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Résumé

Ce mémoire étudie le problème ancestral 1 de déterminer la puissance relative de l’intrication
préalable en complexité de la communication comparée à la communication quantique. L’idée
maîtresse du mémoire est d’opérer un rapprochement entre la complexité de la communication
et la théorie des jeux non-locaux. Spécifiquement, nous contemplons une variété de manières
de convertir des jeux non-locaux pour lesquels il est su que beaucoup d’intrication est requise
en problèmes de complexité de la communication. Ce faisant, nous obtenons les problèmes de
communications affichant les plus grands écarts connus à ce jour entre les deux modèles pour des
problèmes fonctionnels.

Mots-clés: informatique quantique, intrication, jeux non-locaux

1Pour les standards de l’informatique quantique, qui n’est prise au sérieux que depuis quelques décennies.
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Abstract

This thesis studies the age-old 2 problem of determining the relative power of shared prior entan-
glement in communication complexity compared to quantum communication. The central idea
of the thesis is to build a connection between communication complexity and the well-developed
theory of nonlocal games. To be more specific, we contemplate a variety of ways of converting
nonlocal games into communication complexity problems for which it is known that a great deal of
prior entanglement is required into communication complexity problems. In so doing, we obtain
communication problems exhibiting the largest known gaps at the time of writing between the two
models for functional problems.

Keywords: Quantum computing, entanglement, nonlocal games

2For the standards of quantum computing, at least.
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Chapter 1

Introduction

This work is devoted to the study of the role of entanglement in communication complexity. Com-
munication complexity, first introduced by Abelson ([6]) and formalized by Yao ([8]), concerns
itself with the following problem:

(1) Given a discrete-valued function f (x,y) known to both parties (typically taken to be boo-
lean), if Alice is given x and Bob is given y, how much do they need to communicate in
order to compute f (x,y)?

At first, this task was studied in the classical setting, where communication was quantified in terms
of bits. With the advent of quantum information theory, two proposals for a quantum analogue of
the aforementioned classical setting were put forth. The first is due to Yao ([19]), and consists in
allowing Alice and Bob to communicate with quantum resources, specifically qubits. The second
is due to Cleve and Buhrman ([26]), and consists in allowing Alice and Bob to share arbitrary prior
quantum entanglement while keeping the communication classical. The teleportation protocol of
Bennett, Brassard, Crépeau, Jozsa, Peres and Wootters ([17]) implies that any protocol in the Yao
model may be simulated in the Cleve-Buhrman model by increasing the amount of communication
by a factor of two, so that the Cleve-Buhrman model is at least as powerful as the Yao model up to
a constant factor.

Although this took more than a decade to establish, we now know that the Yao model (and,
by extension, the Cleve-Buhrman model which subsumes it) can yield an enormous (exponential)
reduction in the amount of required communication for some problems compared to the classical
setting. However, the relative strength of the Cleve-Buhrman model compared to the Yao model
is much more mysterious, despite these having been around for more than 25 years. In fact,
while it is known that the Cleve-Buhrman model can be much more powerful than the Yao model
for a multitude of related communication tasks, it is still unknown whether the Cleve-Buhrman
model can be more powerful than the Yao model for tasks of the form (1), provided that shared



randomness is considered free.

There are essentially two school of thoughts about the Yao vs Cleve-Buhrman problem. One
might be led to think that they should be equivalent because, despite years of efforts, essentially no
use for entanglement was known for tasks of the form (1) aside from generating classical shared
randomness and teleporting qubits (using either the original teleportation protocol ([17]), which
corresponds to a factor of two overhead, or a more efficient remote state preparation protocol (see,
for example, [39])). In particular, no candidates at all were known that might possibly exhibit a
separation between the Cleve-Buhrman and Yao models. In contrast, one might think that since
entanglement is known to be an extremely powerful resource in so many relating settings, most
prominently in the context of nonlocal games as exemplified in the recent MIP*=RE result ([93]),
some of that power ought to drip off on communication complexity in a hitherto unknown manner.

1.1. Contributions of this thesis
The point of view taken on the Yao vs Cleve-Buhrman problem in this thesis is resolutely in fa-

vour of the second point of view. We make what we feel is reasonably significant headway towards
showing this by showcasing more ways in which entanglement may be used in communication
complexity. A number of these come from the theory of nonlocal games, which has been progres-
sing at a rapid pace in recent years. While the idea that communication complexity and nonlocality
are intertwined is in no way new (see, for example, [81, 64]), we are, we believe, the first to attempt
to systematically turn nonlocal games into communication complexity problems.

1.1.1. What is entanglement good for in communication complexity?

We will study the problem of the amount of entanglement (measured in ebits) that may
be needed by a communication protocol in the Cleve-Buhrman model. Up till now, provided
that shared randomness is considered free, no scenario was known in which more shared prior
entanglement was needed than communication. If no such scenario existed, we would trivially
have that the Yao and Cleve-Buhrman models are roughly equivalent, as one could convert a
Cleve-Buhrman protocol into a Yao one by having one party generate the prior entanglement
locally, dispatch it to the other party and then carry on with the original protocol, thereby incurring
a factor of two overhead in the communication.

We give two examples of such scenarios. First, based on a theorem of Slofstra, in section 4.1,
we show that there are some problems for which any protocol using only one bit of communication
whose success probability is close to being best possible must use an amount of shared prior
entanglement that is exponential in the lengths of Alice and Bob’s inputs, when measured in
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ebits. In section 4.2, we get a stronger result in the exact setting by making use of another
theorem of Slofstra: namely, we show that there exists a sequence of functions { fi}, where the
inputs of function fi are bit strings of length i, which can all be computed exactly with one trit
of communication from Alice to Bob in the Cleve-Buhrman model, but which are such that the
amount of shared prior entanglement required by any such protocol for the function fi grows faster
than any computable function of i.

While the above examples collapse if some breathing room in terms of success probabilities
is permitted (meaning that in all cases, there will exist a protocol with the same amount of
communication and very slightly worse success probability that uses far less entanglement), we
also give a heuristic construction inspired by the interactive hashing protocol of Naor, Ostrovsky,
Venkatesan and Yung ([31]) which, together with the recent MIP*=RE result of Ji, Natarajan,
Vidick, Wright and Yuen ([93]), seems to suggest that no useful (e.g. computable) upper bound
exists on the amount of entanglement that may be required to compute a given function with good
probability and with a near-optimal amount of communication.

In another vein, in subsection 3.3.2, we give an example of an entanglement-assisted one-way
protocol for the equality function which achieves the same success probability as the standard one
using shared randomness for the same amount of communication but whose entanglement cost is
reduced by a factor of two compared to that of any correct protocol using entanglement exclusively
as a source of shared randomness. This may be seen as another way in which entanglement can
be used in communication complexity which differs from teleportation or the generation of shared
randomness, although not in a useful way from the standpoint of computing functions with as little
communication as possible.

1.1.2. Small separations between the Cleve-Buhrman and the Yao models

Up till now, as we mentioned previously, no use was known for entanglement in communica-
tion complexity other than generating shared randomness and teleporting qubits. In particular, no
problem was known for which n bits of communication with prior shared entanglement allowed
one to do any better than n qubits of communication with shared randomness, for some n.

We give three examples of such problems. All three problems are explicit, and the first and the
third are quite small. First, again based on the aforementioned theorem of Slofstra, in section 4.1,
we give a collection of problems for which a protocol with one bit of communication and shared
prior entanglement achieves a success probability that is slightly larger than that of any protocol
using one qubit of communication and shared randomness. Also, in subsection 4.2.7, we give an
example of a function derived from a result due to Mančinska and Roberson which admits an exact
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protocol in the Cleve-Buhrman model using two bits of communication while no exact protocol
using two qubits of communication and no prior entanglement exists. We also provide our own
example of such a function, based on the concept of a vector clump which we invented for this
express purpose, which has smaller inputs than Mančinska and Roberson’s example.
More significantly, in subsection 3.3.5, inspired by the work of Hadiashar and Nayak ([91]), we
introduce a new communication complexity problem, called the distance between subspaces pro-
blem, which appears to have the potential for yielding a large (possibly even exponential) sepa-
ration between the Cleve-Buhrman and Yao models. As far as we know, this is the only known
candidate for such a separation.

1.1.3. Separating the different flavours of entanglement in communication
complexity

Although, until now, we have been speaking of ‘the’ Cleve-Buhrman model, in fact, there are
multiple Cleve-Buhrman models, in view of the familiar fact from nonlocality theory that there are
multiple ways of formalizing entanglement mathematically. To the best of our knowledge, before
this thesis, shared entanglement in communication complexity has always been formalised in the
standard finite-dimensional, tensor-product model. On the one hand, we show that many lower
bounds that were shown to hold in the case of tensor-product entanglement hold for the stron-
ger commuting operators model also. On the other hand, we show that a number of separations
between the entanglement models which have been shown in recent years carry over to communi-
cation complexity. First, we show that there exists a function f for which, for every ε > 0, there
exists a entanglement-assisted protocol in the tensor-product model with one trit of communication
that achieves success probability 1− ε , and yet not such protocol exists that achieves success pro-
bability one. This parallels a theorem of Slofstra (theorem 2.5.1) and is proven by reduction from it.
We also show that there exists a function g which admits an exact entanglement-assisted protocol
in the commuting operators model with one trit of communication, whereas any entanglement-
assisted protocol for g in the tensor-product model with one trit of communication has success
probability at most 1−ε , for some (unknown and likely incredibly small) ε > 0. This parallels the
MIP*=RE result ([93]) and is also proven by reduction from it.

1.2. Structure of this thesis
This thesis assumes that the reader is acquainted with the basic language of quantum infor-

mation theory already. If this is not the case, we refer the reader to, for example, the excellent
textbook of Watrous ([86]). However, no background knowledge about nonlocal games or
communication complexity is assumed.
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Chapter 2 presents the basics of nonlocality, notably the definitions of a correlation set
and a nonlocal game, the CHSH game, pseudotelepathy, the sum-of-squares hierarchy as well
as a discussion of a constellation of results that have been shown for the various models of
entanglement in recent years, culminating in the recent MIP*=RE result and its implications.

Chapter 3 is devoted to the basics of communication complexity. Specifically, we present
the dramatis personæ of the thesis, namely, the classical model, the Yao model and the Cleve-
Buhrman model. While the discussions of the first two models present mostly standard results,
the third contains a fair amount of new material, including a novel entanglement-assisted protocol
for the equality function and the recasting in the commuting-operators model of well-known
communication complexity lower bounds. We also discuss a possible limitation of the power of
the Cleve-Buhrman model relative to the Yao model due to de Wolf and present a candidate for a
large separation between the two models in the bounded-error setting.

Chapter 4 contains the bulk of the new material contained in this thesis. In the first section,
we go over what we call one-time-pad problems, which are a generalisation of the distributed
CHSH problem of [38] and which turn out to be very closely related to the theory of XOR games,
the basic theory of which we sketch. From there, based on a theorem of Slofstra, we show that
near-optimal protocols with one bit of communication for some one-time-pad problems require
a great deal of prior entanglement in the Cleve-Buhrman model, and also exhibit small gaps
between the Yao and Cleve-Buhrman models. We will also discuss a generalisation of XOR
games and its relevance to communication complexity. In the second section, we build the theory
of one-way, exact communication complexity, which, bizarrely enough, never seems to have been
studied explicitly in the Cleve-Buhrman model despite having received a fair amount of attention
in the Yao model. As it turns out, this subject is closely related to quantum graph theory, as was
first noticed by Ronald de Wolf in his PhD thesis ([37]): we make this link even more explicit.
After the presentation of the graph parameters which are of interest for the theory, namely, the
communication and chromatic numbers of a graph, and the statement of some useful lemmas,
subsection 4.2.6 studies the comparison between the communication and chromatic numbers:
there, it is shown how to embed the chromatic numbers inside communication complexity. In
conjunction with the results of Harris ([101]), this has a number of implications for communication
complexity which were discussed in the previous section. We then discuss two problems for
which the Cleve-Buhrman model is slightly more powerful than the Yao model with the equivalent
amount of communication, one due to Mančinska and Roberson and the other due to us. We end
by presenting some negative results on direct sums in one-way, exact communication complexity.
Section 3 discusses a conjectured embedding of nonlocal games in communication complexity
which, if correct, would imply a stronger impossibility result on showing a limitation of prior
entanglement than the ones that could be established mathematically, and section 4 discusses how
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our results restrict the realm of possibilities for a hypothetical quantum Newman’s theorem.

Chapter 5 summarises what has been studied in this thesis and mentions some possible future
research directions.
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Chapter 2

The theory of quantum nonlocality

This chapter covers the basics of the theory of quantum nonlocality1. Although the material that
we present is in no way new, we are not aware of any source that covers it in a satisfactory manner.

After defining the notions of a correlation set and of a nonlocal game, we present the simplest
nonlocal game that is interesting, namely, the classic CHSH game; we then introduce the notion
of pseudotelepathy, discuss the sum-of-squares hierarchy and the commuting operators model, and
finally talk about the recent progress that has been made on the complexity of certain properties of
nonlocal games and the relative strengths of the various entanglement models. While the account
of the theory of quantum nonlocality that is presented in this chapter is quite high-level, in chapter
4, a more in-depth presentation of the theory of certain classes of nonlocal games will be provided.

2.1. Correlation sets
Perhaps the most fundamental concept in the theory of nonlocality is that of a correlation set.

Given finite input sets X ,Y and finite output sets A,B, we have the following experiment in mind:
Alice and Bob, who are disallowed to communicate but who are assumed to have unbounded
computational power, are respectively given x ∈ X , y ∈ Y (with neither knowing what the other
party’s input is) and are requested to respectively output a ∈ A, b ∈ B. We also allow them to make
their outputs depend on a random variable with the distribution of their choice (independent of
their inputs, of course), the value of which both parties are made aware of: this additional resource
is known among physicists as a local hidden variable, and is more commonly referred to as a
public coin or as shared randomness among computer scientists. Given the resources that the
players are permitted to use, we then consider the correlations that their outputs might exhibit
given their inputs. The collection of all such correlations is referred to as the correlation set

1It should be emphasised that this is questionable terminology considering that nonsignalling and locality have been
argued to be equivalent by Raymond-Robichaud ([84]), so that what is known as quantum nonlocality is, in fact,
arguably a perfectly local phenomenon. We stick to this term, faute de mieux.



corresponding to the allowed resources, and is denoted by Ct , where t is the model under scrutiny.
Formally, an element of Ct is a collection of distributions on A×B indexed by X ×Y , and will be
denoted by {p(a,b|x,y)}. Given a correlation in Ct , a particular means by which the parties can
achieve that correlation is referred to as a strategy. Note that the fact that the players are allowed
to share randomness has the effect of making correlation sets convex (viewing correlations as
vectors in Rn).

Arguably the smallest correlation set that is still interesting is the so-called class of classical 2

correlations, denoted by Cc, which corresponds to correlations that can be achieved by classical
players. This set is readily described as the convex hull of deterministic correlations, namely
those in which the output of each party is determined completely by their input. At the other
extreme, we have the so-called class of non-signalling correlations, Cns, namely, the class of
correlations such that, for each of a given player’s inputs, the probability distribution of the
player’s output is independent of the other player’s input. Operationally, this means that whatever
one of the players is doing cannot have any observable effect on what the other will observe:
in particular, these are the correlations that do not enable telepathy (i.e. allowing the players
to communicate without actually communicating physically). The correlation sets that will be
considered in this thesis will all be subsets of Cns. While there are very powerful reasons to think
that this class is uninteresting as a model of what is physically possible in the world that we live
in, it can sometimes nevertheless be a useful object of study as a more manageable relaxation
of correlation classes that are physically relevant but whose structure is more complicated. For
instance, membership in the class Cns may be recast as a linear program and can therefore be tested
very efficiently in practice: similarly, the non-signalling value of a nonlocal game, to be defined in
the next section, is a linear program and is efficiently computable. This is in stark contrast to the
case of most of the other correlation sets under consideration in this thesis, for which these two
tasks are either known or thought to be intractable in general.

Sandwiched between Cc and Cns, we have various correlation sets corresponding to models
inspired by quantum mechanics. Perhaps the most physically interesting one is the set Cq f

3 of
correlations that can be realised using the standard finite-dimensional, tensor-product formalization
of entanglement. Formally, given a finite-dimensional Hilbert space H , a strategy in this context
is specified by an entangled state |ψ〉 on H ⊗H and measurements {Ax

a}4 and {By
b} on H for

2Classical in the sense of special relativity, since nonrelativistic physics is nonlocal in the fullest sense of the word.
This is sometimes referred to as the class of local correlations: refer to the previous footnote for why we dislike this
terminology.
3Traditionally denoted Cq, where ‘q’ stands for quantum: we dislike this terminology because there are multiple other
quantum correlation sets, and prefer ‘qf’, which stands for the more precise ‘quantum finite-dimensional‘.
4In the remainder of this thesis, a subscript will be understood as indexing the operators which make up a measurement,
and a superscript will be understood as indexing over a collection of measurements.
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Alice and Bob, respectively, which may be assumed to be projective measurements without loss
of generality by Naimark’s theorem. The correlation that is produced by this strategy is then given
by:

p(a,b|x,y) = 〈ψ|Ax
a⊗By

b|ψ〉

Note that when considering models in which the parties are allowed to share an arbitrary amount of
entanglement, since entanglement can be used to generate shared randomness, it can be assumed
that the parties do not share a public coin as we permitted them to do in general. We will also
sometimes consider the smaller set Cq f :d , which corresponds to correlations that can be realised in
the finite-dimensional model using an entangled state of local dimension at most d. Clearly,

Cq f =
⋃
d

Cq f :d

By dropping the requirement that H be finite-dimensional in the previous definition, we
obtain a potentially larger set, called Cqs. One might also consider the closure of these two sets:
indeed, while it is easy to show that Cc and Cns are closed, it is not obvious that either of Cq f or
Cqs is. Scholz and Werner ([61]) showed that the closures of these two sets are equal, and we will
denote this closure by Cq

5.

We will also be studying a strengthening of the tensor-product model called the commuting
operators model, first introduced by Tsirelson ([10]). This model is obtained by dropping the re-
quirement that the entanglement be in tensor-product form altogether and only requiring that Alice
and Bob’s measurements commute. Formally, a strategy in this more exotic model is specified by
a possibly infinite-dimensional Hilbert space H , a state |ψ〉 ∈H , and choices {Ax

a} and {By
b}

of projective measurements for Alice and Bob, respectively, with the property that for all x,y,a,b,
[Ax

a,B
y
b] = 0. The correlation in the corresponding correlation set Cqc is then given by

p(a,b|x,y) = 〈ψ|Ax
aBy

b|ψ〉

It is immediate that Cq f ,Cqs ⊆Cqc. Also, as a corollary of the convergence of the sum-of-squares
hierarchy, to be discussed in the next section, we have that Cqc is closed, so that Cq ⊆Cqc as well.
It is known that if one restricts H to be finite-dimensional in the previous definition, the resulting
correlation set is equal to Cq f : see, for example, theorem 5.2.4 of Vos’s master’s thesis ([88]) for a
short proof of this.

A few words should be said about why one might be interested in this new model. While
this model was originally introduced by inspiration from algebraic quantum field theory, where
spacelike separations are enforced by imposing commutativity relations, it would seem that the

5Traditionally denoted Cqa, where qa is supposed to stand for ‘quantum approximate‘. We prefer our notation, which
emphasises that this set is a closure.
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actual quantum field theories which we believe describe describe physical reality appear to be
approximable by tensor products 6. As far as we are concerned, the real reason why this model is
interesting is the fact that the sum-of-squares hierarchy, which we introduce later in this chapter,
converges to it.

In summary, we have that, for all d:

Cc ⊆Cq f :d ⊆Cq f ⊆Cqs ⊆Cq ⊆Cqc ⊆Cns

Provided that the input and output sets are all of size at least 2, it is straightforward in retrospect
to show that Cc (Cq f :2 ⊆Cq f , and this will be done in next section. The result that Cc and Cq f are
different in general is known as Bell’s theorem. As a corollary of the so called Tsirelson’s bound,
it will also follow that Cqc (Cns. All there remains to determine is how the various entanglement
models compare. Tsirelson thought he had proved that they are all equal, but after it transpired that
his proof was incorrect, this was downgraded as a conjecture, which became known as Tsirelson’s
problem. We will see at the end of this section that, in fact, every single inequality in the chain
above is strict provided that the input and output sets are taken to be large enough, although the
proofs of these separations are quite involved and will not be described.

2.2. Nonlocal games
While very general, the notion of a correlation set is somewhat difficult to work with directly.

In order to compare correlation sets, it is more convenient to evaluate how well Alice and Bob can
perform a certain task given that they are allowed to share a correlation of their choice from a given
correlation set. The most fruitful such task is given by the notion of a nonlocal game, which we
now define.

Definition 1. A (two-player) nonlocal game ([44]) G is specified by finite input sets X,Y , finite
output sets A, B, a probability distribution µx,y on X×Y and a predicate V : X×Y×A×B→{0,1}.

Operationally, we think of a nonlocal game as encoding the data corresponding to the following
scenario. Alice and Bob are as in the previous section. The inputs x ∈ X , y ∈ Y are now sampled
according to the distribution µx,y, and a binary outcome is determined based on the inputs and the
outputs, which is encoded by the predicate V . We think of this outcome as the players winning
or losing the game. For a given correlation set Ct , we will be interested in the highest possible
winning probability that can be achieved using correlations from that set: this will be called the

6The reader is referred to, for example, the discussion section of https://scottaaronson.blog/?p=4512. See also
[83] for an argument for why infinite-dimensional Hilbert spaces are unphysical in the context of quantum gravity.
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value of the game and will be denoted by ωt(G). Formally,

ωt(G) = sup
{p(a,b|x,y)}∈Ct

∑
x∈X ,y∈Y

µx,y ∑
a∈A,b∈B

V (x,y,a,b)=1

p(a,b|x,y)

Note that since the above definition is framed as a weighted average and the weighted average
of a collection of values is no greater than the maximum of the said collection, we can assume
without loss of generality that the players do not make use of the shared randomness which we
authorised them to use when defining the notion of a correlation set. Quantumly, it may be seen
that the values of a game with respect to the correlation sets Cq f , Cqs and Cq are all equal because
these sets all have the same closure. This value will simply be denoted by ω∗ in all that follows.
Note that, for any game G,

ω
∗(G) = lim

d→∞
ωq f :d(G)

2.3. Examples of nonlocal games
In this section, we discuss the classic CHSH game of Clauser, Horne, Shimony and Holt ([2]),

as well as the so-called phenomenon of pseudo-telepathy, which, in the bipartite case, is most
simply exhibited by the magic square game, whose history of discovery is somewhat difficult to
unentangle but which is most commonly ascribed to Mermin and Peres.

2.3.1. The CHSH game

The most prominent example of a nonlocal game is the CHSH game, first introduced by [2] 7.
In this case, we take X =Y = A = B = {0,1}, we take the input distribution px,y to be uniform and
we set

V (x,y,a,b) = [(x∧ y) = (a⊕b)]

Checking all 16 possible deterministic strategies reveals that none of them wins the game with
certainty. This implies that any deterministic strategy must fail on at least one input, and therefore
that the success probability of any classical strategy is at most 3

4 . Conversely, the strategy in which
both players output ‘0’ irrespective of their inputs can be seen to achieve this winning probability.
We therefore have that ωc(CHSH) = 3

4 .

As it turns out, the sharing of entanglement enables the players to achieve a higher winning
probability. This can be done using a strategy that employs the following maximally entangled
state:

|ψAB〉=
1√
2
|0〉A |0〉B +

1√
2
|1〉A |1〉B

7This work, along with its experimental implementation, netted Clauser the 2022 Nobel prize for physics.
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Letting Rθ correspond to the basis {cosθ |0〉+sinθ |1〉 ,−sinθ |0〉+cosθ |1〉}, Alice will measure
her part of the state with R0 if x = 0 and R π

4
otherwise, and Bob will measure his part of the state

with R π

8
if y = 0 and R−π

8
otherwise. If x∧ y = 0, the angle between the vectors corresponding

to the same measurement outcome will be π

8 , so the probability that Alice and Bob will output

the same bit is cos(π

8 )
2 = 1

2 +
√

2
4 ≈ 0.854. If x∧ y = 1, this same angle is 3π

8 , so that the same

probability is cos2(3π

8 ) = 1
2 −

√
2

4 ≈ 0.146. In other words, for all inputs, the probability that the

winning condition is met is exactly 1
2 +

√
2

4 ≈ 0.854, which is therefore the winning probability of
the strategy. Since ωc(CHSH)< ωq f :2(CHSH), it follows that provided that the input and output
sets are all of cardinality two or greater, we have:

Cc (Cq f :2

This fact is known as Bell’s theorem. It can also be shown that the entangled strategy we derived
above for the CHSH game is actually optimal, even in the stronger commuting operators model.
This result is known as Tsirelson’s bound ([10]), and can be readily shown using the first level of
the sum-of-squares hierarchy that we will describe in the next section. Furthermore, the correlation
such that no matter the inputs, a and b are both uniformly distributed and individually independent
of both inputs and a⊕b = x∧ y with probability one can be checked to be nonsignalling and wins
the CHSH game with probability one on all inputs. This implies:

Cqc (Cns

Therefore, the only correlation sets that remain to be compared are the quantum ones.

We note that the CHSH game does a fair amount of heavy lifting despite its apparent simplicity:
it already separated the classical, quantum and non-signalling models, and in section 1 of chapter 4,
we will encounter no fewer than 3 different generalisations of this game, each with very interesting
features.

2.3.2. Perfect strategies and pseudo-telepathy

Given a nonlocal game G and a model t, we will be interested in whether t admits a strategy
which wins the game G with probability one. Such a strategy will be referred to as being perfect.
If we are only interested in the existence of a perfect strategy in a given setting, the only useful
information provided by the distribution px,y is which input pairs have nonzero probability, i.e.
if p and q are such that px,y = 0 if and only if qx,y = 0, then G has perfect strategy under input
distribution p if and only if it has a perfect strategy under input distribution q. In this context,
therefore, we can simply forget about the input distribution and speak of a promise instead:
namely, for some subset P⊆ X ×Y , Alice and Bob are given inputs x ∈ X ,y ∈ Y with the promise
that (x,y) ∈ P and they are expected to output a ∈ A,b ∈ B such that V (x,y,a,b) = 1 with certainty.
In this context, a strategy will be referred to as being ε-perfect if, for every possible choice of
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legal inputs, the probability that Alice and Bob win the game is at least 1− ε . Clearly, if a given
game has a perfect strategy in a given model, it will have value one in that model, but the converse
is not true in general. However, it does hold if the underlying correlation set is closed (and hence
compact), by the extreme value theorem.

An interesting feature of some nonlocal games is that of being pseudo-telepathic, meaning
that the game has a perfect finite-dimensional quantum strategy but no perfect classical strategy.
The most prominent (and simplest known in the bipartite setting 8) example of a game exhibiting
pseudo-telepathy is the magic square game of Mermin and Peres. We think of Alice and Bob
as filling a 3× 3 square with binary values. Alice is given an index x ∈ {1,2,3} for a row, Bob
is given an index {1,2,3} for a column, and they are asked to reply with assignments to all three
binary values which fill up their respective row and column in such a way that the assignments
agree on the square on which the row and the column intersect, and also that the XOR of the values
outputted by Alice be zero and that the XOR of the values outputted by Bob be one. It can easily
be checked that no perfect classical strategy for this game exists: indeed, taking said strategy to be
deterministic, it can be seen that this would amount to the existence of bits {bi, j}i, j∈[3] such that:

bi,1⊕bi,2⊕bi,3 = 0, ∀i ∈ [3]

b1, j⊕b2, j⊕b3, j = 1, ∀ j ∈ [3]

But this can easily be seen to be impossible because the first equation implies that ∑i, j bi, j is even
and the second equation implies that it is odd. However, it turns out that this game does have a
perfect entangled strategy which makes use of two EPR pairs. This strategy is derived in chapter 3
of ref. [89].

We note in passing that an interesting feature of a game exhibiting pseudo-telepathy is that
it can be turned into a game with quantum value one and classical value arbitrarily close to zero
in the following way. Given a game G and n ∈ N, let us define the parallel repeated game Gn in
the following way: Alice and Bob are each given n inputs x1, . . . ,xn and y1, . . . ,yn, respectively,
with each input pair sampled independently from the distribution associated to G, and they must
provide outputs a1, . . . ,an and b1, . . . ,bn such that V (xi,yi,ai,bi) holds for all i. Clearly, if G has a
perfect strategy in a given model, so will Gn. If not, one would expect that the games thus obtained
get increasingly harder as n grows, with the value of Gn going to zero. Classically, this is indeed
the case, thanks to the following deceptively difficult result due to Raz :

Theorem 2.3.1 ([30]). Suppose that a game G has no perfect classical strategy. There exists a
constant C < 1 which is efficiently computable from the description of the game such that, for all

8It may be argued that the three-player GHZ game is even simpler.
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n,
ωc(Gn)≤Cn

This result was ported to the quantum setting by Bavarian, Vidick and Yuen in the following
form:

Theorem 2.3.2 ([75]). There exists an efficiently computable transformation (called anchoring)
which, given a nonlocal game G, produces another nonlocal game G′ such that, in all models, G′

has value one if and only if G does. Furthermore, under the assumption that we somehow know an
ε > 0 such that ω∗(G)< 1− ε , there exists a constant C < 1 which is efficiently computable from
the description of the game such that, for all n,

ω
∗(G′n)≤Cn

Finally, the following result, due to Cleve, Høyer, Toner and Watrous, will be useful to us later
on:
Theorem 2.3.3 ([44]). If a game G is such that |A|= |B|= 2, then G is not pseudo-telepathic.

We note that the notion of pseudo-telepathy above was stated for the finite-dimensional mo-
del. An extended meaning of this notion would refer to games which have a perfect commuting-
operators strategy but no perfect classical strategy. It can be shown that the above result still holds
for this extended meaning with little modification to the proof.

2.4. The sum-of-squares hierarchy
In this section, we introduce a sequence Cqc:1,Cqc:2, . . . of correlation sets. These were first put

forth in 2008 independently by Navascués, Pironio and Acín ([57]) and by Doherty, Liang, Toner
and Wehner ([58]). This sequence of correlation sets is often called the NPA hierarchy, which we
think is unfair considering that this hierarchy was discovered independently by another group of
researchers. The Cqc:n have the following properties:

(1) It holds that
Cqc:1 ⊆Cns

Also, for every n,
Cqc:n+1 ⊆Cqc:n

In particular, for any nonlocal game G,

ωqc:n+1(G)≤ ωqc:n(G)≤ ωns(G)
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(2) We have that

Cqc =
∞⋂

n=1

Cqc:n

In particular, for any nonlocal game G,

ωqc(G) = lim
n→∞

ωqc:n(G)

(3) The Cqc:n are all closed sets: this, together with the last property, implies that Cqc is also
closed.

(4) For every n, Cqc:n can be parameterised by a semidefinite program of size O(An), where
A depends polynomially on the size of the game. Also, this semidefinite program satisfies
Slater’s condition. It then follows from the work of Nesterov and Nemirovskii ([18]) that
for a fixed n and given a convex distance metric D satisfying minor technical conditions
(such as Kolmogorov distance, for example), there exists 9 a computer program which,
given a correlation p(a,b|x,y), can efficiently compute

inf
q(a,b|x,y)∈Cqc:n

D(p,q)

to within arbitrary precision (and, in particular, prove that p(a,b|x,y) /∈Cqc:n if this indeed
the case), or alternatively, given a nonlocal game G, computes ωqc:n(G) efficiently to within
arbitrary precision.

We will loosely follow the presentation of Watrous ([95]). We begin by defining Cqc:1: from there,
defining the other Cqc:n will be straightforward. Cqc:1 will be defined by imposing constraints on
correlations that would necessarily have to be obeyed by a correlation that is actually in Cqc: this
will give us that Cqc ⊆Cqc:1. Suppose that we are given a correlation p(a,b|x,y) that is in Cqc, so
that, for some infinite-dimensional Hilbert space H , there exists a state |ψ〉 ∈H and projective
measurements {Ax

a}, {B
y
b} for Alice and Bob, respectively, so that for all x ∈ X ,y ∈Y,a ∈ A,b ∈ B,

[Ax
a,B

y
b] = 0 and:

p(a,b|x,y) = 〈ψ|Ax
aBy

b|ψ〉

Writing τ(·) = 〈ψ| ·ψ〉 as a shorthand, we see that τ satisfies the following properties, where
E, E1, . . . ,En and F stand for arbitrary operators:

(1)
τ(I) = 1

9We note that this is in principle. In practice, unless the dimensions of the inputs and the outputs are quite small, even
the optimization problem corresponding to n = 2 is essentially intractable because of memory limitations.
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(2)

∑
a∈A

τ(EAx
aF) = τ(EF), ∀ x ∈ X

(3)

∑
b∈B

τ(EBy
bF) = τ(EF), ∀ y ∈ Y

(4)
τ(EAx

aAx
a′F) = δa,a′τ(EAx

aF), ∀ x ∈ X ,a,a′ ∈ A

(5)
τ(EBy

bBy
b′F) = δb,b′τ(EBy

bF), ∀ y ∈ Y,b,b′ ∈ B

(6)
τ(EAx

aBy
bF) = τ(EBy

bAx
aF) ∀ x ∈ X ,y ∈ Y,a ∈ A,b ∈ B

(7)
n

∑
i=1

n

∑
j=1

αiα jτ(E
†
i E j)≥ 0, ∀ α1, . . . ,αn ∈ R

Only the last property merits explanation, and can be seen to follow the fact that, setting E =

∑
n
i=1 αiEi,

n

∑
i=1

n

∑
j=1

αiα jτ(E
†
i E j) = ‖E |ψ〉‖2 ≥ 0

Now, taking the {Ãx
a} and {B̃y

b} to be placeholders, letting Σ be the alphabet formed by these
symbols and taking Σ≤n be the collection of all words over Σ of length at most n, we take a
pseudo-state τ̃ to be a function τ̃ : Σ≤n → R. The tildes are there to emphasise that we think of
these as mimicking genuine projective measurements and states. We then impose constraints on
τ̃ which would necessarily be satisfied if the Ãx

a, B̃y
b were genuine measurement operators and τ̃

was a genuine state acting on operators formed by monomials in the Ãx
a and B̃y

b of size at most two,
based on the properties listed above. Explicitly, taking E1, . . . ,En to be an enumeration of Σ, these
properties are:

(1)
τ̃(ε) = 1

(2)

∑
a∈A

τ̃(Ãx
a) = 1, ∀ x ∈ X

(3)

∑
b∈B

τ̃(B̃y
b) = 1, ∀ y ∈ Y

(4)
τ̃(Ãx

aÃx
a′) = δa,a′ τ̃(Ã

x
a), ∀ x ∈ X ,a,a′ ∈ A
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(5)
τ̃(B̃y

bB̃y
b′) = δb,b′ τ̃(B̃

y
b), ∀ y ∈ Y,b,b′ ∈ B

(6)

∑
a∈A

τ̃(Ãx
aB̃y

b) = τ̃(B̃y
b), ∀ x ∈ X ,y ∈ Y,b ∈ B

(7)

∑
b∈B

τ̃(Ãx
aB̃y

b) = τ̃(Ãx
a), ∀ x ∈ X ,y ∈ Y,a ∈ A

(8)
τ̃(Ãx

aB̃y
b) = τ̃(B̃y

bÃx
a)≥ 0, ∀ x ∈ X ,y ∈ Y,a ∈ A,b ∈ B

(9)
n

∑
i=1

n

∑
j=1

αiα jτ̃(EiE j)≥ 0, ∀ α1, . . . ,αn ∈ R

We define Cqc:1 to be the set of correlations p(a,b|x,y) such that, for some pseudo-state τ̃ satisfying
all the above properties, it holds that:

p(a,b|x,y) = τ̃(Ãx
aB̃y

b)

It is not hard to see that Cqc:1 ⊆ Cns: this is enforced by properties 6 and 7 above. Note also
that Cqc:1 is a convex set because a convex combination of pseudo-states is also a pseudo-state,
and also that it is closed. Also, since all the properties above are linear constraints on τ̃ save the
last one, which is a positive-semidefinite constraint, we see that the space of pseudo-states can
be written as a rather small semidefinite program (featuring a positive semidefinite matrix of size
|X ||A|+ |Y ||B|+ 1), so that Cqc:1 is a manageable set from a computational standpoint. We can
think of Cqc:1 as a much better relaxation of the set Cq f than Cns is: indeed, while Cns and Cq f

generally look very different, Cqc:1 is often found to be a reasonable approximation of Cq f .

The same game can be played in the same way for any n ≥ 1, by taking τ̃ to be a function
Σ≤2n→ R and deriving linear constraints for τ̃ from the general properties of any legitimate state
that were given previously. For each n, we get a closed correlation set Cqc:n, and it is immediate that
it is contained in Cqc:n−1, for given a correlation in Cqc:n, restricting the corresponding pseudo-state
τ̃ to monomials of length at most 2n−2 will yield a pseudo-state that will certify membership in
Cqc:n−1. Furthermore, it is proven in [95] that:

Cqc =
∞⋂

n=1

Cqc:n

The proof also shows as a byproduct that the underlying Hilbert space of any commuting operators
strategy may be assumed to be separable (i.e. have a basis of countable dimension).
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In summary, we have that, given a nonlocal game G, for all n,

ωq f :n(G)≤ ω
∗(G)≤ ωqc(G)≤ ωqc:n(G)

And that, in the limit of n tending to infinity, ωq f :n(G) goes to ω∗(G) and ωqc:n(G) goes to ωqc(G).
We know that Cq ⊆ Cqc, and if it held that this inclusion weren’t proper, it would follow that
ω∗(G) can be approximated arbitrarily well (in principle) by a computer program, which would
calculate ωq f :n(G) and ωqc:n(G) for every n until it is found that ωqc:n(G)−ωq f :n(G)< ε , for some
predetermined precision ε > 0. While we wouldn’t know in advance how long it would take until
such a n was found (implying that this program could be extremely inefficient), we would know
that such a n does exist and hence that the program would eventually terminate.

2.5. Separations between the entanglement models and compu-
tability issues

We now address the problem of comparing the various models of entanglement that have been
discussed thus far. This question turns out to be closely related to the computability of the various
properties of nonlocal games that we have introduced. In particular, one may wonder about the
hardness of the following decision problems for a given model t and a given game G:

(1) Does G have a perfect strategy?
(2) Given some fixed 0 < ε < 1, under the promise that G either has a perfect strategy or value

at most ε , is the former statement true?
(3) Does G have value one?

For t ∈ {c,q,qc}, by compactness, problems 1 and 3 are equivalent. Classically, problem (1)
is in NP because it is possible to verify the correctness of a perfect deterministic strategy in
polynomial time, and its NP-hardness follows from the fact that it is possible to reduce 3-COL
to it, as will be discussed in section 2 of chapter 4. In fact, the hardness-of-approximation point
of view of the PCP theorem ([15]) implies that the second problem is also NP-complete classically.

On the quantum side of things, in the finite-dimensional setting, the first two problems can
be seen to be in the class of recursively enumerable languages, denoted by RE, as they are both
decidable if an upper bound is imposed on the local dimension of the shared entangled state,
so that one may bruteforce every possible dimension until the existence of a perfect strategy
is detected. Similarly, in the commuting operators model, the existence of the sum-of-squares
hierarchy implies that the first two problems are in coRE.

The first to get the ball rolling was Slofstra ([82]), who showed the following 10:

10Actually, Slofstra first showed in [92] that Cqs (Cqc. The following theorem is a strengthening of this.
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Theorem 2.5.1. There is an explicit game G with ω∗(G) = 1 but with no perfect tensor-product
strategy. This game has input sets of size 184 and 235 and output sets of size 8 and 2. In particular,
the tensor-product correlation sets are not closed, i.e. Cq f ,Cqs (Cq if the input and output sets are
taken to be large enough. 11

This already refuted a strong form of Tsirelson’s problem by showing that Cq f (Cqc. Another
separation in this vein was shown by Coladangelo and Stark, who could show (with a much shorter
proof than Slofstra’s):

Theorem 2.5.2. We have that Cq f (Cqs. In fact, there is an explicit correlation in Cqs with input
sets of size 4 and 5 and output sets of size 3 that is not in Cq f . Since Cqs ⊆Cq, this gives another
proof of the fact that Cq f is not closed.

There remained to determine whether Cq = Cqc: this was known as the weak Tsirelson’s
problem.

In addition to the aforementioned separation, Slofstra could also partially settle problem (1)
for both quantum models:

Theorem 2.5.3 ([92], [82]). For t = q f ,qs, question (1) is undecidable. Also, for t = qc, problem
(1) is coRE-complete, and hence also undecidable. Also, problem (3) is undecidable for t = q f .

Note however that the above result has no direct bearing on the complexity of problem (2) in
the quantum models, and it is unknown whether the exact complexity of problem (1) for t = q f
can be pinned down using Slofstra’s methods. In the tensor-product setting, this was settled by
Ji, Natarajan, Vidick, Wright and Yuen ([93]), who, in so doing, administered the final blow to
Tsirelson’s conjecture. A nonlocal game G is said to be synchronous if X = Y , A = B and if, when
presented with the same inputs, the players win if and only if their outputs are the same. They
could show:

Theorem 2.5.4 ([93]). Given any fixed 0 < ε < 1, there exists an efficiently computable reduction
from Turing machines M to (extremely large) synchronous nonlocal games GM such that, if M

11Slofstra’s proof of this result is notoriously difficult. In the way of alternative proofs, there is the result of Coladan-
gelo and Stark that we mention next: however, their separation is not framed as a nonlocal game. There is also the
reasonably short proof of Dykema, Paulsen and Prakash ([87]) which also yields a small correlation in Cq that is not
in Cq f and which also has very small input and output sets (of size 5 and 2, respectively), but their separation isn’t
quite framed as a nonlocal game either (although it’s close enough). To the best of our knowledge, the only other
paper which recovers Slofstra’s result in full is the one by Mousavi, Nezhadi and Yuen ([97]) that is discussed below,
but their proof can hardly be regarded as much more accessible than Slofstra’s original proof, in addition to not being
explicit. We should also mention that the non-closure of quantum correlations isn’t a particularily exotic phenomenon:
we expect a generic nonlocal game G with no perfect finite-dimensional strategy not to have a finite-dimensional stra-
tegy whose winning probability exactly attains ω∗(G), so this is a mathematical proof of something that was suspected
to be true from numerical evidence.
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halts, then GM has a perfect finite-dimensional strategy, and ω∗(GM)< ε otherwise. In particular,
MIP*=RE. As a corollary, for t = q f , problem (2) is RE-complete, and therefore undecidable.

It follows that Cq ( Cqc, because, as was discussed in the previous section, Cq = Cqc would
imply the decidability of problem (2) for the tensor-product setting. Since problem (2) is no harder
than problem (1) and since problem (1) is known to be contained in RE for t = q f , it also follows
that problem (1) is RE-complete for t = q f .

Building upon the techniques introduced by [93], Mousavi, Nezhadi and Yuen ([97]) could
show that problem (3) is even harder than the complexity class RE for t = q f , being complete for
a higher level of the arithmetic hierarchy:

Theorem 2.5.5. For t = q f , problem (3) is complete for Π2.

The most important remaining open problem in this area of study is the complexity of problem
(2) in the commuting operators model. The MIP*=RE paper conjectured:

Conjecture 2.5.6. Given any 0 < ε < 1, there exists an efficiently computable reduction from
Turing machines M to synchronous nonlocal games GM such that, if M does not halt, then GM

has a perfect commuting operators strategy, while if it does hat, then ωqc(GM)< ε . In particular,
MIPco = coRE. As a corollary, in the commuting operators model, problem (2) is complete for
coRE.

Finally, we note that the complexity of problem (1) for t = qs is also unresolved. While Slof-
stra’s results also show that problem (1) is undecidable for t = qs, it is not clear that it is contained
in RE, or, for that matter, in any level of the arithmetic hierarchy.
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Chapter 3

Communication complexity

Communication complexity concerns itself with the problem of determining how much commu-
nication is required between two (or more) parties in order to compute a given function of their
inputs. This chapter discusses the three models that will be under consideration in this thesis,
namely the classical model, the Yao model and the Cleve-Buhrman model.

3.1. Classical communication complexity
3.1.1. The model

Let X and Y be finite input sets (typically taken to be X =Y = {0,1}n for some n) and fix some
boolean function f : X ×Y → {0,1,⊥}. In an instance of the communication problem, the two
parties, traditionally named Alice and Bob, are given x ∈ X , y ∈ Y , respectively, with the promise
that f (x,y) 6=⊥, and they must communicate as few classical bits as possible in order to compute
f (x,y). The strategy that Alice and Bob are employing will be referred to as a protocol. One
simple such protocol would be for Alice to simply send her input to Bob, from which Bob can
compute the value of f , for a communication cost of dlog2 |X |e. It should be stressed that unlike in
complexity theory, no attention is paid to computational efficiency in communication complexity:
we assume that Alice and Bob are all-powerful computationally and are only interested in the
amount of exchanged communication.

A more formal picture of the above intuitive scenario is as follows. A protocol will be seen as
being specified by a directed binary tree T with the following properties:

(1) Each node is labelled either as an Alice node or as a Bob node.
(2) Each non-leaf node in the tree has exactly two children, with one outgoing arc labelled as

0 and the other labelled as 1.



(3) To every Alice node v, there is an associated transition function fv(x) : X→ [0,1]. Likewise,
to every Bob node v, there is an associated transition function fv(y) : Y → [0,1].

Operationally, we have the following scenario in mind. At each step of the protocol, the current
state of the protocol is encoded by a node v in T , which is the root node initially. At every turn,
whoever owns the current node v samples a bit b in such a way that the probability that one is
obtained is the value of the transition function. If v is a non-leaf node, bit b is sent to the other
party and the protocol transitions to the child of v corresponding to the bit b. If v is a leaf node,
the protocol’s answer for the value of f (x,y) is b and the protocol halts. The communication cost
of the protocol is measured by the depth of the tree, which essentially corresponds to the amount
of communication of the protocol in the worst case 1.

It is necessary to specify exactly what it means for a protocol to compute f . This thesis will
concern itself with the two most common meanings in the literature:

• The exact communication complexity of f : this corresponds to requiring that the protocol
computes f (x,y) with certainty. The smallest amount of communication for which this is
possible will be denoted by CE( f ). In this case, it may be seen that the protocol can be
assumed to be deterministic, i.e. that the transition functions are all integer-valued.
• The bounded-error communication complexity of f : this corresponds to requiring that

for some choice of 0 ≤ ε < 1
2 , for all legal inputs, the success probability of the protocol

be at least 1− ε . The smallest amount of communication for which this is possible will be
denoted by Cε( f ). As in complexity theory, it is customary to focus on the case ε = 1

3 .

Also, by analogy with the corresponding definition for nonlocal games, for a given amount of
communication C, we will write ωc( f ,C) to mean the highest possible success probability in the
worst case of a protocol for f with communication C.

An important extension of the standard communication model that we just described is the
so-called public-coin model. Informally, a public coin protocol is one in which Alice and Bob
are allowed to share a random variable with the distribution of their choice. Perhaps surprisingly,
this can actually help reduce the amount of required communication in some cases, as we will
see in the next subsection. By contrast, we will refer to protocols of the form given previously
as private coin protocols. Formally, given a communication cost C and letting {Πk} be the set of
all deterministic protocols for f with communication cost C, a public coin protocol for f with
communication C is specified by a probability distribution pk over the {Πk}. At the outset, one
such protocol is sampled independently of Alice and Bob’s input according to the distribution

1Modulo trivial cases in which some nodes are unreachable.
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pk and is given to them, which they then proceed to run. It may be seen that this encompasses
all private coin protocols, as the private randomness involved there can be packed inside the
probability distribution pk. We will denote the presence of a public coin by the superscript
‘pub’, so that we will write ω

pub
c ( f ,C) to denote the value of f with communication C in the

public-coin model, and Cpub
ε ( f ) to denote the bounded-error complexity of f in the public-coin

model. We will also sometimes speak of the public coin cost of the protocol: this corresponds
to the size of the support of the distribution pk when measured in bits, i.e. dlog2 #{k | pk 6= 0}e.
Clearly, a public coin protocol for f with communication cost C and public coin cost P
can be turned into an equivalent protocol with communication cost C + P in which one party
samples the public coin, sends it to the other and they carry on with the rest of the original protocol.

We will also often be interested in the context in which only Alice is allowed to communicate
to Bob, which we will call the one-way setting. In this scenario, we will add a ‘1’ in superscript
to our notations to denote this restriction.

3.1.2. The equality function in the various settings

Perhaps the most prototypical problem in communication complexity is the equality function
EQn, defined to be a function whose inputs are bit strings of length n and such that EQn(x,y) =
I[x = y]. In this subsection, we will look at the communication complexity of the equality function
in various models. Despite (or perhaps thanks to) its apparent simplicity, it turns out that this
function is of substantial importance to the theory of communication complexity. Though the
results we are about to discuss are very well-known, we interleave them with apparently new
observations, mainly so as not to bore the knowledgeable reader (or ourselves).

3.1.2.1. The exact complexity of EQn. We begin by studying the complexity of EQn in the
exact setting. The trivial protocol yields that CE(EQn) ≤ n, and it so happens that the trivial
protocol is in fact optimal in this case. There are several ways to show this, but the one that we
find simplest is, we believe, new:
Theorem 3.1.1.

CE(EQn) = n

PROOF. We proceed by induction. The statement clearly holds for n = 1 by the impossibility of
telepathy. Suppose now that n ≥ 2 and that the statement holds for n− 1. Take an exact protocol
for EQn with communication m ≥ 1. As mentioned previously, we may assume without loss of
generality that the protocol is deterministic, and, by symmetry, we can assume that the root node
is an Alice node. For b ∈ {0,1}, let Xb ⊆ {0,1}n be the set of inputs that cause Alice to send bit b
to Bob in the first round of the protocol. Clearly, there must be at least one b such that |Xb| ≥ 2n−1.
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Hence, fixing some injection g : {0,1}n−1 → Xb, we can hijack the original protocol to obtain
a protocol for EQn−1 where both sides apply g to their input strings x,y and proceed to run the
original protocol where the first round is omitted and where the first bit that was communicated is
assumed to have been b. The cost of this new protocol is m−1, which, by the induction hypothesis,
is no smaller than n−1. This concludes the proof. �

We give another proof of the previous result that is perhaps less pleasing but is also substantially
more general. Given a total boolean function f , the communication matrix of f , denoted by M f ,
is the |X |× |Y | matrix such that M f x,y = f (x,y), and rkM f refers to the linear-algebraic rank of M f

over the reals.
Theorem 3.1.2 (Lemma 1.28 of [24]). Any total function f satisfies

CE( f )≥ log2 rkM f

PROOF. Take an exact protocol for f with communication C, which we can assume to be determi-
nistic, and let γ = (v0,v1,v2, . . . ,vk) be some path down the communication tree of the protocol,
with v0 being the root node and vk being a leaf node. Letting Mvk be the |X |× |Y | boolean matrix
such that Mvk

x,y = 1 if, given that Alice and Bob’s inputs were x and y, the protocol goes down the
path γ and outputs 1, we have that Mvk is of rank one. Indeed, letting u ∈ {0,1}|X | be such that
ux = 1 if and only if, for every Alice non-leaf node vl in γ , the transition corresponding to x does
end up in node vl+1, and if vk is an Alice node, Alice does answer with ‘1’ given that her input is
x, and letting w ∈ {0,1}|Y | be defined in the same way but for Bob, we get that

Mvk = uT w

Now, since, by assumption,
M f = ∑

v a leaf node
Mv

and the number of leaf nodes is at most 2C, the conclusion follows from the subadditivity of the
rank (i.e. rk(A+B)≤ rk(A)+ rk(B) for all matrices A,B). �

Since the communication matrix of EQn is the 2n× 2n identity matrix, which has rank 2n, we
obtain another proof of theorem 3.1.1.

3.1.2.2. The bounded-error complexity of EQn. Turning to the bounded-error complexity
of EQn, perhaps surprisingly, we can show that we obtain a dramatic reduction in complexity
compared to the exact case:

Theorem 3.1.3.
C1/3(EQn)≤ 2log2 n+O(1)
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PROOF. We give the protocol due to Rabin and Yao. By the theorem of number theory known
as Bertrand’s postulate 2 , there exists some prime 3n < p < 6n. Given z ∈ {0,1}n, define the
polynomial qz(X) ∈ (Z/pZ)[X ] by:

qz(X) =
n−1

∑
i=0

zi+1X i

The protocol runs as follows. Given inputs x,y ∈ {0,1}, Alice picks a uniformly random t in Z/pZ
and sends it to Bob, along with c = qx(t). This has communication cost 2dlog2 ne+O(1). Bob
then answers 1 if c = qy(t) and 0 otherwise. Clearly, if x = y, this will succeed with probability
1. If, on the other hand, x 6= y, since qx−qy has degree at most p and is not the zero polynomial,
for t chosen uniformly at random, the probability that qx(t) = qy(t) is at most 1

3 . This proves the
correctness of the protocol. �

Although this is unnecessary, we remark that the Rabin-Yao protocol can be improved upon
slightly. This can be done because the protocol features a computation of the equality function
as a subroutine, which could be done more efficiently by using the Rabin-Yao protocol itself: ins-
tead of having Alice send qx(t) to Bob in the above protocol, Alice and Bob could run the (vanilla)
Rabin-Yao protocol another time on qx(t) and qy(t), viewed as bit strings of length log2(n)+O(1).
Taking a larger value for p than in the protocol above so that the total error probability remains
at most 1

3 , this shows that C1/3(EQn) ≤ log2 n+O(log2 log2 n). In fact, by optimizing the way in
which the bit strings are mapped to polynomials, the reader can see for himself that we can show
that C1/3(EQn) ≤ log2 n+O(log2 log2 . . . log2 n), where the number of imbricated log2 terms can
be made as large as one wishes at the expense of increasing the constant coefficient. This leads one
to suspect that C1/3(EQn)≤ log2 n+O(1), and this is indeed the case, as will be shown later.

3.1.2.3. The public-coin complexity of EQn. It turns out that the complexity of EQn is reduced
even more when we allow Alice and Bob to share a public coin, in that it becomes constant.
In view of the discussion in the previous subsection, this is not very surprising, as having t be
provided by a public coin instead of being sampled by Alice and sent to Bob in the tower of
Rabin-Yao protocols already implies that Cpub

1/3(EQn) ≤ O(log2 log2 . . . log2 n), where, again, the

number of imbricated logarithms can be made to be as large as one wishes, making Cpub
1/3(EQn)

constant for all practical purposes. There is however a much simpler public-coin protocol with
constant communication for the equality function, which we now present.

2This result was stated as a conjecture in 1845 by Bertrand and proved in 1850 by Chebyshev. Mildly intriguing is the
use of the term ‘postulate’, which has the same meaning as ‘axiom’ and is therefore clearly inapplicable when referring
to a theorem. The introduction of this terminology appears to have been perpetrated by Chebyshev himself, who refer-
red to the result as the ‘postulatum connu de Bertrand’. The reader is referred to https://math.stackexchange.
com/questions/1920672/why-is-bertrands-postulate-called-a-postulate for a discussion of the his-
tory behind this rather unfortunate name.
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Theorem 3.1.4.
Cpub

1/3(EQn)≤ 2

PROOF. The protocol operates as follows. The two parties begin by picking r1,r2 ∈R {0,1}n in-
dependently. Given her output x ∈ {0,1}n, Alice computes c1 = r1 · x, c2 = r2 · y (where the dot
product is taken modulo 2), and sends c1c2 to Bob. Bob then checks if c1 = r1 · y and c2 = r2 · y,
and answers 1 if this the case, and 0 otherwise. Clearly, if x = y, the protocol will always answer 1,
while if x 6= y, by the so-called random subsum principle (see, for example, claim A.31 of [63]), we
have that r1 ·x = r2 ·y with probability 1

2 , so the probability that the protocol outputs 1 is 1
4 <

1
3 . �

Note that this protocol has a public coin cost of 2n, unlike the previous protocol based on the
Rabin-Yao protocol, which has a public coin cost of log2 n+O(log log2 n). Newman’s theorem,
which we present in the next section, shows that log2 n+O(1) shared random bits are sufficient.

3.1.3. Largest possible gaps between the settings

It can be shown that the separations between the complexities of the equality function in
the various considered models are in fact as large as they can be in an asymptotic sense for any
function. With regards to the separation between the exact and bounded-error complexities, we
have:

Theorem 3.1.5 ([24], lemma 3.8).

C1
E( f )≤ (C1/3( f )+2)2C1/3( f )

PROOF. Take an optimal protocol for f with communication C that achieves a success probability
of 2

3 . It isn’t hard to see that there are positive real numbers aγ,x and bγ,y such that for every path
γ from the root to a leaf node and for every Alice and Bob inputs x and y, the probability that the
protocol goes down the path γ is aγ,xbγ,y. This means that the probability that the protocol outputs
1 is:

∑
γ

aγ,xbγ,y

The idea of the proof is to have Alice send discretizations of all the aγ,x that are sufficiently accurate
so as to allow Bob to evaluate the above probability to sufficient precision, which will allow him
to determine f (x,y) with certainty. Note that the number of distinct paths is at most 2C. Because
bγ,y ≤ 1 for all γ , y, it follows that the discretizations need only be precise to within, say, 2−(C+3)

for the result to be accurate to within 1
8 , which is accurate enough because 2

3 −
1
8 > 1

2 . This will
require C+2 bits for each path, which corresponds to at most (C+2)2C bits in total, as desired. �

In the case of the equality function, this shows that

C1/3(EQn)≥ log2 n−O(log2 log2 n)
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So that the protocols we gave earlier are not very far off from being optimal. Actually, it is
possible to show a log2 n+O(1) lower bound on C1/3(EQn) ([102]), and, as we are about to show,
this is is optimal up to a constant.

With regards to the separation between the private- and public-coin complexities, we have the
so-called Newman’s theorem:

Theorem 3.1.6 ([13]: [24], theorem 3.14). Given a function f with input sets X = Y = {0,1}n

and given any ε > 0, a public coin protocol for f with success probability p can be converted into
another public coin protocol for f with the same communication cost that has success probability
at least p− ε and public coin cost d1+ log2 n+2log2

1
ε
e.

PROOF. Take a public coin protocol for f with success probability p of the form discussed in the
first subsection. Given a deterministic protocol Π and inputs x,y, we will write S(x,y,Π) to denote
the boolean variable which equals one if Π does produces f (x,y) on inputs x,y and zero otherwise.
By hypothesis, we have that for every legal input pair x,y, if Π is distributed according to the
distribution given by the public coin protocol, we have that

E[F(x,y,Π)]≥ p

For some m≥ 1 to be fixed later, generate protocols Π1, . . . ,Πm independently at random according
to this distribution. Chernoff’s bound gives that for any legal input pair x,y:

P

(
1
m

m

∑
l=1

F(x,y,Πl)≤ p− ε

)
< exp

(
−2ε

2m
)

Taking m = d n
ε2 e, we get:

P

(
1
m

m

∑
l=1

F(x,y,Πl)≤ p− ε

)
< exp(−2n)< 2−2n

Since there are at most 22n legal input pairs (x,y), the union bound implies that with nonzero
probability, we have that for every legal input pair x,y,

1
m

m

∑
l=1

F(x,y,Πl)> p− ε

Letting Π1, . . . ,Πm be some definite choice of protocols satisfying the above, we see that the new
public coin protocol for f which picks some l ∈ [m] uniformly at random, runs Πl and outputs the
result has success probability at least p− ε for all legal input pairs. This completes the proof. �

It follows that C1/3(EQn) = log2 n+O(1). More generally, we have:
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Corollary 3.1.7. Any function f with input sets X = Y = {0,1}n satisfies

C1/3( f )≤ O(Cpub
1/3( f ))+ log2 n+O(1)

In particular, one shouldn’t expect a public coin to ever be of very great use compared to private
randomness, unless the inputs are enormously larger than the communication.

3.1.4. Distributional complexity and Yao’s principle

Previously, we defined the bounded-error complexity Cε( f ) to be the smallest amount of
communication such that a protocol exists which as a success probability of at least 1− ε in
the worst case. We now introduce another conceptualization of this, namely, the distributional
complexity of f : given a probability distribution µx,y on legal inputs, Cµ

ε is defined to be the
smallest C such that a deterministic protocol exists which has a success probability of at least
1− ε given that the inputs were sampled according to µ . Similarly, we define ω

µ
c ( f ,C) to be the

highest success probability of any deterministic protocol with communication C for the previous
definition of success probability. We clearly have, for every C,

ωc( f ,C)≤ ω
µ
c ( f ,C)

And therefore:
Cµ

ε ( f )≤Cε( f )

We show that more can be said about the relationship between the distributional and public-coin
complexities of a given function f . Given a communication cost C, let {Πk}k be the list of all
possible deterministic classical protocols for f with communication C. We let V (x,y,Π) be a binary
variable which equals one if the output of the protocol Π on inputs x,y is equal to f (x,y). We see
that ω

pub
c ( f ,C) can be encoded as the optimal value of the following linear program, where we

take R⊆ X×Y to be the set of legal input pairs:

max q (3.1.1)

s.t. ∑
k

pkV (x,y,Πk)≥ q ∀(x,y) ∈ R (3.1.2)

∑
k

pk = 1 (3.1.3)

pk ≥ 0 ∀k (3.1.4)

In the above, q corresponds to the success probability of a public coin protocol, while pk is the
probability distribution over protocols which specifies the public coin protocol. The first set of
constraints encodes the fact that for any legal inputs, the success probability of the protocol for
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those inputs must be at least q, which was our definition of ω
pub
c ( f ,C). Note that by elementary

linear programming theory, the above program has an optimal solution that is an extreme point.
We therefore have:

Proposition 3.1.8. Given a function f with X = Y = {0,1}n, there is no loss in generality in
restricting ourselves to public coin protocols with public coin cost at most 2n.

Note the contrast between the above result and Newman’s theorem. Newman’s theorem says
that a public coin cost of log2 n+O(1) suffices for a near-optimal protocol using a given amount
of communication, while the above result says that a public coin cost of 2n suffices for an optimal
protocol.

The dual of the previous linear program is the following linear program:

min q′ (3.1.5)

s.t. ∑
(x,y)∈R

µx,yV (x,y,πk)≤ q′ ∀ k (3.1.6)

∑
(x,y)∈R

µx,y = 1 (3.1.7)

µx,y ≥ 0 ∀ (x,y) ∈ R (3.1.8)

This linear program visibly encodes the least q′∗ and the corresponding probability distribution
µx,y such that, for all deterministic protocols, the success probability of that protocol under the
distribution µ is at most q′∗. By the strong duality theorem of linear programming, q∗ = q′∗. In
notation, this means:

Theorem 3.1.9 (Yao’s principle). For any function f and any amount of communication C,

ω
pub
c ( f ,C) = min

µ
ω

µ
c ( f ,C)

In particular, for every ε ,
Cpub

ε ( f ) = max
µ

Cµ

ε ( f )

3.2. Quantum communication complexity: the Yao model
In this section, we describe a quantum version of the classical model of communication com-

plexity that was described in the previous section. This model was introduced in 1993 by one of
the pioneers of communication complexity itself, namely Yao ([19]), and hence will be called the
Yao model. In this setting, the participants are permitted to communicate using quantum states,
but are not allowed to share prior entanglement. While the model was introduced by Yao, much of
its early theory was developed by Kremer in his master’s thesis ([21]).
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3.2.1. The model

Allowing the parties to communicate using qubits complicates matters somewhat compared to
subsection 3.1.1, as it is no longer possible to speak of a communication tree. The most common
approach in the literature is to force the parties to communicate in turns, irrespective of the history
of the communication up till now, at the possible cost of weakening the model. Following Briët,
Buhrman, Leung, Piovesian and Speelman ([74]), we will assume that protocols in this new model
are of the following form: the participants start out with the system AB, with A and B both initially
of dimension 1. At round k, the participant whose turn it is to communicate tacks on a register
formed of `k qubits to his system, applies a unitary depending on his input to his system and sends
the register that was tacked on to the other party. At the end of the day, the participant who just
received something measures the content of their register using a POVM depending on their input,
the result of which is the output of the protocol. The total communication cost of the protocol is
the sum of the `k.

We may consider the analogues of the complexity measures that have been studied in the
previous section in the Yao model. Given a function f and an amount of communication C, we will
write, for example, ωyao( f ,C) to mean the highest success probability achievable by a protocol
for f with communication cost at most C. In terms of quantifying the amount of communication
required to achieve something, we will use the letter ‘Q’ instead of the letter ‘C’ to refer to the
complexity of a function in the Yao model instead of in the classical model. For example, we will
write Qpub

1/3( f ) to denote the public coin communication complexity of f in the Yao model. Note
that since we are forcing the participants to communicate in turns, it might or might not be the
case that the complexity of a function in the Yao model is always less than its complexity in the
classical setting. However, it is not difficult to see that the worsening cannot be by more than a
factor of two, so that this issue may be regarded as not very significant.

Several of the results that were mentioned in the previous section go through unchanged in
this new setting. We still have Newman’s theorem:

Theorem 3.2.1. Given a function f with input sets X =Y = {0,1}n and given any δ > 0, a public-
coin protocol for f in the Yao model with error probability ε can be converted into another public-
coin protocol for f in the Yao model with the same communication cost that has error probability
at most ε +δ and public coin cost 1+ log2 n+2log2

1
δ

.

The proof of Yao’s principle (theorem 3.1.9) still goes through, although some caution is re-
quired because the space of possible protocols is no longer finite, but its compactness saves the day:
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Theorem 3.2.2. For any function f and any amount of communication C,

ω
pub
yao ( f ,C) = min

µ
ω

µ
yao( f ,C)

In particular, for every ε ,
Qpub

ε ( f ) = max
µ

Qµ

ε ( f )

Also, an analogue of theorem 3.1.5 still holds in the Yao model, which was originally shown
by Kremer.

Theorem 3.2.3 (Theorem 4 of [21], theorem 1.1 of [74]).

C1
E( f )≤ (Q1/3( f )+O(1))22Q1/3( f )

This is a slightly worse bound than the one in 3.1.5, but as we will see, this worsening is
unavoidable.

3.2.2. The equality function in the Yao model

We briefly discuss the various complexities of the equality function in the Yao model. First,
in the exact setting, Buhrman and de Wolf showed that the rank lower bound for the exact
communication complexity of total functions still holds in the Yao model:

Theorem 3.2.4 ([35]). Any total function f satisfies

QE( f )≥ log2 rkM f

From which we get that QE(EQn) = n for all n.

In the case of bounded-error communication complexity, we have seen that classically,
C1/3(EQn) = log2 n+O(1), while theorem 3.2.3 gives the weaker bound

Q1/3(EQn)≥
1
2

log2 n+O(log2 log2 n)

This opens the door to a potential factor two savings compared to the classical case. As it turns
out, it is in fact the case that Q1/3(EQn) =

1
2 log2 n+O(1) ([102]). This will follow from the

results of subsection 3.3.2.

Finally, we of course have that Qpub
1/3(EQn)≤Cpub

1/3(EQn) = O(1).
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3.2.3. Separations between the classical and Yao models

In this subsection, we will look at some problems which are known to exhibit gaps between
the Yao and the classical models. The earliest examples of such gaps came from the so called
BCW simulation of Buhrman, Cleve and Wigderson ([29]), which allows one to turn quantum
algorithms into Yao protocols for communication complexity problems. We describe a very
slightly restricted version which will be sufficient for our purposes.

Theorem 3.2.5 ([29]). For n ∈ N, suppose that the function f : {0,1}n×{0,1}n → {0,1} to be
computed is of the form f (x,y) = g(x � y), where � ∈ {∧,∨,⊕} stands for bitwise application. If
there exists an exact/bounded-error quantum algorithm for evaluating g using t oracle calls, there
exists an exact/bounded-error Yao protocol for f with communication O(t log2 n).

PROOF. The idea of the simulation is that Alice will be running the quantum algorithm for g on
her side, and each oracle call will be executed by communicating with Bob. At a given step of the
algorithm for g, suppose that the oracle call |i〉 |b〉 7→ |i〉 |b⊕ (x � y)i〉 needs to be applied. This is
achieved in the following way: Alice first tacks on a new binary register in the state |0〉, applies the
transformation |i〉 |b〉 |0〉 7→ |i〉 |b〉 |xi〉 and sends the state to Bob. Bob applies the transformation
|i〉 |b〉 |b′〉 7→ |i〉 |b⊕ (yi�b′)〉 |b′〉 to what he received from Alice and sends the result back to her.
Alice then applies the transformation |i〉 |b〉 |b′〉 7→ |i〉 |b〉 |b′⊕ xi〉 to what she received from Bob.
It is apparent that this will have achieved the required oracle call, and the communication required
was 2dlog2 ne+4 qubits. �

Although the above scheme yields efficient Yao protocols for a number of communication
problems, two in particular stand out:

(1) An efficient exact protocol for a distributed version of the Deutsch-Jozsa problem ([16]):
in this problem, for some n ∈ N, Alice and Bob are each given strings x,y ∈ {0,1}2n

with
the promise that either x = y or |x⊕ y| = 2n−1, and they must determine which is the case
with certainty. This corresponds to setting � = ⊕ and g(x) = |x| in the above simulation;
the Deutsch-Jozsa algorithm then yields an exact Yao protocol for this problem with com-
munication cost 2n, while a hard combinatorial result of Frankl and Rödl ([11]]) shows
that the amount of communication required by any exact classical algorithm for this pro-
blem must be exponential in n. A cleaner exposition of this separation, reframed in the
language of quantum graph theory, will be given in section 4.2.4. Note however that this
separation collapses in the bounded-error setting, since the function to be computed is a
subset of the equality function EQ2n and therefore has a bounded-error classical protocol
with communication O(n).

48



(2) An efficient bounded-error protocol for the disjointness function: for n ∈ N, define the
disjointness function DISJn on binary strings of length n by DISJn(x,y) = 1 if and only if,
for some i, xi = 1 and yi = 1. This corresponds to setting �= ∧ and g(x) = I[x 6= 0] in the
above. By using a slightly modified version of Grover’s algorithm ([25]), we get a bounded-
error protocol for DISJn with communication O(

√
n logn). This is a sizeable improvement

over the classical case, where it was shown by Kalyanasundaram and Schnitger ([12])
that C1/3(DISJn) = Θ(n). This was later improved slightly by Aaronson and Ambainis
([49]), who gave a bounded-error Yao protocol for DISJn with communication O(

√
n),

again based on Grover’s algorithm. This matches the quantum lower bound of Ω(
√

n)
shown by Razborov ([41]).

While the disjointness function exhibits a quadratic separation between the Yao and classical
models, this remains a far cry from the upper bound imposed by theorem 3.2.3, which leaves the
door open to an exponential separation between the two. Another drawback of this separation
is that the corresponding Yao protocols requires a large number of rounds. The first exponential
separation between the Yao and the classical settings in the bounded-error case was given by the
so-called hidden matching problem of Bar-Yossef, Jayram and Kerenidis [45]. While originally
framed as a relational problem, this separation was soon afterwards recast into functional problems
(with promise) independently by Gavinsky, Kempe and de Wolf ([51]) and by Kerenidis and Raz
([55]). While the two problems are similar, we will follow the presentation of [51]. It should be
emphasized that we are only considering protocols in which Alice is communicating to Bob.

Let n ∈ N and take a real-valued parameter α ≤ 1
2 . Alice’s input is a string x ∈ {0,1}n, while

Bob’s input is a disjoint collection of pairs of elements of {1, . . . ,n} (i1, j1),(i2, j2), . . . ,(ik, jk),
where k = dαne, as well as a string u ∈ {0,1}k. The promise that Alice and Bob are given is that
the value of xil ⊕ x jl ⊕ul is the same for every ` ∈ [k], say b, and their task is to compute b. In the
Yao model, this can be accomplished with dlog2 ne qubits of communication using the following
protocol:

(1) Alice sends Bob the state
1

2
n
2
∑

i
(−1)xi |i〉

(2) Bob measures what he received from Alice using the projective measurement {Pl}l∈[k+1],
where, for l ∈ [k], Pl is the projector onto the subspace generated by |il〉 and | jl〉 and where
Pk+1 is the projector onto the rest of the space.

(3) If outcome k+ 1 was obtained, which happens with probability roughly 1− 2α , Bob de-
clares his ignorance. Otherwise, if outcome l ∈ [k] was obtained, the residual state is:

1√
2
(−1)xil |il〉+

1√
2
(−1)x jl | jl〉
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From here, Bob can recover the value of xil ⊕ x jl (as the two possible values correspond to
orthogonal states), from which he can recover b thanks to his knowledge of ul .

It can be seen that the protocol’s success probability is 2α , with a probability of declaring
ignorance of 1− 2α . This means that a success probability of 2

3 can be achieved by running this
protocol O( 1

α
) times, which requires O(

log2 n
α

) qubits of communication.

Classically, a O(
√

n) protocol with communication from Alice to Bob may be built by
appealing to the birthday paradox. For this, we will allow Alice and Bob to share a public coin:
Newman’s theorem shows that the public coin might be removed at the cost of O(logn) bits of
extra communication, which does not impact the complexity of the protocol. Alice and Bob pick a
subset S of size

√
n

α
of [n], and Alice will send the values of x corresponding to these indices to Bob.

The birthday paradox implies that with good probability, for some l, il and jl will both be in S,
which will let Bob recover the value of b. [51] show that if α is taken to be Θ

(
1

logn

)
, this protocol

is asymptotically optimal classically when communication is restricted to flow from Alice to Bob,
while there is a bounded-error quantum protocol with O((log2 n)2) qubits of communication from
Alice to Bob.

It is however not hard to see that the above separation collapses if bidirectional communication
is permitted, and one would ideally prefer to have a separation that is achieved by an exact Yao
protocol. These two drawbacks were lifted by Klartag and Regev ([65]), who gave an example of
a functional promise problem with an exponential gap between its exact, one-way Yao complexity
and its bidirectional bounded-error complexity, and is hence essentially the strongest separation
between the Yao and classical models that can be hoped for. This separation is based on the vector
in subspace problem, which was first introduced by Kremer ([21]) and is defined as follows: for
some even n∈N, Alice’s input is a unit vector |ψ〉 ∈Cn, Bob’s is a subspace V of Cn of dimension
n
2 , and under the promise that either |ψ〉 ∈V or |ψ〉 ∈V⊥, the problem is to determine which of the
two is the case. It is quite straightforward to see that this can be done exactly in the Yao model with
O(logn) qubits of communication, as Alice can send |ψ〉 to Bob and Bob can measure what he
received according to the measurement {PV ,I−PV} to determine which is the case with certainty,
at the cost of dlog2 ne qubits of communication. [65] use sophisticated techniques from analysis
and probability theory to show a Ω(n

1
3 ) bound on the classical bounded-error communication

complexity of the problem, with no restriction on the communication being one-way.

One should note that the above two exponential separations between the Yao and classical
models are both based on promise problems and may therefore be regarded as artificial, with the
second in particular being as tailored to the strengths of quantum computing as a quantum supre-
macy experiment. What the largest possible gap between the complexities of a total function in
the Yao and classical models is remains unknown. For some time, the total function exhibiting
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the largest known gap between classical and quantum communication complexity was the dis-
jointness function. The first superquadratic gap for total functions was shown by Anshu, Belovs,
Ben-David, Göös, Jain, Kothari, Lee and Santha ([80]), who gave a family of total functions fn

with C1/3( fn) = Ω(Q1/3( fn)
2.5). One might also wonder whether exact quantum communication

can ever be stronger than classical communication for a total function. This was shown to be the
case by Ambainis ([72]), who proved that there exists a family of total functions gn for which
C1/3(gn) = Ω(QE(gn)

1.15). This was slightly improved upon by [80], who showed the same result
with exponent 1.5.

3.3. Entanglement-assisted communication complexity: the
Cleve-Buhrman model

This section studies another plausible quantum analogue of the classical setting of communi-
cation complexity. This time, we will let the parties share an entangled state of their choice, while
restricting the communication between them to be classical. This model was originally introduced
by Cleve and Buhrman ([26]) and will be referred to from now on as the Cleve-Buhrman model.

Unlike the comparison between the quantum and classical communication models, which is
comparatively well-understood, very little is known about how the Yao and Cleve-Buhrman mo-
dels compare. By quantum teleportation ([17]), we know that a Yao protocol with communication
n can be converted into a Cleve-Buhrman one with communication 2n, so that the complexity of a
function in the Cleve-Buhrman model is never more than twice its complexity in the Yao model.
Since entanglement can be turned into a public coin through the act of measuring, we have that
the bounded-error complexity of the equality function EQn in the entanglement-assisted model
is constant, while we have seen that it is logarithmic in the private-coin quantum communication
model. This means that in the absence of a public coin, we know that the Cleve-Buhrman model
is stronger than the Yao model, although even that separation is not overly impressive. However,
in the presence of a public coin, it is unknown if the two models are roughly equivalent.

We mention that there are in fact two commonly studied models of communication communi-
cation complexity which involve shared entanglement in the literature, namely the one in which
the participants communicate using classical bits, which is the original proposal of Cleve and
Buhrman, and the one in which the participants communicate using qubits, which is sometimes
called the hybrid model and is arguably more popular. Clearly, the hybrid model is no weaker
than the Cleve-Buhrman model, and the Cleve-Buhrman model can simulate the hybrid model
with a factor two overhead in communication cost, again thanks to teleportation. While it can
sometimes be more convenient to consider the hybrid model, in this thesis, we will restrict
ourselves to the pure Cleve-Buhrman model with classical communication. There are two main
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reasons for this. First, we find that many results in the literature that are stated for the hybrid
model admit simpler proofs in the Cleve-Buhrman model. The second reason is that taking the
communication to be quantum would obscure several parallels that we wish to draw with the
theory of nonlocal games: several of the communication problems that will be discussed in the
next chapter appear to be impossibly hard to analyse in the hybrid model, while the analysis in the
Cleve-Buhrman model is quite straightforward. As an added bonus, taking the communication to
be classical allows us to explore a generalisation of the original Cleve-Buhrman model in which
the parties are allowed to share entanglement in the commuting operators model: as far as we
know, we are the first to study communication complexity in the presence of infinite dimensional
entanglement. How this might be carried out in the hybrid model is not obvious to us.

3.3.1. The model

The communication model is mostly a straightforward adaptation of the classical model.
Given a function f : X×Y →{0,1,⊥}, a protocol for f will be seen as being specified by a Hilbert
space H , a state |ψ〉 ∈H as well as by a directed binary tree T with the same properties as in
the classical model. The twist is that instead of there being an associated transition function to
every node, to every Alice node v and Alice output x ∈ X , there is an associated binary projective
measurement {Av,x

b }b∈{0,1}, and to every Bob node v and Bob output y ∈ Y , there is an associated
binary projective measurement {Bv,y

b }b∈{0,1}. We further insist that any two Alice and Bob
operators commute. At each step of the protocol, the party who currently owns the node performs
a measurement on the shared state to determine their bit, which is either communicated to the
other party of given as the protocol’s answer depending on whether the node isn’t or is a leaf node.

Take a path γ = (v0,v1,v2, . . . ,vk) down the tree, where v0 is the root node and where vk a
leaf node, and let (b0,b1, . . . ,bk−1) be the corresponding communication transcript. Also, list the
indices i1 < i2 < .. . < ikA and j1 < j2 < .. . < jkB corresponding to Alice’s and Bob’s nodes,
respectively. Given a bit b, we see that if we set bk = b and define the positive operators

Aγ,x,b = A
vi1 ,x
bi1

A
vi2 ,x
bi2

. . .A
vikA

,x

bkA
. . .A

vi2 ,x
bi2

A
vi1 ,x
bi1

Bγ,y,b = B
v j1 ,y
b j1

B
v j2 ,y
b j2

. . .B
v jkB

,y

bkB
. . .B

v j2 ,y
b j2

B
v j1 ,y
b j1

By commutativity and as per the Born rule, the probability that the protocol goes down γ and
outputs b is given by

〈ψ|Aγ,x,bBγ,y,b|ψ〉

So that the probability that the protocol will output b is given by

∑
γ

〈ψ|Aγ,x,bBγ,y,b|ψ〉
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Note that for each path, one of Aγ,x,b and Bγ,y,b does not actually depend on b, but making this
explicit would only complicate the notation. Note also that:

∑
γ

(Aγ,x,0Bγ,y,0 +Aγ,x,1Bγ,y,1) = I (3.3.1)

If no further restrictions are set on H , we obtain an analogue of the commuting operators
model in communication complexity. Restricting H to be finite-dimensional and restricting
the entanglement to be in tensor product form, we obtain an analogue of the finite-dimensional
model3. In line with the notation we have been using in the previous chapters, we will write
ω∗( f ,C) to mean the supremum over the winning probabilities of tensor-product protocols for
f with communication C, and we will write ωqc( f ,C) to mean the same thing in the commuting
operators model. Also, for t ∈ {q f ,qc}, we will write Ct

E( f ) to mean the least C such that f has
an exact protocol in model t with C bits of communication; and, in the bounded-error case, for
ε ≥ 0, we will write Ct

ε( f ) to mean the least C such that ωt( f ,C)≥ 1− ε .

A word of warning is in order here: in the finite-dimensional case, our definition of bounded-
error communication complexity differs from the standard definition in the literature. Although
this is never stated explicitly, C∗ε ( f ) is taken to mean the least C such that some protocol with
communication C achieves error probability ε . What our definition says is rather that C∗ε ( f )
stands for the least C such that for every δ > 0, some protocol with communication C achieves
error ε + δ . Those two are not the same, in general: in particular, Cq f

0 (the vanishing-error
communication complexity) and Cq f

E do not coincide. This can be seen as a communication
complexity analogue of Slofstra’s result that Cq f ⊂Cq, and will be explored in section 2 of chapter
4. It should however be stressed that these two complexity measures do coincide for all the
other models under consideration in this thesis. We will use the term zero-error communication
complexity to refer to the study of both the vanishing-error complexity and the exact complexity
in the future.

The properties that are enjoyed by the commuting operators model in the case of correlation
sets can all be shown to hold in communication complexity as well, and for the same reasons:
given a tree of the form above, there is an analogue of the sum-of-squares hierarchy which
converges from above to the best success probability of any protocol using that communication
tree. Concretely, this means that there exists a computable sequence p1 ≥ p2 ≥ . . . which
converges to ωqc( f ,C) for any C, although this is clearly of very little use indeed in practice
because the number of communication trees grows exponentially with C and because the resulting

3One might also consider the case where the entanglement is in tensor-product form but the space is infinite-
dimensional, as was done for nonlocal games, obtaining the model qs: we will not do this.

53



semidefinite programs would be so large that they would be unsolvable in practice unless C and
f ’s inputs are very small. It can also be shown that the commuting operators model reduces to the
usual finite-dimensional model if we restrict H to be finite-dimensional, reflecting the analogous
result in nonlocality theory. It is also possible to show that Yao’s principle (3.1.9) still holds in the
Cleve-Buhrman model for both entanglement models, although this requires some care in the case
of the finite-dimensional model.

Regarding the finite-dimensional setting, it is natural to wonder about the type of entanglement
that might be required by a protocol: as far as we know, this question was first asked by Ga-
vinsky ([52]). In the case of general correlations, it is already known that to every entangled state
there corresponds a correlation that can only be achieved using that state, up to local operations,
which might lead one to think that there are certain communication problems for which sharing a
maximally entangled state could be highly suboptimal as opposed to more general types of entan-
glement. This intuition was proven to be at least partially incorrect by Coudron and Harrow ([90]),
who showed that maximal entanglement is sufficient for communication complexity, at least up to
a multiplicative factor:

Theorem 3.3.1 ([90], restated). For any ε > 0, there exists a universal constant K such that any
given entanglement-assisted protocol in model q f with communication C ≥ 30 can be turned into
an entanglement-assisted protocol using only a maximally entangled state which deviates from the
previous protocol with probability at most ε on every input and which has communication at most

K

(
C
ε
+

log 1
ε

ε

)
Whether maximal entanglement is exactly sufficient for communication complexity, mea-

ning that any protocol for a function f that uses a general entangled state can be replaced
by a protocol for f with the same amount of communication which has the same success pro-
bability as the original protocol and which uses a maximally entangled state, is unknown at present.

One might wonder about a further generalisation of the above model, in which Alice and Bob
could be permitted to share arbitrary nonsignalling correlations 4. We will not study this genera-
lisation, and for a very good reason, namely, that it causes communication complexity to become
trivial, meaning that one can compute any function with a constant amount of communication.
In the case that Alice and Bob are allowed to share arbitrary nonsignalling correlations, this is
not very hard to establish, as the correlation which has the players’ inputs x and y as inputs and
produces uniformly random bits a,b as outputs such that a⊕b = f (x,y) is easily seen to be nonsi-
gnalling: the players can therefore compute f exactly with one bit of communication by sampling

4Allowing them to share signalling correlations would make the exact communication complexity of any function be
zero bits, which would be a bit of a problem.
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this correlation and having Alice send a to Bob. One ([48]) can also show that the above idea
can be made resistant to noise: namely, any correlations which allow for winning the CHSH game
with probability at least ≈ 90.8% also allow for computing any boolean function with a constant
amount of communication and with an arbitrarily small (but fixed) error probability. The reader is
referred to [104] for some recent developments in this line of work.

3.3.2. The equality function in the Cleve-Buhrman model

We complete our survey of the equality function by looking at its complexity in the Cleve-
Buhrman model. In the exact setting, it is not known that Cqc

E (EQn) = n, although this is known
if the communication is restricted to be one-way: see lemma 4.2.19. We can however show
that the rank lower bound does hold in the finite-dimensional setting, which implies that the
finite-dimensional communication complexity of EQn is exactly n. This was originally shown
by Buhrman and de Wolf [35]: our result is ever so slightly stronger than theirs because our
communication model is somewhat more general (as they force Alice and Bob to communicate in
turns), but not in any serious capacity. Our proof is essentially a recasting of theirs, which assumes
that the communication is quantum, in the model with classical communication. The main point
of presenting this proof is that while we could not make it work for the commuting operators
model, we feel that trying to adapt the proof below remains the most promising way of trying to
show that Cqc

E (EQn) = n.

We begin by a lemma:

Lemma 3.3.2. Suppose that on inputs x,y, an entanglement-assisted protocol produces bit b with
certainty. We have that

∑
γ

Aγ,x,bBγ,y,b |ψ〉= |ψ〉

PROOF. By hypothesis, we have that

〈ψ|

(
∑
γ

A
γ,x,b̄B

γ,y,b̄

)
|ψ〉= 0

Since the operator in the above expression is a sum of positive operators and is therefore also
positive, it follows that (

∑
γ

Ax,γ,b̄By,γ,b̄

)
|ψ〉= 0

The conclusion then follows from equation 3.3.1. �
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We can now show that theorem 3.1.2 still holds for entanglement-assisted communication
complexity in the q f model:

Theorem 3.3.3 ([35]). Any total boolean function f satisfies

Cq f
E ( f )≥ log2 rkM f

PROOF. Take an exact entanglement-assisted protocol for f with communication C, and fix
some n ∈ N, which will represent a certain number of copies of the protocol. For Alice inputs
x1,x2, . . . ,xn, we define |vx1,x2,...,xn〉 ∈ C2nC ⊗H by:

|vx1,x2,...,xn〉= ∑
γ1,...,γn

|γ1〉⊗ |γ2〉⊗ . . .⊗|γn〉⊗ (Aγn,xn,1 . . .Aγ2,x2,1 . . .Aγ1,x1,1 |ψ〉)

Also, for Bob inputs y1,y2, . . . ,yn, we define |wy1,y2,...,yn〉 ∈ C2nC ⊗H analogously by:

|wy1,y2,...,yn〉= ∑
γ1,...,γn

|γ1〉⊗ |γ2〉⊗ . . .⊗|γn〉⊗ (Bγ1,y1,1Bγ2,y2,1 . . .Bγn,yn,1 |ψ〉)

From the previous lemma, we see that:

〈vx1,x2,...,xn|wy1,y2,...,yn〉= ∑
γ1,γ2,...,γn

〈ψ|Aγ1,x1,1Aγ2,x2,1 . . .Aγn,xn,1Bγ1,y1,1Bγ2,y2,1 . . .Bγn,yn,1|ψ〉

=

(
∑

γ1,γ2,...,γn−1

〈ψ|(Aγ1,x1,1Aγ2,x2,1 . . .Bγ1,y1,1Bγ2,y2,1 . . .

)(
∑
γn

Aγn,xn,1Bγn,yn,1 |ψ〉

)
= f (xn,yn) ∑

γ1,γ2,...,γn−1

〈ψ|Aγ1,x1,1Aγ2,x2,1 . . .Aγn−1,xn−1,1Bγ1,y1,1Bγ2,y2,1 . . .Bγn−1,yn−1,1|ψ〉

= . . .

= Π
n
i=1 f (xi,yi)

Taking the matrix V to have its rows composed of the |vx1,x2,...,xn〉 and taking the matrix W to have
its columns composed of the |wy1,y2,...,yn〉, it follows from the previous calculation that VW =M f

⊗n .
We therefore have that:

(rkM f )
n = rkVW ≤ rkV ≤ (2nC)dimH

Since the above equation holds for all n and since dimH is finite by assumption, it follows that
C ≥ log2 rkM f , as desired. �

Corollary 3.3.4. We have that Cq f
E (EQn) = n for all n.

In the bounded-error setting, since, as mentioned previously, shared entanglement allows for
the production of a public coin through measuring, we have that Cq f

1/3(EQn) = O(1). However,
we can say a bit more about the complexity of the equality function in the bounded error setting:
namely, we can optimise the amount of shared entanglement in a protocol for the equality
function. This is original work by the author. It follows from the previously shown fact that
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C1/3(EQn) = log2 n + O(1) that the number of shared random bits in any correct public-coin
classical protocol for EQn with constant communication must be at least log2 n + O(1). In
particular, any finite-dimensional protocol for EQn with error probability at most 1

3 which uses
entanglement exclusively as a source of shared randomness must use at least log2 n + O(1)
ebits. We now show that this can be improved upon: namely, we show that there exists an
entanglement-assisted protocol which uses only 1

2 log2 n + O(1) ebits. This is tight in view of
the fact that Q1/3(EQn) =

1
2 log2 n+O(1). What follows is part of a paper written by the author

jointly with Mande and de Wolf ([102]).

We will use the probabilistic method. In the following, m ≤ d are natural numbers to be
determined later. We take the initial entangled state to be the maximally entangled state in D = 2d

dimensions, i.e., d Bell states:

|ΨAB〉=
1√
D ∑

i∈{0,1}d

|i〉A |i〉B .

For every z ∈ {0,1}n, pick independently a Haar-random element Uz = {|ψz,r〉}r∈{0,1}d of SU(D).
With respect to that choice, the protocol for EQn that we have in mind is as follows:

(1) Alice, on input x ∈ {0,1}n, measures her part of |Ψ〉 in the basis Ux, obtaining rA ∈ {0,1}d .
She then sends b≡ rA

1 rA
2 . . .r

A
m to Bob.

(2) Bob, on input y ∈ {0,1}n, measures his part of |Ψ〉 in the conjugate basis of Uy, obtaining
rB ∈ {0,1}d . He outputs 1 if rB

i = bi for every 1≤ i≤ m and 0 otherwise.

The one-way communication complexity of this protocol Π′ is m bits. We proceed with its error
analysis. We will show that provided that D and m were chosen properly, the resulting protocol is
correct with nonzero probability: in particular, some choice of the Uz yields a correct protocol. At
the end of step 1, the new joint state will be

|Ψ′〉= |ψx,rA〉A⊗|ψx,rA〉B
In particular, if x = y, then rA = rB and the protocol is guaranteed to succeed. Suppose now that
x 6= y. For b ∈ {0,1}m, using the shorthand

Rb ≡ {r ∈ {0,1}d | ri = bi ∀i ∈ [m]},

we find that the probability that the protocol fails (i.e., outputs 1) is given by

1
D ∑

b∈{0,1}m
∑

rA,rB∈Rb

| 〈ψx,rA|ψy,rB〉 |2.

Since Rb has cardinality 2d−m and the expectation over the choice of Uz’s of every term in the sum
is 2−d , we find that the expectation of the entire sum is 2−m. We will now show that if d is taken
to be large enough, with nonzero probability, this sum will be close to its expectation for every
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input pair, which will show that the protocol will have worst-case error probability at most ≈ 2−m.
The rest of our analysis will rely on the following concentration inequality, which is derived in the
third chapter of [71]:

Theorem 3.3.5 ([71]). Let F : SU(n)→ R be a function with Lipschitz constant K with respect to
the Frobenius norm, and let µ be the uniform distribution (Haar measure) on SU(n). Then, for
every δ > 0,

Pr
µ
[|F(U)−Eµ [F ]|> δ ]< 2exp

(
− δ 2n

4K2

)
We show:

Theorem 3.3.6. Let {φr}r∈{0,1}d be a fixed orthonormal basis of CD. Given U = {ψr}r∈{0,1}d ∈
SU(D), define F : SU(D)→ R by

F(U) = ∑
b∈{0,1}m

∑
r,r′∈Rb

| 〈φr|ψr′〉 |2

Then F(U) has Lipschitz constant
√

D.

PROOF. Let U = {ψr}r∈{0,1}d and U ′ = {ψ ′r}r∈{0,1}d be two different elements of SU(D). For
b ∈ {0,1}m, write

Pb = ∑
r∈Rb

|φr〉〈φr| , Qb = ∑
r∈Rb

|ψr〉〈ψr| , Q′b = ∑
r∈Rb

|ψ ′r〉〈ψ ′r| .

We see that
F(U) = ∑

b∈{0,1}m

tr(PbQb) and F(U ′) = ∑
b∈{0,1}m

tr(PbQ′b)

Therefore

F(U)−F(U ′) = ∑
b∈{0,1}m

tr(Pb(Qb−Q′b))

≤ ∑
b∈{0,1}m

Dtr(Qb,Q′b)

≤ D ∑
r∈{0,1}d

1
D

√
1−|〈ψr|ψ ′r〉 |2

≤

√√√√√D2−

 ∑
r∈{0,1}d

| 〈ψr|ψ ′r〉 |

2

Where the first inequality follows from the variational characterization of trace distance, the second
from the convexity of trace distance, the fact that the Rb’s partition {0,1}d , and a well-known
expression for the trace distance of two pure states, and the third inequality follows from the
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concavity of the function
√

1− z2. On the other hand,

d(U,U ′) =
√

∑
r∈{0,1}d

‖|ψr〉− |ψ ′r〉‖2 ≥
√

2D−2 ∑
r∈{0,1}d

| 〈ψr〉ψ ′r|,

where the second inequality follows the fact that ℜ(z)≤ |z| for any complex number z. We find

|F(U)−F(U ′)|
d(U,U ′)

≤

√√√√√D2−
(

∑r∈{0,1}d | 〈ψr|ψ ′r〉 |
)2

2D−2∑r∈{0,1}d | 〈ψr|ψ ′r〉 |

=

√
D+∑r∈{0,1}d | 〈ψr|ψ ′r〉 |

2
≤
√

D,

where the last inequality follows from Cauchy-Schwarz. �

For every pair of distinct inputs x,y ∈ {0,1}n and for every δ > 0, it follows from the previous two
results that the probability that the protocol’s error probability on these inputs exceeds 2−m +δ , is
upper bounded by

2exp
(
−δ 2D2

4

)
Setting δ = 2−m, ε = 2−m+1 and d = d1

2 log2 n+ log2
1
ε
+4e, by the union bound there is a positive

probability that the resulting protocol has error probability at most ε for all input pairs. This implies
the existence of the desired protocol, with m = dlog1/δe= dlog1/εe+1 bits of communication.

3.3.3. Lower bounds for bounded-error, entanglement-assisted communica-
tion complexity

In this subsection, we look at a number of known lower bounds for entanglement-assisted
communication complexity and port them to the commuting operators model. The following
result follows easily from our discussion in the first subsection of this section:

Proposition 3.3.7. Given some protocol in the commuting operators model with C bits of commu-
nication between Alice and Bob, there exists a finite-dimensional Hilbert space H and collections
of vectors {|vx〉}x∈X , {|wy〉}y∈Y in H , all of norm at most 2

C
2 , such that the probability that the

protocol outputs 1 on input (x,y) is 〈vx|wy〉.

PROOF. Take an entanglement-assisted protocol in the commuting operators model with commu-
nication C and initial state |ψ〉 in some Hilbert space H . As seen previously, if Alice’s input is x
and Bob’s input is y, the protocol’s probability of outputting 1 is:

∑
γ

〈ψ|Aγ,x,1Bγ,y,1|ψ〉
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Take H ′ to be the finite-dimensional subspace of H spanned by the Aγ,x,1 |ψ〉 and the Bγ,y,1 |ψ〉.
Taking n to be the total number of paths down the tree, for every x, we define |vx〉 ∈ Cn⊗H ′ by:

|vx〉= ∑
γ

|γ〉⊗ (Aγ,x,1 |ψ〉)

Similarly, for every Bob input y, we define |wy〉 ∈ Cn⊗H ′ by:

|wy〉= ∑
γ

|γ〉⊗ (Bγ,y,1 |ψ〉)

We can see that the norms of the above vectors are at most 2
C
2 and that the protocol’s probability

of outputting 1 on valid inputs x,y is 〈vx|wy〉. �

Our first lower bound consists in a limitation on the separation between the commuting
operators model and the classical model with shared randomness in the bounded-error case, and
is a generalisation (and simplification) of a result first shown by [59] for the finite-dimensional
case. As we have seen previously, it holds that Cqc,1

1/3 (EQn) ≤ Cpub,1
1/3 (EQn) = O(1), while

C1/3(EQn) = log2 n+O(1). This means that there can be no analogue of theorem 3.2.3 for the
difference between the models with classical communication with and without prior entanglement
if no shared randomness is present. If shared randomness is present however, such an analogue
does exist, as was shown by Shi and Zhu ([59]). Our proof will be based on the following
restatement of the discussion in section 2 of ([59]), which itself describes a protocol due to
Kremer, Nisan and Ron ([22]):

Proposition 3.3.8. For some fixed C > 0 and for some n ∈ N, consider the following problem:
Alice and Bob are given vectors u,v ∈Cn such that 〈u,v〉 is real and such that ‖u‖2,‖v‖2 ≤C, and
they wish to approximate 〈u,v〉. There exists a universal constant K (independent of C and n) such
that, for every ε, δ > 0, there exists a one-way classical protocol with shared randomness and with
at most KC4

δ 2 log2
1
ε

bits of communication that produces an approximation of 〈u,v〉 that is correct
up to an additive error of δ except with probability at most ε .

PROOF SKETCH. We give an alternative to the protocol discussed in [22] using the classical
Johnson-Lindenstrauss lemma. Note that at the cost of doubling n, we can assume that the compo-
nents of u and v in the standard basis are all real. In our protocol, Alice and Bob use their shared
randomness to pick a uniformly random subspace V of Rn of a given dimension d. Writing PV to
mean the orthogonal projection onto V , Alice then sends a sufficiently fine discretization of PV (u)
to Bob, from which he can approximately evaluate n

d 〈PV (u),PV (v)〉, which will be a good approxi-
mation of 〈u,v〉 with high probability if d was taken to be large enough. How large d needs to be
can be worked out using the Johnson-Lindenstrauss lemma: this does not depend in any way on n,
but does depend on the norms of u and v. The amount of communication needed by the protocol
can be worked out to be exactly as in the statement of the proposition. �
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In combination with proposition 3.3.7, the previous result yields:

Theorem 3.3.9. For any boolean function f , we have that Cpub,1
1/3 ( f ) = O

(
22Cqc

1/3( f )
)

.

PROOF. Given the |vx〉 and |wy〉 promised by proposition 3.3.7, on inputs x and y, Alice and Bob
use the protocol promised by proposition 3.3.8 to calculate 〈vx|wy〉 sufficiently precisely so as to
be able to determine the protocol’s most probable output (and therefore to determine the value of
f (x,y)) with good probability. �

Proposition 3.3.7 also allows us to extract lower bounds for specific communication problems.
The heavy lifting in this regard has already been carried out by Linial and Shraibman ([60]): we
show that their work also goes through for the commuting operators model. Proposition 3.3.7 can
be reformulated in matrix language as follows (where the appropriate definitions can be found in
[60]). This gives an analogue of lemma 12 of [60].

Proposition 3.3.10. Given some protocol in the commuting operators model with input sets X and
Y , with binary output and with C bits of communication between Alice and Bob, if the |X | × |Y |
matrix P denotes the acceptance probabilities of the protocol, i.e. Px,y is the probability that the
protocol outputs 1 on inputs (x,y), there exist matrices V and W such that P =VW and

‖V‖2→∞,‖W‖1→2 ≤ 2
C
2

From their lemma 12, [60] proceeds to recover most known lower bounds for entanglement-
assisted communication complexity in the finite-dimensional case. Since lemma 12 still holds in
the commuting operators model, all the lower bounds shown there carry over, most notably:

(1) Cqc
1/3(DISJn) = Θ(

√
n) (by reduction from Razborov’s ([41]) results)

(2) Cqc
1/3(IPn) = Θ(n)

(3) For a randomly chosen total function f with input strings of length n, with overwhelming
probability, Cqc

1/3( f ) = Θ(n), i.e. the trivial protocol is optimal up to a constant factor.

3.3.4. A limitation on the power of the Cleve-Buhrman model compared to
the Yao model

We now turn to discussing a result of Ronald de Wolf which constrains the power of shared
entanglement compared to quantum communication. This material comes from the master’s thesis
of Jonas Kamminga ([100]), which, as far as we know, is the only place in which the result appears
in print. Given a function f , we write f (k) to denote the direct sum of f , meaning that Alice and
Bob are given k instances of f and they must compute the value of f on each of the k instances.
f is said to have the direct sum property with respect to a complexity measure D if it satisfies
the reasonable-sounding condition that 1

100kD( f ) ≤ D( f (k)) for all k (where the 1
100 factor is a
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mostly arbitrary constant chosen to be small enough so that the theorems we are about to discuss
hold). Informally, this means that to compute the k copies of f , modulo a multiplicative factor, it
is optimal to individually run the best protocol for f on each of the k copies. The following was
proved by de Wolf, based on an idea of Tapp:

Theorem 3.3.11 ([100]). Suppose that f has the direct-sum property for D = Q1/3. There exists a
universal constant K such that, for all d,

Q1/3( f )≤ K Cq f :d
1/3 ( f ) log2 log2 d

Though this result has strictly no direct bearing on the original problem of whether the Yao
and Cleve-Buhrman models are equivalent in the bounded-error case, it implies that for functions
with the direct-sum property, if at all possible, a significant separation between the Yao and
Cleve-Buhrman models in the bounded-error case could only be achieved with a Cleve-Buhrman
protocol using an enormous amount of prior entanglement, which may be taken to mean that
in a real-world setting, the two models are essentially equivalent for functions with the direct
sum-property. Chapter 5 of [100] then proceeds to study what is known about direct sums in both
the Yao and Cleve-Buhrman models. A theorem of Jain, Radhakrishnan and Sen is discussed to the
effect that all functions do have the direct-sum property for D =C∗,11/3. Two examples of functions
due to Rao and Sinha and Anshu, Touchette, Yao and Yu, respectively, are then presented which
do not have this property in either quantum models in the context of bidirectional communication
for distributional complexity. This strongly suggests the possibility that it is not true that all
functions have the direct-sum property in the Yao model, and therefore that the above result might
not be directly useful in showing that the Cleve-Buhrman and Yao models are equivalent for all
functional problems.

3.3.5. The distance between subspaces problem

We end this section by proposing a first-of-its-kind candidate for a separation between the Yao
and Cleve-Buhrman models. This problem generalises the vector in subspace problem that was
encountered in the previous section and was inspired by a reading of a paper of Hadiashar and
Nayak ([91]).

For some n,k ∈ N with nk even, we define the distance between subspaces problem in the
following way. Alice and Bob are each given classical descriptions of subspaces A,B ≤ Cnk,
respectively, with A of dimension n and B of dimension nk

2 .Writing PU to denote the orthogonal
projector on subspace U , they are given the promise that if we write r = 1

n tr(PAPB) (it can be
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seen that r ∈ [0,1]), then either r ≥ 2
3 or r ≤ 1

3
5 , and they must determine which is the case with

good probability and with one-way communication from Alice to Bob. We see that the n = 1 case
reduces to a problem that is harder than the vector in subspace problem while still being easy
quantumly (in the bounded-error setting), and so exhibits an exponential separation between the
classical and quantum models.

We now show that there exists a good entanglement-assisted protocol for this problem with
communication log2 k+O(1), independently of the value of n. The protocol runs as follows. Alice
and Bob begin by sharing m maximally entangled states |ψ1〉 , ..., |ψm〉 each with local dimension
nk, for some m to be determined later. For every i ∈ [m], Alice then measures her part of the
state according to the projective measurement {PA,I−PA}, getting m binary outcomes b1,...,bm,
with each bi being equal to 0 with probability 1

k . If we take m = Θ(k), with overwhelming
probability, there will exist some index i ∈ [m] with bi = 0, which Alice sends to Bob at the cost
of log2 k +O(1) bits of communication. Bob’s part of the i’th state is now in state 1

nPA, which
he measures according to the projective measurement {PB,I−PB} and reports the result as the
answer of the protocol. Since the probability that 0 is obtained is exactly r, the protocol’s success
probability will be 2

3 minus the small probability that no such i existed earlier.

On the other hand, we do not know of a good one-way Yao protocol for this problem. In fact,
it can be shown that the most natural attempt to build such a protocol most likely cannot work.
This would be a protocol in which Alice tries to communicate enough information to Bob so that
he can construct a good enough approximation of the state ρA = 1

nPA on his side, which he could
then measure according to the measurement {PB,I−PB}. Ref. [91] showed:

Theorem 3.3.12 ([91], heavily paraphrased). Suppose that during the phase of such a protocol that
involves the construction of an approximation ρ̃A of ρA above, Bob does not look at B in any way.
Given ε > 0 and k large enough, there exists a constant C such that for all large enough values
of n, any protocol of the form above that communicates less than log2 n+ log2 k−C qubits is such
that if A is generated uniformly at random according to Haar measure, we have that

E[Dtr(ρ̃A,ρA)]> 1− ε

In other words, modulo a constant amount of communication, any Yao protocol which allows Bob
to approximate ρA to any kind of acceptable precision must essentially consist in Alice sending the
whole of ρA to Bob. Note also that this holds even in the presence of arbitrary shared randomness.

5The original promise in the vector in subspace problem was that r ∈ {0,1}. In our case, this seems too strong because
it might allow for circumventing the almost-impossibility result below. This is because ρ̃A would no longer need to be
close to ρA in trace distance, as in our version, but only such that supp ρ̃A ⊆ suppρA, for example (refer to the statement
of the result for an explanation of the notation).
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This means that unless Bob’s knowledge of B somehow provides enough information to enable
the construction of a good approximation of ρA, attempting to construct a protocol of the form
above is a dead end, as n is allowed to be arbitrarily larger than k. As far as we can tell, the
only good one-way Yao protocol for this problem which readily suggests itself consists in running
the Cleve-Buhrman protocol through the reduction of theorem 3.3.9, at the cost of an exponential
increase in the communication. It would be interesting to either try to look for a better one-way
Yao protocol, or to show that this is essentially the best that can be done for general n if k is large
enough. The latter would clearly close the Yao vs. Cleve-Buhrman problem, at least in the one-
way setting, but we do not know of a proof technique that could allow one to show this, as the
argument of [65] seems very specific to the case of classical communication. It is also eminently
possible that this problem could give an exponential separation between the two models even when
bidirectional communication is allowed, although this is well less-grounded than the case of one-
way communication as no equivalent of theorem 3.3.12 is known for the case of bidirectional
communication.
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Chapter 4

Turning nonlocal games into communication
problems

4.1. One-time-pad problems and XOR games
This section describes a generalisation of a communication problem due to Buhrman, Cleve

and van Dam ([26]), which was the first two-party communication problem exhibiting a quantum
advantage to be discovered. The problem to be generalised is the following: Alice is given x,c ∈
{0,1}, Bob is given y ∈ {0,1}, and they must compute the function

f ((x,c),y) = c⊕ (x∧ y)

with one bit of communication from Alice to Bob. Classically, it can be shown that the best success
probability achievable is 3

4 , simply by checking all possible classical deterministic protocols. In

the Cleve-Buhrman model, however, we see that a success probability of 1
2 +

√
2

4 can be achieved
based on the theory of the CHSH game which was covered in the second chapter, using the
following protocol: Alice and Bob play the CHSH game with inputs x and y, thereby obtaining
outputs a and b; Alice then sends z = a⊕ c to Bob, who outputs z⊕b. Since, no matter the inputs,
the probability that a⊕b equals x∧ y is 1

2 +
√

2
4 , this is also the success probability of the protocol.

In this section, we will generalise this problem to what we will call one-time-pad problems,
viewing the bit c in the above problem as a one-time-pad that we force Alice to apply to her
communication. As it turns out, these games are closely related to a class of nonlocal games called
XOR games which generalise the CHSH game. In the first two subsections, we will sketch the
theory of XOR games, after which we will go back to communication complexity and describe
some implications of this theory to the entanglement cost of protocols and to the Cleve-Buhrman
vs Yao problem. We will end by discussing a possible generalisation of XOR games.



4.1.1. XOR games and Tsirelson’s theorem

A nonlocal game is said to be a XOR game if the output sets satisfy |A| = |B| = {0,1}
and if the game’s predicate is of the form V (a,b|x,y) = [(a⊕ b) = g(x,y)] for some function
g : X ×Y → {0,1}. The most notable such game is the CHSH game, where |X | = |Y | = 2, the
distribution is taken to be uniform and where g(x,y) = (x∧ y). As was mentioned in the second
chapter, we have that ω(CHSH) = 3

4 and ω∗(CHSH) = ωqc(CHSH) =
√

2
4 ≈ 0.854. In this

section, we will be exposing the basic theory of XOR games, loosely following the lecture nodes
of Richard Cleve ([89]).

Unlike the case of general nonlocal games, it turns out that XOR games are very well-behaved
in that the space of possible strategies can be described in a tractable way. We sketch the standard
proof of this result, leading up to Tsirelson’s theorem. Given a finite-dimensional quantum
strategy for the game, which is specified by a composite system AB, a possibly entangled state
|ψ〉 over AB and choices of measurements {Ax

a}, {B
y
b} over A and B, respectively (which we may

assume to be projective as the output sets are binary, thanks to a theorem of Cleve, Høyer, Toner
and Watrous ([44])), it is convenient to consider the following matrices, which we refer to as
observables:

Ax = Ax
0−Ax

1

By = By
0−By

1

The Ax and By have the property of being Hermitian and squaring to the identity. Conversely,
the eigenvalues of any matrix satisfying these two properties must be contained in {1,− 1} and
eigenvectors corresponding to different eigenvalues must be orthogonal, so that any choice of Ax

and By satisfying these two properties is of the above form. For given inputs x,y, if we define px,y

to be the probability that a⊕ b = 0, we see that 〈ψ|Ax⊗By |ψ〉 = 2px,y− 1; this last quantity
is referred to as the bias of the strategy on input (x,y), to be denoted ex,y. Clearly, the biases
specify completely the probabilities that a⊕b equals one for every input pair and therefore specify
completely the winning probability provided that the function g and the distribution on the inputs
has been fixed.

Now, for every x, set |ax〉= (Ax⊗ I) |ψ〉, and for every y, set |by〉= (I⊗By) |ψ〉. These are all
unit vectors because the Ax and By are Hermitian, square to one and |ψ〉 has norm one. We also
see that ex,y = 〈ax|by〉. We refer to any such choice of vectors as a vector system. We have seen
that any strategy gives rise to a vector system: it turns out that, in addition, every vector system
also gives rise to a strategy. This is the content of Tsirelson’s theorem, which we now present. We
first state the following standard lemma:
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Lemma 4.1.1. Defining |ψ〉 ∈ Cn⊗Cn by

|ψ〉= 1√
n

n

∑
i=1
|i〉 |i〉

Any two matrices A,B ∈ Cn×n satisfy

〈ψ|A⊗B|ψ〉= 1
n

tr(ABT )

We now show:

Theorem 4.1.2 (Tsirelson, [10]). Given a vector system {|ax〉}x∈X , {|by〉}y∈Y of vectors in Rd ,
there exists a choice of observables {Ax}x∈X ,{By}y∈Y on C2d

such that, for every input pair,

〈ax|by〉= 〈ψ|Ax⊗By |ψ〉

where |ψ〉 is the maximally entangled state from the previous lemma.

PROOF. We write X and Z to denote the classical Pauli matrices

X =

[
0 1
1 0

]

Z =

[
1 0
0 −1

]
These matrices are Hermitian, square to the identity and anticommute, i.e. XZ = −ZX . For 1 ≤
i≤ d, define:

Mi =

(
i−1⊗
j=1

Z

)
⊗X

(
d⊗

j=i+1

I

)
It is not difficult to see that the Mi are Hermitian, square to the identity and mutually anticommute,
by the aforementioned anticommutativity property of the Pauli matrices. Given a unit vector v ∈
Rd , define O(v) by

O(v) =
d

∑
i=1

viMi

Clearly, O(v) is Hermitian. Also,

O(v)2 =
d

∑
i=1

v2
i M2

i + ∑
1≤i< j≤d

viv j(MiM j +M jM j)

=
d

∑
i=1

v2
i I

= I
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So that O(v) is an observable. Finally, given unit vectors v,w, by making use of the previous
lemma,

〈Ψ|O(v)⊗O(w) |Ψ〉= 1
d

tr(O(v)O(w))

=
1
d

d

∑
i=1

viwi + ∑
1≤i 6= j≤d

viw j tr(MiM j)

Since, for i 6= j,

tr(MiM j) =
tr(MiM j)+ tr(M jMi)

2
=

tr(MiM j +M jMi)

2
= 0

The theorem is proved by setting Ax = O(|ax〉) for every x ∈ X and By = O(|by〉) for every y ∈
Y . �

The above result has a number of useful corollaries. Perhaps the most interesting one is the
fact that it provides a means for approximating the entangled value of an arbitrary XOR game
efficiently:

Corollary 4.1.3. Given a XOR game G, there exists an efficient algorithm for approximating
ωq f (G) to arbitrary precision.

PROOF. Set z∗ to be equal to the optimum of the following semidefinite program (which we write
using dot products of vectors, but which can straightforwardly be recast in the more standard form
involving a semidefinite matrix by considering the vectors’ Gram matrix):

max ∑
x∈X ,y∈Y

µx,y(−1)g(x,y) 〈ax|by〉 (4.1.1)

s.t. 〈ax|ax〉= 1 ∀x ∈ X (4.1.2)

〈by|by〉= 1 ∀y ∈ Y (4.1.3)

(4.1.4)

By the correspondence between vector systems and strategies, we see that ωq f (G) = z∗+1
2 . Since

semidefinite programs can be solved efficiently to within an arbitrary precision ε > 0, this proves
the corollary. �

This is in contrast to the classical case, where it is known (by reduction from MAXCUT and by
appealing to the PCP theorem) that even approximating the value of a XOR game to within a fixed
given small enough precision is NP-hard.

Another important corollary of Tsirelson’s theorem is that it restricts the power of entangle-
ment for XOR games:
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Corollary 4.1.4. Given a XOR game G, there exists a finite-dimensional strategy for G with success
probability exactly ωq f (G) which makes use of min(|X |,|Y |)+1 EPR pairs. Also, we have that the
semidefinite program mentioned in the previous corollary is isomorphic to the first level of the
sum-of-squares hierarchy for G. In particular, ω∗(G) = ωqc(G).

PROOF. For the first part, suppose that |X | ≤ |Y |: the other case is symmetric. Given a vector
system {|ax〉}, {|by〉}, we may project the |by〉 onto the subspace generated by the {|ax〉} without
changing the scalar products 〈ax|by〉. Clearly, this subspace is of dimension at most |X |. To renor-
malise the |by〉 after this (which might now have norm strictly less than one), we can add another
vector to the space that is orthogonal to the |ax〉 and appropriately choose the scalar product of the
|by〉 with this new vector. Also, since the semidefinite program in the proof of the above corollary
is real, we can assume that said vector space is real. The second part is left as an exercise to the
reader. �

Note that for general nonlocal games, none of the statements in the above corollary hold.

Finally, although this won’t be of any direct importance to us, the following can be deduced
from the above correspondence:

Corollary 4.1.5 ([89]). Let G be a XOR game. There exists a universal constant C ≈ 1.1382
such that ω∗(G)≤Cωc(G). In particular, if ωc(G) is close to 0, so is ω∗(G). Also, there exists a

universal constant D≈ 0.74202 such that if ωc(G)>D, then ω∗(G)≤
(

sin πωc(G)
2

)2
. In particular,

if ω∗(G) is close to 1, so is ωc(G).

Note how tightly the CHSH game saturates the above corollary: the first part of corollary,
along with the fact that the classical value of the CHSH game is 0.75, gives an upper bound on
the entangled value of the CHSH game that is tight to within 10−4, and the upper bound given
by the second part matches the entangled value exactly. In particular, the above result shows that
the quantum-classical gap exhibited by the CHSH game is pretty much optimal for XOR games,
both additively and multiplicatively. It follows that one cannot hope for dazzling gaps between the
classical and entangled values of a XOR game, as opposed to the case of general nonlocal games,
where, as we have seen, the gap can be arbitrarily close to one.

4.1.2. The tightness of Tsirelson’s theorem and the CHSH(n) games

As we have seen, given a XOR game G with input sets X ,Y , Tsirelson’s theorem allows us to
build an exactly optimal entangled strategy for G. However, this strategy requires a surprisingly
large amount of prior entanglement: if Alice and Bob’s input were represented as bit strings of
length n, the number of EPR pairs used by the constructed strategy would be exponential in n. In
fact, it is known that if we are satisfied with strategies that are ε-optimal, it is possible to do much
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better than this:

Theorem 4.1.6 (Regev, unpublished). There exists a universal constant C such that, given a XOR
game G and any ε > 0, there exists an ε-optimal finite-dimensional strategy for G which makes
use of at most C

ε2 EPR pairs.

However, there is a sense in which the construction we gave is essentially optimal. Namely,
Slofstra ([66]) showed that there are XOR games with the property that any strategy that is close
enough to be optimal (where the definition of ‘close enough’ must necessarily depend on the game
so as not to contradict the previous theorem) must use an amount of entanglement that morally
matches the upper bound given by Tsirelson’s theorem above. We now describe a family of games
introduced by Slofstra in the aforementioned paper for which this holds 1, which are called the
CHSH(n) games. For n≥ 2, the corresponding game is defined to have input sets

X = [n]

Y = {( j1, j2) | j1, j2 ∈ [n], j1 6= j2}

The players are given the promise that if Alice’s input is i and Bob’s input is ( j1, j2), then i = j1
or i = j2. The function g which specifies the winning condition of the game is

g(i,( j1, j2)) = ( j1 > j2)∧ (i = j1)

The CHSH(n) games get their name from the fact that CHSH(2) can be seen to be the usual
CHSH game, which was introduced in the second chapter, where x = 0 correspond to the input
i = 1, x = 1 corresponds to i = 2, y = 0 corresponds to (1,2) and y = 1 corresponds to (2,1).

Taking the input distribution to be uniform over the legal input pairs, it can be shown that
the quantum values of the CHSH(n) games all satisfy the same bound as the usual CHSH game,
i.e. ω∗(CHSH(n)) ≤ 1

2 +
√

2
4 . It is also straightforward to describe a strategy which achieves this

in the worst case using the language of observables that was introduced in the previous section.
Take Alice’s observables A1, . . . ,An to be any collection of mutually anticommuting observables
on a finite-dimensional Hilbert space H of dimension d, such as the ones used in the proof of
Tsirelson’s theorem, and, for ( j1, j2) ∈ Y , define B( j1, j2) by

B( j1, j2) =
1√
2
((−1)I[ j1> j2]AT

j1 +AT
j2)

1It should be said that many corners are being cut in our presentation of Slofstra’s results. The upper bound given
previously on the amount of entanglement needed by an optimal strategy for a XOR game isn’t actually optimal (being
off by a multiplicative factor), and the games we are about to introduce saturate the best possible bound only in a moral
sense. We feel that giving a completely precise account of these things would take us too far afield, and we refer the
interested reader to Slofstra’s paper.
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A routine verification shows that the B( j1, j2) are also observables. Finally, taking |ψ〉 ∈H ⊗H

to be the maximally entangled state from lemma 4.1.1, we see that, because tr(AiA j) = dδi, j,

〈ψ|AiB( j1, j2)|ψ〉=
1
d

tr(AiBT
( j1, j2)) =

(−1)I[ j1> j2∧i= j1]
√

2

Translating from the language of biases back into the language of success probabilities,
we see that this means that, importantly for us, for all choices of legal inputs, the success
probability of the players using this strategy is exactly 1

2 +
√

2
4 . Using the Mi that were defined

in the course of proving Tsirelson’s theorem as Alice’s observables, this strategy will take n ebits 2 .

Slofstra also shows:

Theorem 4.1.7 ([66], oversimplified). There exists a sequence {εn}n∈N of strictly positive real
numbers (necessarily converging to zero in view of theorem 4.1.6) such that, for every n, any εn-
optimal entangled strategy for CHSH(n) must employ Ω(n) ebits.

This will be of interest for us in the two following subsections.

4.1.3. The complexity of binary one-time-pad problems with classical com-
munication

We now generalise the problem of [26] that was introduced at the beginning of this section to
one-time-pad problems. Given input sets X ,Y , a set R ⊆ X ×Y of legal inputs and a function
g : X×Y →{0,1}, Alice is given x ∈ X ,c ∈ {0,1} and Bob is given y ∈Y with (x,y) ∈ R, and they
are requested to compute the function

f ((x,c),y) = c⊕g(x,y)

with one bit of communication from Alice to Bob. In notation, we are interested in the value
ω

pub
t ( f ,1) for all models t. We might also look at the value ω

µ ′

t ( f ,1) for some distribution µ ′ such
that µ ′(x,c),y = 0 whenever (x,y) /∈ R, which upper bounds ω

pub
t ( f ,1). Actually, it can be seen that

the tightest upper bounds are obtained when c is uniformly distributed and independent of x and y:
therefore, we only need to concern ourselves with the marginal distribution µ on X×Y .

In the classical and Cleve-Buhrman models, the obvious thing to do would be for Alice and
Bob to play the corresponding XOR game specified by µ and g with the best strategy available,
obtaining outputs a,b ∈ {0,1}, after which Alice send z = c⊕ a to Bob and Bob outputs b⊕ z.
The success probability of this protocol will be exactly the same as the success probability of the
strategy used for the XOR game. We now show that in the distributional setting, we may restrict

2This can be lowered to n
2 ebits.
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ourselves to strategy of this form:

Theorem 4.1.8. In all of the classical, finite-dimensional and commuting operators models, any
protocol for the above distributional communication problem with success probability p can be
converted into an equivalent (i.e., in the finite-dimensional setting, using the same entangled state)
strategy for the corresponding XOR game with success probability no smaller than p.

PROOF. We give the proof for qc: the other cases are similar. Take a protocol for f , specified
by a Hilbert space H, a state |ψ〉 on H and projective measurements Ax,c

z , By,z
r for Alice and Bob,

respectively, where r is the output of the protocol. Writing the shorthand τ(·) to mean 〈ψ| · |ψ〉,
for a given input pair (x,y), we see that the protocol’s success probability on that input pair is:

1
2

(
τ

(
Ax,0

0 By,0
g(x,y)

)
+ τ

((
I−Ax,0

0

)
By,1

g(x,y)

)
+ τ

((
I−Ax,0

0

)(
I−By,0

g(x,y)

))
+ τ

(
Ax,0

0

(
I−By,1

g(x,y)

)))
Rearranging, this gives

1
2
+

(−1)g(x,y)

2
τ

((
Ax,0

0 −Ax,1
0

)(
By,0

0 −By,1
0

))
For the rest of the proof, we freeze Alice’s input to be some x ∈ X with nonzero probability

under µ . We show that it can be assumed that Ax,1
0 = I−Ax,0

0 . This effectively means that we can
think of Alice as performing one single binary measurement, irrespective of the value of c, and
then sending the result XOR-ed with c to Bob.

Writing
B = ∑

y
µy|x(−1)g(x,y)

(
By,0

0 −By,1
0

)
By linearity, we get that the protocol’s success probability is:

1
2
+

1
2

τ

((
Ax,0

0 −Ax,1
0

)
B
)

If we drop the old value of Ax,0
0 and take Ax,0

0 = I−Ax,1
0 instead, the success probability of the new

protocol is:
1
2
+

1
2

τ

((
I−2Ax,1

0

)
B
)

While if we instead drop the old value of Ax,1
0 and take Ax,1

0 = I−Ax,0
0 , the success probability of

the new protocol is:
1
2
+

1
2

τ

((
2Ax,0

0 − I
)

B
)

The average of the two previous success probabilities is equal to the success probability of the
original protocol, so that one of the two modified protocols is at least as good as the original
protocol. This completes the proof from the point of view of Alice. In the same way, we can
show that without loss of generality, it holds that By,1

0 = I−By,0
0 for all y: this amounts to Bob
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making a measurement independently of Alice’s communication, XOR-ing the result with Alice’s
communication and outputting the result, as desired. �

This shows that in the case of CHSH, the best success probability is 3
4 classically and 1

2 +
√

2
4

in the entanglement-assisted scenario. Also, in combination with theorem 4.1.7, this yields an
example of a communication problem for which a near-optimal protocol using one bit of commu-
nication from Alice to Bob requires a great deal of prior entanglement (i.e. exponential in the sizes
of the inputs when viewed as bit strings).

4.1.4. The case of the Yao model

In this subsection, we investigate the complexities of one-time-pad problems in the Yao model.
We start with an achievability result:

Proposition 4.1.9. Given a XOR game G and a strategy for G making use of an entangled state of
local dimension 2, there exists a private-coin protocol for f in the Yao model such that, for every
input pair x,y and for every c, the protocol’s success probability is equal to the success probability
of the original strategy for G given that Alice and Bob’s inputs were x and y. In particular,

ω
1
q f :2( f ,1)≤ ω

1
yao( f ,1)

PROOF. Take the best strategy for G which makes use of an entangled state of local dimension 2.
This is specified by a state |ψ〉 ∈ C2⊗C2, projectors {Ax

a} for Alice and projectors {By
b} for Bob.

We now describe a Yao protocol for f with the properties given in the statement of the proposition.
Given Alice and Bob’s input (x,c) and y, Alice begins by flipping a private coin a ∈ {0,1} in such
a way that the probability that a = 1 is the same as the probability of her obtaining 1 in the chosen
strategy for G. Writing ρB to be the reduced density matrix on Bob’s side in the above strategy for
G given that Alice measured according to the projector {Ax

a} and got result a, if a⊕ c = 0, Alice
sends ρB to Bob, and if a⊕ c = 1, she sends I−ρB otherwise. Bob then applies his measurement
from the original strategy for G to what he received from Alice and outputs the result. �

This means that the one-time-pad problem based on the CHSH game, which was introduced at
the beginning of this section, also has a Yao protocol with one qubit of communication achieving
a success probability of 1

2 +
√

2
4 , and therefore does not feature a gap between the Yao and

Cleve-Buhrman models.

We now show that this is optimal: indeed, we show that any Yao protocol with one qubit of
communication for a one-time-pad problem can be converted into a Cleve-Buhrman protocol for
the same one-time-pad problem with one bit of communication that is at least as good and which
uses a constant amount of entanglement. Note that if the states that Alice is sending in that Yao
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protocol happened to all be real, this conversion would easily be achieved because real states
in two dimensions can be teleported with one bit of communication and one shared EPR pair
3. The general case where Alice’s communication may be complex will require slightly more work.

Theorem 4.1.10. Given the distribution µ on X×Y corresponding to G,

ω
1,µ ′
yao ( f ,1)≤ ωq f :256(G) = ω

1,µ ′
q f :256( f ,1)

PROOF. Take a Yao protocol for f specified by pure states {|ψ〉x,l} ∈C2 to be sent to Bob by Alice
and measurements {Ey

r } to be performed by Bob on the system he received from Alice, which
may be assumed to be projective measurements by the proof of proposition 2 of [44]. Clearly, for
a given y, Ey

0 has rank either 0, 1 or 2. If Ey
0 were to have rank 0 or 2, which would amount to Bob

always outputting the same thing on input y irrespective of the communication, then because the
bit c is picked uniformly at random, the success probability conditionally on Bob’s input being
y would be exactly 1

2 . This means that Bob could instead scramble the communicated state by
performing one of I,X ,Z,XZ at random and then measuring in the computational basis, which
would also yield a success probability of 1

2 . It may therefore be assumed that Ey
0 has rank 1 for all

y, so that we can write Ey
0 = |φy〉〈φy|. Also, for the same reason as in the proof of theorem 4.1.8,

we can assume that |ψx,0〉⊥|ψx,1〉 for all x. This means that for all input pairs (x,y), the success
probability is the same for l = 0 and l = 1.

We now invoke Tsirelson’s correspondence between entangled strategies and vector systems to
turn the protocol into an entangled strategy for G. For x ∈ X , define

|vx〉=
1√
2
|ψx,0〉⊗ |ψx,0〉−

1√
2
|ψx,1〉⊗ |ψx,1〉

And for y ∈ Y , define

|wy〉=
1√
2
|φy,0〉⊗ |φy,0〉−

1√
2
|φy,1〉⊗ |φy,1〉

Where the overline means complex conjugation. Because |ψx,0〉⊥|ψx,1〉 and |φy,0〉⊥|φy,1〉, these
vectors have unit norm: using the same fact, we see that if we write px,y = | 〈ψx,0|φy,0〉 |2 to mean
the probability that the protocol’s output is 0 given that Alice and Bob’s inputs were x and y, then

〈vx|wy〉= 2px,y−1

This means that running this vector system through Tsirelson’s correspondence would yield a stra-
tegy such that, for every input pair (x,y), the probability that the outputs XOR to 0 is the same as
the probability that Bob outputs 0 in the original Yao protocol. These vectors are in C4, so that we

3Rotating a real two-dimensional state by 90 degrees always yields an orthogonal state; this fact can easily be turned
into a protocol for teleporting said state. No such transformation is possible for general complex states.
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can embed them in R8 without changing their inner products. This gives a strategy for G using 8
EPR pairs with success probability equal to that of the original protocol. �

Note that we know that for the CHSH(n) game, the corresponding one-time-pad problem f is
such that ω

1,pub
q f ( f ,1) = 1

2 +
√

2
4 , while, taking µ to be uniform over the legal inputs, the amount of

entanglement required by any near-optimal strategy is Ω(n). By the previous result, the correspon-
ding one-time-pad problem must be such that ω

1,pub
yao ( f ,1)< 1

2 +
√

2
4 if n is taken to be large enough.

As far as we know, this gives the first ever example of a communication problem for which r bits
of communication with prior entanglement can buy you more than r qubits of communication wi-
thout prior entanglement but with arbitrary shared randomness, although the gap between the two
values is obviously not very impressive. Taking n = 5, numerically, we find that the gap is about
2%. Another such problem will be encountered in the next section.

4.1.5. Group games and maximal entanglement in communication com-
plexity

We end this section by mentioning a possible generalisation of XOR games which we do not
believe has been studied in the literature. Given finite input sets X ,Y , a distribution px,y on X ×Y ,
a finite group H 4 and a function g : X ×Y → H, we define the corresponding group game to be
the game with both output sets equal to H and such that the winning condition is a−1b = g(x,y).
Taking H = Z/2Z gives standard XOR games. One might wonder about which properties of XOR
games still hold in this generalised setting. Note that even if we take H to be the next-simplest
non-trivial finite group, namely H = Z/3Z, the observable picture that we used to analyse XOR
games earlier in this section is no longer available, and, indeed, some properties of XOR games
that could be proven using this picture can be shown to be false.

Cui, Mehta, Mousavi and Nezhadi ([99]) study a different generalisation of the CHSH game
from the one that was mentioned earlier in this section. Although this is not trivial to figure out
from their presentation, the games they consider are as follows: for n ≥ 2, the inputs are taken to
be binary, the function g is the same as in the the original CHSH game, namely g(x,y) = x∧y, and
we take H = Z/nZ 5. Clearly, n = 2 is just the usual CHSH game. For n = 3, they could already
prove that in the entangled setting, the resulting game exhibits some features that are forbidden for
XOR games: it is no longer the case that the bound given by the first level of the sum-of-squares
hierarchy always matches the entangled value of the game, and it is no longer true that the optimal

4The letter G is rather overused in this thesis, as it is used for games, groups and graphs. We compensated for this
earlier by using the letter ‘g’ for the function corresponding to a XOR game, which secretly stood for ‘group’.
5These games, being a natural enough generalisation of the CHSH game, had already (sort of) been studied by Dupuis,
Gisin, Hassidim, Méthot and Pilpel ([56]), although from an angle that is orthogonal to the one taken by [99]. In
particular, [56] does not consider the landscape of quantum strategies for these games.
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winning probability can always be attained by a strategy which uses a maximally entangled state. 6

This last point is interesting to us because it might yield an example of a communication pro-
blem for which general entanglement might allow one to do better than maximal entanglement; no
communication problem with this property is known at present (theorem 3.3.1 implies that it is not
possible to do much better with general entanglement than with maximal entanglement; here, we
are restricting ourselves to protocols with one bit of communication only, on which theorem 3.3.1
has no bearing). One might be tempted to generalise one-time-pad problems to group games in the
obvious way: namely, we give Alice x ∈ X and c ∈ G, we give Bob y ∈ Y , and we request them to
compute

f ((x,c),y) = c g(x,y)

A strategy is then given by having them play the game, obtaining results a,b∈H, and having Alice
send z = ca−1 to Bob, who then replies with zb. If we could prove that theorem 4.1.8 still holds
for this generalised class of communication problems, by the result of [99] mentioned earlier,
we would have shown that there exists some communication problem for which a maximally
entangled state isn’t optimal. Unfortunately, it does not: letting our computer loose on the
one-time-pad problem corresponding to the game of [99], we could find a protocol which has a
noticeably higher success probability than the value of the game and that this protocol makes use
of a maximally entangled state.

It would be interesting to look for a provably correct way of turning the game of [99] into a
communication problem for which it is not true that maximally entangled states are complete. We
also think that it would be interesting to try to further develop the theory of group games: For
example, it would be interesting to see if some results which we know hold for XOR games could
be proved for these in a weaker form, for example:

(1) Is the tensor-product value of a group game always attained by some finite-dimensional
strategy? If so, is there a reasonable upper bound on the minimal dimension of the entan-
gled state required to achieve this?

6As an aside, their question 1.1, which they solve using this game, asks: ‘Are there states other than the maximally
entangled state that can be self-tested by a nonlocal game? ‘. Actually, the tilted CHSH inequalities of [67], while
typically framed as a means of self-testing 2×2 entangled states using correlations, can straightforwardly be recast as
a traditional nonlocal game in the following way. For a given parameter p ∈ [0,1], Alice is given x ∈ {0,1}, and Bob is
given y,c ∈ {0,1}; x, y, c are all independent, x and y are uniformly distributed and c equals 1 with probability p. Their
outputs a,b are to be binary. If c = 1, the winning condition is a⊕b = x∧ y; if c = 0, the winning condition is x = 0.
p = 1 is the vanilla CHSH game, while p = 0 is a rather boring game; making p vary from 0 to 1, we obtain a self-test
for every 2× 2 entangled pure state. This is a much easier and satisfying answer to their question 1.1, as they could
only exhibit one single non-maximally-entangled state which admits a self-test. It seems very likely that something
like this can be done to show that every entangled state can be self-tested using a nonlocal game, as we know can be
done using general correlations.
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(2) Similarly, are the tensor-product and commuting operators models equivalent for such
games?

(3) What is the computational complexity of the value of such games? Is there always some
level of the sum-of-squares hierarchy which gives the value of the game exactly? Is there
an upper bound on said level?

(4) Does a version of corollary 4.1.5 still hold for these games, or can the quantum-classical
gap of such games be arbitrarily close to one provided that the group G is taken to be
large/complicated enough?

4.2. One-way, zero-error communication complexity and quan-
tum graph theory

In this section, we take a look at communication complexity in a rather restricted model,
namely the one in which only Alice is allowed to communicate to Bob and in which the partici-
pants are required to obtain the right answer with certainty. As we shall see, this path leads us by
force into graph theory. Take G to be a finite simple graph. Following section 8.5 of de Wolf’s
PhD thesis ([37]), we define the promise equality problem EQG as follows: Alice and Bob are
given vertices of G as input, with the promise that their inputs are either the same or adjacent,
and they must determine which of the two is the case. It is possible to show that problems of
this form are complete for exact, one-way communication complexity, and also that the reduc-
tion from a general problem to a promise equality problem is rather straightforward (although
the proof of the correctness of the reduction takes a bit of work). This is done in the next subsection.

In the remainder of this section and unless specified otherwise, we will be measuring the
amount of communication in terms of register size and not in terms of number of bits sent.
Namely, a protocol with communication k will correspond to Alice sending an element c of the
register {1, . . . ,k} to Bob in the classical and Cleve-Buhrman models and a state ρ ∈ D(Ck) in the
Yao model. We will also assume that the players do not make use of shared randomness as this is
clearly useless in the exact setting.

We now mention some facts about one-way protocols in the Cleve-Buhrman model which
will be needed in the course of this section. First, it should be noted that if the communication is
classical, one-way communication complexity in the distributional setting can actually be regarded
as a nonlocal game. Indeed, for a given amount of communication C, consider the game where
Alice and Bob are given x,(y,c) as inputs, where (x,y) is sampled according to some distribution
on X ×Y and where c ∈ [C] is uniformly distributed and independent of x and y, where Alice
outputs a ∈ [C] and Bob outputs b ∈ {0,1}, and they win if either c 6= a or if f (x,y) = b. It can
easily be seen that ωt(G) = C−1

C + 1
C ω

µ,1
t ( f ,C), and in particular that G has a perfect strategy if
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and only if f has an exact one-way protocol with communication C. Next, we have that in the
finite-dimensional settings, protocols can be put in standard form, to be defined in the statement
of the following lemma. We will be writing ρx,c to mean the reduced density matrix on Bob’s side
provided that Alice’s input was x and she communicated c to Bob. The trick we use is due to [53].

Lemma 4.2.1. At the cost of increasing the communication cost of the protocol, any one-way pro-
tocol in the Cleve-Buhrman model with finite-dimensional entanglement can be put into standard
form. This means that if the protocol’s communication is k, Alice’s communication c is uniformly
distributed over [k], and the ρx,c all have the same rank.

PROOF. We may assume that in the original protocol, the shared entangled state has full Schmidt
rank. In addition to the entanglement used in the original protocol, Alice and Bob share a maxi-
mally entangled state |ψ〉 over Ck⊗Ck. Alice begins by proceeding as in the original protocol,
obtaining c′. She then measures her share of |ψ〉 in the standard basis, obtaining a uniformly ran-
dom d ∈ [k], and sends c = c′⊕d to Bob. Bob then measures his part of the state to obtain d and
recovers c′ = c⊕ (−d). Clearly, c is uniformly distributed, and it may be verified that the ρx,c all
have the same rank. �

4.2.1. The completeness of promise equality problems for one-way, zero-
error communication complexity

In all that follows, we have some function f : X×Y → Z∪{⊥} in mind, where X , Y and Z are
arbitrary finite sets, and we will construct a graph G f such that the zero-error complexities of f
and EQG f are equal in all models 7. This will show that promise equality problems are complete
for exact, zero-error communication complexity. While the construction itself is simple, proving
its correctness in all cases is somewhat tedious, but some of the lemmas we will prove to this end
will be useful later on.

Let us first consider the classical case. For every x ∈ X , take cx ∈ {1, . . . ,k} to be Alice’s
message on input x. For any distinct x,x′ ∈ X , if there exists y ∈ Y such that f (x,y) 6= f (x′,y) and
f (x,y), f (x′,y) 6= �, we must necessarily have that cx 6= cx′ , for otherwise, Bob would reply the
same thing when given input y whether Alice was given input x or x′. Conversely, any choice of
messages cx with the aforementioned property yields a classical protocol for f : since the sets

Cr = {cx | x ∈ X , f (x,y) = r}

7In the classical and quantum settings. They are not equal in the presence of general nonsignalling correlations, but as
we have established previously, communication complexity in the presence of general nonsignalling correlations isn’t
wildly interesting.
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are all disjoint, Bob can determine which r ∈ R is such that Cr contains the message that he
received from Alice and output it.

Let us then define an undirected graph G f with vertex set X and such that (x,x′) ∈ E(G f ) if
and only if there exists y ∈Y such that f (x,y) 6= f (x′,y) and f (x,y), f (x′,y) 6=�. It is apparent that
there exists a protocol for EQG f in the classical setting with communication k if and only if it is
possible to assign cx ∈ {1, . . . ,k} to every vertex x in such a way that whenever (x,x′) ∈ E(G f ),
we have that cx 6= cx′ , by the previous discussion, so that f and EQG f have the same one-way,
exact communication complexities in the classical setting. We will show that the same is true in
all settings:

Theorem 4.2.2. In the one-way case, the exact and zero-error complexities of f and EQG f are
all equal. In particular, promise equality problems are complete for exact and zero-error one-way
communication.

In each case, the proof is quite similar to the one just given. Note that this contains the
following result as a special case 8.

Corollary 4.2.3 ([36]). Suppose that f is total, meaning that all input pairs are possible. We can
assume that for every x,x′, there exists some y with f (x,y) 6= f (x′,y), as otherwise, one of the two
can be thrown out without changing the communication complexity. Then, G f is just the complete
graph on |X | vertices, so that the one-way, zero-error complexities of f are equal in all models, by
proposition 4.2.19 below.

4.2.1.1. The proof for the Yao model. The proof for the Yao model is a direct adaptation of
the argument for the classical case, and follows at once from the following result:

Proposition 4.2.4. Let H be a finite-dimensional Hilbert space and let C1,C2, . . . ,Cn be a collec-
tion of sets of density matrices on H . The following are equivalent:

(1) There exists a projective measurement {Pr}n+1
r=1 on H such that for any r ∈ {1, . . . ,n} and

for any ρ ∈Cr, tr(Prρ) = 1.
(2) For any 1≤ r < r′ ≤ n, ρ ∈Cr and σ ∈Cr′ , we have that ρ and σ are perfectly distingui-

shable, or equivalently, suppρ⊥suppσ .

PROOF. That (1) implies (2) is clear enough, as the first part provides a projective measurement to
distinguish perfectly between ρ and σ . For the other direction, for every r ∈ {1, . . . ,n}, define the

8Actually, Klauck did not show this for the commuting operators model. This is forgivable considering that the
commuting operators model had not yet been defined.
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subspace Vr by
Vr =

⊕
ρ∈Cr

suppρ

So that, for any 1 ≤ r1 < r2 ≤ n, Vr1⊥Vr2 . Taking Pr to be the orthogonal projector with image Vr

and setting Pn+1 = I−∑r Pr, we see that the resulting collection of orthogonal projectors constitutes
a projective measurement that does what we want. �

First take an exact, one-way protocol for f in the Yao model with communicated register H ,
and take y∈Y . We can then derive an equivalent protocol for EQG f where, on input y and upon the
reception of ρx from Alice, Bob measures according to the projective measurement {Psuppρy ,I−
Psuppρy}. Conversely, given an exact protocol for EQG f , for every r ∈ R, we set:

Cr = {ρx | x ∈ X , f (x,y) = r}

The implication (2)→ (1) in the above proposition then yields an exact protocol for f , since, for
r 6= r′ and every ρ ∈Cr, σ ∈Cr′ , ρ and σ are perfectly distinguishable, by the correctness of the
original protocol.

4.2.1.2. The proof for the Cleve-Buhrman model in the exact case. We now turn to the
Cleve-Buhrman model in the exact case: the approximate case will be dealt with in the next
section. We will only consider the commuting operators model: the proof will also go through for
the other entanglement models. We begin by showing:

Proposition 4.2.5. Let H be a Hilbert space, and let V1,V2 be closed subspaces of H . If P1 and
P2 are the orthogonal projectors on V1 and V2, respectively, then P1 and P2 commute if and only if
there exist (necessarily) orthogonal closed subspaces U1,U2 of H satisfying:

(1) U1 ⊆V2

(2) U2 ⊆V⊥2
(3) V1 =U1⊕U2

PROOF. For the forward direction, set

U1 =V1∩V2

U2 =V1∩V⊥2

These subspaces are both closed because V1, V2 and V⊥2 are. Clearly, (1) and (2) hold. We show
that (3) also holds. The inclusion U1⊕U2 ⊆V1 is clear. For the other inclusion, let v ∈V1. Then

v = P1(v) = P2(P1(v))+(I−P2)(P1(v))

By the commutativity of P1 and P2, we have that P2(P1(v)) ∈ U1, and similarly, by the commu-
tativity of P1 and (I− P2) and since (I− P2) is the orthogonal projector on V⊥2 , we have that
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(I−P2)(P1(v)) ∈U2. We therefore have that v ∈U1⊕U2, which shows the claim.

For the backwards implication, write U3 = V2 ∩U⊥1 and U4 = (U1⊕U2⊕U3)
⊥, so that H =

U1⊕U2⊕U3⊕U4 (where we’ve freely used the fact that the direct sum of orthogonal, closed
subspaces is also closed as well as the fact that if W ≤ H is closed, then H = W ⊕W⊥). Given a
generic element v ∈H written uniquely as v = u1 +u2 +u3 +u4 with ui ∈Ui, it can be seen that
P1P2v = P2P1v = u1, which completes the proof. �

Corollary 4.2.6. Let H be a Hilbert space, and let {Vi}n
i=1 be a collection of closed subspaces of

H . Set

W1 =
n⊕

i=1

Vi
9

W2 =
n⋂

i=1

Vi

For i ∈ [n], write Pi for the orthogonal projector on Vi. If Q is an orthogonal projector such that
[Pi,Q] = 0 for all i, we also have that [PW1 ,Q] = [PW2 ,Q] = 0.

PROOF. Suppose that [Pi,Q] = 0 holds for all i. We will write T to denote the closed subspace
projected onto by Q. For every i, take Ui,1, Ui,2 as in the previous proposition. We then have

W1 =

(
n⊕

i=1

Ui,1

)
⊕

(
n⊕

i=1

Ui,2

)
Since Ui,1 ⊆ T and Ui,2 ⊆ T⊥ for every i and since T and T⊥ are both closed, the two summands
in the above expression are subspaces of T and T⊥, respectively, so that the previous proposition
implies that [PW1,Q] = 0. Similarly, since

W2 =

(
n⋂

i=1

Ui,1

)
⊕

(
n⋂

i=1

Ui,2

)
We get that [PW2,Q] = 0 for the same reason. �

Fixing the register size k, first suppose that we have a protocol in the commuting operators
model for f , specified by a Hilbert space H , some initial state |ψ〉 ∈ H, measurement operators
{Ax

c}x∈X ,c∈[k] and {By,c
r }y∈Y,c∈[k],r∈R for Alice and Bob, respectively. We can turn this into a

protocol for EQG f where Alice does as in the previous protocol and where, given a vertex x′ ∈ X
and Alice’s message c, if {Pi}n

i=1 are all the projectors of the form By,c
f (x′,y) with f (x′,y) 6= �,

setting Vi to be the image of Pi and setting W = ∩n
i=1Vi, Bob measures according to the projective

measurement {PW ,I−PW}. By the corollary, this projective measurement will still commute with
Alice’s measurements. This shows that the communication complexity of EQG f is no greater than

9Note that a closure is required here, as direct sums do not preserve closure in general in infinite dimensions.
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that of f ; that they are equal follows along the same lines, by using the first part in the above
corollary.

4.2.1.3. The proof for the Cleve-Buhrman model in the vanishing-error case. In this subsec-
tion, we complete the proof of theorem 4.2.2 by showing the case of the zero-error case in the
Cleve-Buhrman model. Again, the proof is conceptually identical to the one in the classical case,
but we need to work a bit harder to deal with the fact that the protocols we are dealing with are no
longer exact.

Lemma 4.2.7. Let ρ be a mixed state on some finite-dimensional Hilbert space H , and let U,V
be subspaces of H . It holds that

tr(P(U∩V )⊥ρ)≤ tr(PU⊥ρ)+ tr(PV⊥ρ)

PROOF. We prove the result in the case where ρ is pure: the general case then follows from
the spectral theorem and the linearity of the trace. Suppose that ρ = |ψ〉〈ψ|. |ψ〉 has a unique
decomposition of the form:

|ψ〉= |ψU∩V 〉+ |ψU∩V⊥〉+ |ψU⊥∩V 〉+ |ψU⊥∩V⊥〉

It can then be seen that

tr(P(U∩V )⊥ρ) = ‖P(U∩V )⊥ |ψ〉‖
2

= ‖|ψU∩V⊥〉‖
2 +‖|ψU⊥∩V 〉‖

2 +‖|ψU⊥∩V⊥〉‖
2

≤ ‖|ψU∩V⊥〉‖
2 +‖|ψU⊥∩V 〉‖

2 +2‖|ψU⊥∩V⊥〉‖
2

= ‖PU⊥ |ψ〉‖
2 +‖PV⊥ |ψ〉‖

2

= tr(PU⊥ρ)+ tr(PV⊥ρ)

As desired. �

Proposition 4.2.8. Let H be a finite graph, let ε ≥ 0, and suppose that {ρv}v∈V (H) are mixed states
on some finite-dimensional Hilbert space H such that, for all (v,w) ∈ E(H),

Dtr(ρv,ρw)≥ 1− ε

There exist subspaces {Vv}v∈V (H) of H such that, for all (v,w) ∈ E(H), Vv and Vw are orthogonal
and such that, for all v,

tr(PVvρv)≥ 1−2(degv)ε

PROOF. We identify V (H) with [|V (H)|]. For every e = (v,w) ∈ E(H) with v < w, take {Pe
0 ,P

e
1}

to be the Helstrom (projective) measurement for optimally distinguishing between ρv and ρw with
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a uniform prior, which, by hypothesis, has error probability at most ε . This means that:

tr(Pr
1ρv), tr(Pr

0ρw)≤ 2ε

Let V e
b be the subspace projected on by Pe

b . Given a vertex v ∈V (H), set:

Vv =
⋂

e=(u,w)∈E(H)
u<w
v∈e

V e
δv,u

For (v,w) ∈ E(H) with v < w, Vv ⊆V e
0 and Vw ⊆V e

1 =
(
V e

0
)⊥, so Vv and Vw are orthogonal. Also,

iterating the previous lemma gives that

tr(PVvρv) = 1− tr(PV⊥v
ρv)≥ 1−2(degv)ε

As desired. �

We show:

Proposition 4.2.9. An ε-approximate protocol for f with finite-dimensional entanglement and
communication k can be turned into a 2|X ||R|ε-approximate protocol for EQG f with finite-
dimensional entanglement and communication k.

PROOF. Take such a protocol, which we can assume to be in standard form. For x ∈ X ,c ∈ [k],
let ρx,c ∈ D(B) be the reduced density matrix on Bob’s side if Alice’s input was x and she sent
communication c to Bob after the result of her measurement. Since the protocol is in standard
form and is ε-approximate, for every (x,x′) ∈ E(G f ),

Dtr(ρx,c,ρx′,c)≥ 1−|R|ε

For every y ∈ X , c ∈ [k], by the previous proposition, there exists a subspace Vy,c of B such that:

tr(PVy,cρy,c)≥ 1−2|R||X |ε

And, for every x ∈ |X | with (x,y) ∈ E(G f ),

tr(PVy,cρx,c)≤ 2|R||X |ε

This means that, if Alice does exactly as in the original protocol and if, on input y ∈ X and on
having received c from Alice, Bob measures according to the projective measurement {PV⊥y,c

,PVy,c},
the result will be a 2|R||X |ε-approximate protocol for EQG f , as desired. �

4.2.2. The complexities of promise equality problems

In this subsection, we look at the communication complexity of EQG in the various models
for a generic graph G.
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In the classical case, as we have seen, an exact protocol for G with communication k will
exist if and only if it is possible to assign messages cx ∈ [k] to every x ∈ V (G) in such a way that
whenever (x,y) ∈ E(G), we have that cx 6= cy. By definition, this is possible if and only if k is
greater or equal to G’s chromatic number χ(G).

The case of quantum communication and no prior entanglement is rather similar, where the
messages are quantum states on a system of dimension k instead of integers and with the condition
that states assigned to adjacent vertices must be perfectly distinguishable, or equivalently,
orthogonal. By the spectral theorem, any mixed state may be realised as a probability distribution
over some set of pure states, so that we may take the states sent by Alice to Bob to be pure. In
other words, G will have a quantum protocol with communication k if and only if it is possible
to assign unit vectors |ψx〉 ∈ Ck to every x ∈ V (G) so that 〈ψx|ψy〉 = 0 whenever (x,y) ∈ E(G).
The smallest k for which this is possible is known as the orthogonal rank of G and is denoted
by ξ (G). Additionally, the representation is said to be flat if, for every x, the components of
|ψx〉 in the standard basis all have modulus 1√

k
: the smallest k for which G has a flat orthogonal

representation in Ck is called the flat orthogonal rank of G, and is denoted by ξ ′(G). While it is
not obvious that the previous definition even makes sense because it is not immediately clear that
all graphs even have a flat orthogonal representation, this is so, and we even have:

Lemma 4.2.10. For all graphs G,

ξ (G)≤ ξ
′(G)≤ χ(G)

PROOF. The first inequality is clear. Also, a k-colouring of G can be turned into a flat orthogonal
representation of G in Ck by mapping the colours to the columns of the quantum Fourier transform
acting on Ck, i.e. letting ζ be a primitive k-th root of unity and given c ∈ [k], we set

|ψc〉=
1√
k

∑
j∈[k]

ζ
c j | j〉

And if colour c is assigned to x ∈V (G), we assign the vector |ψc〉 to x. �

In the other direction, we have the following, which follows from theorem 3.2.3:

Proposition 4.2.11 ([53]). For any graph G, we have that ξ (G) = Ω(log χ(G)).

As for the Cleve-Buhrman model, for a given entanglement model t ∈ {q f ,qc}, we will write
κt(G) (the communication number of the graph) to denote the smallest k for which G has an exact
protocol in that model with communication k. We will refer to such a protocol as a k-protocol
from now on. We will also write κq(G) to mean the smallest k for which, for every ε > 0, G has a
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finite-dimensional ε-exact protocol. Clearly,

κqc(G)≤ κq(G)≤ κq f (G)≤ χ(G)

As was seen in the previous section, a k-protocol is specified by a Hilbert state H , a state
|ψ〉, measurements {Ax

c}x∈V (G),c∈[k] and {By,c
b }y∈V (G),c∈[k],b∈{0,1} for Alice and Bob, respectively.

We further restrict H to be finite-dimensional and H to be a composite system in the finite-
dimensional setting. We will often only state our results for the general commuting operators
model, as the fact that H is finite-dimensional and in tensor-product form is often irrelevant and
the proof for the commuting operators model works just as well for the finite-dimensional setting.

With respect to the comparison between the communication numbers and the orthogonal rank,
we have the following:

Proposition 4.2.12. For any graph G, we have

κq f (G)≤ ξ (G)2

PROOF. Given that G has an orthogonal representation {|ψx〉} in Ck, by the qudit teleportation
protocol (see Khatri and Wilde ([94]), subsection 3.3.2), Alice can teleport |ψx〉 to Bob at the cost
of communicating a register of size k2, which Bob can then measure according to the measurement
{|ψy〉〈ψy| ,I−|ψy〉〈ψy|} to determine whether x = y. �

With respect to the flat orthogonal rank, we can do better than this. The following is a folklore
construction, and is a straightforward extension of the work of Pati ([34]).

Proposition 4.2.13. For any graph G, we have

κq f (G)≤ ξ
′(G)

PROOF. Suppose that k = ξ ′(G), and let {|ψx〉} be a flat orthogonal representation of G in Ck. The
protocol will be the same as in the proof of the previous proposition, except the teleportation will
be performed more efficiently. Fix a particular Alice input x and write

|ψx〉= ∑
i∈[k]

αi |i〉

Let ζ be a primitive k-th root of unity and, for j ∈ [k], write

|φ j〉= ∑
i∈[k]

ζ
i j

αi |i〉

It can be seen that because the αi all have modulus 1√
k
, we have 〈φ j|φ j′〉= δ j, j′ . The teleportation

protocol runs as follows. Alice and Bob start out by sharing a maximally entangled state |Φ〉 ∈
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Ck⊗Ck. Alice measures her share of the state according to the basis |φ1〉, ..., |φk〉, getting j ∈ [k].
The reduced state on Bob’s part is now |φ j〉. Alice sends j to Bob, and Bob performs the unitary
transformation |i〉 7→ ζ−i j |i〉 to get back |ψx〉. �

More will be said about the comparison between the two in subsection 4.2.7.

We also give the following easy result implies that for any graph, if one of the previously
discussed parameters is equal to two, so are all the others:

Proposition 4.2.14. Suppose that either κqc(G) = 2 or ξ (G) = 2. Then χ(G) = 2, or equivalently,
G is bipartite.

PROOF. First suppose that κqc(G) = 2. Recasting the corresponding communication problem
as a nonlocal game, we see that Alice and Bob’s outputs are both binary. Since the game has a
perfect quantum strategy, it also has a perfect classical strategy, by theorem 2.3.3, which gives that
χ(G) = 2.

Suppose next that ξ (G) = 2, and let x1,x2, . . . ,xk be a cycle in G. If |ψ〉x is an orthogonal
representation of G in C2, it is easy to see that |ψx1〉, |ψx3〉, . . . , must all be collinear and orthogonal
to |ψx2〉, |ψx4〉, which must also all be collinear. This forces k to be even, meaning that G is
bipartite. �

We end this subsection by stating useful lemmas. We begin by stating the following standard
results:

Lemma 4.2.15. Let H be a Hilbert space, |ψ〉 ∈H and A,B be positive operators on H . The
operator AB is positive if and only if A and B commute.

Lemma 4.2.16. Let H be a Hilbert space, |ψ〉 ∈H and C a positive operator on H . Then,
〈ψ|C|ψ〉= 0 if and only if C |ψ〉= 0.

We now show:

Lemma 4.2.17. Take a commuting k-protocol for G. For all c ∈ [k] and for all (x,y) ∈ E(G), we
have:

〈ψ|Ax
cAy

c|ψ〉= 0

PROOF. By the exactness of the protocol, for all c ∈ [k] and all (x,y) ∈ E(G), we have that
〈ψ|Ax

cBx,c
0 |ψ〉 = 〈ψ|Ax

cBy,c
1 |ψ〉 = 0, since these quantities correspond to the probabilities of Alice

sending c given that her input was x and Bob either replying with ‘0’ given that his output was x
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or replying with ‘1’ given that his output was y, respectively. Using lemmas 4.2.15 and 4.2.16, we
get

〈ψ|Ax
cAy

c|ψ〉= 〈ψ|Ax
c(B

x,c
0 +Bx,c

1 )Ay
c|ψ〉

= (〈ψ|Ax
cBx,c

0 )Ay
c |ψ〉+ 〈ψ|Ax

c(B
x,c
1 Ay

c |ψ〉)

= 0

As desired. �

Next, we pin down the communication complexity of complete graphs and prove a crucial
property of protocols for complete graphs. We write Kk to mean the complete graph on k vertices,
and we write ω(G) 10 to mean the clique number of G. Note that the following two lemmas also
follow from proposition 4.2.32.

Lemma 4.2.18. For all k, we have that ξ (Kk) = k. In particular, ω(G)≤ ξ (G) for all G.

PROOF. By elementary linear algebra, any collection of nonzero, pairwise orthogonal vectors is
linearly independent. The result follows. �

We now show the equivalent result for the Cleve-Buhrman model. In fact, the proof shows
something slightly stronger which will be crucial for proving that the various entanglement models
are all distinct in communication complexity. It should be noted that something very similar to
this was already shown by [76] for general nonsignalling correlations.

Lemma 4.2.19. For all k, we have that κqc(Kk) = k. In particular, ω(G)≤ κqc(G) for all graphs
G. Furthermore, for all x,c,c′ ∈ [k] with c 6= c′, any commuting k-protocol for Kk satisfies the
following:

Bx,c′
1 Ax

c |ψ〉= 0

PROOF. That κqc(Kk) ≤ k is clear, as Alice can simply send her input to Bob. We now show
that κqc(Kk) ≥ k. Take a commuting k′-protocol for Kk. Given c ∈ [k′], let {Ec

x}x∈[k] be the
following measurement, to be applied by Bob upon the reception of c: for x = 1, . . . ,k, measure
according to {Bx,c

0 ,Bx,c
1 }; if 1 was obtained, output x; otherwise, move on to x + 1. If 0 was

obtained in all cases (which can never happen), output k. These operators will commute with
Alice’s operators because Bob’s original measurement operators did, and, by the exactness of the
protocol (the result of the measurement is certain each time, and so does not disturb the state),
this procedure will recover Alice’s input with certainty, meaning that 〈ψ|Ax

cEc
x′|ψ〉= 0 for all x 6= x′.

10Not to be confused with the value of a nonlocal game.
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We compute:

k = ∑
x∈[k],c∈[k′]

〈ψ|Ax
c|ψ〉

= ∑
x∈[k],c∈[k′]

〈ψ|Ax
cEc

x |ψ〉

≤ ∑
x∈[k],c,c′∈[k′]

〈ψ|Ax
c′E

c
x |ψ〉

= ∑
x∈[k],c∈[k′]

〈ψ|Ec
x |ψ〉

= ∑
c∈[k′]
〈ψ|ψ〉

= k′

From whence it follows that k′ ≥ k. Also, if k = k′, the third inequality must visibly be an equality,
and since all the added cross-terms are nonnegative, they must all be zero, i.e. 〈ψ|Ax

c′E
c
x |ψ〉 = 0

for all x,c,c′ with c 6= c′. Since E1
c = B1,c

1 , the conclusion follows for x = 1 by invoking lemmas
4.2.15 and 4.2.16. Since there is nothing special about x = 1, the proof is complete. �

In the ε-exact case, using proposition 4.2.8 to produce the measurement operators Ex
c used in

the above lemma, we can also show along the same lines:

Lemma 4.2.20. We have that κq(Kk) = k. Furthermore, any ε-exact k-protocol for Kk in standard
form in the finite-dimensional setting satisfies, for all x,c,c′ ∈ [k] with c 6= c′,

Dtr(ρx,c,ρx,c′)≥ 1−O(ε)

where the constant hidden in the O notation depends on k.

4.2.3. The quantum chromatic numbers and their properties

In this subsection, we define the quantum chromatic numbers and survey the known literature
about them. It will turn out that these parameters are very closely tied to the communication
numbers. Given a graph G and a parameter k ∈ N, consider the following nonlocal game, which
is referred to as a colouring game ([53]). Alice and Bob are each given vertices x,y ∈ V (G) with
the promise that they are either identical or adjacent, and they are requested to output a,b ∈ [k]
under the condition that a = b if and only if x = y. For each of the models, we are interested
in the smallest k such that this game has a perfect strategy. Classically, it is not too hard to see
that perfect strategies are in direct correspondence with colourings of G, so that this k is simply
the chromatic number of the graph χ(G). In the quantum realm, for each of the entanglement
models t, the smallest such k is called the quantum chromatic number of the graph and will be
denoted by χt(G). We will also consider the approximate quantum chromatic number χq, which
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corresponds to the smallest k for which, for every ε > 0, the k-colouring game corresponding to
the graph has an ε-perfect strategy. By analogy, a perfect strategy for the colouring game with k
colours of G is referred to as a k-colouring of G.

Colouring games are of interest to us because perfect strategies for colouring games give
rise to exact protocols for promise equality problems in the following way: if, for some number
of colours k and some entanglement flavour t, a given graph admits a k-colouring, then this
k-colouring may be turned into an exact protocol with communication k in which Alice and Bob
play the colouring game with the perfect strategy and Alice sends the colour she obtained to Bob,
who then compares it with the colour he obtained to determine whether the inputs were identical
or adjacent. We therefore have that κt(G) ≤ χt(G) for all models. We will come back to the
interplay between the two parameters later in this section.

We now describe the three most common mechanisms for constructing graphs whose cor-
responding colouring games are interesting quantumly, i.e. χqc(G) < χ(G). The first one is due
to [53] and uses a construction based on quaternions and octonions. While it is not useful for
obtaining large separations between the quantum and classical chromatic numbers, it is useful for
building small graphs with χq f (G)< χ(G).

Theorem 4.2.21. For k ∈ {2,4,8}, if a graph G has an orthogonal representation in Rk, then
χq f (G)≤ k.

The following result is also due to [53], although it is a rather straightforward generalisation
of what is done in [47]:

Theorem 4.2.22.
χq f (G)≤ ξ

′(G)

PROOF. This follows at once from the combination of propositions 4.2.13 and 4.2.34. �

Finally, we have the following result by Harris ([101]), building upon the work of Ji ([69]).
Recall that a nonlocal game is said to be synchronous if the input sets are the same, the output
sets are the same, and when Alice and Bob are given the same input, they win if and only if their
outputs are the same.

Theorem 4.2.23 ([101]). There exists an efficiently computable mapping from synchronous nonlo-
cal games R to graphs G such that:

(1) R has a perfect finite-dimensional strategy if and only if χq f (G) = 3
(2) R has tensor-product value one if and only if χq(G) = 3
(3) R has a perfect commuting operators strategy if and only if χqc(G) = 3
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In particular, the results which were discussed in section 2.5 have the following corollaries
(though, in some cases, the games need to be synchronised):

Corollary 4.2.24. Given a graph G and an entanglement model t, the problem of determining
whether χt(G) = 3 is:

(1) t = q f : Complete for RE
(2) t = q: Complete for Π2

(3) t = qc: Complete for coRE

We also have:

Corollary 4.2.25. The parameters χqc,χq,χq f are all distinct.

Finally, and importantly for us, corollary 4.2.24 implies:

Corollary 4.2.26. There does not exist a computable bound on the amount of entanglement that
might be required by a finite-dimensional 3-colouring of a given graph.

One might wonder if the above theorem and corollaries still hold if 3 is replaced by k for
some k ≥ 4. For most graph parameters, the generalisation from k = 3 to arbitrary k ≥ 3 is
automatic thanks to what [74] calls the ‘suspension operation‘ for graphs, which consists in
adding a (k−2)-clique to the graph and making every vertex in that clique adjacent to every other
vertex in the graph, thereby lifting the k = 3 case to the general case. Most regrettably, this is
known not to work for the quantum chromatic numbers: Mančinska and Roberson ([77]) provide
a counterexample which will be presented in section 4.2.7. Therefore, while the above results are
surely also true for general k-colourings, this lacks a proof at present.

We end by mentioning an intriguing consequence of the above corollary. We make the follo-
wing definition. Given a graph parameter f that is monotonous, i.e. f (G)≤ f (H) if G⊆H (this is
verified by all the graphs parameters in this section), we say that f has the de Bruijn-Erdős pro-
perty if, given an infinite graph G, there exists a finite subgraph G′ of G such that f (G) = f (G′).
The original de Bruijn-Erdős theorem states that the chromatic number has (what we call) the
de Bruijn-Erdős property, and Gottschalk’s ([1]) proof of this based on Tychonoff’s theorem can
straightforwardly be adapted to show that ξ does as well, by virtue of the compactness of the unit
sphere in Ck. It is however easy to show that χq f does not have the de Bruijn-Erdős property:
indeed, for every n, letting Gn be some 3-colourable graph with the property that any 3-colouring
of Gn requires an entangled state of local dimension at least n, which must exist by corollary
4.2.26, and taking G to be the union of all the Gn, we see that G cannot have a finite-dimensional
3-colouring, even though any finite subgraph of G clearly does. On the other hand, it strikes us as
conceivable that χq and χqc do have the de Bruijn-Erdős property, since the underlying correlation
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sets are closed, and the aforementioned proof of Gottschalk fundamentally relies on the fact that a
finite set is compact. While it is unlikely that anything useful will come out of this, we leave this
as a fun question for the reader to think about.

4.2.4. Separating the exact quantum and classical communication complexi-
ties: the distributed Deutsch-Jozsa problem

Proposition 4.2.11 implies that the separation between the chromatic number and the orthogo-
nal rank can never be larger than exponential. It turns out that this is tight, in that an exponential
separation does arise for some families of graphs, most notably the Hadamard graph. The resulting
communication complexity problem was first introduced by [29] as a distributed version of the
classical Deutsch-Jozsa problem ([16]): this was already discussed in subsection 3.2.3. Our
presentation will be simpler and cleaner than theirs thanks to the benefits of hindsight. It should be
emphasised that while none of what follows is new, to the best of our knowledge, no completely
satisfactory exposition of these results exists, so it seems worthwhile to go over them.

For a given number n, let Gn be the graph with vertex set {0,1}n such that, for any x,x′ ∈ {0,1}n,
(x,x′) ∈ E(Gn) if

#{i ∈ [n] | xi = x′i}=
n
2

The graphs Gn are known in the literature as the Hadamard graphs. Clearly, in the case that
n is odd, the graphs obtained in this way are edgeless and therefore not very interesting. If n ≡ 2
mod 4, for any cycle x1,x2, . . . ,xk of Gn, we have that

0 =
n

∑
i=1

(x1i− x2i)+
n

∑
i=1

(x2i− x3i)+ . . .+
n

∑
i=1

(xki− x1i)

Since each of the k terms is odd, k must be even. This shows that in this case, Gn is bipartite and
all the previously discussed graph parameters are equal to two. This means that the only Gn’s that
are interesting to us are the ones where n is a multiple of 4.

We may construct an orthogonal representation of Gn in Cn by setting, for every vertex v,

|ψv〉=
1√
n

n

∑
i=1

(−1)vi |i〉

By construction, we have that 〈ψu|ψv〉 = 0 for all (u,v) ∈ E(G). Notice also that this orthogonal
representation is flat. Therefore, in combination with theorem 4.2.22, we have:

Proposition 4.2.27. For all n, χq f (Gn),ξ (G)≤ n.
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In the classical realm, we have the following hard combinatorial theorem due to Frankl and
Rödl. A pairwise nonadjacent collection of vertices of a given graph G is said to be an independent
set, and the independence number of G, denoted α(G), corresponds to the size of the largest
independent set of G. Since, in a coloring of G, the subset of vertices that are assigned a given
color forms an independent set, we have the bound χ(G)α(G)≥ |V (G)|.

Theorem 4.2.28 ([11]). There exists some ε > 0 such that it holds that α(G4n)≤ (2− ε)4n for all
n. In particular, for all n, χ(G4n)≥ 24n

α(G4n)
≥
( 2

2−ε

)4n
.

This means that the G4n exhibit an exponential separation between the classical and quantum
communication complexities. In particular, this implies that there exists some smallest n0 such that
for all n≥ n0, χ(G4n)> 4n≥ ξ (G4n),χq(G4n), which was worked out by [46] to be equal to 3.

From the point of view of communication complexity, this gives an exponential separation
between the classical and quantum models in the one-way, exact setting. In fact, we have the
following:

Proposition 4.2.29 ([74]). For all graphs G, we have that CE(EQG) =C1
E(EQG).

This means that we also have an exponential separation between the classical and quantum
models, even in the presence of bidirectional communication. Note however that this separation is
nullified when some error is allowed.

It is worth pointing out that it is unknown at present whether κqc(G4n) = ξ (G4n) = 4n for all n.
However, this would follow from lemmas 4.2.18 and 4.2.19 combined with the following widely
believed conjecture:

Conjecture 4.2.30 (Hadamard). For all n, it holds that ω(G4n) = 4n.

This is already known to be true in many special cases, such as when 4n is a power of two. We
refer the curious reader to the survey of Hedayat and Wallis ([5]) for more information about this
conjecture.

4.2.5. The Lovász ϑ number and the communication numbers

The ϑ number is an efficiently computable, real-valued graph parameter that was originally
introduced by Lovász [7] with the purpose of upper bounding the Shannon capacity of a graph.
Its usefulness mainly stems from the fact that it bounds a number of graph parameters that are
otherwise hard to compute or estimate. As is the case in most of the literature, what is of actual
interest to us is the value of the theta number of the complement of the graph and not that of the
graph itself, so that we will write ϑ(G) to mean ϑ(G). We have:
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Theorem 4.2.31. ( [9], [78], [70], [74]) For any graph G,

ω(G)≤ ϑ(G)≤ χ(G),χq f (G),χqc(G),ξ (G)

We adapt the proof that ϑ(G) ≤ ξ (G) from [74] to show that the lower bound holds for κqc

(and, by extension, for all chromatic and communication numbers) as well. To this end, we will
use the following standard formulation of the ϑ number as a semidefinite program:

ϑ(G) = min t

s.t. Mi,i = t−1, for i = 1, . . . ,n

Mi, j =−1, for (i, j) ∈ E(G)

M ∈ R|V (G)|×|V (G)|, M � 0

t ∈ R

We show:

Proposition 4.2.32.
ϑ(G)≤ κqc(G)

PROOF. Let k = κqc(G), and fix a corresponding commuting k-protocol. Let H ′ ≤H be the
finite-dimensional subspace spanned by all the vectors of the form Ax

c |ψ〉 as well as |ψ〉 itself. For
every x ∈V (G), define |vx〉 ∈ Ck⊗H ′ by:

|vx〉=
k

∑
c=1
|c〉⊗

(√
kAx

c |ψ〉−
1√
k
|ψ〉
)

And define M′ to be the Gram matrix of the |vx〉. We see that for every vertex x:

M′x,x = 〈vx|vx〉=
k

∑
c=1

(
(k−2)〈ψ|Ax

c|ψ〉+
1
k

)
= k−1

Similarly, for all (x,y) ∈ E(G),

M′x,y = 〈vx|vy〉=

(
k

∑
c=1
〈ψ|Ax

cAy
c |ψ〉

)
−2+1 =−1

Where we invoked 4.2.17. Taking M to be the real part of M′, which is just as positive semidefi-
nite as M′, we have that (M,k) is a feasible solution for the semidefinite program for ϑ(G) with
corresponding objective value k, which implies that ϑ(G)≤ k, as desired. �

Note that the previous result subsumes most of theorem 4.2.31, as κqc(G) ≤
χq(G),χqc(G),χ(G). It is also worth mentioning that the bulk of [74] consists in showing
that theorem 4.2.29 fails badly in the Yao model. This is achieved by exhibiting a family of
graphs {Gn} with the property that the two-round exact quantum communication complexity of
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EQGn (when measured in bits) is exponentially smaller than logϑ(Gn), which lower bounds the
one-way, exact communication complexity of the corresponding equality problem in the Yao
model (when measured in qubits). The above result shows that their conclusions hold in the
Cleve-Buhrman model also.

4.2.6. The comparison between the quantum communication and chromatic
numbers and separations between different flavours of entanglement
in communication complexity

In this section, we revisit the problem of how the communication and chromatic numbers
compare. Previously, we mentioned that, for all t, κt(G) ≤ χt(G), and that no graphs are
known that exhibit a separation between the two parameters. Actually, the only property of the
communication numbers for which we have no proof for the chromatic numbers is proposition
4.2.12. In this section, we look at cases in which there is provably no separation. This will
ultimately allow us to import the previously discussed constellation of results for general nonlocal
games into communication complexity.

In this regard, we can show that if maximally entangled states and projective measurements
are complete for one-way, exact communication complexity, then the parameters always coincide.
Given a Hilbert space H and a C∗-algebra C of operators on H , a state |ψ〉 ∈H is said to be
tracial if, for any E,F ∈ C , it holds that 〈ψ|EF |ψ〉 = 〈ψ|FE|ψ〉. In the special case that H of
the form A⊗B with A and B of the same dimension and if the operators in C are all of the form
EA⊗ IB, then maximally entangled states are all tracial (this can be seen from lemma 4.1.1), and if
C is the collection of operators acting as the identity on B, then the tracial states are precisely the
maximally entangled states. Therefore, in effect, the notion of a tracial state should be seen as a
generalisation of that of a maximally entangled states beyond the tensor-product model.

We will need the following result:

Lemma 4.2.33 (Corollary 5.6 of [70], reformulated). A graph G has a commuting k-colouring if
and only if there exists a Hilbert space H , projective measurements {Ex

a}x∈V (G),a∈[k] and a state
|ψ〉 ∈H that is tracial with respect to the {Ex

a} such that, for all (x,y) ∈ E(G) and all a ∈ [k],
〈ψ|Ex

aEy
a|ψ〉 = 0. The same is true for finite-dimensional k-colourings if the Hilbert space is

restricted to be finite-dimensional.

In combination with the previous lemma, lemma 4.2.17 gives:
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Proposition 4.2.34. Given a graph G, let k = κt(G), for t ∈ {q f ,qc}. If G has a k-protocol in the
setting t that uses a tracial state and projective measurements, then χt(G) = k also.

It is a longstanding open problem to determine whether maximal entanglement and projective
measurements are complete for pseudotelepathy, of which one-way, exact communication com-
plexity is a special case (see, for example, [79] for a discussion of this problem). If this turned out
to be the case, it would follow that the communication and chromatic numbers are equal in general
11. Note that theorem 3.3.1 has no bearing on whether the hypothesis of the previous proposition
is true always, as it is only relevant for the bounded-error setting.

We now show how to embed colouring games in one-way communication complexity without
assuming that the above is true. Given graphs G and H, their Cartesian product, denoted G�H,
is the graph with vertex set V (G)×V (H) and such that (v1,w1)∼ (v2,w2) if one of the following
holds:

(1) v1 = v2, and w1 ∼ w2

(2) v1 ∼ v2, and w1 = w2

Fixing a graph G and k ∈ N for the remainder of this section, we define G′ = G�Kk. Since the
communication and chromatic numbers of Kk are all k, by proposition 4.2.19, we see that the
communication and chromatic numbers of G′ are all no smaller than k. We have the following:

Proposition 4.2.35. For any entanglement model t, χt(G)≤ k if and only if χt(G′) = k.

PROOF. The backward direction is clear, since G′ has G as a subgraph. For the forward direction,
a k-colouring of G gives rise to a k-colouring of G′ in the following way: given vertices (x,l) and
(y,l′) of G′ as input, Alice and Bob use the k-colouring of G with inputs x,y to obtain colours
a′,b′ ∈ [k] and output a = a′⊕ l, b = b′⊕ l′, where ⊕ refers to a cyclic shift. If x = y and l = l′,
clearly, we will always have a = b. If (x,l) ∼ (y,l′), either x = y and l 6= l′, in which case a′ = b′

and therefore a 6= b, or x ∼ y and l = l′, in which case a′ 6= b′ and therefore a 6= b. In either case,
the colouring condition is satisfied. �

The point of the above construction is that it allows us to embed the quantum chromatic
numbers inside communication complexity. Specifically:

Theorem 4.2.36. For all t ∈ {q f ,q,qc},

χt(G)≤ k ⇐⇒ κt(G′) = k

In particular, corollaries 4.2.24, 4.2.25 and 4.2.26 hold true for the communication numbers as
well.
11In an email exchange with Dan Stahlke, it transpired that this result was known to him, at least in the tensor-product
setting.
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We will break up the proof of this result in two parts. We begin by showing this in the exact
case:

Theorem 4.2.37. For t ∈ {q f ,qc}, χt(G′) = k if and only if κt(G′) = k.

PROOF. The forward direction follows from the fact that in every model, the communication
number is upper bounded by the quantum chromatic number and the fact that both are lower
bounded by k in this case. We now turn to the backward direction, which we will only show for
t = qc, as the same argument works for t = q f as well. Suppose then that κq f (G′) = k, and take
a corresponding exact k-protocol for G′. We will turn this protocol into a perfect k-colouring for
G′. Alice’s measurement operators in this colouring will be the same as in the k-protocol. We now
construct Bob’s measurement operators.

For every y ∈ V (G), l,c ∈ [k], define V(y,l),c as the subspace that is projected upon by B(y,l),c
1 ,

and set Ṽ(y,l),c to be the intersection of V(y,l),c and of all the (V(y,l),c′)
⊥ with c 6= c′. The correctness

of the protocol gives that A(y,l)
c |ψ〉 ∈ V(y,l),c. This in combination with lemma 4.2.19 gives that

A(y,l)
c |ψ〉 ∈ Ṽ(y,l),c. Setting B̃(y,l)

c to be the projection on Ṽ (y,l)
c , corollary 4.2.6 implies that B̃(y,l)

c

commutes with Alice’s measurement operators. Since, for c 6= c′, B̃(y,l)
c and B̃(y,l)

c′ are orthogonal
and since the above construction gives that for all x,y ∈ V (G), l,l′,c,c′ ∈ [k] such that either x =

y, l = l′,c 6= c′ or (x,l)∼ (y,l′),c = c′,

〈ψ|A(x,l)
c B̃(y,l′)

c′ |ψ〉= 0

If, for every input (y,l), the B̃(y,l)
c summed to the identity, they would constitute a legitimate

projective measurement and we would have a perfect k-colouring for G′. If not, pad them with
an extra projector B̃(y,l)

k+1 so that they do sum to the identity. If Alice and Bob’s inputs were the

same and if they measured according to the {A(y,l)
c } and the {B̃(y,l)

c }, respectively, and if Alice
obtained colour c ∈ [k], since A(y,l)

c |ψ〉 ∈ Ṽ(y,l),c, Bob would also obtain colour c with certainty. In
particular, the outcome k+ 1 would never come up. By non-signalling, the distribution of Bob’s
result is independent of whatever Alice does, so that the outcome k+ 1 is impossible no matter
what, and so we have built a perfect strategy for the k-colouring game for G′. �

The same argument can straightforwardly be adapted to the ε-exact case:

Theorem 4.2.38. Any ε-exact finite-dimensional k-protocol for G′ in standard form can be turned
into an O(ε)-perfect finite-dimensional k-colouring for G′. In particular, we have that χq(G′) = k
if and only if κq(G′) = k.

PROOF. Again, the backward direction is the only one that needs a proof. As in the exact case,
the new strategy for the k-colouring game will use the same measurement operators as the original
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protocol for Alice. We will now build Bob’s measurement. By the correctness of the protocol and
by lemma 4.2.20, for every x,y∈V (G) and for every l,l′,c,c′ ∈ [k] satisfying either of the following
conditions:

(1) (x,l)∼ (y,l′) and c = c′

(2) x = y, l = l′,c 6= c′

It holds that
Dtr(ρ(x,l),c,ρ(y,l′),c′) = 1−O(ε)

Invoking proposition 4.2.8, we can cook up subspaces V(x,l),c of B such that, whenever (1) or (2)
holds, V(x,l),c and V(y,l′),c′ are orthogonal and such that, for every x ∈V (G),l,c ∈ [k],

tr(PV(x,l),cρ(x,l),c) = 1−O(ε)

For every y ∈ V (G), l,c ∈ [k], set B(y,l)
c to be the projector onto Vy,l,c. We see that, for every

x,y ∈V (G) and every l,l′,c ∈ [k] with (x,l)∼ (y,l′), because V(y,l′),c ⊆ (V(x,l),c)
⊥,

tr(B(y,l′)
c ρ

(x,l)
c )≤ tr((I−B(y,l)

c )ρ
(x,l)
c ) = O(ε)

This means that, if {B(y,l)
c }c∈[k] were to form a valid projective measurement (i.e. sum to the

identity) for every input pair (y,l), we would have a O(ε)-perfect colouring for G′. If not, we could
pad them with another projector so that they do sum to the identity, and the probability of Bob
obtaining this last outcome is bounded by O(ε), for the same reason as in the proof of theorem
4.2.37. Overall, we may bound the error probability of the resulting approximate colouring for G′

with O(ε) for any input pair. �

This completes the proof of theorem 4.2.36.

4.2.7. The relationship between the orthogonal rank and the quantum chro-
matic numbers

In this subsection, we look at how the orthogonal rank and the various chromatic numbers
compare. While many graphs are known which exhibit a separation between the quantum and
classical chromatic numbers, far fewer separations are known between the quantum chromatic
number and the orthogonal rank. The reason for this is that almost all examples of graphs with
χq f (G) < χ(G) in the literature are obtained by finding a graph with ξ (G) < χ(G) and applying
one of the first two results of subsection 4.2.3 to turn the orthogonal representation into a quantum
colouring, so that the resulting graph often has χq f (G) = ξ (G) by construction. As it turns
out, however, it can be shown that they are incomparable, meaning that χqc(G) > ξ (G) and
χq f (G)< ξ (G) are both possible 12. The first case was shown by Mančinska and Roberson ([77]):

12Though not at the same time! Also note that χq f (G) 6= ξ (G) for some graphs follows from the previously discussed
fact that χq(G) is uncomputable while ξ (G) is.
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Theorem 4.2.39 ([77]). There exists a graph on 13 vertices, G13, with

3 = ξ (G13)< χqc(G13) = χ(G13) = 4

Furthermore, G13 has a real three-dimensional representation.

At present, no upper bound on χqc(G) is known with respect to ξ (G), save the very weak one
given by proposition 4.2.11. Proposition 4.2.12 gives that κq f (G) ≤ ξ (G)2, and it seems likely
that the same holds for χq f (G), but this lacks a proof.

Consider the graph G14 obtained by tacking on a vertex to G13 and making it adjacent to every
other vertex. It is not hard to see that ξ (G14) = 4 and χ(G) = 5, and theorem 4.2.21 gives a
4-colouring of G14, so that χq(G14) = 4.

[77] also shows that the other direction can be obtained using Ji’s reduction:

Theorem 4.2.40 ([77]). Suppose that G was obtained from Ji’s reduction. Then, χ(G) = 3 if and
only if ξ (G) = 3.

Corollary 4.2.41. There exists a graph G with 3 = χq f (G) < ξ (G). Taking G to come from the
magic square game, G has 57 vertices and the corresponding 3-colouring game can be won with
two EPR pairs.

Adding a vertex to the graph G from the previous corollary and making it adjacent to every
other vertex, we obtain a graph G′ with κq f (G′) ≤ χq f (G′) ≤ 4 and ξ (G′) = 5. This corresponds
to a communication problem with an exact protocol using two bits of communication and
prior entanglement but with no exact protocol using two qubits of communication and no prior
entanglement.

We now describe a way to construct graphs exhibiting a separation between the quantum and
classical chromatic numbers which does not rely on an orthogonal representation and is therefore
suitable for obtaining graphs with χq f (G) < ξ (G). This material can also be found in [103]. We
begin with the following definition:

Definition 2. A (m,n)-vector clump is a collection of unit vectors {|ψ j,k〉} j∈[m],k∈[n] in Cmn which
are all pairwise orthogonal. Two (m,n)-clumps {|ψ j,k〉} and {|ψ ′j,k〉} are said to be orthogonal if,
for every j, j′ ∈ [m], it holds that

∑
k∈[n]
〈ψ j,k|ψ ′j′,k〉= 0
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By analogy with the orthogonal rank, we define the clump rank of a graph ξc(G) to be the
smallest n for which, for some m, there exists an assignment of (m,n)-vector clumps to the vertices
of G {|ψv

j,k〉}v∈V (G), j∈[m],k∈[n] in such a way that for all (u,v) ∈ E(G), {|ψu
j,k〉} and {|ψv

j,k〉} are
orthogonal.

We need the following lemma:

Lemma 4.2.42 ([53], reformulated). G has a finite-dimensional k-colouring if and only if, for
some n ≥ 1, there exist subspaces {V v

l }v∈V (G),l∈[k] of Ckn, all of dimension n, such that, for all
v,v′ ∈V (G), l, l′ ∈ [k], if either v = v′ and l 6= l′ or if (v,v′) ∈ E(G) and l = l′, we have that

V v
l ⊥V v′

l′

We can now show:

Proposition 4.2.43. For any graph G,

χq f (G)≤ ξc(G)2

PROOF. Suppose that ξc(G) = n, and take {|ψv
j,k〉} to be a corresponding assignment of clumps.

Letting ζ be a primitive n-th root of unity, for every v ∈V (G), j ∈ [m],r,s ∈ [n], take |φ v
j,r,s〉 ∈Cmn2

to be

|φ v
j,r,s〉=

1√
n

n

∑
k=1

ζ
ks |k〉 |ψv

j,k⊕r〉

For j, j′ ∈ [m] and r,r′,s,s′ ∈ [n], we see that

〈φ v
j,r,s|φ v

j′,r′,s′〉=
1
n

n

∑
k=1

ζ
k(s′−s) 〈ψv

j,k⊕r|ψ
v
j′,k⊕r′〉

= δ j, j′δr,r′
1
n

n

∑
k=1

(
ζ
(s′−s)

)k

= δ j, j′δr,r′δs,s′

So that, for a fixed vertex v, the |φ v
j,r,s〉 form an orthonormal basis of Cmn2

. For every r,s ∈ [n],
setting V v

(r,s) to be the subspace spanned by the {|φ v
j,r,s〉} j∈[m], we see that for (u,v) ∈V (G), for any

choice of (r,s) and for every j, j′ ∈ [m],

〈φ u
j,r,s|φ v

j′,r,s〉=
1
n

n

∑
k=1
〈ψu

j,k⊕r|ψ
v
j′,k⊕r〉

=
1
n

n

∑
k=1
〈ψu

j,k|ψ
v
j′,k〉

= 0
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So that V v
(r,s)⊥V u

(r,s). The conclusion follows from lemma 4.2.42. �

We now use the notion of a vector clump to build a graph G21 which exhibits a separation bet-
ween the quantum and classical chromatic numbers. The graph G21 is obtained as the orthogonality
graph of the 21 (2,2)-clumps listed in appendix A, i.e. G21 is the graph on 21 vertices such that
two vertices are adjacent if and only if the corresponding (2,2)-clumps in the list are orthogonal.
The list was generated by a computer using the following algorithm:

(1) List all (2,2)-clumps made up of vectors whose components in the standard basis are all
either −1, 0 or 1 prior to normalization.

(2) Build the corresponding orthogonality graph G.
(3) Repeat a number of times:

(a) As long as it is possible to remove a vertex from G in such a way that the chromatic
number of the resulting graph is greater than 4, do so, until a vertex-critical subgraph
G′ is obtained

(b) Run G′ through an optimiser to check if G′ has an orthogonal representation in dimen-
sion 4: if it does, discard G′, and if not, record it in memory.

(4) Output the clumps corresponding to the vertices of the smallest graph thereby obtained.
The graph G21 is depicted in figure 4.1.

Figure 4.1. A graphical representation of the graph G21, drawn using the Julia package GraphPlot.
The graph6 representation ([105]) of G21 is TX_ac~QhaBO_TDaO@dDewW_gCd?WWI_c[?lg .

Evidently, ξc(G21) = 2, and therefore χq f (G21) ≤ 4, by the previous proposition, and since
the vertices 6, 12, 18, 19 form a clique, we have that χq f (G21) = 4. On the other hand, by the
way G21 was built, we have χ(G21) = 5, and it is also true that ξ (G21)> 4, so that ξ (G21) = 5. A
computer-assisted proof of this fact is described in [103]. In particular, G21 is by far the smallest
graph known to exhibit a separation between the quantum and classical chromatic numbers which
cannot be obtained by appealing to theorem 4.2.21. Conditionally on the truth of the above
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conjecture, since we know that the quantum and classical chromatic numbers coincide for all
graphs on 13 vertices or less, G21 is probably not very far off from being the smallest possible
example of a graph exhibiting the given separation.

We summarise the properties of G21 in the following table:

Table 4.1. Some properties of the graph G21

Property Value
# of vertices 21
# of edges 72
ω 4
χt , κt , t ∈ {qc,q,q f} 4
ϑ 4
χ f 4
χ 5
ξ 5

4.2.8. Direct sums in one-way, zero-error communication complexity

We end this section by discussing the problem of direct sums in one-way, zero-error commu-
nication complexity. Given a graph G which exhibits a gap between two models, one might be
tempted to try to amplify this gap by having Alice and Bob solve multiple instances of EQG, in
a way reminiscent of the parallel repetition of nonlocal games which was discussed in section 2.
Namely, we could give Alice and Bob (x1,x2, . . . ,xn) and (y1,y2, . . . ,yn), respectively, where the
xi and the yi are vertices of G, such that, for every i, either xi = yi or xi ∼ yi, and require Bob to
output b1, . . . ,bn with bi = I[xi = yi] for every i. Looking at the graph G21 defined in the previous
section, 2n bits of communication are sufficient to solve this problem with prior entanglement,
while one could hope that roughly (log2 5)n qubits of communication are required without prior
entanglement. As we will see, this intuition proves to be incorrect.

Actually, the above direct sum problem, while the most natural, appears to be too difficult to
analyse directly. We will instead define two other ways of direct summing a promise equality
problem which sandwich it. In all three cases, we give Alice and Bob vertices (x1, . . . ,xn) and
(y1, . . . ,yn) of G, respectively. We consider the following three problems:

(1) Alice and Bob are promised that xi and yi are either equal or adjacent for every i. Bob must
determine whether there exists some i with xi 6= yi.

(2) Alice and Bob are promised that xi and yi are either equal or adjacent for every i. For every
i, Bob must output bi = I[xi = yi]. This is the original problem.

(3) Bob is given a i ∈ [n] with the promise that xi and yi are either equal or adjacent and must
output b = I[xi = yi].
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Problem (2) is clearly no easier than problem (1), as a protocol for problem (2) trivially gives a
protocol for problem (1). Problem (3) is also no easier than problem (2) because given a protocol
for (3) and given the promise of problem (2), Bob can collect the value of bi for every i, as his
measurements do not affect the state. Note that problem (3) (and, by extension, problem (1) and
(2)) can be solved by running the best protocol for EQG n times, from which Bob can recover the
value of b. As we will see, this isn’t always optimal. We now relate problems (1) and (3) to graph
products.

Given two graphs G and H, the strong product G�H is the graph with vertex set V (G)×V (H)

such that (x1,x2)∼ (y1,y2) if (x1,x2) 6= (y1,y2) and if, for every i, either xi = yi or xi ∼ yi. Applying
the mapping described earlier in this section, it can be seen that problem (1) corresponds to the
promise equality problem with the n-th power of G under the strong product, denoted G�,n, as the
underlying graph.

The disjunctive product G ? H is the graph with vertex set V (G) × V (H) such that
(x1,x2) ∼ (y1,y2) if, for some i, xi ∼ yi. Likewise, it may be seen that problem (3) corresponds to
the promise equality problem with G?,n as the underlying graph.

In terms of lower bounds, Knuth showed:

Proposition 4.2.44 ([20]). For any two graphs G,H,

ϑ(G�H) = ϑ(G)ϑ(H)

This means that the exact, one-way communication complexity of problem (1) (and, a
fortiori, problems (2) and (3)) is at least (log2 ϑ(G))n bits/qubits in all models. In particular,
in the Cleve-Buhrman model, with base graph G21, it follows from proposition 4.2.32 that the
complexities of all three problems are precisely 2n bits.

We now turn to upper bounds. Given a graph G, let R⊆Q be the set of all positive rationals r
such that, for some m,n with r = m

n , it is possible to assign subsets of [m] of cardinality n {Sx}x∈V (G)

to the vertices of G in such a way that for all (x,y) ∈ E(G), Sx ∩ Sy = /0. Such an assignment is
referred to as a fractional colouring of G. We then define the fractional chromatic number χ f (G)

by χ f (G) = inf R. It is easy to see that the n = 1 case corresponds to vanilla colourings of G, so
that χ f (G)≤ χ(G). It turns out that χ f (G) can be recast as a linear program of size exponential in
|V (G)| ([27]), from which it can be seen that χ f (G) is a computable quantity and is always rational.

We now show the rather important following property of the fractional chromatic number:
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Proposition 4.2.45. We have
χ f (G) = lim

n→∞
χ(G?,n)1/n

PROOF. Lovász ([4]) showed that, for any graph H,

χ(H)≤ χ f (H)(1+ logα(H))

Feige ([27]) showed that χ f (G?,n) = χ f (G)n for all n. For all n, we therefore have

χ f (G)≤ χ(G?,n)1/n ≤ χ f (G)(1+n log |V (G)|)1/n

Elementary calculus gives the desired result. �

It may be established using a computer that χ f (G21) = 4. This means that 2n+O(logn) bits
of communication are sufficient to solve problem (3) (and, in particular, problems (2) and (1)) for
G21 in the classical setting. In particular, none of the three direct sums that we are studying can
yield a very impressive gap between the exact complexities in the Yao and Cleve-Buhrman models
with base graph G21.

The projective rank ([78]) of G, denoted by ξ f (G), is a quantum generalisation of sorts of
the fractional chromatic number. In this case, we let R ⊆ Q be the set of all positive rationals
r such that, for some m,n with r = m

n , it is possible to assign n-dimensional subspaces of Cm

{Vx}x∈V (G) to the vertices of G so that, for every (x,y) ∈ E(G), Vx⊥Vy. Such an assignment is
referred to as a projective representation of G. Again, we define ξ f (G) to be the infimum of R.
The n = 1 case corresponds to orthogonal representations of G, so that ξ f (G)≤ ξ (G), and it may
be seen that ξ f (G) ≤ χ f (G), as fractional colourings of G map to projective representations in a
natural way by viewing colours as standard basis vectors. Note that theorem 4.2.28 together with
the well-known fact that χ f (G) ≥ |V (G)|

α(G) imply that the Hadamard graphs exhibit an exponential
separation between the fractional chromatic number and the projective rank. Unlike the fractional
chromatic number, it is unknown at present whether the projective rank is a computable quantity
or whether it is always rational.

We show:

Proposition 4.2.46.
ξ f (G)≤ κq f (G)

PROOF. Take a perfect finite-dimensional protocol for G with communication k = κq f (G), which
we assume to be in standard form. Letting n be the rank of the ρx,c, for every x, we take Vx ∈ Cnk

to be the support of ρx,1. Clearly, these subspaces satisfy Vx⊥Vy for all (x,y) ∈ E(G). This shows
that ξ f (G)≤ k. �
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We also have the following result:

Proposition 4.2.47 ([73]). For all n,

ξ f (G?,n) = ξ f (G)n

By means of the somewhat unscientific procedure of replacing the χ’s with the ξ ’s in
proposition 4.2.45, one arrives at the following conjecture:

Conjecture 4.2.48. We have
ξ f (G) = lim

n→∞
ξ (G?,n)1/n

Combined with proposition 4.2.47, the truth of the above conjecture would imply that direct
sums can never be used to amplify the gap between the exact, one-way comunication complexities
of the Yao and Cleve-Buhrman models in the style of problem (3) when the entanglement is
restricted to be finite-dimensional:

Corollary 4.2.49. We have

lim
n→∞

ξ (G?,n)1/n ≤ lim
n→∞

κq f (G?,n)1/n

Note however that even if the above conjecture were to be true, problems (1) and (2) might still
turn out to be suitable for gap amplification.

4.3. A conjectured general embedding of nonlocal games inside
communication complexity using interactive hashing

In the previous two sections, we showed how to turn certain restricted families of nonlocal
games (namely, XOR games and colouring games) into communication complexity problems.
In both cases, this was accomplished by twisting the players’ arms into playing the game. In
this section, we propose a more general way of doing this for more general nonlocal games
which is loosely inspired by the interactive hashing protocol of Naor, Ostrovsky, Ventakesan and
Yung ([31]). Although we could not prove that our reduction is correct 13, it seems to promise
embeddings of nonlocal games into communication complexity that are much stronger than what
the (provably correct) embeddings that were given in the previous two sections allow for, as the
resulting separations and hardness results all vanish when some breathing room is permitted in
terms of success probability. While what follows is stated in terms of an arbitrary nonlocal game,

13Doing so strikes us as extremely hard, even when the players are disallowed to share prior entanglement. The trouble
is that while proofs of security of interactive hashing protocols like that of [31] can assume that one player is behaving
honestly, this is not possible here since Alice and Bob are cooperating.
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we specifically have the games coming from MIP*=RE in mind.

We begin by fixing notation. Given a finite set S and a parameter N ∈ N, we define a (S,N)-
hash tree T as being a binary tree of depth N where each vertex v has a function hv : S→ {0,1}
associated to it and where each edge is labelled with either 0 or 1 in such a way that the two
outgoing edges going out of any non-leaf vertex are labelled differently.

We now describe the proposed reduction. Take a nonlocal game G, with input sets X ,Y , output
sets A,B, input distribution px,y and predicate V : X×Y ×A×B→{0,1}. We make the hypothesis
that for all x,y, there exist a,b such that V (x,y,a,b) = 1. Pick N ≈ K log2 max(|A|, |B|) to be an
even number, for some large enough constant K, say K = 10. In the corresponding communication
problem, we give Alice and Bob inputs x,y sampled according to the input distribution of the
nonlocal game: in addition, we give Alice a (A,N)-hash tree TA, and we give Bob a (B,N)-hash
tree TB, both taken uniformly at random. Finally, we give Alice a function f : {0,1}2N → {0,1}
taken uniformly at random among the functions satisfying the promise to be described below.

We begin by describing what we expect Alice and Bob to do. First, they play the game with
the best strategy available to them with the resources they are allowed to use, each obtaining
outputs a ∈ A,b ∈ B. Next, they run their outputs through the hash trees in the following way.
Let v0 be the root of tA, and let w0 be the root of TB. Alice begins by computing b1 = hv0(a)
and sends b1 to Bob. Let w1 be the vertex such that the edge going from w0 to w1 is labelled by
b1: Bob then computes b2 = hw1(b) and sends it to Alice. Letting v1 be the vertex such that the
edge going from v0 to v1 is labelled by b2, Alice computes b3 = hv1(a) and sends it to Bob, who
performs the transition from w1 corresponding to b3, computes b4 = hw1(b), sends it to Alice and
so forth. They keep on doing this until the bits b1, . . . ,b2N have been obtained, at which point
Alice outputs f (b1b2 . . .b2N). We give Alice and Bob the promise that the map f is balanced and
that there exists some bit d such that for all choices of outputs a and b such that V (x,y,a,b) = 1, if
the above protocol is run from these choices of outputs, the value of f (b1b2 . . .b2N) will always be
d, and d is the bit the players are supposed to compute. The choice of N above was made so that,
with good probability, the string b1b2 . . .b2N identifies uniquely the outputs the hashing protocol
was run on: taking N to be too small, with good probability, the string b1b2 . . .b2N Alice and Bob
would obtain would correspond to a possible transcript coming from winning outputs, even if the
outputs they ran the protocol on are not actually winning outputs. With our choice of N, if they
ran the protocol from losing outputs, with high probability, the string they will obtain will result
in Alice outputting a uniformly random bit.

We will be making the following hypothesis:
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Conjecture 4.3.1. Any communication protocol for the above problem which succeeds with high
enough probability must essentially involve Alice and Bob figuring out outputs a,b and running
them through the above interactive hashing scheme.

In particular, if the communication is restricted to be at most 2N bits, in any given model, if p
is the value of the nonlocal game G given the resources that we allow them to use, the best Alice
and Bob seem to be able to do is play the game with a strategy achieving a success probability ≈ p
and run the above interactive scheme, achieving a success probability of essentially p+ 1−p

2 : with
probability p, they obtain winning outputs and they win with certainty, and with probability 1− p,
they obtain losing outputs and the bit they get is uniformly random. If the communication is not
restricted to be at most 2N bits, we see that a classical protocol which solves the problem exactly
consists in Alice sending Bob her input, from which he can determine winning outputs (a,b) and
send a to Alice; they then proceed to run the hashing protocol, for a total communication cost of
2N + log2 |X |+ log2 |A|. We do not expect this to be optimal in general, but we do expect that if
the value of G in a given model is very low, significantly more communication than 2N bits will
be required in order to solve the problem with reasonable probability.

Of course, these considerations depend critically on the truth of 4.3.1. While we think that
this is extremely likely to be true in the classical setting (which isn’t of very great interest to us
anyway), we admit that a certain leap of faith is required when the players are allowed to share
entanglement. We would not be completely shocked if some Grover-style protocol of the style
that was given for the disjointness function could be used for running the interactive scheme more
efficiently, or even for breaking our scheme in an even more fundamental way.

4.4. The possible implications for a quantum Newman’s theo-
rem

We now discuss the possible implications of the previous constructions for the possibility
of a version of theorem 3.1.6 for entanglement. By this we mean some hypothetical result
which would imply that the amount of entanglement used by a protocol for a given function
can always be assumed to be reasonably small at the expense of slightly worsening the success
probability, as theorem 3.1.6 does for public coins. An analogue of 3.1.6 for entanglement-assisted
communication complexity might look as follows:

Conjecture 4.4.1 (Hypothetical quantum Newman’s theorem). There exists some sensible (at least
computable) function E (n,δ ) : N× (0,1

2)→ R (say, E (n,δ ) = log2 n+2log2
1
δ
+O(1)) such that,

given a boolean function f : {0,1}n×{0,1}n→ {0,1} and given an amount of communication C,
there exists a protocol with communication cost C, entanglement cost E (n,δ ) and success proba-
bility at least ω∗( f ,C)−δ .
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Just like Newman’s theorem limits the power of sharing a public coin, such a result would limit
the power of sharing prior entanglement, and, one might hope, help bridge the gap between the
Yao and Cleve-Buhrman models. It should be mentioned that Jain, Radhakrishnan and Sen ([62])
prove a restriction on any such conjecture (in their result 8) by showing that a reasonable-sounding
analogue for prior entanglement of the reduction used in the proof of Newman’s original theorem
(3.1.6) does not work. However, this is strictly a restriction on a method of proof and has no
bearing on the statement of the conjecture itself.

The results in the previous two sections already restrict the realm of possibilities for the func-
tion N somewhat. For example, if the shared prior entanglement was restricted to be used as a
public coin, one would have that E (n,δ ) = 2n would suffice, by proposition 3.1.8, while we have
seen that this fails both for one-time-pad problems and for promise equality problems and in mul-
tiple ways. In general, we must have that, for all but a finite number of values of n,

lim
δ→0+

E (n,δ ) = ∞

Also, the results of the previous section almost imply that conjecture 4.4.1 is false as stated,
although not in a very significant way. As we discussed, there exists a reduction from general
nonlocal games G to communication problems f such that, if G has a perfect quantum strategy,
then f has a perfect q f -protocol using a trit of communication, while if ωq f (G) < 1, then any
q f -protocol using a trit of communication must have error at least ε > 0, for some ε > 0. If,
given a non-trivial upper bound on ωq f (G) < 1, say, and given a description of G, we could
efficiently compute a lower bound for ε , the N from conjecture 4.4.1 would allow us to design an
algorithm to determine which is the case between G having a perfect finite-dimensional strategy
and ωq f (G) < 1

2 under the promise that one of the two is the case, which is forbidden by the
MIP*=RE result. The trouble is that the reduction from games to communication problems chains
Harris’ reduction and ours, and while our reduction is effective, Harris’ isn’t, so that no means is
known of computing a lower bound for ε , although there surely is a way to make Harris’ reduction
effective. In any case, this would only imply that one would either have to slightly increase the
communication cost of the protocol in the statement of the above conjecture or restrict to a fixed
value of δ . Neither restriction is particularily important from the point of view of communication
complexity, but this warns us away from trying to prove the above naive equivalent of Newman’s
theorem.

However, the conjectured reduction of the previous section presents a much more serious
challenge to the possibility of showing something of the form 4.4.1. Indeed, MIP*=RE implies
that there are nonlocal games which have a perfect strategy and which are such that the amount
of prior entanglement required by any q f -strategy which achieves success probability at least ε ,
for some fixed choice of 0 < ε < 1, is uncomputable in the size of the description of the game.
In particular, conditionally on the truth of hypothesis 4.3.1, running the reduction described in
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the previous section on such games would yield communication problems which may be solved
exactly with prior entanglement using some amount of communication C and any protocol with
communication C and achieving a reasonable success probability must use massive amounts of
prior entanglement, certainly much larger than the amount of communication, even if shared
randomness is considered free, so that unless our construction can be broken, no such computable
function E can exist, even for a fixed value of δ : and further, it even seems possible that any
low-entanglement protocol which achieves a high winning probability for such problems must use
at least αC bits of communication, for some universal α > 1.
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Chapter 5

Conclusion and open problems

In this thesis, we studied the power of entanglement in communication complexity. The most
important results that we could obtain are the following:

(1) We gave an entanglement-assisted protocol for the equality function which matches the
success probability of the standard one and uses half as much prior entanglement.

(2) We looked at the results of Hadiashar and Nayak ([91]) on state compression, and formu-
lated a problem, called the density matrix in subspace problem, which has the potential for
yielding a large separation between the Yao and Cleve-Buhrman models.

(3) We looked at one-time-pad-problems, made their relationship with XOR games explicit,
and showed that in some cases, if the communication is restricted to be one bit from
Alice to Bob, the entanglement cost of a near-optimal Cleve-Buhrman protocol is expo-
nential in the sizes of the inputs. We could also show that Yao protocols can be turned into
Cleve-Buhrman protocols which use a constant amount of prior entanglement, so that the
Cleve-Buhrman model does slightly better than the Yao model when the communication is
restricted to be one bit/qubit, even in the presence of shared randomness.

(4) We also looked at the communication complexity equivalent of colouring games, namely,
promise equality problems. There, we could show that a number of separations and hard-
ness results coming from the theory of nonlocal games also hold for communication com-
plexity: namely, we could show that there are communication problems such that, for a
fixed amount of communication C, there may be one-way protocols with communication
C which achieve an arbitrarily small error probability, and yet no exact one-way protocol
with communication C exists; we could also separate the tensor-product and commuting
operators models in communication complexity, showing that there are some problems
which admit an exact protocol making use of infinite-dimensional entangled state while
any protocol using the same amount of communication and a finite-dimensional entangled
state has success probability at most 1− ε , for some ε > 0; finally, we showed that deter-
mining whether a communication problem has an exact protocol using a certain amount



of communication is an undecidable problem, implying that in the exact case, even if the
amount of communication is fixed, the number of shared EPR pairs that might be needed
by an exact communication protocol is unbounded. We also gave examples of problems
with exact communication complexity smaller in the Cleve-Buhrman model than in the
Yao model, introducing the notion of a vector clump in the process.

(5) Inspired by cryptography, we gave a proposed reduction from general nonlocal games to
communication problems which, if correct, would yield problems for which the amount
of prior entanglement required by a near-optimal bounded-error protocol cannot be upper
bounded by a computable function in the description of the problem.

In our humble opinion, our work represents a serious improvement of our understanding of the
role of shared entanglement in communication complexity. Our work leaves a number of research
avenues open, most notably:

(1) It would be great to show that the distance between subspaces problem which we gave in
subsection 3.3.5 is indeed hard in the Yao model, thereby separating the Cleve-Buhrman
and Yao models in the one-way setting, or to show that the reduction we proposed in
section 4.3 is correct. We believe that the former, while hard, could conceivably be pulled
off, while the latter represents a monumental challenge.

(2) We think that the group games which we introduced in subsection 4.1.5 are worth investi-
gating in more detail.

(3) The communication problems we gave are all instances of promise problems and might
therefore be deemed artificial. It would be interesting to see if some of our results could be
shown for total problems as well.

(4) While we could show separations between the various entanglement models in communi-
cation complexity in section 4.2, the separations we could obtain are all rather minute. For
example, if we now know that there is a problem with an exact protocol in the commu-
ting operators model with a trit of communication and that the success probability of any
protocol in the tensor-product setting with a trit of communication is upper bounded by
some p < 1, we do not know an explicit p with this property, and it seems likely that any
such p would have to be comically close to one. It would be interesting to look for ano-
ther provably correct embedding of the MIP∗=RE result in communication complexity that
would yield a more substantial separation. As far as we can see, nothing speaks against the
possibility of an exponential separation between Cqc

1/3 and C∗1/3. While exhibiting such a se-
paration appears to be completely out of reach at the present time, we feel that this would
be a far more dramatic separation between the commuting operators and tensor-product
models than that which is given by the MIP∗ = RE result.

(5) While we know that the separation between the Cleve-Buhrman and classical public-coin
models cannot be larger than exponential in the bounded-error setting, no such limitation is
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known in the exact setting. In particular, there could be a sequence of graphs {Gi} all with
the same value of κq f (Gi) but with unbounded χ(Gi), or equivalently, with unbounded
ξ (Gi). We think that it would be really interesting to try to prove that this can be the case,
as it would separate the Cleve-Buhrman and Yao models in the one-way, exact settings.
Similarly, such a sequence could conceivably exist with constant κqc(Gi) and unbounded
κq f (Gi).

(6) We also think that our notion of a vector clump, which we used to build a small graph
G21 with χq f (G21) < χ(G21), could well be of more general interest to quantum graph
theorists, as it might enable constructing small graphs that have a richer structure from the
point of view of the quantum chromatic number than the ones that can be found in the
recent literature.
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Appendix A

The clumps corresponding to the graph G21

In this appendix, we give the (2,2)-clumps corresponding to the graph G21 given in subsection
4.2.7.

As in matrix notation, when specifying a clump {|ψ j,k〉}, j runs from top to bottom and k runs
from left to right.
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