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Abstract

The (logarithmic) Mahler measure of a non-zero rational function P in n variables

is defined as the arithmetic mean of log |P | restricted to the standard n-torus (Tn =

{(x1, . . . , xn) ∈ (C×)n : |xi| = 1, ∀ 1 ≤ i ≤ n}) with respect to the unique Haar mea-

sure (normalized arc measure) on Tn. It has connections to heights, hyperbolic volumes,

arithmetic dynamics, and special values of L-functions. Various generalizations of this

definition exist in the literature. This thesis is dedicated to exploring two such gen-

eralizations: firstly, when the unit torus is substituted by a torus with arbitrary radii

Tna1,...,an = {(x1, . . . , xn) ∈ (C×)n : |xi| = ai,∀ 1 ≤ i ≤ n} (referred to as the general-

ized Mahler measure), and secondly, when the normalized arc measure on the unit torus is

replaced by the normalized area measure on the unit disk (referred to as the areal Mahler

measure). Our primary objective is to quantify the behavior of the Mahler measure of P

under such alterations. This thesis is structured into five projects.

(1) In Chapter 1, we investigate the definition of the generalized Mahler measure for all

Laurent polynomials in n-variables when they do not vanish on the integration torus.

This work has been published in [106].

(2) In Chapter 2, we exhibit some nontrivial evaluations of the areal Mahler measure of

multivariable polynomials, defined by Pritsker. This is a joint work with Lalín, and

has been published in [84].

(3) In Chapter 3, we investigate how the areal Mahler measure changes with the power

change of variables. This a joint work with Lalín, and has been published in [83].
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(4) In Chapter 4, we investigate the Mahler measure of a particular family of rational

functions with an arbitrary number of variables and an arbitrary degree in one of the

variables. This is a joint work with Lalín and Nair, and will appear in [81].

(5) In Chapter 5, we evaluate the areal Mahler measure of a family of polynomials using

the areal analogue of the Zeta Mahler measure. This is an ongoing joint work with

Lalín, Nair, and Ringeling.

Keywords : Mahler measure; elliptic curve; special values of L-functions;

polylogarithm, arbitrary torus, regulator.
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Résumé

La mesure de Mahler (logarithmique) de P, une fonction rationnelle non nulle à n

variables, est définie comme la moyenne arithmétique de log |P | restreinte au tore n-

dimensionnel standard (Tn = {(x1, . . . , xn) ∈ (C×)n : |xi| = 1,∀ 1 ≤ i ≤ n}) par rapport à la

mesure de Haar unique (mesure d’arc normalisée) sur Tn. Elle a des liens avec les hauteurs, les

volumes hyperboliques, la dynamique arithmétique et les valeurs spéciales des fonctions L. Il

existe plusieurs généralisations de cette définition dans la littérature. Cette thèse se consacre à

l’exploration de deux de ces généralisations : premièrement, lorsque le tore unité est remplacé

par un tore à rayons arbitraires Tna1,...,an = {(x1, . . . , xn) ∈ (C×)n : |xi| = ai,∀ 1 ≤ i ≤ n}

(appelée mesure de Mahler généralisée), et deuxièmement, lorsque la mesure d’arc normalisée

sur le tore unité est remplacée par la mesure d’aire normalisée sur le disque unité (appe-

lée mesure de Mahler aréale). Notre objectif principal est de quantifier le comportement de

la mesure de Mahler de P sous de telles modifications. Cette thèse est structurée en cinq

projets.

(1) Dans le chapitre 1, nous étudions la définition de la mesure de Mahler généralisée

pour tous les polynômes de Laurent à n variables lorsqu’ils ne s’annulent pas sur le

tore d’intégration. Ce travail est publié dans [106].

(2) Le chapitre 2 présente des évaluations non triviales de la mesure de Mahler aréale

des polynômes à plusieurs variables, définie par Pritsker. Ce travail est réalisé en

collaboration avec Lalín, et publié dans [84].
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(3) Dans le chapitre 3, nous étudions comment la mesure de Mahler aréale change lorsque

l’on effectue un changement de variables par puissance sur les polynômes. Ceci est

un travail conjoint avec Lalín, et publié dans [83].

(4) Dans le chapitre 4, nous étudions la mesure de Mahler d’une famille particulière de

fonctions rationnelles à un nombre arbitraire de variables et à un degré arbitraire

dans l’une des variables. Ce travail est réalisé en collaboration avec Lalín et Nair, et

sera publié dans [81].

(5) Le chapitre 5 est consacré à l’évaluation de la mesure de Mahler aréale d’une famille

de polynômes en utilisant l’analogue aréal de la mesure de Mahler zêta. Il s’agit d’un

travail collaboratif en cours avec Lalín, Nair et Ringeling.

Mots clés : Mesure de Mahler ; courbe elliptique ; valeurs spéciales des fonc-

tions L ; polylogarithme ; tore arbitraire ; régulateur.
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Introduction

The Mahler measure is a positive real number M(f) that can be associated to a large

class of complex-valued functions f : Tn → C defined on the torus Tn = {(x1, . . . , xn) ∈

C× × C× × · · · × C× : |x1| = · · · = |xn| = 1}. 1 The class of non-zero rational functions

P ∈ C(x1, . . . , xn) is contained in such class of functions. This thesis focuses mainly on

certain generalizations of this notion. In this chapter, we provide a broad overview of the

theory of Mahler measure and state our main results.

0.1. Mahler measure: a historical introduction

The story starts with Tracy A. Pierce, who developed in [98] a method for searching

large primes using a generalization of Mersenne’s sequence 2m−1. Given a monic polynomial

P ∈ Z[x], define

∆m(P ) =
∏

α∈C,P (α)=0

(αm − 1) ,

where m ∈ Z≥1
2. The integer ∆m(P ) shares a similar property with Mersenne numbers: it

can be factored more easily than a randomly chosen integer. Moreover, one has that

if k = nm, then
∆k

∆m

=
∏

α∈C,P (α)=0

(
n−1∑
ℓ=0

αmℓ

)
is an integer. (0.1.1)

Derrick H. Lehmer [87] continued the search for large prime numbers with Pierce’s

method, applying property (0.1.1) to find new large prime numbers of the form ∆p

∆1
, for

1. For a field S, we denote S× as S \ {0}.

2. Notice that ∆m(x− 2) = 2m − 1



small primes p ∈ N. In [87], Lehmer further introduced the Mahler measure for one-variable

monic polynomials P ∈ Z[x] as

M(P ) =
∏

α∈C,P (α)=0

max{|α|, 1}, (0.1.2)

which, he showed, computes the growth of the sequence of integers {∆m(P ) : m ≥ 1} . In par-

ticular, he observed that the prime counting function
¶
p ≤ x : ∆p

∆1
is prime

©
seems to grow

faster as soon as the Mahler measure M(P ) is smaller, when P (x) ̸= xdegPP (x−1). Polynomi-

als satisfying P (x) = xdegPP (x−1) are known as self-reciprocal polynomials. When P is self-

reciprocal, an interesting choice for a prime counting function is
{
p ≤ x :

»
∆p

∆1
is prime

}
,

since, for m|k, the integer
∣∣∣ ∆k

∆m

∣∣∣ is a square when k ≡ m(mod 2) (see [38, Exercise 1.7]).

Notice that M(P ) ≥ 1 for every non-zero monic polynomial P ∈ Z[x]. In fact, for a

polynomial P (x) = a0
∏

α∈C,P (α)=0(x − α) ∈ C[x], the definition of the Mahler measure

M(P ) can be extended to

M(P ) = |a0|
∏

α∈C,P (α)=0

max{|α|, 1},

and, since |a0| ≥ 1 when P ∈ Z[x] \ {0}, we have M(P ) ≥ 1.

Consider the set M = {M(P ) : P ∈ Z[x]\{0}}. It follows from the definition that M(P )

is an algebraic integer, and therefore M ⊆ Z̄. The above discussion also implies that the

minimum of the set M is minM = 1. In addition, the following theorem due to Kronecker

provides necessary and sufficient conditions for a non-zero polynomial P ∈ Z[x] such that

M(P ) = 1.

Theorem 0.1.1 (Kronecker, [71]). Let α be an algebraic integer. If all the conjugates of α

are inside the unit disc, then α is a root of unity.

Indeed, let fα ∈ Z[x] be the minimal polynomial of α of degree d, and let {α1, . . . , αd}

be the set of conjugates of α. Since all the conjugates of α are inside the unit disc, we have

|αnj | ≤ |αj| ≤ 1 for every j and n. As the coefficients of fn,α are symmetric functions of αnj ,

they are bounded, and therefore, the set {fn,α(x) =
∏d

j=1

(
x− αnj

)
: n ≥ 1} is finite, i.e.

fk,α = fℓ,α for some k ̸= ℓ. From this we can infer that there exist i and j such that i ̸= j

2



and αki = αℓj. If K is the splitting field of α over Q, and σ : K ↪→ C is the embedding such

that σ (αi) = αj, then there exists a t ≥ 1 such that

σt (αi) = σ ◦ σ ◦ · · · ◦ σ︸ ︷︷ ︸
t times

(αi) = αi,

and therefore

αk
t

i =
(
αℓj
)kt−1

=
(
σ
(
αℓi
))kt−1

=
(
σ
(
αki
))ℓkt−2

= · · · =
(
σt(αi)

)ℓt
= αℓ

t

i ,

which implies that αi, as well as all conjugates of α, are roots of unity, which proves Theorem

0.1.1.

Moreover, from (0.1.2), we have M (fα) = 1, since fα is a cyclotomic polynomial (all the

roots of fα are roots of unity, and fα is irreducible over Q).

On the other hand, if, for some non-zero monic polynomial P ∈ Z[x], M(P ) = 1, then

(0.1.2) implies that all the roots of P have absolute values less than or equal to 1. Dividing

P (x) by suitable power of x, we can further assume that P (0) ̸= 0. Then, by Kronecker’s

Theorem 0.1.1, we have P (x) =
∏

a ϕa(x), where the ϕa are cyclotomic polynomials. In

conclusion, we have, for P ∈ Z[x] \ {0},

M(P ) = 1 ⇐⇒ P (x) = xn
∏
a

ϕa(x). (0.1.3)

Given this, Lehmer asked whether the set M has an isolated minimum at 1. More pre-

cisely,

Given ϵ > 0, is there a P ∈ Z[x] for which 1 < M(P ) < 1 + ϵ?

One expects the answer to this question to be negative in the sense that there exists a

ϵ0 > 0, such that M(P ) ≥ 1+ ϵ0 for all non-zero P ∈ Z[x] which is not cyclotomic. The best

guess for 1 + ϵ0 until now is due to Lehmer and Poulet:

M(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1) = 1.17628081 . . . .

Lehmer’s question for polynomials with bounded degrees has been extensively studied (see

[20, 114, 118]). Dobrowski [49] showed that if P is not a cyclotomic polynomial and

degP = d, then

M(P ) ≥ 1 + c

Å
log log d

log d

ã3

,

3



where c is an explicit constant, which answers Lehmer’s question for fixed degree polynomials.

Dimitrov improved Dobrowski’s bound in his recent proof of the Schinzel–Zassenhauss con-

jecture [47]. In particular, he showed that, for every non-zero monic irreducible polynomial

Q ∈ Z[x],

max{|α| : α ∈ C, Q(α) = 0} ≥ 2
1

4 degQ ,

and therefore, M(Q) cannot be too small. However, after extensive study, Lehmer’s question

remains open.

One of the most interesting attempts towards the resolution of Lehmer’s question has

been given by Boyd [27]. He observed that M is a countable set of algebraic numbers in

the interval [1,∞), and it is a semigroup under multiplication since M(PQ) =M(P )M(Q).

Boyd argued that if one can show that M is closed, then M is nowhere dense, and this will

answer Lehmer’s question in the negative. He further considered an extension of the Mahler

measure for n-variable polynomials, and showed that it is improbable that M is closed and

that the closure of M contains a larger set comprised of algebraic numbers and certain

transcendental numbers, namely the set of “Mahler measures of n-variable polynomials”.

In order to define such an extension, we first recall Jensen’s formula, which states that

1

2πi

∫
T1

log |Q(x)|dx
x

= log |a0|+
d∑
j=1

log+ |αj| = logM(Q), (0.1.4)

where Q(x) = a0
∏d

j=1(x − αj) and log+ |α| = logmax{|α|, 1}. For a non-zero polynomial

P ∈ C[x1, . . . , xn], then the Mahler measure can be defined as

M(P ) = exp

Å
1

(2πi)n

∫
T1

· · ·
∫
T1

log |P (x1, . . . , xn)|
dx1
x1

· · · dxn
xn

ã
.

In fact, this definition can be extended to a non-zero rational function in C (x1, . . . , xn)

using the multiplicative property of M(P ) mentioned above. In this thesis, we are mainly

interested in the logarithmic version of M(P ). This leads to the following definition of the

(logarithmic) Mahler measure of n-variable rational functions, which was first introduced by

Mahler [89] for n-variable polynomials in his proof of Gelfond’s inequality.
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Definition 0.1.2. For a non-zero rational function P ∈ C (x1, . . . , xn), the (logarithmic)

Mahler measure of P is defined as

m(P ) = m(P (x1, . . . , xn)) :=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn) |
dx1
x1

· · · dxn
xn

, (0.1.5)

=

∫
[0,1]n

log |P
(
e2πiθ1 , . . . , e2πiθn

)
|dθ1 · · · dθn,

where Tn = {(x1, . . . , xn) ∈ C× × C× × · · · × C× : |x1| = · · · = |xn| = 1} = T1 × · · · × T1.

Then M(P ) = exp(m(P )).

In other words, for P ∈ C (x1, . . . , xn) \ {0}, m(P ) is the arithmetic mean of log |P |

over the n-dimensional unit torus Tn with respect to the unique normalized Haar measure

associated to the torus.

Denote, for all n ≥ 1,

Mn := {M(P ) : P ∈ Z[x1, . . . , xn]}.

Then, note that M1 = M, Mn is countable, and M1 ⊆ Mn ⊆ Mn+1, for all n ≥ 1. The

following result, due to Boyd and Lawton, shows that Mn is a subset of the set of limit

points of M1 (we denote the set of limit point as M(1)
1 ) and hence a subset of the closure of

M1.

Theorem 0.1.3 (Boyd [27], Lawton [86]). Let R ∈ C(x1, . . . , xn) be a non-zero rational

function defined by

R(x) =
P (x)
Q(x)

=

∑
j ajx

j∑
k bkxk ,

where P,Q ∈ C[x1, . . . , xn] are non-zero polynomials, x = (x1, . . . , xn), j = (j1, . . . , jn),

k = (k1, . . . , kn), xj = xj11 · · ·xjnn , xk = xk11 · · ·xknn , and the sums are finite. Given a vector

r = (r1, . . . , rn) ∈ Zn \ {0}, define

µ(r) := inf

{
max
1≤j≤n

|mj| : m = (m1, . . . ,mn) ∈ Zn \ {0},
n∑
j=1

mjrj = 0

}
.

Then

lim
µ(r)→∞

m(R (xr1 , . . . , xrn)) = m (R(x1, . . . , xn)) . (0.1.6)
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Remark 0.1.4. In their recent work [48], Dimitrov and Habegger explicitly computed the

rate of convergence of (0.1.6), and showed that, given a vector r = (r1, . . . , rn) ∈ Zn \ {0}

such that µ(r) > degP,

m(P (xr1 , . . . , xrn))−m(P ) ≤ C(n, k)
(degP )16n

2

µ(r)
1

16(k−1)

,

where k ∈ Z≥2 such that P has at most k non-zero terms, and C(n, k) is a positive real

constant depending on n and k.

Boyd then conjectured that
⋃
n≥1Mn is closed. Since each Mn is countable, this would

simply imply that
⋃
n≥1Mn, as well as M1 = M, are nowhere dense in [1,∞), and therefore,

it would answer Lehmer’s question in the negative.

The theorem of Boyd-Lawton, along with Boyd’s conjecture that
⋃
n≥1Mn is closed,

helped initiate a thorough systematic study of (logarithmic) Mahler measures of polynomials

in several variables. Since this thesis focuses on the (logarithmic) Mahler measure, we will

refer to m(P ) as the Mahler measure from this point onward, instead of M(P ).

The following theorem, which is due independently to Boyd, Lawton, and Smyth, shows

that we can completely characterize the set of polynomials with integer coefficients that

achieve the minimal Mahler measure, which is 0. 3

Theorem 0.1.5 (Boyd [27], Lawton [86], Smyth [112]). For any non-zero Laurent polyno-

mial P ∈ Z[x±1 , . . . , x±n ] such that the greatest common divisor of the coefficients is 1, m(P ) is

zero if and only if P is a product of a monomial and some cylclotomic polynomials evaluated

on monomials, i.e.

P (x1, . . . .xn) = xd11 · · ·xdnn
∏
k

Ä
x
b1,k
1 · · ·xbn,k

n ϕk(x
c1
1 · · · xcnn )

ä
,

where ϕk(t) ∈ Z[t] are cyclotomic polynomials, bi,k, ci, di ∈ Z for all i, bi are chosen minimally

such that xb1,k1 · · ·xbn,k
n ϕk(x

c1
1 · · ·xcnn ) is a polynomial in x1, . . . , xn.

3. Indeed logMn ⊆ logM(1)
1 ⊆ [0,∞), and if P (x1, . . . , xn) = x1, then m(P ) = 0, i.e. 0 ∈ logMn. Here,

for A ⊂ R>0, logA := {log a : a ∈ A}.
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Note that this is a generalization of the one-variable case mentioned in the discussion

following Theorem 0.1.1, and, as a result of this and Theorem 0.1.3, a Lehmer-type question

in the multivariable case can be reduced to the Lehmer’s question in the one-variable case.

The following proposition further classifies the changes of variables that keep the Mahler

measures of multivariable polynomials invariant.

Theorem 0.1.6 ([51, pg. 52]). Let

P (x) =
∑

j

ajxj ∈ C[x1, . . . , xn],

where x = (x1, . . . , xn), j = (j1, . . . , jn), and xj = xj11 · · ·xjnn . Let A be an n×n integer matrix

with non-zero determinant, and define P (A)(x) =
∑

j ajx
Aj. 4 Then

m(P (x)) = m(P (A)(x)).

While the above transformation has been described for polynomials, it is straightforward

to generalize it to rational functions. The next step in this search is to evaluate Mahler

measures in this multivariable framework.

The computation of the Mahler measure of multivariable polynomials is complicated since

we do not have the analogue of Jensen’s formula. The pioneering work by Smyth [112, 27]

showed that some values of m(P ) could be related to special values of L-functions. More

precisely, Smyth proved that

m(x+ y + 1) =L′(χ−3,−1) =
3
√
3

4π
L(χ−3, 2), (0.1.7)

m(1 + x+ y + z) =
7

2π2
ζ(3), (0.1.8)

where

L(χ−3, s) =
∞∑
n=1

χ−3(n)

ns
with χ−3(n) =


1 n ≡ 1 (mod 3),

−1 n ≡ −1 (mod 3),

0 n ≡ 0 (mod 3),

(0.1.9)

is a Dirichlet L-function, and ζ is the Riemann ζ-function.

4. For A = (bkℓ)1≤k,ℓ≤n, P
(A)(x1, . . . , xn) = P

Ä
xb11
1 xb12

2 · · ·xb1n
n , . . . , xbk1

1 xbk2
2 · · ·xbkn

n , . . . , xbn1
1 xbn2

2 · · ·xbnn
n

ä
.
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Deninger [45] established a link between Mahler measure and the conjectures of Bĕılinson

and Bloch–Kato. He proved that the Mahler measure of a suitable class of Laurent polyno-

mials P ∈ Q̄[x±1 , . . . , x
±
n ] can be realized as a Deligne period of mixed motives by integrating

certain differential forms over a suitable topological chain contained in the smooth part of

the zero set of P. Assuming Bĕılinson’s conjectures, he found a higher dimensional analogue

of (0.1.7) such as

m

Å
x+

1

x
+ y +

1

y
+ 1

ã
=

r

(2π)2
L(E, 2)

for some r ∈ Q×. Here L(E, s) denotes the L-function associated to the elliptic curve E

obtained by taking the projective closure of the zero locus of x+ 1
x
+y+ 1

y
+1 and specifying

a suitable origin. It was eventually proved by Rogers and Zudilin [105] using modular

methods, independent of Bĕılinson’s conjectures, and they further showed that r = 15.

The identities such as (0.1.7) and (0.1.8), along with Deninger’s work, prompted Boyd

to start an extensive investigation concerning the relations between Mahler measures of

multivariable polynomials and special values of L-functions, which led to the foundational

paper [29] containing conjectures and numerical calculations relating Mahler measures of

two-variable polynomials to special values of L-functions of elliptic curves arising from the

polynomials. For example, he conjectured that, for r ∈ Z \ {0,±4},

m

Å
x+

1

x
+ y +

1

y
+ r

ã
?
=
krN(r)

(2π)2
L(EN(r), 2) = krL

′(EN(r), 0), (0.1.10)

where kr is a non-zero rational number of low height,

EN(r) : y
2 = x3 +

Å
r2

4
− 2

ã
x2 + x (0.1.11)

is the Weierstraß equation of an elliptic curve (of conductor N(r)) which is birationally

equivalent to the curve defined by x+ 1
x
+ y + 1

y
+ r = 0, and the question mark stands for

a numerical formula that is true for at least 20 decimal places.

Rodriguez-Villegas also developed a context to explain Boyd conjectures in [102], where

he focused on the fact that most of the conjectural identities appear in families of polynomials

{Pℓ ∈ Z[ℓ][x, y] : ℓ ∈ S, S = Z,Q,R or C}. He studied the Mahler measure m(Pℓ) as a

function of ℓ, and, for certain families, related this function to an Eisenstein–Kronecker
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series (see Definition 0.3.1), which is intimately linked to modular forms. He further proved

(0.1.10) for r = 4√
2
, 4
√
2, where the corresponding elliptic curves have complex multiplication.

Since then, multiple approaches have been made to resolve the conjectural identities, but

they are still largely unproven to date. In Section 0.3, we provide more details on the known

and proven identities of type (0.1.10), for different families of polynomials.

In this thesis, we consider certain generalizations of the Mahler measure. Indeed, the

Mahler measure can be defined in a far more general setting. Let (X,µX) be a probability

space and let L0(X) denote the complex vector space of measurable functions f : X → C

such that f is non-zero almost everywhere. Then, for r ∈ R>0, the Lr-spaces can be defined

as

Lr(X) :=

®
f ∈ L0(X) : ∥f∥r :=

Å∫
X

|f |rdµX
ã1/r

<∞
´
.

Note that ∥·∥r defines a function from Lr(X) to R≥0 for every r > 0. Since X is a probability

space, we have Lr(X) ⊆ Lq(X) for every 0 ≤ q ≤ r. This property can be used to define the

Mahler measure as the functional

mX :
⋃
r>0

Lr(X) → R ∪ {−∞}, f 7→ lim
r→0+

log ∥f∥r,

where
⋃
r>0 L

r(X) is a complex vector subspace of L0(X). Since

lim
r→0+

1

r
log

Å∫
X

|f |rdµX
ã
=

∫
X

log |f |dµX ,

for X = T1 and dµX = dµT1 = 1
2πi

dx
x
, we retrieve the one-variable Mahler measure mT1(·) =

m(·) in (0.1.4). This thesis consists of two such generalizations:

(1) when X = T1
a = {x ∈ C× : |x| = a} and dµX = dµT1

a
= dµT1 = 1

2πi
dx
x

is the

normalized arc measure on T1
a;

(2) when X = D = {x ∈ C : |x| ≤ 1} and dµX = dµD = 1
π
dx is the normalized area

measure on D.

The generalizations (1) and (2) are known as the generalized Mahler measure and the areal

Mahler measure, respectively. They were first introduced by Lalín and Mittal [80], and

Pritsker [99], respectively. We explore these definitions in more detail in Sections 0.5 and

0.6.
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The following section examines a different perspective for studying Mahler measures of

several variable polynomials.

0.2. Mahler measure as heights and periods

For α ∈ K, with K a number field, the (absolute logarithmic) Weil height is given by

hWeil(α) =
1

[K : Q]

∑
v∈MK
v|p

[Kv : Qp] logmax {∥α∥v, 1} ,

where MK is an appropriately normalized set of equivalent places (and therefore induced

absolute values) on K, so that the product formula is satisfied:

∏
v∈MK
v|p

∥α∥
[Kv :Qp]
[K:Q]

v = 1.

In the above formulas, p is a rational prime and v is a prime in the ring of integers of K lying

above p. Here ∥α∥v =
∣∣NKv/Qp(α)

∣∣ 1

[Kv :Qp]
p

, where NKv/Qp is the norm function on Kv/Qp and

| · |p is the normalized p-adic absolute value in Qp such that |p|p = p−1. Then the Mahler

measure of an algebraic number α, defined as the Mahler measure of its integral minimal

polynomial, is the same as the product of [Q(α) : Q] and hWeil(α), i.e. if fα ∈ Z[x] is the

integral minimal polynomial of α ∈ Q̄×, then

m(fα) = log |a0|+
∑

β∈C,fα(β)=0

log+ |β| = (deg fα)hWeil(α) = [Q(α) : Q]hWeil(α).

Following the discussion in the previous section, we know that M is a set of algebraic

numbers, i.e. M(P ), for P ∈ Z[x], is an algebraic number.

The relation between Mahler measure and heights can be extended to several variable

polynomials and heights in hypersurfaces. Maillot [90] showed that the Mahler measure of

a Laurent polynomial P ∈ Z[x±1 , . . . , x±n ] can be expressed in terms of the canonical height

of the hypersurface defined by the polynomial using a toric variety associated to the Newton

polytope of P. Here the Newton polytope of P (x) =
∑

j ajxj is defined as the convex hull of the

points j ∈ Zn such that aj ̸= 0, where x = (x1, . . . , xn), j = (j1, . . . , jn), and xj = xj11 · · · xjnn .
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We refer the interested reader to [62] and [60] for more details on the notions of canonical

heights on abelian varieties and toric varieties.

Values of height functions produce computable numbers that measure the complexity

of some arithmetic objects, such as algebraic numbers, points on abelian varieties, abelian

varieties themselves, etc. Other quantities associated to these arithmetic objects, containing

critical information about them, are known as periods. Kontsevich and Zagier [70] defined

them in the following way.

Definition 0.2.1. A period is a complex number whose real and imaginary parts are values

of absolutely convergent integrals of rational functions with rational coefficients over domains

in Rn given by inequalities with rational coefficients.

We can replace “rational” with “algebraic” in the above definition to obtain a period,

because the algebraic functions occurring in the integrand can be replaced by rational func-

tions by introducing more variables. Note that the countability of Q implies that the set of

all periods P is countable.

Periods are intended to bridge the gap between algebraic numbers and transcendental

numbers. The class of algebraic numbers is too narrow to include many common mathemat-

ical constants, while the set of transcendental numbers is not countable, and its members

are not generally computable.

For example, the following common constants are periods:

π =

∫ 1

0

4

x2 + 1
dx, log 2 =

∫ 2

1

dx

x
, and ζ(3) =

∫∫∫
0<x<y<z<1

dxdydz

(1− x)yz
.

For many purposes, it is convenient to widen our previous definition and consider also ele-

ments of the extended period ring P̂ = P [ 1
2iπ

], which is an algebra. From the definition of

Mahler measure (see Definition 0.1.2), it then follows that the (logarithmic) Mahler measures

of rational functions with rational coefficients are elements of P̂ .

Periods can also be seen as values of integrals of algebraically defined differential forms

over certain chains in algebraic varieties. For example, let Y/Q̄ be a subvariety of a smooth

quasi-projective variety X/Q̄, let ω be a closed algebraic n-form on X vanishing on Y, and
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let C be a singular n-chain on X(C) with boundary contained in Y (C); then the integral∫
C

ω is a period of the quadruple (X, Y, ω, C).

Moreover, if these forms and chains depend on parameters (i.e. if ω(t) or C(t) depend on some

parameter t) then the integrals, considered as functions of the parameters, typically satisfy

linear differential equations with algebraic coefficients (depending on t). These are called

(generalized) Picard–Fuchs differential equations or (members of) Gauss-Manin systems.

Picard-Fuchs differential equations for elliptic surfaces (or curves) are examples of such

differential equations, whose solutions describe the periods of the elliptic surfaces (or curves).

Special values of the solutions of these differential equations at algebraic arguments produce

elements of P̂ .

Other examples of periods are special values at algebraic arguments of hypergeometric

functions (and their analytic continuations):

pFq (a1, . . . , ap; b1, . . . , bq; z) =
∑
n≥0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, where (a)n = a(a+ 1) · · · (a+ n− 1)

(0.2.1)

and special values of modular forms and various kinds of L-functions at appropriate argu-

ments.

Kontsevich and Zagier conjectured that any two integral representations of a period

should be obtained from each other just by using additivity of integrals, changes of variables,

and Stokes’ theorem. Examples of this phenomenon include proved identities regarding the

relationships between Mahler measure of polynomials and special values of different kinds of

L-functions (see Section 0.3 for more examples). We refer the interested reader to [70] for

more detailed and thorough discussions on periods.

0.3. Mahler measure and special values of L-functions

This section aims to briefly recall the history of the conjectural links between Mahler

measure and special values of L-functions. We refer the reader to [38, Chapters 1, 3 and 8]

for a detailed exposition.
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Let Pk(x) = x2 + kx + 1 ∈ Z[x], for k ∈ Z≥3. Using Lehmer’s formula (0.1.2), we derive

that m(Pk) = log k+
√
k2−4
2

= ℓ log ϵD
Q(

√
k2−4)

, where ϵD
Q(

√
k2−4)

is the fundamental unit of the

real quadratic field Q
(√

k2 − 4
)
, DQ(

√
k2−4) is its fundamental discriminant, and ℓ ∈ Z̸=0.

Recall that the Dirichlet class number formula implies that√
DKL (χDK

, 1) = h(DK) log ϵDK
,

where DK is the fundamental discriminant of a real quadratic field K, ϵDK
is its fundamental

unit, h(DK) is the class number of K, and

L (χDK
, s) =

∞∑
n=1

χDK
(n)

ns
=

∞∑
n≥1

(
DK

n

)
ns

. (0.3.1)

Combining the above with the functional equation of L
Å
χD

Q(
√

k2−4)
, s

ã
, we obtain

L′
Å
χD

Q(
√

k2−4)
, 0

ã
m(Pk)

∈ Q×. (0.3.2)

Since any real quadratic field K can be represented as Q
(√

k2 − 4
)

for some k ≥ 3, we have

found a suitable polynomial Pk for each K such that (0.3.2) holds.

In the multivariable case, we have already mentioned in (0.1.7) the pioneering result by

Smyth:

m(1 + x+ y) =
3
√
3

4π
L(χ−3, 2) =

3
√
3

4π

∞∑
n=1

χ−3(n)

n2
=

3
√
3

4π

∞∑
n=1

(−3
n

)
n2

= L′(χ−3,−1).

Here F = Q
(√

−3
)
, DF = −3, and

L′(χDF
,−1)

m(1+x+y)
is a non-zero rational number, namely 1.

Smyth’s identity is also the first example of identities of the form

L′(χDF
,−1)

m(QF )
∈ Q×,

where χDF
is the quadratic character associated to the imaginary quadratic field F with fun-

damental discriminant DF , and QF is a polynomial in two variables with integer coefficients.

Following this observation, Chinburg conjectured in [43, 100] that

For every imaginary quadratic field F, there exists a non-zero polynomial QF ∈ Z[x, y],

such that L′(χDF
,−1)

m(QF )
is a non-zero rational number.
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Identities as conjectured are known in some cases due to Ray [100] (DF =

−4,−7,−8,−20), Boyd–Rodriguez-Villegas [31] (DF = −11,−15,−24,−35,−39,−55,−84),

Boyd–Rodriguez-Villegas [32] (DF = −19,−40,−120), Liu–Qin [88] (DF =

−23,−303,−755) and others. Some recent works in this direction are being pursued

by Pengo [97], Mehrabdollahei [91], and others.

Continuing our description of conjectural relations between Mahler measures and special

values of L-functions, we now focus on Boyd’s extensive numerical computations of Mahler

measures of certain families of polynomials {Gℓ ∈ Z[x, y] : ℓ ∈ C} whose zero locus is

birationally equivalent to elliptic curves EN(ℓ) of conductor N(ℓ), for almost all ℓ2 ∈ Z. In

particular, Boyd considered the family x + 1
x
+ y + 1

y
+ r for every r ∈ Z \ {0,±4}, and

conjectured that

m

Å
x+

1

x
+ y +

1

y
+ r

ã
?
=
krN(r)

(2π)2
L(EN(r), 2), kr ∈ Q×, (0.3.3)

which we have already seen in (0.1.10). Here the curve Cr : x + 1
x
+ y + 1

y
+ r = 0 and the

elliptic curve EN(r) : Y
2 = X3 +

Ä
r2

4
− 2
ä
X2 +X are birationally equivalent via the change

of variables
X = − 1

xy
, x =

rX − 2Y

2X(X − 1)
,

Y =
(y − x)

Ä
1 + 1

xy

ä
2xy

, y =
rX + 2Y

2X(X − 1)
.

(0.3.4)

For r = ±4, the curve obtained from the zero locus of the polynomial is degenerate in the

sense that, for a suitable change of variables, it can be factored into linear polynomials, and

then a direct calculation using Jensen’s formula yields that

m

Å
x+

1

x
+ y +

1

y
+ 4

ã
= m

Å
x+

1

x
+ y +

1

y
− 4

ã
= 2L′(χ−4,−1),

where χ−4 is the quadratic character of conductor 4. 5 On the other hand,

m

Å
x+

1

x
+ y +

1

y

ã
= m

ÅÅ
x+

1

y

ã
(x+ y)

ã
= 0.

Prior to stating the next result, we must define Eisenstein–Kronecher series.

5. Note that the curve Cr, as well as m
Ä
x+ 1

x + y + 1
y + r

ä
, is invariant under the transformation r 7→

−r, and therefore we have the same curve for r and −r, as well as the same Mahler measure.
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Definition 0.3.1 ([5, Section 1.1]). Let Γ = ω1Z + ω2Z ⊂ C be a lattice in C generated by

ω1 and ω2 with Im
Ä
ω1

ω2

ä
> 0, and let A(Γ) = Im(ω1ω̄2)

π
. Let a be a non-negative integer. For

z, w ∈ C \ Γ, we define the Eisenstein–Kronecker–Lerch series Ka(z, w, s; Γ) by

Ka(z, w, s; Γ) :=
∑
γ∈Γ

(z̄ + γ̄)a

|z + γ|2s
⟨γ, w⟩Γ , Re s > 1 +

a

2

where ⟨γ, w⟩Γ = exp
Ä
(γw̄−wγ̄)
A(Γ)

ä
. The Eisenstein–Kronecker series E1(z, s; Γ) : C2 → C

is then defined as the analytic continuation of the series K1(z, 0, s; Γ) which converges for

Re s > 3
2
.

Rodriguez-Villegas [102] expressed the Mahler measure of x + 1
x
+ y + 1

y
+ r and other

Boyd’s families in terms of Eisenstein–Kronecker series. For example, he showed

m

Å
x+

1

x
+ y +

1

y
+ r

ã
=

1

2
Re

− log q + 4
∞∑
n=1

∑
d|n

χ(d)d2
qn

n



= Re

16 Im(τ)

π2

∑
m,n∈Z

(m,n)̸=0

χ(n)
1

(4mτ + n)2(4mτ + n)

 ,

for r ∈ C such that r2 = 1
µ2(τ)

, where τ ∈ F , the fundamental domain formed by the geodesic

triangle in H = {z ∈ C : Im(z) > 0} with vertices i∞, 0, 1/2 and its reflection along the

imaginary axis, and µ is a Hauptmodul for the subgroup of SL2(Z) associated with F (i.e., µ

induces an isomorphism between F ∪ {cusps} and P1(C)). Here χ(n) =
(−4
n

)
and q = e2πiτ .

Rodriguez-Villegas further proved Boyd’s conjectures for r = 4√
2
, 4
√
2, where τ is CM-point

i.e. a complex quadratic number in the upper half plane H.

Further identities associating Mahler measures of polynomials to special values of L-

function of elliptic curves for different families were proved by Bertin and Zudilin [14],

Brunault [36, 37, 35], Lalín [77], Rodriguez-Villegas [102, 103], Mellit [92], Rogers and

Zudilin [104, 105] et al. Some of these results involving the following families of polynomials
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are gathered in Table 1:

Qr(x, y) =x+
1

x
+ y +

1

y
+ r,

Rm(x, y) =(1 + x)(1 + y)(x+ y)−mxy, (0.3.5)

with r,m ∈ C, where the family {Qr : r ∈ C} comprises of the polynomials considered by

Boyd in (0.1.10) (also in (0.3.3)). Here EN and ẼL represent elliptic curves of conductor N

and L, respectively.

Identities Author(s) year

m(Q4
√
2) = L′(E64, 0) F. Rodriguez-Villegas 1997

m(Q4/
√
2) = L′(E32, 0) F. Rodriguez-Villegas 1997

m(Q1) = L′(E15, 0) M. Rogers and W. Zudilin 2010

m(Q5) = 6L′(E15, 0) M. Lalín 2010

m(Q2i) = L′(E40, 0) A. Mellit 2011

m(Q2) = L′(E24, 0) M. Rogers and W. Zudilin 2012

m(R4) = 2L′(Ẽ20, 0) M. Rogers and W. Zudilin 2012

m(Qi) = 2L′(E17, 0) W. Zudilin 2014

m(Q3) = 2L′(E21, 0) F. Brunault, M. Lalín, D. Samart and W. Zudilin 2015

m(Q12) = 2L′(E48, 0) F. Brunault 2015

m(R1) = L′(Ẽ14, 0) M. J. Bertin and W. Zudilin 2015

Table 1 – Some proven identities of Mahler measure of Boyd’s families of polynomials

Remark 0.3.2. Recall that the change of variables in (0.3.4) gives a birational map between

the elliptic curves EN(r) : Y
2 = X3+

Ä
r2

4
− 2
ä
X2+X and the curve defined by Qr(x, y) = 0.

Similarly, the Deuring form ẼN(m) : Y
2 + (m− 2)XY +mY = X3 is birational to the curve
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defined by Rm(x, y) = 0 via the change of variables [73]

X = m
x+ y + 1

x+ y −m
, x =

X − Y

X −m
,

Y = m
−mx+ y + 1

x+ y −m
, y =

Y + (m− 1)X +m

X −m
.

(0.3.6)

For 3-variable Laurent polynomials, extensive study has been done by Bertin [9, 10, 12,

11], Bertin, Feaver, Fuselier, Lalín and Manes [13], Samart [107], and others. For example,

Bertin et al. considered the family of polynomialsß
Lk(x, y, z) = x+

1

x
+ y +

1

y
+ z +

1

z
+ k : k ∈ C

™
,

and showed that

m(L2) =4
| detT (Y2)|3/2

4π3
L(T (Y2), 3),

m(L3) =2
| detT (Y3)|3/2

4π3
L(T (Y3), 3),

and other identities, where Yk denotes the K3-surface (a generalization of elliptic curves in

complex dimension 2) associated to the zero locus of Lk, with T (Yk) being its transcendental

lattice, a free Z-submodule of the free Z-module H2(Yk,Z). Since the results of this thesis do

not specifically address K3-surfaces, we refer the reader to [9, 111] for further expository

reading.

0.4. Mahler measure as the integral of a differential form

In this section, we restrict ourselves to 2-variable families of polynomials, and we associate

the Mahler measure of them with an integral of certain differential forms over some algebraic

chains. This alternative approach was proposed by Deninger [45] to express the Mahler

measure as a regulator evaluated in a certain K-group, hence establishing a relation between

Mahler measure and Bĕılinson conjectures [38, 45, 97]. Evaluation of this particular integral

representation of the Mahler measure breaks down to two cases: exact and non-exact. Before

going into more details about these cases, we first mention a few facts about polylogarithms,
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which are related to the exact cases. Though the integrals for non-exact cases do not appear

in our results in the next chapters, we include its discussion for the sake of completion.

0.4.1. Polylogarithms

In this section, we recall some basic properties of polylogarithms.

Definition 0.4.1. Let n ∈ Z≥0. The polylogarithm is defined as the power series, for z ∈ C

and |z| < 1,

Lin(z) =
∞∑
j=1

zj

jn
.

The definition and the name come from the analogy with the Taylor series expansion:

− log(1− z) =
∞∑
j=1

zj

j
for |z| < 1.

The relation
d

dz
Lin(z) =

Lin−1(z)

z
, for n ≥ 2,

follows from the definition, and leads to the extension of the domain of definition of Lin. In

particular, the analytic continuation of the dilogarithm is given by

Li2(z) = −
∫ z

0

log(1− u)
du

u
for z ∈ C \ [1,∞). (0.4.1)

In order to extend polylogarithms to the whole complex plane, Zagier [119] considered the

following version:

Pn(z) := Ren

(
n∑
ℓ=0

2ℓBℓ

ℓ!
(log |z|ℓ)Lin−ℓ(z)

)
, (0.4.2)

where Bℓ is the ℓ-th Bernoulli number, given by

x

ex − 1
=

∞∑
k=0

Bkx
k

k!
, (0.4.3)

Li0(z) is defined as −1
2

and Ren denotes Re or Im depending on whether n is odd or even.

The function Pn is single-valued and continuous in P1(C) with Pn(∞) = 0. Moreover, Pn
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is real analytic in P1(C) \ {0, 1,∞}, and satisfies certain functional equations. The simplest

ones are:

Pn
Å
1

x

ã
= (−1)n−1Pn(x), Pn(x̄) = (−1)n−1Pn(x). (0.4.4)

Some examples of modified polylogarithms are:

— The Bloch–Wigner dilogarithm is defined as

P2(z) = D(z) = Im(Li2(z) + log(1− z) log |z|). (0.4.5)

It further satisfies the well-known five-term relation [119]:

D(x) +D(y) +D(1− xy) +D

Å
1− x

1− xy

ã
+D

Å
1− y

1− xy

ã
= 0,

where x, y ∈ P1(C). For θ ∈ [0, π), D(e2iθ) admits following representations:

−2

∫ θ

0

log |2 sinu|du = D
(
e2iθ
)
=

∞∑
m=1

sin(2mθ)

m2
. (0.4.6)

Furthermore, some special values of D can also be expressed in terms of Dirichlet

L-values, such as

D(eiπ/3) =
3
√
3

4
L(χ−3,2), (0.4.7)

and

D(i) = L(χ−4,2), (0.4.8)

where L(χ−3,s) and L(χ−4,s) are the Dirichlet L-functions on the quadratic characters

of conductor 3 and 4 respectively, as defined in (0.3.1). These identities are applied

in Chapter 2.

— For n = 3, the modified trilogarithm is

P3(z) = Re

Å
Li3(z)− log |z|Li2(z) +

1

3
log2 |z|Li1(z)

ã
. (0.4.9)

P3 also satisfies functional equations, for example the Spence–Kummer relation [119]:

P3

Å
x(1− y)2

y(1− x)2

ã
+ P3(xy) + P3

Å
x

y

ã
− P3

Å
x(1− y)

y(1− x)

ã
− 2P3

Å
y(1− x)

y − 1

ã
− 2P3

Å
x(1− y)

x− 1

ã
− 2P3

Å
1− y

1− x

ã
− 2P3(x)− 2P3(y) + 2P3(1) = 0;

where x, y ∈ P1(C), and we recall that P3(∞) = 0.
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We can further generalize the definition of polylogarithms, and define the multiple poly-

logarithm following the notation of Goncharov [56, 57].

Definition 0.4.2. Let n1, . . . , nk ∈ Z≥1. The multiple polylogarithm is defined as the

power series

Lin1,...,nk
(z1, . . . , zk) :=

∑
0<j1<j2<···<jk

zj11 z
j2
2 . . . zjkk

jn1
1 j

n2
2 . . . jnk

k

.

This series is convergent for |zi| ≤ 1 and |zk| < 1 if nk = 1. The length of the multiple

polylogarithm is the number k and its weight is the number w = n1 + · · ·+ nk.

Note that, when k = 1, we retrieve the classical polylogarithm Lin(z). When k = 1 and

n1 > 1 the series converges absolutely for |z| = 1 and the evaluations at z = −1, 1 yield the

special values of the Riemann zeta function

Lin(1) = ζ(n), Lin(−1) = −
Å
1− 1

2n−1

ã
ζ(n). (0.4.10)

The evaluations at z = i also give the Riemann zeta function as well as a Dirichlet L-function:

Re(Lin(i)) = − 1

2n

Å
1− 1

2n−1

ã
ζ(n), Im(Lin(i)) = L(χ−4, n). (0.4.11)

We also have the following useful identity due to Jonquière [68]

Lin(e
2πix) + (−1)nLin(e

−2πix) = −(2πi)n

n!
Bn(x),

where Bn(x) denotes the Bernoulli polynomial given by

text

et − 1
=

∞∑
k=0

Bk(x)t
k

k!
, (0.4.12)

and 0 ≤ Re(x) < 1 if Im(x) ≥ 0 and 0 < Re(x) ≤ 1 if Im(x) < 0. In particular, we have for

0 < ℓ < 2r,

Li1(ξ
ℓ
2r)− Li1(ξ

−ℓ
2r ) =

(r − ℓ)πi

r
, (0.4.13)

where ξ2r is a primitive 2r-root of the unity.

We can also generalize (0.4.1) to obtain similar integral representations for multiple

polylogarithms. To do that, we first need the following definition.

20



Definition 0.4.3. Let n1, . . . , nk ∈ Z≥1. The hyperlogarithm is defined as the iterated

integral

In1,...,nm(a1 : . . . : am : am+1) :=

∫ am+1

0

dt

t− a1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n1

◦ dt

t− a2
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n2

◦ · · · ◦ dt

t− am
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
nm

, (0.4.14)

where the ai are complex numbers, and∫ bk+1

0

dt

t− b1
◦ · · · ◦ dt

t− bk
=

∫
0≤t1≤···≤tk≤bk+1

dt1
t1 − b1

· · · dtk
tk − bk

.

The value of the integral in (0.4.14) depends on the homotopy class of the path connecting

0 and am+1 on C \ {a1, . . . , am}.

Using hyperlogarithms, we can now integrally represent multiple polylogarithms with the

following identities:

In1,...,nm(a1 : . . . : am : am+1) = (−1)mLin1,...,nm

Å
a2
a1
,
a3
a2
, . . . ,

am
am−1

,
am+1

am

ã
,

Lin1,...,nm(x1, . . . , xm) = (−1)mIn1,...,nm((x1 . . . xm)
−1 : . . . : x−1

m : 1),

which also give analytic continuation for multiple polylogarithms. We refer the reader to

[55] for detailed descriptions of multiple polylogarithms and hyperlogarithms.

Some combinations of length 2 polylogarithms can be written in terms of length 1 poly-

logarithms. To achieve this simplification we will use a certain result due to Nakamura [94]

and Panzer [96]. Here we state the formulation of [79].

Theorem 0.4.4. [79, Theorem 3] Let r,s be positive integers, k = r + s, and let u, v be

complex numbers such that |u| = |v| = 1. In addition, we assume that v ̸= 1 if s = 1. Let

Rek =

Re k odd,

i Im k even.
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Then,

2Rek(Lir,s(u,v)) =(−1)kLik(uv) + (−1)k+1Lir(u)Lis(v) + (−1)r−1Lir(u)Lis(v)

+ (−1)r−1

ÇÇ
k − 1

r − 1

å
Lik(u) +

Ç
k − 1

s− 1

å
Lik(v)

å
+

k−1∑
m=1

ÇÇ
m− 1

r − 1

å
Lim(u) +

Ç
m− 1

s− 1

å
(−1)k+mLim(v)

å
× ((−1)rLik−m(uv) + (−1)s+mLik−m(uv)).

Multiple polylogarithms arise in the context of understanding how special values of zeta

functions and L-series appear in our results in Section 0.7. The following corollary to Theo-

rem 0.4.4 provides a way to achieve these types of simplifications in Chapters 2 and 4.

Corollary 0.4.5. Let ξ2r denote a primitive 2r-root of unity. If h is a nonnegative integer,

we have

2i Im
(
Li3,2h+1(iξ

−ℓ
2r ,− i)

)
=Li2h+4(ξ

ℓ
2r)− Li3(−iξℓ2r)Li2h+1(i) + Li3(−iξℓ2r)Li2h+1(−i)

+

ÇÇ
2h+ 3

2

å
Li2h+4(−iξℓ2r) +

Ç
2h+ 3

2h

å
Li2h+4(−i)

å
+

2h+3∑
t=1

ÇÇ
t− 1

2

å
Lit(−iξℓ2r) +

Ç
t− 1

2h

å
(−1)tLit(−i)

å
× (−Li2h+4−t(ξ

−ℓ
2r )− (−1)tLi2h+4−t(ξ

ℓ
2r)). (0.4.15)

If h is a positive integer, we have

2Re(Li3,2h
(
±ξ−ℓ2r ,±1

)
) =− Li2h+3(ξ

ℓ
2r) + 2Li3(±ξℓ2r)Li2h(±1)

+

ÇÇ
2h+ 2

2

å
Li2h+3(±ξℓ2r) +

Ç
2h+ 2

2h− 1

å
Li2h+3(±1)

å
+

2h+2∑
t=1

ÇÇ
t− 1

2

å
Lit(±ξℓ2r)−

Ç
t− 1

2h− 1

å
(−1)tLit(±1)

å
× (−Li2h+3−t(ξ

−ℓ
2r ) + (−1)tLi2h+3−t(ξ

ℓ
2r)). (0.4.16)
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The following technical result enables us to recognize special values of the Riemann zeta

function and Dirichlet L-functions from certain integrals involving logarithms.

Lemma 0.4.6. [75, Lemma 9] We have the following length-one identities:∫ 1

0

logj x
dx

x2 − 1
= (−1)j+1j!

Å
1− 1

2j+1

ã
ζ(j + 1), (0.4.17)∫ 1

0

logj x
dx

x2 + 1
= (−1)jj!L(χ−4, j + 1). (0.4.18)

The next lemma simplifies certain sums of polylogarithms at certain roots of unity. This

lemma will also allow us to express the sums in terms of special zeta values.

Lemma 0.4.7. We have
2r−1∑
ℓ=0

(−1)ℓLih(ξ
ℓ
2r) =

2− 21−h

rh−1
ζ(h),

2r−1∑
ℓ=0

(−1)ℓLih(−ξℓ2r) = (−1)r
2− 21−h

rh−1
ζ(h), (0.4.19)

and
2r−1∑
ℓ=0

(−1)ℓLih(−iξℓ2r) =
2

rh−1

(
Lih((−i)r)− 2−hLih((−1)r)

)
.

The proofs of Lemmas 0.4.6 and 0.4.7 are included in Section 4.3.

Remark 0.4.8. Further simplifications of ζ(2n) and L(χ−4, 2n + 1) are obtained in terms

of Bernoulli numbers Bn (see (0.4.3)) and Euler numbers En, defined by

2

et + e−t
=

∞∑
n=0

En
n!

· tn, (0.4.20)

as follows

ζ(2n) =
(−1)n+1B2n(2π)

2n

2(2n)!
, (0.4.21)

L(χ−4, 2n+ 1) =
(−1)nE2nπ

2n+1

22n+2(2n)!
. (0.4.22)

The above equalities are widely used in the derivations of our results stated in Sections 0.6.2.2

and 0.7 to obtain expressions in terms of Bn and En.
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0.4.2. The differential form η in the bivariate case

Our main aim in this section is to establish another integral representation of the Mahler

measure of a 2-variable polynomial in terms of a particular differential form.

Let C be a smooth projective curve over C which defines a compact Riemann surface,

and let C(C) be its field of fractions. For f, g ∈ C(C)×, we define

η (f, g) := log |f |d arg g − log |g|d arg f, (0.4.23)

where d arg x is defined by Im(dx
x
). Let Sf,g be a set containing all the zeroes and poles of f

and g. Then η is a real C∞ differential 1-form on C \ Sf,g. We also note that η evaluates in∧2C(C)×, the exterior product of C(C)×. The following lemma lists some useful properties

of η, which are extensively used in Section 1.5.

Lemma 0.4.9. Let f, g, h, v ∈ C(C)× and a, b ∈ C×. Then we have

(1) η(f, g) = −η(g, f), i.e. η is anti-symmetric,

(2) η(fg, hv) = η(f, h) + η(g, h) + η(f, v) + η(g, v),

(3) η(a, b) = 0,

(4) η is a closed differential form.

(5) For x, 1− x ∈ C(C)×,

η (x, 1− x) = dD (x) . (0.4.24)

where D is the Bloch–Wigner dilogarithm given by (0.4.5).

(1), (2) and (3) of Lemma 0.4.9 follow directly from the definition of η in (0.4.23).

Moreover, note that, since the curve C has complex dimension 1, we have dη(f, g) =

Im
Ä
df
f
∧ dg

g

ä
= 0, and this shows that (4) η is a closed differential form. Assertion (5)

follows from the next two implications:

• The Bloch–Wigner dilogarithm function D is a primitive of η(z, 1−z) for z ∈ P1(C)\

{0, 1,∞}, because

dD(z) = log |z|d arg(1− z)− log |1− z|d arg z,
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• Pulling back to C using x : C\Sx,1−x → P1(C)\{0, 1,∞}, we have η(x, 1−x) = dD(x),

where D(x) := D ◦ x.

We refer the reader to [38, 102] for detailed proofs.

Let P (x, y) ∈ C[x±1, y±1] be a non-zero Laurent polynomial in two variables. We may

write

P (x, y) =
d∑
i=0

ai(x)y
i ∈ C(x)[y],

i.e.

P (x, y) = P ∗(x)
d∏
j=1

(y − yj(x)) ∈ C(x)[y],

where P ∗(x) := ad(x) ∈ C[x] is the coefficient of the highest power of y, and yj := yj (x) are

algebraic functions of x for j ∈ {1, 2, . . . , d}.

We apply Jensen’s formula with respect to the variable y in the standard Mahler measure

formula for P (x, y). Due to the above properties we get

m(P (x, y))−m(P ∗(x)) =
1

(2πi)2

∫
T2

log |P (x, y) |dx
x

dy

y
−m(P ∗(x))

=
1

(2πi)2

∫
T2

(
d∑
j=1

log |y − yj (x) |

)
dx

x

dy

y

=
1

2πi

(
d∑
j=1

∫
{|x|=1,|yj(x)|≥1}

log |yj (x) |
dx

x

)

=− 1

2π

d∑
j=1

∫
γj

η (x, yj) , (0.4.25)

where γj = {|x| = 1, |yj (x) | ≥ 1}. 6 When considered over γj,

η(x, yj) = log |x|d arg yj − log |yj|d arg x = i log |yj(x)|
dx

x
.

Here we used the fact that, for |x| = 1, log |x| = log 1 = 0 and dx
x
= d(log |x|+ i arg x), with

arg(x) ∈ [−π, π).

Now, to evaluate the integrals in (0.4.25), it is convenient to arrive at one of these two

ideal situations:
6. Using multiplicativity of Mahler measure, the argument extends to non-zero rational functions with

complex coefficients.
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— Exact Case: η is exact, and ∂γj = {boundary values of γj} ≠ ∅; in this case we can

integrate using Stokes’ theorem. In other words, if

x ∧ yj =
∑
k

skxjk ∧ (1− xjk) ∈
(∧2

C(C)×
)
⊗Q,

then we can evaluate the integral
∫
γj
η using (5) from Lemma 0.4.9 as∫

γj

η(x, yj) =
∑
k

sk

∫
γj

η(xjk , 1− xjk) =
∑
k

sk

∫
γj

dD(xjk) =
∑
k

sk
Ä
D(xjk)

∣∣
∂γj

ä
, (0.4.26)

where D is the Bloch–Wigner dilogarithm given by (0.4.5). Here the last equality

follows from Stokes’ theorem.

— Non-exact case: η is not exact and ∂γj = ∅, i.e. the integration path γj is closed.

This case is morally like an evaluation of residues of η. In favorable cases, we obtain

special values of L-functions of curves (such as L-functions of elliptic curves).

We should note here that it can happen that η is not exact and γj is not closed; in most

of these cases, the methods of evaluating the integral are still unknown.

Remark 0.4.10. As mentioned in [117], we may have some extra terms of the form η (c, z)

in (0.4.26), where c is a constant complex number and z is some algebraic function. In that

case, we can still reach a closed formula by integrating η (c, z) directly (i.e. by integrating

log |c|d arg z). Also, if ν is a constant such that |ν| = 1, then η (ν, z) = log |ν|d arg z = 0.

If C is a genus 1 non-singular curve, then a favorable integration path in non-exact case

may belong to the first singular homology group H1(C,Z), which satisfies H1(C,Z) ∼= Z2.

We can decompose H1(C,Z) as

H1 (C,Z) = H1 (C,Z)+ ⊕H1 (C,Z)− ,

where the first summand consists of all cycles which are invariant under complex conjugation,

and the latter summand consists of the cycles which change signs.

Remark 0.4.11. The evaluation of the integral η(x, y) over a path in H1(C,Z)+ is 0. In-

deed, the path we are considering stays invariant under complex conjugation and η(x, y) =

−η(x, y). Therefore, we are interested in the cases where the integration path {|x| =
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1, |yj(x)| ≥ 1} is closed, and it corresponds to a cycle in the rank 1 Z-submodule H1(C,Z)−

rather than just in H1(C,Z).

0.4.3. The Elliptic Regulator

We will now recall the definition of the regulator map on the second K-group of an elliptic

curve E, given by Bloch and Bĕılinson. Then we will explain its relation with the elliptic

dilogarithm, and recover its relationship with Mahler measure. Although the derivations of

our results in later chapters do not require the framework of regulators explicitly, we include

this section because we believe it provides a valuable perspective to the discussion about

Mahler measure of several variable polynomials in general.

Let F be a field. By a theorem of Matsumoto, the second K-group of F can be described

as

K2(F ) ∼= Λ2F×/{x⊗ (1− x) : x ∈ F, x ̸= 0, 1}.

Recall that, given a two-variable Laurent polynomial P (x, y) =
∑

(i,j)∈Z2 aijx
iyj, its New-

ton polytope N∆(P ) is the convex hull of the points in (i, j) ∈ Z2 such that the coefficient of

xiyj is non-zero in P (x, y). Let τ denote a side of N∆(P ). We parametrize a side clockwise

around N∆ in such a way that τ(0), τ(1), . . . are the consecutive lattice points in τ. To every

side we then associate a one-variable polynomial

Pτ (U) =
∑
l≥0

aτ(l)U
l ∈ C[U ],

where

aτ(l) = aiτ(l)jτ(l)

for τ(l) =
(
iτ(l), jτ(l)

)
∈ τ. Now we have the following definition due to Rodriguez-Villegas

[102].

Definition 0.4.12. P (x, y) is called tempered if m(Pτ ) = 0 for every τ.

In other words, P is tempered is equivalent, by Kronecker’s Theorem 0.1.1, to requiring

m(Pτ ) = 0 for all τ. In fact, this condition plays a role in understanding the K-theory

framework of the regulator. For that, we now need to define regulator maps.
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For a field F with discrete valuation ν and maximal ideal M, the tame symbol is given

by [102]

(x, y)ν ≡ (−1)ν(x)ν(y)
xν(y)

yν(x)
(mod M).

Note that in particular, (x, y)ν = 1 if ν(x) = ν(y) = 0.

Let C be a smooth projective curve over C which is a compact Riemann surface, and

C(C) be its field of fractions. A point P ∈ C(C) defines a valuation νP on C(C), which

is determined by the order of the rational functions at the point P ∈ C(C). We follow the

notation in [102] to denote the tame symbol given by νP as (·,·)P . We also have the residue

map, which is a linear form determined by P,

ResP : H1(C \ {P},R) → R,

and

ResP (η(x, y)) = log |(x, y)P |,

where P ∈ C(C), x, y ∈ C(C)×, S ⊂ C(C) a finite set containing poles and zeroes of x and

y, η is the differential form given by (0.4.23).

Further note that, for a closed path γ in C \ S, the map

γ 7→
∫
γ

η(x,y)

only depends on the homology class [γ] ∈ H1(C\S,Z), and it therefore determines an element

in H1(C \ S,R), say r̄(x, y). From (0.4.24) we also have η(x, 1− x) = 0 in H1(C \ S,R), i.e.∫
γ

η(x, 1− x) = 0 ∀ [γ] ∈ H1(C \ S,Z).

Given a finite set S ⊂ C, we can define

K2,S(C) =
⋂
P ̸∈S

kerλP ⊂ K2(C(C)),
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where λP : K2(C(C)) → C× is the corresponding map of the tame symbol (·, ·)P . Then the

following diagram is commutative for every P ∈ S :

K2,S(C) H1(C \ S,R)

C× R

r̄

λP ResP

log |·|

Finally, for an elliptic curve E over Q, we can define a tame symbol corresponding to a

point T ∈ E(Q̄) as a map from K2(Q(E)) to Q(T )×. We also have an exact sequence

0 → K2(E)⊗Q → K2(Q(E))⊗Q →
∐

T∈E(Q̄)

Q(T )× ×Q,

where the last arrow corresponds to the coproduct of the tame symbols (for more details see

[82]).

Following the above discussion, we interpret H1(E,R) as the dual of the first homology

group of E with coefficients in Z, namely H1(E,Z). Let [γ] ∈ H1(E,Z). Now we can define

the regulator map.

Definition 0.4.13. The regulator map of Bloch [22] and Bĕılinson [15] is given by

rE : K2(E)⊗Q → H1(E,R)

{x, y} →
®
[γ] →

∫
γ

η(x, y)

´
.

Remark 0.4.14. We should note that the regulator is essentially defined over the Néron

model E of E, and K2(E)⊗Q is a subgroup of K2(E)⊗Q determined by finitely many extra

conditions [21].

The condition of P (x,y) being tempered can be seen to be equivalent to the triviality of

tame symbols in K-theory [102]. Thus, it gives us a way to produce elements in K2,∅(E),

where E is an elliptic curve over Q. We can therefore define a map

r̃ : K2,∅(E) → R, φ 7→ 1

2π
r̄(φ)(c0),
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where c0 ∈ H1(E,Z) is the cycle determined by the connected component of E(R). Deninger’s

[45] derivation

m(P ) =
1

2π
r̄({x, y})[γ] (0.4.27)

then establishes a relation between regulators and Mahler measures of polynomials.

The following three sections are dedicated to presenting our results, providing necessary

background information, and discussing their applications in the literature.

0.5. Generalized Mahler measure

This section aims to provide an introductory overview for Chapter 1 containing results

from [106].

Cassaigne and Maillot [41] generalized the formula found by Smyth (see (0.1.7)) to m(ax+

by + c) for arbitrary complex constants a, b, and c :

m(ax+ by + c) =


α
π
log |a|+ β

π
log |b|+ γ

π
log |c|+ D(e2iα)

2π
+

D(e2iβ)
2π

+
D(e2iγ)

2π
if ∆ holds,

logmax{|a|, |b|, |c|} otherwise,
(0.5.1)

where ∆ stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a planar

triangle. In this case, α, β, and γ are the angles opposite to the sides of lengths |a|, |b| and

|c| respectively (see Figure 1) and D is the Bloch–Wigner Dilogarithm defined in (0.4.5).

We also remark that the condition ∆ can also be interpreted as representing the values

(|a|, |b|, |c|) such that ax+ by + c vanishes on the unit torus.

β

α γ

|b|

|a|
|c|

Figure 1 – Condition ∆ in Cassaigne and Maillot’s formula
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Notice that the constant coefficient may be multiplied by a variable without changing

the Mahler measure, in the sense that m(ax+ by + c) = m(ax+ by + cz). Additionally, it is

immediate to see that Cassaigne and Maillot’s result can also be interpreted as

m(ax+ by + cz) =
1

(2πi)3

∫
T3
|a|,|b|,|c|

log |x+ y + z|dx
x

dy

y

dz

z
,

i.e. the standard Mahler measure of ax + by + cz is same as the integral of log |x + y + z|

with respect to the Haar measure dx
x

dy
y
dz
z

over the torus T3
|a|,|b|,|c|, where

T3
|a|,|b|,|c| = {(x, y, z) ∈ C× × C× × C× : |x| = |a|, |y| = |b|, |z| = |c|}.

This representation of m(ax+ by+ cz) makes (0.5.1) a generalization of Smyth’s result, and

it motivates the following definition.

Definition 0.5.1. Let a = (a1, . . . , an) ∈ (R>0)
n. The generalized Mahler measure of a

non-zero rational function P ∈ C(x1, . . . , xn) is defined as

ma(P ) = ma1,...,an(P (x1, . . . , xn)) :=
1

(2πi)n

∫
Tn
a

log |P (x1, . . . , xn) |
dx1
x1

· · · dxn
xn

,

where

Tna := {(x1, . . . , xn) ∈ C× × C× × · · · × C× : |x1| = a1, . . . , |xn| = an}.

Lalín and Mittal [80] explored this definition over T2
a2,a and T2

a,a to obtain relations

between certain polynomials mentioned in Boyd’s paper [29], namely

R−2(x, y) := (1 + x)(1 + y)(x+ y) + 2xy,

S2,−1(x, y) := y2 + 2xy − x3 + x,

for some values of a ∈ R>0. They simultaneously evaluated ma2,a(R−2) and ma,a(S2,−1) in

terms of log a and special values of L-functions when the polynomials do not vanish on the

respective integration torus. In particular, they established a relation between the standard

Mahler measure and the generalized Mahler measure. They showed that

ma,a(S2,−1(x, y)) =


2 log a+ 2L′(Ẽ20, 0)

√
5−1
2

≤ a ≤
√
5+1
2
,

3 log a a ≥ 3+
√
13

2
,

log a 0 < a ≤ −3+
√
13

2
,

(0.5.2)

31



and

ma2,a(R−2(x, y)) = 3 log a+ 3L′(Ẽ20, 0), (0.5.3)

when  
1 +

√
5−

√
2
√
5 + 2

2
≤ a ≤

 
1 +

√
5 +

√
2
√
5 + 2

2
.

Here Ẽ20 : Y 2 − 4XY − 2Y = X3 is the elliptic curve of conductor 20 birationally

equivalent to the polynomial R−2 via the change of variables in (0.3.6), and

L′(Ẽ20, 0) =
20

4π2
L(Ẽ20, 2).

The change of variables

X =
(m+ 1)(x+ y)

x+ y −m
, x =

(m+ 2)X + 2Y

2(X −m− 1
,

Y =
(m+ 1)((m− 2)x− (m+ 2)y

2(x+ y −m)
, y =

(m− 2)X − 2Y

2(X − (m+ 1))
,

further gives birational maps between R−2 and S2,−1 when m = −2. More generally, it gives

a birational transformation

ψ : Rm(x, y) → E
′

m(X, Y ),

where E
′
m : Y 2 + 2XY −

Ä
X3 +

Ä
m2

4
−m− 3

ä
X2 + (m+ 1)x

ä
= 0, and Rm is given in

(0.3.5).

In Chapter 1, we provide a way to obtain relations similar to (0.5.2) and (0.5.3) for a

large set of Laurent polynomials. Our search started with the family of Boyd’s polynomials

mentioned in (0.1.10), namelyß
Qr(x, y) = x+

1

x
+ y +

1

y
+ r : r ∈ C

™
. (0.5.4)

An extension of the methods in [102] and [9] led us to an interesting fact: for an arbitrarily

fixed (a, b) ∈ R2
>0, there exists a large set of r ∈ C such that the Mahler measures of these

polynomials remain the same irrespective of deforming the integration torus from T2 (= T2
1,1)

to T2
a,b. In fact, we found that this method can be extended to all Laurent polynomials in n

variables (where n ≥ 2) when they do not vanish on the integration torus.
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Let Pk(x1, . . . , xn) ∈ C[x±1 , . . . , x±n ] be a non-zero Laurent polynomial in n variables such

that

Pk := Pk(x1, . . . , xn) = k − P (x1, . . . , xn), (0.5.5)

where P has no constant term. 7 Let Tna be the integration torus in the definition of ma(Pk),

where a = (a1, . . . , an) such that a1, . . . , an > 0, and let Ka be the image of the map

p : Tna → C defined by (x1, . . . , xn) 7→ P (x1, . . . , xn). (0.5.6)

Let νja,k be the difference between the number of zeroes (counting multiplicities) of

Pk(a1, . . . , aj−1, xj, aj+1, . . . , an) inside the circle T1
aj
, denoted by Zj

a,k, and the order of the

pole of Pk(a1, . . . , aj−1, xj, aj+1, . . . , an) at xj = 0, denoted by P j
a,k. In other words,

νja,k = Zj
a,k − P j

a,k.

Then, we have the following theorem.

Theorem 0.5.2 ([106, Theorem 1.2]). Let a = (a1, . . . , an) ∈ (R>0)
n. Let Pk(x1, . . . , xn) =

k − P (x1, . . . , xn) ∈ C[x±1 , . . . , x±n ], such that P has no constant term. Denote Ua the un-

bounded open connected component of C \ Ka containing a neighbourhood of k = ∞. Then,

for k ∈ Ua ∩ U1,

ma(Pk) = m1(Pk) +
n∑
j=1

νja,k log aj, (0.5.7)

where νja,k is defined as above, and m1(Pk) = m(Pk). Moreover, for k ∈ Ua ∩ U1 and j =

1, . . . , n, νja,k only depends on a.

Remark 0.5.3. Notice that any non-zero Laurent polynomial Gℓ ∈ C[x±1 , . . . , x±n ] in the

family {Gℓ : ℓ ∈ C} is expressible as

Gℓ(x1, . . . , xn) = ℓxℓ11 · · ·xℓnn −
∑

(j1,...,jn)∈Zn

(j1,...,jn )̸=(ℓ1,...,ℓn)

aj1,...,jnx
j1
1 · · · xjnn = xℓ11 · · ·xℓnn [ℓ−G(x1, . . . , xn)] ,

7. In fact, any Laurent polynomial can be expressed as the sum of its constant term and a Laurent

polynomial with no constant term, as shown in (0.5.5).
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where the above sum is finite, (ℓ1, . . . , ℓn) ∈ Zn, and G(0, . . . , 0) = 0. Then (0.5.7) implies

that, for ℓ ∈ Ua,G ∩ U1,G,

ma(Gℓ) = ma(G̃ℓ) +
n∑
t=1

ℓt log at = m1(G̃ℓ) +
n∑
t=1

(νta,ℓ + ℓt) log at,

where G̃ℓ(x1, . . . , xn) = ℓ − G(x1, . . . , xn). Here Ua,G, U1,G and νta,ℓ are defined similarly as

above for G̃ℓ. Furthermore,⋃
(ℓ1,...,ℓn)∈Zn

{Gℓ ∈ C[x±1 , . . . , x±n ] : ℓ ∈ C} = C[x±1 , . . . , x±n ],

i.e. any Laurent polynomial in n variables belongs to at least one of the families {Gℓ ∈

C[x±1 , . . . , x±n ] : ℓ ∈ C}. Therefore, we conclude that our result in (0.5.7) extends to a larger

set of n-variable Laurent polynomial.

For |k| large enough, the relation (0.5.7) between the standard Mahler measure and

the generalized Mahler measure of Pk can be obtained by first expanding log
(
1− P

k

)
in a

convergent series, and then integrating each term individually. We should mention here that,

in order to obtain a convergent series expansion of the logarithm, the above procedure is

restricted to a smaller subregion contained in the unbounded region of C\Ka. Theorem 0.5.2

establishes this equality for a larger set, and since the Mahler measure is the real part of an

analytic function [102] (in other words, it is harmonic), equality (0.5.7) holds for all k in

the unbounded open connected component of C \ Ka. In particular, we note that the region

Ua ∩ U1 contains a neighborhood of k = ∞, namely the regionß
k ∈ C : |k| > max

ß
max

(x1,...,xn)∈Tn
a

|P (x1, . . . , xn) |, max
(x1,...,xn)∈Tn

|P (x1, . . . , xn) |
™™

.

Indeed, note that for all those k, log
(
1− P

k

)
is well defined and can be expanded in a

convergent series, as mentioned above. Also, note that the region is therefore unbounded,

and its complement is contained inß
k ∈ C : |k| ≤ max

ß
max

(x1,...,xn)∈Tn
a

|P (x1, . . . , xn) |, max
(x1,...,xn)∈Tn

|P (x1, . . . , xn) |
™™

,

which is closed and bounded.
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Let Q(x, y) be a non-zero Laurent polynomial in C[x±, y±] with no constant term, and

define the family of Laurent polynomials {Qr(x, y) : r ∈ C} associated to Q as

Qr(x, y) = r −Q(x, y) ∈ C[x±, y±].

For a, b > 0, let Ra,b be the image of the map

q : T2
a,b −→ C, defined by (x, y) 7→ Q(x, y). (0.5.8)

Then, as a corollary to Theorem 0.5.2, we have the following result in two variables.

Theorem 0.5.4 ([106, Theorem 1.3]). Let a and b be positive real numbers, and denote by

Ua,b the unbounded open connected component of C \ Ra,b containing some neighborhood of

r = ∞. Then, for r ∈ Ua,b ∩ U1,1,

ma,b(Qr) = m(Qr) + ν1a,b,r log a+ ν2a,b,r log b,

where ν1a,b,r is the difference between the number of zeroes (denoted by Z1
a,b,r) and the number

of poles (denoted by P 1
a,b,r) of Qr(x, b) inside the circle |x| = a, defined by

ν1a,b,r = Z1
a,b,r − P 1

a,b,r, (0.5.9)

ν2a,b,r is the difference between the number of zeroes (denoted by Z2
a,b,r) and the number of

poles (denoted by P 2
a,b,r) of Qr(a, y) inside the circle |y| = b, defined by

ν2a,b,r = Z2
a,b,r − P 2

a,b,r, (0.5.10)

and m1,1(Qr) = m(Qr). Moreover, for r ∈ Ua,b ∩ U1,1, ν
j
a,b,r does not depend on r.

A follow-up question can be posed regarding the values of ma(Pk) when k belongs to

one of the bounded open connected components of C \ Ka.
8 The next theorem answers this

question when νja,k satisfies a particular condition.

We introduce some necessary notation to state the next result. Multiplying Pk with a suit-

able power of xj, we can factorise Pk in linear factors with coefficients in C(x1, . . . , “xj, . . . , xn)
8. If C \ Ka does not contain any open bounded connected component, then Ua contains all values of k

such that Pk does not vanish on Tn
a , and therefore, for all such k, ma(Pk) satisfies (0.5.7).
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as

Pk(x1, . . . , xn) = x
−vj
j P j

F,k(x1, . . . , “xj, . . . , xn) dn∏
l=1

(xj −Xl,k,j (x1, . . . , “xj, . . . , xn)) , (0.5.11)

where dj is the degree of Pk as a polynomial in xj, Xl,k,j are algebraic functions of

(x1, . . . , “xj, . . . , xn) for l = 1, . . . , dn, P
j
F,k is the leading coefficient with respect to the variable

xj, and vj is the largest power of x−1
j in Pk. Let P j

f,k(x1, . . . , “xj, . . . , xn) denote the constant

coefficient with respect to the variable xj. Then

P j
F,k(x1, . . . , “xj, . . . , xn) dn∏

j=1

Xl,k,j(x1, . . . , “xj, . . . , xn) = P j
f,k(x1, . . . , “xj, . . . , xn). (0.5.12)

Suppose C \Ka contains at least one open bounded connected component, then we have the

following theorem.

Theorem 0.5.5 ([106, Theorem 1.4]). Let a = (a1, . . . , an) ∈ Rn
>0. Let k0 ∈ C \ Ka such

that k0 belongs to one of the bounded open connected components of C \Ka, denoted by Va,k0 .

(I) For j = 1, . . . , n, if all the roots of Pk0(a1, . . . , aj−1, xj, aj+1, . . . , an) lie entirely inside

the circle T1
aj
, then, for all k ∈ Va,k0 ,

ma(Pk) = νja,k log aj +ma1,...,âj ,...,an

Ä
P j
F,k

ä
.

(II) For j = 1, . . . , n, if all the roots of Pk0(a1, . . . , aj−1, xj, aj+1, . . . , an) lie entirely out-

side the circle T1
aj
, then, for all k ∈ Va,k0 ,

ma(Pk) = νja,k log aj +ma1,...,âj ,...,an

Ä
P j
f,k

ä
.

Similarly, for the 2-variable case, Qr(x, y), when considered as a polynomial in y (resp.

x) of degree dy (resp. dx) with coefficients in C(x) (resp. C(y)), can be expressed as

Qr(x, y) =y
−v2

(
Qy
F,r(x)y

dy +Qy
f,r(x) +

dy−1∑
j=1

ayj,r(x)y
j

)

=x−v1

(
Qx
F,r(y)x

dx +Qx
f,r(y) +

dx−1∑
j=1

axj,r(y)x
j

)
,
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where v1 and v2 denote the largest powers of x−1 and y−1 in Qr(x, y), respectively, and Qu
F,r

and Qu
f,r are the respective leading and constant coefficient with respect to the variable u,

for u = x or y. Suppose C \ Ra,b contains at least one open bounded connected component,

then, again as a corollary to Theorem 0.5.5, we have the following result.

Theorem 0.5.6 ([106, Theorem 1.2]). Let a and b be positive real numbers. Let r0 ∈ C\Ra,b

such that r0 belongs to one of the bounded open connected components of C\Ra,b. We denote

by Va,b,r0 the bounded open connected component containing r0.

(i) If all the roots of Qr0(a, y) either lie entirely inside the circle T1
b or lie entirely outside

the circle T1
b , then, for all r ∈ Va,b,r0 ,

ma,b(Qr)− ν2a,b,r log b =

 ma(Q
y
F,r(x)) when all roots of Qr0(a, y) lie inside T1

b ,

ma(Q
y
f,r(x)) when all roots of Qr0(a, y) lie outside T1

b .

(ii) If all the roots of Qr0(x, b) either lie entirely inside the circle T1
a or lie entirely outside

the circle T1
a, then, for all r ∈ Va,b,r0 ,

ma,b(Qr)− ν1a,b,r log a =

 mb(Q
x
F,r(y)) when all roots of Qr0(x, b) lie inside T1

a,

mb(Q
x
f,r(y)) when all roots of Qr0(x, b) lie outside T1

a.

Using Theorems 0.5.4 and 0.5.6, Cassaigne and Maillot’s result in (0.5.1) follows imme-

diately when the condition ∆ does not hold. In this case, let Mc(x, y) := c−x− y for c ∈ C.

For a, b ∈ C×, R|a|,|b| is now the closed annulus {z ∈ C : |z| ∈ [||a| − |b|| , |a|+ |b|]} . Note

that, when c belongs to the unbounded component of C \R|a|,|b|, we have νj|a|,|b|,c = 0. Then,

Theorem 0.5.4 and harmonic properties of Mahler measure imply that, when |c| > |a|+ |b|,

m|a|,|b|(Mc) = m(|a|x+ |b|y + c) = log |c|.

On the other hand, Theorem 0.5.6 implies that, for |c| < ||a| − |b|| ,

m|a|,|b|(Mc) = logmax{|a|, |b|},

since ν1|a|,|b|,c = 1 (resp. ν2|a|,|b|,c = 1) when |a| > |b| (resp. |b| > |a|). The combination of both

equalities leads to a restatement of (0.5.1) when ∆ does not hold. We should remark that

the condition ∆ in (0.5.1) is equivalent to the condition c ∈ R|a|,|b|, i.e. Mc vanishes on the
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integration torus. A more involved approach, using Theorems 0.5.4 and 0.5.6 on the family

of Laurent polynomials

R∗
α(x, y) := α− x−1 − y−1 − xy−1 − yx−1 − x− y, α ∈ C,

S∗
β,−1(x, y) := β − x−1y + x2y−1 − y−1, β ∈ C,

re-establishes the identities obtained in [80] for α = −4 and β = 2, since R−2(x, y) =

xy ·R∗
−2(x, y) and S2,−1(x, y) = xy ·S∗

2,−1(x, y). Note that the aforementioned results involving

the generalized Mahler measure of R∗
−2 (resp. S∗

2,−1) on the torus T2
a,b only depend on b since

the integration torus is T2
b2,b (resp. T2

b,b), i.e. a is a function of b here. Our results, along

with the method of the Lagrange multiplier, provide a larger set of pairs (a, b) ∈ R2
>0, such

that similar types of identities obtained in [80] hold even when a is not a function of b.

An analogous statement is exhibited in Section 1.5 in Chapter 1 with a different family of

polynomials investigated by Boyd [29], namely the family given in (0.5.4).

Given an expression of m(P ) in terms of special values of L-functions, we note that

our result establishes a vast amount of identities of the form m(Q) = rL′(E, 0) + log |s|,

which were conjectured by Boyd [29] for non-tempered polynomials. Here r ∈ Q×, s ∈ Q̄×,

Q(x, y) := P (ax, by), where a, b ∈ Q>0, and E is an elliptic curve associated to P, as well as

Q. Indeed, note that, if a, b ̸= 1, then at least one of the faces of the Newton polytope of Q

has non-zero Mahler measure, which makes Q a non-tempered polynomial according to the

Definition 0.4.12. Then, for certain non-zero positive rational values of a and b, Theorem

0.5.4 yields such equalities.

Due to the technical difficulties involving the study of the integration path in the defi-

nition of Mahler measure, it is challenging to evaluate ma(Pk) explicitly for all a ∈ (R>0)
n .

In this regard, Theorems 0.5.2 and 0.5.5 have a common feature: the Laurent polynomial in

consideration does not vanish on the integration torus. Since the methods of proofs are the

same for Theorem 0.5.2 (resp. Theorem 0.5.5) and Theorem 0.5.4 (resp. Theorem 0.5.6), we

provide proofs of Theorems 0.5.4 and 0.5.6 in Sections 1.2.1 and 1.3, and outline arguments

generalizing our methods to derive Theorems 0.5.2 and 0.5.5.
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The next statement considers a particular polynomial from our initial family of polyno-

mials in (0.5.4), namely

Q4(x, y) = x+
1

x
+ y +

1

y
+ 4.

It removes the constraint of being non-zero on the integration torus, and evaluates the

generalized Mahler measure of Q4(x, y) for all a, b > 0.

Theorem 0.5.7 ([106, Theorem 1.6]). Let a, b ∈ R>0, and define

c =
√
ab, d =

…
b

a
, and Ac,d =

1− d2

1 + d2
· 1 + c2

2c
,

such that c and d are both positive real numbers. Then,

ma,b(Q4(x, y)) =


|log c|+ |log d| if |Ac,d| ≥ 1,

2
π

î
D(ice−iµ) +D(iceiµ)− µ log d+ (log c) arctan

Ä
c−c−1

2 cosµ

äó
if |Ac,d| < 1,

where µ = sin−1 (Ac,d) ∈
(
−π

2
, π
2

)
, and D is the Bloch–Wigner dilogarithm given by (0.4.5).

Under a certain change of variables, the polynomial above can be factored into two linear

polynomials [29]. This simplification, along with a direct approach involving the differential

form η and the Bloch–Wigner dilogarithm (see (0.4.24)), leads us to the explicit formula in

the statement of Theorem 0.5.7.

We end this section with a brief description of how the generalized Mahler measure affects

the integral (0.4.25) involving the differential form η.

0.5.1. Generalized Mahler measure and the differential form η

We analyze the generalized Mahler measure of a non-zero 2-variable Laurent polynomial

P over an arbitrary torus T2
a,b. The following brief description essentially reproduces the

analysis in [80, Section 3]. For simplicity, we take d = 2, where d is the degree of y in

P (x, y) once P is multiplied by a suitable power of y to remove any negative power of y.
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Let x = ax′ and y = by′. Then we have, for P ∗(x) ∈ C[x],

ma,b (P (x, y))−ma,b (P
∗(x)) =

1

(2πi)2

∫∫
|x′|=|y′|=1

log |P (ax′, by′) |dx
′

x′
dy′

y′
−ma,b (P

∗(x))

=2 log b+
1

2πi

(
2∑
j=1

∫
|x′|=1,|y′j |≥1

log |y′j|
dx′

x′

)
(0.5.13)

=2 log b− 1

2π

2∑
j=1

∫
|x|=a,|yj |≥b

η (x/a, yj/b) . (0.5.14)

where yj = yj(x) = by′j are algebraic functions of x for j = 1, 2, and

η (x/a, yj/b) = η(x′, y′j) = i log |y′j|
dx′

x′
,

for j = 1, 2. The penultimate equality (0.5.13) follows from Jensen’s formula. Further sim-

plification of the terms involving the yj’s and the application of (2) of Lemma 0.4.9 imply

ma,b (P (x, y))−ma,b (P
∗(x)) = 2 log b− 1

2π

2∑
j=1

∫
|x|=a,|yj |≥b

[η (x, yj)− η (a, yi)− η (x, b)] .

If {|x| = a, |yj| ≥ b} is a closed path, then the integral

1

2π

2∑
j=1

∫
|x|=a,|yj |≥b

η (x/a, yj/b)

can be evaluated using Stokes’ theorem (see [45]). In addition, if {|x| = a, |yi| ≥ b} is a

closed path, the term

1

2π

∫
|x|=a,|yj |≥b

η (a, yi) =
log a

2π

∫
|x|=a,|yj |≥b

d arg yj

becomes a multiple of log a. As mentioned in the paragraph preceding this section, note that

if we have a genus 0 curve (such as C4 : Q4(x, y) = 0) then, instead of proceeding in the

direction above, we may be able to use (0.4.24) to relate the Bloch–Wigner dilogarithm and

η to evaluate the Mahler measure. The evaluation is much simpler in this case as we will see

in the proof of Theorem 1.1.6.
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0.6. Areal Mahler measure

In this section, we describe the necessary introductory material needed for Chapter 2 and

Chapter 3, which consist of results from two joint works with Lalín [84, 83].

A natural counterpart of the Mahler measure is obtained by replacing the normalized

arclength measure (unique Haar measure) on the unit torus T1 by the normalized area

measure on the (open) unit disk. Using continuity, we can extend this measure to the closed

unit disk D. Namely, we consider the (logarithmic) areal Mahler measure defined by

Pritsker [99] for a non-zero rational function P ∈ C(x1, . . . ,xn).

Definition 0.6.1. The (logarithmic) areal Mahler measure of a non-zero rational func-

tion P ∈ C(x1, . . . ,xn) is defined as

mD(P ) =
1

πn

∫
Dn

log |P (x1, . . . ,xn)|dA(x1) . . . dA(xn),

where

Dn = {(x1, . . . ,xn) ∈ Cn : |x1|, . . . , |xn| ≤ 1}

is the product of n unit disks, and 1
π
dA(x) = 1

π
dx is the normalized area measure on D1 = D.

Remark 0.6.2. In the discussion at the end of Section 0.1 about defining Mahler measure

on function spaces, we saw that Mahler measure can appear as the logarithm of the “0-th

norm” in a suitable function space. For 0 < r < ∞, the Bergman spaces Ar(D) are the

function spaces comprising holomorphic functions f on D that are absolutely integrable, and

such that, for 0 < r <∞,

∥f∥r =
Å
1

π

∫
D
|f |rdA(x)

ã 1
r

<∞.

Then, the exponential of the (logarithmic) areal Mahler measure of a non-zero rational func-

tion f ∈ C(x) is the limiting norm of f ∈
⋃
r>0A

r(D), i.e.,

∥f∥0 := exp (mD(f)) = lim
r→0+

∥f∥r.
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The norm ∥·∥0 naturally arises in certain extremal problems for the function space associated

to the classical Mahler measure, namely the Hardy space Hr(D). (See [61, 116] for more

details on these function spaces.)

Since, for a non-zero polynomial P ∈ C[x], the integral arithmetic means of log |P (z)|

over T1
r are increasing with r, we have

mD(P ) ≤ m(P ).

Choi and Samuels [44, Theorem 1.2] showed that, if we further have |P (0)| = 1, then

mD(P ) ≤ (m(P ))2,

which gives a better bound than above when m(P ) < 1. Pritsker further showed that mD(P )

cannot be arbitrarily small, as

m(P )− degP

2
≤ mD(P ) ≤ m(P ),

where the equality holds in the lower estimate if and only if P (x) = axn, and the upper

estimate holds when the polynomial does not vanish of the disk. The latter condition follows

directly from the areal counterpart to Jensen’s formula (0.1.4) due to Pritsker [99, Theorem

1.1]: for P (x) = a
∏d

j=1(x− αj) ∈ C[x],

mD(P ) = m(P ) +
1

2

∑
|αj |<1

(
|αj|2 − 1

)
= log |a|+

d∑
j=1

log+ |αj|+
1

2

∑
|αj |<1

(
|αj|2 − 1

)
. (0.6.1)

Taking exponential on both sides we get

∥P∥0 =M(P ) exp

Ñ
1

2

∑
|αj |<1

(
|αj|2 − 1

)é
. (0.6.2)

Note that, if P ∈ Z[x] and P (0) ̸= 0, then mD(P ) ≥ 0, which we have already seen

m(P ) to satisfy. The equivalency in (0.1.3) extends to the areal case, in the sense that, for

P ∈ Z[x] and P (0) ̸= 0,

∥P∥0 = 1 ⇐⇒ P (x) =
∏
a

ϕa(x),
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where ϕa are cyclotomic polynomials. This provides an analogous statement of Kronecker’s

Theorem. Indeed, if P is a product of cyclotomic polynomials, then by (0.6.1) we have

∥P∥0 = 1. On the other hand, if ∥P∥0 = 1, then we have

M(P ) = exp

Ñ
1

2

∑
|αj |<1

(
1− |αj|2

)é
,

and, since M(P ) is algebraic and exponential of an algebraic number is transcendental

(Lindemann–Weierstraß Theorem), the above equality only holds when |αj| = 1 for all

j, i.e., when P is a product of cyclotomic polynomials.

Another problem to consider is the areal analogue of Lehmer’s question, which asks

whether the point 1 is an isolated limit point in MD = {∥P∥0 : P ∈ Z[x]} ⊆ (−∞,∞).

Consider the polynomial family Pn(x) = x3n − nx2n − nxn + 1. Then

M(Pn) =
n+ 1 +

√
(n+ 1)2 − 4

2
,

∥Pn∥0 =M(Pn) exp

(
n

2

(Ç
n+ 1−

√
(n+ 1)2 − 4

2

å2/n

− 1

))
,

and

∥Pn∥0 −→ 1 as n→ ∞,

which shows that indeed 1 is a limit-point of MD, and is not isolated. This is in contrast

to the classical case, which is still open, where it is expected that 1 is indeed an isolated

limit-point of M.

Recall that, for P ∈ Z[x], M(P ) is always algebraic, regardless of whether the roots of

P lie inside or outside the unit circle T1. Since the exponential of an algebraic number is

transcendental, the following proposition, which highlights another key difference from the

classical case, follows from (0.6.1).

Proposition 0.6.3 ([99, Proposition 1.5]). If P (x) =
∑n

k=0 akx
k ∈ Z[x] has at least one zero

in the interior of D, then ∥P∥0 is a transcendental number. Otherwise, ∥P∥0 =M(P ) = |a0|

is an integer.
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Let E be a closed subset of C such that the open set C \E contains a neighborhood of a

point of absolute value 1, i.e., T1 ̸⊂ E. Consider an arbitrary sequence of integer coefficient

polynomials, {Pd}d≥1, such that degPd = d, Pd has only simple zeros, and the set of all zeros⋃
d≥1{α : Pd(α) = 0} is contained in E. Then Pritsker [99, Corollary 2.2] showed that there

exists a constant C(E) > 0, depending on E, such that

lim inf
d→∞

mD(Pd)

d
≥ C(E) > 0. (0.6.3)

This is an areal analogue of the results due to Langevin [85] and Dubickas–Smyth [50] which

show that, for a non-zero non-cyclotomic algebraic number α, if α and its conjugates are

contained in a closed subset Ẽ of C which does not contain a neighborhood of a single point

on T1, then, for some constant c(Ẽ) > 0, we have m(fα) ≥ c(Ẽ) deg fα, where fα ∈ Z[x] is

the integral minimal polynomial of α.

The lower bound in (0.6.3) exhibits the growth of the areal Mahler measure for many

families of polynomials such as polynomials with real zeros, etc. Additional results about

the areal Mahler measure of one-variable polynomials can be found in the works of Pritsker

[99], Choi and Samuels [44] and Flammang [52].

Our main aim in Chapter 2 is to evaluate the areal Mahler measure of some nontriv-

ial multivariable polynomials and rational functions. Pritsker showed that, for a non-zero

polynomial

P (x1, . . . , xn) =
∑

k1+···+kn≤d

ak1···knx
k1
1 · · ·xknn ∈ C[x1, . . . , xn] (0.6.4)

of degree at most d,

m(P )− d

2
≤ mD(P ) ≤ m(P ),

and the equality on the left and right hold when P (x1, . . . , xn) = ak1···knx
k1
1 · · ·xknn with

k1 + · · ·+ kn = d, and when the polynomial does not vanish in Dn, respectively.

Some simple evaluations in multivariable cases are included in [99]. In particular, Pritsker

proved that

mD(x1 + x2) = −1

4
, mD

(
1 + xk11 · · ·xknn

)
= 0, for k1, . . . ,kd ≥ 0,
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and if the polynomial P of the form (0.6.4) satisfies

|a0···0| ≥
∑

k1+···+kn≤d

|ak1···kn|, (0.6.5)

then mD(P ) = m(P ) = log |a0···0|.

In Chapter 2, we provide many more formulas for multivariable areal Mahler measures,

most of which involve special values of L-functions and other special functions. For example,

we prove the following result.

Theorem 0.6.4 ([84, Theorem 1]). We have

mD(1 + x+ y) =
3
√
3

4π
L(χ−3,2) +

1

6
− 11

√
3

16π
. (0.6.6)

Comparing this formula with (0.1.7), we see the same term involving the L-

function/dilogarithm and some extra terms, namely

mD(1 + x+ y) = m(1 + x+ y)−
Ç
11
√
3

16π
− 1

6

å
< m(1 + x+ y).

It is natural to wonder if one can obtain an elegant areal Mahler measure formula for

polynomials of the type ax + by + c, analogous to the Cassaigne–Maillot’s result (0.5.1) in

the classical case, where a, b, c are fixed coefficients. It seems to be quite difficult to obtain

such a formula for the areal Mahler measure in full generality. To illustrate this, we have

the following nontrivial statement.

Theorem 0.6.5 ([84, Theorem 2]). We have

mD

Ä√
2 + x+ y

ä
=
L(χ−4,2)

π
+ C√2 +

3

8
− 3

2π
,

where

C√2 =
Γ
(
3
4

)2
√
2π3

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
−

Γ
(
1
4

)2
72
√
2π3

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
,

is expressed in terms of generalized hypergeometric functions, as defined in (0.2.1).

We notice that

m
Ä√

2 + x+ y
ä
=
L(χ−4,2)

π
+

log 2

4
.
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This formula can be obtained by specializing the more general expression for m(ax+ by+ c)

in (0.5.1). 9

Remark 0.6.6. In recent ongoing work with Lalín, Nair, and Ringeling, we obtain a general

expression of mD(k + x + y) in terms of k, for k ∈ C, using an areal analogue of the zeta

Mahler measure (see Section 0.6.3 and Chapter 5 for more details). Furthermore, evaluating

(0.6.22) in Theorem 0.6.25 at k =
√
2 and comparing it with the results of Cassaigne–Maillot

in (0.5.1), we have C√2 =
log 2
4
, which provides a nontrivial hypergeometric identity:

Γ
(
3
4

)2
√
2π3

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
−

Γ
(
1
4

)2
72
√
2π3

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
=

log 2

4
.

Moreover, we have

mD

Ä√
2 + x+ y

ä
= m

Ä√
2 + x+ y

ä
−
Å

3

2π
− 3

8

ã
< m

Ä√
2 + x+ y

ä
.

A motivation to study this particular polynomial lies in the fact that it is relatively easy

to understand the boundaries of integration upon application of Jensen’s formula, due to the

particular properties of the constant
√
2.

We also prove the following statement involving a rational function.

Theorem 0.6.7 ([84, Theorem 4]). We have

mD

Å
y +

Å
1− x

1 + x

ãã
=

6

π
L (χ−4, 2)− log 2− 1

2
− 1

π
. (0.6.7)

The above formula can be compared to the evaluation due to Boyd [28]

m

Å
y +

Å
1− x

1 + x

ãã
=

2

π
L(χ−4,2), (0.6.8)

as

mD

Å
y +

Å
1− x

1 + x

ãã
= 3m

Å
y +

Å
1− x

1 + x

ãã
− log 2− 1

2
− 1

π
.

In this case, the term L(χ−4,2) involving the Dirichlet L-function in the character of con-

ductor 4 comes from evaluating the dilogarithm at ±i. However, unlike the situation of

equations (0.1.7) and (0.6.6), the dilogarithmic terms in (0.6.7) and (0.6.8) do not have the

same coefficients.

9. Take a = b = 1 and c =
√
2.
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For the moment we lack the connection to regulators that could potentially allow us to

perform these evaluations more systematically. Nevertheless, our results provide evidence

that the areal Mahler measure is also an interesting object deserving of attention and open

the door to future considerations of the areal Mahler measure and suggest the search for

deeper connections to regulators that could potentially explain such formulas.

0.6.1. Areal Mahler measure under a power change of variables

Recall that, for A ∈ GLn(Z), x = (x1, . . . , xn) and j = (j1, . . . , jn), Theorem 0.1.6 states

that Mahler measure of a non-zero polynomial P (x) =
∑

j cjx
j ∈ C[x] is invariant under the

transformation defined by P (A)(x) :=
∑

j cjx
Aj, i.e.

m(P ) = m
Ä
P (A)

ä
. (0.6.9)

In Chapter 3, we investigate the simplest possible case of the above transformation,

namely, when one of the variables, x, is replaced by a power of itself, xr, where r is a positive

integer, in the areal Mahler measure case. To illustrate this, we compute the areal Mahler

measures of 1 + xr + ys, where r and s are positive integers and we obtain results that are

different from (0.6.6), which corresponds to the case r = s = 1. More precisely, we prove the

following statement.

Theorem 0.6.8 ([83, Theorem 1]). Let r,s be positive integers. We have

mD (1 + xr + ys)

=
3
√
3

4π
L(χ−3,2)−

r

6
+

√
3r

12π

ï
ζ

Å
1,
r + 2

3r

ã
− ζ

Å
1,
2r + 2

3r

ã
+ ζ

Å
1,
r + 1

3r

ã
− ζ

Å
1,
2r + 1

3r

ãò
− 2

π

∑
1≤k

⌊ k
2
⌋∑

h=0

Ç
k

2h

å
(−1)h−1

2F1

(
1
2
− h, k − h+ 1

r
+ 1

2
; k − h+ 1

r
+ 3

2
; 1
4

)
2k−2h+1k(kr + 2)

(
2k + 2

r
− 2h+ 1

) +
s

6

∑
1≤k

Ç
1
s

k

å2
1

kr + 1

− s
√
3

π

∑
0≤j<k

Ç
1
s

k

åÇ
1
s

j

å
χ−3(k − j)

((k + j)r + 2)(k − j)
+

s

4π

∑
1≤k

Ç
1
s

k

å2
2F1

(
1
2
, k + 1

r
+ 1

2
; k + 1

r
+ 3

2
; 1
4

)
(kr + 1)

(
2k + 1 + 2

r

)
+
s

π

∑
0≤j<k

⌊ k−j
2

⌋∑
h=0

Ç
1
s

k

åÇ
1
s

j

åÇ
k − j

2h

å
(−1)k−j+h2F1

(
1
2
− h, k − h+ 1

r
+ 1

2
; k − h+ 1

r
+ 3

2
; 1
4

)
2k−j−2h ((k + j)r + 2)

(
2k + 2

r
− 2h+ 1

) ,
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where ζ(s,x) =
∑∞

n=0
1

(n+x)s
is the Hurwitz zeta-function and 2F1(a,b; c; z) is the hypergeo-

metric function given by (0.2.1).

Remark 0.6.9. For the case r = 1, the formula from Theorem 0.6.8 should be interpreted

as a regularization, namely the divergent terms ζ(1,1) with opposite signs cancel each other.

More precisely, for r = 1, the line

3
√
3

4π
L(χ−3,2)−

r

6
+

√
3r

12π

ï
ζ

Å
1,
r + 2

3r

ã
− ζ

Å
1,
2r + 2

3r

ã
+ ζ

Å
1,
r + 1

3r

ã
− ζ

Å
1,
2r + 1

3r

ãò
should be replaced by

3
√
3

4π
L(χ−3,2)−

1

4
+

√
3

4π
.

Remark 0.6.10. The result of Theorem 0.6.8 should be symmetric with respect to r and s,

which is certainly not obvious to guess from the formula itself ! This phenomenon is observed

numerically, but we do not have a direct proof of it.

We also compute the areal Mahler measure of a similar family, namely, (1+ x)r + ys and

obtain interesting results depending on s.

Theorem 0.6.11 ([83, Theorem 4]). Let r, s be positive integers. We have

mD((1 + x)r + ys)

= r

Ç
3
√
3

4π
L(χ−3,2) +

1

6
−

√
3

2π

å
− s

6
+
s

6

Γ
(
2r
s
+ 2
)

Γ
(
r
s
+ 2
)2

− s
√
3

π

∑
0≤j<k

Ç
r
s

k

åÇ
r
s

j

å
χ−3(k − j)

(k + j + 2)(k − j)
+

s

4π

∑
1≤k

Ç
r
s

k

å2
2F1

(
1
2
, k + 3

2
; k + 5

2
; 1
4

)
(k + 1)(2k + 3)

+
s

π

∑
0≤j<k

⌊ k−j
2

⌋∑
h=0

Ç
r
s

k

åÇ
r
s

j

åÇ
k − j

2h

å
(−1)k−j+h2F1

(
1
2
− h, k − h+ 3

2
; k − h+ 5

2
; 1
4

)
2k−j−2h(k + j + 2)(2k − 2h+ 3)

.

Remark 0.6.12. We remark that Theorem 0.6.8 and Theorem 0.6.11 should coincide in the

case of r = 1. This results in the identities

∑
1≤k

⌊ k
2
⌋∑

j=0

Ç
k

2j

å
(−1)j−1

2F1

(
1
2
− j, k − j + 3

2
; k − j + 5

2
; 1
4

)
2k−2jk(k + 2) (2k − 2j + 3)

=
3
√
3

4
− 5π

12
(0.6.10)
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and ∑
1≤k

Ç
1
s

k

å2
1

k + 1
= −1 +

Γ
(
2
s
+ 2
)

Γ
(
1
s
+ 2
)2 . (0.6.11)

While equation (0.6.11) is proven in Corollary 3.3.2 in Chapter 3, we do not know how to

prove equation (0.6.10) independently, which can be seen to be numerically true.

If, in addition, we set s = 1, we recover formula (0.6.6) by employing the evaluation of

2F1

(
1
2
, 5
2
; 7
2
; 1
4

)
, given by

2F1

Å
1

2
,
5

2
;
7

2
;
1

4

ã
= 10π − 35

√
3

2
.

.

We also prove the following result in Chapter 3, which explains the effect of the change

x 7→ xr in general, as r → ∞.

Theorem 0.6.13 ([83, Theorem 6]). Let P (x1, . . . ,xn) ∈ C(x1, . . . ,xn) be a non-zero rational

function and let P (0, x2, . . . ,xn) ∈ C(x2, . . . ,xn) be the non-zero rational function resulting

from P by setting x1 = 0. Let r be a positive integer. Then we have

lim
r→∞

mD(P (x
r
1,x2, . . . ,xn)) = mD(P (0,x2, . . . , xn)).

0.6.2. Generalized (maximal) areal Mahler measure, multiple areal

Mahler measure, and higher areal Mahler measure

Variations of the Mahler measure such as generalized (maximal) Mahler measures [54],

multiple and higher Mahler measures [72], and zeta Mahler measures [8, 3] can also be

adapted to the areal Mahler measure setting. In the following sections, we will define these

analogues and present our findings for each type.

0.6.2.1. Generalized (maximal) areal Mahler measure. Generalized (maximal)

Mahler measures were introduced by Gon and Oyanagi [54], who studied their basic

properties, computed some examples, and related them to multiple sine functions and

special values of Dirichlet L-functions. They were also studied in [67, 76].

49



For non-zero rational functions P1, . . . , Pr ∈ C(x1, . . . , xn), the generalized (maximal)

Mahler measure of P1, . . . , Pr is defined by

mmax(P1, . . . , Pr) =
1

(2πi)n

∫
Tn

max{log |P1|, . . . , log |Pr|}
dx1
x1

· · · dxn
xn

.

Observe that, if Pj(x1, . . . , xn) = xj for all j = 1, . . . , n, then mmax(P1, . . . , Pn) = 0, since

log |xj| = log 1 = 0. In other words, we have

mmax(x1, . . . , xn) = 0. (0.6.12)

When Pj(x1, . . . , xn) = 1− xj or 1−xj
1+xj

, we have more involved evaluations.

P = 1− x: Gon–Oyanagi [54] showed that, for k ≥ 1,

m(1− x1, . . . , 1− x2k) =
(−1)k+1(2k)!

π2k
ζ(2k + 1)

+ (2k)!
k∑
j=1

(−1)j
1− 22j

(2k − 2j)!(2π)2j
ζ(2j + 1),

m(1− x1, . . . , 1− x2k−1) =(2k − 1)!
k−1∑
j=1

(−1)j
1− 22j

(2k − 2j − 1)!(2π)2j
ζ(2j + 1);

P = 1−x
1+x

: Lalín [76] showed that, for k ≥ 1,

m

Å
1− x1
1 + x1

, . . . ,
1− x2k
1 + x2k

ã
=
(−1)k(2k)!(1− 22k+1)

(2π)2k
ζ(2k + 1)

+ (2k)!
k∑
j=1

(−1)j
1− 22j+1

(2k − 2j)!(2π)2j
ζ(2j + 1),

m

Å
1− x1
1 + x1

, . . . ,
1− x2k+1

1 + x2k+1

ã
=(2k − 1)!

k−1∑
j=1

(−1)j
1− 22j+1

(2k − 2j − 1)!(2π)2j
ζ(2j + 1).

Next, it is natural to consider the areal analogue following the discussions preceding this

section.

Definition 0.6.14. Let P1, . . . , Pr ∈ C(x1, . . . , xn) be non-zero rational functions. Then the

generalized (maximal) areal Mahler measure of P1, . . . , Pr is defined by

mD,max(P1, . . . , Pr) =
1

πn

∫
Dn

max{log |P1|, . . . , log |Pr|}dA(x1) . . . dA(xn).
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For the areal analogue of (0.6.12), we have the following result.

Theorem 0.6.15 ([84, Proposition 9]). We have

mD,max(x1, . . . ,xn) = − 1

2n
.

0.6.2.2. Multiple and higher areal Mahler measures. The multiple Mahler measure

was defined by Kurokawa, Lalín, and Ochiai in [72] as, for non-zero rational functions

P1, . . . , Pr ∈ C(x1, . . . , xn),

m(P1, . . . , Pr) :=
1

(2πi)n

∫
Tn

log |P1(x1, . . . , xn)| · · · log |Pr(x1, . . . , xn)|
dx1
x1

· · · dxn
xn

.

For the particular case in which P1 = · · · = Pr = P , the multiple Mahler measure is called

the r-th higher Mahler measure and is given by

mr(P ) :=
1

(2πi)n

∫
Tn

logr |P (x1, . . . , xn)|
dx1
x1

· · · dxn
xn

. (0.6.13)

The multiple Mahler measure and the higher Mahler measure were considered by various

authors who computed specific formulas and proved various limiting properties [17, 18, 23,

24, 67, 78, 108, 109]. For example, in [72], Kurokawa, Lalín and Ochiai considered the

polynomial P1(x) = 1− x and P2(x) = 1 + x, and obtained

m(P1, P1, P2) =
ζ(3)

4
= m(P1, P2, P2),

and

mr(P1) =
∑

k1+···+kh=r,kj≥2

(−1)rr!

22h
ζ(k1, . . . , kh), (0.6.14)

where ζ(k1, . . . , kh) denotes a multizeta value, i.e.,

ζ(k1, . . . , kh) =
∑

ℓ1<···<ℓh

1

ℓk11 · · · ℓkhh
.

The multizeta values can be further simplified and expressed in terms of classical zeta values

using the next proposition.

Proposition 0.6.16. [72, Proposition 4]

∑
σ∈Sh

ζ(kσ(1), . . . , kσ(h)) =
∑

e1+···+eg=h

(−1)h−g
g∏
s=1

(eg − 1)!
∑

ζ

(∑
b∈π1

kb

)
· · · ζ

Ñ∑
b∈πg

kb

é
,
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where the sum in the right is taken over all the possible unordered partitions of the set

{1, . . . , h} into g subsets π1, . . . , πg with e1, . . . , eg elements respectively.

A more elaborate example is due to Sasaki [110], and Lalín and Lechasseur [78]:

mh

Å
1− x

1 + x

ã
=


|Eh|
2h

πh h even,

0 h odd,

(0.6.15)

where En denotes the n-th Euler number defined in (0.4.20).

Following the essence of the previous section, it is again natural to consider the areal

versions of these constructions.

Definition 0.6.17. Let P1, . . . , Pr ∈ C(x1, . . . , xn) be non-zero rational functions. Then the

multiple areal Mahler measure of P1, . . . , Pr is defined by

mD,h1,...,hr(P1, . . . , Pr) :=
1

πn

∫
Dn

logh1 |P1(x1, . . . , xn)| · · · loghr |Pr(x1, . . . , xn)|dA(x1) . . . dA(xn).

Moreover, the r-th higher areal Mahler measure is defined by taking P1 = P2 = · · · = Pr.

We remark that in the classical case, we have mh1,...,hn(x1, . . . ,xn) = 0, which again follows

from the fact that log |xj| = 0 on the n-torus. The areal analogue is non-zero.

Theorem 0.6.18 ([84, Proposition 10]). We have

mD,h1,...,hn(x1, . . . ,xn) =
(−1)h1+···+hnh1! · · ·hn!

2h1+···+hn+n
.

The following theorem evaluates the areal version of the result in (0.6.15).

Theorem 0.6.19 ([84, Theorem 11]). For h ∈ Z>0 even, we have,

mD,h

Å
1− x

1 + x

ã
=
Eh(πi)

h

2h
− Eh−2(πi)

h−2h(h− 1)

2h−2
log 2

− 4h!

2h

h−1∑
m=2

(1− 21−m)ζ(m)
Eh−m−1(πi)

h−m−1

(h−m− 1)!
,
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where Bn and En denote the nth Bernoulli number and the nth Euler number defined in

(0.4.3) and (0.4.20) respectively, and the first sum for h = 2 should be interpreted as equal

to zero.

For h odd, we have

mD,h

Å
1− x

1 + x

ã
= 0.

Section 2.4 in Chapter 2 contains the derivations of the above-mentioned results. Next,

we consider certain Zeta functions associated to the Mahler measure, as well as the areal

Mahler measure, which collect all r-th higher Mahler measures and r-th higher areal Mahler

measures, for r ≥ 1, respectively.

0.6.3. Areal zeta Mahler measure

The zeta Mahler measure was defined by Akatsuka [3] for a nonzero rational function

P ∈ C(x1, . . . ,xn) as

Z(s,P ) :=
1

(2πi)n

∫
Tn

|P (x1, . . . , xn)|s
dx1
x1

· · · dxn
xn

,

where s is a complex variable. The integral converges absolutely in Re(s) > σ0(P ), where

σ0(P ) := inf

ß
σ ∈ R :

1

(2πi)n

∫
Tn

|P (x1, . . . , xn)|σ dA(x1) . . . dA(xn) <∞
™
∈ R ∪ {−∞}.

Since Z(0, P ) = 1 <∞, Z(s, P ) converges absolutely when Re(s) = 0, and therefore we have

σ0(P ) ≤ 0. Akatsuka further showed that Z(s, P ) is holomorphic when Re(s) > σ0(P ), and

dkZ(s, P )

dsk
=

1

(2πi)n

∫
Tn

|P (x1, . . . , xn)|s (log |P |)k
dx1
x1

· · · dxn
xn

,

for all k ≥ 1. In particular, m(P ) = dZ(s,P )
ds

∣∣∣
s=0

.

The zeta Mahler measure was considered in [17, 19, 26, 72, 101, 110, 115]. Its Taylor

expansion is the exponential generating series of the higher Mahler measure given in (0.6.13):

Z(s,P ) =
∞∑
k=0

mk(P )s
k

k!
.

Next, we include some evaluations of zeta Mahler measure for certain linear polynomials.

The first example is due to Akatsuka [3], and Kurokawa, Lalín and Ochiai [72], where they
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showed that, for Re(s) > −1,

Z(s, x+ 1) = exp

(
∞∑
j=2

(−1)j

j
(1− 21−j)ζ(j)sj

)
= 2sπ− 1

2
Γ
(
s+1
2

)
Γ
(
s
2
+ 1
) =

Γ(s+ 1)

Γ
(
s
2
+ 1
)2 . (0.6.16)

Akatsuka further extended (0.6.16) in [3] to all a ∈ C. He showed that, for a ∈ C and

Re(s) > −1,

Z(s, x+ a) =


|a|s2F1

(
− s

2
,− s

2
; 1; |a|−2

)
if |a| > 1

2F1

(
− s

2
,− s

2
; 1; |a|2

)
if |a| < 1

Γ(s+1)

Γ( s
2
+1)

2 if |a| = 1.

(0.6.17)

A more involved example is due to Borwein, Straub, Wan and Zudilin [26]. They showed

that, for s not an odd integer,

Z(s, x+ y + 1) =
1

22s+1
tan
(πs
2

)Ç s
s−1
2

å2

3F2

Å
1

2
,
1

2
,
1

2
;
s+ 3

2
,
s+ 3

2
;
1

4

ã
+

Ç
s
s
4

å
3F2

Å
−s
2
,−s

2
,−s

2
; 1,−s− 1

2
;
1

4

ã
.

We can again extend the definition of the zeta Mahler measure to the areal case in a

similar sense as in previous sections.

Definition 0.6.20. Let P ∈ C[x±1 , . . . , x±n ] be a Laurent polynomial. Then the areal zeta

Mahler measure of P is defined as

ZD(s,P ) :=
1

πn

∫
Dn

|P (x1, . . . , xn)|s dA(x1) . . . dA(xn). (0.6.18)

From the discussion at the end of Section 0.1, we know that the normalized area measure

µD is finite (see (2)), which implies that the integral expression of ZD(s, P ) absolutely con-

verges when Re(s) = 0. Further, if P ∈ C[x1, . . . , xn], then the integral converges absolutely

for Re(s) > σ1(P ), where

σ1(P ) := inf

ß
σ ∈ R :

1

πn

∫
Dn

|P (x1, . . . , xn)|σ dA(x1) . . . dA(xn) <∞
™
∈ R ∪ {−∞}.

Since ZD(0, P ) =
∫
Dn dµDn = µDn(Dn) = 1 <∞, we have σ1(P ) ≤ 0, when P ∈ C[x1, . . . , xn].

Here dµDn = dµD · · · dµD = 1
πndA(x1) · · · dA(xn).
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In fact, we will show in Chapter 5 that, for Re(s) > σ1(P ), the integral converges locally

uniformly, Z(s, P ) is holomorphic, and

dkZD(s,P )

dsk
=

1

πn

∫
Dn

|P (x1, . . . , xn)|s (log |P |)kdA(x1) . . . dA(xn),

for all k ≥ 1. In particular,

dZD(s, P )

ds

∣∣∣∣
s=0

= mD(P ).

Remark 0.6.21. If P ∈ C[x±1 , . . . , x±n ] \C[x1, . . . , xn], then there exist non-negative integers

k1, . . . , kn such that P̃ (x1, . . . , xn) := xk11 · · ·xknn P (x1, . . . , xn) ∈ C[x1, . . . , xn]. Since, the

exponential generating function of higher areal Mahler measure of P is the areal zeta Mahler

measure of P, we can formally define and evaluate ZD(s, P ) as

ZD(s, P ) =
∞∑
k=0

mD,k(P )

k!
sk =

∞∑
k=0

mD,k(x
−k1
1 · · ·x−knn P̃ )

k!
sk

=ZD(s, P̃ ) +
∞∑
k=1

k∑
j=1

(−1)j
mD,k−j(P̃ )mD,j(x

k1
1 · · · xknn )

j!(k − j)!
sk.

In Chapter 2, we follow some arguments from [72, Theorem 14] to compute the areal

Mahler measure of x+ 1 and prove the following result.

Theorem 0.6.22 ([84, Theorem 13]). We have

ZD(s, x+ 1) = exp

(
∞∑
j=2

(−1)j

j
(1− 21−j)(ζ(j)− 1)sj

)
=

s+ 1(
s
2
+ 1
)2 Γ(s+ 1)

Γ
(
s
2
+ 1
)2 . (0.6.19)

Note that (0.6.19) can be compared to the classical case (0.6.16):

ZD(s, x+ 1) =
s+ 1

(s/2 + 1)2
Z(s, x+ 1).

As the zeta Mahler measure is the exponential generating function of the higher Mahler

measure, it leads to formulas for the latter by taking successive derivatives of the former

and evaluating at s = 0. For example, we have the first few examples of mk(x + 1), for

k = 1, 2, 3, 4, 5, which follows from (0.6.16) (the following examples can also be obtained
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from the general formula (0.6.14) of higher Mahler measure mk(1 + x) in [72, Example 5]):

m1(x+ 1) =0,

m2(x+ 1) =
ζ(2)

2
,

m3(x+ 1) =− 3ζ(3)

2
,

m4(x+ 1) =
3ζ(2)2 + 21ζ(4)

4
=

57ζ(4)

8
,

m5(x+ 1) =− 15ζ(3)ζ(2) + 45ζ(5)

2
.

Using Theorem 0.6.22, we can further compare their results with their areal counterparts:

mD,1(x+ 1) =0,

mD,2(x+ 1) =
ζ(2)− 1

2
,

mD,3(x+ 1) =− 3ζ(3)− 3

2
,

mD,4(x+ 1) =
3(7ζ(4) + ζ(2)2 − 2ζ(2)− 6)

4
=

57ζ(4)− 12ζ(2)− 36

8
,

mD,5(x+ 1) =− 15ζ(3)ζ(2) + 45ζ(5)− 15ζ(3)− 15ζ(2)− 30

2
.

In Chapter 5, we investigate some fundamental properties of the areal zeta Mahler mea-

sure including the convergent domain of the integral in (0.6.18) and certain transformation

formulas, and compare them with the classical case. Our methods are influenced by the

work of Akatsuka in [3].

Our main aim in Chapter 5 is to study the areal Zeta Mahler measure of |k|+ x+ y for

k ∈ C, for which we have the following result. This is a joint work in progress with Lalín,

Nair, and Ringeling.

Theorem 0.6.23. For Re(s) > −7
2

and k ∈ C, we have

ZD(s, |k|+ x+ y) = c0(s)

Å |k|
2

ãs+3

F0

Å |k|2
4

; s

ã
+ c1(s)F1

Å |k|2
4

; s

ã
, (0.6.20)
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where

F0(z; s) = 3F2

Å
−1

2
,
1

2
,
3

2
;
5 + s

2
,
5 + s

2
; z

ã
,

F1(z; s) = 3F2

Å
−2− s

2
,− 1− s

2
,−s

2
; 1,− 1

2
− s

2
; z

ã
,

c0(s) =

2s · 3F2

(
− s

2
,− s

2
, 3
2
; 2, 3; 1

)
− 4

s+4
Γ(s+2)

Γ( s
2
+2)

2 · 3F2

(
−2− s

2
,− 1− s

2
,− s

2
; 1,− 1

2
− s

2
; 1
)

3F2

(
−1

2
,1
2
, 3
2
; 5+s

2
,5+s

2
; 1
) ,

and c1(s) = 4
s+4

Γ(s+2)

Γ( s
2
+2)

2 .

Since dZD(s,|k|+x+y)
ds

∣∣∣
s=0

= mD(|k|+ x+ y), we have the following corollary.

Corollary 0.6.24. For k ∈ C,

mD(|k|+ x+ y) = −4|k|3

9π
3F2

Å
−1

2
,
1

2
,
3

2
;
5

2
,
5

2
;
|k|2

4

ã
+

|k|2

2
− 1

4
.

From Cassaigne–Maillot’s result in (0.5.1) (see also [7] for the hypergeometric expression

of Cassaigne–Maillot’s formula), we obtain, for k > 0,

m(k + x+ y) =
k

π
3F2

Å
1

2
,
1

2
,
1

2
;
3

2
,
3

2
;
k2

4

ã
. (0.6.21)

Corollary 0.6.24 then yields the following result.

Theorem 0.6.25. For k > 0,

m(k + x+ y)−mD(k + x+ y) =
k
√
4− k2(10 + k2) + (8− 16k2) arccos

(
k
2

)
16π

. (0.6.22)

Remark 0.6.26. Note that, for any ξ ∈ C× satisfying |ξ| = 1, neither m(k + x + y) nor

mD(k+ x+ y) changes under the transformation k 7→ kξ. Therefore, we can rewrite (0.6.22)

as

m(|k|+x+y)−mD(|k|+x+y) =
|k|
√
4− |k|2(10 + |k|2) + (8− 16|k|2) arccos

Ä
|k|
2

ä
16π

, (0.6.23)

which further shows that (0.6.23) holds for all k ∈ C.

When k =
√
2, (0.6.23) yields a simpler expression of the hypergeometric representation

of C√2 in Theorem 0.6.5 (see Remark 0.6.6). Furthermore, combining Cassaigne–Maillot’s
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result in (0.5.1) with (0.6.23), we can express mD(|k| + x + y) in a more simplified manner

involving special values of Bloch–Wigner dilogarithm D.

0.7. Mahler measure of an n-variable family

This section gives an introductory overview of the results from a collaborative project

with Lalín and Nair [81] in Chapter 4.

Very few examples of Mahler measure of multivariable polynomials are known with more

than three variables. Such examples represent important evidence for understanding the

relationship between Mahler measure and regulators. In [74, 75] Lalín considered the Mahler

measures of the following families of rational functions:

Rn(x1, . . . , xn,z) :=z +

Å
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ã
,

Sn(x1, . . . ,xn,x,y,z) :=(1 + x)z +

Å
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ã
(1 + y),

Tn(x1, . . . ,xn,x,y) :=1 +

Å
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ã
x+

Å
1−

Å
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãã
y.

Notice that multiplication by (1 + x1) · · · (1 + xn) turns the above functions into polyno-

mials, without changing the Mahler measure. They are written as rational functions for

convenience.

For a1, . . . an ∈ C, define the symmetric functions as the coefficients of the polynomial

(x+ a1) · · · (x+ an), namely,

sℓ(a1, . . . , an) =


1 if ℓ = 0,∑

i1<···<iℓ ai1 · · · aiℓ if 0 < ℓ ≤ n,

0 if n < ℓ.

(0.7.1)

We also set s0 = 1 when n = 0.

The Mahler measures of the polynomials Rn,Sn,Tn are then given by the following for-

mulas [75, 78]. For k ≥ 1,

m(R2k) =
k∑

h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k − 1)!

Å
2

π

ã2h

A(h),
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where

A(h) := (2h)!

Å
1− 1

22h+1

ã
ζ(2h+ 1).

For k ≥ 0,

m(R2k+1) =
k∑

h=0

sk−h(1
2,32, . . . , (2k − 1)2)

(2k)!

Å
2

π

ã2h+1

B(h),

where

B(h) := (2h+ 1)!L(χ−4, 2h+ 2).

For k ≥ 1,

m(S2k) =
k∑

h=1

sk−h(2
2,42, . . . , (2k − 2)2)

(2k − 1)!

Å
2

π

ã2h+2

C(h), (0.7.2)

where

C(h) :=
h∑
ℓ=1

Ç
2h

2ℓ

å
(−1)h−ℓ

4h
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 2)!

Å
1− 1

22ℓ+3

ã
ζ(2ℓ+ 3),

and the Bernoulli numbers Bk are given by (0.4.3).

For k ≥ 0,

m(S2k+1) =
k∑

h=0

sk−h(1
2, 32 . . . , (2k − 1)2)

(2k)!

Å
2

π

ã2h+3

D(h), (0.7.3)

where

D(h) :=
h∑
ℓ=0

Ç
2h+ 1

2ℓ+ 1

å
(−1)h−ℓ

2(2h+ 1)
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 3)!L(χ−4,2ℓ+ 4).

For k ≥ 1,

m(T2k) =
log 2

2
+

k∑
h=1

sk−h(2
2, 42, . . . , (2k − 2)2)

(2k − 1)!

Å
2

π

ã2h

E(h),

where

E(h) :=(2h)!

2

Å
1− 1

22h+1

ã
ζ(2h+ 1) +

h∑
ℓ=1

(22(h−ℓ)−1 − 1)

Ç
2h

2ℓ

å
(−1)h−ℓ+1

2h

×B2(h−ℓ)π
2h−2ℓ(2ℓ)!

Å
1− 1

22ℓ+1

ã
ζ(2ℓ+ 1).
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For k ≥ 0,

m(T2k+1) =
log 2

2
+

k∑
h=1

sk−h(2
2,42, . . . ,(2k − 2)2)

(2k + 1)!

Å
2

π

ã2h+2

F(h),

where

F(h) :=
(2h+ 2)!

2

Å
1− 1

22h+3

ã
ζ(2h+ 3) +

π2k2

2
(2h)!

Å
1− 1

22h+1

ã
ζ(2h+ 1)

+ k(2k + 1)
h∑
ℓ=1

ñ
(22(h−ℓ)−1 − 1)

Ç
2h

2ℓ

å
(−1)h−ℓ+1

4h
B2(h−ℓ)π

2h+2−2ℓ(2ℓ)!

×
Å
1− 1

22ℓ+1

ã
ζ(2ℓ+ 1)

ò
.

The above formulas are quite miraculous. Their computations are possible because the

Möbius transformation 1−x
1+x

has a particularly elegant effect mapping the unit circle to the

imaginary axis. The resulting differential in the change of variables also has very special

properties, allowing for certain recurrences relating the case n + 2 to the case n, which

explains why the above formulas depend on the parity of n.

Nair [93] recently explored a similar phenomenon by considering the family

Qn(x1, . . . , xn,z) := z +

Å
ξ3 + x1
1 + x1

ã
· · ·
Å
ξ3 + xn
1 + xn

ã
,

where

ξ3 =
−1 +

√
3i

2
,

and he proved similar formulas involving linear combinations of values of ζ(k)
πk−1 and L(χ−3,k)

πk−1

with certain rational coefficients.

In [30], Boyd proposed the study of polynomials of the form a(x) + b(x)y+ c(x)z, where

a(x), b(x), c(x) are products of cyclotomic polynomials. The reason for studying this partic-

ular class of polynomials comes from the Cassaigne–Maillot formula for the Mahler measure

of ax + by + c in (0.5.1), which has an expression that is particularly convenient for nu-

merical integration. The investigation of such polynomials led to the discovery of several

interesting numerical formulas involving L-functions of elliptic curves. Recently Brunault

further pursued these computations with higher degree cyclotomic polynomials. This led to
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the discovery of certain formulas with arbitrary degrees such as

m
(
1 + (x2 − x+ 1)y + (x+ 1)rz

)
= r

3
√
3

4π
L (χ−3, 2) , (0.7.4)

where r is an arbitrary positive integer.

In Chapter 4, we combine ideas in [74, 75, 93], and extend the above study by replacing

the coefficients a(x), b(x), and c(x) with
∏n

j=1(1−xj)
r,
∏n

j=1(1−xj)
r, and (1+x)

∏n
j=1(1+

xj)
r, respectively, where r is an arbitrary positive integer. Note that the new multivariable

coefficient polynomials are again products of cyclotomic polynomials. This is a joint work

with Lalín and Nair [81].

More precisely, we generalize the family Sn to

Sn,r(x1, . . . , xn, x, y, z) := (1 + x)z +

ïÅ
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãòr
(1 + y),

and we prove the following result.

Theorem 0.7.1 ([81, Theorem 1]). Let r ≥ 1. For k ≥ 1, we have

m(S2k,r) =
k∑

h=1

sk−h(2
2,42, . . . ,(2k − 2)2)

(2k − 1)!

Å
2

π

ã2h

Cr(h),

where

Cr(h) :=r(2h)!
Å
1− 1

22h+1

ã
ζ(2h+ 1)

+
r2(2h− 1)!

π2

{
(−1)h+17B2hπ

2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

Å
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
Ç
t− 1

2h− 1

å
(2− 21−t)ζ(t)

å
(2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

Å
ℓ

2r

ã]}
.

For k ≥ 0, we have

m(S2k+1,r) =
k∑

h=0

sk−h(1
2,32, . . . ,(2k − 1)2)

(2k)!

Å
2

π

ã2h+1

Dr(h),
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where

Dr(h) :=r(2h+ 1)!L(χ−4,2h+ 2)

+
2ir2(2h)!

π2

{
(−1)h+1(22h+4 − 1)B2h+4π

2h+4

r2h+3(2h+ 4)!

− i
(−1)hE2hπ

2h+1

r222h(2h)!

Å
Li3((−i)r)−

1

8
Li3((−1)r)

ã
+ (2h+ 3)(2h+ 2)

1

r2h+3

Å
Li2h+4((−i)r)−

1

22h+4
Li2h+4((−1)r)

ã
+

2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

Ç
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

Ç
t− 1

2h

å
Lit(−i)

å
× (2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

Å
ℓ

2r

ã]}
.

In the above formulas, ξ2r denotes a primitive 2r-root of unity, Liℓ(z) denotes the ℓ-th poly-

logarithm (see Section 0.4.1), and Bn(t) denotes the Bernoulli polynomial given by (0.4.12).

The importance of Theorem 0.7.1 lies in providing formulas for the Mahler measure of

families characterized by arbitrarily many variables and arbitrarily large degrees. This stands

in stark contrast to previous results which primarily dealt with families such as Rn, Sn, and

Tn, having arbitrarily many variables but remaining linear in them. Moreover, the degree r

plays a non-crucial role in the Mahler measure of Sn,r, as varying r fundamentally changes

m(Sn,r), as opposed to formula (0.7.4), where r is merely a factor in the final formula.

We remark that in the case r = 1, Theorem 0.7.1 reduces to the cases previously known

for Sn, namely,

C1(h) =
4

π2
C(h) and D1(h) =

4

π2
D(h).
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The case r = 2 also admits an interesting simplification as follows.

C2(h) =(−1)h+1 7

4h
B2hπ

2h−2
(
22h − 1

)
ζ(3)

+ 4
h−1∑
ℓ=0

Ç
2h

2ℓ

å
(−1)h−ℓ

h

(
22h−2ℓ − 1

)
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 2)!

Å
1− 1

22ℓ+3

ã
ζ(2ℓ+ 3)

+
h∑
ℓ=1

Ç
2h− 1

2ℓ− 1

å
(−1)h−ℓ

22h−2ℓ−2
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 1)!L(χ−4,2ℓ+ 2)

and

D2(h) =(−1)h
21

22h+2
E2hπ

2h−1ζ(3)

+ 8
h−1∑
ℓ=0

Ç
2h+ 1

2ℓ+ 1

å
(−1)h−ℓ

2h+ 1
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 3)!
(
22h−2ℓ − 1

)
L(χ−4,2ℓ+ 4)

+
h∑
ℓ=1

Ç
2h

2ℓ

å
(−1)h−ℓ

22h+1
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 2)!
(
22ℓ+3 − 1

)
ζ(2ℓ+ 3),

where the Ek are the Euler numbers, defined in (0.4.20).

Tables 2 and 3 record the formulas for the Mahler measures of Sn,1 and Sn,2 respectively

for the first few values of n. We have included the case n = 0, not covered in Theorem 0.7.1,

for comparison purposes. We see that, although there is a clear distinction between the cases

n even and odd for m(Sn,1) in the sense that the formulas for n even only contain special

values of the Riemann zeta function, and the formulas for n odd only contain special values

of the Dirichlet L-function, for m(Sn,2) the formulas are mixed.

When r > 2, it is more difficult to evaluate Cr(h) and Dr(h) in terms of special values

of the Riemann zeta function and Dirichlet L-functions, due to the difficulty relating poly-

logarithms evaluated at roots of unity of higher order to special values of L-functions. We

illustrate the formulas for the Mahler measures of S1,r for the first few values of r in Table

4. We remark the appearance of Dirichlet L-functions in the characters χ12(11,·) :=
(
12
·

)
of

conductor 12 and χ8(5,·) :=
(
8
·

)
of conductor 8. This is a key distinction from the previous

results for the families Rn, Sn and Tn. Chapter 4 includes the proof of Theorem 0.7.1 and

further continues the above discussion.
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π2m(1 + x+ (1 + y)z) 7
2
ζ(3)

π4m
Ä
1 + x+

Ä
1−x1
1+x1

ä Ä
1−x2
1+x2

ä
(1 + y)z

ä
93ζ(5)

π6m
Ä
1 + x+

Ä
1−x1
1+x1

ä
. . .
Ä
1−x4
1+x4

ä
(1 + y)z

ä
1905
2
ζ(7) + 31π2ζ(5)

π8m
Ä
1 + x+

Ä
1−x1
1+x1

ä
. . .
Ä
1−x6
1+x6

ä
(1 + y)z

ä
7154ζ(9) + 635π2ζ(7) + 248π4

15
ζ(5)

π3m
Ä
1 + x+

Ä
1−x1
1+x1

ä
(1 + y)z

ä
24L(χ−4, 4)

π5m
Ä
1 + x+

Ä
1−x1
1+x1

ä
. . .
Ä
1−x3
1+x3

ä
(1 + y)z

ä
320L(χ−4, 6) + 4π2L(χ−4, 4)

π7m
Ä
1 + x+

Ä
1−x1
1+x1

ä
. . .
Ä
1−x5
1+x5

ä
(1 + y)z

ä
2688L(χ−4,8)+160π2L(χ−4, 6)+

9π4

5
L(χ−4, 4)

Table 2 – Mahler measure of Sn,1 for n ≤ 6.
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π2m(1 + x+ (1 + y)z) 7
2
ζ(3)

π4m
(
1 + x+

îÄ
1−x1
1+x1

ä Ä
1−x2
1+x2

äó2
(1 + y)z

)
96πL(χ−4,4)− 21π2

2
ζ(3)

π6m
(
1 + x+

îÄ
1−x1
1+x1

ä
. . .
Ä
1−x4
1+x4

äó2
(1 + y)z

)
1280πL(χ−4,6)− 372π2ζ(5) +

112π3L(χ−4,4)− 21π4

2
ζ(3)

π8m
(
1 + x+

îÄ
1−x1
1+x1

ä
. . .
Ä
1−x6
1+x6

äó2
(1 + y)z

)
10752πL(χ−4,8)− 3810π2ζ(7) +

1920π3L(χ−4,6)− 496π4ζ(5) +

596π5

5
L(χ−4,4)− 21π6

2
ζ(3)

π3m
(
1 + x+

îÄ
1−x1
1+x1

äó2
(1 + y)z

)
21π
2
ζ(3)

π5m
(
1 + x+

îÄ
1−x1
1+x1

ä
. . .
Ä
1−x3
1+x3

äó2
(1 + y)z

)
31π
2
ζ(5)− 96π2L(χ−4,4) +

21π3

2
ζ(3)

π7m
(
1 + x+

îÄ
1−x1
1+x1

ä
. . .
Ä
1−x5
1+x5

äó2
(1 + y)z

)
127π
24
ζ(7)− 1280π2L(χ−4,6) +

62π3

3
ζ(5)−

112π4L(χ−4,4) +
21π5

2
ζ(3)

Table 3 – Mahler measure of Sn,2 for n ≤ 6.
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π3m
Ä
1 + x+

Ä
1−x1
1+x1

ä
(1 + y)z

ä
24L(χ−4,4)

π3m
(
1 + x+

Ä
1−x1
1+x1

ä2
(1 + y)z

)
21π
2
ζ(3)

π3m
(
1 + x+

Ä
1−x1
1+x1

ä3
(1 + y)z

)
−8L(χ−4,4) + 12

√
3πL(χ12(11,·),3)

π3m
(
1 + x+

Ä
1−x1
1+x1

ä4
(1 + y)z

)
−105π

2
ζ(3) + 64

√
2πL(χ8(5,·),3)

Table 4 – Mahler measure of S1,r for r ≤ 4.
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Chapter 1

Generalized Mahler measures of Laurent

polynomials

Building on Lalín and Mittal’s work (see (0.5.2) and (0.5.3)) on a generalization of the

Mahler measure of two particular Boyd’s polynomials by considering the integration torus

as arbitrary (see Definition 0.5.1), we extend this definition to all Laurent polynomials that

do not vanish on the integration torus in this chapter. This work will appear in [106].

1.1. A brief description of the results

This section includes a restatement of Theorems 0.5.2, 0.5.4, 0.5.5, 0.5.6, and 0.5.7 for

the reader’s convenience, along with a brief discussion on the strategies of the proofs.

Recall that the generalized Mahler measure of a non-zero rational function

P ∈ C(x1, . . . , xn), denoted by ma(P ), is defined as the arithmetic mean of log |P |

over the torus Tna = {(x1, . . . , xn) ∈ C× × C× × · · · × C× : |x1| = a1, . . . , |xn| = an}

with respect to the unique Haar measure (see Definition 0.6.14). As mentioned in Section

0.5, the notion of the generalized Mahler measure was first introduced by Lalín and

Mittal in [80] following Cassaigne–Maillot’s result in (0.5.1), which explicitly expresses

m(ax+ by+ c), for a, b, c ∈ C×, and can be reinterpreted as the generalized Mahler measure

m|a|,|b|,|c|(1+x+y). Lalín and Mittal investigated this definition to find ma,a(y
2+2xy−x3+x)



and ma2,a((1+x)(1+y)(x+y)+2xy) for certain positive values of a such that the polynomials

do not vanish on the integration torii T2
a,a and T2

a2,a, respectively (see (0.5.2) and (0.5.3)).

This chapter provides a generalization of their results for a large set of Laurent polyno-

mials with complex coefficients. We recall some notation from Section 0.5 before (re)stating

our results.

Given a non-zero Laurent polynomial Pk(x1, . . . , xn) = k−P (x1, . . . , xn) ∈ C[x±1 , . . . , x±n ]

such that P (0, . . . , 0) = 0, we recall that Ka denotes the image of the map from Tna to C

defined in (0.5.6) by (x1, . . . , xn) 7→ P (x1, . . . , xn), which is compact in C. The unbounded

open connected component of C\Ka containing a neighbourhood of k = ∞ is denoted by Ua.

Let νja,r be the difference between the number of zeroes (denoted by Zj
a,r) and the number of

poles (denoted by P j
a,r) of Pk(a1, . . . , aj−1, xj, aj+1, . . . , an) inside the circle |xj| = aj, namely

νja,r := Zj
a,r − P j

a,r.

We further denote by P j
F,k (resp. P j

f,k) the leading (resp. constant) coefficient of Pk when

considered as a polynomial in xj with coefficients in C
[
x±1 , . . . , “xj, . . . , x±n ] , where ̂ indicates

that the term is omitted from the expression (see (0.5.11) and (0.5.12) for more details).

When n = 2, we redefine the above notation as follows: x := x1, y := x2, r := k, Qr(x, y) :=

Pk(x1, x2), Q(x, y) := P (x1, x2), (a, b) := a = (a1, a2), Ra,b := Ka, Q
x
F,r := P 1

F,k, Q
y
F,r := P 2

F,k,

Qx
f,r := P 1

f,k, and Qy
f,r := P 2

f,k. Then, we have the following theorem.

Theorem 1.1.1 (see Theorem 0.5.2). Let a = (a1, . . . , an) ∈ (R>0)
n. Let Pk(x1, . . . , xn) =

k − P (x1, . . . , xn) ∈ C[x±1 , . . . , x±n ], such that P has no constant term. Denote by Ua the

unbounded open connected component of C\Ka containing a neighbourhood of k = ∞. Then,

for k ∈ Ua ∩ U1,

ma(Pk) = m1(Pk) +
n∑
j=1

νja,k log aj,

where νja,k is defined as above, and m1(Pk) = m(Pk). Moreover, for k ∈ Ua ∩ U1 and j =

1, . . . , n, νja,k only depends on a.

As a corollary to Theorem 1.1.1, we have the following result in two variables.
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Theorem 1.1.2 (see Theorem 0.5.4). Let a and b be positive real numbers, and denote by

Ua,b the unbounded open connected component of C \ Ra,b containing some neighborhood of

r = ∞. Then, for r ∈ Ua,b ∩ U1,1,

ma,b(Qr) = m(Qr) + ν1a,b,r log a+ ν2a,b,r log b,

where ν1a,b,r is the difference between the number of zeroes (denoted by Z1
a,b,r) and the number

of poles (denoted by P 1
a,b,r) of Qr(x, b) inside the circle |x| = a, defined by

ν1a,b,r = Z1
a,b,r − P 1

a,b,r, (1.1.1)

ν2a,b,r is the difference between the number of zeroes (denoted by Z2
a,b,r) and the number of

poles (denoted by P 2
a,b,r) of Qr(a, Y ) inside the circle |y| = b, defined by

ν2a,b,r = Z2
a,b,r − P 2

a,b,r, (1.1.2)

and m1,1(Qr) = m(Qr). Moreover, for r ∈ Ua,b ∩ U1,1, ν
j
a,b,r does not depend on r.

Suppose that C \Ka contains at least one open bounded connected component, then the

following result aims to provide a way to evaluate ma(Pk) conditionally when k belongs to

one of the bounded connected components of C \ Ka.

Theorem 1.1.3 (see Theorem 0.5.5). Let a = (a1, . . . , an) ∈ Rn
>0. Let k0 ∈ C \Ka such that

k0 belongs to one of the bounded open connected components of C \ Ka, denoted by Va,k0 .

(I) For j = 1, . . . , n, if all the roots of Pk0(a1, . . . , aj−1, xj, aj+1, . . . , an) lie entirely inside

the circle T1
aj
, then, for all k ∈ Va,k0 ,

ma(Pk) = νja,k log aj +ma1,...,âj ,...,an

Ä
P j
F,k

ä
.

(II) For j = 1, . . . , n, if all the roots of Pk0(a1, . . . , aj−1, xj, aj+1, . . . , an) lie entirely out-

side the circle T1
aj
, then, for all k ∈ Va,k0 ,

ma(Pk) = νja,k log aj +ma1,...,âj ,...,an

Ä
P j
f,k

ä
.

Similarly, suppose that C\Ra,b contains at least one open bounded connected component,

then we have the following theorem for the two-variable case as a corollary.
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Theorem 1.1.4 (see Theorem 0.5.6). Let a and b be positive real numbers. Let r0 ∈ C\Ra,b

such that r0 belongs to one of the bounded open connected components of C\Ra,b. We denote

by Va,b,r0 the bounded open connected component containing r0.

(i) If all the roots of Qr0(a, y) either lie entirely inside the circle T1
b or lie entirely outside

the circle T1
b , then, for all r ∈ Va,b,r0 ,

ma,b(Qr)− ν2a,b,r log b =

 ma(Q
y
F,r(x)) when all roots of Qr0(a, y) lie inside T1

b ,

ma(Q
y
f,r(x)) when all roots of Qr0(a, y) lie outside T1

b .

(ii) If all the roots of Qr0(x, b) either lie entirely inside the circle T1
a or lie entirely outside

the circle T1
a, then, for all r ∈ Va,b,r0 ,

ma,b(Qr)− ν1a,b,r log a =

 mb(Q
x
F,r(y)) when all roots of Qr0(x, b) lie inside T1

a,

mb(Q
x
f,r(y)) when all roots of Qr0(x, b) lie outside T1

a.

To prove Theorem 1.1.2, we follow the methods of Rodriguez-Villegas [102] and Bertin

[9]. We consider dma,b(Qr)

dr
as a series in r. Since continuous deformation of the integration

torus does not change dma,b(Qr)

dr
as long as the deformation happens outside the zero-set of Qr,

we show that dma,b(Qr)

dr
= dm(Qr)

dr
for r ∈ Ua,b ∩ U1,1. Integrating both sides yields a constant

term f(a, b) depending only on a and b. Then, suitably varying a and b, we further consider

a∂f(a,b)
∂a

and b∂f(a,b)
∂b

, and express f(a, b) in terms of log a and log b to complete the proof.

Extending this idea to n variables yields Theorem 1.1.1.

In order to prove Theorem 1.1.4, we apply Rouché’s theorem.

Theorem 1.1.5 ([2, Corollary to Theorem 18]). Let U ⊂ C be an open bounded region

with piecewise smooth boundary ∂U. Let f, g be meromorphic functions on U ∪ ∂U which

have finitely many zeroes, no removable singularities, and no poles on ∂U. Suppose also that

|f(z)− g(z)| < |f(z)| for all z ∈ ∂U. Then f and g have the same number of zeroes enclosed

by ∂U.

We show that if for some r0 ∈ Va,b,r0 , Qr0(a, y) (resp. Qr0(x, b)) has all the roots inside or

outside of the circle |y| = b (resp. |x| = a), then the same is true for all the roots of Qr(a, y)

(resp. Qr(x, b)) for all r ∈ Va,b,r0 . This, combined with an application of Jensen’s formula
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(0.1.4), yields the required results. Similarly, the n-variable case in Theorem 1.1.3 follows

from an extension of this idea.

In Section 1.4, we consider Boyd’s family of polynomials given in (0.1.10) byß
Qr(x, y) = x+

1

x
+ y +

1

y
+ r : r ∈ C

™
,

(see also (0.5.4)) and apply Theorems 1.1.2 and 1.1.4 to evaluate ma,b (Qr) for all r ∈ C\Ra,b,

i.e. when Qr does not vanish on T2
a,b. We should note that our evaluation of ma,b(Qr)

for r ∈ Ua,b is expressed in terms of m(Qr). From the known evaluations of m(Qr) in

terms of special values of L-functions of certain elliptic curves (see Table 1), we can further

obtain explicit expressions of ma,b(Qr) in terms of those special L-values and certain Z-linear

combinations of log a and log b; two of such results are mentioned in Examples 1.4.1 and 1.4.2.

We will end this chapter with a derivation of ma,b(Q4) for all a, b > 0, irrespective of

whether Q4 vanishes on T2
a,b or not. This follows from iterative applications of properties

of η in Lemma 0.4.9 (especially the exactness property in (0.4.24)), complemented with a

change of variables due to Boyd [29], which factors Q4 in linear polynomials. In fact, we

have the following result.

Theorem 1.1.6 (see Theorem 0.5.7). Let a, b ∈ R>0, and define

c =
√
ab, d =

…
b

a
, and Ac,d =

1− d2

1 + d2
· 1 + c2

2c
,

such that c and d are both positive real numbers. Then,

ma,b(Q4(x, y)) =


| log c|+ | log d| if |Ac,d| ≥ 1,

2
π

î
D(ice−iµ) +D(iceiµ)− µ log d+ (log c) arctan

Ä
c−c−1

2 cosµ

äó
if |Ac,d| < 1,

where µ = arcsin (Ac,d) ∈
(
−π

2
, π
2

)
, and D is the Bloch–Wigner dilogarithm defined in (0.4.5).

In summary, Chapter 1 is organized as follows. In Section 1.2, we discuss the proof

of Theorem 1.1.2 and some auxiliary results required to complete the proof. We conclude

the section with a brief argument generalizing our method to the several variables setting

and proving Theorem 1.1.1. Section 1.3 is completely dedicated to the proof of Theorem
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1.1.4 and subsequently to the proof of Theorem 1.1.3 by a similar generalization. In Section

1.4, we discuss some applications of Theorems 1.1.2 and 1.1.4 to the family of polynomials

in (0.5.4). We then prove Theorem 1.1.6 in Section 1.5, where we use properties of the

differential form and the Bloch–Wigner dilogarithm mentioned in Section 0.4. We end the

chapter with concluding remarks on possible directions to pursue going forward.
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1.2. Proof of Theorem 1.1.2

Recall that any 2-variable Laurent polynomial Qr(x, y) ∈ C[x±, y±] can be written as

Qr(x, y) = r −Q(x, y), where Q(x, y) ∈ C[x±, y±] has no constant term. In this section, we

use the notation

ma,b(Qr(x, y)) = ma,b(Qr) = ma,b(r) for r ∈ C,

for simplicity. Our approach is inspired by the methods of Rodriguez-Villegas [102] and

Bertin [9]. We first show that the required equality between Mahler measures holds for a

smaller unbounded region of C \ Ra,b, and then, using properties of harmonic functions, we

argue that it can be extended to the desired region stated in Theorem 1.1.2.

The following lemma formulates the invariance of ma,b(r) under certain changes of vari-

ables.
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Lemma 1.2.1. Let a, b be positive real numbers. Define fr(a, b) := ma,b(r). Then fr satisfies

the following identities:

fr(a, b) = fr(b, a) = fr

Å
1

a
, b

ã
= fr

Å
1

a
,
1

b

ã
.

Proof. Let a, b > 0. For Q̃r(x, y) = Qr(ax, by), the generalized Mahler measure of Qr satisfies

the identity

ma,b(Qr(x, y)) = m(Q̃r(x, y)) = m(Q̃r).

The changes of variables

(x, y) → (y, x), (x, y) → (x−1, y), (x, y) → (x−1, y−1),

fix m(Q̃r). Since ma,b(r) = m(Q̃r), we have the required identities involving fr(a, b) = ma,b(r).

□

In view of Lemma 1.2.1, we may assume without loss of generality that a > b > 1.

Our main aim is to study ma,b(r) in terms of the complex parameter r. Recall that Ra,b is

the set of all r ∈ C such that Qr(x, y) vanishes on T2
a,b. Before proceeding to prove Theorem

1.1.2, we state a proposition explaining the following:

— the behaviour of the roots of Qr(x, y) for each x ∈ T1
a; in particular, the number of

roots inside the unit circle T1
b ,

— the behaviour of the roots of Qr(x, y) for each y ∈ T1
b ; in particular, the number of

roots inside the unit circle T1
a.

This proposition, in particular, gives a formula for the quantities ν2a,b,r and ν1a,b,r in the

statement of Theorem 1.1.2. Since the above two cases are analogous, it suffices to consider

the first case.

For w ∈ T1
a, let ϱ2a,b,r(w) denote the number of roots of Qr(w, y) lying inside the circle

T1
b . In particular, following the discussion preceding the definition in (1.1.2), we have, for

w ∈ T1
a,

ϱ2a,b,r(w) = Z2
w,b,r and ϱ2a,b,r(a) = Z2

a,b,r = ν2a,b,r + P 2
a,b,r = ν2a,b,r + v2, (1.2.1)
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where Z2
w,b,r is the number of zeros (counting multiplicities) of Qr(w, y) inside the circle T1

b ,

P 2
w,b,r is the order of the pole of Qr(w, y) at y = 0, and v2 is the largest power of y−1 in

Qr(x, y). Then we have the following statement.

Proposition 1.2.2. Let r ∈ C \ Ra,b. Then ϱ2a,b,r(x) is constant for all x ∈ T1
a.

Before proceeding with the proof, we first consider the resultant of the polynomial Qr

with respect to y.

Recall that

Qr(x, y) = y−v2Qy
F,r(x)

dy∏
j=1

(y − yj,r(x)),

where yj,r(x) are algebraic functions in x, and v2 is as defined above.

Here and in what follows for the rest of this section, we denoteQF,r(x) := Qy
F,r(x), d := dy.

Let Dr(x) denote the resultant of Qr(x, y) and ∂
∂y
Qr(x, y) with respect to y.

Then the algebraic solutions yj,r are holomorphic in some neighbourhood of x for any

x ∈ C \ Sr, where

Sr = {z ∈ C : QF,r(z)Dr(z) = 0} (1.2.2)

is a finite subset of C.

Let yr(x) be the d-valued global analytic function, with d-branches y1,r, . . . yd,r, such that

Qr(x,yr(x)) = 0. Then Sr is called the set of critical points of yr(x). If x′ is a critical point

of yr(x), then x′ is either an algebraic branch point or a pole (for more details see [2]).

(1) If x′ ∈ Sr is an algebraic branch point, i.e. when Dr(x
′) = 0, then, in a sufficiently

small neighbourhood Ux′ of x′ (which does not contain any other critical points), the

multi-set {y1,r, . . . yd,r} can be decomposed into a number of non-intersecting cycles

{f1(x), . . . , fk1(x)}, . . . , {fk1+···+kt−1+1(x), . . . , fk1+···+kt(x)},

such that
∑t

n=1 kn = d, and fj(x) = yl,r(x) for some j, l ∈ {1, . . . , d}. The elements of

the first cycle can be represented as convergent Puiseux series of the local parameter

τ = (x− x′)1/k1 in a small enough neighbourhood of τ = 0. The elements of the rest

of the cycles follow analogous convergent series representations. Therefore, a single

74



turn around x′ in a circle C ′ ⊂ Ux′ converts the Puiseux series of elements in one

cycle into each other in a cyclic order, i.e. f1 → f2 → · · · → fk1 → f1 etc.

(2) If x′ ∈ Sr is a pole, that is when QF,r(x
′) = 0, then, substituting y with yQF,r(x), we

return to the first case where the local parameter of the convergent series is τ = 1/x.

Recall that, for w ∈ T1
a, ϱ

2
a,b,r(w) denote the number of roots of Qr(w, y) lying inside the

circle T1
b . We are now ready to prove Proposition 1.2.2.

Proof of Proposition 1.2.2. First fix an arbitrary r ∈ C \ Ra,b. Note that ϱ2a,b,r defines a

function from T1
a to Z via the map x 7→ ϱ2a,b,r(x), where Z is equipped with discrete topology.

If x0 ∈ T1
a is not a critical point of yr, i.e. x0 /∈ Sr, where Sr is given in (1.2.2), then, for

all j = 1, . . . , d, yj,r is holomorphic in a sufficiently small neighbourhood Ux0 of x0 which does

not contain any critical point. Therefore, |yj,r(x)| is continuous in Ux0 . Since Qr does not

vanish on T2
a,b, we have |yj,r(x)| ≠ b for all x ∈ Ux0 ∩T1

a, j. Therefore, if, for any l = 1, . . . , d,

|yl,r(x0)| < 1 (resp. |yl,r(x0)| > 1), then, for all x ∈ Ux0∩T1
a
, |yl,r(x)| < 1 (resp. |yl,r(x0)| > 1).

In other words, ϱ2a,b,r(x) is constant for all x ∈ Ux0 ∩ T1
a. In particular, ϱ2a,b,r is continuous at

x0.

If x1 ∈ T1
a∩Sr, then there exists a sufficiently small neighbourhood Ux1 of x1 which does

not contain any critical point except x1. Then the convergent Puiseux series expansions of

y1,r, . . . , yd,r in Ux1 imply that, for all j, |yj,r| is continuous in Ux1 , and this brings us to the

previous case. From properties (1), (2) and the above discussion, we conclude that, in the

neighbourhood Ux1 of x1, ϱ2a,b,r is constant. This implies that ϱ2a,b,r is continuous at x1.

We now have a continuous function ϱ2a,b,r from a connected set T1
a to a discrete set Z.

Since only connected subsets of Z are singletons, we derive that ϱ2a,b,r is constant in T1
a, and

thus completing the proof of the statement. □

1.2.1. Proof of Theorem 1.1.2

Proposition 1.2.2 implies that, for all x ∈ T1
a, ϱ

2
a,b,r(x) = ν2a,b,r + v2. Moreover, (1.2.1)

implies that the constant is ν2a,b,r + v2, where v2 is the largest power of y−1 in Qr(x, y). In

particular, we have ν2w,b,r = ν2a,b,r for all w ∈ T1
a, where ν2w,b,r is given in (1.1.2). Next, we

derive Theorem 1.1.2 using Proposition 1.2.2.
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Proof of Theorem 1.1.2. For a and b positive real numbers, the torus T2
a,b is defined as the

set {(x, y) ∈ (C×)
2
: |x| = a, |y| = b}. By construction, T2

a,b is compact. Since the map in

(0.5.6), namely

q : T2
a,b −→ C, defined by (x, y) 7→ Q(x, y),

is continuous, the image of q is compact. That is, q(T2
a,b) = Ra,b is compact, and therefore

closed and bounded in C. In other words, maxr∈Ra,b
|r| exists. We denote

Ra,b := max
r∈Ra,b

|r|, and Ra,b,1,1 := max{Ra,b, R1,1}.

Following a construction in [102], we define

m̃a,b(r) = log r −
∑
n≥0

an,a,b
n

r−n, |r| > Ra,b,1,1, r /∈ (−∞, 0],

where log denotes the principal branch of the logarithm, and an,a,b is defined as follows:

an,a,b =

ñ
1

(2πi)2

∫
T2
a,b

dxdy

xy(1− r−1Q(x, y))

ô
n

=
1

(2πi)2

∫
T2
a,b

Q(x, y)n
dx

x

dy

y
,

Here [T (s)]n denotes the coefficient of s−n in the series T (s). It is immediate to see that

m̃a,b is holomorphic in the region defined by |r| > Ra,b,1,1 and r /∈ (−∞, 0]. Also,

Re(m̃a,b(r)) = ma,b(r), |r| > Ra,b,1,1.

We now claim that, for |r| > Ra,b,1,1,

dm̃a,b

dr
=
dm̃1,1

dr
.

In order to prove our claim, it is enough to show that an,a,b = an,1,1 for all n. The above

construction of the coefficients and the integral expression of these terms in [102] yield that

an,a,b =
1

(2πi)2

∫
T2
a,b

Q(x, y)n
dx

x

dy

y
=

1

(2πi)2

∫
T2

Q(ax′, by′)n
dx′

x′
dy′

y′

= [Q(ax′, by′)n]0 = [Q(x′, y′)n]0

=
1

(2πi)2

∫
T2

Q(x′, y′)n
dx′

x′
dy′

y′

= an,1,1.
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The equality [Q(ax′, by′)n]0 = [Q(x′, y′)n]0 follows from the fact that the constant term

gathers the terms with degree 0, which are invariant under the multiplications of x and y by

a and b, respectively. This concludes the proof.

Due to the above identity, we can denote the coefficients as an := an,a,b = an,1,1 for the

rest of the argument. From the definition of m̃a,b, it follows that

dm̃a,b

dr
=

1

(2πi)2

∫
T2
a,b

1

r −Q(x, y)

dx

x

dy

y
, |r| > Ra,b,1,1, (1.2.3)

where we include the region r ∈ (−∞, 0] ∩ {|r| > Ra,b,1,1} by continuity. We need to show

that dm̃a,b

dr
is in fact holomorphic in |r| > Ra,b,1,1.

For r ∈ C, define

Fa,b(r) :=
1

(2πi)2

∫
T2
a,b

1

r −Q(x, y)

dx

x

dy

y
. (1.2.4)

Note that the integrand
1

r −Q(x, y)

∣∣∣∣
(x,y)∈T2

a,b

is holomorphic in r when |r| > Ra,b,1,1. In fact, we will now show that Fa,b(r) is holomorphic

as well on |r| > Ra,b,1,1. The integrand, as well as the integral in (1.2.3), are bounded on T2
a,b.

This implies that djFa,b

drj
exists and is holomorphic for j = 1 (and therefore for all j ≥ 1).

Hence, Fa,b(r) is holomorphic in |r| > Ra,b,1,1.

Recall that we have, for |r| > Ra,b,1,1,

dm̃a,b(r)

dr
=
dm̃1,1(r)

dr
,

and all the quantities are holomorphic in the mentioned region. Integrating both sides with

respect to r, we get

m̃a,b(r) = m̃1,1(r) + f̃(a, b), for |r| > Ra,b,1,1,

where f̃(a, b) is the integration constant which only depends on a and b. Taking the real part

of both sides yields

ma,b(r) = m1,1(r) + f(a, b), for |r| > Ra,b,1,1, (1.2.5)

where Re(f̃(a, b)) = f(a, b).
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Notice that ma,b(r) is harmonic on Ua,b, the unbounded component of C \ Ra,b which

contains {|r| > Ra,b}, and m1,1(r) + f(a, b) is also harmonic on U1,1, since f(a, b) is constant

for a, b fixed. The equality (1.2.5) implies that ma,b(r) and m(r) + f(a, b) coincide in the

open neighbourhood |r| > Ra,b,1,1. Therefore, they must be equal in Ua,b ∩ U1,1, that is

Re(m̃a,b(r)) = ma,b(r) = m(r) + f(a, b), for r ∈ Oa,b := Ua,b ∩ U1,1 (1.2.6)

We now proceed to evaluate f(a, b) in terms of a, b. Since Ra,b is compact for a, b > 0,

it is bounded for such a, b. Let 0 < δ < 1 such that a, b > δ. Let Ma,b be the subset of R2
>0

defined by

Ma,b = [a− δ, a+ δ]× [b− δ, b+ δ].

Note that (a, b) ∈ Ma,b. Since Ma,b is compact, and the map (α, β) 7→ Rα,β is continuous

for all (α, β) in Ma,b, we conclude that the subset {Rα,β : (α, β) ∈ Ma,b} is compact in R>0.

Then R̃a,b := max(α,β)∈Ma,b
Rα,β exists, and is finite. Now choose an R ∈ R>0 such that

R > R̃a,b +R1,1.

The choice of R implies that, for (α, β) ∈ Ma,b, m̃α,β(R) is holomorphic, and (1.2.5) yields

mα,β(R) = m1,1(R) + f(α, β). (1.2.7)

Let Aa,b,δ ⊂ C2 be the poly-annulus Aa,b,δ = Aa,δ × Ab,δ, where Aa,δ = {z ∈ C : a − δ <

|z| < a+ δ} and Ab,δ = {z ∈ C : b− δ < |z| < b+ δ}. Note that T2
a,b ⊂ Aa,b,δ. Since

QR(x, y) ∈ C \ (−∞, 0] for (x, y) ∈ Aa,b,δ,

log(QR(x, y)) is holomorphic in Aa,b,δ, where log is the principal branch of logarithm. Let

W̃a,b denote the set of all (α, β) ∈ Ma,b such that

m̃α,β(R) =
1

(2πi)2

∫
T2
α,β

log(QR(x, y))
dx

x

dy

y
.

Note that W̃a,b is an open subset of Ma,b, and it also contains (a, b).

Next we compute the functions α∂m̃α,β(R)

∂α
and β ∂m̃α,β(R)

∂β
. We only show here the compu-

tation of α∂m̃α,β(R)

∂α
when α belongs to an open subinterval of (a− δ, a+ δ) containing a, since

the other case is analogous.
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Note that m̃α,β(R) and log(QR) are well-defined and finite-valued on W̃a,b and Aa,b,δ,

respectively. Therefore, we can consider their partial derivatives with respect to α, and

obtain

α
∂m̃α,β(R)

∂α
= α

∂

∂α

Ç
1

(2πi)2

∫
T2
α,β

log(QR(x, y))
dx

x

dy

y

å
=

1

(2πi)2

∫
T2
α,β

α
∂ log(QR(x, y))

∂x

∂x

∂α

dx

x

dy

y

=
1

(2πi)2

∫
T2
α,β

x
∂xQR(x, y)

QR(x, y)

dx

x

dy

y

=
1

(2πi)2

∫
|y|=β

Ç∫
|x|=α

∂xQR(x, y)

QR(x, y)
dx

å
dy

y
, (1.2.8)

where ∂x = ∂
∂x
, and the penultimate equality follows from the facts that x = αeiθ and θ does

not depend on α. For a fixed y0 such that |y0| = β, the integrand∫
|x|=α

∂xQR(x, y0)

QR(x, y0)
dx = Z1

α,y0,R
− P 1

α,y0,R

is an integer, where Z1
α,y0,R

denotes the number of zeros (counting multiplicity) of the Laurent

polynomial QR(x, y0) inside the circle T1
α, and P 1

α,y0,R
denote the order of pole of QR(x, y0)

at x = 0. Let ν1α,R(y0) := Z1
α,y0,R

−P 1
α,y0,R

. From Proposition 1.2.2 (when applied to the torus

T2
α,β), it follows that ν1α,R(y) is constant for all y in T1

β. We define ν1α,β,R := ν1α,R(y) ∈ Z, for

all y ∈ T1
β. Therefore, (1.2.8) can be simplified to

∂m̃α,β(R)

∂α
=
ν1α,β,R
α

. (1.2.9)

Similarly,
∂m̃α,β(R)

∂β
=
ν2α,β,R
β

, (1.2.10)

where ν2α,β,R = Z2
α,β,R − P 2

α,β,R. Here Z2
α,β,R and P 2

α,β,R are similarly defined.

Since the integer-valued functions ν1α,β,R and ν2α,β,R depend on α and β continuously, they

are constant on W̃a,b ⊂ int(Ma,b). In other words,

ν1a,b,R = ν1α,β,R, and ν2a,b,R = ν2α,β,R, for all (α, β) ∈ W̃a,b.
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Integrating (1.2.9) with respect to α and then taking the real part yields

mα,β(R) = m1,1(R) + ν1a,b,R logα + F (β),

where F is a function of β which does not depend on α and R. A similar process when

applied to (1.2.10) implies that

mα,β(R) = m1,1(R) + ν2a,b,R log β +G(α),

where G is independent of β and R. From the above equalities and (1.2.7), we conclude that

mα,β(R) = m1,1(R) + ν1a,b,R logα + ν2a,b,R log β + c, (1.2.11)

for all (α, β) ∈ Ma,b, and some constant c independent of α, β,R. As |R| > R1,1, evaluating

(1.2.11) at α = 1, β = 1 we obtain c = 0. Then, combining (1.2.6) and (1.2.11) together, we

derive that

f(a, b) = ν1a,b,R log a+ ν2a,b,R log b, for r ∈ Oa,b. (1.2.12)

Since f(a, b) in (1.2.6) is independent of r, comparing (1.2.12) with (1.2.6) we obtain that,

for j = 1, 2, νja,b,R is constant in Oa,b, i.e.

νja,b,R = νja,b,r, when r ∈ Oa,b, j ∈ {1, 2}.

This concludes the proof of Theorem 1.1.2, namely

ma,b(r) = m1,1(r) + ν1a,b,r log a+ ν2a,b,r log b, for r ∈ Oa,b = Ua,b ∩ U1,1.

□

Remark 1.2.3. Theorem 1.1.2 can be explained in terms of in terms of periods when

the curve defined by the polynomial has non-zero genus. Following the investigations by

Rodriguez-Villegas [102], Deninger [45] et al., we conclude that

dm̃(Qr)

dr
=

1

(2πi)2

∫
T2

1

r −Q(x, y)

dx

x

dy

y

is a period of the non-singular curve Cr associated to Qr (when the genus of Cr is non-zero

for generic r), and in particular, from Proposition 1.2 in [45], we can argue that dm̃(Qr)
dr

remains invariant under the continuous deformation of the integration torus T2 as long as
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the deformation process does not reach any points of Cr (see [59]). Therefore, in our case,
dm̃(Qr)
dr

=
dm̃a,b(Qr)

dr
as long as T2 is continuously deformed into T2

a,b without approaching a

point of Cr. Further, the coefficients of log a and log b can also be derived combining our

method with Proposition 1.2 in [45].

Theorem 1.1.1 follows from generalizing the argument in the above proof. Indeed, let

Ka := maxk∈Ka |k|, and let Ka,1 = max{Ka, K1}, where 1 = (1, . . . , 1). Then, generalizing

the steps in [102] and [9], we define

m̃a(Pk) = log k −
∑
m≥0

am,a
m

k−m, |k| > Ka,1, k /∈ (−∞, 0], (1.2.13)

where log denotes the principal branch of the logarithm, and am,a is defined as follows:

am,a =

ñ
1

(2πi)n

∫
T2
a

dx1 · · · dxn
x1 · · ·xn(1− r−1P (x1, . . . , xn))

ô
m

=
1

(2πi)n

∫
Tn
a

P (x1, . . . , xn)
ndx1
x1

· · · dxn
xn

,

where [T (s)]m denotes the coefficient of s−m in the series T (s).

It is immediate to see that m̃a(Pk) is holomorphic in the region defined by the intersection

of {|k| > Ka,1} and C \ (−∞, 0]. Also,

Re(m̃a(Pk)) = ma(Pk), |k| > Ka,1.

A similar argument as in the 2-variable case shows that am,a = am,1 for all m ≥ 0, and

therefore, we have the following equality:

dm̃a(Pk)

dk
=
dm̃1(Pk)

dk
, for |k| > Ka,1. (1.2.14)

A similar argument as in the 2-variable case also shows that dm̃a(Pk)
dk

is holomorphic in {|k| >

Ka,1}.

Now integrating both sides of (1.2.14) with respect to k and then taking real parts on

both sides yield that, for {|k| > Ka,1},

ma(Pk) = m1(Pk) + g(a). (1.2.15)

Let Ua be the unbounded open connected component of C\Ka which contains the region

{|k| > Ka,1} . As both sides of (1.2.15) are harmonic on Oa := Ua ∩ U1, the equality can be

extended to Oa. In other words, for k ∈ Oa, we have ma(Pk) = m1(Pk) + g(a).
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It only remains to express g explicitly in terms of a. Consider the functions

aj
∂m̃a(Pk)

∂aj
=

1

(2πi)n

∫
|x1|=a1,...,ÿ�|xj |=aj ,...,|xn|=an

Ç∫
|xj |=aj

∂xjPk

Pk
dxj

å
dx1
x1

· · · d̂xj
xj

· · · dxn
xn

for all j = 1, . . . , n. Here ̂ denotes that the term is omitted from the expression. Now, again

following the steps for 2-variable case we conclude that aj ∂m̃a(Pk)
∂aj

is constant depending only

on aj. More precisely, we find that

aj
∂m̃a(Pk)

∂aj
= νja,k, (1.2.16)

where νja,k is the difference between the number of zeroes (counting multiplicities) of

Pk(a1, . . . , aj−1, xj, aj+1, . . . , an) inside the circle T1
aj
, denoted by Zj

a,k, and the order of the

pole of Pk(a1, . . . , aj−1, xj, aj+1, . . . , an) at xj = 0, denoted by P j
a,k. In other words,

νja,k = Zj
a,k − P j

a,k.

We also note that νja,k is independent of k when k ∈ Oa, and only depends on a and the

polynomial P = k − Pk. Integrating (1.2.16) with respect to aj for j = 1, . . . , n, derives

Theorem 1.1.1.

1.3. Proof of Theorem 1.1.4

In this section, our goal is to provide the proof of Theorem 1.1.4, and eventually evaluate

ma,b(Qr) when r ∈ C \ (Ra,b ∪ Ua,b). Our proof uses Proposition 1.2.2 to conclude that, for

all r from a small enough neighbourhood in one of the bounded regions under consideration,

certain properties of the roots of Qr(a, y) or Qr(x, b) remain invariant. This, combined

with the properties of harmonic functions along with Rouché’s theorem, gives us the desired

results.
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Recall that Qr(x, y), considered as a polynomial in y of degree dy with coefficients in

C(x), can be factored in C(x)[y] as

Qr(x, y) =(y)−v2

(
Qy
F,r(x)(y)

dy +Qy
f,r(x) +

dy−1∑
j=1

ayj,r(x)(y)
j

)
(1.3.1)

=(y)−v2Qy
F,r(x)

dy∏
j=1

(y − yj,r(x)), (1.3.2)

where the yj,r(x) are algebraic functions in x, v2 is the order of the pole of Qr(a, y) at y = 0,

and Qy
F,r(x) and Qy

f,r(x) are the respective leading and constant coefficient with respect to

the variable y. Similarly, we can factor Qr, considered as a polynomial in x of degree dx with

coefficients in C(y), as

Qr(x, y) =(x)−v1

(
Qx
F,r(y)(x)

dx +Qx
f,r(y) +

dx−1∑
j=1

axj,r(y)(x)
j

)

=(x)−v1Qx
F,r(y)

dx∏
j=1

(x− xj,r(y)),

where the xj,r(y) are algebraic functions in y, v1 is the order of the pole of Qr(x, b) at x = 0,

and Qx
F,r(y) and Qx

f,r(y) are the respective leading and "constant" coefficient with respect to

the variable x.

Let Zu
F,r = {z ∈ C : Qu

F,r(z) = 0}, Zu
f,r = {z ∈ C : Qu

f,r(z) = 0}, where u = x or y, and

Va,b,r0 denotes the bounded open connected component of C \ Ra,b containing r0.

Since the proofs of the statements in (i) and (ii) of Theorem 1.1.4 are similar, here we

restrict ourselves in proving the statement (i)

Proof of Theorem 1.1.4. In (1.3.1), we see that the polynomial Qr(x, y) can be expressed in

terms of yj,r(x) (algebraic functions in x), v2, Qy
F,r(x) and Qy

f,r(x). For simplicity we denote

QF,r(x) := Qy
F,r(x), Qf,r(x) := Qy

f,r(x), and d := dy.

Proposition 1.2.2 and the assumption in (i) in the statement of Theorem 1.1.4 yield that

ϱ2a,b,r0(x) = d or 0 for all x ∈ T1
a. In particular, ϱ2a,b,r0(a) = d or 0, depending on whether all

the roots of Qr(a, y) lie entirely inside or entirely outside the circle T1
b .

The following three cases can occur when ϱ2a,b,r0(a) = d or 0.
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Case 1: For all x ∈ T1
a,

QF,r0(x) ·Qf,r0(x) ̸= 0.

Case 2: Qy
F,r0

vanishes on T1
a, but Qy

f,r0
does not, i.e.

Zy
F,r0

∩ T1
a ̸= ∅, and Zy

f,r0
∩ T1

a = ∅,

Case 3: Qy
f,r0

vanishes on T1
a, but Qy

F,r0
does not, i.e.

Zy
f,r0

∩ T1
a ̸= ∅, and Zy

F,r0
∩ T1

a = ∅.

Case 1: Since

QF,r0(x) ·Qf,r0(x) ̸= 0 for all x ∈ T1
a,

the discussion preceding the proof of Proposition 1.2.2 implies that the algebraic functions

yj,r0(x) may have only an algebraic branch point at x = a ∈ T1
a. From Proposition 1.2.2

we know that ν2a,b,r0 is constant in T1
a. Therefore, we can in fact assume that x = a is not

a branch point of yj,r0(x) for all j. Indeed, if x = a is branch point, then there exists an

x0 ∈ T1
a close enough to a such that x0 /∈ Sr, where Sr is given in (1.2.2). We replace a with

x0 in the statement, and proceed. Here we provide a proof of Case 1 when ϱ2a,b,r0(a) = d,

since the case when ϱ2a,b,r0(a) = 0 is similar. Recall that the condition ϱ2a,b,r0(a) = d (resp.

ϱ2a,b,r0(a) = 0) is equivalent to the condition that all the roots of Qr0(a, y) lie inside (resp.

outside) the circle T1
b .

The polynomial Qr(x, y) has additional structure: Qr(x, y) = r − Q(x, y) where Q does

not contain any constant term, and r is the constant coefficient in Qr. Therefore, after

multiplying Qr by yv2 , we find from (1.3.1) that one, and only one, among the set of the

coefficients

CoeffQr,x := {QF,r(x), Qf,r(x), a1,r(x), . . . , ad−1,r(x)} ⊂ C(x)

contains r as its constant term, namely the coefficient of yv2 in yv2Qr(x, y). Let bv2,r(x)

denotes the said coefficient. Then bv2,r(x) ∈ CoeffQr,x, and bv2,r(x)− bv2,r0(x) = r− r0. Since

all the coefficients, except bv2,r, do not depend on r by construction, the above discussion
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further implies that

{|QF,r(x)−QF,r0(x)| , |Qf,r(x)−Qf,r0(x)|} ∪ {|aj,r(x)− aj,r0(x)| : 1 ≤ j ≤ d− 1}

(1.3.3)

= {0, |bv2,r(x)− bv2,r0(x)|} = {0, |r − r0|} .

In other words, if, for example, QF,r(x) = bv2,r(x), then

QF,r(x)−QF,r0(x) = r − r0, Qf,r(x) = Qf,r0(x), and, for all j, aj,r(x) = aj,r0(x).

Next we investigate the relation between |Qr(a, y) − Qr0(a, y)| and |Qr0(a, y)| when y

takes values in certain sufficiently small circles.

Let

ϵij =
1

b
|yi,r0(a)− yj,r0(a)| and ϵk =

1

b
min
t∈T1

b

|yk,r0(a)− t| .

Since all the roots of Qr0(a, y) are distinct and lie inside the circle T1
b , the quantities ϵij, ϵk

are non-zero for any i, j, k ∈ {1, . . . , d} such that i ̸= j.

We denote

Υ = min
1≤i<j≤d
1≤k≤d

{ϵij, ϵk} .

Note that Υ > 0. Let ϵ ∈ (0,Υ) ∩ (0, 1) . We define the closed discs

Dj = {z : |z − yj,r0(a)| ≤ ϵ}, for j = 1, . . . , d.

Let Cj = ∂Dj be the boundary of Dj. The choice of ϵ then confirms that the discs Dj are

disjoint and Qr0(a, y) does not vanish on Cj. This implies ψj,ϵ,r0 := miny∈Cj
|Qr0(a, y)| is

positive for each j.

Let δj,r0,ϵ :=
ψj,ϵ,r0

d+1
. Then, for y ∈ Cj, and r ∈ Va,b,r0 such that

|r − r0| < δj,r0,ϵ,
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we have

|Qr(a, y)−Qr0(a, y)|

=

∣∣∣∣∣∣(QF,r(a)−QF,r0(a)) (y)
d + (Qf,r(a)−Qf,r0(a)) +

d−1∑
j=1

(aj,r(a)− aj,r0(a)) (y)
j

∣∣∣∣∣∣
≤|r − r0|

(
d∑
j=0

|ϵ|j
)

≤ (d+ 1)|r − r0| < ψj,ϵ,r0 ≤ |Qr0(a, y)| ,

where the first inequality follows from (1.3.3).

This implies that, for j = 1, . . . , d,

|Qr(a, y)−Qr0(a, y)| < |Qr0(a, y)|

on Cj. Therefore, it follows from Rouché’s Theorem (see Theorem 1.1.5) that Qr(a, y) and

Qr0(a, y) have the same number of root(s) in the interior of Dj when |r − r0| < δj,r0,ϵ.

Moreover, for

δ(ϵ, r0) = min
1≤j≤d

δj,r0,ϵ > 0,

the choice of ϵ implies that, when |r−r0| < δ(ϵ, r0), all the roots of Qr(a, y) lie entirely inside

the circle T1
b .

When |r−r0| < δ(ϵ, r0), another application of Proposition 1.2.2 yields that all the roots of

Qr(x, y) lie inside T1
b for every x ∈ T1

a. Following the discussion in Section 0.5.1 regarding the

Mahler measure over arbitrary tori, we conclude that, for r ∈ {z : |z − r0| < δϵ,r0} ⊂ Va,b,r0 ,

ma,b(Qr(x, y)) = ma,b

(
(y)−v2QF,r(x)

d∏
j=1

(y − yj,r(x))

)

= ma(QF,r(x))− v2 log b+ma,b

(
d∏
j=1

(y − yj,r(x))

)

= ma(QF,r(x))− v2 log b+ d log b. (1.3.4)
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Similarly, when all roots of Qr0(a, y) lie outside the circle T1
b , we have for r ∈ {z :

|z − r0| < δϵ,r0} ⊂ Va,b,r0 ,

ma,b(Qr(x, y)) =ma(QF,r(x))− v2 log b+ma(Qf,r(x))−ma(QF,r(x))

=ma(Qf,r(x))− v2 log b. (1.3.5)

Recall that, ν2a,b,r denotes the difference between the number of zeros (counting multi-

plicity) of Qr(a, y) inside T1
b and the order of pole of Qr(a, y) at y = 0. Then the above

discussion implies that, for r ∈ {z : |z − r0| < δϵ,r0} ⊂ Va,b,

ν2a,b,r = ν2a,b,r0 = ϱ2a,b,r0(x)− v2 = d− v2 or − v2.

Since ma(QF,r(x)) and ma(Qf,r(x)) are harmonic, and ma,b(Qr(x, y)) is harmonic for all

r ∈ Va,b,r0 \ Sa,b,r0 (where Sa,b,r0 is a finite set containing all the r ∈ Va,b,r0 such that Qr(x, y)

is singular), the equalities in (1.3.4) and (1.3.5) can be extended to a larger set Va,b,r0 \Sa,b,r0 .

using the harmonicity of Mahler measure. In other words, for r, r0 ∈ Va,b,r0 \ Sa,b,r0 ,

ma,b(Qr)− ν2a,b,r0 log b =

 ma(QF,r(x)) all roots of Qr0(a, y) lie inside T1
b ,

ma(Qf,r(x)) all roots of Qr0(a, y) lie outside T1
b .

(1.3.6)

By continuity, (1.3.6) holds for all r ∈ Va,b,r0 , and this concludes the proof of the Case 1.

Recall that Zy
F,r = {z ∈ C : Qy

F,r(z) = 0}, and Zy
f,r = {z ∈ C : Qy

f,r(z) = 0}.

Case 2: If

Zy
F,r0

∩ T1
a ̸= ∅, and Zy

f,r0
∩ T1

a = ∅,

then there exists x′ ∈ Zy
F,r0

∩ T1
a, and a l ∈ {1, . . . , dy} such that yl,r0(x) has a pole at x′.

Then Proposition 1.2.2 and the conditions in the statement of Theorem 1.1.4 imply that all

the roots of Qr0(a, y) lie outside the circle T1
b , and we can choose an x0 ∈ T1

a in a sufficiently

small neighbourhood of x′, such that x0 is not a pole of yj,r0 for all j. Such choice is possible

since the set of critical points Sr0 of the global analytic function yr0 is a finite set. Then a

similar argument as in Case 1 implies that, for all r ∈ Va,b,r0 ,

ma,b(Qr)− ν2a,b,r log b = ma(Q
y
f,r(x)).
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Case 3: If

Zy
f,r0

∩ T1
a ̸= ∅, and Zy

F,r0
∩ T1

a = ∅,

then there exists x′′ ∈ Zy
f,r0

∩ T1
a, and a p ∈ {1, . . . , dy} such that yp,r0(x) has a zero at x′′.

Again, Proposition 1.2.2 and the conditions in the statement of Theorem 1.1.4 imply that

all the roots of Qr0(a, y) lie inside the circle T1
b , and we can choose an x1 ∈ T1

a, such that

x1 /∈ Sr0 ∪ Z
y
f,r0

, and Qr0(x1, y) has all the roots inside T1
b . With these conditions, we have,

for all r ∈ Va,b,r0 ,

ma,b(Qr)− ν2a,b,r log b = ma(Q
y
F,r(x)).

This concludes the proof of the statement (i). Statement (ii) follows from an analogous

argument. □

Next, we sketch a proof of Theorem 1.1.3. Recall that multiplying Pk with a suitable

power of xj, we can factorise Pk in linear factors with coefficients in C(x1, . . . , “xj, . . . , xn) as

Pk(x1, . . . , xn) = x
−vj
j P j

F,k(x1, . . . , “xj, . . . , xn) dn∏
l=1

(xj −Xl,k,j (x1, . . . , “xj, . . . , xn)) ,
where dj is the degree of Pk as a polynomial in xj, Xl,k,j are algebraic functions of

(x1, . . . , “xj, . . . , xn) for l = 1, . . . , dn, P
j
F,k is the leading coefficient with respect to the variable

xj, and vj is the largest power of x−1
j in Pk. Let P j

f,k(x1, . . . , “xj, . . . , xn) denote the constant

coefficient with respect to the variable xj. Then

P j
F,k(x1, . . . , “xj, . . . , xn) dn∏

j=1

Xl,k,j(x1, . . . , “xj, . . . , xn) = P j
f,k(x1, . . . , “xj, . . . , xn).

For (u1, . . . , “uj, . . . , un) ∈ Tn−1
a1,...,âj ,...,an

, let ϱja,k (u1, . . . , “uj, . . . , un) be the number of zeroes

(counting multiplicities) of Pk(u1, . . . , uj−1, xj, uj+1, . . . , un) inside the circle T1
aj
. Then, from

the above discussion, we have P j
a,k = vj, and

ϱja,k (a1, . . . ,“aj, . . . , an) = Zj
a,k = νja,k + P j

a,k = νja,k + vj.

An analogous argument as in the proof of Proposition 1.2.2 yields the following proposition.

Proposition 1.3.1. Let k /∈ Ka. Then ϱja,k(x1, . . . , “xj, . . . , xn) is constant for all

(x1, . . . , “xj, . . . , xn) ∈ Tn−1
a1,...,âj ,...,an

.
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We omit the proof of the proposition here since it is an immediate extension of Proposition

1.2.2, which follows from an induction argument on n ≥ 2.

Then Proposition 1.3.1, along with a similar argument as in the proof of Theorem 1.1.4,

establishes Theorem 1.1.3.

1.4. Generalized Mahler measure of a family of polynomi-

als

In this section, our aim is to apply Theorems 1.1.2 and 1.1.4 to evaluate the generalized

Mahler measure of the family of polynomials in (0.5.4), namely Qr = x+ 1
x
+y+ 1

y
+r, where

r ∈ C.

Before proceeding with this evaluation, we recall some notation associated to the consid-

ered family of polynomials for the reader’s convenience.

1. The map in (0.5.6) is defined in this case as

q : T2
a,b 7→ C, (x, y) 7→ x+

1

x
+ y +

1

y
.

2. Any element r of the image of q, denoted by Ra,b, are of the form

r =
(
a+ a−1

)
cosα +

(
b+ b−1

)
cos β + i

[(
a− a−1

)
sinα +

(
b− b−1

)
sin β

]
,

where α, β ∈ [−π, π).

3. Since Ra,b is compact, Ra,b = maxr∈Ra,b
|r| exists.

4. Ua,b denotes the unbounded open connected component of C \ Ra,b. It contains the

region {|r| > Ra,b}; since R1,1 = 4, we have Ua,b ⊆ U1,1.

Now we are ready to apply our theorems to evaluate the generalized Mahler measure of

Qr.

1.4.1. Generalized Mahler measure on the unbounded component of

C \ Ra,b

In [102] Rodriguez-Villegas expressed the (standard) Mahler measure of Qr in terms

of Eisenstein-Kronecker series for any r ∈ C. Combining his proof and Theorem 1.1.2, we
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will show that, for fixed a, b > 0, there exists a large open subset of C, namely Oa,b =

Ua,b∩U1,1, such that if r ∈ Oa,b, then the Mahler measure remains unchanged irrespective of

the dependence of the integration torus on (a, b). We will in fact go further and show that

Oa,b is the unbounded component of C \Ra,b, namely Ua,b. Later in this section, we will give

an explicit expression of the region Oa,b, as well as of the region Ra,b.

Recall that, for fixed a, b > 0, Qr does not vanish on T2
a,b if and only if r /∈ Ra,b. In order

to show that, for a fixed a, b > 0,

ma,b(Qr) = m(Qr), for all r ∈ Oa,b,

it suffices to evaluate νja,b,r for j = 1, 2. Since these quantities are constant in the region Oa,b,

we can choose a suitable r and apply Theorem 1.1.2 to evaluate them. Let

R = Ra,b +R1,1 = a+
1

a
+ b+

1

b
+ 4.

Note that R ∈ Oa,b and R /∈ (−∞, 0].

Recall that ν1a,b,r denotes the difference between the number of zeros (counting multiplic-

ity), namely Z1
a,b,r and the number of poles (counting multiplicity), namely P 1

a,b,r, of Qr(x, b)

inside the circle T1
a, i.e.

ν1a,b,r = Z1
a,b,r − P 1

a,b,r,

and that ν2a,b,r is also defined in a similar way.

Since QR(x, b) is holomorphic everywhere except for a simple pole at x = 0, we have

P 1
a,b,R = 1. Therefore, xQR(x, b) has no pole in C. Now xQR(x, b) can be factored in C[x] as

xQR(x, b) = (x− x+) (x− x−) ,

where

x± =
−
(
R + b+ 1

b

)
±
»(

R + b+ 1
b

)2 − 4

2
.
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Notice that x+ · x− = 1, and since R + b+ 1
b
> a+ 1

a
, we also have

|x−| =

∣∣∣∣∣∣R + b+ 1
b
+
»(

R + b+ 1
b

)2 − 4

2

∣∣∣∣∣∣ = R + b+ 1
b
+
»(

R + b+ 1
b

)2 − 4

2

=
R + b+ 1

b
+
»(

a+ 1
a
+ b+ 1

b
+ b+ 1

b
+ 6
) (
a+ 1

a
+ b+ 1

b
+ b+ 1

b
+ 2
)

2

≥ a+
1

a
.

Since a + 1
a
> max

{
a, 1

a

}
, we have |x+| ≤ 1

a+ 1
a

< a, and therefore, Z1
a,b,R = 1. By the

definition of ν1a,b,R, it follows that ν1a,b,R = 0. A similar argument shows that ν2a,b,R = 0.

Combining Theorem 1.1.2 and the values obtained above, we derive that, for r ∈ Ua,b ⊂ U1,1,

ma,b(Qr) = m(Qr),

and the required Oa,b is in fact the region Ua,b.

Until now we have been fixing a, b > 0 in our discussion. Next, we want to show that our

theorem can even be applied to a fixed suitable r in order to obtain certain values of (a, b)

such that the equality ma,b(Qr) = m(Qr) still holds.

For some particular values of r ∈ R ∪ iR, the standard Mahler measure of Qr has been

proven to be the same as (up to a rational multiple) a special value of L-function of the elliptic

curve corresponding to Qr due to Boyd [29], Rodriguez-Villegas [102], Deninger [45], Rogers

and Zudilin [105], Lalín and Rogers [82] et al. Therefore, an interesting direction would be

to search for values of (a, b) such that changing the integration torus from T2 (= T2
1,1) to

T2
a,b keeps the Mahler measure fixed. In order to do so, first notice that, for all r > Ra,b,

Theorem 1.1.2 implies that

ma,b(Qr) = m(Qr).

Since a and b are fixed arbitrarily, we can fix r = r0 > 4, and conclude that, for all 2-tuples

(a, b) satisfying

a+
1

a
+ b+

1

b
< r0,

we have ma,b(Qr0) = m(Qr0). Since the change of variables r 7→ −r covers the case when

r < −4, it is sufficient to consider the r > 4 case here.
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For r ∈ iR, it suffices to investigate the imaginary part of r ∈ Ra,b. Indeed, once we calcu-

late the maxr∈Ra,b
Im(r), we can conclude that all r′ ∈ C, such that Im(r′) > maxr∈Ra,b

Im(r),

belong to the unbounded component of C\Ra,b, namely Ua,b. The following discussion results

in gathering the required 2-tuples (a, b) such that

ma,b(Qr0) = m(Qr0)

for a fixed r′ = r0.

Recall that, any element in Ra,b can be written as

r =
(
a+ a−1

)
cosα +

(
b+ b−1

)
cos β + i

[(
a− a−1

)
sinα +

(
b− b−1

)
sin β

]
,

where α, β ∈ [−π, π). Notice that,

|Im(r)| =
∣∣(a− a−1

)
sinα +

(
b− b−1

)
sin β

∣∣ ≤ ∣∣a− a−1
∣∣+ ∣∣b− b−1

∣∣ ,
and, for α = β ∈ {−π

2
, π
2
}, we have

rmax,iR = i
[∣∣a− a−1

∣∣+ ∣∣b− b−1
∣∣] .

Therefore, when a and b are fixed, we have ma,b(Qr) = m(Qr) for all r ∈

{z ∈ iR : |z| > |a− a−1|+ |b− b−1|} . Then a similar argument as in the real case

shows that, for a fixed r0 ∈ iR>0, the Mahler measure of Qr0 over the integration torus T2
a,b

is same as the standard Mahler measure, i.e.

ma,b(Qr0) = m(Qr0),

for all the 2-tuples (a, b) satisfying∣∣a− a−1
∣∣+ ∣∣b− b−1

∣∣ < |r0|.

Here we mention two such examples for r = 8 and r = 2i.

Example 1.4.1 (r = 8). We provide two cases: (I) when b = a, and (II) when b =
√
a.

Notice that, case (I) keeps the symmetry of the polynomial

Q8(x, y) = x+
1

x
+ y +

1

y
+ 8
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in the variables x and y. In other words, under the change of variables x 7→ y and y 7→ x, the

polynomial Q8 remains unchanged, and so does the integration torus T2
a,a. On the other hand,

case (II) breaks the symmetry as then the above changes of variables change the integration

torus from T2
a,
√
a

to T2√
a,a
. Despite the differences between these two cases, there are certain

values of a such that

ma,
√
a(Q8) = ma,a(Q8) = m(Q8) = 4L′(E24, 0),

where E24 is an elliptic curve of conductor 24 associated to Q8. Here the last equality follows

from combining the results due to Rogers and Zudilin [105], and Lalín and Rogers [82], where

they showed

m(Q8(x, y)) = m(Q2(x, y)) = L′(E24, 0).

From the above discussion, we find that, when (I) a = b, the equality

ma,a(Q8) = m(Q8)

holds for all a satisfying

a+
1

a
< 4 ⇐⇒ 2−

√
3 < a < 2 +

√
3.

Similarly, when (II) b =
√
a, we find that, for

a+
1

a
+
√
a+

1√
a
< 8

⇐⇒
17−

√
41−

√
2
Ä
157− 17

√
41
ä

4
< a <

17−
√
41 +

√
2
Ä
157− 17

√
41
ä

4
,

the equality

ma,
√
a(Q8) = m(Q8)

holds. Since,

17−
√
41 +

√
2
Ä
157− 17

√
41
ä

4
> 2 +

√
3

and

17−
√
41−

√
2
Ä
157− 17

√
41
ä

4
=

17−√
41 +

√
2
Ä
157− 17

√
41
ä

4

−1

,
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we obtain

ma,
√
a(Q8) = ma,a(Q8) = m(Q8) = 4L′(E24, 0) for all a ∈

Ä
2−

√
3, 2 +

√
3
ä
.

Example 1.4.2 (r = 2i). In 2011, Mellit [120] showed that

m(Q2i) = L′(E40, 0),

where E40 is an elliptic curve of conductor 40, associated to Q2i.

When b = a, Theorem 1.1.2 implies that ma,a(Q2i) = m(Q2i) is true for

∣∣a− a−1
∣∣ < 1 ⇐⇒

√
5− 1

2
< a <

√
5 + 1

2
.

Similarly, when b =
√
a, the equality

ma,
√
a(Q2i) = m(Q2i)

holds for all a satisfying ∣∣∣∣a− 1

a

∣∣∣∣+ ∣∣∣∣√a− 1√
a

∣∣∣∣ < 2 ⇔ a0 < a < a1,

where a0 ≈ 0.530365 . . . and a1 ≈ 1.88549 . . . satisfy T − 1/T +
√
T − 1/

√
T − 2 = 0 and

T − 1/T +
√
T − 1/

√
T + 2 = 0, respectively. Since a0 <

√
5−1
2

and a1 >
√
5+1
2
, we obtain

ma,a(Q2i) = ma,
√
a(Q2i) = m(Q2i) = L′(E40, 0)

for all a ∈
Ä√

5−1
2
,
√
5+1
2

ä
.

1.4.2. Generalized Mahler measure on the bounded components of

C \ Ra,b

In this section, our goal is to evaluate ma,b(Qr) when r belongs to the bounded connected

component(s) of C \ Ra,b. In particular, we show there can be at most one such component

of C \Ra,b. Later, we apply Theorem 1.1.4 to calculate ma,b(Qr) for all r in said component.

94



1.4.2.1. Existence of at most one open connected bounded component of C\Ra,b.

Our aim here is to show that there exists at most one bounded open connected component

of C \ Ra,b for any a, b > 0.

Recall that the elements of Ra,b are of the form

r =
(
a+ a−1

)
cosα +

(
b+ b−1

)
cos β + i

[(
a− a−1

)
sinα +

(
b− b−1

)
sin β

]
, (1.4.1)

where α, β ∈ [−π, π). We have

Ra,b = max
r∈Ra,b

|r| = a+ a−1 + b+ b−1, and ra,b := min
r∈Ra,b

|r| =
(
a+ a−1

)
−
(
b+ b−1

)
.

Then

a = b⇐⇒ ra,b = 0 ⇐⇒ 0 ∈ Ra,b.

From this point onwards we assume that a ≥ b ≥ 1. The other cases follow analogously

using Lemma 1.2.1.

Proposition 1.4.3. There exists at most one bounded open connected component of C\Ra,b,

and if it exists, then it contains 0.

Note that, if 0 ∈ Ra,b, then Proposition 1.4.3 implies that there is no bounded open

connected component in C \Ra,b. Before we proceed to prove the proposition, we note some

useful properties of Ra,b.

(A) The points r ∈ Ra,b can be interpreted as points on the ellipses

Eb,z : |r − (z + 2)|+ |r − (z − 2)| = 2
(
b+ b−1

)
, (1.4.2)

where z ∈ C lies on the ellipse

ea : |z − 2|+ |z + 2| = 2
(
a+ a−1

)
. (1.4.3)

In other words, elements of Ra,b can be identified with points on ellipses Eb,z defined

by (1.4.2) with centres on the ellipse ea in (1.4.3). Note that, the centre (c) and the

foci (c1 and c2) of the ellipse ea are the points c = 0, c1 = −2 and c2 = 2. The centre

(Cz) and the foci (C1,z and C2,z) of the ellipse Eb,z are

Cz = z, C1,z = z − 2, and C2,z = z + 2.
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Any point p ∈ C lying inside (resp. outside) the ellipse Eb,z satisfies |p− C1,z| +

|p− C2,z| < 2 (b+ b−1) (resp. |p− C1,z| + |p− C2,z| > 2 (b+ b−1)). Since the length

of the minor axis of ea is 2 (a− a−1) , we derive that, for z ∈ ea,

|Im (Cz)| ≤
(
a− a−1

)
,

and, for all h ∈ (−a+ a−1, a− a−1) , there exists a z̃ ∈ ea such that

Im (Cz̃) = h. (1.4.4)

(B) The region Ra,b is symmetric with respect to the imaginary and real axes, i.e. if

r ∈ Ra,b, then −r̄, r̄ ∈ Ra,b. Let S±,± denote the four quadrants of C, namely S+,+ =

{s ∈ C : Re(s) ≥ 0, Im(s) ≥ 0}, S+,− = {s ∈ C : Re(s) ≥ 0, Im(s) ≤ 0} and so on.

Then, the changes of variable {α 7→ π − α, β 7→ π − β} and {α 7→ −α, β 7→ −β}

applied to (1.4.1) take points r ∈ Ra,b∩S+,± to −r̄ ∈ Ra,b∩S−,±, and r ∈ Ra,b∩S±,+

to r̄ ∈ Ra,b ∩ S±,−.

For the rest of this section, Rc
a,b denotes the region defined by C \ Ra,b.

Proof of Proposition 1.4.3. Recall that Ua,b denotes the connected unbounded component of

Rc
a,b. First we consider the case a > b.

From the discussion at the beginning of this section, we have 0 ∈ Rc
a,b, and moreover the

open disc {u ∈ C : |u| < ra,b} is contained in one of the bounded open connected components

of Rc
a,b. Let Va,b denote this component. Note that 0 ∈ Va,b.

In order to prove the statement, we note that the property (B) above implies that we

can restrict ourselves to the quadrant S+,+.

Since a > b, the ellipse Eb,z0 lies completely in the interior of S+,−, where z0 =

−i (a− a−1) . This implies that, for P ∈ S+,+, we have |P − C1,z0 |+|P − C2,z0| > 2 (b+ b−1) ,

where C1,z0 and C2,z0 are the foci of Eb,z0 . In other words, the point P lies completely outside

the ellipse Eb,z0 with centre at z0 = −i (a− a−1) ∈ ea. Let z1 and z2 denote the points a+a−1

and i (a− a−1) , respectively. We now consider the following cases:

(I) Im(P ) > Im(z2) = (a− a−1) ,

(II) 0 ≤ Im(P ) ≤ Im(z2) = (a− a−1) .
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Let Ea,b and ea,b denote the boundaries of Ua,b and Va,b respectively, i.e.

Ea,b = Ua,b \ Ua,b, and ea,b = V a,b \ Va,b.

Therefore, Ea,b ∪ ea,b ⊂ Ra,b. If P /∈ Ua,b ∪ Va,b, then P lies in the region bounded by Ea,b

and ea,b. Then the line LRe(P ) : t = Re(P ) intersects Ea,b at some point P ′ ∈ Q+,+. By

construction, Re(P ) = Re(P ′), and Im(P ) ≤ Im(P ′), where the equality holds iff P = P ′.

Note that P = P ′ is the trivial case. Therefore, we assume that P ̸= P ′.

Figure 1 – Ra,b, Ua,b, Va,b, ea, Cj,z, P, P
′, LRe(P ) when a > b and (I) holds.

Claim: For P ∈ S+,+, if (I) holds, and P /∈ Va,b ∪ Ua,b, then there exists an ellipse Eb,z′ ,

with centre at z′ ∈ ea, such that

|P − C1,z′|+ |P − C2,z′ | < 2
(
b+ b−1

)
.
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Since Im(Cj,z) ≤ a − a−1 for all z ∈ ea and j = 1, 2, case (I) implies that |P ′ − Cj,z|2 −

|P − Cj,z|2 > |P ′ − P |2 > 0 (see Figure 1), and then we have

|P − C1,z|+ |P − C2,z| < |P ′ − C1,z|+ |P ′ − C2,z| .

On the other hand, P ′ ∈ Ea,b ⊂ Ra,b, i.e. there exists a z′ ∈ ea such that |P ′ − C1,z′| +

|P ′ − C2,z′ | = 2 (b+ b−1) . This concludes the proof of the claim.

Now note that z ∈ ea can also be written as z = (a+ a−1) cosαz + i (a− a−1) sinαz, for

αz ∈ [−π, π). Recall that C1,z = z−2 and C2,z = z+2. Therefore, when a is fixed, |P − Cj,z|

is a continuous function of αz for j = 1, 2. Let

Θ(αz) := |P − C1,z|+ |P − C2,z| − 2
(
b+ b−1

)
define a function from [−π, π) to R. From the claim, we have already concluded that, for the

case (I), either P ∈ Ua,b ∪ Va,b, or there are z0, z′ ∈ eb such that

|P − C1,z0|+ |P − C2,z0| > 2
(
b+ b−1

)
, and |P − C1,z′ |+ |P − C2,z′| < 2

(
b+ b−1

)
.

This implies that Θ is a continuous function which takes both negative and positive values,

and, using Mean Value Theorem (MVT) on Θ, we derive that there exists z1 ∈ ea such that

Θ(αz1) = 0. In other words, P ∈ Ra,b, which completes the proof of the proposition for a > b

when (I) holds.

For case (II), note that

0 ≤ Im(P ), Im(Cz) ≤ a− a−1, for all z ∈ ea,

where Cz (= z) is the centre of Eb,z given in property (A). Then, the continuous property of

Im (Cz) mentioned in (1.4.4) implies that there exists a z′′ ∈ ea such that Im(P ) = Im(Cz′′)

(see Figure 2). Let LIm(P ) : t = Im(P ) denote the line joining P and Cz′′ , and let LIm(P )

intersect Ea,b at P1 in Q+,+ such that any t ∈ LIm(P ) satisfying Re(t) > Re(P1) lies in Ua,b.

Then P1 has a representation as in (1.4.1), namely

P1 =
(
a+ a−1

)
cosα +

(
b+ b−1

)
cos β + i

[(
a− a−1

)
sinα +

(
b− b−1

)
sin β

]
,

for some α, β ∈ [0, π/2). Moreover, there exist γ ∈ [0, π/2) such that Im(P ) = Im(P ′) =

Im(Cz′′) = (a− a−1) sin γ. The case Re(P ) = Re(P1) is trivial as the above discussion implies
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that P = P1. If Re(P ) > Re(P1), then from the definition of P1 it follows that P ∈ Ua,b.

Therefore, it only remains to investigate the case when 0 ≤ Re(P ) < Re(P1).

(a) (b)

Figure 2 – Ra,b, Ua,b, Va,b, ea, Cz, P, P1, LIm(P ) when a > b and (II) holds; left (resp. right)

figure shows the case when LIm(P ) ∩ ea,b ̸= ∅ (resp. LIm(P ) ∩ ea,b = ∅).

Define the function f : [α, γ] → [0, β] , which sends ψ to f(ψ) such that(
a− a−1

)
sin γ =

(
a− a−1

)
sinα +

(
b− b−1

)
sin β =

(
a− a−1

)
sinψ +

(
b− b−1

)
sin f(ψ).

Note that this is a continuous onto function from a connected set. Then the graph of this

function, namely Γf := {(ψ, f(ψ)) : ψ ∈ [α, γ]}, is also a connected set. Consider another

function g : Γf → R, defined by

(ψ, f(ψ)) 7→
(
a+ a−1

)
cosψ +

(
b+ b−1

)
cos f(ψ).

Note that this function is a continuous function, and there exist χ, ξ ∈ Γf such that g(χ) =

Re(P1) = (a+ a−1) cosα + (b+ b−1) cos β, and g(ξ) = Re (Cz′′) = (a+ a−1) cos γ.

Now if Re(P ) ∈ (Re (Cz′′) ,Re(P1)) , we claim that there exists a ψ0 ∈ [α, γ] such that

P =
(
a+ a−1

)
cosψ0 +

(
b+ b−1

)
cos f(ψ0) + i

[(
a− a−1

)
sinψ0 +

(
b− b−1

)
sin f(ψ0)

]
,
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which will imply that P ∈ Ra,b. Indeed, g is a continuous function on a connected set,

and g(ξ) < g(χ). Therefore, all the values of the interval (g(ξ), g(χ)) are attained by g.

In particular, such ψ0 exists. This proves the statement of the proposition when Im(P ) ∈

[0, a− a−1] and Re(P ) ≥ Re (Cz′′) .

Therefore, it remains to consider the case when (II) holds along with Re(P ) ∈

[0,Re (Cz′′)) .

If the line LIm(P ) intersect ea,b in S+,+, then we consider the intersection point with the

smallest non-negative real part. In other words, if K1, . . . , Kl ∈ S+,+ ∩ ea,b ∩ LIm(P ) are

distinct with 0 ≤ Re(K1) < · · · < Re(Kl), then consider Re(K1). We want to show that,

in fact there can be at most one intersection point of LIm(P ) and ea,b in S+,+. That is, if

Re(P ) ∈ (Re(K1),Re(Cz′′)), then P ∈ Ra,b; but this follows from a similar argument as

above. Therefore, it only remains to investigate the case when LIm(P ) does not intersect ea,b

in S+,+. Let K0 be the intersection point of LIm(P ) and the imaginary axis. Then we have

Re(K0) = 0, and Re(P ) ∈ (Re(K0),Re(Cz′′)) ⊂ LIm(P ). Again, an analogous argument as

above implies that P ∈ Ra,b.

We collect all the results above, and then using the symmetry of Ra,b (see property

(B)) we conclude that if P /∈ Ua,b ∪ Va,b, then P ∈ Ra,b, which completes the proof of the

proposition for a > b. The case a = b follows from a similar argument. □

1.4.2.2. Application of Theorem 1.1.4 to the bounded component. Now we are

ready to apply Theorem 1.1.4 to Va,b, and evaluate ma,b(Qr). Firstly, we need to investigate

the roots of xQr0(x, b). Since, 0 ∈ Va,b, we can choose r0 = 0 in our theorem. In particular,

we need to count the number of roots of xQ0(x, b) lying inside the circle |x| = a. By Lemma

1.2.1, we can also assume a > b > 1.

Factoring xQ0(x, b) in C[x], we obtain that

xQ0(x, b) = x2 +

Å
b+

1

b

ã
x+ 1 = (x+ b)

Å
x+

1

b

ã
.

Since a > b > 1, both roots of xQ0(x, b)) lies inside the circle |x| = a. Also note that Qx
F,0(y)

and Qx
f,0(y) in (1.3.1) are equal to the constant function 1. Applying Theorem 1.1.4, we
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have, for a > b > 1 and r ∈ Va,b,

ma,b(Qr) = ν1a,b,0 log a = log a,

where the last equality follows from the fact that

ν1a,b,0 = Z1
a,b,0 − P 1

a,b,0 = 2− 1 = 1.

Other cases, such as b > a > 1, a > 1 > b etc, follow from a combination Lemma 1.2.1 and

a similar arguments as above.

1.5. Generalized Mahler measure of x + 1
x + y + 1

y + 4

In this section, our goal is to provide a proof of Theorem 1.1.6, and evaluate

ma,b(Q4) := ma,b(Q4(x, y)) = ma,b

Å
x+

1

x
+ y +

1

y
+ 4

ã
for all a, b > 0.

Our method of proof is mostly inspired from the proof of Theorem 12 in [42]. We apply

the change of variables considered by Boyd (see Section 2A in [29]), namely

x 7→ w

z
and y 7→ wz,

to Q4(x, y), and this yields that

P (w, z) = Q4

(w
z
,wz

)
=

1

wz
(1 + iw + iz + wz) (1− iw − iz + wz) . (1.5.1)

Since ma,b(S(x, y)T (x, y)) = ma,b(S(x, y)) + ma,b(T (x, y)), it is sufficient to evaluate the

Mahler measures of the linear polynomials (1± iw ± iz + wz) over T2
c,d = {(w, z) ∈ C××C× :

|w| = c, |z| = d}, where

c =
√
ab, d =

…
b

a
.

Afterwards, using the changes of variables, we can evaluate ma,b(Q4). The changes of variables

w 7→ −w and z 7→ −z
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transform (1 + iw + iz + wz) to (1− iw − iz + wz) . As these changes of variables preserve

the Mahler measure, we find that

ma,b(Q4) = mc,d(P (w, z)) =mc,d

Å
1

wz

ã
+mc,d (1 + iw + iz + wz) + mc,d (1− iw − iz + wz)

=− log cd+ 2mc,d (1 + iw + iz + wz)

=− log b+ 2mc,d (1 + iw + iz + wz) , (1.5.2)

where the last equality follows from the fact that cd =
√
ab ·

»
b
a
= b.

Among the terms in (1.5.2), it remains to evaluate

1

2
(mc,d(P ) + log cd) =

1

2
(ma,b(Q4) + log b) = mc,d(1 + iw + iz + wz).

Note that z(w) = −1+iw
i+w

is the only root of R(w, z) = 1+ iw+ iz+wz, when considered

as a polynomial in z. Therefore,

mc,d(R(w, z)) = mc,d(w + i) + mc,d

Å
z +

1 + iw

i+ w

ã
=

1

(2πi)2

∫
T2
c,d

log |w + i|dw
w

dz

z
+mc,d

Å
z +

1 + iw

i+ w

ã
=

1

2πi

∫
|w|=c

log |w + i|dw
w

+mc,d

Å
z +

1 + iw

i+ w

ã
. (1.5.3)

To evaluate the first integral, we apply the change of variables w = cw′ and Jensen’s formula

(see (0.1.4)) to obtain

1

2πi

∫
|w|=c

log |w + i|dw
w

= log c+
1

2πi

∫
|w′|=1

log

∣∣∣∣w′ +
i

c

∣∣∣∣ dw′

w′ =

 log c if c > 1,

0 if c ≤ 1.
(1.5.4)

It now suffices to evaluate

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

(2πi)2

∫
T2
c,d

log

∣∣∣∣z + 1 + iw

i+ w

∣∣∣∣ dww dz

z
(1.5.5)

=
1

2πi

∫
|w|=c

Ç
1

2πi

∫
|z|=d

log

∣∣∣∣z + 1 + iw

i+ w

∣∣∣∣ dzz
å
dw

w
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to complete the proof. Note that 1
2πi

∫
|z|=d log

∣∣∣z + 1+iw
i+w

∣∣∣ dzz can be simplified to

1

2πi

∫
|z|=d

log

∣∣∣∣z + 1 + iw

i+ w

∣∣∣∣ dzz =


log
∣∣∣1+iwi+w

∣∣∣ if
∣∣∣1+iwi+w

∣∣∣ > d,

log d if
∣∣∣1+iwi+w

∣∣∣ ≤ d

(1.5.6)

following an application of Jensen’s formula.

Let γ>d and γ≤d be the two collections of arcs defined by

γ>d = {w : |w| = c, |z(w)| > d}, γ≤d = {w : |w| = c, |z(w)| ≤ d}.

Then, applying Jensen’s formula with respect to the variable z, (1.5.5) can be expressed as

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

2πi

∫
|w|=c

Ç
1

2πi

∫
|z|=d

log

∣∣∣∣z + 1 + iw

i+ w

∣∣∣∣ dzz
å
dw

w

=
1

2πi

∫
γ>d

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww +
1

2πi

∫
γ≤d

log d
dw

w
. (1.5.7)

Since Im
(
dw
w

)
= d argw, the differential form can be represented in terms of η as

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww = log |z(w)|dw
w

= −i (η(w, z(w))− η(c, z(w))) .

The second term above can be further simplified to

η(c, z(w)) = η(c, iz(w))− η(c, i) = η(c, iz(w)) = (log c)d arg

Å
1 + iw

1− iw

ã
,

where iz(w) = i1+iw
i+w

= 1+iw
1−iw . Therefore, once we have determined γ>d and γ≥d explicitly, the

integrals in (1.5.7) can be evaluated individually using the properties of η and the following

two lemmas.

Lemma 1.5.1. For w, z(w) mentioned above, η (w, z(w)) decomposes as

η(w, z(w)) = η (−iw, 1 + iw)− η (iw, 1− iw) .

Lemma 1.5.2 (Lemma 16, [42]). For c ∈ R>0 and θ ∈ [−π, π), let w = ceiθ and ψ = θ+ π
2
.

Then

d arg

Å
1 + iw

1− iw

ã
=

2 (c−1 − c) cosψ

(c−1 − c)2 + 4 sin2 ψ
dψ.
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Using property (0.4.24) of η we can rewrite η(w, z(w)) in Lemma 1.5.1 as

η(w, z(w)) = dD (−iw)− dD (iw) , (1.5.8)

where D is the Bloch–Wigner dilogarithm given in (0.4.5).

The evaluation of the remaining integral involving η(c, z(w)) (= log c d arg
Ä
1+iw
1−iw

ä
) over

the integration path γ>d follows from the lemma below.

Lemma 1.5.3. For c ∈ R>0 and θ ∈ [−π, π), let w = ceiθ. Let α, β ∈ [−π, π). Then∫ w(β)

w(α)

d arg

Å
1 + iw

1− iw

ã
= arctan

Å
2 cosα

c− c−1

ã
− arctan

Å
2 cos β

c− c−1

ã
,

where w(α) = ceiα and w(β) = ceiβ.

We omit the proof of Lemma 1.5.2 since it is an intermediate step in Lemma 16 of [42].

We should also remark that Lemma 1.5.3 is a generalized version of Lemma 16 in [42], which

states the above result for the case α = −π and β = 0. We will see later that the proof of

Lemma 1.5.3 also follows from an argument similar to the proof in [42]. We now provide

the proofs of Lemma 1.5.1 and 1.5.3.

Proof of Lemma 1.5.1. Using properties of η in Lemma 0.4.9, η(w, z(w)) decomposes as

η(w, z(w)) = η

Å
w,

1 + iw

i+ w

ã
= η(w, 1 + iw)− η(w, i+ w)

= η(−iw, 1 + iw)− η(−i, 1 + iw)− η(iw, i+ w) + η(i, i+ w)

= η(−iw, 1 + iw)− η(iw, 1− iw)− η(iw, i)

= η(−iw, 1 + iw)− η(iw, 1− iw),

where we applied Remark 0.4.10, which implies that η(ζ, f(w)) = 0 = η(f(w), ζ) for any

root of unity ζ and any function f(w) of w. □

Proof of Lemma 1.5.3: We first assume that c ∈ R>0 \ {1}, and the case c = 1 follows from

a continuity argument.
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For α, β ∈ [−π, π) and w = ceiθ, Lemma 1.5.2 yields that∫ w(β)

w(α)

d arg

Å
1 + iw

1− iw

ã
=

∫ β+π
2

α+π
2

2 (c−1 − c) cosψ

(c−1 − c)2 + 4 sin2 ψ
dψ = −

∫ cosβ

cosα

2(c− c−1)

(c− c−1)2 + 4t2
dt,

where ψ = θ + π
2
, w(ϕ) = ceiϕ, and the last equality follows from the change of variables

sinψ 7→ t.

Further, the change of variables 2t
c−c−1 7→ u gives that∫ w(β)

w(α)

d arg

Å
1 + iw

1− iw

ã
= −

∫ 2 cos β

c−c−1

2 cosα
c−c−1

du

1 + u2
= arctan

Å
2 cosα

c− c−1

ã
− arctan

Å
2 cos β

c− c−1

ã
,

which proves the lemma. □

Now we have everything to complete the proof of Theorem 1.1.6.

Proof of Theorem 1.1.6. In order to apply Lemma 1.5.1 and Lemma 1.5.2 to (1.5.7), it is

necessary to explicitly express γ≤d and γ>d. Since γ>d and γ≤d are disjoint, and

{w : |w| = c} = γ>d ∪ γ≤d,

it suffices to understand γ>d.

Recall that z(w) = −1+iw
i+w

. Then, |z(w)| > d ⇔
∣∣∣1+iwi+w

∣∣∣ > d ⇔ |1 + iw| > d |i+ w| . Since

both sides of the inequality are non-negative, we can square them and get

|1 + iw| > d |i+ w| ⇔ |1 + iw|2 > d2 |i+ w|2

⇔ 2(1 + d2) Re(iw) > (d2 − 1)(1 + |w|2)

⇔ Re(ieiθ) >
d2 − 1

1 + d2
· 1 + c2

2c
,

where the last inequality follows from the fact that w = ceiθ for θ ∈ [−π, π). In other words,

the condition |z(w)| > d is equivalent to the condition

−1 ≤ −Re(ieiθ) = sin θ <
1− d2

1 + d2
· 1 + c2

2c
, (1.5.9)

with θ ∈ [−π, π). We recall that

Ac,d =
1− d2

1 + d2
· 1 + c2

2c
.

As | sin θ| ≤ 1, there are three cases to consider.

105



Case 1: If Ac,d ≤ −1, then γ>d = ∅ and γ≤d = {w : |w| = c}.

Case 2: If Ac,d ≥ 1, then γ>d = {w : |w| = c} and γ≤d = ∅.

Case 3: If |Ac,d| < 1, then, for w = ceiθ with θ ∈ [−π, π),

γ>d = {w : |w| = c,−1 ≤ sin θ < Ac,d} and γ≤d = {w : |w| = c,Ac,d ≤ sin θ ≤ 1} .

Now we have everything needed to evaluate (1.5.7), namely

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

2πi

∫
γ>d

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww +
1

2πi

∫
γ≤d

log d
dw

w
.

Case 1: Since γ>d = ∅, the integrals in (1.5.7) can be evaluated individually to obtain

1

2πi

∫
γ>d

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww = 0, and
1

2πi

∫
γ≤d

log d
dw

w
=

1

2πi

∫
|w|=c

log d
dw

w
= log d.

Therefore, in this case we have

mc,d

Å
z +

1 + iw

i+ w

ã
= log d. (1.5.10)

Case 2: Since γ≤d = ∅, the second integral in (1.5.7) contributes nothing. However the

first integral can be decomposed into simpler integrals, i.e.

1

2πi

∫
γ>d

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww =
1

2πi

∫
|w|=c

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww
=

1

2πi

∫
|w|=c

log |1 + iw| dw
w

− 1

2πi

∫
|w|=c

log |i+ w| dw
w

= 0.

Therefore, when γ>d = {|w| = c} (and γ≤d = ∅), then

mc,d

Å
z +

1 + iw

i+ w

ã
= 0. (1.5.11)

Case 3: Since

|Ac,d| < 1,

we have two sub-cases to consider.

3a: When

−1 < Ac,d < 0,
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then arcsin (Ac,d) ∈ [−π, 0). For simplicity, we denote τ = arcsin (Ac,d) such that τ ∈(
−π

2
, 0
)
. Note that sin τ = sin(−π − τ). Then the boundary values of γ>d are

∂γ>d = {w(−π − τ), w(τ)} = {cei(−π−τ), ceiτ} = {−ce−iτ , ceiτ},

where w(θ) = ceiθ. The integration path γ≤d is then the union of the arcs joining w(−π) and

w(−π − τ), and joining w(τ) and w(π). Therefore

∂γ≤d = {w(−π), w(−π − τ), w(τ), w(π)}

are the boundary values of γ≤d. All the paths are assumed to be traversed counter-clockwise.

Now, we have all the tools to calculate (1.5.7) in this case. Combining Lemma 1.5.1 and

(1.5.8) with the above discussion we obtain

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

2πi

∫
γ>d

log

∣∣∣∣1 + iw

i+ w

∣∣∣∣ dww +
1

2πi

∫
γ≤d

log d
dw

w

=− 1

2π

∫
γ>d

η(w, z(w)) +
1

2π

∫
γ>d

η(c, z(w)) +
1

2πi

∫
γ≤d

log d
dw

w

=− 1

2π

∫
γ>d

(dD(−iw)− dD(iw))

+
log c

2π

∫ w(τ)

w(−π−τ)
d arg

Å
1 + iw

1− iw

ã
+

log d

2π

Å∫ −π−τ

−π
+

∫ π

τ

ã
dθ, (1.5.12)

where the simplification of the last integral follows from the above discussion regarding ∂γ≤d

and substituting w with w(θ) = ceiθ. The first integral in (1.5.12) can be evaluated using

Stokes’ theorem as

1

2π

∫
γ>d

(dD(−iw)− dD(iw)) =
1

2π
[D(−iw)−D(iw)]∂γ>d

=
1

2π
[D(−iw)−D(iw)]

w(τ)
w(−π−τ)

=− 1

π

(
D(ice−iτ ) +D(iceiτ )

)
, (1.5.13)

where the last equality follows from the property (0.4.4) of the Bloch-Wigner dilogarithm.
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Substituting α = −π − τ and β = τ in the statement of Lemma 1.5.3, we evaluate the

second integral in (1.5.12):

log c

2π

∫ w(τ)

w(−π−τ)
d arg

Å
1 + iw

1− iw

ã
= − log c

π
arctan

Å
2 cos τ

c− c−1

ã
. (1.5.14)

The remaining integral’s contribution is

log d

2π

Å∫ −π−τ

−π
+

∫ π

τ

ã
dθ =

log d

2π
[−π − τ + π + π − τ ] =

π − 2τ

2π
log d. (1.5.15)

Then (1.5.13), (1.5.14) and (1.5.15) together yield that

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

π

ï
D(ice−iτ ) +D(iceiτ )− (log c) arctan

Å
2 cos τ

c− c−1

ã
+
(π
2
− τ
)
log d

ò
.

3b: It remains to evaluate the case when

0 < Ac,d < 1.

This condition is equivalent to

arcsin (Ac,d) ∈ (0, π).

Again, for simplicity, we denote κ = arcsin (Ac,d) such that κ ∈
(
0, π

2

)
. Since sinκ =

sin(π − κ) and sin π = 0, the boundary values in this case are

∂γ>d = {w(−π), w(κ), w(π − κ), w(π)},

and

∂γ≤d = {w(κ), w(π − κ)}.

The arcs are considered to be oriented in a counter-clockwise direction. From a similar

argument as before, we deduce that

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

π

ï
D(ice−iκ) +D(iceiκ)− (log c) arctan

Å
2 cosκ

c− c−1

ã
+
(π
2
− κ
)
log d

ò
.

We combine the results obtained in 3a and 3b to obtain

mc,d

Å
z +

1 + iw

i+ w

ã
=

1

π

ï
D(ice−iµ) +D(iceiµ)− (log c) arctan

Å
2 cosµ

c− c−1

ã
+
(π
2
− µ

)
log d

ò
,

(1.5.16)

where µ = arcsin (Ac,d) ∈
(
−π

2
, π
2

)
. This concludes the evaluation of mc,d

Ä
z + 1+iw

i+w

ä
for the

different cases.
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Recall that R(w, z) = 1 + iw + iz + wz. In order to evaluate mc,d(R(w, z)), it suffices to

collect the equalities in (1.5.4), (1.5.10), (1.5.11) and (1.5.16). We deduce

mc,d(R(w, z)) = max{log c, 0}+



max{log d, 0} if |Ac,d| ≥ 1,

1
π
[D(ice−iµ) +D(iceiµ)

−(log c) arctan
Ä
2 cosµ
c−c−1

ä
+
(
π
2
− µ

)
log d

ó
if |Ac,d| < 1,

where µ = arcsin (Ac,d) ∈
(
−π

2
, π
2

)
. Notice that mc,d(R(w, z)) =

1
2
(ma,b(Q4) + log b) , where

a = c
d

and b = cd. This implies that when |Ac,d| ≥ 1, we have

ma,b(Q4) = max{log c,− log c}+max{log d,− log d}. (1.5.17)

On the other hand, when |Ac,d| < 1,

ma,b(Q4) =max{log c,− log c} − log d+
2

π

[
D(ice−iµ) +D(iceiµ)

]
− 2 log c

π
arctan

Å
2 cosµ

c− c−1

ã
+

Å
1− 2µ

π

ã
log d

=
2

π

[
D(ice−iµ) +D(iceiµ)− µ log d

]
+

ï
max

ß
π

2
· 2 log c

π
,−π

2
· 2 log c

π

™
− 2 log c

π
arctan

Å
2 cosµ

c− c−1

ãò
=
2

π

[
D(ice−iµ) +D(iceiµ)− µ log d

]
+

2 log c

π
arctan

Å
c− c−1

2 cosµ

ã
,

where µ = arcsin (Ac,d) ∈
(
−π

2
, π
2

)
, and the simplification of the last term follows from the

fact that

if x > 0, π/2− arctan(x) = arctan
(
x−1
)
,

and

if x < 0, −π/2− arctan(x) = arctan
(
x−1
)
.

Therefore, (1.5.17) along with the above discussion implies that

ma,b(Q4) =


|log c|+ |log d| if |Ac,d| ≥ 1,

2
π

î
D(ice−iµ) +D(iceiµ)− µ log d+ (log c) arctan

Ä
c−c−1

2 cosµ

äó
if |Ac,d| < 1,
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where µ = arcsin (Ac,d) ∈
(
−π

2
, π
2

)
, which completes the proof of Theorem 1.1.6. □

1.6. Conclusion

There are several directions for further exploration. The most immediate question one

can ask is, for any two variable Laurent polynomial Qr(x, y), how to evaluate ma,b(Qr) when

r ∈ Ra,b. A primary observation in this case is that the integration path is not necessarily

closed (and in most cases it is not). This turns out to be a challenging problem since the

integration path in this case cannot be easily identified as a cycle in the homology group.

We face a similar obstacle while evaluating the Mahler measure of Qr(x, y) on the bounded

connected components when the number of roots of Qr(a, y) (counting multiplicity) (or

Qr(x, b)) inside T1
b (or T1

a) is strictly less than the degree of the polynomials. In this situation

it is frequently required to integrate the algebraic functions coming from the factorisation of

Qr(x, y) (when considered as a polynomial in either x or y), on paths which are not closed.

These similar challenges also extend to the n-variable cases when n ≥ 3.

A different direction would be to consider the family of rational polynomials

Pk(x1, . . . , xn) = k − P (x1, . . . , xn)

Q(x1, . . . , xn)
∈ C(x1, . . . , xn), for k ∈ C.

Our method of proof for Theorems 1.1.2 and 1.1.4 extends to this type of rational polynomials

when Q(x1, . . . , xn) is a monomial, which essentially recovers Theorems 1.1.1 and 1.1.3.

The expression of νja,k in (1.2.16) appears in the work of Forsberg, Passare, and Tsikh

[53], where it is denoted as the order of an element in the complement of the Amoeba

associated to the respected polynomial. Our theorems also re-establish certain properties of

the Ronkin function associated to amoebas mentioned in [53]. Therefore, it would be also

natural to explore the generalized Mahler measure in terms of the Ronkin function associated

to amoebas in more depth.
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Chapter 2

Evaluations of the areal Mahler measure of

multivariable polynomials

In this chapter, we derive some nontrivial evaluations of the areal Mahler measure of

multivariable polynomials, defined by Pritsker [99] (see Definition 0.6.1). As in the case of

the classical Mahler measure, we find examples yielding special values of L-functions. This

is a joint work with Lalín, and was published in [84].

2.1. A brief description of the results

In [99], Pritsker provided some evaluations of areal Mahler measure in the multivariable

cases, namely mD(x + y) = −1
4

and mD(1 + xk11 · · ·xknn ) = 0 for k1, . . . ,kd ≥ 0. We continue

his study in the following sections by providing explicit formulas of the areal Mahler measure

of some nontrivial multivariable polynomials and rational functions, most of which involve

special values of L-functions and other special functions. In particular, we prove the following

result.

Theorem 2.1.1 (see Theorem 0.6.4). We have

mD(1 + x+ y) =
3
√
3

4π
L(χ−3,2) +

1

6
− 11

√
3

16π
. (2.1.1)

Comparing this formula with (0.1.7), we see that mD(1 + x + y) < m(1 + x + y), as
1
6
− 11

√
3

16π
< 0.



We further investigate the polynomials ax+ by+ c, since such a formula does exist in the

classical case due to Cassaigne and Maillot (see (0.5.1)). Due to some technical difficulties

in obtaining such a formula for the areal Mahler measure in full generality, we restrict

ourselves to a = 1 = b and c =
√
2. In Chapter 5, we overcome a few such difficulties with

different techniques and obtain hypergeometric expressions for the areal Mahler measure

when a = 1 = b and c ∈ C.

Theorem 2.1.2 (see Theorem 0.6.5). We have

mD

Ä√
2 + x+ y

ä
=
L(χ−4,2)

π
+ C√2 +

3

8
− 3

2π
, (2.1.2)

where

C√2 =
Γ
(
3
4

)2
√
2π3

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
−

Γ
(
1
4

)2
72
√
2π3

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
,

is expressed in terms of generalized hypergeometric functions, as defined in (0.2.1).

As suggested in Remark 0.6.6, the calculation showing C√2 =
log 2
4

is included in Chapter

5, where we consider the family {x+ y + k : k ∈ C}. Although our proof of Theorem 0.6.25

in Chapter 5 holds for general k, we include our proof of Theorem 2.1.2 from [84] in this

chapter because we believe it contains a different essence and methodology to achieve the

result.

We also prove the following statement involving a rational function.

Theorem 2.1.3 (see Theorem 0.6.7). We have

mD

Å
y +

Å
1− x

1 + x

ãã
=

6

π
L (χ−4, 2)− log 2− 1

2
− 1

π
. (2.1.3)

We further adapt variations of the classical Mahler measure, such as generalized (maxi-

mal) Mahler measures, multiple and higher Mahler measures [72], and zeta Mahler measures

[3], to the areal setting (see Sections 0.6.2.2 and 0.6.18). We evaluate the higher areal Mahler

of measure 1−x
1+x

.
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Theorem 2.1.4 (see Theorem 0.6.19). For h ∈ Z>0 even, we have,

mD,h

Å
1− x

1 + x

ã
=
Eh(πi)

h

2h
− Eh−2(πi)

h−2h(h− 1)

2h−2
log 2

− 4h!

2h

h−1∑
m=2

(1− 21−m)ζ(m)
Eh−m−1(πi)

h−m−1

(h−m− 1)!
,

where En denote the nth Euler number defined in (0.4.20) respectively, and the first sum for

h = 2 should be interpreted as equal to zero.

For h odd, we have

mD,h

Å
1− x

1 + x

ã
= 0.

We further compute the areal zeta Mahler measure of x+ 1.

Theorem 2.1.5 (See Theorem 0.6.22). We have

ZD(s,x+ 1) = exp

(
∞∑
j=2

(−1)j

j
(1− 21−j)(ζ(j)− 1)sj

)
. (2.1.4)

The techniques for proving formulas for the areal Mahler measure and its variants are not

unlike the techniques employed in the classical Mahler measure case and include inventive

changes of variables in integrals, as well as connections to polylogarithms and other special

functions such as generalized hypergeometric series, and their properties.

Chapter 2 is structured as follows. In Section 2.2 we present the areal Mahler measure

of x + y and more generally x1 · · ·xm + y1 · · · yn as a prelude to more involved arguments

that follow in subsequent sections. We prove the main areal Mahler measure formulas given

by Theorems 2.1.1, 2.1.2, and 2.1.3 in Section 2.3. Finally, in Section 2.4 we recall the

areal analogue of the generalized, multiple, and higher Mahler measure and the zeta Mahler

measure, and give examples of evaluations in each of these cases, including the derivations

of Theorems 2.1.4 and 2.1.5.
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2.2. A basic result

The simplest possibly non-trivial polynomial that we can consider in this context is a

linear polynomial in one variable. Equation (0.6.1) gives us

mD(x− α) =

log+ |α| |α| ≥ 1,

|α|2−1
2

|α| ≤ 1.
(2.2.1)

Given the above formula, it is natural to pose the question about the areal Mahler measure

of x+ y. The following result is due to Pritsker, but we reprove it here for completeness.

Proposition 2.2.1. [99, Example 5.2] We have

mD(x+ y) = −1

4
.

Proof. We first consider the integral over the variable y by exploiting formula (2.2.1). This

gives

mD(x+ y) =
1

π2

∫
D2

log |x+ y|dA(y)dA(x) = 1

2π

∫
D
(|x|2 − 1)dA(x).

Parametrizing x = ρeiθ with 0 ≤ ρ ≤ 1 and −π ≤ θ ≤ π, the above integral becomes

mD(x+ y) =
1

2π

∫ π

−π

∫ 1

0

(ρ2 − 1)ρdρdθ =

∫ 1

0

(ρ2 − 1)ρdρ =

Å
ρ4

4
− ρ2

2

ã∣∣∣∣1
0

= −1

4
.

□

We remark that Proposition 2.2.1 exhibits a point of difference between the classical case

m and the areal case mD. Indeed, it is known that the classical Mahler measure of an

homogeneous polynomial is the same as the Mahler measure of any dehomogenization, and

in particular, m(x+y) = m(x+1) = 0. However, equation (2.2.1) shows that mD(x+1) = 0,

while Proposition 2.2.1 gives mD(x+ y) = −1
4
.
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This discrepancy is even more general. Indeed, while m(x1 · · ·xm + y1 · · · yn) = 0, the

areal Mahler measure mD(x1 · · ·xm + y1 · · · yn) is a rational number depending on m and n

as shown in the following result.

Theorem 2.2.2. We have for m ≥ 1,

mD(x1 · · ·xm + y) =
1

2m+1
− 1

2
.

For m,n ≥ 2,

mD(x1 · · ·xm+y1 · · · yn) = − 1

2m+n+1

[
m

n−1∑
r=0

Ç
m+ n− 1− r

m

å
2r + n

m−1∑
r=0

Ç
m+ n− 1− r

n

å
2r

]
.

Before proving Theorem 2.2.2, we need an auxiliary result.

Lemma 2.2.3. For a, b ∈ Z≥1,

a∑
r=0

Ç
a+ b− r

b

å
2r +

b∑
r=0

Ç
a+ b− r

a

å
2r = 2a+b+1.

Proof. A version of Chu–Vandermonde identity states that, for m,n,r ∈ Z≥0 such that m+

n ≤ r, we have
r−m∑
k=n

Ç
r − k

m

åÇ
k

n

å
=

Ç
r + 1

m+ n+ 1

å
. (2.2.2)

(See for example Equation (25) in [69, 1.2.6].)

Since 2r =
∑r

p=0

(
r
p

)
, we obtain

a∑
r=0

Ç
a+ b− r

b

å
2r =

a∑
r=0

Ç
a+ b− r

b

å r∑
p=0

Ç
r

p

å
=

a∑
p=0

a∑
r=p

Ç
r

p

åÇ
a+ b− r

b

å
=

a∑
p=0

Ç
a+ b+ 1

b+ p+ 1

å
,

where the last equality follows from (2.2.2). Similarly,

b∑
r=0

Ç
a+ b− r

a

å
2r =

b∑
q=0

Ç
a+ b+ 1

a+ q + 1

å
=

b∑
q=0

Ç
a+ b+ 1

b− q

å
.
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Therefore, we have

a∑
r=0

Ç
a+ b− r

b

å
2r +

b∑
r=0

Ç
a+ b− r

a

å
2r =

a∑
p=0

Ç
a+ b+ 1

b+ p+ 1

å
+

b∑
q=0

Ç
a+ b+ 1

b− q

å
=

a+b+1∑
m=0

Ç
a+ b+ 1

m

å
=2a+b+1,

where the penultimate inequality follows from rearranging the terms. □

Proof of Theorem 2.2.2. Without loss of generality we can assume thatm ≥ 2 and n ≥ 1. By

symmetry, this only excludes the case m = n = 1, which was already treated in Proposition

2.2.1. By equation (2.2.1) applied to mD(x) = −1
2
, we have mD(x1 · · ·xm−1) = −m−1

2
. By

multiplicity, we get

mD(x1 · · ·xm + y1 · · · yn) = mD

Å
xm +

y1 · · · yn
x1 · · ·xm−1

ã
− m− 1

2
.

Applying the definition of the areal Mahler measure and integrating respect to xm by means

of (2.2.1), we obtain

mD(x1 · · ·xm + y1 · · · yn) +
m− 1

2

=
1

πm+n

∫
Dm+n

log

∣∣∣∣xm +
y1 · · · yn
x1 · · ·xm−1

∣∣∣∣ dA(x1) . . . dA(xm)dA(y1) . . . dA(yn)
=

1

2πm+n−1

∫
Dm+n−1∩{|y1···yn|≤|x1···xm−1|}

Ç∣∣∣∣ y1 · · · yn
x1 · · ·xm−1

∣∣∣∣2 − 1

å
dA(x1) . . . dA(xm−1)dA(y1) . . . dA(yn)

+
1

πm+n−1

∫
Dm+n−1∩{|y1···yn|≥|x1···xm−1|}

log

∣∣∣∣ y1 · · · yn
x1 · · · xm−1

∣∣∣∣ dA(x1) . . . dA(xm−1)dA(y1) . . . dA(yn).

We now consider the change of variables to polar coordinates xj = ρje
iθj and yk = σke

iτk ,

for j = 1, . . . ,m− 1 and k = 1, . . . , n, where 0 ≤ θj, τk ≤ 2π, and 0 ≤ ρj, σk ≤ 1. Since the

functions under consideration are independent of θj, τk, we can directly integrate respect to
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those variables. We have

mD(x1 · · ·xm + y1 · · · yn) +
m− 1

2

=
2m+n−1

2

∫ 1

0

· · ·
∫ 1

0

∫
σ1···σn≤ρ1···ρm−1

ÇÅ
σ1 · · · σn
ρ1 · · · ρm−1

ã2

− 1

å
ρ1 · · · ρm−1σ1 · · ·σndρ1 . . . dρm−1dσ1 . . . dσn

+ 2m+n−1

∫ 1

0

· · ·
∫ 1

0

∫
σ1···σn≥ρ1···ρm−1

log

Å
σ1 · · · σn
ρ1 · · · ρm−1

ã
ρ1 · · · ρm−1σ1 · · · σndρ1 . . . dρm−1dσ1 . . . dσn.

We further consider the change of variables αj = ρ1 · · · ρj, and βk = σ1 · · ·σk for j =

1, . . . ,m− 1 and k = 1, . . . ,n. This transformation leads to

mD(x1 · · ·xm + y1 · · · yn) +
m− 1

2

=2m+n−2

∫
0≤αm−1≤···≤α1≤1
0≤βn≤···≤β1≤1

βn≤αm−1

Å
β3
n

αm−1

− αm−1βn

ã
dα1 . . . dαm−1

α1 · · ·αm−2

dβ1 . . . dβn
β1 · · · βn−1

+ 2m+n−1

∫
0≤αm−1≤···≤α1≤1
0≤βn≤···≤β1≤1

βn≥αm−1

(log βn − logαm−1)αm−1βn
dα1 . . . dαm−1

α1 · · ·αm−2

dβ1 . . . dβn
β1 · · · βn−1

.

Integrating respect to α1, . . . , αm−2 as well as β1, . . . , βn−1 leads to

2m+n−2

ñ∫
0≤βn≤αm−1≤1

Å
β3
n

αm−1

− αm−1βn

ã
(−1)m−2

(m− 2)!
logm−2 αm−1

(−1)n−1

(n− 1)!
logn−1 βndαm−1dβn

+2

∫
0≤αm−1≤βn≤1

(log βn − logαm−1)αm−1βn
(−1)m−2

(m− 2)!
logm−2 αm−1

(−1)n−1

(n− 1)!
logn−1 βndαm−1dβn

ô
=
(−1)m+n−12m+n−2

(m− 2)!(n− 1)!

∫
0≤β≤α≤1

Å
β3

α
− αβ

ã
logm−2 α logn−1 βdαdβ

+
(−1)m+n−12m+n−1

(m− 2)!(n− 1)!

∫
0≤α≤β≤1

(log β − logα)αβ logm−2 α logn−1 βdαdβ.

The above integral can be decomposed into a sum of similar terms, which can be evaluated

from the following general formula (see formula 2.722 in [58]):∫
xj logk xdx = xj+1

k∑
r=0

(−1)rr!

(j + 1)r+1

Ç
k

r

å
logk−r x+ C. (2.2.3)

Formula (2.2.3) allows us to compute∫
0≤β≤α≤1

αβ loga α logb β =
(−1)a+ba!b!

22a+2b+3

b∑
r=0

Ç
a+ b− r

a

å
2r. (2.2.4)
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We also have∫
0≤β≤α≤1

β3

α
logm−2 α logn−1 βdαdβ =− 1

m− 1

∫ 1

0

β3 logm+n−2 βdβ

=
(−1)m+n−1(m+ n− 2)!

(m− 1)4m+n−1
. (2.2.5)

Combining (2.2.4), (2.2.5), as well as Lemma 2.2.3, we obtain

mD(x1 · · ·xm + y1 · · · yn)

=− m− 1

2
+

Ç
m+ n− 2

m− 1

å
1

2m+n
− 1

2m+n−1

n−1∑
r=0

Ç
m+ n− 3− r

m− 2

å
2r

− n

2m+n

m−2∑
r=0

Ç
m+ n− 2− r

n

å
2r +

m− 1

2m+n

m−1∑
r=0

Ç
m+ n− 2− r

n− 1

å
2r

=

Ç
m+ n− 2

m− 1

å
1

2m+n
− 1

2m+n−1

n−1∑
r=0

Ç
m+ n− 3− r

m− 2

å
2r

− n

2m+n

m−2∑
r=0

Ç
m+ n− 2− r

n

å
2r − m− 1

2m+n

n−1∑
r=0

Ç
m+ n− 2− r

m− 1

å
2r. (2.2.6)

Specializing the above for n = 1 and m > 1, we obtain

mD(x1 · · ·xm + y) =
1

2m+1
− 1

2
.

Moreover, by comparing with Proposition 2.2.1, this formula is also true for m = 1.

When n > 1, expression (2.2.6) can be made symmetric by exchanging m and n and

taking the average. Applying Lemma 2.2.3 again (2.2.4), this gives the expression in the

case where both m,n > 1:

mD(x1 · · ·xm + y1 · · · yn) =
1

4
+

Ç
m+ n− 2

m− 1

å
1

2m+n

− 1

2m+n

[
n−1∑
r=0

Ç
m+ n− 3− r

m− 2

å
2r +

m−1∑
r=0

Ç
m+ n− 3− r

n− 2

å
2r

]

− 1

2m+n+1

[
m

n−1∑
r=0

Ç
m+ n− 1− r

m

å
2r + n

m−1∑
r=0

Ç
m+ n− 1− r

n

å
2r

]
.
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Furthermore,

− 1

2m+n

[
n−1∑
r=0

Ç
m+ n− 3− r

m− 2

å
2r +

m−1∑
r=0

Ç
m+ n− 3− r

n− 2

å
2r

]

=− 1

2m+n

[Ç
m+ n− 3

m− 2

å
+

Ç
m+ n− 3

n− 2

å
+

n−1∑
r=1

Ç
m+ n− 3− r

m− 2

å
2r +

m−1∑
r=1

Ç
m+ n− 3− r

n− 2

å
2r

]

=− 1

2m+n

[Ç
m+ n− 3

m− 2

å
+

Ç
m+ n− 3

m− 1

å
+

n−1∑
r=1

Ç
m+ n− 3− r

m− 2

å
2r +

m−1∑
r=1

Ç
m+ n− 3− r

n− 2

å
2r

]

=− 1

2m+n

[Ç
m+ n− 2

m− 1

å
+ 2

n−2∑
r′=0

Ç
m+ n− 4− r′

m− 2

å
2r

′
+ 2

m−2∑
r′=0

Ç
m+ n− 4− r′

n− 2

å
2r

′

]

=−
Ç
m+ n− 2

m− 1

å
1

2m+n
− 1

2m+n
· 2m+n−3+1 = −

Ç
m+ n− 2

m− 1

å
1

2m+n
− 1

4
,

where r′ = r − 1 and the penultimate equality follows from Lemma 2.2.3. Therefore, we

have, for m,n > 1,

mD(x1 · · ·xm+y1 · · · yn) = − 1

2m+n+1

[
m

n−1∑
r=0

Ç
m+ n− 1− r

m

å
2r + n

m−1∑
r=0

Ç
m+ n− 1− r

n

å
2r

]
.

□

2.3. Evaluations of the areal Mahler measure

In this section we consider evaluations of the areal Mahler measures of some particular

polynomials and rational functions.

2.3.1. The areal Mahler measure of 1 + x+ y

We now consider Smyth’s polynomial 1 + x+ y and prove Theorem 2.1.1.

Proof of Theorem 2.1.1. By definition and application of (2.2.1), we have that

mD(1 + x+ y) =
1

π2

∫
D2

log |1 + x+ y|dA(y)dA(x)

=
1

2π

∫
D∩{|1+x|≤1}

(|1 + x|2 − 1)dA(x) +
1

π

∫
D∩{|1+x|≥1}

log |1 + x|dA(x).

(2.3.1)
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We treat the first integral above. Write x = ρeiθ with 0 ≤ ρ ≤ 1 and −π ≤ θ ≤ π. We have

that |1 + x|2 = |1 + ρeiθ|2 = ρ2 + 2ρ cos θ+ 1, and |1 + x| ≤ 1 if and only if 0 ≤ ρ ≤ −2 cos θ

(provided that cos θ ≤ 0). Therefore, when 2π
3
≤ |θ| ≤ π, we need to integrate in 0 ≤ ρ ≤ 1,

while for π
2
≤ |θ| ≤ 2π

3
, we need to integrate in 0 ≤ ρ ≤ −2 cos θ. Separating these two cases,

we obtain,

1

2π

∫
D∩{|1+x|≤1}

(|1 + x|2 − 1)dA(x)

=
1

π

∫ π

2π
3

∫ 1

0

(ρ2 + 2ρ cos θ)ρdρdθ +
1

π

∫ 2π
3

π
2

∫ −2 cos θ

0

(ρ2 + 2ρ cos θ)ρdρdθ

=
1

π

∫ π

2π
3

Å
1

4
+

2

3
cos θ

ã
dθ +

1

π

∫ 2π
3

π
2

Å
−4

3
cos4 θ

ã
dθ. (2.3.2)

Notice that ∫ π

2π
3

cos θdθ = − sin

Å
2π

3

ã
= −

√
3

2
,

and∫ 2π
3

π
2

cos4 θdθ =

∫ 2π
3

π
2

Å
1 + cos(2θ)

2

ã2

dθ =

∫ 2π
3

π
2

Å
1

4
+

cos(2θ)

2
+

cos2(2θ)

4

ã
dθ

=

∫ 2π
3

π
2

Å
1

4
+

cos(2θ)

2
+

1 + cos(4θ)

8

ã
dθ =

∫ 2π
3

π
2

Å
3

8
+

cos(2θ)

2
+

cos(4θ)

8

ã
dθ

=
π

16
+

1

4
sin

Å
4π

3

ã
+

1

32
sin

Å
8π

3

ã
=

π

16
− 7

√
3

64
.

Thus, equation (2.3.2) equals

1

12
− 1√

3π
− 1

12
+

7

16
√
3π

=− 3
√
3

16π
. (2.3.3)

We now consider the second integral in (2.3.1). We make the change of variables y = 1+x

and set y = ρeiθ with 1 ≤ ρ and −π ≤ θ ≤ π. We have that |y − 1|2 = |ρeiθ − 1|2 =

ρ2 − 2ρ cos θ + 1, and |y − 1| ≤ 1 if and only if 0 ≤ ρ ≤ 2 cos θ (provided that 2 cos θ ≥ 0).

Putting these conditions together, we integrate when 0 ≤ |θ| ≤ π
3

and 1 ≤ ρ ≤ 2 cos θ. This
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leads to

1

π

∫
D∩{|1+x|≥1}

log |1 + x|dA(x) =2

π

∫ π
3

0

∫ 2 cos θ

1

(log ρ)ρdρdθ =
2

π

∫ π
3

0

1

2

Å
ρ2 log ρ− ρ2

2

ã∣∣∣∣2 cos θ
1

dθ

=
1

π

∫ π
3

0

Å
4 cos2 θ log(2 cos θ)− 2 cos2 θ +

1

2

ã
dθ.

(2.3.4)

Note that∫ π
3

0

cos2 θdθ =

∫ π
3

0

Å
1 + cos(2θ)

2

ã
dθ =

π

6
+

1

4
sin

Å
2π

3

ã
=
π

6
+

√
3

8
. (2.3.5)

It remains to compute the integral of cos2 θ log(2 cos θ). We start by making the change of

variables τ = π
2
− θ and use (0.4.6) to obtain∫ π

3

0

cos2 θ log(2 cos θ)dθ =

∫ π
2

π
6

sin2 τ log(2 sin τ)dτ

= −1

2
sin2 τD

(
e2iτ
)∣∣∣∣π2

π
6

+
1

2

∫ π
2

π
6

2 sin τ cos τD
(
e2iτ
)
dτ

=
1

8
D(eiπ/3) +

1

2

∫ π
2

π
6

sin(2τ)
∞∑
n=1

sin(2nτ)

n2
dτ

=
1

8
D(eiπ/3) +

1

4

∫ π

π
3

sin(t)
∞∑
n=1

sin(nt)

n2
dt, (2.3.6)

where we have set t = 2τ .

Note that ∫ π

π
3

sin2(t)dt =
π

3
+

√
3

8
, (2.3.7)

and, for n ̸= 1,∫ π

π
3

sin(t) sin(nt)dt =
1

2

∫ π

π
3

(cos((n− 1)t)− cos((n+ 1)t)) dt

=
1

2

Å
sin((n− 1)t)

n− 1
− sin((n+ 1)t)

n+ 1

ã∣∣∣∣π
π
3

=− 1

2

Ç
ei(n−1)π/3 − e−i(n−1)π/3

2(n− 1)i
− ei(n+1)π/3 − e−i(n+1)π/3

2(n+ 1)i

å
.
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Incorporating the sum for n ≥ 2 gives

− 1

2

∞∑
n=2

Ç
ei(n−1)π/3 − e−i(n−1)π/3

2(n− 1)i
− ei(n+1)π/3 − e−i(n+1)π/3

2(n+ 1)i

å
1

n2

=− 1

2

∞∑
n=2

Ç
ei(n−1)π/3 − e−i(n−1)π/3

2i

Å
1

n− 1
− 1

n
− 1

n2

ã
−e

i(n+1)π/3 − e−i(n+1)π/3

2i

Å
1

n2
− 1

n
+

1

n+ 1

ãå
=− 1

2
Im(Li1(e

iπ/3)) +
1

2
Im
Ä
e−iπ/3

Ä
Li1(e

iπ/3)− eiπ/3
ä
+ e−iπ/3

Ä
Li2(e

iπ/3)− eiπ/3
ää

+
1

2
Im
Ä
eiπ/3

Ä
Li2(e

iπ/3)− eiπ/3
ä
− eiπ/3

Ä
Li1(e

iπ/3)− eiπ/3
ää

+
1

2
Im

Ç
Li1(e

iπ/3)− eiπ/3 − ei2π/3

2

å
=
1

2
Im
Ä
−
√
3iLi1(e

iπ/3) + Li2(e
iπ/3)

ä
− 3

√
3

8

=
1

2
D(eiπ/3)− 3

√
3

8
.

By combining this with (2.3.7), and incorporating it in (2.3.6), we obtain

∫ π
3

0

cos2 θ log(2 cos θ)dθ =
1

4
D(eiπ/3) +

π

12
−

√
3

16
.

Applying this, as well as (2.3.5) and (0.4.7), we obtain that (2.3.4) equals

3
√
3

4π
L(χ−3,2) +

1

6
−

√
3

2π
.

Combining the above with (2.3.3) yields the desired result.

□

2.3.2. The areal Mahler measure of
√
2 + x+ y

We proceed to consider the polynomial
√
2 + x+ y and prove Theorem 2.1.2.
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Proof of Theorem 2.1.2. By definition, we have

mD(
√
2 + x+ y) =

1

π2

∫
D2

log |
√
2 + x+ y|dA(y)dA(x)

=
1

2π

∫
D∩{|

√
2+x|<1}

(|
√
2 + x|2 − 1)dA(x) +

1

π

∫
D∩{|

√
2+x|≥1}

log |
√
2 + x|dA(x).

(2.3.8)

We treat the first integral above. Write x = ρeiθ with 0 ≤ ρ ≤ 1 and 0 ≤ θ ≤ 2π. We have

that |
√
2+x|2 = |

√
2+ρeiθ|2 = ρ2+2

√
2ρ cos θ+2, and |

√
2+x| ≤ 1 if and only if sin2 θ ≤ 1

2

and max{0,−
√
2 cos θ −

√
1− 2 sin2 θ} ≤ ρ ≤ min{1,−

√
2 cos θ +

√
1− 2 sin2 θ}. Since∣∣∣√2 cos θ

∣∣∣ ≥ ∣∣∣√1− 2 sin2 θ
∣∣∣ , and cos θ ∈

ï
−1,− 1√

2

ã
when |π − θ| ≤ π

4
,

we need to integrate the first integral in |π− θ| ≤ π
4

and −
√
2 cos θ−

√
1− 2 sin2 θ ≤ ρ ≤ 1.

Thus, we have

1

2π

∫
D∩{|

√
2+x|<1}

(|
√
2 + x|2 − 1)dA(x)

=
1

2π

∫ 5π
4

3π
4

∫ 1

−
√
2 cos θ−

√
1−2 sin2 θ

(ρ2 + 2
√
2ρ cos θ + 1)ρdρdθ

=
1

2π

∫ 5π
4

3π
4

Ç
8

3
cos4 θ − 2 cos2 θ +

2
√
2

3
cos θ + 1 +

2
√
2

3
cos θ(1− 2 sin2 θ)3/2

å
dθ. (2.3.9)

We remark that∫ 5π
4

3π
4

cos θ(1− 2 sin2 θ)3/2dθ =
1

16

(
3
√
2 arcsin

Ä√
2 sin θ

ä
+ 2(2 sin θ + sin(3θ))

»
cos(2θ)

)∣∣∣∣ 5π4
3π
4

=− 3
√
2π

16
.

By proceeding as in the evaluation of (2.3.2), we have that (2.3.9) becomes

1

4
− 1

2π
+

√
2

3π

Ç
−3

√
2π

16

å
=

1

8
− 1

2π
.

For the second integral in (2.3.8), we write y =
√
2 + x and y = ρeiθ with 1 ≤ ρ. We

have |y −
√
2|2 = |ρeiθ −

√
2|2 = ρ2 − 2

√
2ρ cos θ + 2 and |y −

√
2| ≤ 1 iff −π

4
≤ θ ≤ π

4
and
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1 ≤ ρ ≤
√
2 cos θ +

√
1− 2 sin2 θ. Therefore,

1

π

∫
D∩{|

√
2+x|≥1}

log |
√
2 + x|dx

=
2

π

∫ π
4

0

∫ √
2 cos θ+

√
1−2 sin2 θ

1

(log ρ)ρdρdθ

=
2

π

∫ π
4

0

1

2

Å
ρ2 log ρ− ρ2

2

ã∣∣∣∣√2 cos θ+
√

1−2 sin2 θ

1

dθ

=
1

π

∫ π
4

0

ÅÄ√
2 cos θ +

√
1− 2 sin2 θ

ä2
log
Ä√

2 cos θ +
√

1− 2 sin2 θ
ä

−

Ä√
2 cos θ +

√
1− 2 sin2 θ

ä2
2

+
1

2

é
dθ

=
1

8
+

1

π

∫ π
4

0

Ä√
2 cos θ +

√
1− 2 sin2 θ

ä2
log
Ä√

2 cos θ +
√
1− 2 sin2 θ

ä
dθ

− 1

2π

∫ π
4

0

Ä√
2 cos θ +

√
1− 2 sin2 θ

ä2
dθ. (2.3.10)

Substituting x =
√
2 cos θ +

√
1− 2 sin2 θ, we have x−1 =

√
2 cos θ −

√
1− 2 sin2 θ, and

dθ = − x− x−1

x
√
4− (x− x−1)2

dx.

This gives∫ π
4

0

Ä√
2 cos θ +

√
1− 2 sin2 θ

ä2
log
Ä√

2 cos θ +
√

1− 2 sin2 θ
ä
dθ =

∫ √
2+1

1

x(x− x−1) log x√
4− (x− x−1)2

dx,

(2.3.11)

and ∫ π
4

0

Ä√
2 cos θ +

√
1− 2 sin2 θ

ä2
dθ =

∫ √
2+1

1

x (x− x−1)√
4− (x− x−1)2

dx. (2.3.12)

Applying integration by parts to (2.3.11) gives∫ √
2+1

1

x(x− x−1) log x√
4− (x− x−1)2

dx

=

ñ
log x

∫ x u(u− u−1)√
4− (u− u−1)2

du−
∫

1

x

Ç∫ x u(u− u−1)√
4− (u− u−1)2

du

å
dx

ô√2+1

1

. (2.3.13)
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We now apply the change of variables z = u− u−1 and find that∫
u(u− u−1)√
4− (u− u−1)2

du =
1

4

∫ z
Ä
z +

√
z2 + 4

ä2
√
4− z2

√
4 + z2

dz

=
1

4

Å
2

∫
z3dz√
16− z4

+ 4
zdz√
16− z4

+ 2

∫
z2dz√
4− z2

ã
=
1

4

Å
−
√
16− z4 + 2arcsin

Å
z2

4

ã
− z

√
4− z2 + 4arcsin

(z
2

)ã
,

(2.3.14)

where the domain under consideration for z is 0 ≤ z ≤ 2. Therefore, the first integral in

(2.3.13) evaluates to

1

4
log

Ç
z +

√
z2 + 4

2

åÅ
−
√
16− z4 + 2arcsin

Å
z2

4

ã
− z

√
4− z2 + 4arcsin

(z
2

)ã∣∣∣∣∣2
0

=
3π

4
log
Ä√

2 + 1
ä
.

Equation (2.3.14) also allows us to evaluate the integral in (2.3.12) as∫ π
4

0

Ä√
2 cos θ +

√
1− 2 sin2 θ

ä2
dθ = 1 +

3π

4
.

Using the same changes of variables (namely u 7→ u − u−1 and x 7→ x − x−1 = z), the

second integral in (2.3.13) can be written as∫ √
2+1

1

1

x

Ç∫ x u(u− u−1)√
4− (u− u−1)2

du

å
dx

=
1

4

∫ 2

0

Å
−
√
16− z4 + 2arcsin

Å
z2

4

ã
− z

√
4− z2 + 4arcsin

(z
2

)ã dz√
4 + z2

=− 1

4

∫ 2

0

√
4− z2dz − 1

4

∫ 2

0

z
√
4− z2√
4 + z2

dz +
1

2

∫ 2

0

arcsin
Ä
z2

4

ä
√
4 + z2

dz +

∫ 2

0

arcsin
(
z
2

)
√
4 + z2

dz

=− 1

4

ï
1

2
z
√
4− z2 + 2arcsin

(z
2

)ò2
0

− 1

8

ï√
16− z4 + 4arcsin

Å
z2

2

ãò2
0

+
1

2

∫ 2

0

arcsin
Ä
z2

4

ä
√
4 + z2

dz +

∫ 2

0

arcsin
(
z
2

)
√
4 + z2

dz

=− π

2
+

1

2
+

1

2

∫ 2

0

arcsin
Ä
z2

4

ä
√
4 + z2

dz +

∫ 2

0

arcsin
(
z
2

)
√
4 + z2

dz.
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Thus, to evaluate (2.3.10), it only remains to evaluate the last two integrals above. The

change of variable v = z/2 yields

∫ 2

0

arcsin
(
z
2

)
√
4 + z2

dz =

∫ 1

0

arcsin v√
1 + v2

dv,

∫ 2

0

arcsin
Ä
z2

4

ä
√
4 + z2

dz =

∫ 1

0

arcsin v2√
1 + v2

dv. (2.3.15)

The first integral in (2.3.15) equals∫ 1

0

arcsin v√
1 + v2

dv =

ï
arcsin v

∫ v dw√
1 + w2

−
∫

1√
1− v2

Å∫ v dw√
1 + w2

ã
dv

ò1
0

= arcsin v log
Ä
v +

√
1 + v2

ä∣∣∣1
0
−
∫ 1

0

log
Ä
v +

√
1 + v2

ä
√
1− v2

dv.

We will use ∫ 1

0

log
Ä
v +

√
1 + v2

ä
√
1− v2

dv = Catalan’s constant = D(i),

which is equation (26) in [33], after a suitable change of variables. We have that the first

integral in (2.3.15) is∫ 1

0

arcsin v√
1 + v2

dv = arcsin v log
Ä
v +

√
1 + v2

ä∣∣∣1
0
−D(i) =

π

2
log
Ä√

2 + 1
ä
−D(i).

In order to compute the second integral in (2.3.15), we make the change of variables

u = v2 and notice that∫ 1

0

arcsin(v2)√
1 + v2

dv =
1

2

∫ 1

0

arcsin(u)√
u(1 + u)

du = arcsin(u) arcsinh(
√
u)
∣∣1
0
−
∫ 1

0

arcsinh(
√
u)√

1− u2
du

=
π

2
log
Ä√

2 + 1
ä
−
∫ 1

0

arcsinh(
√
u)√

1− u2
du.

We recall that

arcsinh(
√
u) =

∞∑
j=0

(−1)juj+
1
2

4j(2j + 1)

Ç
2j

j

å
.

(See formula 4.6.31 in [1].) Thus, we have to compute∫ 1

0

arcsinh(
√
u)√

1− u2
du =

∞∑
j=0

(−1)j

4j(2j + 1)

Ç
2j

j

å∫ 1

0

uj+
1
2

√
1− u2

du.
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The change of variables v = u2 allows us to express the previous integral in terms of the

beta function. (See formulas 6.2.1 and 6.2.2 in [1].) This gives

∫ 1

0

uj+
1
2

√
1− u2

du =
1

2

∫ 1

0

v
2j−1

4 (1− v)−
1
2dv =

Γ
(
2j+3
4

)
Γ
(
1
2

)
2Γ
(
2j+5
4

) =
2j−

1
2Γ
(
2j+3
4

)2
Γ
(
2j+3
2

) ,

where the last equality follows from the Lagrange’s duplication formula for the Gamma

function (Equation 6.1.18 in [1])

Γ(z)Γ

Å
z +

1

2

ã
= 21−2z

√
πΓ(2z), (2.3.16)

and the identity Γ
(
1
2

)
=

√
π.

Therefore, we have

∫ 1

0

arcsinh(
√
u)√

1− u2
du =

∞∑
j=0

(−1)j

2j+
1
2 (2j + 1)

Ç
2j

j

å
Γ
(
2j+3
4

)2
Γ
(
2j+3
2

) .
Using (2.3.16) again, we obtain

Γ

Å
2j + 3

2

ã
=

2−2j−1
√
πΓ(2j + 2)

Γ(j + 1)
=

2−2j−1
√
π(2j + 1)!

j!
.

Since

Γ

Å
2j + 3

4

ã
=


(
2j−1
4

) (
2j−5
4

)
· · · 3

4

(
−1

4

)
Γ
(−1

4

)
j even,(

2j−1
4

) (
2j−5
4

)
· · · 1

4
Γ
(
1
4

)
j odd,

this finally gives

∫ 1

0

arcsinh(
√
u)√

1− u2
du =

1√
π

∞∑
ℓ=0

22ℓ+
1
2

(4ℓ+ 1)2(2ℓ)!
Γ

Å
4ℓ+ 3

4

ã2

− 1√
π

∞∑
ℓ=0

22ℓ+
3
2

(4ℓ+ 3)2(2ℓ+ 1)!
Γ

Å
4ℓ+ 5

4

ã2

=
Γ
(−1

4

)2
√
π

∞∑
ℓ=0

∏ℓ
k=0(4k − 1)2

22ℓ+
7
2 (4ℓ+ 1)2(2ℓ)!

−
Γ
(
1
4

)2
√
π

∞∑
ℓ=0

∏ℓ
k=0(4k + 1)2

22ℓ+
5
2 (4ℓ+ 3)2(2ℓ+ 1)!

=
2Γ
(
3
4

)2
√
2π

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
−

Γ
(
1
4

)2
36
√
2π

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
.
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The last equality follows from comparing the sums with the corresponding expressions

for 4F3 as follows

2Γ
(
3
4

)2
√
2π

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
=
2Γ
(
3
4

)2
√
2π

∞∑
ℓ=0

(
1
4

)2
ℓ

(
3
4

)2
ℓ(

1
2

)
ℓ

(
5
4

)2
ℓ

1

ℓ!

=
Γ
(−1

4

)2
23
√
2π

∞∑
ℓ=0

1

22ℓ(4ℓ+ 1)2(2ℓ)!

ℓ∏
k=0

(4k − 1)2

=
Γ
(−1

4

)2
√
π

∞∑
ℓ=0

∏ℓ
k=0(4k − 1)2

22ℓ+
7
2 (4ℓ+ 1)2(2ℓ)!

,

and similarly,

Γ
(
1
4

)2
36
√
2π

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
=

Γ
(
1
4

)2
√
π

∞∑
ℓ=0

∏ℓ
k=0(4k + 1)2

22ℓ+
5
2 (4ℓ+ 3)2(2ℓ+ 1)!

.

Therefore we have∫ √
2+1

1

x(x− x−1) log x√
4− (x− x−1)2

dx =
π

2
− 1

2
+D(i) +

Γ
(
3
4

)2
√
2π

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
−

Γ
(
1
4

)2
72
√
2π

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
.

This concludes the evaluation of (2.3.11), and therefore of (2.3.10). Combining with (0.4.8),

this concludes the proof. □

2.3.3. The areal Mahler measure of y +
(
1−x
1+x

)
In this section, we consider the rational function y +

Ä
1−x
1+x

ä
. More precisely, we prove

Theorem 2.1.3.

Proof of Theorem 2.1.3. As in previous cases, we have, by definition,

mD

Å
y +

Å
1− x

1 + x

ãã
=

1

π2

∫
D2

log

∣∣∣∣y + Å1− x

1 + x

ã∣∣∣∣ dA(y)dA(x)
=

1

2π

∫
D∩{| 1−x

1+x |<1}

Ç∣∣∣∣1− x

1 + x

∣∣∣∣2 − 1

å
dA(x) +

1

π

∫
D∩{| 1−x

1+x |≥1}
log

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x).
(2.3.17)
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We consider the first integral above. Note that, for θ ∈ [−π, π) and x = ρeiθ,∣∣∣∣1− x

1 + x

∣∣∣∣ ≤ 1 ⇔ 1− 2ρ cos θ + ρ2

1 + 2ρ cos θ + ρ2
≤ 1 ⇔ cos θ ≥ 0 ⇔ θ ∈

[
−π
2
,
π

2

]
. (2.3.18)

Therefore, we have

1

2π

∫
D∩{| 1−x

1+x |≤1}

Ç∣∣∣∣1− x

1 + x

∣∣∣∣2 − 1

å
dA(x) = − 1

π

∫ 1

0

ρ

∫ π
2

−π
2

2ρ cos θ

1 + 2ρ cos θ + ρ2
dθdρ. (2.3.19)

The integral with respect to θ in (2.3.19) is evaluated to be∫ π
2

−π
2

2ρ cos θ

1 + 2ρ cos θ + ρ2
dθ =2

∫ π
2

0

2ρ cos θ

1 + 2ρ cos θ + ρ2
dθ

=2

ñ∫ π
2

0

dθ − (1 + ρ2)

∫ π
2

0

1

1 + 2ρ cos θ + ρ2
dθ

ô
=π − 2(1 + ρ2)

∫ π
2

0

sec2
(
θ
2

)
(1 + ρ)2 + (1− ρ)2 tan2

(
θ
2

)dθ.
By applying the change of variables u = tan

(
θ
2

)
, we find that∫ π

2

−π
2

2ρ cos θ

1 + 2ρ cos θ + ρ2
dθ =π − 4(1 + ρ2)

∫ 1

0

du

(1 + ρ)2 + (1− ρ)2u2

=π − 4(1 + ρ2)

1− ρ2
arctan

Å
1− ρ

1 + ρ

ã
. (2.3.20)

Incorporating (2.3.20) in (2.3.19), we obtain∫ 1

0

ρ

∫ π
2

−π
2

2ρ cos θ

1 + 2ρ cos θ + ρ2
dθdρ =

∫ 1

0

ρ

ï
π − 4(1 + ρ2)

1− ρ2
arctan

Å
1− ρ

1 + ρ

ãò
dρ

=
π

2
−
∫ 1

0

4ρ(1 + ρ2)

1− ρ2
arctan

Å
1− ρ

1 + ρ

ã
dρ

=
π

2
−
ñ
arctan

Å
1− ρ

1 + ρ

ã∫ ρ 4r(1 + r2)

1− r2
dr

∣∣∣∣1
0

+

∫ 1

0

1

1 + ρ2

∫ ρ 4r(1 + r2)

1− r2
drdρ

ô
. (2.3.21)

Applying the change of variables v = 1− ρ2, we have∫
4ρ(1 + ρ2)

1− ρ2
dρ = −2

∫
2− v

v
dv = −4 log v + 2v + C = −4 log

(
1− ρ2

)
+ 2(1− ρ2) + C.
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Then, from (2.3.21), we derive that

∫ 1

0

ρ

∫ π
2

−π
2

2ρ cos θ

1 + 2ρ cos θ + ρ2
dθdρ =

π

2
−
ñ
−π
2
−
∫ 1

0

1

1 + ρ2
(
4 log

(
1− ρ2

)
− 2(1− ρ2)

)
dρ

ô
=π + 4

∫ 1

0

log(1− ρ2)

1 + ρ2
dρ− 2

∫ 1

0

1− ρ2

1 + ρ2
dρ

=π log 2 + 2 + 4

∫ 1

0

log
Ä
1−ρ2
2

ä
1 + ρ2

dρ

=2 + π log 2− 4D(i), (2.3.22)

where the last equality from the integral representation of the Catalan’s constant D(i) (equa-

tion (19) in [33]).

By incorporating the result of (2.3.22) into (2.3.19), we obtain

1

2π

∫
D∩{| 1−x

1+x |≤1}

Ç∣∣∣∣1− x

1 + x

∣∣∣∣2 − 1

å
dA(x) =

4D(i)

π
− log 2− 2

π
. (2.3.23)

It remains to evaluate the second integral in (2.3.17). Recall from (2.3.18) that we have

∣∣∣∣1− x

1 + x

∣∣∣∣ ≥ 1 ⇔ cos θ ≤ 0 ⇔ θ ∈
[
−π,−π

2

)
∪
(π
2
, π
)
,

where x = ρeiθ and −π ≤ θ < π.

Therefore, (2.3.17) can be written as

∫
D∩{| 1−x

1+x |≥1}
log

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x) =1

2

∫ 1

0

ρ

ñ∫ −π
2

−π
log

Å
1− 2ρ cos θ + ρ2

1 + 2ρ cos θ + ρ2

ã
dθ

+

∫ π

π
2

log

Å
1− 2ρ cos θ + ρ2

1 + 2ρ cos θ + ρ2

ã
dθ

ô
dρ

=

∫ 1

0

ρ

ñ∫ π

π
2

log

Å
1− 2ρ cos θ + ρ2

1 + 2ρ cos θ + ρ2

ã
dθ

ô
dρ. (2.3.24)
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We develop the power series of log
Ä
1−2ρ cos θ+ρ2

1+2ρ cos θ+ρ2

ä
to get

log

Å
1− 2ρ cos θ + ρ2

1 + 2ρ cos θ + ρ2

ã
= log

Å
1− 2ρ cos θ

1 + ρ2

ã
− log

Å
1 +

2ρ cos θ

1 + ρ2

ã
=

∞∑
k=1

(−1)k − 1

k

Å
2ρ cos θ

1 + ρ2

ãk
=− 2

∞∑
j=0

1

2j + 1

Å
2ρ cos θ

1 + ρ2

ã2j+1

.

Now, for n ≥ 2, a repetitive use of the fact∫
cosn θdθ =

1

n
cosn−1 θ sin θ +

n− 1

n

∫
cosn−2 θdθ

yields

∫
cosn θdθ =

1

n
cosn−1 θ sin θ +

1

n

⌊n
2 ⌋−1∑
k=1

(
k∏
ℓ=1

n− 2ℓ+ 1

n− 2ℓ

)
cosn−2k−1 θ sin θ

+
(n− 1)(n− 3) · · ·

(
n− 2

⌊
n
2

⌋
+ 1
)

n(n− 2) · · ·
(
n− 2

⌊
n
2

⌋
+ 2
) ∫

cosn−2⌊n
2 ⌋ θdθ,

where ⌊x⌋ denotes the largest integer less than or equal to x.

Therefore, when n = 2j + 1, we have, for j = 0 and j ≥ 1,∫ π

π
2

cos θdθ = −1,

∫ π

π
2

cos2j+1 θdθ =
(2j)(2j − 2) · · · 2

(2j + 1)(2j − 1) · · · 3

∫ π

π
2

cos θdθ = − 4j(j!)2

(2j + 1)!
,

respectively. This implies that∫ π

π
2

log

Å
1− 2ρ cos θ + ρ2

1 + 2ρ cos θ + ρ2

ã
dθ =2

(
2ρ

1 + ρ2
+

∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!2

Å
2ρ

1 + ρ2

ã2j+1
)
.

(2.3.25)

Therefore, in order to compute the integral over ρ in (2.3.24), we need to first consider the

individual integrals ∫ 1

0

Å
2ρ

1 + ρ2

ã2j+1

ρdρ, for all j ≥ 0. (2.3.26)

When j = 0, we have∫ 1

0

2ρ2

1 + ρ2
dρ = 2

∫ 1

0

Å
1− 1

1 + ρ2

ã
dρ = 2 [ρ− arctan ρ]10 = 2− π

2
.
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For j ≥ 1, using integration by parts (where ρ
(1+ρ2)2j+1 is integrated and the rest is

differentiated), the integrals in (2.3.26) give∫ 1

0

Å
2ρ

1 + ρ2

ã2j+1

ρdρ

=4j

(
−ρ2j+1

2j (1 + ρ2)2j

∣∣∣∣∣
1

0

+
2j + 1

2j

∫ 1

0

ρ2j

(1 + ρ2)2j
dρ

)

=4j
ñ

−ρ2j+1

2j (1 + ρ2)2j
+

2j + 1

2(2j)

Ç
− ρ2j−1

(2j − 1) (1 + ρ2)2j−1 +

∫
ρ2j−2

(1 + ρ2)2j−1dρ

åô1
0

=− 2

2j − 1
+

4j(2j + 1)

4j

∫ 1

0

ρ2j−2

(1 + ρ2)2j−1dρ. (2.3.27)

The change of variables u = ρ2 yields∫ 1

0

Å
2ρ

1 + ρ2

ã2j+1

ρdρ = − 2

2j − 1
+

4j−1(2j + 1)

2j

∫ 1

0

uj−
3
2

(1 + u)2j−1du.

Making the change of variables v = u
1+u

, we have

∫ 1

0

uj−
3
2

(1 + u)2j−1du =

∫ 1
2

0

vj−
3
2 (1− v)j−

3
2dv

By the change of variables w = 1− v, we have that∫ 1
2

0

vj−
3
2 (1− v)j−

3
2dv =

∫ 1

1
2

wj−
3
2 (1− w)j−

3
2dw.

Therefore, we obtain the beta function∫ 1

0

uj−
3
2

(1 + u)2j−1du =
1

2

∫ 1

0

vj−
3
2 (1− v)j−

3
2dv =

Γ
(
j − 1

2

)2
2Γ (2j − 1)

=
43−2jπΓ (2j − 2)2

2Γ(j − 1)2Γ (2j − 1)

=
π

24j−3

Ç
2j − 2

j − 1

å
. (2.3.28)

Incorporating (2.3.28) into (2.3.27), we obtain∫ 1

0

Å
2ρ

1 + ρ2

ã2j+1

ρdρ = − 2

2j − 1
+

(2j + 1)π

4jj

Ç
2j − 2

j − 1

å
. (2.3.29)
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Next, combining (2.3.24) and (2.3.25) along with (2.3.29), we derive that

∫
D∩{| 1−x

1+x |≥1}
log

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x)
=2

∫ 1

0

(
2ρ

1 + ρ2
+

∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!

Å
2ρ

1 + ρ2

ã2j+1
)
ρdρ

=2

(
2− π

2
+

∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!

Ç
− 2

2j − 1
+

(2j + 1)π

4jj

Ç
2j − 2

j − 1

åå)
=4− π − 2

∞∑
j=1

2

4j2 − 1

4j(j!)2

(2j + 1)!
+ π

∞∑
j=1

1

j2(2j + 1)

(j!)2

(2j − 1)!

Ç
2j − 2

j − 1

å
.

Simplifying the above sums individually, we obtain

π
∞∑
j=1

1

j2(2j + 1)

(j!)2

(2j − 1)!

Ç
2j − 2

j − 1

å
= π

∞∑
j=1

1

4j2 − 1
=
π

2

∞∑
j=1

Å
1

2j − 1
− 1

2j + 1

ã
=
π

2
,

and

∞∑
j=1

2

4j2 − 1

4j(j!)2

(2j + 1)!
=

∞∑
j=1

1

2j − 1

4j(j!)2

(2j + 1)!
−

∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!

=
1

2

∞∑
j=1

Å
1

2j − 1
− 1

2j + 1

ã
4j(j!)2

(2j)!
−

∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!

=1 +
1

2

∞∑
j=2

2j

(2j − 1)2
4j−1((j − 1)!)2

(2(j − 1))!
− 1

2

∞∑
j=2

1

2j − 1

4j−1((j − 1)!)2

(2(j − 1))!

−
∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!

=1 +
1

2

∞∑
k=1

1

2k + 1

4k(k!)2

(2k + 1)!
−

∞∑
j=1

1

2j + 1

4j(j!)2

(2j + 1)!

=1− 1

2
(2D(i)− 1)

=
3

2
−D(i),
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where the evaluation of the sum follows from [34, Theorem 2]. (See also equation (61) in

[33].) Therefore, the integral over the domain D ∩
{∣∣∣1−x1+x

∣∣∣ ≥ 1
}

yields

1

π

∫
D∩{| 1−x

1+x |≥1}
log

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x) = 1

π

ï
4− π − 2

Å
3

2
−D(i)

ã
+
π

2

ò
=

1

π
− 1

2
+

2

π
D(i).

By combining this with (2.3.23) and (0.4.8), the result follows. □

2.4. The areal versions of generalized, higher and zeta

Mahler measures

In this section, we recall the areal versions of some variants of the Mahler measure, namely

generalized, higher and zeta Mahler measure from Sections 0.6.2 and 0.6.3, give examples in

each cases, and derive Theorems 0.6.15, 0.6.18, 0.6.19, and 0.6.22.

2.4.1. Generalized areal Mahler measure

Recall that the generalized areal Mahler measure of non-zero rational functions

P1, . . . , Pr ∈ C(x1, . . . , xn) is defined by (see Definition 0.6.14)

mD,max(P1, . . . , Pr) =
1

πn

∫
Dn

max{log |P1|, . . . , log |Pr|}dA(x1) . . . dA(xn).

Then we have the following result.

Theorem 2.4.1 (see Theorem 0.6.15). We have

mD,max(x1, . . . ,xn) = − 1

2n
.

Proof. As usual, we proceed to apply the definition together with the change of variables

xj = ρje
iθj . This gives

mD,max(x1, . . . ,xn) =
1

πn

∫
Dn

max{log |x1|, . . . , log |xn|}dA(x1) . . . dA(xn)

=2n
∫ 1

0

· · ·
∫ 1

0

max{log ρ1, . . . , log ρn}ρ1 · · · ρndρ1 . . . dρn.
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Notice that the above integral can be written as a sum of n! integrals, where each term

corresponds to a certain order of the variables ρj. The advantage of considering the ordered

variables lies in the fact that the maximum is then easy to describe. Thus, the above becomes

2nn!

∫
0≤ρ1≤···≤ρn≤1

log ρnρ1 · · · ρndρ1 . . . dρn

=2nn!

∫
0≤ρ2≤···≤ρn≤1

log ρn
ρ32
2
· · · ρndρ2 . . . dρn

=2nn!

∫
0≤ρ3≤···≤ρn≤1

log ρn
ρ53
2 · 4

· · · ρndρ3 . . . dρn

= · · ·

=2nn!

∫
0≤ρn≤1

log ρn
ρ2n−1
n

2 · · · (2n− 2)
dρn

=2n
ρ2nn
(2n)2

(2n log ρn − 1)

∣∣∣∣1
0

=− 1

2n
.

□

2.4.2. Multiple and higher areal Mahler measures

Recall that, the multiple areal Mahler measure is defined by, for non-zero rational func-

tions P1, . . . , Pr ∈ C(x1, . . . , xn),

mD,h1,...,hr(P1, . . . , Pr) :=
1

πn

∫
Dn

logh1 |P1(x1, . . . , xn)| · · · loghr |Pr(x1, . . . , xn)|dA(x1) . . . dA(xn),

and the r-th higher areal Mahler measure is the the multiple areal Mahler measure when

P1 = · · · = Pr (see Definition 0.6.17). Before proceeding to the proof of Theorem 0.6.18, we

restate it below for the readers’ convenience.

Theorem 2.4.2 (see Theorem 0.6.18). We have

mD,h1,...,hn(x1, . . . ,xn) =
(−1)h1+···+hnh1! · · ·hn!

2h1+···+hn+n
.

135



Proof. First we recall equation (2.2.3), which in particular gives∫ 1

0

x logk xdx =
(−1)kk!

2k+1
.

Proceeding as usual by setting xj = ρje
iθj , we have

mD,h1,...,hn(x1, . . . ,xn) =
1

πn

∫
Dn

logh1 |x1| · · · loghn |xn|dA(x1) . . . dA(xn)

=2n
∫ 1

0

· · ·
∫ 1

0

logh1 ρ1 · · · loghn ρnρ1 · · · ρndρ1 . . . dρn

=
(−1)h1+···+hnh1! · · ·hn!

2h1+···+hn+n
.

□

In Theorem 2.1.4, we evaluate the h-th higher areal Mahler measure of the rational

functions 1−x
1+x

. Before proceeding to the proof, we need the following lemma.

Lemma 2.4.3. Let h ∈ Z>2 |α|, |β| ≤ 1. We have∑
b>1

βb

bh−1

b−1∑
a=1

αa

a
=Li1,h−1(α,β), (2.4.1)

and for α ̸= 1,∑
b>1

βb

bh+1

b−1∑
a=1

aαa =
1

(α− 1)2
(αLih(αβ)− αLih+1(αβ)− Lih(αβ) + αLih+1(β)). (2.4.2)

Proof. Identity (2.4.1) follows directly from the definition of multiple polylogarithms. For

identity (2.4.2) we have∑
b>1

βb

bh+1

b−1∑
a=1

aαa =
∑
b≥1

βb

bh+1

α((b− 1)αb − bαb−1 + 1)

(α− 1)2

=
1

(α− 1)2
(αLih(αβ)− αLih+1(αβ)− Lih(αβ) + αLih+1(β)).

□

Proof of Theorem 2.1.4. By definition, we have

mD,h

Å
1− x

1 + x

ã
=
1

π

∫
D
logh

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x).
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We remark that the change of variables z = 1−x
1+x

takes the unit disk to the right half plane

H+ defined by Re(z) ≥ 0. The areal measure of the unit disk is dA(x) = dx1dx2, and under

the map f : x 7→ 1−x
1+x

= z, by definition, the areal measure of H+ is

dA(z) = |x1,z1x2,z2 − x1,z2x2,z1| dz1dz2, where
∂zj
∂xk

= zj,xk for j = 1, 2 and k = 1,2.

Since the map f is conformal on D, it satisfies the Cauchy–Riemann relations, and therefore

|x1,z1x2,z2 − x1,z2x2,z1| dz1dz2 =
∣∣∣∣dxdz

∣∣∣∣2 dz1dz2 = ∣∣∣∣ ddz
Å
1− z

1 + z

ã∣∣∣∣2 dz1dz2 = 4dz1dz2
|z + 1|4

.

In sum, we have that ∫
D
logh

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x) = 4

∫
H+

logh |z| dz1dz2
|z + 1|4

. (2.4.3)

We further consider the change to polar coordinates z = ρeiθ with ρ ≥ 0, −π
2
≤ θ ≤ π

2
.

The integral in (2.4.3) can be written as∫
H+

logh |z| dz1dz2
|z + 1|4

=

∫
Re(z)≥0

logh |z| dz1dz2
|z + 1|4

=

∫ ∞

0

ρ logh ρ

∫ π
2

−π
2

dθ

|ρeiθ + 1|4
dρ

=

∫ 1

0

ρ logh ρ

∫ π
2

−π
2

dθ

|ρeiθ + 1|4
dρ+ (−1)h

∫ 1

0

ρ logh ρ

∫ π
2

−π
2

dθ

|ρeiθ + 1|4
dρ,

where the last equality is obtained by separating the integral over ρ into 0 ≤ ρ ≤ 1 and

1 ≤ ρ, and then applying the change of variables ρ 7→ ρ−1 in the 1 ≤ ρ term. The above

derivation implies that

∫
H+

logh |z| dz1dz2
|z + 1|4

=


2

∫ 1

0

ρ logh ρ

∫ π
2

−π
2

dθ

|ρeiθ + 1|4
dρ h is even,

0 h is odd.

For what follows we will assume that h is even. First we will also assume that h ̸= 2, as this

will guarantee that certain series converge. The case h = 2 will be treated later.
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Evaluating the individual terms in the above formula leads to

∫ 1

0

ρ logh ρ

∫ π
2

−π
2

dθ

|ρeiθ + 1|4
dρ

=

∫ 1

0

ρ logh ρ

∫ π
2

−π
2

dθ

(ρeiθ + 1)2 (ρe−iθ + 1)2
dρ

=

∫ 1

0

ρ logh ρ

∫ π
2

−π
2

(∑
k≥0

(k + 1)(−ρ)keikθ
)(∑

ℓ≥0

(ℓ+ 1)(−ρ)ℓe−iℓθ
)
dθdρ

=π
∑
k≥0

∫ 1

0

(k + 1)2ρ2k+1 logh ρdρ (2.4.4)

+
2

i

∑
k>ℓ≥0

∫ 1

0

(k + 1)(ℓ+ 1)

k − ℓ
(−1)k+ℓ

(
ik−ℓ − (−i)k−ℓ

)
ρk+ℓ+1 logh ρdρ. (2.4.5)

From (2.2.3) we have

∫ 1

0

xj logk xdx =
(−1)kk!

(j + 1)k+1
.

Since h is even, we can calculate the integral in (2.4.4) and obtain, for h > 2,

∑
k≥0

∫ 1

0

(k + 1)2ρ2k+1 logh ρdρ =
∑
k≥0

h!(k + 1)2

(2k + 2)h+1
=

h!

2h+1

∑
k≥0

1

(k + 1)h−1
=

h!

2h+1
ζ(h− 1).

For the integral in (2.4.5), first notice that, since k + ℓ and k − ℓ have the same parity,

it suffices to consider

∑
k>ℓ≥0

∫ 1

0

(k + 1)(ℓ+ 1)

k − ℓ
Ik−ℓρ

k+ℓ+1 logh ρdρ, where Ij = (−i)j − ij.
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Setting k∗ = k + 1, ℓ∗ = ℓ+ 1 first, and then a = k∗ − ℓ∗, b = k∗ + ℓ∗, we find that

∑
k>ℓ≥0

∫ 1

0

(k + 1)(ℓ+ 1)

k − ℓ
Ik−ℓρ

k+ℓ+1 logh ρdρ

=h!
∑
k>ℓ≥0

(k + 1)(ℓ+ 1)

(k − ℓ)(k + ℓ+ 2)h+1
Ik−ℓ = h!

∑
k∗>ℓ∗≥1

k∗ℓ∗

(k∗ − ℓ∗)(k∗ + ℓ∗)h+1
Ik∗−ℓ∗

=
h!

4

[ ∑
k∗>ℓ∗≥1

Ik∗−ℓ∗

(k∗ − ℓ∗)(k∗ + ℓ∗)h−1
−

∑
k∗>ℓ∗≥1

(k∗ − ℓ∗)Ik∗−ℓ∗

(k∗ + ℓ∗)h+1

]

=
h!

4

 ∑
b>a≥1

a≡bmod2

Ia
abh−1

−
∑
b>a≥1

a≡bmod 2

aIa
bh+1


=
h!

8

[ ∑
b>a≥1

(1 + (−1)a+b)Ia
abh−1

−
∑
b>a≥1

a(1 + (−1)a+b)Ia
bh+1

]

=
h!

8

[ ∑
b>a≥1

(−i)a − ia + ia(−1)b − (−i)a(−1)b

abh−1

−
∑
b>a≥1

a((−i)a − ia + ia(−1)b − (−i)a(−1)b)

bh+1

]
.

Applying Lemma 2.4.3 gives

∑
k>ℓ≥0

∫ 1

0

(k + 1)(ℓ+ 1)

k − ℓ
Ik−ℓρ

k+ℓ+1 logh ρdρ

=
h!

8

[ ∑
b>a≥1

(−i)a − ia + ia(−1)b − (−i)a(−1)b

abh−1
−
∑
b>a≥1

a((−i)a − ia + ia(−1)b − (−i)a(−1)b)

bh+1

]

=
h!

8
[Li1,h−1(−i,1)− Li1,h−1(i,1) + Li1,h−1(i,− 1)− Li1,h−1(−i,− 1)

− 1

(−i− 1)2
(−iLih(−i) + iLih+1(−i)− Lih(−i)− iLih+1(1))

+
1

(i− 1)2
(iLih(i)− iLih+1(i)− Lih(i) + iLih+1(1))

− 1

(i− 1)2
(iLih(−i)− iLih+1(−i)− Lih(−i) + iLih+1(−1))

+
1

(−i− 1)2
(−iLih(i) + iLih+1(i)− Lih(i)− iLih+1(−1))].

139



The length 2 polylogarithms above can be written in terms of length 1 polylogarithms by

means of Theorem 0.4.4 as follows (recall that h > 2 is even),

Li1,h−1(−i,1)− Li1,h−1(i,1) + Li1,h−1(i,− 1)− Li1,h−1(−i,− 1)

=2Reh(Li1,h−1(−i,1)) + 2Reh(Li1,h−1(i,− 1))

=3Lih(i) + Lih(−i) + (h− 1)(Lih(1) + Lih(−1))

− (Lih−1(1) + Lih−1(−1))(−Li1(−i) + Li1(i))

+
h−1∑
m=1

(Lim(i) + Lim(−i))(−Lih−m(−i) + (−1)m−1Lih−m(i)).

For the length 1 polylogarithms in the expression of
∑

k>ℓ≥0

∫ 1

0
(k+1)(ℓ+1)

k−ℓ Ik−ℓρ
k+ℓ+1 logh ρdρ,

we have

− 1

(−i− 1)2
(−iLih(−i) + iLih+1(−i)− Lih(−i)− iLih+1(1))

+
1

(i− 1)2
(iLih(i)− iLih+1(i)− Lih(i) + iLih+1(1))

− 1

(i− 1)2
(iLih(−i)− iLih+1(−i)− Lih(−i) + iLih+1(−1))

+
1

(−i− 1)2
(−iLih(i) + iLih+1(i)− Lih(i)− iLih+1(−1))

=
i

2
(−iLih(−i) + iLih+1(−i)− iLih+1(1)) +

i

2
(iLih(i)− iLih+1(i) + iLih+1(1))

− i

2
(iLih(−i)− iLih+1(−i) + iLih+1(−1))− i

2
(−iLih(i) + iLih+1(i)− iLih+1(−1))

=− (Lih(i)− Lih(−i)) + (Lih+1(i)− Lih+1(−i)).
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Putting everything together, we have

8

h!

∑
k>ℓ≥0

∫ 1

0

(k + 1)(ℓ+ 1)

k − ℓ
Ik−ℓρ

k+ℓ+1 logh ρdρ

=2(Lih(i) + Lih(−i)) + (h− 1)(Lih(1) + Lih(−1))− (Lih−1(1) + Lih−1(−1))(−Li1(−i) + Li1(i))

+
h−1∑
m=1

(Lim(i) + Lim(−i))(−Lih−m(−i) + (−1)m−1Lih−m(i)) + (Lih+1(i)− Lih+1(−i))

=22−hLih(−1) + (h− 1)21−hζ(h)− 22−hζ(h− 1)
πi

2
+ 2iL(h+ 1,χ−4)

+
h−1∑
m=1
m odd

21−mLim(−1)2iL(h−m,χ−4)−
h−1∑
m=1
m even

21−mLim(−1)21−h+mLih−m(−1)

=22−h(21−h − 1)ζ(h) + (h− 1)21−hζ(h)− iπ21−hζ(h− 1) + 2iL(h+ 1,χ−4)

− 2i log(2)L(h− 1,χ−4) + i
h−1∑
m=2
m odd

22−m(21−m − 1)ζ(m)L(h−m,χ−4)

−
h−1∑
m=2
m even

22−h(21−m − 1)(21−h+m − 1)ζ(m)ζ(h−m).

Using the expressions of ζ(2n) and L(χ−4, 2n+1) in terms of Bernoulli numbers Bn (see

(0.4.3)) and Euler numbers En (see (0.4.20)) in (0.4.21) and (0.4.22) (see Remark 0.4.8), we

can further simplify the above expression to obtain

2(1− 21−h)
ihBhπ

h

h!
− (h− 1)

ihBhπ
h

h!
− iπ21−hζ(h− 1) +

ih+1Ehπ
h+1

2h+1h!

+ log(2)
ih+1Eh−2π

h−1

2h−1(h− 2)!
+

h−1∑
m=2
m odd

2(21−m − 1)ζ(m)
ih−mEh−m−1π

h−m

2h(h−m− 1)!

− ihπh

h!

h−1∑
m=2
m even

Ç
h

m

å
(21−m − 1)(21−h+m − 1)BmBh−m.
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Following the above simplification, we get, for h > 2 even,

1

π

∫
D
logh

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x)
=

h!

2h−2
ζ(h− 1) +

2h!

πi

[
2(1− 21−h)

ihBhπ
h

h!
− (h− 1)

ihBhπ
h

h!
− iπ21−hζ(h− 1)

+
ih+1Ehπ

h+1

2h+1h!
+ log(2)

ih+1Eh−2π
h−1

2h−1(h− 2)!
+

h−1∑
m=2
m odd

2(21−m − 1)ζ(m)
ih−mEh−m−1π

h−m

2h(h−m− 1)!

− ihπh

h!

h−1∑
m=2
m even

Ç
h

m

å
(21−m − 1)(21−h+m − 1)BmBh−m

]

=− 2(h− 1)Bh(πi)
h−1 +

Eh(πi)
h

2h
− log(2)

Eh−2(πi)
h−2h(h− 1)

2h−2

− 4h!

2h

h−1∑
m=2

(1− 21−m)ζ(m)
Eh−m−1(πi)

h−m−1

(h−m− 1)!

− 2(πi)h−1

h∑
m=0

Ç
h

m

å
(1− 21−m)(1− 21−h+m)BmBh−m, (2.4.6)

where we have used that Bn = En = 0 when n is odd (with the exception of B1). Further

observe that, from the generating series of Bn in (0.4.3), we have the following identities

x

e
x
2 − 1

=
∞∑
n=0

21−nBnx
n

n!
, (2.4.7)

x2ex

(ex − 1)2
=1−

∞∑
n=1

(n− 1)Bnx
n

n!
, (2.4.8)

x

ex − 1
− x

e
x
2 − 1

=
∞∑
n=0

(
1− 21−n

) Bnx
n

n!
, (2.4.9)

where (2.4.7) follows from replacing x with x
2

in (0.4.3), (2.4.8) follows from differentiating

(0.4.3) with respect to x, and (2.4.9) is the difference between (0.4.3) and (2.4.7). Squaring
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both sides of (2.4.9) and comparing them with (2.4.8), we haveÅ
x

ex − 1
− x

e
x
2 − 1

ã2

=

(
∞∑
n=0

(
1− 21−n

) Bnx
n

n!

)(
∞∑
ℓ=0

(
1− 21−ℓ

) Bℓx
ℓ

ℓ!

)
,

⇔ x2ex

(ex − 1)2
=

∞∑
t=0

(
t∑

ℓ=0

Ç
t

ℓ

å (
1− 21−ℓ

) (
1− 21−t+ℓ

)
BℓBt−ℓ

)
xt

t!
,

⇔ 1−
∞∑
t=1

(t− 1)Btx
t

t!
=

∞∑
t=0

(
t∑

ℓ=0

Ç
t

ℓ

å (
1− 21−ℓ

) (
1− 21−t+ℓ

)
BℓBt−ℓ

)
xt

t!
.

For t ≥ 2, comparing the coefficients of xt

t!
, we have

−(t− 1)Bt =
t∑

ℓ=0

Ç
t

ℓ

å (
1− 21−ℓ

) (
1− 21−t+ℓ

)
BℓBt−ℓ.

This further simplifies (2.4.6), and we finally obtain, for h ≥ 2 even,

1

π

∫
D
logh

∣∣∣∣1− x

1 + x

∣∣∣∣ dA(x) =Eh(πi)h2h
− log(2)

Eh−2(πi)
h−2h(h− 1)

2h−2

− 4h!

2h

h−1∑
m=2

(1− 21−m)ζ(m)
Eh−m−1(πi)

h−m−1

(h−m− 1)!
. (2.4.10)

Note that the above computation fails to converge when h = 2. Therefore,

we need to evaluate the h = 2 case in a different way. Since log2
∣∣∣1−x1+x

∣∣∣ =

log2 |1− x| − 2 log |1− x| log |1 + x| + log2 |1 + x| , and mD,2 (1− x) = mD,2 (1 + x) ,

we have

mD,2

Å
1− x

1 + x

ã
= 2mD,2 (1 + x)− 2

π

∫
D
log |1− x| log |1 + x| dx.

It only remains to compute the second integral. Following the method in the proof of [72,

Theorem 7], we derive∫
D
log |1− x| log |1 + x| dx =

∫ 1

0

ρ

ñ∫ 2π

0

Re
(
log
(
1− ρeiθ

))
Re
(
log
(
1 + ρeiθ

))
dθ

ô
dρ

=

∫ 1

0

ρ

[∫ 2π

0

(
−
∑
k≥1

ρk

k
cos(kθ)

)(
−
∑
ℓ≥1

(−1)ℓρℓ

ℓ
cos(ℓθ)

)
dθ

]
dρ

=

∫ 1

0

∑
k,ℓ≥1

(−1)ℓρk+ℓ+1

kℓ

ñ∫ 2π

0

cos(kθ) cos(ℓθ)dθ

ô
dρ.
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On the other hand, we have

∫ 2π

0

cos(kθ) cos(ℓθ)dθ =

π if k = ℓ,

0 if k ̸= ℓ.

This implies that∫
D
log |1− x| log |1 + x| dx =

∫ 1

0

∑
k,ℓ≥1

(−1)ℓρk+ℓ+1

kℓ

ñ∫ 2π

0

cos(kθ) cos(ℓθ)dθ

ô
dρ

=π
∑
k≥1

(−1)k

k2

∫ 1

0

ρ2k+1dρ

=
π

2

∑
k≥1

(−1)k

k2(k + 1)

=
π

2

∑
k≥1

(−1)k
ï
1

k2
− 1

k
+

1

k + 1

ò
=
π

2
[Li2(−1)− 2Li1(−1)− 1] .

Therefore,

mD,2

Å
1− x

1 + x

ã
=2mD,2 (1 + x)− Li2(−1) + 2Li1(−1) + 1

=
π2

6
− 1 +

π2

12
− 2 log 2 + 1

=
π2

4
− 2 log 2.

Finally we remark that this value is also obtained by replacing h = 2 in (2.4.10). □

2.4.3. Areal zeta Mahler measure

In Section 0.6.3, we encountered how the Taylor expansion of the zeta Mahler measure

(first defined by Akatsuka [3]) collects all h-th higher Mahler measure for h ≥ 0, namely

Z(s,P ) =
∞∑
k=0

mk(P )s
k

k!
.
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This relationship in fact extends to the areal case. Indeed, from Definition 0.6.20, we have

that the areal zeta Mahler measure of P ∈ C[x±1 , . . . , x±n ], denoted by

ZD(s,P ) :=
1

πn

∫
Dn

|P (x1, . . . , xn)|s dA(x1) . . . dA(xn),

is the exponential generating function of the higher areal Mahler measures of P.

Next, we follow some arguments from [72, Theorem 14] to evaluate ZD(s, x + 1) and

derive Theorem 2.1.5.

Before proceeding to the proof, we recall an equality due to Akatsuka, which appeared

in his derivation of the zeta Mahler measure Z(s,x − c) for a constant c. In particular, his

result in [3, Theorem 2] implies the following formula for ρ < 1:

1

2π

∫ π

−π
|ρeiθ + 1|sdθ = 2F1

(
−s
2
,− s

2
; 1; ρ2

)
. (2.4.11)

Proof of Theorem 2.1.5. By definition and the usual change of variables, we have

ZD(s,x+ 1) =
1

π

∫
D
|x+ 1|sdA(x) = 1

π

∫ 1

0

∫ π

−π
|ρeiθ + 1|sρdθdρ.

By applying Akatsuka’s result (2.4.11), we then have to compute

ZD(s,x+ 1) =2

∫ 1

0
2F1

(
−s
2
,− s

2
; 1; ρ2

)
ρdρ = 2

∫ 1

0

∞∑
n=0

(−s/2)2n
(n!)2

ρ2n+1dρ

=
∞∑
n=0

Ç
s/2

n

å2
1

(n+ 1)
=

1

s/2 + 1

∞∑
n=0

Ç
s/2

n

åÇ
s/2 + 1

s/2− n

å
=

1

s/2 + 1

Ç
s+ 1

s/2

å
=

s+ 1

(s/2 + 1)2
Γ(s+ 1)

Γ(s/2 + 1)2
.

We now apply the Weierstrass product of the Gamma function

Γ(s+ 1)−1 = eγs
∞∏
k=1

(
1 +

s

k

)
e−s/k,
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to obtain

ZD(s,x+ 1) =
∞∏
k=2

(
1 + s

2k

)2
1 + s

k

=exp

(
∞∑
k=2

(
2 log

(
1 +

s

2k

)
− log

(
1 +

s

k

)))

=exp

(
∞∑
j=1

(−1)j−1

j

∞∑
k=2

Å
2

(2k)j
− 1

kj

ã
sj

)

=exp

(
∞∑
j=1

(−1)j

j
(1− 21−j)

∞∑
k=2

sj

kj

)

=exp

(
∞∑
j=2

(−1)j

j
(1− 21−j)(ζ(j)− 1)sj

)
.

□

2.5. Conclusion

We have obtained formulas for the areal Mahler and its generalizations for various rational

functions. In most cases, the results are connected to evaluations of polylogarithms leading

to special values of functions with arithmetic significance such as the Riemann zeta function,

and Dirichlet L-functions. In this sense, the results are analogous to what is obtained in the

case of the standard Mahler measure.

However, there is a crucial difference between the areal case and the standard case. In the

standard case, there is a way to assign a weight to the terms in the formula, that typically

results in formulas of homogeneous weight 1. For this, we recall that the length one n-th

polylogarithm has weight n. The logarithm is associated to Li1(z) and therefore has weight 1.

The constant π arises as an evaluation of the logarithm and therefore has weight 1. Finally,

we assign weight one to the Mahler measure itself. Taking the weight multiplicatively, we

have, for example, in Smyth’s formula (0.1.7) that m(1+x+y) has weight 1, while L(χ−3,2)

has weight 2 (as it is the evaluation of a dilogarithm), while π has weight 1, giving a total

weight of 1 on the right-hand side. In contrast, the terms on the right-hand side of the areal

Mahler measure (2.1.1) do not have a homogeneous weight. While the term 3
√
3

4π
L(χ−3,2) has
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weight 1, the term 1
6

has weight 0 and the term −11
√
3

16π
has weight −1. This suggests that

if there is a connection between mD and the regulator, it will be more difficult to describe

than in the standard case. It would be nevertheless interesting to explore the possibility of

such a connection.

None of the formulas considered in this chapter correspond to rational functions whose

Mahler measure is related to special values of other L-functions, such as L-functions attached

to elliptic curves. A natural question and direction of future research would be to evaluate

the areal version of the formulas in Table 1 involving the family Qr in (0.1.10).
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Chapter 3

The areal Mahler measure under a power

change of variables

In this chapter, we investigate how the areal Mahler measure changes with the transfor-

mation x 7→ xr, where r is an integer, and provide some specific examples. This is based on

a joint work with Lalín, and will appear in [83].

3.1. A brief description of the results

Recall that Theorem 0.1.6 implies that the change of variables induced by a matrix

A ∈ GLn(Z) (see (0.6.9)) on a non-zero n-variable rational function P does not affect the

Mahler measure m(P ).

In this chapter, we investigate the transformation {x 7→ xr, y 7→ ys} for the polynomi-

als 1 + x + y in the areal Mahler measure case, where r, s ≥ 1. Observe that the matrix

representing this transformation is

A =

Ñ
r 0

0 s

é
∈ GL2(Z).

More precisely, we derive the following result.



Theorem 3.1.1 (see Theorem 0.6.8). Let r,s be positive integers. We have

mD (1 + xr + ys)

=
3
√
3

4π
L(χ−3,2)−

r

6
+

√
3r

12π

ï
ζ

Å
1,
r + 2

3r

ã
− ζ

Å
1,
2r + 2

3r

ã
+ ζ

Å
1,
r + 1

3r

ã
− ζ

Å
1,
2r + 1

3r

ãò
− 2

π

∑
1≤k

⌊ k
2
⌋∑

h=0

Ç
k

2h

å
(−1)h−1

2F1

(
1
2
− h, k − h+ 1

r
+ 1

2
; k − h+ 1

r
+ 3

2
; 1
4

)
2k−2h+1k(kr + 2)

(
2k + 2

r
− 2h+ 1

) +
s

6

∑
1≤k

Ç
1
s

k

å2
1

kr + 1

− s
√
3

π

∑
0≤j<k

Ç
1
s

k

åÇ
1
s

j

å
χ−3(k − j)

((k + j)r + 2)(k − j)
+

s

4π

∑
1≤k

Ç
1
s

k

å2
2F1

(
1
2
, k + 1

r
+ 1

2
; k + 1

r
+ 3

2
; 1
4

)
(kr + 1)

(
2k + 1 + 2

r

)
+
s

π

∑
0≤j<k

⌊ k−j
2

⌋∑
h=0

Ç
1
s

k

åÇ
1
s

j

åÇ
k − j

2h

å
(−1)k−j+h2F1

(
1
2
− h, k − h+ 1

r
+ 1

2
; k − h+ 1

r
+ 3

2
; 1
4

)
2k−j−2h ((k + j)r + 2)

(
2k + 2

r
− 2h+ 1

) ,

where ζ(s,x) =
∑∞

n=0
1

(n+x)s
is the Hurwitz zeta-function and 2F1(a,b; c; z) is the hypergeo-

metric function given in (3.3.1).

Note that the above result is different from (0.6.6), which corresponds to the case r =

s = 1.

We extend our analysis to a similar family, namely (1 + x)r + ys. Here, the areal Mahler

measure exhibits an interesting dependence on the parameter s.

Theorem 3.1.2 (see Theorem 0.6.11). Let r, s be positive integers. We have

mD((1 + x)r + ys)

= r

Ç
3
√
3

4π
L(χ−3,2) +

1

6
−

√
3

2π

å
− s

6
+
s

6

Γ
(
2r
s
+ 2
)

Γ
(
r
s
+ 2
)2

− s
√
3

π

∑
0≤j<k

Ç
r
s

k

åÇ
r
s

j

å
χ−3(k − j)

(k + j + 2)(k − j)
+

s

4π

∑
1≤k

Ç
r
s

k

å2
2F1

(
1
2
, k + 3

2
; k + 5

2
; 1
4

)
(k + 1)(2k + 3)

+
s

π

∑
0≤j<k

⌊ k−j
2

⌋∑
h=0

Ç
r
s

k

åÇ
r
s

j

åÇ
k − j

2h

å
(−1)k−j+h2F1

(
1
2
− h, k − h+ 3

2
; k − h+ 5

2
; 1
4

)
2k−j−2h(k + j + 2)(2k − 2h+ 3)

.

We also prove the following result, which investigates the limiting behavior of the areal

Mahler measure under the transformation x 7→ xr in general, as r tends to infinity.
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Theorem 3.1.3 (see Theorem 0.6.13). Let P (x1, . . . , xn) ∈ C(x1, . . . , xn) be a non-zero

rational function and let P (0, x2, . . . , xn) ∈ C(x2, . . . , xn) be the non-zero rational function

resulting from P by setting x1 = 0. Let r be a positive integer. Then we have

lim
r→∞

mD(P (x
r
1, x2, . . . , xn)) = mD(P (0, x2, . . . , xn)).

Here the elements of the transformation matrix A = (bkℓ)1≤k,ℓ≤n are b11 = r, bkk = 1, and

bkℓ = 0, for 2 ≤ k ≤ n, 1 ≤ ℓ ≤ n, and k ̸= ℓ.

The content of this chapter is organized as follows. We start with Section 3.2, where

we compute the areal Mahler measures of polynomials with two terms, namely mD(x
r − a)

and mD(x
r + ys). We review some necessary background on hypergeometric functions in

Section 3.3. Theorem 3.1.2 is proven in Section 3.4, while Theorem 3.1.1 is proven in Section

3.5. The order is reversed because the proof of Theorem 3.1.1 is considerably more involved.

Finally, we close this chapter with the proof of Theorem 3.1.3, which is a result of a different

flavour than the others, in Section 3.6.
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3.2. The case of two terms

In this section, we consider the effect of the transformation x 7→ xr in the simplest

possible polynomials, namely those with only two monomials. For the linear case of one

variable, we have the following result.
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Proposition 3.2.1. Let r be a positive integer. We have

mD(x
r − a) =

log+ |a| |a| ≥ 1,

r
2

Ä
|a| 2r − 1

ä
|a| ≤ 1.

Proof. Let ξr denote a primitive rth root of unity and let a
1
r denote any rth root of a. By

multiplicativity we have

mD(x
r − a) = mD

(
r−1∏
j=0

Ä
x− a

1
r ξjr
ä)

=
r−1∑
j=0

mD

Ä
x− a

1
r ξjr
ä
.

The conclusion follows immediately from (2.2.1), which shows that

mD(x− a
1
r ξjr) =


1
r
log+ |a| |a| ≥ 1,

|α|
2
r −1
2

|a| ≤ 1.

□

Now we consider the case of xr + ys.

Theorem 3.2.2. Let r,s be positive integers. We have

mD(x
r + ys) = − rs

2(r + s)
.

Proof. By definition and by Proposition 3.2.1,

mD(x
r + ys) =

1

π2

∫
D2

log |xr + ys|dA(x)dA(y)

=
r

2π

∫
D

Ä
|y|

2s
r − 1

ä
dA(y)

=r

∫ 1

0

Ä
ρ

2s
r − 1

ä
ρdρ

=− rs

2(r + s)
.

□
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3.3. Background on hypergeometric functions

In this section, we recall some standard results of hypergeometric functions, defined in

(0.2.1) by

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(3.3.1)

(where (a)n denotes the Pochhammer symbol), which will be needed for the proofs of The-

orems 3.1.1 and 3.1.2.

Theorem 3.3.1. [Gauss Hypergeometric Theorem, Eq. 15.1.20 in [1]] Let a,b,c ∈ C such

that c ̸∈ Z≤0 and Re(c− a− b) > 0. Then

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Corollary 3.3.2. Let t > 0. Then

∑
0≤k

Ç
t

k

å2
1

k + 1
=

Γ (2(t+ 1))

Γ (t+ 2)2
.

Proof. We apply Theorem 3.3.1 with a = b = −t and c = 2 together with the fact that

Γ(2) = 1 to obtain

Γ (2(t+ 1))

Γ (t+ 2)2
=2F1(−t,−t; 2; 1) =

∑
0≤k

(−t)2k
(2)kk!

=
∑
0≤k

[t(t− 1) · · · (t− k + 1)]2

(k + 1)!k!
=
∑
0≤k

Ç
t

k

å2
1

k + 1
.

□

The next theorem shows that, given certain conditions on a, b, c and z, 2F1(a, b; c; z)

admits an integral representation.

Theorem 3.3.3. [4, Theorem 2.2.1] If |z| < 1, a, b, c ∈ C∗ with c ̸∈ Z≤0 and

min{Re(a),Re(b),Re(c− a)} > 0, then we can express 2F1(a, b; c; z) as

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ya−1(1− y)c−a−1(1− zy)−bdy, (3.3.2)

where Γ(·) denotes the Gamma function. Here it is understood that arg y = arg(1− y) = 0,

and (1− zy)−b has its principal value.
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Lemma 3.3.4. Let β > −1 be a real number and n be a non negative integer (possibly 0).

Then∫ 2π
3

π
2

(−2 cos θ)β cos(nθ)dθ =(−1)n
∫ 5π

3

3π
2

(2 cos τ)β cos(nτ)dτ

=

⌊n
2
⌋∑

h=0

Ç
n

2h

å
(−1)h+n2F1

(
β+n+1

2
− h, 1

2
− h; β+n+3

2
− h; 1

4

)
2n−2h+1(β + n+ 1− 2h)

.

Proof. We first notice that the equality between the integrals follows from the change of

variables θ + π = τ . We remark that cos(nθ) = Tn(cos θ), where Tn(x) is the Chebyshev

polynomial of the first kind. By using this, together with the change of variables t = −2 cos θ,

we have ∫ 2π
3

π
2

(−2 cos θ)β cos(nθ)dθ =

∫ 1

0

tβTn

Å
− t

2

ã
dt√
4− t2

. (3.3.3)

The Chebyshev polynomials can be explicitly expressed as

Tn(x) =
1

2

îÄ
x−

√
x2 − 1

än
+
Ä
x+

√
x2 − 1

änó
=

⌊n
2
⌋∑

h=0

Ç
n

2h

å (
x2 − 1

)h
xn−2h.

Then, using this, we can evaluate the integral in (3.3.3) as∫ 1

0

tβTn

Å
− t

2

ã
dt

(4− t2)
1
2

=

⌊n
2
⌋∑

h=0

Ç
n

2h

å∫ 1

0

tβ
Å
t2

4
− 1

ãh Å
− t

2

ãn−2h dt

(4− t2)
1
2

=

⌊n
2
⌋∑

h=0

Ç
n

2h

å
(−1)n+h

2n−2h+1

∫ 1

0

tβ+n−2h

Å
1− t2

4

ãh− 1
2

dt

=

⌊n
2
⌋∑

h=0

Ç
n

2h

å
(−1)n+h2F1

(
β+n+1

2
− h, 1

2
− h; β+n+3

2
− h; 1

4

)
2n−2h+1(β + n+ 1− 2h)

,

where the last identity follows from making the change u = t2 and then applying equation

15.3.1 in [1]. □

Applications of Lemma 3.3.4 will naturally lead to evaluations of the hypergeometric

function at z = 1
4
. Here we record two identities that will be useful for simplifying some

formulas:

2F1

Å
1

2
,
3

2
;
5

2
;
1

4

ã
= 2π − 3

√
3 (3.3.4)
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and

2F1

Å
1

2
,
5

2
;
7

2
;
1

4

ã
= 10π − 35

√
3

2
. (3.3.5)

Equation (3.3.4) follows from the more general formula 07.23.03.2888.01 in [63] :

2F1

Å
1

2
,
3

2
;
5

2
; z

ã
=

3

2z3/2
(arcsin

(√
z
)
−
»
z(1− z)),

by setting z = 1
4
, while equation (3.3.5) follows from formula 07.23.03.2933.01 in [64]:

2F1

Å
1

2
,
5

2
;
7

2
; z

ã
=

5

8z5/2
(3 arcsin

(√
z
)
−
»
z(1− z)(3 + 2z)),

by setting z = 1
4
.

3.4. The areal Mahler measure of (1 + x)r + ys

In this section we prove Theorem 3.1.2, which is simpler than Theorem 3.1.1. To place

the result in perspective, we first consider the classical case.

Lemma 3.4.1. Let r, s be positive integers. We have

m((1 + x)r + ys) = r
3
√
3

4π
L(χ−3,2).

Proof. First notice that the left-hand side is completely independent of s, since a particular

case of equation (0.6.9) implies

m((1 + x)r + ys) = m((1 + x)r + y).

Let ξr denote a primitive rth root of unity. We have

m((1+x)r+y) = m((1+x)r−yr) = m

(
r−1∏
j=0

(1 + x− ξjry)

)
=

r−1∑
j=0

m(1+x−ξjry) = rm(1+x+y),

since m(1+ x− ξjry) = m(1+ x+ y) for any j. The result follows from equation (0.1.7). □
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Proof of Theorem 3.1.2. Let ξs be a primitive s root of unity and let α = r
s
. When x ∈ D,

(1 + x)α is well-defined, and we can consider the principal branch of the α-th power. By

multiplicativity we have

mD((1 + x)r + ys) = mD((1 + x)r − ys) =
s−1∑
j=0

mD
(
(1 + x)α − ξjsy

)
,

where we have extended the definition of mD to the algebraic functions (1+ x)α− ξjsy in the

natural way using the integral.

By definition and by application of equation (2.2.1),

mD((1 + x)α − ξsy) =
1

π2

∫
D2

log |(1 + x)α − ξsy| dA(y)dA(x)

=
α

π

∫
D∩{|1+x|≥1}

log |1 + x|dA(x) + 1

2π

∫
D∩{|1+x|≤1}

(
|1 + x|2α − 1

)
dA(x).

(3.4.1)

The first integral was already computed in the proof of the case of 1 + x + y (see Section

2.3.1) and is given by

α

π

∫
D∩{|1+x|≥1}

log |1 + x|dA(x) = α

Ç
3
√
3

4π
L(χ−3,2) +

1

6
−

√
3

2π

å
.

We now treat the second integral in (3.4.1). Writing x = ρeiθ, we have

1

2π

∫
D∩{|1+x|≤1}

(
|1 + x|2α − 1

)
dA(x)

=
1

π

ñ∫ π

2π
3

∫ 1

0

((1 + ρeiθ)α(1 + ρe−iθ)α − 1)ρdρdθ +

∫ 2π
3

π
2

∫ −2 cos θ

0

((1 + ρeiθ)α(1 + ρe−iθ)α − 1)ρdρdθ

ô
=
1

π

∑
0≤j,k

Ç
α

k

åÇ
α

j

åñ∫ π

2π
3

∫ 1

0

ρk+j+1ei(k−j)θdρdθ +

∫ 2π
3

π
2

∫ −2 cos θ

0

ρk+j+1ei(k−j)θdρdθ

ô
− 1

π

ñ∫ π

2π
3

∫ 1

0

ρdρdθ +

∫ 2π
3

π
2

∫ −2 cos θ

0

ρdρdθ

ô
=
1

π

∑
0≤j,k

Ç
α

k

åÇ
α

j

åñ∫ π

2π
3

∫ 1

0

ρk+j+1ei(k−j)θdρdθ +

∫ 2π
3

π
2

∫ −2 cos θ

0

ρk+j+1ei(k−j)θdρdθ

ô
(3.4.2)

− 1

6
+

1

π

Ç√
3

4
− π

6

å
.
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We treat the integrals in (3.4.2) separately for the cases k = j and k ̸= j. When k = j,

we have

1

π

∑
0≤k

Ç
α

k

å2 ñ∫ π

2π
3

∫ 1

0

ρ2k+1dρdθ +

∫ 2π
3

π
2

∫ −2 cos θ

0

ρ2k+1dρdθ

ô
=
1

π

∑
0≤k

Ç
α

k

å2
1

2(k + 1)

ñ
π

3
+

∫ 2π
3

π
2

(−2 cos θ)2(k+1)dθ

ô
=

Γ(2α + 2)

6Γ(α + 2)2
+

1

4π

∑
0≤k

Ç
α

k

å2
2F1

(
1
2
, k + 3

2
; k + 5

2
; 1
4

)
(k + 1)(2k + 3)

=
Γ(2α + 2)

6Γ(α + 2)2
+

1

6
−

√
3

4π
+

1

4π

∑
1≤k

Ç
α

k

å2
2F1

(
1
2
, k + 3

2
; k + 5

2
; 1
4

)
(k + 1)(2k + 3)

(3.4.3)

where we have applied Corollary 3.3.2, Lemma 3.3.4, and equation (3.3.4).

Note that the expression in (3.4.2) is conjugated under the change (k,j) → (j,k), when

k ̸= j. Therefore, when k ̸= j, we derive that

1

π

∑
0≤j,k
k ̸=j

Ç
α

k

åÇ
α

j

å ∫ π

2π
3

∫ 1

0

ρk+j+1ei(k−j)θdρdθ

=
1

π

∑
0≤j,k
k ̸=j

Ç
α

k

åÇ
α

j

å
1

k + j + 2

∫ π

2π
3

ei(k−j)θdθ

=
2

π

∑
0≤j<k

Ç
α

k

åÇ
α

j

å
1

k + j + 2

∫ π

2π
3

cos((k − j)θ)dθ

=− 2

π

∑
0≤j<k

Ç
α

k

åÇ
α

j

å
1

(k + j + 2)(k − j)
sin

Å
2(k − j)π

3

ã
=−

√
3

π

∑
0≤j<k

Ç
α

k

åÇ
α

j

å
χ−3(k − j)

(k + j + 2)(k − j)
, (3.4.4)

157



and

1

π

∑
0≤j,k
k ̸=j

Ç
α

k

åÇ
α

j

å∫ 2π
3

π
2

∫ −2 cos θ

0

ρk+j+1ei(k−j)θdρdθ

=
2

π

∑
0≤j<k

Ç
α

k

åÇ
α

j

å
1

k + j + 2

∫ 2π
3

π
2

(−2 cos θ)k+j+2 cos((k − j)θ)dθ

=
2

π

∑
0≤j<k

⌊ k−j
2

⌋∑
h=0

Ç
α

k

åÇ
α

j

åÇ
k − j

2h

å
(−1)k−j+h2F1

(
1
2
− h, k − h+ 3

2
; k − h+ 5

2
; 1
4

)
2k−j−2h+1(k + j + 2)(2k − 2h+ 3)

, (3.4.5)

by Lemma 3.3.4.

Combining (3.4.2), (3.4.3), (3.4.4), and (3.4.5), we obtain

1

2π

∫
D∩{|1+x|≤1}

(|1 + x|2α − 1)dA(x)

=
Γ(2α + 2)

6Γ(α + 2)2
− 1

6
+

1

4π

∑
1≤k

Ç
α

k

å2
2F1

(
1
2
, k + 3

2
; k + 5

2
; 1
4

)
(k + 1)(2k + 3)

−
√
3

π

∑
0≤j<k

Ç
α

k

åÇ
α

j

å
χ−3(k − j)

(k + j + 2)(k − j)

+
1

π

∑
0≤j<k

⌊ k−j
2

⌋∑
h=0

Ç
α

k

åÇ
α

j

åÇ
k − j

2h

å
(−1)k−j+h2F1

(
1
2
− h, k − h+ 3

2
; k − h+ 5

2
; 1
4

)
2k−j−2h(k + j + 2)(2k − 2h+ 3)

.

By recalling that α = r
s
, we obtain the result.

□

3.5. The areal Mahler measure of 1 + xr + ys

In this section we prove Theorem 3.1.1, our main result. Before proceeding to its proof,

we show the following auxiliary statement.

Lemma 3.5.1. For r > 1, we have

∑
1≤k

(−1)k−1χ−3(k)

k2(kr + 2)
=
3

4
L(χ−3,2)−

πr

6
√
3

+
r

12

ï
ζ

Å
1,
r + 2

3r

ã
− ζ

Å
1,
2r + 2

3r

ã
+ ζ

Å
1,
r + 1

3r

ã
− ζ

Å
1,
2r + 1

3r

ãò
,
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and for r = 1, ∑
1≤k

(−1)k−1χ−3(k)

k2(k + 2)
=
3

4
L(χ−3,2)−

π

4
√
3
+

1

4
.

Proof. From the identity

1

k2(kr + 2)
=

1

2k2
− r

4k
+

r2

4(kr + 2)
,

we have that∑
1≤k

(−1)k−1χ−3(k)

k2(kr + 2)
=
1

2

∑
1≤k

(−1)k−1χ−3(k)

k2
− r

4

∑
1≤k

(−1)k−1χ−3(k)

k
+
r2

4

∑
1≤k

(−1)k−1χ−3(k)

kr + 2
.

(3.5.1)

We consider the different terms on the right-hand side of (3.5.1). They are

∑
1≤k

(−1)k−1χ−3(k)

k2
=
∑
1≤k

χ−3(k)

k2
− 2

∑
1≤k

χ−3(2k)

(2k)2
=

3

2

∑
1≤k

χ−3(k)

k2
=

3

2
L(χ−3,2), (3.5.2)

∑
1≤k

(−1)k−1χ−3(k)

k
=
∑
1≤k

χ−3(k)

k
− 2

∑
1≤k

χ−3(2k)

2k
= 2

∑
1≤k

χ−3(k)

k
=

2π

3
√
3
, (3.5.3)

and finally∑
1≤k

(−1)k−1χ−3(k)

kr + 2
=
∑
1≤k

χ−3(k)

kr + 2
− 2

∑
1≤k

χ−3(2k)

2kr + 2
=
∑
1≤k

χ−3(k)

kr + 2
+
∑
1≤k

χ−3(k)

kr + 1

=
∑
0≤j

1

3jr + r + 2
−
∑
0≤j

1

3jr + 2r + 2
+
∑
0≤j

1

3jr + r + 1
−
∑
0≤j

1

3jr + 2r + 1

=
1

3r

ï
ζ

Å
1,
r + 2

3r

ã
− ζ

Å
1,
2r + 2

3r

ã
+ ζ

Å
1,
r + 1

3r

ã
− ζ

Å
1,
2r + 1

3r

ãò
. (3.5.4)

By combining (3.5.2), (3.5.3), and (3.5.4) with (3.5.1), we get the result for r > 1.

When r = 1, (3.5.4) becomes

1

3

ï
ζ

Å
1,
2

3

ã
− ζ

Å
1,
4

3

ãò
= 1− π

3
√
3
.

□
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Proof of Theorem 3.1.1. Our goal is to calculate mD (1 + xr + ys). Since 1 + xr + ys =∏s−1
j=0

(
s
√
1 + xr + ξjsy

)
and for any k ̸= ℓ we have mD

(
s
√
1 + xr + ξks y

)
=

mD
(

s
√
1 + xr + ξℓsy

)
, we can write

mD (1 + xr + ys) =
s−1∑
j=0

mD

Ä
s
√
1 + xr + ξjsy

ä
= smD

Ä
s
√
1 + xr + y

ä
.

Here we note that the function s
√
1 + xr is well-defined when x ∈ D, and, from now on, we

consider the principal branch of the s-th root.

By definition and by application of equation (2.2.1), we obtain

mD

Ä
s
√
1 + xr + y

ä
=

1

π2

∫
D2

log
∣∣∣ s
√
1 + xr + y

∣∣∣ dA(x)dA(y)
=

1

sπ

∫
D∩{|1+xr|≥1}

log |1 + xr| dA(x) + 1

2π

∫
D∩{|1+xr|≤1}

Ä
|1 + xr|

2
s − 1

ä
dA(x). (3.5.5)

For x = ρeiθ with 0 ≤ ρ ≤ 1 and θ defined modulo 2π, the condition |1 + xr| ≥ 1 is

equivalent to

1 + ρ2r + 2ρr cos(rθ) ≥ 1 ⇐⇒ ρr + 2 cos(rθ) ≥ 0.

Therefore, for ℓ ∈ Z ∩ [0, r − 1], the condition |1 + xr| ≥ 1 holds when (4ℓ−1)π
2r

≤ θ ≤ (4ℓ+1)π
2r

and 0 ≤ ρ ≤ 1, and, when (4ℓ+1)π
2r

≤ θ ≤ (6ℓ+2)π
3r

as well as (6ℓ−2)π
3r

≤ θ ≤ (4ℓ−1)π
2r

and
r
√
−2 cos(rθ) ≤ ρ ≤ 1.

Similarly, for ℓ ∈ Z ∩ [0, r − 1], the condition |1 + xr| ≤ 1 implies that that the second

integral needs to be evaluated when (4ℓ+1)π
2r

≤ θ ≤ (6ℓ+2)π
3r

as well as (6ℓ+4)π
3r

≤ θ ≤ (4ℓ+3)π
2r

and

0 ≤ ρ ≤ r
√
−2 cos(rθ), and when (6ℓ+2)π

3r
≤ θ ≤ (6ℓ+4)π

3r
and 0 ≤ ρ ≤ 1.

We start by evaluating the first integral in (3.5.5). Following the above discussion, we

have∫
D∩{|1+xr|≥1}

log |1 + xr| dA(x) =
r−1∑
ℓ=0

Re

[∫ (4ℓ+1)π
2r

(4ℓ−1)π
2r

∫ 1

0

log
(
1 + ρreirθ

)
ρdρdθ

+

∫ (6ℓ+2)π
3r

(4ℓ+1)π
2r

∫ 1

r
√

−2 cos(rθ)

log
(
1 + ρreirθ

)
ρdρdθ +

∫ (4ℓ−1)π
2r

(6ℓ−2)π
3r

∫ 1

r
√

−2 cos(rθ)

log
(
1 + ρreirθ

)
ρdρdθ

]
.
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Since log
(
1 + ρreirθ

)
=
∑

1≤k(−1)k−1 ρkreikrθ

k
, we have

Re

[∫ (4ℓ+1)π
2r

(4ℓ−1)π
2r

∫ 1

0

log
(
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Now, using the fact that −2 cos(rθ) = 2 cos(rθ + π), we have
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where we have set τ = rθ + π. By Lemma 3.3.4, we have

Re

[∫ (6ℓ+2)π
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Similarly, we have
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Therefore, combining the above results we obtain
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(3.5.6)
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The second integral in (3.5.5) yields
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For k = j, the inner sum for integral (3.5.9) gives
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The combination of the inner sums of integrals (3.5.7) and (3.5.8) yields, when k = j,
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Applying Lemma 3.3.4, we get
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We now treat the case when k ̸= j. For the inner sum of integral (3.5.9), the k ̸= j case

yields
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Now, the inner sum for integral (3.5.7) in the k ̸= j case gives
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(3.5.13)
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Collecting (3.5.10) and (3.5.12), we have that the integral in (3.5.9) yields
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Combining (3.5.11), (3.5.13) and (3.5.14), we derive that the integrals in (3.5.7) and (3.5.8)
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By combining the above with the result of (3.5.6) and Lemma 3.5.1 in equation (3.5.5)

we conclude the proof of the statement. □

166



3.6. A limiting property for the areal Mahler measure

In this section we prove Theorem 3.1.3, which sheds light on how the change of variables

x 7→ xr interacts with the areal Mahler measure as r → ∞ in generality.

Proof of Theorem 3.1.3. Without loss of generality, we can consider the polynomial case.

Let

P (x1, . . . ,xn) =
∑

m1,...,mn≥0

cm1,...,mnx
m1
1 · · ·xmn

n ∈ C[x1, . . . ,xn]

be a non-zero polynomial and recall that P (0,x2, . . . ,xn) denotes the polynomial resulting

from P by setting x1 = 0. Given 0 ≤ R < 1, let DR denote the disk at the origin of radius

R. We have
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∫
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0

lim
r→∞

log

∣∣∣∣∣∣ ∑
m1,...,mn≥0

cm1,...,mnρ
rm1eirm1θxm2

2 · · ·xmn
n

∣∣∣∣∣∣ ρdρdθdA(x2) · · · dA(xn)
=πR2

∫
Dn−1

log

∣∣∣∣∣∣ ∑
m1=0,m2,...,mn≥0

c0,m2,...,mnx
m2
2 · · ·xmn

n

∣∣∣∣∣∣ dA(x2) · · · dA(xn)
=πR2

∫
Dn−1

log |P (0,x2, . . . , xn)| dA(x2) · · · dA(xn) = πnR2mD (P (0,x2, . . . , xn)) ,

where the exchanges between integrals and limits follow from the fact that the integrand is

bounded above by log
Ä∑

m1,...,mn≥0 |cm1,...,mn|
ä
. Then

lim
r→∞

mD (P (xr1,x2, . . . , xn)) = lim
R→1−

R2mD (P (0,x2, . . . , xn)) = mD (P (0,x2, . . . , xn)) .

This concludes the proof of Theorem 3.1.3. □

3.7. Conclusion

In this chapter, we have explored how the areal Mahler measure varies under the change

of variables x 7→ xr, where r is a positive integer. This change of variables does not affect the
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r s mD r s mD r s mD r s mD

1 1 0.111 2 1 0.074 5 1 0.037 10 1 0.020

1 2 0.074 2 2 0.049 5 2 0.024 10 2 0.013

1 3 0.056 2 3 0.036 5 3 0.018 10 3 0.010

1 4 0.045 2 4 0.029 5 4 0.014 10 4 0.008

1 5 0.037 2 5 0.024 5 5 0.011 10 5 0.006

1 10 0.020 2 10 0.013 5 10 0.006 10 10 0.003

1 20 0.011 2 20 0.006 5 20 0.003 10 20 0.002

Table 1 – Values of mD(1 + xr + ys) given by Theorem 3.1.1.

standard Mahler measure and therefore represents a clear distinction between the standard

definition and the areal version.

While it would be difficult to explore the result of these limits directly from the formulas

given in Theorems 3.1.1 and 3.1.2, one can see Theorem 3.1.3 in action by doing some

numerical experiments. This is illustrated in Table 1, where the values mD(1 + xr + yr)

are listed for some choices of r and s. We see, first of all, the symmetry resulting from

exchanging r and s, and we also see that the value of mD(1+ xr + yr) approaches zero when

r or s grow, as they approach mD(1 + ys) = 0 or mD(1 + xr) = 0 respectively.

Similarly Table 2 illustrates the values of mD((1 + x)r + ys) for some choices of r and s.

We see again that as s grows, the value of mD((1 + x)r + ys) approaches zero, the value of

mD((1 + x)r). The table also shows that the value of mD((1 + x)r + ys) grows when r grows.

Presumably, the areal Mahler measure is multiplied by r.

It would be interesting to understand these phenomena in full generality, including char-

acterizing the difference between mD(P ) and mD(P
(A)) for A an n × n integer matrix with

non-zero discriminant as in (0.6.9).
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r s mD r s mD r s mD

1 1 0.11069 2 1 0.29242 10 1 1.96069

1 2 0.07440 2 2 0.22139 10 2 1.80754

1 3 0.05600 2 3 0.17800 10 3 1.67597

1 4 0.04490 2 4 0.14880 10 4 1.56188

1 5 0.03746 2 5 0.12781 10 5 1.46209

1 10 0.02050 2 10 0.07493 10 10 1.10694

1 102 0.00224 2 102 0.00886 10 102 0.20495

1 103 0.00023 2 103 0.00090 10 103 0.02239

Table 2 – Values of mD((1 + x)r + ys) given by Theorem 3.1.2.
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Chapter 4

The Mahler measure of an n-variable family

with non-linear degree

In this chapter, we investigate the Mahler measure of a particular family of rational func-

tions with an arbitrary number of variables and an arbitrary degree in one of the variables,

generalizing previous results for families of an arbitrary number of variables but linear de-

pendence in each variable obtained in [75]. The results are based on a joint work with Lalín

and Nair [81].

4.1. A brief description of the results

In [74, 75], among other families of rational functions, Lalín considered the Mahler

measures of the following family:

Sn(x1, . . . ,xn,x,y,z) := (1 + x)z +

Å
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ã
(1 + y),

and evaluated their Mahler measures in terms of special ζ-values and Dirichlet L-values (see

(0.7.2) and (0.7.3) for the explicit expressions). These types of examples represent important

evidence towards understanding the relationship between Mahler measure and regulators

In this chapter, our aim is to evaluate the Mahler measure of the following generalization

of the family Sn:

Sn,r(x1, . . . , xn, x, y, z) := (1 + x)z +

ïÅ
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãòr
(1 + y).



We prove the following result.

Theorem 4.1.1 (see Theorem 0.7.1). Let r ≥ 1. For k ≥ 1, we have

m(S2k,r) =
k∑

h=1

sk−h(2
2,42, . . . ,(2k − 2)2)

(2k − 1)!

Å
2

π

ã2h

Cr(h),

where

Cr(h) :=r(2h)!
Å
1− 1

22h+1

ã
ζ(2h+ 1)

+
r2(2h− 1)!

π2

{
(−1)h+17B2hπ

2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

Å
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
Ç
t− 1

2h− 1

å
(2− 21−t)ζ(t)

å
(2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

Å
ℓ

2r

ã]}
.

For k ≥ 0, we have

m(S2k+1,r) =
k∑

h=0

sk−h(1
2,32, . . . ,(2k − 1)2)

(2k)!

Å
2

π

ã2h+1

Dr(h),
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where

Dr(h) :=r(2h+ 1)!L(χ−4,2h+ 2)

+
2ir2(2h)!

π2

{
(−1)h+1(22h+4 − 1)B2h+4π

2h+4

r2h+3(2h+ 4)!

− i
(−1)hE2hπ

2h+1

r222h(2h)!

Å
Li3((−i)r)−

1

8
Li3((−1)r)

ã
+ (2h+ 3)(2h+ 2)

1

r2h+3

Å
Li2h+4((−i)r)−

1

22h+4
Li2h+4((−1)r)

ã
+

2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

Ç
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

Ç
t− 1

2h

å
Lit(−i)

å
× (2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

Å
ℓ

2r

ã]}
.

In the above formulas, ξ2r denotes a primitive 2r-root of unity, Liℓ(z) denotes the ℓ-th poly-

logarithm (see Section 0.4.1), and Bn(t) denotes the Bernoulli polynomial, as defined in

(0.4.12).

The proof of Theorem 4.1.1 relies on similar recursive strategies as used in the proofs of

the previous results from [75, 93] discussed in Section 0.7. For Theorem 4.1.1 we introduce

a clever application of partial fractions that allows us to write the Mahler measure in terms

of hyperlogarithms evaluated at the roots of unity. This new idea allows us to make the

important transition from the previous results at r = 1 to the more general case of arbitrary

r. These hyperlogarithms give rise to multiple polylogarithms that can then be reduced to

length-one polylogarithms.

Chapter 4 is organized as follows. Section 4.2 presents some preliminary results on

evaluating certain necessary integrals that where proven in previous work ([74, 75, 78]).

The derivations of Lemmas 0.4.6 and 0.4.7 are given in Section 4.3. The proof of Theorem

4.1.1 is given in Sections 4.4 and 4.5. More precisely, Section 4.4 describes the iterative

process that leads to the Mahler measure being expressed in terms of integrals that can be

related to hyperlogarithms, while these integrals are evaluated in Section 4.5. Discussions of

the case r = 2 and of the cases n = 1 and r = 3,4 are included in Section 4.6.
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4.2. Some preliminary results

The goal of this section is to state some results concerning the evaluation of certain

integrals that were proven in [74, 75, 78] and that are necessary for the proof of Theorem

4.1.1.

Let Pα(y,w,z) = 1+ y+α(1+w)z. The Mahler measure of this polynomial was initially

computed by Smyth [27, 113]. We state here a version given in [74, Theorem 17].

Theorem 4.2.1.

π2m(1 + y + α(1 + w)z) =


2L3 (|α|) for |α| ≤ 1,

π2 log |α|+ 2L3 (|α|−1) for |α| > 1,

where, for β > 0,

L3 (β) = − 2

β

∫ 1

0

dt

t2 − 1
β2

◦ dt
t
◦ dt
t
:= − 2

β

∫
0≤t1≤t2≤t3≤1

dt1
t21 − 1

β2

dt2
t2

dt3
t3
.

The following proposition allows us to compute an integral that will be key for the

iterative process leading to Theorem 4.1.1.

Proposition 4.2.2. [75, Proposition 5], [78, Proposition 5.5] Let a, b > 0 and k ∈ Z≥0. We

have ∫ ∞

0

x logk xdx

(x2 + a2)(x2 + b2)
=
(π
2

)k+1 Ak
(
2 log a
π

)
− Ak

(
2 log b
π

)
a2 − b2

,
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where the Ak(x) are polynomials in Q[x] given by

R(T ;x) =
exT − 1

sinT
=
∑
k≥0

Ak(x)
T k

k!
.

Remark 4.2.3. The polynomials Ak(x) satisfy the following recurrence.

Ak(x) =
xk+1

k + 1
+

1

k + 1

k+1∑
j>1

odd

(−1)
j+1
2

Ç
k + 1

j

å
Ak+1−j(x),

and can be explicitly given by

Ak(x) = − 2

k + 1

k∑
h=0

Bh

Ç
k + 1

h

å
(2h−1 − 1)ihxk+1−h,

where the Bn are the Bernoulli numbers. (See the Appendix to [75] and [78, Lemma 5.2].)

4.3. Integrals and polylogarithms

To understand how special values of zeta functions and L-series arise in our formulas, we

derive Lemmas 0.4.6 and 0.4.7 in this section.

A proof of Lemma 0.4.6 can be found in [75, Lemma 9]. We include it here to familiarize

the reader with the proof strategy, which we adapt frequently throughout this chapter to

establish our results.

Proof of Lemma 0.4.6. We derive the equality in (0.4.18) below. A similar argument applies

to obtain (0.4.17), which is provided in the proof of Lemma 9 in [75].

Our goal is to translate the integral into hyperlogarithms.

∫ 1

0

logj x
dx

x2 + 1
=

(−1)jj!

2i

∫ 1

0

Å
1

x− i
− 1

x+ i

ã
dx ◦ dt

t
◦ · · · ◦ dt

t︸ ︷︷ ︸
j times

,

where we use the fact that
∫ 1

x
dt
t

= − log x. Since dt
t
◦ · · · ◦ dt

t
are ordered in the above

hyperlogarithm integral, we have the factor j! in the left-hand side as the number of possible
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permutation of the variable t. Therefore, we have

(−1)jj!

2i

∫ 1

0

Å
1

x− i
− 1

x+ i

ã
dx ◦ dt

t
◦ · · · ◦ dt

t︸ ︷︷ ︸
j times

=
(−1)jj!

2i
[Lij+1(i)− Lij+1(−i)]

=(−1)jj!L (χ−4, j + 1) ,

where the last equality follows from (0.4.11). □

We now prove Lemma 0.4.7, which allows us to express the sums polylogarithms at roots

of unity in terms of special zeta values.

Proof of Lemma 0.4.7. Indeed, we have

2r−1∑
ℓ=0

(−1)ℓLih(ξ
ℓ
2r) =

∞∑
n=1

2r−1∑
ℓ=0

(−1)ℓξℓn2r
nh

=
∞∑
n=1

2r−1∑
ℓ=0

(ξn+r2r )ℓ

nh

=2r
∞∑
n=1

n≡rmod 2r

1

nh
=

2r

rh

∞∑
j=0

1

(2j + 1)h

=
2(1− 2−h)

rh−1
ζ(h).

The proof of (0.4.19) is similar. We also have

2r−1∑
ℓ=0

(−1)ℓLih(−iξℓ2r) =
∞∑
n=1

2r−1∑
ℓ=0

(−1)ℓ(−iξℓ2r)n

nh
=

∞∑
n=1

(−i)n

nh

2r−1∑
ℓ=0

(ξn+r2r )ℓ

=2r
∞∑
n=1

n≡rmod 2r

(−i)n

nh
=

2r

rh

∞∑
j=0

(−i)(2j+1)r

(2j + 1)h

=
2

rh−1

(
Lih((−i)r)− 2−hLih((−1)r)

)
.

□

4.4. General set-up

We start by first describing a general setting that could be applied to various ratio-

nal functions. Then we will specialize this setting in the particular polynomial from the

statement.
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Let Pα ∈ C(x) be a non-zero rational function such that its coefficients depend (as

rational functions) on a parameter α ∈ C. We replace α by
îÄ

x1−1
x1+1

ä
· · ·
Ä
xn−1
xn+1

äór
and obtain

a new rational function P̃ ∈ C(x, x1, . . . , xn). By definition of the Mahler measure, one can

see that

m(P̃ ) =
1

(2πi)n

∫
Tn

m

Å
P[(x1−1

x1+1

)
···(xn−1

xn+1)
]rã dx1

x1
. . .

dxn
xn

.

We first apply a change of variables to polar coordinates, xj = eiθj :

=
1

(2π)n

∫ π

−π
· · ·
∫ π

−π
m
(
P[in tan( θ1

2 )··· tan(
θn
2 )]

r

)
dθ1 . . . dθn.

Now let yi = tan
(
θi
2

)
. We get,

=
1

πn

∫ ∞

−∞
· · ·
∫ ∞

−∞
m
(
P(iny1···yn)r

) dy1
y21 + 1

. . .
dyn
y2n + 1

=
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(iny1···yn)r

) dy1
y21 + 1

. . .
dyn
y2n + 1

+
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(−iny1···yn)r

) dy1
y21 + 1

. . .
dyn
y2n + 1

.

By making one more change of variables, x̂1 = y1, . . . , x̂n−1 = y1 · · · yn−1, x̂n = y1 · · · yn, we

finally obtain

=
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(inx̂n)r

) x̂1dx̂1
x̂21 + 1

x̂2dx̂2
x̂22 + x̂21

. . .
x̂n−1dx̂n−1

x̂2n−1 + x̂2n−2

dx̂n
x̂2n + x̂2n−1

+
2n−1

πn

∫ ∞

0

· · ·
∫ ∞

0

m
(
P(−inx̂n)r

) x̂1dx̂1
x̂21 + 1

x̂2dx̂2
x̂22 + x̂21

. . .
x̂n−1dx̂n−1

x̂2n−1 + x̂2n−2

dx̂n
x̂2n + x̂2n−1

.

Thus, to obtain our final formula, we need to compute this integral.

By iterating Proposition 4.2.2, the above integral can be written as a linear combination,

with coefficients that are rational numbers and powers of π in such a way that the weights

are homogeneous, of integrals of the form∫ ∞

0

m
(
P(inx)r

)
logj x

dx

x2 ± 1
+

∫ ∞

0

m
(
P(−inx)r

)
logj x

dx

x2 ± 1
. (4.4.1)

One can see that j is even if and only if n is odd and the corresponding sign in that case

is “+”. This leads to the following construction.

177



Definition 4.4.1. [75, Definition15] Let ak,j ∈ Q be defined for k ≥ 1, n = 2k and j =

0, . . . , k − 1 by∫ ∞

0

· · ·
∫ ∞

0

m
(
P(±inx̂n)r

) x̂1dx̂1
x̂21 + 1

x̂2dx̂2
x̂22 + x̂21

· · · x̂n−1dx̂n−1

x̂2n−1 + x̂2n−2

dx̂n
x̂2n + x̂2n−1

=
k∑

h=1

ak,h−1

(π
2

)2k−2h
∫ ∞

0

m
(
P(±inx)r

)
log2h−1 x

dx

x2 − 1
.

Let bk,j ∈ Q be defined for k ≥ 0, n = 2k + 1 and j = 0, . . . , k by∫ ∞

0

· · ·
∫ ∞

0

m
(
P(±inx̂n)r

) x̂1dx̂1
x̂21 + 1

x̂2dx̂2
x̂22 + x̂21

· · · x̂n−1dx̂n−1

x̂2n−1 + x̂2n−2

dx̂n
x̂2n + x̂2n−1

=
k∑

h=0

bk,h

(π
2

)2k−2h
∫ ∞

0

m
(
P(±inx)r

)
log2h x

dx

x2 + 1
.

The following result is proven in [75].

Theorem 4.4.2. [75, Theorem 17] For k ≥ 1 and h = 0, . . . , k − 1, we have

ak,h =
sk−1−h(2

2, . . . , (2k − 2)2)

(2k − 1)!
.

For k ≥ 0 and h = 0, . . . , k, we have

bk,h =
sk−h(1

2, . . . , (2k − 1)2)

(2k)!
,

where we recall that the symmetric polynomials are given by (0.7.1).

It remains to evaluate the integrals of the type (4.4.1).

4.5. Integral reduction

In this section, we focus on evaluating the integral

Ir,j :=
∫ ∞

0

m
(
P(inx)r

)
logj x

dx

x2 + (−1)j

for the polynomial Pα = 1 + y + α(1 + w)z and we deduce our main result. Notice that in

this case the Mahler measure is independent of the complex argument of α, and it therefore

suffices to evaluate m(Pxr). We have the following result.
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Proposition 4.5.1. Let Pα = 1 + y + α(1 + w)z. When h ≥ 0 we have

Ir,2h =
2ir2(2h)!

π2

{
(−1)h+1(22h+4 − 1)B2h+4π

2h+4

r2h+3(2h+ 4)!
− i

(−1)hE2hπ
2h+1

r222h(2h)!

Å
Li3((−i)r)−

1

8
Li3((−1)r)

ã
+ (2h+ 3)(2h+ 2)

1

r2h+3

Å
Li2h+4((−i)r)−

1

22h+4
Li2h+4((−1)r)

ã
+

2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

Ç
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

Ç
t− 1

2h

å
Lit(−i)

å
× (2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

Å
ℓ

2r

ã]}
+ r(2h+ 1)!L(χ−4,2h+ 2).

When h ≥ 1 we have

Ir,2h−1 =
r2(2h− 1)!

π2

{
(−1)h+17B2hπ

2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

Å
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
Ç
t− 1

2h− 1

å
(2− 21−t)ζ(t)

å
(2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

Å
ℓ

2r

ã]}
+ r(2h)!

Å
1− 1

22h+1

ã
ζ(2h+ 1).

Proof. We start by splitting the integral according to 0 ≤ x ≤ 1 and 1 ≤ x.

Ir,j =
∫ 1

0

m(Pxr) log
j x

dx

x2 + (−1)j
+

∫ ∞

1

m(Pxr) log
j x

dx

x2 + (−1)j
.

By applying Theorem 4.2.1, we obtain

Ir,j =
∫ 1

0

Å
− 4

xrπ2

ã∫ 1

0

dt

t2 − 1
x2r

◦ dt
t
◦ dt
t

logj xdx

x2 + (−1)j

+

∫ ∞

1

Ç
log (xr) +

Å
−4xr

π2

ã∫ 1

0

dt

t2 − x2r
◦ dt
t
◦ dt
t

å
logj xdx

x2 + (−1)j
.
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Denoting the t-variables by 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1, we consider the following changes of

variables. For the first term above, we let

t1 =
sr1
xr
, t2 =

sr2
xr
, t3 =

sr3
xr
,

and for the second term we let

t1 =
xr

sr1
, t2 =

xr

sr2
, t3 =

xr

sr3
.

This leads to

Ir,j =− 4

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ rds

s
◦ rds

s
◦ logj xdx

x2 + (−1)j

+ r

∫ ∞

1

logj+1 xdx

x2 + (−1)j
− 4

π2

∫ ∞

1

logj xdx

x2 + (−1)j
◦ (−r)ds

s
◦ (−r)ds

s
◦ (−r)sr−1ds

1− s2r
.

In the last two integrals, we reverse s→ 1
s

and x→ 1
x

to get

Ir,j =− 4

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ rds

s
◦ rds

s
◦ logj xdx

x2 + (−1)j

− r

∫ 1

0

logj+1 xdx

x2 + (−1)j
− 4

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ rds

s
◦ rds

s
◦ logj xdx

x2 + (−1)j

=− 8r2

π2

∫ 1

0

rsr−1ds

s2r − 1
◦ ds
s

◦ ds
s

◦ logj xdx

x2 + (−1)j
− r

∫ 1

0

logj+1 xdx

x2 + (−1)j

=− 4r2j!(−1)j

π2ij+1

∫ 1

0

rsr−1ds

s2r − 1
◦ ds
s

◦ ds
s

◦
Å

1

x− ij+1
− 1

x+ ij+1

ã
dx ◦ du

u
◦ · · · ◦ du

u︸ ︷︷ ︸
j times

− r

∫ 1

0

logj+1 xdx

x2 + (−1)j
.

Let ξ2r be a primitive (2r)th root of unity. We can then write

sr − 1 =
r−1∏
ℓ=0

(s− ξ2ℓ2r) and sr + 1 =
r−1∏
ℓ=0

(s− ξ2ℓ+1
2r ).

By applying the logarithmic derivatives above, we get

rsr−1

sr − 1
=

r−1∑
ℓ=0

1

s− ξ2ℓ2r
and

rsr−1

sr + 1
=

r−1∑
ℓ=0

1

s− ξ2ℓ+1
2r

.
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This gives

rsr−1

s2r − 1
=

rsr−1

2(sr − 1)
− rsr−1

2(sr + 1)
=

1

2

2r−1∑
ℓ=0

(−1)ℓ

s− ξℓ2r
.

Finally we have

Ir,j =− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓI3,j+1

(
ξℓ2r : i

j+1 : 1
)

+
2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓI3,j+1

(
ξℓ2r : −ij+1 : 1

)
− r

∫ 1

0

logj+1 xdx

x2 + (−1)j

=− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓLi3,j+1(i
j+1ξ−ℓ2r , i

−j−1)

+
2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓLi3,j+1(−ij+1ξ−ℓ2r ,−i−j−1)− r

∫ 1

0

logj+1 xdx

x2 + (−1)j
. (4.5.1)

By Lemma 0.4.6, we have

−r
∫ 1

0

logj+1 xdx

x2 + (−1)j
=


r(j + 1)!

Å
1− 1

2j+2

ã
ζ(j + 2) j odd,

r(j + 1)!L(χ−4,j + 2) j even.

(4.5.2)

When j = 2h is even, we have that

− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,j+1(i

j+1ξ−ℓ2r , i
−j−1)− Li3,j+1(−ij+1ξ−ℓ2r ,−i−j−1)

)
=

2r2i(−1)h(2h)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h+1(i(−1)hξ−ℓ2r ,i(−1)h+1)− Li3,2h+1(i(−1)h+1ξ−ℓ2r ,i(−1)h)

)
=

2r2i(2h)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h+1(iξ

−ℓ
2r ,− i)− Li3,2h+1(−iξ−ℓ2r ,i)

)
=

2r2i(2h)!

π2

2r−1∑
ℓ=0

(
(−1)ℓLi3,2h+1(iξ

−ℓ
2r ,− i)− (−1)2r−ℓLi3,2h+1(−iξ2r−ℓ2r ,i)

)
= −4r2(2h)!

π2

2r−1∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(iξ

−ℓ
2r ,− i)

)
. (4.5.3)
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When j = 2h− 1 is odd, we have that

− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,j+1(i

j+1ξ−ℓ2r , i
−j−1)− Li3,j+1(−ij+1ξ−ℓ2r ,−i−j−1)

)
=

2r2(−1)h(2h− 1)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h((−1)hξ−ℓ2r , (−1)h)− Li3,2h(−(−1)hξ−ℓ2r ,−(−1)h)

)
=

2r2(2h− 1)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,2h(ξ

−ℓ
2r , 1)− Li3,2h(−ξ−ℓ2r ,−1)

)
. (4.5.4)

Notice that one can combine

(−1)ℓLi3,2h
(
ξ−ℓ2r , 1

)
+ (−1)2r−ℓLi3,2h

(
ξ−2r+ℓ
2r , 1

)
=(−1)ℓLi3,2h

(
ξ−ℓ2r , 1

)
+ (−1)ℓLi3,2h

(
ξℓ2r, 1

)
=(−1)ℓ2Re(Li3,2h

(
ξ−ℓ2r , 1

)
)

and similarly with

(−1)ℓLi3,2h
(
−ξ−ℓ2r ,−1

)
+ (−1)2r−ℓLi3,2h

(
−ξ−2r+ℓ

2r ,−1
)
=(−1)ℓ2Re(Li3,2h

(
−ξ−ℓ2r ,−1

)
).

By combining the above with (4.5.4), we finally have that, when j = 2h− 1 is odd,

− 2r2j!(−1)j

π2ij+1

2r−1∑
ℓ=0

(−1)ℓ
(
Li3,j+1(i

j+1ξ−ℓ2r , i
−j−1)− Li3,j+1(−ij+1ξ−ℓ2r ,−i−j−1)

)
=

2r2(2h− 1)!

π2

2r−1∑
ℓ=0

(−1)ℓ
(
Re
(
Li3,j+1(ξ

−ℓ
2r , 1)

)
− Re

(
Li3,j+1(−ξ−ℓ2r ,−1)

))
. (4.5.5)

In order to continue the simplification, we apply Corollary 0.4.5. Equation (0.4.15) gives,

for j = 2h,

2i
2r−1∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(iξ

−ℓ
2r ,− i)

)
=

2r−1∑
ℓ=0

(−1)ℓ

[
Li2h+4(ξ

ℓ
2r)− Li3(−iξℓ2r) (Li2h+1(i)− Li2h+1(−i)) +

Ç
2h+ 3

2

å
Li2h+4(−iξℓ2r)

+
2h+3∑
t=1

ÇÇ
t− 1

2

å
Lit(−iξℓ2r) +

Ç
t− 1

2h

å
(−1)tLit(−i)

å
(−Li2h+4−t(ξ

−ℓ
2r )− (−1)tLi2h+4−t(ξ

ℓ
2r))

]
.
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We now apply part of Lemma 0.4.7 and other identities from Section 0.4.1, such as (0.4.10),

(0.4.11), (0.4.13), (0.4.21), and (0.4.22), to find that the above equals

(−1)h+1(22h+4 − 1)B2h+4π
2h+4

r2h+3(2h+ 4)!
− i

(−1)hE2hπ
2h+1

r222h(2h)!

Å
Li3((−i)r)−

1

8
Li3((−1)r)

ã
+ (2h+ 3)(2h+ 2)

1

r2h+3

Å
Li2h+4((−i)r)−

1

22h+4
Li2h+4((−1)r)

ã
+

2r−1∑
ℓ=0

(−1)ℓ

[
2h+3∑
t=1

Ç
(t− 1)(t− 2)

2
(−1)tLit(−iξℓ2r) +

Ç
t− 1

2h

å
Lit(−i)

å
× (2πi)2h+4−t

(2h+ 4− t)!
B2h+4−t

Å
ℓ

2r

ã]
. (4.5.6)

Equation (0.4.16) gives for j = 2h− 1,

2
2r−1∑
ℓ=0

(−1)ℓ
(
Re
(
Li3,j+1(ξ

−ℓ
2r , 1)

)
− Re

(
Li3,j+1(−ξ−ℓ2r ,−1)

))
=

2r−1∑
ℓ=0

(−1)ℓ

[
2Li3(ξ

ℓ
2r)Li2h(1)− 2Li3(−ξℓ2r)Li2h(−1) +

Ç
2h+ 2

2

å (
Li2h+3(ξ

ℓ
2r)− Li2h+3(−ξℓ2r)

)
+

2h+2∑
t=1

ÇÇ
t− 1

2

å (
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
Ç
t− 1

2h− 1

å
(−1)t (Lit(1)− Lit(−1))

å
× (−Li2h+3−t(ξ

−ℓ
2r ) + (−1)tLi2h+3−t(ξ

ℓ
2r))

]
.

Again, we apply part of Lemma 0.4.7 and identities from Section 0.4.1 to see that the above

equals

(−1)h+17B2hπ
2h

2r2(2h)!
ζ(3)

(
22h−1 + (−1)r22h−1 + (−1)r+1

)
+ (2h+ 2)(2h+ 1)

1− 2−2h−3

r2h+2
(1− (−1)r)ζ(2h+ 3)

−
2r−1∑
ℓ=0

(−1)ℓ

[
2h+2∑
t=2

Ç
(t− 1)(t− 2)

2
(−1)t

(
Lit(ξ

ℓ
2r)− Lit(−ξℓ2r)

)
−
Ç
t− 1

2h− 1

å
(2− 21−t)ζ(t)

å
× (2πi)2h+3−t

(2h+ 3− t)!
B2h+3−t

Å
ℓ

2r

ã]
. (4.5.7)
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Combining equations (4.5.6) and (4.5.7) with (4.5.3), (4.5.5), and (4.5.2) in (4.5.1) con-

cludes the proof of the statement. □

Proof of Theorem 4.1.1. By Definition 4.4.1, we have that

m(S2k,r) =
k∑

h=1

ak,h−1

Å
2

π

ã2h

Ir,2h−1

and

m(S2k+1,r) =
k∑

h=0

bk,h

Å
2

π

ã2h+1

Ir,2h.

The result the follows from Theorem 4.4.2 and Proposition 4.5.1, by setting Cr(h) := Ir,2h−1

and Dr(h) := Ir,2h. □

4.6. Some particular cases

In this section we focus on the simplest cases, for low values of r or n.

For the case r = 1, and j = 2h, we have, from (4.5.6),

1∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(i(−1)−ℓ,− i)

)
= −(2h+ 3)(h+ 1)L(χ−4,2h+ 4) + (2h+ 1)L(χ−4, 2h+ 2)

π2

4

+
h+1∑
s=2

(2s− 1)(s− 1)L(χ−4,2s)
(−1)h+1−sB2h+4−2sπ

2h+4−2s

(2h+ 4− 2s)!
.

This gives, for r = 1,

I1,2h =
2

π2

h∑
ℓ=0

Ç
2h+ 1

2ℓ+ 1

å
(−1)h−ℓ

2h+ 1
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 3)!L(χ−4,2ℓ+ 4) =
4

π2
D(h),

where we have set s = ℓ+ 2.
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For the case r = 1, and j = 2h− 1, we have, from (4.5.7),

1∑
ℓ=0

(−1)ℓ
(
Re
(
Li3,j+1((−1)−ℓ, 1)

)
− Re

(
Li3,j+1(−(−1)−ℓ,−1)

))
=(h+ 1)(2h+ 1)

Å
2− 1

22h+2

ã
ζ(2h+ 3)− h

Å
1− 1

22h+1

ã
ζ(2h+ 1)π2

−
h∑
s=2

s(2s− 1)

Å
2− 1

22s

ã
ζ(2s+ 1)

(−1)h−sB2h+2−2sπ
2h+2−2s

(2h+ 2− 2s)!
.

This gives, for r = 1,

I1,2h−1 =
1

π2

h∑
ℓ=1

Ç
2h

2ℓ

å
(−1)h−ℓ

h
B2(h−ℓ)π

2h−2ℓ(2ℓ+ 2)!

Å
1− 1

22ℓ+3

ã
ζ(2ℓ+ 3) =

4

π2
C(h),

where we have set s = ℓ+ 1.

For the case r = 2 and j = 2h, we have, from (4.5.6),

3∑
ℓ=0

(−1)ℓ Im
(
Li3,2h+1(i

1−ℓ,− i)
)

=
(−1)h+121π2h+1

22h+6(2h)!
E2hζ(3) + (2h+ 1)L(χ−4,2h+ 2)

π2

8

−
h+1∑
s=2

Ç
2s− 1

2

å
(−1)h−sL(χ−4,2s)

(
22h+4−2s − 1

) π2h+4−2s

(2h+ 4− 2s)!
B2h+4−2s

+
h+1∑
s=2

Ç
2s

2

å
(−1)h−s

(
22s+1 − 1

)
ζ(2s+ 1)

π2h+3−2s

22h+4(2h+ 2− 2s)!
E2h+2−2s.

This gives, for r = 2,

I2,2h =
(−1)h21

22h+2
E2hπ

2h−1ζ(3)

+ 8
h−1∑
ℓ=0

Ç
2h+ 1

2ℓ+ 1

å
(−1)h−ℓ

2h+ 1
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 3)!
(
22h−2ℓ − 1

)
L(χ−4,2ℓ+ 4)

+
h∑
ℓ=1

Ç
2h

2ℓ

å
(−1)h−ℓ

22h+1
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 2)!
(
22ℓ+3 − 1

)
ζ(2ℓ+ 3)

=D2(h).
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For the case r = 2, and j = 2h− 1, we have, from (4.5.7),
3∑
ℓ=0

(−1)ℓ
(
Re
(
Li3,2h(i

−ℓ, 1)
)
− Re

(
Li3,2h(−i−ℓ,−1)

))
=
(−1)h+17π2h

16(2h)!
B2h

(
22h − 1

)
ζ(3)− h

Å
2− 1

22h

ã
ζ(2h+ 1)

π2

4

−
h∑
s=1

Ç
2s

2

å
(−1)h−s

Å
2− 1

22s

ã
ζ(2s+ 1)

(
22h+2−2s − 1

) π2h+2−2s

(2h+ 2− 2s)!
B2h+2−2s

−
h+1∑
s=1

Ç
2s− 1

2

å
(−1)h−sL(χ−4,2s)

π2h+3−2s

22h+2−2s(2h+ 2− 2s)!
E2h+2−2s.

This gives, for r = 2,

I2,2h−1 =
(−1)h+17

4h
B2hπ

2h−2
(
22h − 1

)
ζ(3)

+ 4
h−1∑
ℓ=0

Ç
2h

2ℓ

å
(−1)h−ℓ

h

(
22h−2ℓ − 1

)
B2(h−ℓ)π

2h−2ℓ−2(2ℓ+ 2)!

Å
1− 1

22ℓ+3

ã
ζ(2ℓ+ 3)

+
h∑
ℓ=1

Ç
2h− 1

2ℓ− 1

å
(−1)h−ℓ

22h−2ℓ−2
E2(h−ℓ)π

2h−2ℓ−1(2ℓ+ 1)!L(χ−4,2ℓ+ 2)

=C2(h).

The evaluation of Ir,j and m(Sn,r) for r > 2 quickly becomes computationally involved.

We will focus on the case n = 1. This corresponds to the case k = h = 0 and Ir,0. We

remark that for j = 0 we have

Ir,0 =Re

[
12i

π2r
Li4((−i)r)−

2

π
Li3((−i)r) +

2r

π

2r−1∑
ℓ=0

(−1)ℓLi3(−iξℓ2r)ℓ

]

− 3r2

16π
ζ(3) +

1

4π
Li3((−1)r)

and

m(S1,r) =Re

[
24i

π3r
Li4((−i)r)−

4

π2
Li3((−i)r) +

4r

π2

2r−1∑
ℓ=0

(−1)ℓLi3(−iξℓ2r)ℓ

]

− 3r2

8π2
ζ(3) +

1

2π2
Li3((−1)r).

We get different cases according to the class of rmod 4.
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For r = 2s+ 1, we have

m(S1,2s+1) =
24(−1)s

(2s+ 1)π3
L(χ−4,4)−

3(2s+ 1)2

8π2
ζ(3) +

4(2s+ 1)

π2

4s+1∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ4s+2))ℓ.

For r = 4s, we have

m(S1,4s) =− 12s2 + 7

2π2
ζ(3) +

16s

π2

8s−1∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ8s))ℓ.

For r = 4s+ 2, we have

m(S1,4s+2) =− 6s2 + 6s− 2

π2
ζ(3) +

16s+ 8

π2

8s+3∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ8s+4))ℓ.

Specializing in r = 1,2 we recover the formulas for the Mahler measures of S1,1 and S1,2.

We now provide additional details for the cases r = 3,4.

For r = 3, we must find
5∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ6))ℓ =− Re(Li3(e
11πi
6 )) + 2Re(Li3(e

πi
6 ))− 3Re(Li3(i))

+ 4Re(Li3(e
5πi
6 ))− 5Re(Li3(e

7πi
6 ))

=Re(Li3(e
πi
6 ))− Re(Li3(e

5πi
6 ))− 3Re(Li3(i)),

since Li(z) = Li(z). Now consider

Re(Li3(e
πi
6 )) =

∞∑
k=1

cos kπ
6

k3

=

√
3

2

Å
1

13
− 1

53
− 1

73
+

1

113
+ · · ·

ã
+

1

2

Å
1

23
− 1

43
− 2

63
− 1

83
+

1

103
+

2

123
+ · · ·

ã
.

This sum is absolutely convergent and we may rearrange the terms as desired. Let χ12(11, n)

be the Dirichlet character of conductor 12 given by
(
12
n

)
. This corresponds to the character

χ12,4 according to Mathematica. Its values are given by

n 1 5 7 11

χ12(11,n) 1 −1 −1 1

so that √
3

2

Å
1

13
− 1

53
− 1

73
+

1

113
+ · · ·

ã
=

√
3

2
· L(χ12(11,·),3).
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We can also write

1

2

Å
1

23
− 1

43
− 2

63
− 1

83
+

1

103
+

2

123
+ · · ·

ã
=

1

2

Å
1

23
− 1

43
+

1

63
− 1

83
+

1

103
− 1

123
+ · · ·

ã
− 3

2

Å
1

63
− 1

123
+

1

183
+ · · ·

ã
= −

Å
1

2 · 23
− 3

2 · 63

ã
Li3(−1)

=
ζ(3)

24
.

Therefore,

Re(Li3(e
πi
6 )) =

ζ(3)

24
+

√
3

2
L(χ12(11,·),3).

Similarly, we can show that

Re(Li3(e
5πi
6 )) =

ζ(3)

24
−

√
3

2
L(χ12(11,·),3),

and using that Re(Li3(i)) = − 3
32
ζ(3), we obtain

5∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ6))ℓ =
9

32
ζ(3) +

√
3L(χ12(11,·),3),

which gives

m(S1,3) =
12
√
3

π2
L(χ12(11,·),3)−

8

π3
L(χ−4,4).

When m = 4, using similar manipulations, we can also show

Re(Li3(e
πi
4 )) = − 3

44
ζ(3) +

1√
2
L(χ8(5,·),3),

Re(Li3(e
3πi
4 )) = − 3

44
ζ(3)− 1√

2
L(χ8(5,·),3),

where χ8(5,n) is the Dirichlet character of conductor 8 given by
(
8
n

)
. This corresponds to

the character χ8,2 according to Mathematica. Its values are given by

n 1 3 5 7

χ8(5,n) 1 −1 −1 1
.

188



Thus,
7∑
ℓ=0

(−1)ℓRe(Li3(−iξℓ8))ℓ = −4Re(Li3(e
πi
4 ))− 12Re(Li3(e

3πi
4 ))− 23

8
ζ(3)

= −43

16
ζ(3) + 4

√
2L(χ8(5, ·),3),

and

m(S1,4) = −105

2π2
ζ(3) +

64
√
2

π2
L(χ8(5, ·),3).

4.7. Conclusion

Our results show that the Mahler measure of the family Sn,r is even richer and more

interesting than the previously known Mahler measure of Sn,1. It is clear from the case

n = 1 that we can not expect a formula of the form (0.7.4). Such a formula is certainly true

if we consider an analogous construction for the Rn family, namely, if we let

Rn,r(x1, . . . , xn,z) := z +

ïÅ
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãòr
,

Then, we trivially have that

m(Rn,r(x1, . . . , xn,z)) =m(Rn,r(x1, . . . , xn,− zr)) =
r∑
j=0

m

Å
z − ξjr

Å
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãã
=rm(Rn,1(x1, . . . , xn,z)).

Thus, the case of Rn,r is trivial. Similar considerations apply to the family Qn,r given by

Qn,r(x1, . . . , xn,z) := z +

ïÅ
ξ3 + x1
1 + x1

ã
· · ·
Å
ξ3 + xn
1 + xn

ãòr
.

An interesting project would be to consider the construction of this chapter for the family

Tn:

Tn,r(x1, . . . ,xn,x,y) := 1+

ïÅ
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãòr
x+

Å
1−

ïÅ
1− x1
1 + x1

ã
· · ·
Å
1− xn
1 + xn

ãòrã
y.

As we remarked in the introduction, there is a clear distinction between the cases n even and

odd for m(Sn), namely, the formulas for n even only contain special values of the Riemann

zeta function, and the formulas for n odd only contain special values of the Dirichlet L-

function at χ−4. However, for m(Sn,2), the formulas are mixed. The case of m(Rn) also shows
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an alternation of formulas involving special values of the Riemann zeta function or special

values of the Dirichlet L-function, and by the discussion above, since m(Rn,r) = rm(Rn),

the same is true for m(Rn,r) independently of r. Finally, all the formulas involving m(Tn)

are given in terms of log 2 and special values of the Riemann zeta function. It would be

interesting to see how this extends to m(Tn,r).
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Chapter 5

The areal zeta Mahler measure of a family of

polynomials

In this chapter, we derive some fundamental properties of the areal zeta Mahler measure

and we evaluate the areal Mahler measure of the polynomial family {k+x+y : k ∈ C} using

the associated areal zeta Mahler measure. This is an ongoing joint work with Lalín, Nair,

and Ringeling.

5.1. A brief description of the results

For a non-zero polynomial P ∈ C[x1, . . . , xn], the areal zeta Mahler measure is given in

(0.6.18) by

ZD(s,P ) :=
1

πn

∫
Dn

|P (x1, . . . , xn)|s dA(x1) . . . dA(xn). (5.1.1)

The goal of this chapter is to evaluate mD(k+x+y) explicitly in terms of hypergeometric

series, as well as in terms of special values of the Bloch–Wigner dilogarithm, for all k ∈ C.

Following the discussion in Remark 0.6.26, it suffices to compute mD(|k|+ x+ y), since

mD(k + x+ y) = mD(kξ + x+ y) = mD(|k|+ x+ y)

for any ξ ∈ C× such that |ξ| = 1. We achieve the evaluation in two steps, given by the next

two theorems.



Theorem 5.1.1 (see Theorem 0.6.23). For Re(s) > −2 and k ∈ C, we have

ZD(s, |k|+ x+ y) = c0(s)

Å |k|
2

ãs+3

F0

Å |k|2
4

; s

ã
+ c1(s)F1

Å |k|2
4

; s

ã
, (5.1.2)

where

F0(z; s) = 3F2

Å
−1

2
,
1

2
,
3

2
;
5 + s

2
,
5 + s

2
; z

ã
,

F1(z; s) = 3F2

Å
−2− s

2
,− 1− s

2
,−s

2
; 1,− 1

2
− s

2
; z

ã
,

c0(s) =

2s · 3F2

(
− s

2
,− s

2
, 3
2
; 2, 3; 1

)
− 4

s+4
Γ(s+2)

Γ( s
2
+2)

2 · 3F2

(
−2− s

2
,− 1− s

2
,− s

2
; 1,− 1

2
− s

2
; 1
)

3F2

(
−1

2
,1
2
, 3
2
; 5+s

2
,5+s

2
; 1
) ,

and c1(s) = 4
s+4

Γ(s+2)

Γ( s
2
+2)

2 .

Using Theorem 5.1.1, we compute

dZD(s, |k|+ x+ y)

ds

∣∣∣∣
s=0

= mD(|k|+ x+ y), (5.1.3)

which leads to the statement of Corollary 0.6.24. Comparing this with (0.6.21), which

represents m(|k|+ x+ y) in terms of a hypergeometric series, namely,

m(|k|+ x+ y) =
|k|
π

3F2

Å
1

2
,
1

2
,
1

2
;
3

2
,
3

2
;
|k|2

4

ã
,

we obtain the following result.

Theorem 5.1.2 (see Theorem 0.6.25). For k > 0,

m(k + x+ y)−mD(k + x+ y) =
k
√
4− k2(10 + k2) + (8− 16k2) arccos

(
k
2

)
16π

. (5.1.4)

Before proceeding with the proofs of the above statements, we will first discuss some

fundamental properties of the areal zeta Mahler measure, which is in itself a very interesting

object to study.
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5.2. Some fundamental properties of the areal zeta Mahler

measure

In order to compute (5.1.3), we need to verify that ZD is differentiable at s = 0. To see this,

we first consider the holomorphic regions of ZD(s, P ) for any polynomial P ∈ C[x1, . . . , xn].

We first specify some notation that we use frequently in our arguments below. Let λn(A)

denote the Lebesgue measure of a set A ∈ Rn, and let Sn denote the Symmetric group of n

elements.

Recall that, for any P ∈ C[x±1 , . . . , x±n ], we denote

σ1(P ) := inf

ß
σ ∈ R :

1

πn

∫
Dn

|P (x1, . . . , xn)|σ dA(x1) . . . dA(xn) <∞
™
∈ R ∪ {−∞}.

For P ∈ C[x1, . . . , xn], since 1
πn

∫
Dn |P (x1, . . . , xn)|0 dA(x1) . . . dA(xn) = 1 < ∞, we have

σ1(P ) ≤ 0. Following an argument analogous to the classical case in [3, Proposition 2.1], we

have the following result.

Proposition 5.2.1. Let P ∈ C[x1, . . . , xn] be a non-zero polynomial. Then the integral

in (5.1.1) converges absolutely and locally uniformly in Re(s) > σ1(P ). Furthermore, for

Re(s) > σ1(P ), ZD(s, P ) is holomorphic and we have

dkZD(s,P )

dsk
=

1

πn

∫
Dn

|P (x1, . . . , xn)|s (log |P |)kdA(x1) . . . dA(xn).

Proof. We assume n = 2 for simplicity of notation, as the same idea extends to the general

case. First observe that

1

π2

∫
D2

|P (x, y)|s dA(x)dA(y) =22
∫
[0,1]4

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣s ρ1ρ2dρ1dρ2dθ1dθ2.
Let ϵ > 0 be arbitrary and T > max{σ1(P ) + ϵ, 0}. Then, from the definition of σ1(P ),

it follows that there exists at least one σ ∈ [σ1(P ), σ1(P ) + ϵ) such that

22
∫
[0,1]4

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣σ ρ1ρ2dρ1dρ2dθ1dθ2 <∞. (5.2.1)

Note that, assuming the integral in (5.1.1) converges absolutely for all σ1(P ) + ϵ ≤

Re(s) ≤ T, we can extend this region of absolute convergence to (σ1(P ),∞) by taking ϵ→ 0
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and T → ∞. Therefore, it suffices to prove the absolute convergence of the integral in (5.1.1)

for all Re(s) ∈ [σ1(P ) + ϵ, T ].

For t ≥ 0, we divide [0, 1]4 into two parts

A≥t
2 (P ) :={(ρ1, ρ2, θ1, θ2) ∈ [0, 1]4 :

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣ ≥ t}, (5.2.2)

A<t2 (P ) :={(ρ1, ρ2, θ1, θ2) ∈ [0, 1]4 :
∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣ < t}. (5.2.3)

Let RP := max(x,y)∈D2 |P (x, y)|, which is well-defined since D2 is compact and |P (x, y)| is

continuous. Then, on the one hand, for all (ρ1, ρ2, θ1, θ2) ∈ A≥1
2 (P ) and Re(s) ∈ [σ1(P )+ϵ, T ],

we have

||P (ρ1e2πiθ1 , ρ2e2πiθ2)|s| = |P (ρ1e2πiθ1 , ρ2e2πiθ2)|Re(s) ≤ RT
P .

On the other hand, for (ρ1, ρ2, θ1, θ2) ∈ A<1
2 (P ), we have

||P (ρ1e2πiθ1 , ρ2e2πiθ2)|s| = |P (ρ1e2πiθ1 , ρ2e2πiθ2)|Re(s) ≤ |P (ρ1e2πiθ1 , ρ2e2πiθ2)|σ,

since σ < σ1(P ) + ϵ ≤ Re(s) and |P (ρ1e2πiθ1 , ρ2e2πiθ2)| < 1.

Observe that max
{
λ4
(
A<1

2 (P )
)
, λ4
(
A≥1

2 (P )
)}

≤ λ4([0, 1]
4) = 1. Then, from (5.1.1), we

have ∣∣∣∣ 1π2

∫
D2

|P (x, y)|s dA(x)dA(y)
∣∣∣∣

=

∣∣∣∣∣22
∫
[0,1]4

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣s ρ1ρ2dρ1dρ2dθ1dθ2∣∣∣∣∣
≤ 22

∫
A≥1

2 (P )

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣Re(s)
ρ1ρ2dρ1dρ2dθ1dθ2

+ 22
∫
A<1

2 (P )

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣Re(s)
ρ1ρ2dρ1dρ2dθ1dθ2

≤ 22RT
Pλ4

(
A≥1

2 (P )
)
+ 22

∫
A<1

2 (P )

∣∣P (ρ1e2πiθ1 , ρ2e2πiθ2)∣∣σ ρ1ρ2dρ1dρ2dθ1dθ2
< ∞,

where the finiteness of the second integral in the penultimate line follows from (5.2.1). This

concludes the proof that the integral representation of ZD(s, P ) is absolutely convergent in

σ1(P ) + ϵ ≤ Re(s) ≤ T, as well as in Re(s) > σ1(P ).
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Let δ > 0. For s ∈ C such that Re(s) > σ1(P ), we denote D(s, δ) = {z ∈ C : |z− s| < δ}.

Observe that Rs
P is locally uniformly continuous on Re(s) > σ1(P ),

1 i.e. for every ϵ1 > 0

there exists a δs,ϵ1 := min
{

ϵ1

2(e−1)R
Re(s)
p | logRP |

, 1
| logRP |

}
> 0 such that, for all z, w ∈ D(s, δs,ϵ1),

we have

|Rz
P −Rw

P | ≤ |Rz
P −Rs

P |+ |Rs
P −Rw

P |

=R
Re(s)
P

(∣∣∣e(z−s) logRP − 1
∣∣∣+ ∣∣∣e(s−w) logRP − 1

∣∣∣)
≤ (2(e− 1)R

Re(s)
P | logRp|)δs,ϵ1 = ϵ1,

where last inequality follows from the following simplification∣∣∣e(z−s) logRP − 1
∣∣∣ =
∣∣∣∣∣∣

∞∑
j=1

(z − s)j logj RP

j!

∣∣∣∣∣∣ ≤ |z − s|| logRP |

(
∞∑
j=1

|z − s|j−1 logj−1RP

j!

)

≤ δs,ϵ1| logRP |

(
∞∑
j=1

1

j!

)
= (e− 1)δs,ϵ1| logRP |.

First we consider all s satisfying Re(s) > max{0, σ1(P )}. In this region we have

|P (x, y)|Re(s) ≤ R
Re(s)
P for all (x, y) ∈ D2. Notice that, for every ϵ2 > 0, there exists a

δ
′
s,ϵ2

:= min
{

ϵ2

2(e−1)R
Re(s)
p | logRP |

, 1
| logRP |

}
> 0 such that, for all z, w ∈ D(s, δ

′
s,ϵ2

), we have

|ZD(z, P )− ZD(w,P )| =
∣∣∣∣ 1π2

∫
D2

(|P (x, y)|z − |P (x, y)|w) dA(x)dA(y)
∣∣∣∣

≤ 1

π2

∫
D2

||P (x, y)|z − |P (x, y)|w| dA(x)dA(y)

≤ 2(e− 1)

π2

∫
D2

|P (x, y)|Re(s) δ
′

s,ϵ2
| log |P (x, y)||dA(x)dA(y)

≤ 2(e− 1)R
Re(s)
P | logRP |δ

′

s,ϵ2
= ϵ2,

which implies that the integral representation of ZD(s, P ) in (5.1.1) is locally uniformly

convergent in Re(s) > max{0, σ1(P )} for s ∈ C. If σ1(P ) < 0, then, for the region σ1(P ) <

Re(s) < 0, a similar approach on A<1
2 (P ) and A≥1

2 (P ) extend the region of locally uniform

convergence of the integral in (5.1.1) from {Re(s) > 0} to {Re(s) > σ1(P )}. This further

implies that ZD(s, P ) is holomorphic in Re(s) > σ1(P ), which concludes our proof. □

1. It follows from the fact that ez is locally uniformly continuous in C.
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The next proposition gives an estimate for σ1(P ). First note that σ1(P τ ) = σ1(P ) for any

τ ∈ Sn, where P τ (x1, . . . , xn) = P (xτ(1), . . . , xτ(n)). Following the notation of [3], we define

d1(P ) := degP if n = 1,

dn(P ) := degxn(P ) + dn−1(Q) if n > 1,

where Q is the coefficient of xdegxn (P )
n in P. We also define

dmin
n (P ) := min

τ∈Sn

d(P τ ).

Then dmin
n (P ) ≤ dn(P ) ≤ degP. We have the following result.

Proposition 5.2.2. Let P ∈ C[x1, . . . , xn] be a non-zero polynomial. Then

(1) σ1(P ) ≤ −1/dmin
n (P ).

(2) If P does not vanish on Dn, then σ1(P ) = −∞.

Our argument to prove Proposition 5.2.2 is again inspired by the derivation of [3, Theorem

8]. Before proceeding with the proof, we define A<tr (S) and A≥t
r (S) as the generalizations of

(5.2.2) and (5.2.3) by

A≥t
r (S) :={(ρ1, . . . , ρr, θ1, . . . , θr) ∈ [0, 1]2r :

∣∣S (ρ1e2πiθ1 , . . . , ρre2πiθr)∣∣ ≥ t}, (5.2.4)

A<tr (S) :={(ρ1, . . . , ρr, θ1, . . . , θr) ∈ [0, 1]2r :
∣∣S (ρ1e2πiθ1 , . . . , ρre2πiθr)∣∣ < t}. (5.2.5)

Our proof relies on the following extension of Lemma 2.5 in [3] to the areal case.

Lemma 5.2.3. For a non-zero polynomial P ∈ C[x1, . . . , xn], there exists a constant C =

Cn(P ) > 0, such that

λ2n
(
A<tn (P )

)
≤ Ct

1

dmin
n (P ) . (5.2.6)

Proof. We again mimic the argument given in [3], and proceed by induction on n.

For n = 1, we start with P (x) = a
∏d

j=1(x− αj) ∈ C[x], where d = degP and {αj : 1 ≤

j ≤ d} is the set of roots of P. Then the condition |P (x)| < t for some x ∈ C, implies that at

least one of the αj satisfies that |x − αj| <
Ä
t
|a|

ä1/d
. For convenience, let Ba,d,t :=

Ä
t
|a|

ä1/d
.
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Then

λ2
(
A<t1 (P )

)
≤ λ2

(
d⋃
j=1

A
<Ba,d,t

1 (x− αj)

)

≤
d∑
j=1

λ2
Ä
A
<Ba,d,t

1 (x− αj)
ä
=

d∑
j=1

λ2
(
{(ρ, θ) ∈ [0, 1]2 : |ρe2πiθ − αj| < Ba,d,t}

)
≤

d∑
j=1

λ2
(
{(ρ, θ) ∈ [0, 1]2 : |ρe2πiθ − |αj|| < Ba,d,t}

)
, (5.2.7)

where the last inequality follows from the periodicity of e2πiθ. Suppose that there exists a

(ρ, θ) ∈ [0, 1]2 such that |ρe2πiθ − αj| < Ba,d,t. Then, by the triangle inequality, we have

|ρ− |αj|| ≤ |ρe2πiθ − αj| < Ba,d,t and

|ρe2πiθ − ρ| ≤ |ρe2πiθ − |αj||+ |ρ− |αj|| ≤ 2Ba,d,t.

Hence (5.2.7) is

≤
d∑
j=1

λ2
(
{(ρ, θ) ∈ [0, 1]2 : |ρe2πiθ − ρ| < 2Ba,d,t}

)
=

d∑
j=1

λ2
(
{(ρ, θ) ∈ [0, 1]2 : ρ sin(πθ) < Ba,d,t}

)
≤ 2

d∑
j=1

λ2 ({(ρ, θ) ∈ [0, 1]× [0, 1/2] : ρ sin(πθ) < Ba,d,t})

≤2
d∑
j=1

λ2

Åß
(ρ, θ) ∈ [0, 1]× [0, 1/2] : ρθ <

Ba,d,t

2

™ã
, (5.2.8)

where the last equality follows from the fact that sin(πθ) ≥ 2θ for any θ ∈ [0, 1/2]. It only

remains to compute the area under the curve ρθ = Ba,d,t

2
enclosed by the lines ρ = 0, ρ = 1,

θ = 0, and θ = 1
2
. In fact, if Ba,d,t ≤ 1, we have

λ2

Åß
(ρ, θ) ∈ [0, 1]× [0, 1/2] : ρθ <

Ba,d,t

2

™ã
=

∫ 1

0

min

ß
Ba,d,t

2ρ
,
1

2

™
dρ

=

∫ Ba,d,t

0

1

2
dρ+

∫ 1

Ba,d,t

Ba,d,t

2ρ
dρ =

Ba,d,t

2
+
Ba,d,t

2
logBa,d,t ≤

Ba,d,t

2
.
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If Ba,d,t > 1, then λ2
Ä¶

(ρ, θ) ∈ [0, 1]× [0, 1/2] : ρθ <
Ba,d,t

2

©ä
= 1

2
<

Ba,d,t

2
. Therefore, from

the above discussion, we can derive an upper bound for equation (5.2.8) as

2
d∑
j=1

λ2

Åß
(ρ, θ) ∈ [0, 1]× [0, 1/2] : ρθ <

Ba,d,t

2

™ã
≤ 2

d∑
j=1

Ba,d,t

2
= dBa,d,t, (5.2.9)

which implies that

λ2
(
A<t1 (P )

)
≤ dBa,d,t = d|a|−

1
d t

1
d .

We conclude that C1(P ) = d|a|− 1
d .

Let n ≥ 2, and suppose the statement holds up to n− 1. Let t′ > 0, which we will later

choose in terms of t.

We now factor P (x1, . . . , xn) as

P (x1, . . . , xn) = a(x1, . . . , xn−1)
h∏
j=1

(xn − αj(x1, . . . , xn)),

where h = degxn(P ), a(x1, . . . , xn−1) is the leading coefficient of P as a polynomial in xn,

and αj(x1, . . . , xn−1) are suitable branches of algebraic functions in x1, . . . , xn. We divide

A<tn (P ) in two parts: A<tn (P ) ∩A≥t′
n−1(a) and A<tn (P ) ∩A<t′n−1(a), where A≥t′

n−1(a) and A<t′n−1(a)

are defined following (5.2.4) and (5.2.5), where r = n− 1 and S = a. Our aim is to estimate

Lebesgue measure of each set.

By induction, we have

λ2n
Ä
A<tn (P ) ∩ A<t′n−1(a)

ä
≤ λ2(n−1)

Ä
A<t

′

n−1(a)
ä
≤ Cn−1(a)(t

′)
1

dn−1(a) .

For the other component of A<tn (P ), we have the following upper bound:

λ2n
Ä
A<tn (P ) ∩ A≥t′

n−1(a)
ä
≤

h∑
j=1

λ2n

(
A<t/t

′

n

(
h∏
j=1

(xn − αj(x1, . . . , xn))

))
≤ h

Å
t

t′

ã1/h

,

where the last inequality follows from a similar argument as in the n = 1 case. Choosing

t′ = t

Å
degxn (P )−1

(
1

dn−1(a)
+ 1

degxn (P )

)−1
ã
= t

dn−1(a)

dn(P ) ,

we have

λ2n
(
A<tn (P )

)
≤ Cn(P )t

1/dn(P ) ≤ Cn(P )t
1/dmin

n (P ),

which concludes the proof. □
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Now we are ready to prove Proposition 5.2.2.

Proof of Proposition 5.2.2. Note that, for any σ ∈
Ä
− 1
dn(P )

, 0
ä
, we have

2n
∫
[0,1]2n

∣∣P (ρ1e2πiθ1 , . . . , ρne2πiθn)∣∣σ ρ1 · · · ρndρ1 · · · dρndθ1 · · · dθn
≤ 2nλ2n

(
A≥1
n (P )

)
+ 2n

∫
A<1

n (P )

∣∣P (ρ1e2πiθ1 , . . . , ρne2πiθn)∣∣σ ρ1 · · · ρndρ1 · · · dρndθ1 · · · dθn
= 2nλ2n

(
A≥1
n (P )

)
+ 2n

∞∑
ℓ=0

∫
A≥2−ℓ−1

n (P )∩A<2−ℓ
n (P )

∣∣P (ρ1e2πiθ1 , . . . , ρne2πiθn)∣∣σ ρ1 · · · ρndρ1 · · · dρndθ1 · · · dθn
≤ 2nλ2n

(
A≥1
n (P )

)
+ 2n

∞∑
ℓ=0

2−σ(ℓ+1)λ2n
Ä
A<2−ℓ

n (P )
ä

≤ 2n

(
λ2n
(
A≥1
n (P )

)
+ Cn(P )

∞∑
ℓ=0

2
−σ(ℓ+1)− ℓ

dmin
n (P )

)
<∞. (5.2.10)

Based on (5.2.10), we can infer that σ1(P ) ≤ − 1
dmin
n (P )

. This proves statement (1).

If P does not vanish on Dn, then there exists rP > 0, such that rP ≤ |P (x1, . . . , xn)| ≤ RP

for any (x1, . . . , xn) ∈ Dn. Then, the integral in (5.1.1) converges absolutely for all s ∈ C. In

other words, σ1(P ) = −∞, which implies statement (2). □

The next proposition lists other fundamental properties of the zeta function ZD that

follow directly from its definition and Proposition 5.2.1.

Proposition 5.2.4. Let P ∈ C[x1, . . . , xn] be a non-zero polynomial. Then

(1) for any s ∈ C, ZD(s, 1) = 1;

(2) for any a ∈ C× and Re(s) > σ1(P ), ZD(s, aP ) = |a|sZD(s, P );

(3) for any k ∈ Z≥1 and Re(s) > σ1(P )/k, ZD(s, P
k) = ZD(ks, P ).

In the next sections, our goal is to investigate ZD for the family of polynomials {k+x+y :

k ∈ C}, and eventually derive the results of Theorems 5.1.1 and 5.1.2, which, along with

Cassaigne–Maillot’s formula (0.5.1), will help us explicitly compute mD(k + x+ y) in terms

of special values of dilogarithms, for any k ∈ C.
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5.3. The areal zeta Mahler measure of k + x + y

Following the works of Borwein and Straub [24], Borwein, Straub, Wan, and Zudilin

[26], Ringeling [101], and others, we compute ZD(k + x + y) as a solution of a certain

hypergeometric differential equation, and derive the result of Theorem 5.1.1.

We start with the simple case when k = 0.

Theorem 5.3.1. For s ∈ C,

ZD(s, x+ y) =
4

s+ 4

Γ(s+ 2)

Γ
(
s
2
+ 2
)2 . (5.3.1)

Proof. By Definition 0.6.20, we have

ZD(s, x+ y) =
1

π2

∫
D

∫
D
|x+ y|sdA(x)dA(y)

=
1

π2

∫ 1

0

∫ 1

0

∫ π

−π

∫ π

−π
|ρ1eiθ1 + ρ2e

iθ2 |sρ1ρ2dθ1dθ2dρ1dρ2

=
1

π2

∫ 1

0

∫ 1

0

∫ π

−π

∫ π

−π
ρs2|ρ1ρ−1

2 ei(θ1−θ2) + 1|sρ1ρ2dθ1dθ2dρ1dρ2

=
2

π

∫
0≤ρ2≤ρ1≤1

ρ2ρ
s+1
1

∫ π

−π
|ρ2ρ−1

1 eiτ + 1|sdτdρ1dρ2

+
2

π

∫
0≤ρ1≤ρ2≤1

ρ1ρ
s+1
2

∫ π

−π
|ρ1ρ−1

2 eiτ + 1|sdτdρ1dρ2,

where we have set τ = θ1 − θ2. Using (0.6.17), 2 we have

ZD(s, x+ y) =4

∫
0≤ρ2≤ρ1≤1

ρs+1
1 ρ2 2F1

(
−s
2
,− s

2
; 1; ρ22ρ

−2
1

)
dρ1dρ2

+ 4

∫
0≤ρ1≤ρ2≤1

ρ1ρ
s+1
2 2F1

(
−s
2
,− s

2
; 1; ρ21ρ

−2
2

)
dρ1dρ2. (5.3.2)

2. We use the identity in (0.6.17) when |a| = ρ2ρ
−1
1 < 1
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Under the change of variables ρ1 7→ ρ2 and ρ2 7→ ρ1, the first integral transforms into the

second integral. Hence (5.3.2) becomes

ZD(s, x+ y) =8

∫
0≤ρ2≤ρ1≤1

ρs+1
1 ρ2 2F1

(
−s
2
,− s

2
; 1; ρ22ρ

−2
1

)
dρ1dρ2

=8

∫ 1

0

ρs+3
1

∫ 1

0

σ 2F1

(
−s
2
,− s

2
; 1;σ2

)
dσdρ1

=
8

s+ 4
· 1
2

∫ 1

0
2F1

(
−s
2
,− s

2
; 1;σ2

)
dσ2

=
4

s+ 4
2F1

(
−s
2
,−s

2
; 2; 1

)
=

4

s+ 4

Γ(s+ 2)

Γ
(
s
2
+ 2
)2 ,

where the last equality follows from Theorem 3.3.1 (by taking a = b = − s
2

and c = 2). □

The argument for general k starts with the case when |k| > 2. Recall that, for |k| > 2,

we have mD(k + x+ y) = log |k| from (0.6.5). We will express the ZD(s, k + x+ y) in terms

of hypergeometric functions depending on |k| and s when |k| > 2, compute the differential

equation satisfied by the obtained expression of ZD(s, k + x+ y) and argue that, for general

k, ZD(s, k + x + y) is, in fact, a particular solution of that differential equation. This leads

to the identity in (5.1.2). A similar argument as the one given in Remark 0.6.26 implies that

ZD(s, k+x+y) is invariant under k 7→ |k|. Therefore, it suffices to compute ZD(s, |k|+x+y)

instead.

Let X and Y be the random variables defined by walks of lengths ρ1 and ρ2 along the

directions θ1 and θ2, uniformly distributed on [0, 1), respectively. In particular, X takes

values x = ρ1e
2πiθ1 and Y takes values y = ρ2e

2πiθ2 . Let Z be another random walk of unit

length and direction θ.

We define a new random variable T1 as the absolute value |X + Y |. Let pT1 denote the

probability density function of T1, which has support on [0, 2]. We further define the random

variable T2 as the absolute value ||k|Z + X + Y |. Let pT2 denote the probability density

function of T2, which has support on [|k| − 2, |k|+ 2], when |k| > 2.
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Observe that

ZD(s, |k|+ x+ y) =
1

π2

∫
D2

||k|+ x+ y|sdA(x)dA(y)

=22
∫
[0,1]4

||k|+ ρ1e
2πiθ1 + ρ2e

2πiθ2|sρ1ρ2dρ1dρ2dθ1dθ2

=22
∫
[0,1]5

||k|e2πiθ + ρ1e
2πiθ1 + ρ2e

2πiθ2|sρ1ρ2dρ1dρ2dθ1dθ2dθ. (5.3.3)

We now apply the change of variables ||k|e2πiθ + x + y| = u and |x + y| = v to obtain, for

|k| > 2,

ZD(s, |k|+ x+ y) =
1

π2

∫ 1

0

∫
D

∫
D
||k|e2πiθ + x+ y|sdA(x)dA(y)dθ

=

∫ 2

0

∫ |k|+v

|k|−v
us P(T2 = u |T1 = v)P(T1 = v)dudv. (5.3.4)

where the normalized area measures of the variables x and y in the first integral are sub-

stituted by the new probability measures obtained from functions of the variables x and y,

namely u and v. In (5.3.4), we have

P(T2 = u |T1 = v) = pT2|T1(u|v), and P(T1 = v) = pT1(v),

where

P(T2 = u |T1 = v) =
P(T2 = u, T1 = v)

P(T1 = v)
=
pT2,T1(u, v)

pT1(v)
= pT2|T1(u|v). (5.3.5)

Here pT2,T1 is the joint probability density function of the random variable (T2, T1).
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Remark 5.3.2. Note that, since T2 is dependent on T1, the moment generating function of

log T2 can be expressed as follows:

E[es log T2 ] = E[T s2 ] =
∫ |k|+2

||k|−2|
usP(T2 = u)du

=

∫ |k|+2

||k|−2|
us
Ç∫ 2

0

P(T2 = u, T1 = v)dv

å
du (5.3.6)

=

∫ 2

0

∫ |k|+2

||k|−2|
usP(T2 = u, T1 = v)dudv

=

∫ 2

0

∫ |k|+v

||k|−v|
usP(T2 = u|T1 = v)P(T1 = v)dudv, (5.3.7)

where the last equality follows from (5.3.5). After integrating with respect to u, (5.3.7) be-

comes

=

∫ 2

0

E[T s2 |T1 = v]P(T1 = v)dv

=E[E[T s2 |T1]], (5.3.8)

where the equality in (5.3.8) follows from considering E[T2|T1 = v] as a function of v (and

therefore as a function of T1), and then evaluating the expectation of the function with respect

to the variable T1. This also shows that the assertions (5.3.3) and (5.3.7) together imply that

the areal zeta Mahler measure of |k|+ x+ y coincides with the moment generating function

of log T2, namely E
[
es log T2

]
.

It remains to compute (5.3.4), for which we need the next two lemmas.

Lemma 5.3.3. For 0 ≤ v ≤ 2, we have

P(T1 = v) = pT1(v) =
v

π

(
2π − v

√
4− v2 − 4 arcsin

(v
2

))
. (5.3.9)

Proof. Following the discussion in Remark 5.3.2, we observe that the areal zeta Mahler

measure of x+y coincides with the moment generating function of T1, namely (see Theorem

5.3.1)

ZD(s, x+ y) =
4

s+ 4

Γ(s+ 2)

Γ
(
s
2
+ 2
)2 = E[T s1 ] =

∫ ∞

0

vspT1(v)dv =

∫ 2

0

vspT1(v)dv.
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Further, the above equality implies that ZD(s−1, x+y) is the Mellin transform of pT1(v).

Then, we can retrieve pT1(v) by considering the inverse Mellin transform of

ZD(s− 1, x+ y) =
4

s+ 3

Γ(s+ 1)

Γ
(
s−1
2

+ 2
)2 .

In order to obtain the expression of pT1(v) given in (5.3.9), we first note that the inverse

Mellin transform of ZD(s− 1, x+ y) is

pT1(v) =
∞∑
k=1

Ress=−k

ñ
4

s+ 3

Γ(s+ 1)

Γ
(
s−1
2

+ 2
)2v−s

ô
= 2v− 4

π
v2+

∞∑
k=4

4

(3− k)

(−v)k

Γ(k + 1)Γ
(
2− k+1

2

)2 .
(5.3.10)

To show that the series in (5.3.10) is indeed v
π

(
2π − v

√
4− v2 − 4 arcsin

(
v
2

))
for 0 ≤ v ≤ 2,

we consider the coefficients of vj of the Taylor series expansion of the function

g(v) := 2v − 4

π
v2 +

∞∑
k=4

4

(3− k)

(−v)k

Γ(k + 1)Γ
(
2− k+1

2

)2 − v

π

(
2π − v

√
4− v2 − 4 arcsin

(v
2

))
at v = 0. These coefficients are given by 1

j!
djg(v)
dvj

∣∣∣
v=0

, and a simple evaluation shows that
djg(v)
dvj

∣∣∣
v=0

= 0 for all j ≥ 0. This implies that g(v) is identically 0, which further shows that,

for 0 ≤ v ≤ 2,

pT1(v) = 2v− 4

π
v2+

∞∑
k=4

4

(3− k)

(−v)k

Γ(k + 1)Γ
(
2− k+1

2

)2 =
v

π

(
2π − v

√
4− v2 − 4 arcsin

(v
2

))
.

□

Lemma 5.3.4. Given 0 ≤ v ≤ 2, for u ∈ (||k| − v|, ||k|+ v|), we have

P(T2 = u |T1 = v) = pT2|T1(u|v) =
2u

π
√

4v2|k|2 − (u2 − v2 − |k|2)2
. (5.3.11)

Proof. We start by computing the cumulative distribution function of T2 at T1 = v given by

fv(u) = P(T2 ≤ u |T1 = v).

Since pT2|T1(u|v) is the partial derivative of fv(u) with respect to u, it only remains to compute

fv.
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Writing Z = e2πiθ, i.e. θ is the direction of Z, where θ is uniformly distributed in [−π, π),

we have

fv(u) = P(T2 ≤ u |T1 = v) = P(||k|e2iπθ + v| ≤ u |T1 = v) =
1

2π

∫
[−π,π)∩Iu,v

dθ,

where Iu,v is the set of values of θ such that

T 2
2 = ||k|e2iπθ + v|2 = v2 + |k|2 + 2v|k| cos θ ≤ u2 ⇐⇒ cos θ ≤ u2 − v2 − |k|2

2v|k|
.

Since v ∈ [0, 2] and u ∈ (||k|−v|, ||k|+v|), Iu,v is a non-empty set. Let β = arccos u
2−v2−|k|2

2v|k| ∈

[0, π). Then

fv(u) =
1

2π

∫
[−π,π)∩Iu,v

dθ = 1− 1

2π

∫ β

−β
dθ = 1− β

π
= 1−

arccos u
2−v2−|k|2

2v|k|

π
.

Taking the derivative with respect to u, we obtain the required expression in (5.3.11). □

We remark that Lemmas 5.3.3 and 5.3.4 are derived independently of the assumption

|k| > 2 or |k| ≤ 2.

We are now ready to compute the integral in (5.3.4). When |k| > 2, evaluation of the

integral follows from the following two crucial lemmas.

Lemma 5.3.5. For Re(s) > 0 and |k| > 2, we have

2

π

∫ |k|+v

|k|−v
us · u√

4v2|k|2 − (v2 − u2 − |k|2)2
du = |k|s · 2F1

Å
−s
2
,−s

2
; 1;

v2

|k|2

ã
. (5.3.12)

Proof. Since |k| > 2, we have |k| > v. Evaluating the inner integral in (5.3.4) with respect

to u and using (5.3.11), we have

2

π

∫ |k|+v

|k|−v
us

u√
4v2|k|2 − (u2 − v2 − |k|2)2

du.

Setting w = u2, the above integral equals

1

π

∫ (|k|+v)2

(|k|−v)2

ws/2√
4v2|k|2 − (w − v2 − |k|2)2

dw. (5.3.13)

After the change of variables

w′ =
w − (|k| − v)2

(|k|+ v)2 − (|k| − v)2
=
w − (|k| − v)2

4v|k|
,
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(5.3.13) becomes

1

π

∫ 1

0

(4|k|vw′ + (|k| − v)2)s/2√
w′(1− w′)

dw′ = (|k| − v)s 2F1

Å
−s
2
,
1

2
; 1;

−4kv

(|k| − v)2

ã
.

The last equality follows from the integral representation of the hypergeometric function

given in (3.3.2). We conclude that the above integral converges when Re(s) > 0 from the

convergence condition mentioned in Theorem 3.3.3.

Using a quadratic transformation for the hypergeometric function [65] 3, we find, for

|k| > 2 ≥ v,

(|k| − v)s 2F1

Å
−s
2
,
1

2
; 1;

−4|k|v
(|k| − v)2

ã
= |k|s · 2F1

Å
−s
2
,−s

2
; 1;

v2

|k|2

ã
.

This concludes the proof. □

We need the next lemma to completely evaluate the integral in (5.3.4) for |k| > 2.

Lemma 5.3.6. For all Re(s) > 0, we have the following integral evaluation∫ 2

0

pT1(v) · 2F1

Å
−s
2
,−s

2
; 1;

v2

|k|2

ã
dv = 3F2

Å
−s
2
,−s

2
,
3

2
; 2, 3;

4

|k|2

ã
.

Proof. We expand the hypergeometric function into its series and interchange the integral

and the sum. In other words, we have∫ 2

0

pT1(v) · 2F1

Å
−s
2
,−s

2
; 1;

v2

|k|2

ã
dv =

∞∑
n=0

(
− s

2

)2
n

n!2
1

|k|2n

∫ 2

0

v2npT1(v)dv

=
∞∑
n=0

(
− s

2

)2
n

n!2
1

|k|2n
4n
(
3
2

)
n

(n+ 1) (3)n
,

where the last equality follows from (5.3.1) and the discussion in Remark 5.3.2, since∫ 2

0

v2npT1(v)dv = ZD(2n, x+ y) =
4

2n+ 4

Γ(2n+ 2)

Γ(n+ 2)2
=

2 · 2n

n+ 1

3 · 5 · · · 2n+ 1

2 · (3)n
=

4n
(
3
2

)
n

(n+ 1) (3)n
.

Furthermore,
∞∑
n=0

(
− s

2

)2
n

n!2
1

|k|2n
4n
(
3
2

)
n

(n+ 1) (3)n
=

∞∑
n=0

(
− s

2

)2
n

(
3
2

)
n

(3)n(2)n

Ä
4

|k|2
än

n!

3. For |z| < 1, we have 2F1(a, b; a− b+ 1; z) = (1 +
√
z)−2a

2F1

Ä
a, a− b+ 1

2 ; 2a− 2b+ 1; 4
√
z

(1+
√
z)2

ä
.
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coincides with the series representation of 3F2

Ä
− s

2
,− s

2
, 3
2
; 2, 3; 4

|k|2
ä
, and this concludes the

proof. □

Combining Lemmas 5.3.5 and 5.3.6, we have, for |k| > 2 and Re(s) > 0,

ZD(s, |k|+ x+ y) = |k|s3F2

Å
−s
2
,−s

2
,
3

2
; 2, 3;

4

|k|2

ã
. (5.3.14)

We now extend our method for |k| ≤ 2. Notice that in this case the boundary points of

the inner integral in (5.3.4) will be ||k| − v| and |k|+ v, since for 0 ≤ v ≤ 2, there exists at

least one v such that |k| ≤ v. Denote

F (|k|) := |k|s · 2F1

Å
−s
2
,−s

2
; 1;

v2

|k|2

ã
. (5.3.15)

Now, to evaluate the integral in (5.3.4) with boundary points ||k| − v| and |k|+ v, we have

the following lemma.

Lemma 5.3.7. Let s be a real positive number that is not an odd integer. Then, for |k| ≤ 2,

we have∫ |k|+v

||k|−v|
us · P(T2 = u |T1 = v) du = Re (F (|k|))− cot

(πs
2

)
Im (F (|k|)) . (5.3.16)

Proof. For |k| ≥ v, the result follows from Lemma 5.3.5, since the integral is real, i.e.

Im(F (|k|)) = 0. Assume |k| < v. We can split the integral in (5.3.12) as

F (|k|) =
∫ |k|+v

|k|−v
us · udu√

4v2|k|2 − (v2 − u2 − |k|2)2

=

∫ |k|+v

v−|k|
us · udu√

4v2|k|2 − (v2 − u2 − |k|2)2
+

∫ v−|k|

0

us · udu√
4v2|k|2 − (v2 − u2 − |k|2)2

+

∫ 0

|k|−v
us · udu√

4v2|k|2 − (v2 − u2 − |k|2)2
(5.3.17)

=

∫ |k|+v

v−|k|
· us+1du√

4v2|k|2 − (v2 − u2 − |k|2)2
+ (1− eπis)

∫ v−|k|

0

· us+1du√
4v2|k|2 − (v2 − u2 − |k|2)2

(5.3.18)

=

∫ |k|+v

v−|k|
· us+1du√

4v2|k|2 − (v2 − u2 − |k|2)2
+ (1− eπis)

∫ v−|k|

0

· us+1du√
4v2|k|2 − (v2 − u2 − |k|2)2

.

(5.3.19)
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The penultimate equality follows from applying the change of variables u → −u to the

third integral in (5.3.17). Observe that in (5.3.18), the integrand is real on the interval

[v− |k|,|k|+ v], while it is purely imaginary on the intervals [0, v− |k|] and [|k| − v, 0]. Note

that we need s to be real to express (−1)s as eπis in (5.3.18). Next, taking the complex

conjugate of (5.3.19), we have

F (|k|) =
∫ |k|+v

v−|k|

us+1du√
4v2|k|2 − (v2 − u2 − |k|2)2

− (1−e−πis)
∫ v−|k|

0

us+1du√
4v2|k|2 − (v2 − u2 − |k|2)2

.

Combining the above equality with (5.3.19), we finally have∫ |k|+v

v−|k|

us+1√
4v2|k|2 − (v2 − u2 − |k|2)2

du =
F (|k|)− eπisF (|k|)

1− eπis

=Re (F (|k|))− cot
(πs
2

)
Im (F (|k|)) .

□

Now integrating F (|k|) ·pT1(v) as in Lemma 5.3.6 and considering the real and imaginary

parts, we have the following proposition.

Proposition 5.3.8. For real s > 0, not an odd integer,

ZD(s, |k|+ x+ y) = Re (G(|k|))− cot
(πs
2

)
Im (G(|k|)) , (5.3.20)

where

G(|k|) = |k|s · 3F2

Å
−s
2
,−s

2
,
3

2
; 2, 3;

4

|k|2

ã
.

A consequence of Proposition 5.3.8 is that ZD(s, |k|+x+y) satisfies the same differential

equation for both |k| ≤ 2 and |k| > 2, as both contain the same hypergeometric function

G(|k|) in their expressions (compare (5.3.14) with (5.3.20)). For z = |k|2
4
, denote

G(z) := G(
√
4z) = (4z)−

s
2 3F2

Å
−s
2
,−s

2
,
3

2
; 2, 3;

1

z

ã
. (5.3.21)

The goal here is to find a differential equation satisfied by G(z) and a particular solution

H(z) = H
Ä
|k|2
4

ä
to the differential equation which coincides with G(|k|) when |k| > 2 and

s > 0. Then, by the analytic properties of H
Ä
|k|2
4

ä
, we will conclude that ZD(s, |k|+x+y) =

H
Ä
|k|2
4

ä
for all k ∈ C and for a larger region of s ∈ C.
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In order to obtain a differential equation satisfied by G, we start with a hypergeometric

differential equation satisfied by 3F2

(
− s

2
,− s

2
, 3
2
; 2, 3; z

)
. From [95], we have that the hyper-

geometric function pFq(a1, . . . , ap; b1, . . . , bq; z) satisfies the differential equation

z

p∏
n=1

Å
z
d

dz
+ an

ã
W(z) = z

d

dz

q∏
ℓ=1

Å
z
d

dz
+ bℓ − 1

ã
W(z), (5.3.22)

where
(
z d
dz

)2
f(z) = z d

dz
zf ′(z) = zf ′(z) + z2f ′′(z) for a twice differentiable function f. Let

Θ := z d
dz
. Then, replacing p = 3, q = 2, a1 = a2 = − s

2
, a3 =

3
2
, b1 = 2, and b3 = 3 in (5.3.22),

we obtain the third order differential equationï
z
(
Θ− s

2

)(
Θ− s

2

)Å
Θ+

3

2

ã
−Θ(Θ + 1) (Θ + 2)

ò
W(z) =0

⇐⇒
ï
(z − 1)Θ3 −

Å
3− 3z

2
+ zs

ã
Θ2 −

Å
2 +

3zs

2
− zs2

4

ã
Θ+

3zs2

8

ò
W(z) =0,

which is satisfied by
G(z−1)

(4z)
s
2

= 3F2

Å
−s
2
,−s

2
,
3

2
; 2, 3; z

ã
.

Now, to find the differential equation satisfied by G, we substitute W(z) with G(z−1)

(4z)
s
2

above. Next, using the change of variables z 7→ 1
z

and further simplifying, we obtain a third

order differential equation

s(8+6s+s2)V(z)−2(2+3s2z+s(2+6z))V ′(z)−4z(−3+s−3sz)V ′′(z)−8(z−1)z2V ′′′(z) = 0,

(5.3.23)

which is satisfied by G(z). Dividing both sides of (5.3.23) by the coefficient of V ′′′(z), we find

that this differential equation has a regular singularity at z = 0 (see [16]).

It remains to obtain a fundamental set of solutions of (5.3.23) around z = 0. Using the

method of Frobenius to find power-series solutions to differential equations [95], 4 we show

that the local exponents at z = 0 are 0, 0 and (3 + s)/2, and we further obtain that the

differential equation has a basis of solutions around z = 0 of the form

z(3+s)/2F0(z; s), F1(z; s) and F2(z; s) + log(z)F1(z; s),

4. See [66, §16.3] for more details.
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where F0, F1 and F2 are holomorphic, non-zero at z = 0, and defined by

F0(z; s) =3F2

Å
−1

2
,
1

2
,
3

2
;
5 + s

2
,
5 + s

2
; z

ã
, (5.3.24)

F1(z; s) =3F2

Å
−2− s

2
,− 1− s

2
,−s

2
; 1,− 1

2
− s

2
; z

ã
, (5.3.25)

F2(z; s) =G
3 3
4 3

Å
2 + s

2
,
4 + s

2
,
6 + s

2
; 0, 0,

3 + s

2
; z

ã
, (5.3.26)

where the Meijer G-functions Gmn
p q are generalization of hypergeometric functions:

Gmn
p q (a1, . . . , ap; b1, . . . , bq; z)

=
m∑
h=1

∏m
j=1
j ̸=h

Γ(bj − bh)
∏n

j=1 Γ(1 + bh − aj) z
bh∏q

j=m+1 Γ(1 + bh − bj)
∏p

j=n+1 Γ(aj − bh)

× pFq−1

(
1 + bh − a1, . . . , 1 + bh − ap; 1 + bh − b1, . . . ,⁄�1 + bh − bh, . . . , 1 + bh − bn; z

)
,

where aℓ, bj ∈ C× and ̂ indicates that the term corresponding to j = h is omitted.

Now we have all the elements to prove Theorem 5.1.1.

Proof of Theorem 5.1.1. From Theorem 5.3.1, we have, for almost all 5 s, that ZD(s, |k| +

x+ y) converges as k → 0. This eliminates F2(z; s)+ log(z)F1(z; s) as a possible contributor

to the expression of ZD(s, |k| + x + y), since it does not converge as z → 0 and z = |k|2
4
.

Therefore, ZD(s, |k| + x + y) is a linear combination of z(3+s)/2F0(z; s) and F1(z; s), where

F0(z; s) and F1(z; s) are as defined in (5.3.24) and (5.3.25), respectively.

Further, using the initial conditions ZD(s, 2 + x + y) = G(2) and ZD(s, x + y) =

4
s+4

Γ(s+2)

Γ( s
2
+2)

2 = G(0) we conclude that

ZD(s, |k|+ x+ y) = c0(s)

Å |k|
2

ãs+3

F0

Å |k|2
4

; s

ã
+ c1(s)F1

Å |k|2
4

; s

ã
, (5.3.27)

5. The only problematic s are coming from the zeros of Γ
(
s
2 + 2

)
and s+ 4, and the poles of Γ(s+ 2).
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where c1(s) = 4
s+4

Γ(s+2)

Γ( s
2
+2)

2 and

c0(s) =
G(2)− c1(s)F1(1; s)

F0(1; s)

=

2s · 3F2

(
− s

2
,− s

2
, 3
2
; 2, 3; 1

)
− 4

s+4
Γ(s+2)

Γ( s
2
+2)

2 · 3F2

(
−2− s

2
,− 1− s

2
,− s

2
; 1,− 1

2
− s

2
; 1
)

3F2

(
−1

2
,1
2
, 3
2
; 5+s

2
,5+s

2
; 1
) .

Since a hypergeometric series q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) absolutely converges at z = 1

when Re
Ä∑q

j=1 bj −
∑q+1

ℓ=1 aℓ
ä
> 0, we have that F0(z; s) and F1(z; s) converge absolutely for

Re(s) > −7
2
. Since Γ(s+ 2) has simple poles at s = −2, the expression in (5.3.27) converges

absolutely in Re(s) > −2, and this concludes the proof.

□

5.4. The areal Mahler measure of |k| + x + y

The areal Mahler measure of |k| + x + y can be obtained by computing d
ds
ZD(s, |k| +

x + y)|s=0. For |k| ≥ 2, we find mD(|k| + x + y) = mD(k + x + y) = log |k|. For |k| < 2,

we differentiate the expression (5.3.27) with respect to s. By expanding the hypergeometric

series in the numerator of c0(s), we find that

c0(s) =
log 2− 7

4

3F2

(
−1

2
,1
2
, 3
2
; 5
2
,5
2
; 1
)s+O(s2) = − 32

9π
s+O(s2).

Moreover, we also have that

c1(s) = 1− 1

4
s+O(s2),

F0

Å |k|2
4

; s

ã
= 3F2

Å
−1

2
,
1

2
,
3

2
;
5

2
,
5

2
;
|k|2

4

ã
+O(s),

F1

Å |k|2
4

; s

ã
= 1 +

|k|2

2
s+O(s2).

Therefore, computing d
ds
ZD(s, |k|+ x+ y)|s=0, we conclude that

mD(k + x+ y) = mD(|k|+ x+ y) = −4|k|3

9π
3F2

Å
−1

2
,
1

2
,
3

2
;
5

2
,
5

2
;
|k|2

4

ã
+

|k|2

2
− 1

4
, (5.4.1)

which is the identity in Corollary 0.6.24. Combining (5.4.1) and (0.6.21), we derive the

required relation between m(k+x+y) and mD(k+x+y) in the statement of Theorem 5.1.2.
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5.5. Comparison with m(k + x + y)

By Cassaigne–Maillot’s formula (0.5.1), the Mahler measure of k + x+ y for 0 < |k| < 2

is given by

m(k + x+ y) =
1

π

Å
2 log |k| arcsin |k|

2
+

1

2
D
(
e4i arcsin

|k|
2

)
+D

(
e2i arccos

|k|
2

)ã
, (5.5.1)

where arcsin |k|
2
, arccos |k|

2
∈ [0, π). Since (5.3.27) is written in terms of hypergeometric series

in |k|, we need a hypergeometric formula for m(k + x + y) = m(|k| + x + y). The following

result provides such a formula.

Proposition 5.5.1 ([7]). For k ∈ C, we have

m(k + x+ y) =
|k|
π

3F2

Å
1

2
,
1

2
,
1

2
;
3

2
,
3

2
;
|k|2

4

ã
. (5.5.2)

Since the argument to derive (5.5.2) using the zeta Mahler measure is analogous to the

ones in Sections 5.3 and 5.4, we do not include the proof here. Instead we provide a brief

sketch of the derivation of (5.5.2) in Appendix A.

Comparing (5.4.1) and (5.5.2), we conclude that

m(k + x+ y)−mD(k + x+ y) =
|k|
√
4− |k|2(10 + |k|2) + (8− 16|k|2) arccos

Ä
|k|
2

ä
16π

,

which proves Theorem 5.1.2. Evaluating the above equality at k =
√
2, we have

m
Ä√

2 + x+ y
ä
−mD

Ä√
2 + x+ y

ä
=

3

2π
− 3

8
.

Now comparing Theorem 0.6.5 together with the fact that

m
Ä√

2 + x+ y
ä
=
L(χ−4,2)

π
+

log 2

4
,

we complete the derivation of the result in Remark 0.6.6, namely,

C√2 =
Γ
(
3
4

)2
√
2π3

4F3

Å
1

4
,
1

4
,
3

4
,
3

4
;
1

2
,
5

4
,
5

4
; 1

ã
−

Γ
(
1
4

)2
72
√
2π3

4F3

Å
3

4
,
3

4
,
5

4
,
5

4
;
3

2
,
7

4
,
7

4
; 1

ã
=

log 2

4
.

Further combining the identities (5.1.4) and (5.5.1) together yields a much simpler ex-

pression for mD(k + x + y) in terms of special values of Bloch–Wigner dilogarithm for all
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k ∈ C, namely,

mD(k + x+ y) =
1

π

Å
2 log |k| arcsin |k|

2
+

1

2
D
(
e4i arcsin

|k|
2

)
+D

(
e2i arccos

|k|
2

)ã
−

|k|
√

4− |k|2(10 + |k|2) + (8− 16|k|2) arccos
Ä
|k|
2

ä
16π

.

5.6. Conclusion

In this chapter (as in Chapters 2 and 3), we only considered polynomials which have

standard Mahler measures expressed in terms of Dirichlet L-values and ζ-values. An inter-

esting direction for the future is to consider certain polynomial families {Qr : r ∈ C} (such

as {(1 + x)(1 + y) + rz : r ∈ C}, {x + 1
x
+ y + 1

y
+ r : r ∈ C}, etc.) where, for some values

of r ∈ C, m(Qr) can be expressed in terms of special values of L-functions of elliptic curves

(see Table 1). Due to difficulties in obtaining hypergeometric expressions of their zeta areal

Mahler measures, we propose an implicit approach to calculate their areal Mahler measures.

The idea is to consider the integral representation of the zeta areal Mahler measure of Qr as

the moment generating function of the random variable log Tr = log |Qr| (as given in Remark

5.3.2), and to express the areal Mahler measure as a single integral by taking the derivative

of ZD(s,Qr) at s = 0. In particular, we have mD(Qr) = E[log Tr]. The next step in this

approach would be to investigate the integral representation of E[log Tr] in order to obtain

an expression of m(Qr) −mD(Qr) in terms of |r|, ultimately yielding examples of the areal

Mahler measure involving special values of L-functions of elliptic curves for certain values of

r.

Another direction to pursue is to obtain an expression of ZD(s, x+y+z) from the general

expression of ZD(s, |k| + x + y) in equation (5.3.27), and to apply an analogous approach

as the one discussed in Section 5.3 in order to evaluate ZD(s, r + x + y + z) in terms of

hypergeometric series in |r| and s, where r ∈ C.

An active area of research is computing Z(s, x1 + · · · + xn) in terms of hypergeometric

series and Meijer G-functions using random walks and an iterative process involving Z(s, x1+

· · ·+ xℓ), where 1 ≤ ℓ < n. Hypergeometric expressions of Z(s, x1 + x2 + x3) and Z(s, x1 +

x2 + x3 + x4) can be found in [26]. This method can be extended to the areal case. In
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other words, an iterative process then could yield an evaluation of ZD(s, r + x1 + · · · + xn)

in terms of hypergeometric series, for n ≥ 3 and r ∈ C. Finally, taking the derivative of

ZD(s, r + x1 + · · · + xn) with respect to s at s = 0 would likely lead to a hypergeometric

expression of mD(r + x1 + · · ·+ xn).
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Chapter 6

Conclusion

The Mahler measure bridges diverse areas of mathematics, connecting topics such as

hyperbolic volumes, heights, Beilinson conjectures, and random walks. This thesis aims to

provide a pathway into the vast realm of Mahler measure and its various generalizations. We

refer readers to the end of each chapter for outlines of future directions that can be pursued

in each generalization.

We would like to conclude this thesis by proposing some further questions that might

be interesting to explore in the future. It is already known that the Mahler measure of

a polynomial can be computed as the entropy of a dynamical system. Recent works by

Deninger [46], Carter, Lalín, Manes, and Miller [40], among others, have opened the door

to the search for suitable dynamical systems giving rise to Mahler measures. Similar to the

classical case, if one can associate a notion of height (such as the canonical height) with

certain dynamical systems, will there exist a Mahler measure arising from that system?

Exploring this direction would be fascinating, and could further enrich the already diverse

world of Mahler measures. The dynamical approach established in Benedetto’s work [6]

involving canonical heights (first considered by Call and Silverman [39]) on specific Julia

sets contains a potential to express the Mahler measure of a one-variable polynomial over

function fields in terms of such heights, and pursue a similar analysis to the one described

in [40]. An ideal goal would be to evaluate this version of Mahler measure on non-trivial

multivariable polynomials in order to express it in terms of special values of L-functions of



the associated varieties over Fq. A more ambitious approach would be to seek a universal

theory encompassing different generalizations of Mahler measures, as the known ones seem

to be connected in various ways.
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Appendix A

The hypergeometric expression of m(k + x + y)

A.1. Derivation of Proposition 5.5.1

Here we provide a sketch of the proof of Proposition 5.5.1. We assume that k > 0 below,

since

m(k + x+ y) = m(|k|+ x+ y).

Sketch of the proof of Proposition 5.5.1. Our method of proof is similar to the proofs of The-

orems 5.1.1 and 5.1.2 in Sections 5.3 and 5.4. We follow an analogous argument to derive

the hypergeometric expression of m(k + x+ y).

We define random variables U = |X+Y | and V = |k+X+Y |, whereX and Y are random

walks of unit length and directions θ1 and θ2, uniformly distributed in [−π, π). Following the

discussion in Remark 5.3.2, we then have, for k > 2,

Z(s, k + x+ y) = E(V s) = E [E [V s|U ]]

=

∫ 2

0

∫ k+u

k−u
vs P(V = v |U = u)P(U = u)dvdu. (A.1.1)

Since the zeta Mahler measure of x+ y is (see (0.6.16))

Z(s, x+ y) = Z(s, x+ 1) =
2s√
π

Γ
(
s+1
2

)
Γ
(
s
2
+ 1
) =

∫ ∞

0

usP(U = u)du,



the Mellin inverse of Z(s− 1, x+ y) yields, for 0 ≤ u ≤ 2,

P(U = u) =
2

π
√
4− u2

.

A similar approach as in Section 5.3 gives

P(V = v |U = u) =
2v

π
√
4k2u2 − (v2 − u2 − k2)2

.

Then, from Lemmas 5.3.5 and 5.3.7 we have, for s real and positive,∫ k+u

|k−u|
vs · P(V = v |U = u) dv =

∫ k+u

|k−u|
vs · 2v

π
√

4u2k2 − (v2 − u2 − k2)2
dv

=Re(F (k))− cot
(πs
2

)
Im(F (k)),

where F (k) is given in (5.3.15) as

F (k) = ks · 2F1

Å
−s
2
,−s

2
; 1;

u2

k2

ã
.

Therefore we have, for all k > 2,

ks
∫ 2

0
2F1

Å
−s
2
,−s

2
; 1;

u2

k2

ã
P(U = u)du = ks3F2

Å
−s
2
,−s

2
,
1

2
; 1, 1;

4

k2

ã
.

An analogous approach as in the areal case further shows that, for all real s > 0 which is

not an odd integer and k > 0,

Z(s, k + x+ y) = Re(J(k))− cot
(πs
2

)
Im(J(k)),

where

J(k) := ks3F2

Å
−s
2
,−s

2
,
1

2
; 1, 1;

4

k2

ã
.

Now, to analytically extend the above inequality to all k ∈ C and to a larger region of

s ∈ C, we need to find a differential equation for

H(z) = (4z)−
s
2 3F2

Å
−s
2
,− s

2
,
1

2
; 1,1;

1

z

ã
,

where z = k2

4
. Again, a procedure similar to the areal case yields the required differential

equation:

s2U(z)− 2z(2 + 2s+ s2 − 4z)U ′(z)− 4z2(5 + 2s− 6z)U ′′(z) + 4z2(1− z)U ′′′(z) = 0.
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The above differential equation has a regular singularity at z = 0 with local exponents 0, 0,

and 1+s
2

(see [16] for more details on local exponents). Then, using Frobenius’ method to

solve the differential equation [95], we find the following set of solutions:

G0(z; s), z
1+s
2 G1(z; s), G2(z; s) + log z G0(z; s)

where

G1(z; s) = 3F2

Å
1

2
,
1

2
,
1

2
;
3 + s

2
,
3 + s

2
; z

ã
, G0(z; s) = 3F2

Å
−s
2
,−s

2
,−s

2
; 1,

1− s

2
; z

ã
,

and G2 is a Meijer G-function. Since, for z → 0 (i.e. k → 0), Z(s, k + x+ y) exists, namely

Z(s, x+ y) = Z(s, x+ 1) = 2s√
π

Γ( s+1
2 )

Γ( s
2
+1)

, the quantity G2(z; s) + log z G0(z; s) does not appear

in the expression of Z(s, k+ x+ y). This implies that Z(s, k+ x+ y) is a linear combination

of G0(z; s) and z
1+s
2 G1(z; s). In particular, substituting z = k2

4
, we have

Z(s, k + x+ y) = c0(s)

Å
k

2

ã1+s

G1

Å
k2

4
; s

ã
+ c1(s)G0

Å
k2

4
; s

ã
, (A.1.2)

where

c1(s) = Z(s, x+ y) =
Γ(s+ 1)

Γ
(
s
2
+ 1
)2 ,

and

c0(s) =
1

2s
tan
(πs
2

)Ç s
s−1
2

å2

.

The expression c0(s) follows from the case k = 1 in [25, Corollary 1].

Similar to the areal case, we investigate the order of s in each of c0, c1 and G0, and we

have

c0(s) =
2s

π
+O(s2).

c1(s) = 1 +O(s2).

G0 = 1 +O(s3).

Therefore, differentiating the expression of Z(s, k+x+y) in (A.1.2), and evaluating at s = 0,

we finally have

m(k + x+ y) =
k

π
3F2

Å
1

2
,
1

2
,
1

2
;
3

2
,
3

2
;
k2

4

ã
,

which completes the proof of the statement. □
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