

3.8 Deviation Model Architecture . 32

3.8.1 Deviation Step 1 . 33

3.8.2 Deviation Step 2 . 34

3.8.3 Deviation Step 3 . 37

3.8.4 Deviation Step 4 . 37

3.9 Pre-Error-State Detection . 38

3.9.1 Flanker Dataset . 39

3.9.2 EEG Preprocessing and Dataset Creation 39

ix

3.9.3 Adjusting Imbalanced Datasets 41

3.9.4 Models . 42

CHAPTER 4: RESULTS . 52

4.1 Deviation Detection Results . 52

4.1.1 Simulation Testing . 54

4.1.2 Limitations . 55

4.2 Pre-Error State Detection Results . 55

4.2.1 Flanker Data Pre-Error State Detection 55

4.2.2 Pilot Data Pre-Error State Detection 61

CHAPTER 5: CONCLUSION . 63

5.1 Deviation Detection . 63

5.2 Pre-Error State Detection . 63

5.3 Future Work . 64

5.3.1 Refinement of Machine Learning Models 64

5.3.2 Exploration of Multimodal Data Fusion 64

5.3.3 Optimization of Signal Processing Techniques 65

BIBLIOGRAPHY . 66

LIST OF TABLES

3.I An overview of the different XPlane A320 scenarios and their cor-

responding Engine Failures (EF). 19

3.II Message Part descriptions. 28

3.III Python Client API functions. 30

3.IV SVM Parameters . 43

3.V Random Forests parameters . 43

4.I Model results on Flanker Dataset. Asterix (*) indicates a macro

averaging for the given value. 57

4.II Model results on Pilot Dataset. Asterisk (*) indicates a macro av-

eraging for the given value. 61

LIST OF FIGURES

3.1 16-Channel EEG channel placements, with additional A1 and A2

ear lobe clips from OpenBCI. 21

3.2 X-Plane simulator API Architecture 23

3.3 Labels, tags, and frequency in the Subscriptions.yaml for XPlane-

API . 24

3.4 C++ API Server Core Architecture 26

3.5 Listener Thread Connection Sequence 27

3.6 XPlane Runner execution diagram. 32

3.7 Hierarchical organization of phases, tasks, and actions. 33

3.8 Deviation Model Overview . 34

3.9 Algorithmic description of Needleman-Wunsch global alignment

algorithm . 36

3.10 Algorithmic description of deterministic deviation assessment . . 37

3.11 Siamese LSTM structural overview 38

3.12 Flanker test procedure and timing windows. 39

3.13 EEG processing pipeline to create labeled data from 64-channel

Flanker data (not all channels can be seen in the graph illustrated). 41

3.14 Illustration of the double convolution neural network structure from

raw Flanker EEG data (64 Channel - not all channels displayed in

image). It should be noted that ’K’ is equivalent to the variable ’k’

mentioned in the text. 45

3.15 Illustration of the three components contained within the conformer

structure. 50

4.1 Mutation testing on synthetic action sequences with fixed order. . 53

4.2 Mutation testing on synthetic action sequences that can be exe-

cuted in any order. 54

xii

4.3 Test Accuracy, Test F1, Test Kappa score, Test Precision, Test Re-

call, and the validation loss for Conformer architecture with 16

channel EEG dataset. 58

4.4 ROC AUC of the Conformer architecture with 16 channel EEG

dataset. 59

4.5 Confusion Matrix of the Conformer architecture with 16 channel

EEG dataset. 60

LIST OF ABBREVIATIONS

ACC Anterior Cingulate Cortex

BCI Brain-Computer Interfaces

COG Cognitive

CNN Convolutional Neural Network

EEG Electroencephalogram

EF Engine Failure

FDM Flight Data Monitoring

FIR Finite Impulse Response

ICA Independent Component Analysis

LOSA Line Operations Safety Audit

LSTM Long-Short Term Memory

RBF Radial Basis Function

SMOTE Synthetic Minority Oversampling Technique

SVM Support Vector Machine

UDP User Datagram Protocol

To my Grandmother, Giovanna Farinaccio

ACKNOWLEDGMENTS

In the culmination of this academic journey, I am filled with profound gratitude for

the countless individuals and experiences that have shaped the trajectory of this thesis.

First and foremost, I extend my heartfelt appreciation to my supervisor, Dr. Claude

Frasson, and Dr. Hamdi Ben Abdessalem, whose unwavering guidance, expertise, and

encouragement have been indispensable throughout every phase of this research. Your

mentorship has not only sharpened my academic skills but has also inspired me to strive

for excellence in all endeavors. We also gratefully acknowledge the generous support

from NSERC-Alliance, CRIAQ, CAE, Bombardier, and BMU, whose funding made

this research possible. Without their invaluable contributions, this endeavor would not

have been possible.

I am indebted to my family (Maria D’Annessa, Pat Pietracupa, Bianca Pietracupa),

my aunts, uncles, and cousins (in no particular order: Adamo D’Annessa, Kyara D’Annessa,

Emilio D’Annessa, Brenda Bucci, Jonathan D’Annessa, James D’Annessa, Joseph D’Annessa,

Jack D’Annessa, Tizianna Bibbo, Claudia Feocheri, Konnie Feocherri, Micheline Pietracupa)

for their boundless love, encouragement, and patience throughout this journey. Your un-

wavering belief in my abilities has been a constant source of strength and motivation.

The most important thing in the world is family, and I consider myself blessed every

single day.

Special thanks are extended to Samantha Cavaliere, whose unwavering presence,

love, and support have been my rock through every challenge and triumph. Your encour-

agement and belief in me have fueled my determination and inspired me to push beyond

my limits.

I also extend my heartfelt appreciation to Samantha’s family (Renaldo Cavaliere,

Caterina De Luca, Stefano Cavaliere, Marie Paolonie, Esterina Molinaro) for their warm

acceptance and embrace. Your kindness and hospitality have made me feel like a cher-

ished member of the family, and for that, I am truly grateful.

To my friends, colleagues, Uber squad, Soccer squad, and the "brudders", who have

provided encouragement, understanding, and a shoulder to lean on along the way, I

xvi

extend my sincerest gratitude and respect. Your support has illuminated even the darkest

of moments and made this journey all the more meaningful.

[Italian] Ai miei nonni, Giuseppe D’Annessa, Onorina [cognome] per il loro incon-

dizionato sostegno e amore. La vostra fiducia in me è stata una costante fonte di forza e

ispirazione, e il mio aiuto sarà sempre a vostra disposizione quando ne avrete bisogno.

I dedicate this achievement to my beloved grandmother, Giovanna Farinaccio, who

was not only a source of unwavering love and support but also a guiding light in my

life. Though you are no longer with us to witness the culmination of this journey, your

spirit continues to inspire me every day. Your memory will forever be cherished, and

this project stands as a tribute to your enduring legacy. Tu sei il mio fiorellina, Ti voglio

molto bene nonna e mi manchi profondamente.

Finally, I extend this dedication to anyone who has ever dared to dream, to question,

and to pursue knowledge with unwavering determination. May this thesis serve as a

testament to the power of perseverance, curiosity, and the relentless pursuit of excellence.

CHAPTER 1

INTRODUCTION

1.1 Context

In recent years, the aviation industry has experienced unprecedented growth, with

air travel becoming increasingly accessible and integral to global connectivity. As the

demand for air transportation continues to soar, the imperative for ensuring uncompro-

mising safety standards has never been more pronounced. While technological advance-

ments have ushered in an era of unprecedented safety improvements, human factors

remain a critical determinant of aviation safety.

Aircraft pilots, entrusted with the responsibility of safely operating complex ma-

chines through dynamic and often unpredictable environments, stand at the forefront of

ensuring the safety of air travel. Despite their extensive training and expertise, pilots

are susceptible to errors that can have profound consequences for flight safety. From

minor deviations in procedures to critical lapses in judgment, human errors constitute a

persistent challenge in the quest for aviation safety.

In response to this challenge, the aviation industry has continuously sought to de-

velop and implement innovative solutions aimed at mitigating the risks associated with

human error. Central to this endeavor is the integration of advanced technologies that

augment pilot capabilities and enhance operational safety. From flight management sys-

tems to advanced cockpit displays, technological innovations have played a pivotal role

in advancing aviation safety by providing pilots with invaluable support and decision-

making aids.

However, while technological solutions have undoubtedly contributed to improve-

ments in aviation safety, the quest for enhancing human performance and error mitiga-

tion remains an ongoing pursuit. Recognizing the need for proactive measures to address

the complex interplay between human factors and technology, this research strives to de-

velop a novel approach to enhance aviation safety.

2

1.2 Problem

The aviation industry, while marked by remarkable advancements in technology and

training methodologies, continues to grapple with the inherent fallibility of human op-

erators [1–3]. Aircraft pilots are constantly undergoing situations in which they must

process significant amounts of data in very small periods of time. Despite stringent

safety protocols and procedures, errors made by pilots still pose significant risks to flight

safety. The ability to detect whether tasks are being performed based on a set of guide-

lines can allow pilots the foresight to make adjustments earlier in order to prevent fail-

ures, or even to increase their respective efficiency. An observational methodology study

using a Line Operations Safety Audit (LOSA) (where expert observers are placed in the

cockpit during normal flights to record threats) was performed over a period of 15 years

with confidential data collected on more than 3500 domestic and international flights.

Supported by the Federal Aviation Administration and the International Civil Aviation

Organization, their reports indicate that some of the most common types of errors by Air-

craft Pilots include a conscious failure to adhere to procedures or regulations (such as

performing checklists from memory) and following procedures with wrong executions

(incorrectly entering data into the flight management computer) [4]: These are issues

that can be significantly reduced with the help of a real-time deviation detection systems

or predictive error systems, which would give pilots the extra time needed to perform

necessary corrections, though these systems are challenging to create for complex sys-

tems such as an aircraft. As a result, the following hypothesis are formulated for this

paper:

• Hypothesis: 1: Is it possible to create a deviation model to determine problem-

atic Pilot actions that are added, omitted, and out of sequence errors during flight

that is capable of understanding the underlying relations of tasks?

• Hypothesis: 2: Will this deviation detection model architecture be capable of

executing in real-time (real time defined as simulation frequency of 10Hz)?

• Hypothesis: 3: Is it possible to train a machine learning model that can identify

pre-error signals, which can serve as indicators of pre-error states in aviation

3

pilots?

1.3 Contribution

In addressing these problems, this project seeks to develop tools and a comprehensive

deviation detection system aimed at intercepting pilot errors in real-time. By leveraging

dynamic programming algorithms, and ontological aircraft references, this system will

be capable of identifying deviations from established protocols or best practices during

flight operations. Moreover, the project aims to devise a predictive model that can an-

ticipate states wherein pilots are more prone to committing errors, through EEG data

gathered from real pilots in a simulation environment. This predictive capability will

enable future technologies to preemptively intervene, mitigating potential risks and bol-

stering overall flight safety. As a result, the objectives present in this work are as follows:

• Objective 1: An XPlane API that is easy to incorporate in python and allows for

several applications to communicate with each other, and Xplane in real-time.

• Objective 2: A deviation detection model that can determine problematic Pilot

actions that are added, omitted, and out of sequence during flight that is also

capable of understanding the underlying relations of tasks. This model can also

be run in real-time, while significantly outperforming speeds of other state-of-

the-art models.

• Objective 3: A machine learning model that can identify ACC pre-error signals

in Aircraft Pilots, which can detect pre-error states.

1.4 Document Structure

This project is structured to provide a comprehensive exploration of the development

and implementation of innovative technological solutions aimed at enhancing aviation

safety through the mitigation of pilot errors. The following sections delineate the orga-

nization and content of this document:

Chapter 2, Background and State of the Art: This section provides the background

necessary for concepts found in this document. It also provides a comprehensive survey

4

of existing research and developments related to aviation safety, automatic process de-

viation, and BCI devices. It explores the current state of knowledge, identifies gaps in

research, and establishes the theoretical foundation for the subsequent research efforts.

Chapter 3, Methodology: In this section, the methodology employed in the research

is detailed, encompassing the design and implementation of the deviation detection sys-

tem and predictive model. This includes a description of data collection methods, exper-

imentation, analytical techniques, and model validation procedures.

Chapter 4, Results and Discussion: This section provides a critical analysis and dis-

cussion of the findings, implications, and contributions of the research.

Chapter 5, Conclusion: The conclusion section summarizes the key findings, contri-

butions, and implications of the research, reaffirming its significance in advancing avia-

tion safety. It also offers concluding remarks and recommendations for future research

and practical implementation.

CHAPTER 2

BACKGROUND AND STATE OF THE ART

In this chapter, we present the necessary literature to understand the work presented

in this reading. We first present a brief overview of process deviation detection along

with current techniques in aircraft flight data monitoring. We then present background

related to machine learning and some of the state-of-the-art technology currently used

in aviation for process deviation. We then examine a background in brain-controller

interfaces and take a look at the state of the art in pre-error state prediction.

2.1 Process Mining - Deviation Detection

We can observe that deviation detection methods in process mining can be catego-

rized as data-driven or knowledge-driven. As their names suggest, these can rely on

developing process models from acquired data, or by having them created by domain

experts. For data-driven methods, an average workflow is discovered and then used for

comparison with individual activities. However, the average workflow is limited to a

strictly sequential view and does not account for concurrent activities or repetitive be-

haviors [5]. On the other hand, rule-based models are designed for processes that are

loosely structured, which limits their applicability for structured Aircraft Processes.

2.1.1 Aircraft Flight Data Monitoring (FDM)

In aviation, Flight Data Monitoring (FDM) is a crucial method for ensuring safety

and improving operational efficiency. FDM involves the collection, storage, and analysis

of flight data from aircraft to monitor and evaluate the performance of various flight

parameters, systems, and procedures. This data includes information such as aircraft

speed, altitude, heading, engine performance, control inputs, and other relevant variables

recorded during flight [6].

One of the key objectives of FDM is to identify deviations from established norms or

6

expected behavior. These deviations could indicate potential safety issues, operational

inefficiencies, or opportunities for improvement. To accomplish this, FDM systems uti-

lize various approaches, one of which involves creating rule-based models based on

expert analysis of flight data. The following steps are performed in the FDM process:

Data Collection: Flight data is collected from onboard flight data recorders (FDR)

or quick access recorders (QAR), which continuously record various flight parameters

during the entire duration of a flight. This data is then stored for later analysis [7].

Data Analysis: Aviation experts, including pilots, engineers, and safety analysts, an-

alyze the collected flight data to identify patterns, trends, and anomalies. They use their

expertise to interpret the data and determine whether observed deviations are normal

variations or potential issues that require further investigation [8].

Rule-Based Model Development: Based on the analysis of flight data, experts de-

velop rule-based models that codify the relationships between different flight parameters

and potential safety or operational concerns. These rules are often derived from industry

regulations, best practices, operational procedures, and past incident data [9].

Rule-Based Monitoring: The rule-based models are then implemented in FDM sys-

tems to continuously monitor incoming flight data in real-time. When the observed flight

parameters deviate from the established rules, the FDM system generates alerts or noti-

fications to notify operators or maintenance personnel of potential issues [9].

Feedback and Iteration: The effectiveness of the rule-based models is continu-

ously evaluated based on feedback from operational experience, incident reports, and

additional data analysis [10]. The models may be refined, updated, or expanded over

time to improve their accuracy and relevance.

It should be noted that when navigating Flight Data Monitoring (FDM) systems,

certain pitfalls warrant caution. While rule-based models offer significant benefits in

enhancing aviation safety and operational efficiency, over-reliance on them may obscure

subtle or emerging patterns that don’t fit predefined rules [11]. Moreover, developing

and maintaining comprehensive rule-based models demands significant expertise and

resources, as updating them to reflect changes in operational procedures or regulations

can be challenging [11]. Balancing the sensitivity and specificity of rule design is crucial

7

to minimizing false positive alerts, which can trigger unnecessary interventions, or false

negatives, which may overlook genuine safety hazards. Human bias and interpretation

also pose risks, as subjective judgments may influence rule design, potentially leading

to inconsistencies.

As the number of components, subsystems, and processes within a system grows,

so does the number of potential interactions and dependencies between them. Each in-

teraction may require its own set of rules, leading to a combinatorial explosion in the

number of rules needed to govern the entire system [11]. Furthermore, managing the

complexity of rule sets, ensuring consistency, and resolving conflicts or redundancies

become increasingly challenging as systems grow in size and complexity. By learning

from data, machine learning models have been implemented and proven that they can

adapt to dynamic environments, generalize across diverse scenarios, and discover nu-

anced interactions that may elude rule-based approaches [11]. This ability to uncover

insights from data and make informed decisions autonomously positions machine learn-

ing as a transformative approach for managing the complexity of large-scale systems

effectively.

2.2 Machine Learning

Machine learning is a branch of artificial intelligence (AI) that enables systems to

automatically learn and improve from experience without being explicitly programmed

[12]. It involves the development of algorithms and models that can analyze data, iden-

tify patterns, and make predictions or decisions based on those patterns [12, 13]. Ma-

chine learning is becoming increasingly popular because of its ability to solve complex

problems across various domains, including finance [14, 15], healthcare [16–18], mar-

keting [19, 20], transportation [21, 22], aviation [23, 24], and more.

One of the key reasons for the popularity of machine learning is its capability to

handle large and complex datasets that are beyond the capacity of traditional statistical

techniques or rule-based systems [25]. By leveraging advanced algorithms and com-

putational power, machine learning can uncover valuable insights and patterns hidden

8

within vast amounts of data, enabling organizations to make data-driven decisions and

gain competitive advantage [26].

In this section, we will be providing an overview of the machine learning landscape,

while introducing certain models that will be mentioned in this paper, in order to give

the reader a certain foundational understanding.

2.2.1 Machine Learning Landscape

Machine learning, encompasses a diverse array of algorithms and methodologies,

which can be broadly categorized into several key areas. Supervised learning, a funda-

mental pillar, involves training models on labeled data, facilitating predictions on unseen

data by learning the mapping between input features and output labels [27]. Unsuper-

vised learning, in contrast, delves into unlabeled data, seeking to unearth hidden patterns,

structures, or relationships without the aid of predefined labels [28]. Semi-supervised

learning bridges the gap between the two, leveraging a combination of labeled and unla-

beled data to enhance model performance, especially in scenarios where labeled data is

scarce [29]. Reinforcement learning introduces the concept of agents learning through

interaction with an environment, striving to maximize cumulative rewards by making se-

quential decisions [30]. Deep learning, a subset gaining significant traction, focuses on

neural networks with multiple layers, capable of automatically learning hierarchical rep-

resentations of data, revolutionizing fields such as computer vision and natural language

processing [31]. Within this landscape, various specialized areas and techniques, includ-

ing transfer learning [32], generative adversarial networks (GANs) [33], and ensemble

methods, offer tailored solutions to diverse problem domains [34].

2.2.1.1 Support Vector Machines (SVM)

Support Vector Machines (SVM) represent a cornerstone of supervised learning within

the landscape of machine learning. SVMs excel in classification and regression tasks by

identifying the optimal hyperplane that separates data points of different classes in a

high-dimensional space [35]. Positioned within the realm of traditional machine learn-

9

ing methods, SVMs rely on explicit feature engineering and are particularly effective

in scenarios with relatively small sample sizes and high-dimensional data [36]. Their

versatility extends to both linearly separable and non-linearly separable data, thanks to

the utilization of kernel functions that enable mapping into higher-dimensional spaces.

SVMs are renowned for their robustness against overfitting and their ability to capture

intricate patterns within the data [37]. As a well-established and interpretable model,

SVMs offer valuable insights into decision boundaries and feature importance, making

them applicable across a wide range of domains, including bioinformatics, image recog-

nition, and financial forecasting. Despite the emergence of more complex deep learning

architectures, SVMs remain a fundamental tool in the machine learning toolbox, valued

for their reliability, interpretability, and versatility.

2.2.1.2 Random Forests

Random Forests, a prominent ensemble learning method, occupy a pivotal position

within the landscape of machine learning. Positioned alongside traditional machine

learning techniques, Random Forests offer a versatile solution for both classification

and regression tasks [38]. Comprising an ensemble of decision trees, each trained on a

random subset of the training data and features, Random Forests harness the power of

collective decision-making to enhance model robustness and generalization [39]. This

approach mitigates the risk of overfitting often associated with individual decision trees,

rendering Random Forests well-suited for handling complex data with diverse feature

types. Their ability to provide feature importance scores facilitates interpretability and

insights into the underlying data relationships [40]. As a result, Random Forests find

applications across various domains, including finance [41], healthcare [42], and bioin-

formatics [43], where robust and interpretable models are essential. In the ever-evolving

landscape of machine learning, Random Forests stand as a reliable and versatile tool,

offering an effective balance between performance, interpretability, and scalability.

10

2.2.1.3 AutoEncoders

Autoencoders, nestled within the landscape of unsupervised learning, emerge as a

powerful tool for learning compact and meaningful representations of data [44]. Posi-

tioned alongside other traditional machine learning methods, autoencoders stand out for

their ability to capture latent features and intrinsic structures within the data without the

need for explicit labels [44]. This is achieved through a process of encoding the input

data into a lower-dimensional representation, followed by decoding to reconstruct the

original input. By minimizing the reconstruction error between the input and output,

autoencoders learn to extract essential features and patterns from the data, facilitating

tasks such as data denoising [45], dimensionality reduction [46], and anomaly detection

[47]. Their flexibility and generative capabilities make autoencoders invaluable across

a spectrum of applications, including image and text data processing, recommendation

systems, and anomaly detection in cybersecurity. Moreover, the emergence of deep

learning architectures has further propelled the advancement of autoencoders, enabling

the exploration of more complex and expressive representations. In summary, autoen-

coders play a vital role within the broader landscape of machine learning, offering a

powerful framework for unsupervised learning and feature learning tasks, driving inno-

vations across various domains [48].

2.2.1.4 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) stand as a cornerstone within the landscape

of machine learning, particularly in the domain of deep learning. Positioned alongside

other neural network architectures, CNNs are specifically tailored for processing grid-

like data, such as images and audio spectrograms. CNNs leverage convolutional layers

to automatically learn hierarchical representations of features within the input data, cap-

turing spatial patterns and local dependencies through shared weight filters [49]. This

unique architecture allows CNNs to excel in tasks such as image classification [50],

object detection [51], and semantic segmentation [51], where understanding spatial rela-

tionships and extracting intricate features are crucial [48]. Their ability to learn directly

11

from raw data without the need for explicit feature engineering has revolutionized fields

such as computer vision and image processing. Furthermore, CNNs exhibit scalabil-

ity and generalization capabilities, enabling effective transfer learning across different

domains and applications. In essence, Convolutional Neural Networks represent a fun-

damental component of the deep learning landscape, offering unparalleled capabilities

in processing and understanding complex structured data, and driving innovations across

a myriad of domains.

2.2.1.5 Long-Short Term Networks (LSTM)

Long Short-Term Memory (LSTM) networks represent a crucial advancement within

the landscape of recurrent neural networks (RNNs), particularly in the domain of sequen-

tial data processing. Positioned alongside other deep learning architectures, LSTM net-

works are designed to address the vanishing gradient problem encountered in traditional

RNNs [52], enabling them to effectively capture long-range dependencies and tempo-

ral patterns within sequential data. This unique architecture allows LSTM networks

to retain and selectively update information over extended time periods, making them

well-suited for tasks involving time-series data, natural language processing, and speech

recognition [53]. By incorporating memory cells with gated units that regulate the flow

of information, LSTM networks can learn and retain relevant information over multi-

ple time steps, facilitating more accurate predictions and capturing complex temporal

dynamics [54]. As a result, LSTM networks have become indispensable tools in vari-

ous applications, including language translation [55], sentiment analysis [56], and stock

market prediction [57]. Their ability to model sequential data with long-term depen-

dencies positions LSTM networks as essential components within the broader landscape

of machine learning, driving advancements in understanding and processing sequential

information.

12

2.2.1.6 Transformers

The Transformer model represents a groundbreaking advancement within the land-

scape of machine learning, particularly in the realm of natural language processing

(NLP) and sequence modeling. Positioned alongside other deep learning architectures,

the Transformer architecture has revolutionized the field by introducing a novel mech-

anism for processing sequential data [58]. Unlike traditional recurrent neural networks

(RNNs) and convolutional neural networks (CNNs), Transformers rely on self-attention

mechanisms to capture long-range dependencies and contextual relationships within the

input sequence [59]. This unique architecture enables Transformers to process entire se-

quences in parallel, allowing for efficient computation and scalability [60]. With its abil-

ity to capture contextual information effectively, Transformers have achieved remark-

able success in various NLP tasks, including language translation, text summarization,

and question answering [61]. Moreover, Transformers exhibit versatility and applica-

bility beyond NLP, with extensions and adaptations for tasks such as image generation,

graph processing, and recommendation systems. In summary, the Transformer model

represents a transformative milestone within the landscape of machine learning, offer-

ing unparalleled capabilities in processing sequential data and driving innovations across

diverse domains.

2.2.2 Dynamic Programming

Dynamic Programming is a powerful optimization technique, which will be lever-

aged later on in the paper, and is used to solve complex problems by breaking them

down into smaller subproblems [62]. Unlike traditional divide-and-conquer approaches,

dynamic programming systematically stores solutions to subproblems in a table or array,

allowing for efficient reuse of previously computed results. This method is particularly

useful for problems with overlapping subproblems, where the same subproblems need

to be solved multiple times. By solving each subproblem only once and storing the

results, dynamic programming significantly reduces computational complexity and im-

proves overall efficiency [62]. Common applications of dynamic programming include

13

solving optimization problems, such as finding the shortest path in a graph (e.g., Dijk-

stra’s algorithm) [63] or maximizing profit in a resource allocation problem (e.g., the

knapsack problem). Dynamic programming algorithms offer a systematic and efficient

approach to solving complex problems, making them indispensable tools in algorithm

design and optimization.

2.2.3 Automatic Deviation Detection - State of the Art

Several machine learning techniques, including those based on artificial neural net-

works (ANN) [64] and AutoEncoders [65], have been deployed in the aviation industry

to analyze flight data and predict anomalies. These techniques are capable of providing

binary responses, indicating whether an anomaly is detected or not. However, a notable

limitation of these approaches is their inability to pinpoint the specific issue causing the

anomaly, especially if it is process-specific. While they effectively flag deviations from

normal behavior, they fall short in offering detailed insights into the underlying root

causes of anomalies. This lack of granularity poses challenges for aviation maintenance

and operations teams, as it hampers their ability to perform targeted troubleshooting

and implement corrective measures. As a result, there is a growing need for machine

learning models that not only detect anomalies but also provide actionable insights into

the specific processes or subsystems affected, enabling more effective maintenance and

operational decision-making in the aviation sector.

Automatic process deviation has been in other domains as well. Using a model de-

rived from actual behavior traces, Lu et al. performed deviation detection and identified

common and uncommon behaviors in a business process [66]. Yang et al. approached a

problem in deviation detection in complex medical processes, by combining both data-

driven and knowledge-driven techniques [67]. Their approach was split up into different

steps, dealing with hierarchical model structures. These model structures would have

parent tasks containing a series of subtasks that would need to be performed. By manu-

ally recording the actions performed by medical staff through video footage, they were

able to create action sequences. The first step in their process would be to annotate each

action to its corresponding parent task. Once these new annotated sequences have been

14

made, they would be aligned with a reference sequence in order to find the best possi-

ble split. From this point, they would process using a Conformance Checking algorithm

readily available in the ProM software suite. This algorithm is capable of returning errors

of commission, and omission, though this computation is very computationally demand-

ing and would frequently cause computers to run out of memory (Dell, Windows 10 OS,

Intel Xeon 3.7 GHz CPU, 48GB RAM), while also requiring all sequences to be in the

form of Petri Nets (containing an activity trace of the same workflow). Further process-

ing enabled Yang et al. to determine scheduling errors using a secondary algorithm, as

the ProM conformance algorithm only dealt with commission and omission errors.

Christov et al. performed deviation detections in processes for chemotherapy and

blood transfusion through the creation of knowledge-driven workflows [68]. They simu-

lated the error detections within the process by using synthetic activity traces (achieved

by inserting artificial process errors).

Our approach, akin to Yang et al., seeks to bridge the gaps between data-driven

and knowledge-driven models by integrating them. Data-driven checking may bet-

ter interpret observed data, at the cost of having sufficient samples. On the other hand,

knowledge-driven methods have no dependence on data; though can become exponen-

tially difficult to make as the complexity of the system increases. We can use machine

learning aspects to understand nuanced relations between activities, while leveraging the

workflow model to identify these problematic tasks.

2.3 Error-State Prediction

Error-State Prediction is an emerging field within aviation safety that focuses on

forecasting conditions in which pilots are more prone to committing errors [69, 70].

While traditional approaches primarily concentrate on detecting real-time mistakes, this

forward-looking approach aims to anticipate potential error-prone states before they oc-

cur. By leveraging predictive analytics and machine learning techniques, Error-State Pre-

diction seeks to identify subtle cues and patterns in pilot behavior, environmental factors,

and physiological indicators that may indicate an increased likelihood of errors [71, 72].

15

This proactive strategy holds significant promise for enhancing aviation safety by al-

lowing preemptive interventions or adjustments to mitigate risks before they escalate.

Moreover, the integration of Brain-Computer Interfaces (BCIs) offers a novel avenue for

gathering real-time cognitive and physiological data from pilots, enabling more accurate

and timely error-state predictions [73–75]. As technology continues to advance, Error-

State Prediction represents a promising frontier in aviation safety research [69, 70], with

potential applications extending to other high-stakes domains beyond aviation, such as

healthcare [71], and industrial maintenance [76, 77].

2.3.1 Brain-Computer Interfaces (BCI)

BCIs have been growing in popularity with regards to scientific research in neu-

rotechnology [78]. These BCI devices can come in multiple forms, from non-invasive,

and partially invasive to invasive, based on how close electrodes get to brain tissue [79].

Electroencephalograms (EEG), a form of non-invasive BCI devices, can read the user’s

brain electrical activity through a mesh of electrodes. This electrical activity can then

be interpreted to understand subject brain states along with their brain connectivity [80].

One such study mapped connectivity of cognitive monitoring and executive control of

strategy adjustment to the anterior cingulate cortex (ACC) through neuroimaging and

brain potential studies [81]. These monitoring processes are heavily intertwined with

cognitive task performance and can be indicative of performance degradation. It is be-

lieved that the ACC can detect potential errors or conflicting responses prior to being

consciously aware of them [82] and then begins to signal the need to regulate future

uncertainty and risk minimization. An example of this could be a student answering

a question on an exam for which he is uncertain of the response. The ACC will de-

tect potential errors or conflicting responses, such as misinterpretations of questions and

then activate adaptive control processes, prompting the student to adjust their approach,

clarify uncertainties, and optimize their performance to minimize the risk of errors to

enhance overall exam success. Ridderinkhof was able to identify these markers using

the Flanker test and an EEG device. They concluded that errors were observed to be

presaged by a distinct pattern of electrophysiological brain activity on the trial preced-

16

ing the error and that the ACC serves to indicate the need to engage control processes

(including response inhibition) to minimize the risk of errors [83].

2.4 Pre-Error State Detection - State of the Art

Predicting perceptual errors in BCIs is still in a novel state with Batmanova et al

claiming to have taken the first steps towards predicting these error states. They setup

a perceptual decision-making task to collect behavioral data and brain activity signals

[84]. This experiment required participants to perceive 400 stimuli in the form of neckar

cubes 1 continuously with a brief pause interval, attempting to replicate real-life situa-

tions where decision making would be done in a stressful environment. To increase the

likelihood of errors they used ambiguous stimuli while also decreasing the stimulus ex-

hibition time, resulting in a subject error rate close to 13%. Their machine learning stack

involved using two one-dimensional convolutional neural networks (CNN) in series. The

first CNN performed an EEG channel wise convolution, while the second performed a

time-point-wise convolution, with the size output being a hyperparameter, K, that was

selected based on model performance. Their EEG data was taken two seconds before the

stimulus and two seconds after the stimulus, filtered by performing z-score normaliza-

tion and thresholding at a value of 1. Despite receiving exceptional results, an F1-score

of 88% and accuracy of 92.6%, there is no mention of transferability of the model be-

yond the dataset. They also mention a limitation of not addressing participant leakage,

where a single participant’s data may be found in both training and validation set. The

error and success trials of a participant should be locked in either the test or validation

set, if not, results can be skewed by providing exceptional F1 and accuracy scores, as the

paper demonstrates.

A secondary study explores the use of EEGs to measure human decision confidence

levels [85]. A visual perceptual decision confidence experiment involves 14 participants

1. A Necker cube is an optical illusion consisting of a simple wireframe drawing of a cube. It is
a classic example of an ambiguous figure, where the 3D structure of the cube can be perceived in two
different ways. The viewer can see the cube oriented with either one of two faces as the front face, and the
perception can spontaneously switch between these two interpretations.

17

performing a task while EEG data is recorded. The task involves showing blurred images

of animals to the participants, while they must decide for the animal group, then report

their confidence levels about the selection from one through five. The study treats mea-

suring decision confidence as a pattern classification task, using two classifiers (Support

vector machine with RBF kernel and a deep neural network ANN with shortcut connec-

tions to retain original information) trained with EEG features. Their results show EEG

signals can assess decision confidence, achieving peak accuracy of 49.14% and F1-score

of 45.07% when validating all five confidence levels, and 91.28% accuracy with an av-

erage F1-score of 88.92% for extreme confidence levels (confidence of 1 and 5, while

ignoring confidence levels in between). Instead of using raw EEG, they passed power

spectral density (PSD), differential entropy (DE), differential asymmetry (DASM), ra-

tional asymmetry (RASM) and asymmetry (ASM) features into their machine learning

models, with DE performing the best. Though model generality is important for real

time applications such as flight where cases of confidence between 2 and 4 are quite

common in real world applications, which may be problematic for model performance.

Another study claiming to be the first online study in real car decoding driver’s error-

related brain activity introduces an EEG-based BCI designed to decode error-related

brain activity for use in driving assistance systems [86]. Conducted in both a car sim-

ulator (N = 22) and a real car (N = 8), participants received directional cues before

approaching intersections. The study classified error-related potentials from EEG using

Linear Discriminant Analysis as a supervised learning algorithm to predict whether the

cued direction aligned with the driver’s intention. Offline experiments achieved an aver-

age classification accuracy of 0.698 ± 0.065 in the simulator and 0.682 ± 0.059 in the real

car, both significantly above chance level. Online tests showed equivalent performance

in simulated and real car driving, supporting the BCI’s feasibility for decoding signals

and estimating driver intention in real-world driving scenarios.

CHAPTER 3

METHODOLOGY

In this chapter we will discuss the various methodology of the deviation detection

component and the pre-error state detection component, beginning with the experimen-

tation for dataset acquisition.

3.1 Data Acquisition

Experiments were conducted following the ethical certificate F20-CERSES-2925 Pi-

lot AI to assess real-time cognitive activity in pilots during takeoff in an Airbus A320

simulator. The participants, consisting of seven pilots, including five A320 pilots, and

six engineers with expertise in aircraft maneuvers, were divided into two groups expe-

riencing different takeoff scenarios to eliminate learning bias. The participants had to

release the parking brake, do a takeoff procedure, and climb until 3000 ft without us-

ing autopilot. Cognitive workload (CW), heart rate (HR), and pupil diameter (PD) were

measured using an EEG headset, Polar H10 heart rate monitor strap, and Gazepoint GP3

eye tracker. A total of 136 takeoffs were performed by the 13 participants, who had an

average age of 36 years, 604 flight hours, and 8.5 years of piloting experience [87].

3.1.1 Setup

The experiment adhered to a strict procedure approved by both partners and the ethics

committee. Participants were provided with a detailed guide on the A320 takeoff proce-

dure prior to the experiment, so that they may familiarize themselves with the simulator’s

handling. On the day of the experiment, participants underwent a 30-minute familiar-

ization flight to practice taking off with the simulator. They were also briefed on the

various failure procedures they might encounter during this familiarization. An exper-

imenter guided participants through the Airbus A320 takeoff process, ensuring confor-

mity. After this, measurement tools were set up, and the actual experiment commenced.

19

Participants were not informed of the scenarios beforehand, intentionally increasing cog-

nitive workload. The experiment consisted of two 20-minute sessions: one with failures

and one without. In the session with failures, participants were aware that failures could

occur during takeoff but were unaware of the type or timing of the failures. Additionally,

they were not informed of the weather conditions before each scenario. The 6 Scenarios

can be seen below in table 3.I.

Scenario Time Weather Failure
1 1:45 pm No wind, no clouds No
2 6:00 am Clouds at 2700 ft, rain No
3 9:00 pm No wind, no clouds No
4 5:30 am No wind, no clouds Yes, EF at 80 knots
5 6:00 am 15 knots crosswind Yes, EF at 140 knots
6 6:00 am Low visibility, rain Yes, EF at 80 knots

Table 3.I – An overview of the different XPlane A320 scenarios and their corresponding
Engine Failures (EF).

3.1.2 EEG Logging

Central to EEG is the precise placement of electrodes on the scalp, which allows

researchers and clinicians to record and analyze neural signals with high temporal res-

olution. EEG electrode placement follows standardized protocols to ensure consistency

across studies and facilitate comparisons between different subjects and research find-

ings.

The placement of EEG electrodes is based on the international 10-20 system, which

provides a standardized framework for positioning electrodes relative to anatomical land-

marks on the scalp. The "10-20" refers to the distances between electrode placements,

which are either 10% or 20% of the total front-to-back and right-to-left distances of the

skull. This system divides the scalp into regions denoted by letter-number combina-

tions, such as Fp (frontopolar), F (frontal), C (central), P (parietal), and O (occipital),

with odd-numbered electrodes located along the midline and even-numbered electrodes

positioned laterally [88].

20

The specific electrode placements used in EEG recording depend on the research

objectives, experimental design, and regions of interest within the brain. For example,

frontal electrodes (F) are commonly used to monitor cognitive processes and emotional

responses, while central electrodes (C) are positioned over sensorimotor areas to capture

motor activity and somatosensory processing. Parietal (P) and occipital (O) electrodes

are often employed to study visual processing and attentional mechanisms [89].

In addition to the standard 10-20 system, alternative electrode placements and con-

figurations may be used for specialized applications or to target specific brain regions.

For example, high-density EEG arrays with a larger number of electrodes can provide

finer spatial resolution and more detailed brain mapping. These arrays may include ad-

ditional electrodes to cover specific cortical areas or to capture signals from deep brain

structures.

In the conducted Pilot experiment, the EEG headset chosen for data acquisition was

the 16 Channel OpenBCI model. This specific EEG headset is equipped with 16 elec-

trodes strategically positioned across the scalp to capture electrical signals generated by

neuronal activity, as seen in figure 3.1. The OpenBCI headset is known for its versatility,

user-friendly design, and compatibility with various research and application scenarios.

21

Figure 3.1 – 16-Channel EEG channel placements, with additional A1 and A2 ear lobe
clips from OpenBCI.

3.2 Ontological Reference Model for Piloting Procedures

When performing a deviation analysis, an action sequence needs to be compared to a

baseline sequence for validation. The Ontological Reference Model for Piloting Proce-

dures, which we will reference as the Aircraft Ontology, contains pilot tasks and actions

for procedures in various phases of flight [90]. This Aircraft Ontology focuses primarily

on takeoff for the time being, and has been created by referencing standardized pro-

cedures from Airbus flight crew operating manual in circumstances including standard

takeoff, loss of an engine, rejected takeoff, and other forms of takeoff. Current imple-

mentation of this ontology contains takeoff procedures as well as procedures for specific

takeoff events. This ontology is provided as owl files, which can be loaded in python by

using the owlready2 python package. Owlready2 is a library for working with ontology-

oriented programming, which allows you to create, manipulate, and query ontologies

in various formats such as OWL, RDF/XML, and RDFS. It provides a high-level API

for ontology management and integrates with various reasoning engines for advanced

22

querying and inference [91]. We can then use these ontologies to search for all Task

Objects and Constraint objects. Once a Task object has been identified, we can query

the hasNbConstraint and hasConstraint parameter to identify a task’s execution condi-

tions. A task’s corresponding actions can also be queried by using the hasNbAction

and hasAction parameter. These actions and constraints are utilized recursively and are

compared with the simulation environment to validate whether a task can be executed.

The ontology hierarchically organizes its objects into phases (e.g., takeoff), then tasks,

and finally actions, which is a structure that can be effectively utilized in the deviation

analysis.

3.3 Simulator API

The deviation analysis needs to be able to gather information from the simulated en-

vironment in order to perform its assessment. The simulator selected for this project is

named XPlane, running on Windows, using the A320 Ultimate aircraft package. How-

ever, it is important to have the option of extending the usability of this deviation as-

sessment beyond one single type of simulator. This design choice led us to creating

an Application Programming Interface (API) that has the ability to accommodate dif-

ferent types of simulators. The API is developed in C++, to leverage its computational

efficiency, and communicates with XPlane using a User Datagram Protocol (UDP) con-

nection. Access to the API is possible through any python application by simply using

pip to install the XPlaneApi package. This architecture can then be used to retrieve data

from XPlane, or the simulator of choice. The high-level architecture of the simulator

API is illustrated in figure 3.2

23

Figure 3.2 – X-Plane simulator API Architecture

With the goal of having a multi-simulator capable system, the API is loaded with a

Subscriptions.yaml file, containing labels with their associated tags. Each tag contains

the simulator specific data reference string, which represents a specific aircraft system

within the simulator. A snippet of the Subscriptions.yaml file can be seen in figure 3.3,

where the LeftThrustLever label is the variable name that API clients will use to iden-

tify the system. Furthermore, the tag sim/cockpit2/engine/actuators/throttle_ration[0]

is the tag that XPlane uses to identify the thrust lever for engine 1. This system en-

ables applications that communicate with the API to continuously reference the thrust

lever for engine 1 as the label name, while the simulator specifications can be swapped

out as needed in yaml files. The frequency in Hz at which a label can be polled from

the simulation can also be selected. Increasing the frequency for highly used systems

such as pedals, or sidesticks, while decreasing the frequency for infrequently used knobs

and buttons will reduce the load on the system (if a large number of labels are being

observed).

24

Figure 3.3 – Labels, tags, and frequency in the Subscriptions.yaml for XPlane-API

3.4 API - C++ Server

In this section we will discuss the different aspects and design structures of the C++

API Server.

3.4.1 LibXPlane-Udp-Client Cross-Platform Compatibility

The C++ server was built around a public library named libXplane-udp-client, who’s

public github can be found at https://github.com/dotsha747/libXPlane-UDP-Client. The

only issue was that this library was not written with cross-platform compatibility, mean-

ing that it was only supported on linux. This was an issue as the project was scoped

with a single windows computer node, in which X-Plane would be running. As a re-

sult, this repository was forked and reworked with the aforementioned cross-platform

compatibility. Libraries such as winsock2 were used for windows socket manipulation.

3.4.2 IPC (Inter-Process Communication) Protocol ZeroMQ

Once the libXplane-udp-client Windows compatible version was ready for deploy-

ment, the server needed to be programmed to accept incoming communication from

python clients. There are several ways that this task can be accomplished, but the impor-

tance here is that whichever protocol is selected is also freely available on Python.

https://github.com/dotsha747/libXPlane-UDP-Client

25

ZeroMQ is an open source universal messaging library (also known as ØMQ, 0MQ, or

zmq) used by several large tech firms such as Microsoft, Facebook, and Samsung [92].

It can accomplish various types of messaging protocols through sockets such as N-to-N

with patterns like fan-out, pub-sub, task distribution, and request-reply. It is also multi-

platform if ever the API needs to be ported to another platform.

ZeroMQ was selected as the main source of communication between the C++ server and

the python clients. The pub-sub model was selected, which enables each client to have

a publishing and subscribing socket between the server for back-and-forth communica-

tion.

3.4.3 Architecture of C++ Server

The C++ Server begins by launching the X-Plane Beacon object. This object is used

to detect the presence of X-Plane. Once X-Plane has booted up and the aircraft has

spawned (users are able to interact with the cockpit), the beacon listener will indicate to

the server that X-Plane is alive and ready to receive subscriptions and publications.

The server will then proceed to initialize the X-Plane UDP client, which was imported

previously, to interact with X-plane Datarefs 1 and Commands. Subscriptions to X-Plane

can be placed in the Subscriptions.yaml file. These subscriptions are placed side-by-side

with an update frequency in Hz. This update frequency is used by X-Plane to check a

Dataref for changes. This C++ Server architecture can be seen below in figure 3.4.

1. "Dataref" (short for data reference) is a variable that allows plugins, scripts, and other components
to read or write data within the simulator. Datarefs are essential for interacting with X-Plane’s internal
state, controlling aircraft systems, or displaying information on custom instruments.

https://zeromq.org/

26

Figure 3.4 – C++ API Server Core Architecture

3.4.4 Subscription Storage

Each time the C++ Server receives an updated dataref from the specified subscrip-

tions list, it is stored into a map value to be referenced at a later time. This map can

be read at any time by a python client who wishes to retrieve information. The up-

date frequency of each map entry is dictated by the frequency specified in the subscrip-

tions.yaml.

3.4.5 Listener Thread

As illustrated in figure 3.5, once the listener thread is launched, the C++ Server binds

itself onto local ports 5555 (as a subscriber) and port 5556 (as a publisher). These ports

are important for Python clients who wish to make themselves known to the Server.

Once the server receives a message from the Python client, the port manager within

the Server locates available ports and opens a dedicated communication thread with the

27

connected client. This thread can be used to communicate with the Python client, and

send information that is requested by the client.

Figure 3.5 – Listener Thread Connection Sequence

28

3.4.6 Dedicated Thread

Once the dedicated thread has established a connection with the Python Client, a

listening loop is setup to wait for messages received by a particular topic. Each UDP

message contains 4 parts – [Topic, Requested Command, Dataref, Value]. In table 3.II

we can see the description of each message parameter.

Message Part Description
Topic The topic of registration for the Python Client
Requested Command The Requested command tells the server what the client

wishes to do with the Dataref of interest. At the time of writ-
ing there are 5 possible commands that could be interpreted
by the Server. Connection, Disconnection, Read, Set, and
Command. It should be noted that for all commands except
for Set, the value parameter of the message part should be 0.

Dataref The Dataref of interest.
Value The value that the Client wishes to set the dataref.

Table 3.II – Message Part descriptions.

29

3.5 API - Python Client

In this section we will discuss the different aspects and design structures of the API

Python Client.

3.5.1 Python Client Connect and Disconnect

The connection function creates a publisher and subscriber on the C++ Server Lis-

tener ports, and sends an initial four part multipart UDP packet containing the Client’s

Topic, the “Connection” command, and 0 values for the dataref and it’s value. The sub-

scriber then waits for a response back, which will contain the new port for the dedicated

thread. Publisher and Subscriber threads are then re-binded to the new ports and the

connection function exits successfully.

Upon Disconnection, the Client sends a four part multipart UDP packet containing

the Client’s Topic, the “Disconnection” command, and 0 values for the dataref and it’s

value. This enables the Server to close the thread and liberate the dedicated sockets so

that another Client may connect.

3.5.2 Python Client Functions

In table 3.III a list and description of all available functions in the API can be found.

These functions can be utilized to communicate with XPlane.

30

Functions Description
getDataRef Retrieves a value for a given dataref. The multipart mes-

sage contains the topic of the client, the “read” command,
the specified dataref, and a value of 0 for the value (as it will
not be read). The response received is in the form of a utf-8
string, meaning numerical values need to be casted.

setDataRef Set the value of a particular dataref. All values must be string
values, meaning that numerical values need to be initially
casted to strings before being passed into this function. The
function returns a boolean to indicate whether the Server has
successfully received the request.

sendCommand Use X-Plane commands with the cockpit. Once again, the
function returns a Boolean value to indicate whether the
Server has successfully received the request.

Table 3.III – Python Client API functions.

3.6 API Installation

In this section we will discuss procedures on how to install the API C++ server and

the python client.

3.6.1 C++ Server Installation

The latest and greatest releases of the C++ server can be found in the github repos-

itory of the project. From here the latest revision of the binaries can be downloaded,

unpacked, and executed from inside its containing folder. It should be self contained and

requires no additional steps.

3.6.2 Python Client Installation

The Python Client was designed with ease in mind. For this reason, it was setup with

a PyPi repository, which enables users to import this API into their python code with

relative ease. All that is required is to perform a pip install of the package: pip install

XPlaneApi. Then the API can be imported with the following import: from XPlaneApi

import XPlaneClient. For more installation instructions, the PyPi can be accessed at the

following link, with additional installation instructions found on the front page.

https://github.com/Pietracoops/XPlane_API
https://github.com/Pietracoops/XPlane_API
https://pypi.org/project/XPlaneApi/

31

3.7 Runner

The Runner provides the main running utilities that the Deviation Model requires to

gather information and remain in sync with the simulator. As illustrated in figure 3, upon

initialization, the Runner will load the Aircraft Ontology dictionary (using the owlready2

ontology package) into a data object, that unpacks all required data, while also creating

additional structures to facilitate data access during simulation time (such as querying

for next tasks and previous tasks in sequences). Once all libraries are loaded, the Runner

initializes the simulator API with its corresponding subscriptions file, and connects to it

as a client. The successful connection to the API allows the Runner to commence the

simulation loop, which runs at a frequency of 10Hz.

Once the simulation loop begins, the Runner can run in Execution Mode or in Obser-

vation Mode. As the names suggest, execution mode will follow the sequence of takeoff

tasks present in the Aircraft Ontology and execute them in the XPlane cock-pit. Observa-

tion mode, on the other hand, will observe the cockpit and record all per-formed actions.

Labels are assigned to the action sequences according to their predicted task, encoding

in the form taskNumber+actionNumber. A completion flag is also appended onto these

actions to ensure that they have been completed according to the task specification. For

example, if the expected next task in the sequence re-quires both throttles to be engaged

to 50% and the cockpit polls a 40% placement, then this task will be recorded as started

– but not completed. These actions will then be passed onto the Deviation Model for

sequence assessment, which can be seen as the yellow block in figure 3.6.

32

Figure 3.6 – XPlane Runner execution diagram.

3.8 Deviation Model Architecture

The Deviation Model receives the action sequences from the cockpit, which we label

as our Pilot Actions, and those from the Aircraft Ontology, referred to as our Reference

Actions. We have divided the deviation assessment into four main steps as follows:

33

3.8.1 Deviation Step 1

As seen in figure 3.7, the tasks are hierarchically organized into phases, then tasks,

and finally actions. Phases, such as takeoff, may contain several tasks, each with their

associated action.

Figure 3.7 – Hierarchical organization of phases, tasks, and actions.

An example of a task includes setting the throttles, which contains two separate ac-

tions of setting the throttle of engine 1 and engine 2. The action sequence that is received

by the Deviation Model contains actions that have been polled from the cockpit by the

Runner. In this first step, actions are annotated using the Task Dictionary, which contains

a dictionary of tasks with their associated actions. This process can be seen in figure 3.8

which contains the overview of the deviation process, as actions are annotated to their

corresponding tasks (Pilot actions 1, 2 and 4 belonging to task 1, and actions 3, 5, and

6 belonging to task 2). Task actions should always be adjacent to each other, as they

should be done in sequence with each other. After annotating the Reference and Pilot

actions in figure 4 step 1, we can already start seeing where sequences are not fully lined

up, which leads us to identifying problematic tasks.

34

Figure 3.8 – Deviation Model Overview

3.8.2 Deviation Step 2

These newly annotated sequences now need to be aligned together before being able

to validate which tasks are out of place. The Needleman-Wunsch global alignment al-

gorithm is a commonly used global alignment algorithm, which has been adopted in

many sequence alignment software, and will be the choice of algorithm for this devia-

tion assessment [93]. This algorithm is frequently employed in computational biology

35

and bioinformatics for DNA or protein sequencing [94]. It utilizes dynamic program-

ming to determine the ideal global alignment between two sequences. The algorithm for

the Needleman-Wunsch is outlined in figure 3.9.

36

Figure 3.9 – Algorithmic description of Needleman-Wunsch global alignment algorithm

37

3.8.3 Deviation Step 3

Once the alignments have been received from step 2, they are superimposed, and

processed so we can extract problematic tasks along with their actions. Once sequence

gaps are identified, they can easily be classified into added, omitted, and out of sequence.

The algorithm for this process is described below in figure 3.10.

Figure 3.10 – Algorithmic description of deterministic deviation assessment

3.8.4 Deviation Step 4

According to the Aircraft Ontology, certain tasks may be executed simultaneously,

such as tasks which describe checking the takeoff N1, gradually releasing the sidestick,

and monitoring the primary flight display for the Takeoff phase. These tasks can be

38

recorded in different orders continuously by the Runner due to their tandem nature.

Siamese Long Short-Term Memory (LSTM) networks are a type of recurrent neural net-

work architecture that is often used for tasks that involve measuring similarity or distance

between two input sequences. It uses identical LSTM networks with shared weights to

process each sequence, and then combines the resulting hidden states to make a pre-

diction. Siamese LSTM networks have been applied to a wide range of tasks, and had

a lot of success in identifying these hidden relations between sequences in several do-

mains including text similarity, image matching, and speaker verification [95–97]. As

illustrated in figure 7, the pilot and reference sequence are passed through a Siamese

LSTM that we have trained on 6607 generated piloting sequences (correct and incorrect

pairings). If the Siamese LSTM indicates that the sequence is the same as the reference

sequence, then the flagged tasks will be recorded as acceptable deviations and will be

placed in an ignored table for future iterations. The Siamese LSTM, as seen in figure

3.11, was trained using a learning rate of 0.001, LSTM input size of 300, hidden size of

100, and 2 layers.

Figure 3.11 – Siamese LSTM structural overview

3.9 Pre-Error-State Detection

In this section we will discuss the methodology of the pre-error signal detection

system. We will examine the dataset creation and the different models that were experi-

mented in the creation of the system.

39

3.9.1 Flanker Dataset

The cognitive brain controller interface dataset, aptly named COG-BCI, was used to

train the machine learning models, as it is a standardized and highly regulated dataset

containing flanker EEG and behavioral data [98]. The Flanker task is a choice reaction

task designed to induce errors and conflict during binary decisions. In its arrowhead

version, participants are presented with stimuli consisting of 5 horizontal arrows, where

they must respond to the middle arrow while disregarding flanking arrows. As seen in

figure 3.12, flanker stimuli can be congruent (flanking arrows point in the same direc-

tion) or incongruent (flanking arrows point in the opposite direction to the central arrow).

Each trial involves a 2000ms inter-stimulus interval (ISI) followed by a 16ms display of

the stimulus. Stimuli are presented equally frequently in a pseudorandom order, and par-

ticipants respond by indicating the target direction with keyboard keys. Feedback about

trial outcomes is provided, and the task involves 120 trials (30 for each stimulus type),

lasting about 10 minutes. The structure of the test can be seen in figure 1. Participant

responses, error rates, and reaction times are recorded throughout the task. Instructions

are given before the run begins. The dataset was compiled over three sessions, each

separated by one week.

Figure 3.12 – Flanker test procedure and timing windows.

3.9.2 EEG Preprocessing and Dataset Creation

The EEG signals underwent a comprehensive preprocessing pipeline to enhance their

quality and prepare them for subsequent analysis. Initially, we applied a high-pass finite

40

impulse response (FIR) filter with an automatic filter length, set to a cutoff frequency of

1 Hz, using the Python MNE toolbox, to eliminate the average component of the EEG

signal and isolate the desired frequency bands. Following this, a zero-phase notch filter

(or band reject filter) was used to reject signals at the 50Hz frequency, using the FIR

filter design ’window’ method. Subsequently, we down sampled the frequency from the

original 500Hz to 250Hz to optimize computational efficiency. To address potential arti-

facts such as heartbeat and eye blinks, we performed Independent Component Analysis

(ICA). An epoch, representing a time sequence of 1 second before and 0.5 seconds after

the stimulus signal, was extracted for each trial. Every individual epoch underwent vi-

sual inspection, and any instances with lingering large amplitude artifacts were removed.

Choosing a z-score threshold of 5 during the rejection procedure was intended to bal-

ance the retention of a sufficient number of samples while identifying and discarding

EEG spikes that exhibited extreme deviations from the expected distribution, ensuring

effective artifact removal without overly stringent criteria. The dataset creation overview

can be seen below in figure 2. After completing the rejection procedure, our dataset com-

prised of 1153 erroneous samples and 8521 non-erroneous samples, ensuring a robust

and refined dataset for further analysis and model development. It should be noted that

training and validation sets were created with no participant leakage (Single participant

data would not be found in both training and validation set). This overall dataset creation

process can be visualized in figure 3.13.

41

Figure 3.13 – EEG processing pipeline to create labeled data from 64-channel Flanker
data (not all channels can be seen in the graph illustrated).

3.9.3 Adjusting Imbalanced Datasets

Imbalanced datasets refer to situations where the distribution of classes is uneven,

with one or more classes having significantly fewer instances than others. In our COG-

BCI dataset, the occurrence of erroneous data points is significantly lower compared to

the correct ones. Addressing imbalanced datasets is crucial as it can lead to undersam-

pling is not a feasible choice. As a result, we explored two oversampling techniques:

Synthetic Minority Over-sampling Technique (SMOTE) [99] and Random Oversampler

[100], with the latter demonstrating superior performance. SMOTE is a widely used

42

method for generating synthetic samples to balance class distribution by interpolating

between existing minority class samples. On the other hand, Random Oversampler ran-

domly replicates minority class samples to achieve a balanced dataset.

3.9.4 Models

Several machine learning models were used on the dataset to compare performance.

The following will describe these models and the hyper parameters chosen for optimal

performance in the Flanker task. It should be noted that hyperparameter tuning tech-

niques such as Cross Validation and Grid Search from SKLearn and open-source library

Optuna were used in order to find optimal configurations for the models.

3.9.4.1 SVM and Random Forest models.

Support Vector Machines (SVM) and Random Forests are both types of supervised

machine learning algorithms. They fall under the category of classification algorithms,

as they are commonly used for tasks where the goal is to predict the class or category

of a given input based on labeled training data. SVM is particularly known for its effec-

tiveness in binary and multi-class classification, while the Random Forests model is an

ensemble learning method that can be used for both classification and regression tasks.

They are both relatively easy to implement and have been proven to provide great re-

sults on EEG data [101, 102]. These models serve as a great starting point in terms of

identifying trends in our EEG dataset.

Support Vector Machines (SVM) work by finding the optimal hyperplane that max-

imally separates data points of different classes in a high-dimensional space. The algo-

rithm aims to maximize the margin, which is the distance between the hyperplane and

the nearest data point of either class, leading to better generalization. SVMs can handle

both linear and non-linear depending on the kernel function selected. We decided to

use an RBF kernel function, which is commonly used with EEG data. The parameters

chosen for the SVM model can be found in table 3.IV.

https://scikit-learn.org/stable/modules/cross_validation.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://optuna.org/

43

Parameter Value
C 1.0
Kernel RBF
Gamma Scale
Probability True
Shrinking True
Tol 0.001

Table 3.IV – SVM Parameters

Random Forest models operate by constructing multiple decision trees during train-

ing and outputting the mode of the classes (classification) or the mean prediction (re-

gression) of the individual trees. Each tree is built using a random subset of the training

data and a random subset of features, reducing overfitting and improving generalization.

The combination of diverse trees results in a robust and accurate model. The parameters

chosen for the Random Forests can be found in table 3.V:

Parameter Value
Bootstrap True
Ccp_alpha 0.0
Criterion Gini
Max_depth 50
Max_features 0.7
Min_samples_leaf 1
Min_samples_split 10
N_estimators 100

Table 3.V – Random Forests parameters

3.9.4.2 Double Convolution

Convolutional Neural Networks (CNNs) are a type of deep learning architecture,

specifically designed for tasks involving structured grid-like data, such as images. CNNs

are particularly powerful for image classification, object detection, and image segmenta-

tion tasks. While SVM and Random Forests are traditional machine learning algorithms

that often require handcrafted feature engineering, CNNs automatically learn hierarchi-

cal features directly from the raw input data through the application of convolutional lay-

44

ers. To process the dataset through CNNs we follow similar architecture to Batmanova et

al. with a few modifications by performing the following steps (also illustrated in figure

3.14):

1. We first take our Channel by Time-point matrix from our batch and perform

a 1-dimensional convolution across the channel axis. This convolution slides

along the dimension of the EEG channels, while keeping the time-point dimen-

sion fixed, performing an averaging of EEG amplitude at every moment.

2. A second 1-dimensional convolution is performed across the remaining 1-dimensional

time dimension (where each point is an average across all channels) resulting in

a 1-dimensional vector with k features. This value k is then treated as a hyper-

parameter that can be tuned to improve model performance. Naturally, with too

few k values, the model will not efficiently learn, while with too many k values,

the model will have redundant features.

3. We then perform a 1-dimensional batch normalization to improve training stabil-

ity and convergence speed. The batch normalization is also useful to mitigate the

vanishing and exploding gradient problems during backpropagation.

4. A dropout layer is added with a dropout rate of 0.3. This regularization technique

helps to break tight coupling between neurons, reducing the risk of overfitting and

improving the model’s ability to generalize to unseen data.

5. Finally, two fully connected layers with hidden dimensions of size 1024 are used

to perform the classification. A leaky-Relu activation is performed in between

these two layers with a sigmoid activation function for the binary classification

output.

45

Figure 3.14 – Illustration of the double convolution neural network structure from raw
Flanker EEG data (64 Channel - not all channels displayed in image). It should be noted
that ’K’ is equivalent to the variable ’k’ mentioned in the text.

46

Double Convolution Hyperparameters

The following are hyper parameters that were modified in search of the best perfor-

mant CNN model:

• Initializers are methods used to set the initial values of the model’s weights and

biases. We experimented with the following two initialization techniques: Xavier

Uniform, and Random Uniform, with the former providing the best results.

• Learning Rate determines the size of the steps taken during the optimization

process, influencing the convergence and stability of a model. The learning rate

range searched was between 0.00001 and 0.01. A final learning rate of 0.00671

was used for optimal model performance.

• Epochs refer to the number of times a model processes the entire training dataset

during training. Each epoch consists of forward and backward passes, allowing

the model to update its weights and learn from the data iteratively. The epoch

range searched was between 10 and 100, with 27 epochs providing the best re-

sults.

• Batch size represents the number of training examples utilized in a single iteration

during model training. It influences the efficiency and memory requirements of

the training process, with larger batch sizes often providing computational speed-

ups but potentially leading to reduced generalization. The batch size range that

was searched was between 32 and 700, with 314 providing the best results.

• Activation functions introduce non-linearities to the model’s output, allowing it

to learn complex relationships and patterns in the data. The following activation

functions were used: Relu, Elu, Leaky Relu, Selu, with Leaky Relu providing

the best results.

• Optimizers are algorithms used to minimize the error or loss function during

the training of a neural network by adjusting the model parameters. They play

a crucial role in updating the weights of the network in a way that facilitates

convergence, ensuring the model learns effectively from the training data and

generalizes well to new, unseen data. The following optimizers were used in the

47

training of this model: Adam, and Adaptive Gradients (Adagrad), with the latter

providing the best results.

• k value represents the number of features that will be passed to the fully con-

nected layers after the two convolutional layers. The range that was searched for

this value was between 50 and 100, with 79 providing the best results.

Impact of Double Convolution on EEG Frequency Bands

The preprocessing steps involving double convolution significantly influence the fre-

quency content of the EEG signal.

• Channel-wise Convolution: This step involves averaging the EEG signals across

the channels, resulting in a single averaged EEG signal.

• Time Series-wise Convolution: The second step involves averaging over the

time dimension within temporal sub-windows of width N/K.

Both steps effectively act as low-pass filters, attenuating higher frequency compo-

nents of the EEG signal. Specifically, with a sampling frequency of 250 Hz and a signal

duration of 2.5 seconds (625 samples), averaging over windows of 8 samples signifi-

cantly reduces the effective sampling frequency, thereby attenuating frequencies above

approximately 30 Hz.

Given the preprocessing steps, higher frequency bands such as alpha (7-13 Hz), beta

(15-25 Hz), and gamma (35-45 Hz) waves are significantly attenuated. This results in

the retention of lower frequency components, primarily in the delta (1-3 Hz) and theta

(4-6 Hz) bands. Empirical experimentation with various values of k demonstrated that

extreme values (either approaching 1 or the maximum possible value) resulted in sig-

nificant performance losses. This suggests that the optimal performance of the network

is achieved when the preprocessing steps retain key frequency components in the delta

and theta bands. This validates prior work demonstrating that error-related brain activity

appears in the theta band [103, 104].

48

3.9.4.3 Transformer

Transformers are a type of deep learning architecture that has gained significant pop-

ularity, especially in natural language processing tasks. Unlike traditional sequence-

based models, transformers are designed to process sequences of data in parallel, making

them highly efficient for tasks involving sequential data, such as language understand-

ing, translation, and text generation. Transformers are known for their self-attention

mechanism, allowing them to capture relationships between different elements in a se-

quence, making them particularly powerful for handling long-range dependencies. The

transformer architecture was initially proposed for natural language processing but has

been successfully applied to various other domains, including computer vision, speech

processing, and EEG [18]. The architecture that will be used for this task was inspired by

the Conformer architecture conceived by Song et al. The architecture, as seen in figure

3.15, can be split up into three main parts as follows:

• Part 1 - Convolution Module: The convolution module is designed by decompos-

ing the two-dimensional convolution operator into two one-dimensional layers,

separating temporal and spatial convolutions, much like the double convolution

used previously. The first layer employs k kernels performing convolutions along

the time dimension. The second layer consists of k kernels acting as a spatial fil-

ter to capture interactions between electrode channels. Batch normalization is

applied for enhanced training and reduced overfitting, while exponential linear

units (ELUs) serve as the activation function for nonlinearity. The third layer

performs average pooling along the time dimension, smoothing temporal fea-

tures to prevent overfitting and decrease computational complexity. The resulting

feature maps are rearranged, with the electrode channel dimension squeezed and

the convolution channel dimension transposed, enabling the feeding of all feature

channels of each temporal point as tokens into the next module.

• Part 2 - Self-Attention Module: The Self-Attention Module is introduced to

capture global temporal dependencies in EEG features, utilizing self-attention

to enhance the decoding of context-dependent representations within low-level

49

temporal-spatial features. Tokens from the previous module are linearly trans-

formed into query (Q), key (K), and value (V), and their correlations are evalu-

ated using dot product, with a scaling factor to prevent vanishing gradients. The

resulting attention score is obtained through a Softmax function and applied to

V with a dot product. This process is repeated N times in the self-attention mod-

ule, incorporating a multi-head strategy to enhance representation diversity. The

multi-head attention results are concatenated, and the entire attention computa-

tion is performed N times.

• Part 3 - Classifier Module: Finally, the Classifier Module employs two fully

connected layers to output an M-dimensional vector after a Softmax function,

using binary cross-entropy as the loss function for the entire framework.

As a result, we have a model that processes EEG data through temporal and spatial

convolution layers, arranges them into tokens with a pooling layer, applies self- attention

layers, and uses fully connected layers for classification results.

50

Figure 3.15 – Illustration of the three components contained within the conformer struc-
ture.

51

Transformer Hyperparameters

Similarly, to the CNN model, the following are hyper parameters that were modified

in search of the best performant transformer model:

• InitializersXavier Uniform, and Random Uniform, with Xavier Uniform provid-

ing the best results.

• Learning Rate Between 0.00001 and 0.01. A final learning rate of 0.0072 was

used for optimal model performance.

• Epochs Between 10 and 150, with 30 epochs providing the best results.

• Batch size Between 32 and 100 due to hardware limitations, with 75 providing

the best results.

• Optimizer Scheduler is a mechanism that dynamically adjusts the learning rate

during training. It helps optimize the convergence of the model by control-

ling how much the model’s parameters are updated in each iteration, allow-

ing for better performance and faster convergence. The following schedulers

were used: ReduceLROnPlateau, StepLR, CosineAnnealingLR, CosineAnneal-

ingWarmRestarts, CyclicLR, with CyclicLR providing the best results cycling

between 0.001 and 0.01.

• Optimizers Adam, Stochastic Gradient Descent (SGD), and Adaptive Gradients

(Adagrad), with a tuned Adam optimizer providing the best results using beta-1

value of 0.285 and beta-2 value of 0.927.

• k Between 10 and 100, with 20 providing the best results.

CHAPTER 4

RESULTS

4.1 Deviation Detection Results

In order to assess a preliminary evaluation of the proposed deviation detection method,

this model was applied to the takeoff procedure defined in the Aircraft Ontology. Se-

quences of steps were generated based on the Ontology’s specifications and were mu-

tated to represent problematic process executions. This process is referred to as Mutation

Testing, and is a software testing technique used to evaluate its effectiveness by measur-

ing its ability to detect changes or mutations. The types of mutations that have been

introduced to the system are deletions (removal of an action), insertions (adding an ac-

tion), substitution (replacing an action with another), and swap (switching the places of

two actions).

We first performed a random walk through the Aircraft Ontology and retrieve a take-off

sequence. Each individual action is then encoded with a unique identification number.

The deviation model then consumes this sequence and outputs the problematic tasks

with a label that indicates if the action is out of place (1), has been add-ed (2), or omitted

(3). An example of each type of mutation is performed on the action sequence that is

input into the model and the model’s respective outputs can be seen in figure 4.1. The

outputs for these cases demonstrate that the deterministic assessment of the deviation

model performs as expected.

53

Figure 4.1 – Mutation testing on synthetic action sequences with fixed order.

The actions 102112, 102011, and 102314 in figure 4.2 represent respectively the ac-

tions of checking the takeoff N1, gradually releasing the sidestick, and monitoring the

primary flight display. These are tasks that are meant to be completed at the same time,

and should not be returned as problematic if they would be completed in an order that is

not represented in the reference sequence. In order to replicate a scenario where these

three actions are executed out of order, we perform a swap mutation on these actions

alone. This swap mutation would trigger the deterministic deviation assessment and

would return these tasks as problematic due to the fact that they no longer match the

reference sequence. The Siamese LSTM, however, successfully captures the relation-

ship between these tasks through trained examples and overrides the problematic labels

by indicating that there are no deviations – because these tasks can be performed in any

order with respect to each other. We can therefore validate our first hypothesis by con-

firming that the deviation assessment is capable of detecting several types of problematic

actions, while also understanding the relation between certain tasks and ignoring them

if necessary [105].

54

Figure 4.2 – Mutation testing on synthetic action sequences that can be executed in any
order.

Furthermore, deviation assessments using this method are extremely fast at 0.0179

seconds for an analysis sequence with length of 23 actions (for one takeoff sequence

walk). When increasing the analysis length to 70 actions, the model increased in time

to 0.0499 seconds (an average increase of 0.001 seconds per additional action), which is

still well within the bound of a 10Hz (0.1 seconds) simulation time requirement. Times

were taken on Windows 10 computer using i7-5930K 3.50GHz processor. If we com-

pare these values to the 70.5 average sequence length at 5.98 seconds by Christov et

al. [68] for their real time medical deviation, we have achieved a substantial increase

in assessment speed. However, computer specifications were not defined in their work

and could affect cross comparisons. We can then validate our real-time requirements by

confirming that this assessment can be completed at frequency of 10Hz for a maximum

estimated 120 actions per phase.

4.1.1 Simulation Testing

Using XPlane as the simulation platform and involving 5 different non-pilot users

performing 6 takeoffs from the scenarios outlined in the experimentation description, a

total of 22 perceived errors were recorded. These perceived errors encompassed a variety

of deviations from standard procedures and task executions within the simulated flight

environment. The deviation detection system successfully identified and flagged all 22

perceived errors, demonstrating its efficacy in real-time error detection.

Upon closer examination, it was observed that out of the 22 flagged errors, 16 in-

stances were determined to be deviations that were correctly suppressed by the LSTM-

55

based deviation detection system. These deviations, although sequentially diverging

from standard procedures, were identified as nuanced variations within acceptable bounds,

highlighting the system’s capability to distinguish between critical deviations requiring

intervention and minor discrepancies that could be safely ignored.

In response to the identified errors and deviations, the users were provided with real-

time corrective feedback and guidance. This immediate feedback mechanism allowed

for timely correction of errors during the simulation sessions, enabling users to adjust

their actions and adhere to prescribed procedures more effectively. By incorporating

real-time corrective interventions, the deviation detection system not only identified de-

viations but also facilitated continuous learning and improvement among users, enhanc-

ing their proficiency in executing takeoff procedures within the simulated flight environ-

ment.

4.1.2 Limitations

Despite promising results, there are, however, still some limitations to this technique

when it comes to training the Siamese LSTM. A sufficient amount of distributed data se-

quences is required to train this model, along with clever data engineering for known re-

lational tasks. Even though the sequence chains are taken directly from the Aircraft On-

tology, results might change if pilot cockpit behavior varies drastically, which may add

complexity. These behavior changes could also introduce mutation types other than the

ones that have been synthetically tested (deletions, insertions, substitutions, and swaps).

4.2 Pre-Error State Detection Results

4.2.1 Flanker Data Pre-Error State Detection

The results from the analysis of the Flanker dataset using the models are presented

in table 4.I. It should be noted that accuracy values are misleading to the dataset im-

balance. With an error rate close to the 13% mark, a model that has learned to simply

pick the most abundant class without actually classifying between the two will achieve

a high accuracy. For this reason, we have accumulated Macro-Averaged metrics for Pre-

56

cision, Recall, and F1 scores. Macro-averaged metrics calculate Precision, Recall, and

F1 score for each class independently and then average them. This ensures that each

class is given equal importance in the evaluation, addressing the imbalance and provid-

ing a more nuanced understanding of performance [106]. A Macro-Averaged F1 score

above 0.6 would indicate a classifier with moderate to good performance, while above

0.8 indicating excellent performance. Additionally, we have included the area under the

receiver operating characteristic (AUC ROC), which serves as a metric that quantifies

the overall performance of a binary classification model by measuring the area under the

curve formed by plotting the true positive rate against the false positive rate across vari-

ous classification thresholds. A value of 0.5 for the AUC ROC is indicative of a random

classification with no discriminative power, with values closer to 1 presenting a strong

discriminative power.

We can see that the simpler machine learning algorithms, namely SVM and Ran-

dom Forests, receive high accuracy values but underperform in all other metrics. Their

classification often seems random or biased towards one class, indicating that the com-

plexities in the EEG data might not be suited for these particular classifiers. The double

convolution model begins to discern between the two classes; however, its performance

still remains quite low and contains a lot of false negatives. The transformer model man-

ages to outperform the other models by a significant margin. We see a reduction in the

number of false negatives and a final F1 of 0.610, which serves as promising signs of its

classification power for erroneous states. It is interesting to note that a channel reduction

from 62 to 16 increased the performance of the classifier. This performance increase

could be due to a decrease in attenuation of higher EEG frequencies, allowing the model

to capture more significant information. The 16 chosen electrodes followed the standard

10-20 system distribution and not simply a random subset of the original 62 channels.

We can see the generated validation graphs below in figure 4.3 from the training

process of the Conformer architecture. There is a graph for each Test Accuracy, Test F1,

Test Kappa score, Test Precision, Test Recall, and the validation loss.

57

Dataset Model Acc. (%) AUC ROC *Precision *Recall *F1
SVM (Linear) 70.86 0.559 0.519 0.533 0.512
SVM (RBF) 80.48 0.523 0.493 0.493 0.491
Random Forests 86.30 0.484 0.439 0.500 0.468
Double Convolution 83.88 0.591 0.583 0.555 0.563
Conformer
(62 Channel) 84.08 0.633 0.599 0.600 0.600

Flanker

Conformer
(16 Channel) 82.40 0.652 0.611 0.610 0.610

Table 4.I – Model results on Flanker Dataset. Asterix (*) indicates a macro averaging
for the given value.

Below in figure 4.4 we can see the ROC curve, and also the associated AUC value.

An ROC AUC of 0.65 suggests moderate discriminative ability of our binary classifica-

tion model. This value indicates that the model performs better than random guessing but

may not be highly accurate in distinguishing between the positive and negative classes.

Taking a look at the confusion matrix in figure 4.5 we can get a better idea of the

inference capabilities of our model.

58

Figure 4.3 – Test Accuracy, Test F1, Test Kappa score, Test Precision, Test Recall, and
the validation loss for Conformer architecture with 16 channel EEG dataset.

It should be noted that a label of 0 indicates a pre-error state, while a label of 1

indicates a non-pre-error state.

59

Figure 4.4 – ROC AUC of the Conformer architecture with 16 channel EEG dataset.

The true positive count of the confusion matrix (value of 80) indicates that the model

correctly identifies some positive instances of pre-error states, albeit at a lower rate com-

pared to false positives. While the true positive rate is an essential measure of a model’s

performance, it’s crucial to consider how it balances with false positives in the context

of the application.

The model has a relatively high number of false positive predictions (144), indicat-

ing that it frequently misclassifies negative instances as positive. This suggests that the

model may be overly sensitive or prone to making type I errors, which could lead to false

alarms or incorrect identifications of positive cases.

With 216 false negative predictions, the model misses a significant number of posi-

tive instances. This high false negative rate suggests that the model may be conservative

or overly cautious in predicting positive cases, potentially leading to missed opportuni-

ties for correctly identifying relevant instances. In our case, this value is of less impor-

tance as a pilot who is not incapacitated being flagged will not necessarily be prone to

60

Figure 4.5 – Confusion Matrix of the Conformer architecture with 16 channel EEG
dataset.

making more mistakes.

Finally, the true negative count (1495) indicates that the model correctly identifies a

large proportion of negative instances. High true negative rate is desirable, especially in

scenarios where correctly identifying negative cases is crucial.

This discrepancy can be a testament to the human guessing of a binary choice test.

Participants that were uncertain of the result could have correctly guessed the answer,

resulting in a false positive entry. This type of result would require additional test param-

eters put in place, such as confidence level measure after an input, in order to accurately

gauge.

61

4.2.2 Pilot Data Pre-Error State Detection

While many studies conclude their experiments at this juncture, our objective extends

beyond, aiming to assess the model’s applicability in a secondary domain - substantiat-

ing the transfer-ability of the classifiers. To achieve this, we have collected EEG data

from aviation pilots and intend to evaluate the classifiers’ discriminative power specifi-

cally during takeoff procedures [107]. We can examine the performance of these models

in table 4.II, where we can see that the performance reduces slightly, but performs rela-

tively as expected. The transformer model still outperforms the other models in terms of

classification with a macro-averaged F1 above random classification, which is a promis-

ing indicator.

Dataset Model Acc. (%) AUC ROC *Precision *Recall *F1
SVM (Linear) 78.81 0.499 0.498 0.499 0.499
SVM (RBF) 82.68 0.486 0.423 0.486 0.452
Random Forests 88.42 0.498 0.443 0.498 0.469
Double Convolution 77.38 0.532 0.537 0.532 0.534Pilot

Conformer
(16 Channel) 77.06 0.584 0.574 0.584 0.578

Table 4.II – Model results on Pilot Dataset. Asterisk (*) indicates a macro averaging for
the given value.

62

Although there was a decrease in F1 score, these results highlight the existence of

electrical brain activity trends that could foreshadow a decrease in behavioral perfor-

mance. The flanker dataset that was used was quite small in contrast to common trans-

former training datasets, yet the transformer was still able to receive an adequate score.

With an increase in training data, we believe that there could be a substantial increase

in classifier performance. Furthermore, our polling began 1 second prior to the stim-

ulus due to constraints in Flanker testing procedures. We also believe that increasing

the polling band prior to the stimulus will also increase the classifier performance, and

transferability. The transformer model works exceptionally well in real time, which

would be its main use case when dealing with BCI devices. It has an inference speed

of 0.01 seconds, resulting in the bulk of computation time being associated with input

processing.

CHAPTER 5

CONCLUSION

5.1 Deviation Detection

Based on the results, we conclude that it is certainly possible to perform real time

deviation assessments of piloting tasks. We can see that it is also possible to combine

both data- and knowledge-driven process-mining methods to capture an accurate rep-

resentation of a correct process execution. The knowledge-driven models provided by

the Aircraft Ontology serves as a structural backbone for this deviation model, though

with certain tasks required to be performed in tandem, a strict assessment cannot be

directly performed. By utilizing the abilities of the Siamese LSTM, we can perform bet-

ter assessments of correctly executed task sequences by leveraging previously accepted

takeoff sequences. Through the synthetic generation of mutations on extracted Aircraft

Ontology sequences, we have validated our first hypothesis by assessing deviations of

different varieties, including added, omitted, and out of sequence errors, while also un-

derstanding relationships between tasks. These relational tasks will not be flagged if

deemed in conformance by the Siamese LSTM.

5.2 Pre-Error State Detection

With such small margins for error in real-time systems, such as aviation, the need

for predictive error detention is crucial. In this study, we have demonstrated the ability

of different machine learning models to predict erroneous states within a perceptual-

decision-making flanker and piloting task, using EEG. These signals were recorded prior

to the behavioral response and achieved a maximum macro averaged F1 score of 0.601

with a transformer-based model. Furthermore, testing the transferability of this model

to an aircraft piloting task yielded promising results with a maximum F1 score of 0.578,

suggesting that the signals in behavioral responses may be similar across certain domains

and can be used to substitute the gaps in data required – consequently accelerating the

64

creation of error prevention systems that can revolutionize transportation safety. It is

important to address the limitations of the pre-error detection procedure, particularly

concerning the use of the Flanker test to train our machine learning models. The Flanker

test is relatively simple and may not fully capture the complexity and variety of errors

that airplane pilots encounter in real-world scenarios. While the Flanker test provides

a controlled environment to identify pre-error signals in the anterior cingulate cortex

(ACC), it does not encompass the multifaceted cognitive demands and stressors present

during actual piloting tasks. While this study highlights the potential to predict errors,

there is room for improvement with further research, more complex experimentation,

and larger datasets.

5.3 Future Work

The findings presented in this thesis open avenues for future research to further en-

hance the capabilities of deviation detection and pre-error state detection systems in

critical domains such as aviation. Several areas warrant exploration and refinement to

improve the effectiveness and applicability of these systems:

5.3.1 Refinement of Machine Learning Models

While the results demonstrate promising performance of machine learning models

in predicting erroneous states, further refinement and optimization of these models are

necessary. Future research efforts should explore advanced techniques, such as ensem-

ble learning, attention mechanisms, or more expansive datasets, to improve predictive

accuracy and robustness across different task domains.

5.3.2 Exploration of Multimodal Data Fusion

Integrating multiple data modalities, such as eye tracking, and pulse, can provide

richer insights into cognitive processes and behavioral responses. Future studies could

investigate techniques for multimodal data fusion to enhance the discriminative power

65

of error prediction models and uncover underlying patterns that may not be evident from

individual data sources alone.

5.3.3 Optimization of Signal Processing Techniques

Incorporating signal processing techniques such as low-pass filters with a cutoff fre-

quency of 50 Hz and downsampling at 100 Hz, as suggested by the Nyquist-Shannon

sampling theorem, could improve the efficiency and information retention of the data

preprocessing pipeline. While the use of a notch filter at 50 Hz was based on initial

readings, further experimentation with additional signal processing methods could yield

performance improvements without sacrificing critical information. Additionally, ex-

ploring the balance between computational performance and the amount of information

fed into machine learning models could lead to optimized data representations for en-

hanced predictive capabilities.

BIBLIOGRAPHY

[1] No survivors as pakistan plane crash kills 152. https://www.bbc.com/news/world-

10784971, Jul 2010. Accessed: 2024-03-13.

[2] Airasia crash: crew lost control of plane after apparent misunder-

standing. https://www.theguardian.com/world/2015/dec/01/airasia-crew-actions-

caused-jet-to-lose-control-say-crash-investigators, Dec 2015. Accessed: 2024-

03-13.

[3] Levers of power: The crash of yeti airlines flight 691.

https://admiralcloudberg.medium.com/levers-of-power-the-crash-of-yeti-

airlines-flight-691-caedd8f8f7e0, Jan 2024. Accessed: 2024-03-13.

[4] Robert L Helmreich. On error management: lessons from aviation. BMJ,

320(7237):781–785, 2000.

[5] A. Mehmood, M. Maqsood, M. Bashir, and Y. Shuyuan. A Deep Siamese Convo-

lution Neural Network for Multi-Class Classification of Alzheimer Disease. Brain

Sci, 10(2), Feb 2020.

[6] What is fdm in aviation? (flight data monitoring). https://termaviation.com/what-

is-fdm-in-aviation/, September 2023. Accessed: 2024-04-17.

[7] What is a flight data monitoring programme?

https://www.easa.europa.eu/community/topics/flight-data-monitoring, January

2022. Accessed: 2024-04-17.

[8] what is flight data monitoring? https://swiss49.com/fundamentals/what-is-flight-

data-monitoring/, November 2023. Accessed: 2024-04-17.

[9] Flight data monitoring (fdm). https://skybrary.aero/articles/flight-data-

monitoring-fdm, April 2024. Accessed: 2024-04-17.

67

[10] Advances in flight data monitoring. https://maxcraft.ca/wp-

content/uploads/2012/01/2013-Advances-in-Flight-Data-Montoring-JanFeb.pdf,

January 2013. Accessed: 2024-04-17.

[11] Julian Oehling and David J. Barry. Using machine learning methods in airline

flight data monitoring to generate new operational safety knowledge from existing

data. Safety Science, 114:89–104, April 2019.

[12] Artificial intelligence (ai) vs. machine learning (ml).

https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning,

March 2024. Accessed: 2024-04-17.

[13] Machine learning vs. ai: Differences, uses, and benefits.

https://www.coursera.org/articles/machine-learning-vs-ai, March 2024. Ac-

cessed: 2024-04-17.

[14] Machine learning in finance: 10 applications and use cases.

https://www.coursera.org/articles/machine-learning-in-finance, February 2024.

Accessed: 2024-04-17.

[15] Machine learning (in finance). https://corporatefinanceinstitute.com/resources/data-

science/machine-learning-in-finance/, February 2024. Accessed: 2024-04-17.

[16] 16 machine learning in healthcare examples). https://builtin.com/artificial-

intelligence/machine-learning-healthcare, March 2024. Accessed: 2024-04-18.

[17] What is machine learning in healthcare? applications and opportunities.

https://www.coursera.org/in/articles/machine-learning-in-health-care, November

2023. Accessed: 2024-04-18.

[18] Transforming patient care: The role of machine learning in healthcare.

https://www.thoughtful.ai/blog/transforming-patient-care-the-role-of-machine-

learning-in-healthcare, March 2024. Accessed: 2024-04-18.

68

[19] Machine learning and marketing: Tools, examples, and tips most teams can

use. https://blog.hubspot.com/marketing/machine-learning-and-marketing, Octo-

ber 2023. Accessed: 2024-04-17.

[20] Introduction to machine learning for marketing.

https://www.forbes.com/sites/theyec/2022/11/08/introduction-to-machine-

learning-for-marketing/?sh=137d45e017b0, November 2022. Accessed:

2024-04-17.

[21] Machine learning for transportation. https://mobility.mit.edu/machine-learning,

November 2023. Accessed: 2024-04-17.

[22] David Mhlanga. Artificial Intelligence and Machine Learning in Making Trans-

port, Safer, Cleaner, More Reliable, and Efficient in Emerging Markets, page

193–211. Springer Nature Switzerland, 2023.

[23] Navigating the skies with machine learning: Predicting the future in avi-

ation. https://www.aviationfile.com/machine-learning-in-aviation/, November

2023. Accessed: 2024-04-17.

[24] Ai in aviation and airlines: Use cases for 2024.

https://mindtitan.com/resources/industry-use-cases/ai-in-aviation-and-travel/,

March 2023. Accessed: 2024-04-17.

[25] Ml with large datasets. https://trymachinelearning.com/ml-with-large-datasets/,

November 2017. Accessed: 2024-04-12.

[26] What is a machine learning algorithm? https://www.ibm.com/topics/machine-

learning-algorithms, March 2024. Accessed: 2024-04-12.

[27] Supervised machine learning. https://www.geeksforgeeks.org/supervised-

machine-learning/, February 2024. Accessed: 2024-04-14.

[28] What is unsupervised learning? https://cloud.google.com/discover/what-is-

unsupervised-learning, March 2024. Accessed: 2024-04-14.

69

[29] What is semi-supervised learning? https://www.ibm.com/topics/semi-supervised-

learning, March 2024. Accessed: 2024-04-17.

[30] What is reinforcement learning? https://www.ibm.com/topics/reinforcement-

learning, March 2024. Accessed: 2024-04-17.

[31] What is deep learning? https://www.mathworks.com/discovery/deep-

learning.html, November 2023. Accessed: 2024-04-17.

[32] What is transfer learning? https://www.ibm.com/topics/transfer-learning, March

2024. Accessed: 2024-04-17.

[33] Generative adversarial network. https://deepai.org/machine-learning-glossary-

and-terms/generative-adversarial-network, June 2022. Accessed: 2024-04-17.

[34] Sindhu V. An empirical science research on bioinformatics in machine learn-

ing. JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCI-

ENCES, spl7(1), February 2020.

[35] What are support vector machines (svms)? https://www.ibm.com/topics/support-

vector-machine, March 2024. Accessed: 2024-04-17.

[36] Tao Liu, P. R. Kumar, Ruida Zhou, and Xi Liu. Learning from few samples:

Transformation-invariant svms with composition and locality at multiple scales,

2021.

[37] Vladimir N. Vapnik. The Support Vector method, page 261–271. Springer Berlin

Heidelberg, 1997.

[38] Random forests. https://deepai.org/machine-learning-glossary-and-

terms/random-forest, March 2024. Accessed: 2024-04-17.

[39] Tin Kam Ho. The random subspace method for constructing decision forests.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8):832–844,

1998.

70

[40] Feature importances with a forest of trees. https://scikit-

learn.org/stable/autoexamples/ensemble/plot f orestimportances.html,March2024.Accessed :

2024−04−17.

[41] Random decision forests in finance: Preparing for the unexpected.

https://www.bairesdev.com/blog/random-decision-forests-in-finance/, March 2024.

Accessed: 2024-04-17.

[42] Shannon Wongvibulsin, Katherine C. Wu, and Scott L. Zeger. Clinical risk prediction

with random forests for survival, longitudinal, and multivariate (rf-slam) data analysis.

BMC Medical Research Methodology, 20(1), December 2019.

[43] Yanjun Qi. Random Forest for Bioinformatics, page 307–323. Springer New York, 2012.

[44] Autoencoders -machine learning. https://www.geeksforgeeks.org/auto-encoders/, De-

cember 2023. Accessed: 2024-04-17.

[45] Denoising autoencoders. https://deepai.org/machine-learning-glossary-and-

terms/denoising-autoencoder, March 2024. Accessed: 2024-04-17.

[46] Dimensionality reduction using deep learning: Autoencoder.

https://socr.umich.edu/HTML5/ABIDEAutoencoder/,March2024. Accessed :

2024−04−17.

[47] Lucas Cazzonelli and Cedric Kulbach. Detecting Anomalies with Autoencoders on Data

Streams, page 258–274. Springer International Publishing, 2023.

[48] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[49] Yingjie Zhang, Hong Geok Soon, Dongsen Ye, Jerry Ying Hsi Fuh, and Kunpeng Zhu.

Powder-bed fusion process monitoring by machine vision with hybrid convolutional neu-

ral networks. IEEE Transactions on Industrial Informatics, 16(9):5769–5779, Septem-

ber 2020.

71

[50] Image classification using cnn. https://datagen.tech/guides/image-classification/image-

classification-using-cnn/, March 2024. Accessed: 2024-04-17.

[51] Introduction to convolutional neural networks (cnn).

https://www.educative.io/blog/introduction-to-convolutional-neural-networks, March

2024. Accessed: 2024-04-17.

[52] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. Gradient amplification: An

efficient way to train deep neural networks. Big Data Mining and Analytics, 3(3):196–

207, 2020.

[53] Exploring the lstm neural network model for time series.

https://towardsdatascience.com/exploring-the-lstm-neural-network-model-for-time-

series-8b7685aa8cf, January 2022. Accessed: 2024-04-17.

[54] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual

prediction with lstm. Neural Computation, 12(10):2451–2471, October 2000.

[55] Language translation with rnns. https://towardsdatascience.com/language-translation-

with-rnns-d84d43b40571, February 2019. Accessed: 2024-04-17.

[56] Sentiment analysis — using lstm glove embeddings.

https://medium.com/@skillcate/sentiment-classification-using-neural-networks-a-

complete-guide-1798aaf357cd, July 2022. Accessed: 2024-04-17.

[57] Long short-term memory networks (lstm). https://databasecamp.de/en/ml/lstms, June

2022. Accessed: 2024-04-17.

[58] A deep dive into the transformer architecture — the development of transformer mod-

els. https://towardsdatascience.com/a-deep-dive-into-the-transformer-architecture-the-

development-of-transformer-models-acbdf7ca34e0, March 2024. Accessed: 2024-04-

17.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

72

[60] Sabeen Ahmed, Ian E. Nielsen, Aakash Tripathi, Shamoon Siddiqui, Ghulam Rasool,

and Ravi P. Ramachandran. Transformers in time-series analysis: A tutorial. 2022.

[61] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to

attention-based neural machine translation, 2015.

[62] Dynamic programming or dp. https://www.geeksforgeeks.org/dynamic-programming/,

April 2024. Accessed: 2024-04-17.

[63] What is dijkstra’s algorithm? | introduction to dijkstra’s shortest path algorithm.

https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-path-algorithm/,

March 2024. Accessed: 2024-04-17.

[64] Kunping Yang, Gui-Song Xia, Zicheng Liu, Bo Du, Wen Yang, Marcello Pelillo, and

Liangpei Zhang. Asymmetric siamese networks for semantic change detection in aerial

images. IEEE Transactions on Geoscience and Remote Sensing, 60:1–18, 2022.

[65] Luis Basora, Xavier Olive, and Thomas Dubot. Recent advances in anomaly detection

methods applied to aviation. Aerospace, 6(11), 2019.

[66] Florian Frische, Tomasz Mistrzyk, and Andreas Lüdtke. Detection of pilot errors in

data by combining task modeling and model checking. In Tom Gross, Jan Gulliksen,

Paula Kotzé, Lars Oestreicher, Philippe Palanque, Raquel Oliveira Prates, and Marco

Winckler, editors, Human-Computer Interaction – INTERACT 2009, pages 528–531,

Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[67] Sen Yang, Aleksandra Sarcevic, Richard A. Farneth, Shuhong Chen, Omar Z. Ahmed,

Ivan Marsic, and Randall S. Burd. An approach to automatic process deviation detection

in a time-critical clinical process. Journal of Biomedical Informatics, 85:155–167, 2018.

[68] S. C. Christov, G. S. Avrunin, and L. A. Clarke. Online deviation detection for medical

processes. AMIA Annu Symp Proc, 2014:395–404, 2014.

73

[69] Flávio L. Lázaro, Rui P. R. Nogueira, Rui Melicio, Duarte Valério, and Luís F. F. M.

Santos. Human factors as predictor of fatalities in aviation accidents: A neural network

analysis. Applied Sciences, 14(2):640, January 2024.

[70] Rui P. R. Nogueira, Rui Melicio, Duarte Valério, and Luís F. F. M. Santos. Learning

methods and predictive modeling to identify failure by human factors in the aviation

industry. Applied Sciences, 13(6):4069, March 2023.

[71] Mohammed Badawy, Nagy Ramadan, and Hesham Ahmed Hefny. Healthcare predictive

analytics using machine learning and deep learning techniques: a survey. Journal of

Electrical Systems and Information Technology, 10(1), August 2023.

[72] Nabila Sghir, Amina Adadi, and Mohammed Lahmer. Recent advances in predictive

learning analytics: A decade systematic review (2012–2022). Education and Informa-

tion Technologies, 28(7):8299–8333, December 2022.

[73] Janis Peksa and Dmytro Mamchur. State-of-the-art on brain-computer interface technol-

ogy. Sensors, 23(13):6001, June 2023.

[74] Baraka Maiseli, Abdi T. Abdalla, Libe V. Massawe, Mercy Mbise, Khadija

Mkocha, Nassor Ally Nassor, Moses Ismail, James Michael, and Samwel Kimambo.

Brain–computer interface: trend, challenges, and threats. Brain Informatics, 10(1), Au-

gust 2023.

[75] Kuan-Jung Chiang, Dimitra Emmanouilidou, Hannes Gamper, David Johnston, Mihai

Jalobeanu, Edward Cutrell, Andrew Wilson, Winko W. An, and Ivan Tashev. A closed-

loop adaptive brain-computer interface framework: Improving the classifier with the

use of error-related potentials. In 2021 10th International IEEE/EMBS Conference on

Neural Engineering (NER), pages 487–490, 2021.

[76] Maren David Dangut, Ian K. Jennions, Steve King, and Zakwan Skaf. A rare failure de-

tection model for aircraft predictive maintenance using a deep hybrid learning approach.

Neural Computing and Applications, 35(4):2991–3009, March 2022.

74

[77] Khalid Khan, Muhammad Sohaib, Azaz Rashid, Saddam Ali, Hammad Akbar, Abdul

Basit, and Tanvir Ahmad. Recent trends and challenges in predictive maintenance of

aircraft’s engine and hydraulic system. Journal of the Brazilian Society of Mechanical

Sciences and Engineering, 43(8), August 2021.

[78] Alexander E. Hramov, Vladimir A. Maksimenko, and Alexander N. Pisarchik. Physical

principles of brain–computer interfaces and their applications for rehabilitation, robotics

and control of human brain states. Physics Reports, 918:1–133, 2021. Physical princi-

ples of brain–computer interfaces and their applications for rehabilitation, robotics and

control of human brain states.

[79] Michael L Martini, Eric Karl Oermann, Nicholas L Opie, Fedor Panov, Thomas Oxley,

and Kurt Yaeger. Sensor modalities for brain-computer interface technology: A compre-

hensive literature review. Neurosurgery, 86(2):E108–E117, July 2019.

[80] T Koenig, D Studer, D Hubl, L Melie, and W.K Strik. Brain connectivity at differ-

ent time-scales measured with eeg. Philosophical Transactions of the Royal Society B:

Biological Sciences, 360(1457):1015–1024, May 2005.

[81] Cameron S. Carter, Todd S. Braver, Deanna M. Barch, Matthew M. Botvinick, Douglas

Noll, and Jonathan D. Cohen. Anterior cingulate cortex, error detection, and the online

monitoring of performance. Science, 280(5364):747–749, May 1998.

[82] Clay B. Holroyd and Michael G. H. Coles. The neural basis of human error process-

ing: Reinforcement learning, dopamine, and the error-related negativity. Psychological

Review, 109(4):679–709, October 2002.

[83] K.Richard Ridderinkhof, Sander Nieuwenhuis, and Theodore R. Bashore. Errors are

foreshadowed in brain potentials associated with action monitoring in cingulate cortex

in humans. Neuroscience Letters, 348(1):1–4, September 2003.

[84] Alisa Batmanova, Alexander Kuc, Vladimir Maksimenko, Andrey Savosenkov, Nikita

Grigorev, Susanna Gordleeva, Victor Kazantsev, Sergey Korchagin, and Alexander

75

Hramov. Predicting perceptual decision-making errors using eeg and machine learning.

Mathematics, 10(17):3153, September 2022.

[85] Rui Li, Le-Dian Liu, and Bao-Liang Lu. Discrimination of decision confidence levels

from eeg signals. In 2021 10th International IEEE/EMBS Conference on Neural Engi-

neering (NER). IEEE, May 2021.

[86] H Zhang, R Chavarriaga, Z Khaliliardali, L Gheorghe, I Iturrate, and J d R Millán. Eeg-

based decoding of error-related brain activity in a real-world driving task. Journal of

Neural Engineering, 12(6):066028, November 2015.

[87] Maxime Antoine, Hamdi Ben Abdessalem, and Claude Frasson. Cognitive workload

assessment of aircraft pilots. Journal of Behavioral and Brain Science, 12(10):474–484,

2022.

[88] Robert Oostenveld and Peter Praamstra. The five percent electrode system for high-

resolution eeg and erp measurements. Clinical Neurophysiology, 112(4):713–719, April

2001.

[89] Electroencephalography and Clinical Neurophysiology, 10(2):370–375, May 1958.

[90] Marc-Antoine Courtemanche, Ange Tato, and Roger Nkambou. Ontological reference

model for piloting procedures. In Scott Crossley and Elvira Popescu, editors, Intelligent

Tutoring Systems, pages 95–104, Cham, 2022. Springer International Publishing.

[91] Web ontology language (owl). https://www.w3.org/OWL/. Accessed: 2022-09-30.

[92] Zeromq: An open-source universal messaging library. https://zeromq.org/, March 2024.

Accessed: 2024-04-18.

[93] J. Chao, F. Tang, and L. Xu. Developments in Algorithms for Sequence Alignment: A

Review. Biomolecules, 12(4), Apr 2022.

[94] J. Rose and F. Eisenmenger. A fast unbiased comparison of protein structures by means

of the Needleman-Wunsch algorithm. J Mol Evol, 32(4):340–354, Apr 1991.

76

[95] An Na. Anomalies detection and tracking using siamese neural networks. Master’s

thesis, Auckland University of Technology, 2020.

[96] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A twofold siamese network

for real-time object tracking, 2018.

[97] Gregory Koch. Siamese neural networks for one-shot image recognition. Master’s thesis,

University of Toronto, 2015.

[98] Marcel F. Hinss, Emilie S. Jahanpour, Bertille Somon, Lou Pluchon, Frédéric Dehais,

and Raphaëlle N. Roy. Open multi-session and multi-task eeg cognitive dataset for

passive brain-computer interface applications. Scientific Data, 10(1), February 2023.

[99] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic mi-

nority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357,

June 2002.

[100] Alberto Fernández, Salvador García, Mikel Galar, Ronaldo Prati, Bartosz Krawczyk,

and Francisco Herrera. Foundations on Imbalanced Classification, pages 19–46. 01

2018.

[101] B. Richhariya and M. Tanveer. Eeg signal classification using universum support vector

machine. Expert Systems with Applications, 106:169–182, September 2018.

[102] Damodar Reddy Edla, Kunal Mangalorekar, Gauri Dhavalikar, and Shubham Dodia.

Classification of eeg data for human mental state analysis using random forest classifier.

Procedia Computer Science, 132:1523–1532, 2018.

[103] Clay B Holroyd and Michael G H Coles. The neural basis of human error process-

ing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev.,

109(4):679–709, October 2002.

[104] Stephan F. Taylor, Emily R. Stern, and William J. Gehring. Neural systems for er-

ror monitoring: Recent findings and theoretical perspectives. The Neuroscientist,

13(2):160–172, April 2007.

77

[105] Massimo Pietracupa, Hamdi Ben Abdessalem, and Claude Frasson. An approach to

automatic flight deviation detection. In Claude Frasson, Phivos Mylonas, and Christos

Troussas, editors, Augmented Intelligence and Intelligent Tutoring Systems, pages 530–

540, Cham, 2023. Springer Nature Switzerland.

[106] Juri Opitz and Sebastian Burst. Macro f1 and macro f1, 2021.

[107] Massimo Pietracupa, Hamdi Ben Abdessalem, and Claude Frasson. Detection of pre-

error states in aircraft pilots through machine learning. 2024. forthcoming.

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Dedication
	Acknowledgments
	Introduction
	Context
	Problem
	Contribution
	Document Structure

	Background and State of the Art
	Process Mining - Deviation Detection
	Aircraft Flight Data Monitoring (FDM)

	Machine Learning
	Machine Learning Landscape
	Dynamic Programming
	Automatic Deviation Detection - State of the Art

	Error-State Prediction
	Brain-Computer Interfaces (BCI)

	Pre-Error State Detection - State of the Art

	Methodology
	Data Acquisition
	Setup
	EEG Logging

	Ontological Reference Model for Piloting Procedures
	Simulator API
	API - C++ Server
	LibXPlane-Udp-Client Cross-Platform Compatibility
	IPC (Inter-Process Communication) Protocol ZeroMQ
	Architecture of C++ Server
	Subscription Storage
	Listener Thread
	Dedicated Thread

	API - Python Client
	Python Client Connect and Disconnect
	Python Client Functions

	API Installation
	C++ Server Installation
	Python Client Installation

	Runner
	Deviation Model Architecture
	Deviation Step 1
	Deviation Step 2
	Deviation Step 3
	Deviation Step 4

	Pre-Error-State Detection
	Flanker Dataset
	EEG Preprocessing and Dataset Creation
	Adjusting Imbalanced Datasets
	Models

	Results
	Deviation Detection Results
	Simulation Testing
	Limitations

	Pre-Error State Detection Results
	Flanker Data Pre-Error State Detection
	Pilot Data Pre-Error State Detection

	Conclusion
	Deviation Detection
	Pre-Error State Detection
	Future Work
	Refinement of Machine Learning Models
	Exploration of Multimodal Data Fusion
	Optimization of Signal Processing Techniques

	Bibliography

